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Summary 

 

For decades, antimicrobial resistance has been considered as a global long-lasting challenge. If 

no action is taken, antimicrobial resistance-related diseases could give a rise up to 10 million deaths 

each year by 2050 and 24 million people might end into extreme poverty. The ever-increasing 

spread and cross-transmission of drug-resistant foodborne pathogens such as Campylobacter spp. 

between reservoirs, such as human, animal and environment are of concern. Indeed, because of 

the over-exposition and overuse of antibiotics in food-producing animals, the latter could carry 

multidrug resistant Campylobacter that could be transmitted to humans via food sources or from 

direct animal contacts. One of the solutions to tackle antimicrobial resistances is the development 

of rapid diagnostics tests to swiftly detect resistances in routine laboratories. By detecting earlier 

AMR, adapted antibiotherapy might be administrated promptly shifting from empirical to evidence-

based practices, conserving effectiveness of antimicrobials. The already implemented cost- and 

time-efficient MALDI-TOF MS in routine laboratories for the identification of microorganisms based 

on expressed protein profiles was successfully applied for bacterial typing and detection of specific 

AMR peak in a research context. In the line of developing rapid tests for diagnostics, MALDI-TOF 

MS appeared to be an ideal candidate for a powerful and promising “One fits-all” diagnostics tool. 

Therefore, the present study aimed to get more insights on the ability of MALDI-TOF MS-protein 

based signal to reflect the AMR and genetic diversity of Campylobacter spp.  

The groundwork of this research consisted into the phenotypic and genotypic 

characterization of a One-Health Campylobacter collection. Then, isolates were submitted to 

protein extraction for MALDI-TOF MS analysis. Firstly, mass spectra were investigated to screen 

AMR to different classes of antibiotics and to retrieve putative biomarkers related to already known 

AMR mechanisms. The second part evaluated the ability of MALDI-TOF MS to cluster mass spectra 

according to the genetic relatedness of isolates and congruently compare it to reference genomic-

based methods. MALDI-TOF MS protein profiles combined to machine learning displayed promising 

results for the prediction of the susceptibility and the ciprofloxacin and tetracycline 

Campylobacter’s resistances. Additionally, MALDI-TOF MS C. jejuni protein clusters were highly 

concordant to conventional DNA-based typing methods, such as MLST and cgMLST, when a 

similarity cut-off of 94% was applied. A similar discriminatory power between 2-20 kDa expressed 

protein and cgMLST profiles was underlined as well. Finally, putative biomarkers either linked to 

known or unknown AMR mechanisms, or genetic structural population of Campylobacter were 

identified.  
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Overall, a single spectrum based on bacterial expressed protein could be used for species 

identification, AMR screening and potentially as a complete pre-screening for daily surveillance, 

including genetic diversity and source attribution after further analysis. 
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CHAPTER 1 

Fast microbiology: the XXI century challenge 

Contents 

1. Ongoing challenges in microbiology: the antimicrobial resistances crisis example .................. 2 

1.1 A global public threat .......................................................................................................... 2 

1.2 Causes and consequences .................................................................................................. 3 

1.3 A lot on the international community plate........................................................................ 4 

2. A fast microbiology: the apogee of molecular biology .............................................................. 5 

2.1 Genomics ............................................................................................................................ 6 

2.2 Proteomics .......................................................................................................................... 7 

2.3 Lipidomics ........................................................................................................................... 8 

3. A digital microbiology: the artificial intelligence revolution ...................................................... 9 

3.1 Overview and motivations ................................................................................................ 10 

3.2 Machine learning: how it is working ? .............................................................................. 11 

3.3 Machine learning applications in microbiology ................................................................ 13 

 

1. Ongoing challenges in microbiology: the antimicrobial resistances crisis example 

Over the two-last century, the anthropic impact on the environment (e.g. urbanization, world 

migration, food market globalization) led to changes in ecosystem dynamics and diversity, including 

microbial life. For example, the rise of oceans’ level already changed the epidemiology and location 

of several infectious diseases such as malaria, dengue and cholera (Waldvogel, 2004). Therefore, 

microbiologists must face new as well as long-lasting challenges, including emergence and re-

emergence of pathogens. In the following section, the antimicrobial resistances (AMR) burden will 

be showcased. 

1.1 A global public threat 

The World Health Organization (WHO) identifies AMR as one of the top 10 global public health 

threats currently facing humanity (WHO, 2020). While numerous antibiotics have been almost 

yearly discovered and commercialized during the 20th century, the golden age of antibiotic 
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discovery reached an end in the 1960s (Hutchings et al., 2019). Since, the pipeline for new 

antibiotics is feeble due to loss of interest of pharmaceutical compagnies to develop new ones 

(Mattar et al., 2020). In 2016, the economist Jim O’Neill chaired a review on the antimicrobial 

resistances where he highlighted the death of 700,000 people every year due to resistant infections 

(O’Neill, 2016). As well, he estimated by 2050 a loss of 10 million lives a year and a cumulative 100 

trillion USD because of drug resistant infections. 

1.2 Causes and consequences 

The eventual onset of a “post-antibiotic” era may have important consequences on modern 

life. In one hand, the decreasing effectiveness of antibiotics will lead to less successful treatment 

methods (e.g. amputation), which will be longer and invasive in a near future (Michael et al., 2014). 

In the other hand, it will also have extensive economical and societal impacts, increasing morbidity 

and mortality (Michael et al., 2014). The rapid evolution and selection of AMR bacterial species 

stem from numerous factors. Amongst these, human (e.g. increasing population, overuse of 

antibiotics), clinical miscarriage (e.g. over-prescription), societal misconceptions (e.g. non-

prescription purchase) and agricultures (e.g. antibiotherapy for stock and crops) causes should be 

highlighted (Michael et al., 2014). For instance, Staphylococcus aureus developed numerous 

resistance mechanisms to introduced antibiotics over the last 60 years, including penicillin, 

methicillin and vancomycin (Figure 1.1) (Lowy, 2003; Hardy et al., 2004).  

 

Figure 1.1. Antimicrobial resistance timeline from 1940 to 2019 of S. aureus (Adapted from Kumar et al., 

(2020)).
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The introduction of penicillin in the 1940s offered to treat efficiently bacterial infections. 

Nevertheless, penicillin resistant S. aureus were recognized in 1942 and in the 1960s, 80% of 

staphylococci were producing penicillinase (Lowy, 2003). Such enzyme is carried by a genetic 

transposable element located on a plasmid with other AMR genes (e.g. gentamycin). Therefore, S. 

aureus strains non-producing penicillinase were removed from the bacterial population, remaining 

only the resistant one. Likewise, after the introduction of the methicillin antibiotics in 1961, 

methicillin resistant S. aureus (MRSA) were rapidly counting for a majority of human cases (Jevons, 

1961; Parker and Hewitt, 1970). Empiric use of previous antibiotics in human infections treatment 

is believed to have contributed of the establishment of multidrug (e.g. vancomycin, 

fluoroquinolones) resistant S. aureus (Lowy, 2003). Nowadays, MRSA is considered as global public 

health threat with 33,110 attributable deaths and 854,541 disability adjusted life years (DALYs) in 

2015 in Europe (Cassini et al., 2019). Additionally MRSA associated to livestock were reported and 

is now considered as an emerging problem worldwide (Anjum et al., 2019). The cause is the use of 

last generation antibiotics (e.g. cephalosporin) as non-therapeutic use in food industries, which may 

have contributed to the spread of MRSA in Europe due to pressure of selection (Mehndiratta and 

Bhalla, 2014). The main problem is that they can be transmitted between different animal species, 

such as pigs, and humans who have close contact with the latter (e.g. veterinarians, farmers), in 

both directions (Crespo-Piazuelo and Lawlor, 2021). Antibiotics use in food animals’ guidelines and 

policies emphases the need to reduce non-therapeutic use of antimicrobials, especially the one 

used in both human and veterinary medicine by implementing different actions (e.g. regulating 

sales, surveillance monitoring) (Mehndiratta and Bhalla, 2014). 

1.3 A lot on the international community plate 

Consequently, what have been done or what is envisaged to slow down or overcome the 

emergence of AMR? International and national measures were taken, leading to the creation of 

global and European polices to combat AMR (WHO, 2001, 2011; European Commission, 2017). 

Additionally, in 2015 a global surveillance system was launched by the WHO, better known 

as  Global Antimicrobial Resistance and Use Surveillance System (GLASS) (Agnew et al., 2021). This 

program aims to “strengthen knowledge through surveillance and research”. At the community 

level, communication actions such as awareness of the rational use of antibiotics or standards of 

hygiene may be more widely undertaken (Uchil et al., 2014). Several of these actions will eventually 

end up into a sustainable use of antibiotics in healthcare (Allcock et al., 2017). Nevertheless, 

considering the previous described MRSA example, a more global vision of the crisis should be 

considered by including a One-Health vision. One-Health is ”a worldwide strategy for expanding 

interdisciplinary collaborations and communications in all aspect of health care people, animals and 
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environment” (Gibbs, 2014). Actions like the innovation in new drugs by reviving and reinventing 

the “dry” antimicrobial pipeline (Luepke and Mohr, 2017; Singer et al., 2019), or the reduction of 

the usage of antibiotics in live-stocks by the application of regulations such as (EU) 2019/6 and (EU) 

2019/4 coming into effect in 2022, for “the prohibition of all form of routine antibiotic use in 

farming” should be undertaken (Alliance save our antibiotics, 2020).   

 

Additionally, the understanding of AMR mechanisms is important to develop methods to 

detect resistances (Bergeron and Ouellette, 1998). Development of rapid tools to detect resistance 

in a routine context is a key step in the choice of the antibiotherapy and therefore in the fight 

against the AMR. Popularization of molecular tests, including genomics, proteomics and lipidomics, 

combined to bioinformatics tools will allow a smooth transition from AMR phenotyping to 

molecular and in silico antibiograms (McArthur and Wright, 2015). 

2. A fast microbiology: the apogee of molecular biology 

In different field of microbiology such as food control or infectiology, the rapid detection or 

identification of microorganisms is an important step. It exists a broad spectrum of characterization 

methods, which could be divided into two groups: culture dependant and independent (Yagel and 

Moran-Gilad, 2021). In one hand, culture independent microbiology used techniques (e.g. 

polymerase chain reaction (PCR)) directly on samples (e.g. stool or nasal swabs) regardless the 

culture of microorganisms. On the other hand, culture dependant methods rely on the growth of 

the investigated microbes from the sample (Yagel and Moran-Gilad, 2021). Both methods are 

commonly used in diagnostics. Nevertheless, independent culture methods will not be developed 

further as it is beyond the scope of the current research work. Within the culture dependant 

techniques two groups could be highlighted: the phenotypic and genotypic one (Sandle, 2016). 

Developed in 1880’s phenotypic techniques regroup conventional culturing methods (e.g. Gram 

and spore staining), immunological (e.g. ELISA assays) and biochemical (e.g. API test strip) tests. 

Developed in 2000’s genotypic tests regroup all molecular protocols, including omics- powered 

techniques, such as genomics, proteomics and lipidomics (Ferone et al., 2020). The choice of the 

methods will depend on the costs, resources, time and the level of identification required (Sandle, 

2016). While phenotypic methods are widespread and reference methods for several tests (e.g. 

antibiograms) due to their low costs, the current culmination and integration of molecular 

technologies in routine microbiology are slowly replacing it. Molecular methods are considered 

faster, more accurate, while presenting drawbacks such as the cost or technical issues, including 

DNA amplification of dead bacteria or the presence enzymatic inhibitors in the case of genomics 
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(Yagel and Moran-Gilad, 2021). In this section, culture-dependant genomic-, proteomic- and 

lipidomic-based methods will be discussed. 

2.1 Genomics 

Firstly, introduced and developed by Sanger in the 1970s, the first generation of DNA 

sequencing allows the analysis of a single DNA molecule, by using a chain termination method. 

Nevertheless, it was an expensive, laborious and time-consuming method, with analytical limits, 

such as being able to read less than one kilobase (Heather and Chain, 2016; Yagel and Moran-Gilad, 

2021). Nevertheless, the need of a rapid and high-throughput during a single machine run 

technology led to the second and third-generation of DNA sequencing, the so-called Next 

Generation Sequencing (NGS) (Heather and Chain, 2016). Therefore, the NGS term encompass all 

sequencing technologies (e.g. Whole Genome Sequencing (WGS)) allowing the whole genome 

analysis of different cells, i.e. eukaryote or prokaryote in one sequence run (Deurenberg et al., 

2017).  

NGS is mainly used in microbiological research for a bunch of applications. It includes species 

identification, genotyping for epidemiology investigations, antimicrobial resistance and virulence 

characterisation (Bertelli and Greub, 2013; Lavezzo et al., 2016). It is undeniable to mention that 

NGS is a swiss knife for microbiological laboratories. NGS is more efficient than other already 

implemented techniques, e.g. it has a higher discriminatory power compared to traditional typing 

methods. Development of standard protocols, such as the ISO/DIS 23418 standard for the 

application of WGS for typing and genomics characterization of foodborne bacteria, are currently 

under development (ISO, 2020). Therefore NGS could be consider as a “one test fits all” 

methodology with an already on-going wide implementation in both routine and research 

laboratories  (Deurenberg et al., 2017) 

Its implementation in clinical settings is still challenging due to the need of wet lab, i.e. 

performed at the laboratory bench, and dry-lab, i.e. data analyses using bioinformatics pipelines, 

workflow adjustments (Nadon et al., 2017; Couto and Rossen, 2021). On the one hand, such 

methods require advanced bioinformatics pipelines, swift data processing, and massive data 

storage capacities (Nadon et al., 2017). While laboratories may have financial resources to acquire 

NGS equipment, they may not have considered the cost of data management, bioinformaticians, 

informatics equipment and related analysis (Pereira et al., 2020). For instance, Pereira et al. (2020) 

described that a typical binary alignment map (BAM) file from a single experience consume 30 Gb 

of storing space, generating significant costs. On the other hand, the following wet-lab limitations 

could be cited: PCR amplification bias and sequencing errors leading to a weak coverage (Pereira et 

al., 2020). The final challenge regarding the implementation of NGS in routine laboratories is the 
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overall cost. Even if current NGS technologies have a lower cost than Sanger sequencing, it is not 

yet reachable for everyone. Indeed, the initial cost of sequencer is high, as well as reagents and 

consumables (Kwong et al., 2015). While the sequencing apparatus’ cost ranges approximately 

between 150,000 and 750,000 USD, the cost of WGS in routine microbiology clinical practice, 

including DNA extraction, library preparation and sequencing was estimated at around 200 euros 

per sample with an approximate turnaround time of 60h (Kwong et al., 2015; Rossen et al., 2018).  

Nevertheless, the arrival of NGS in diagnostics laboratories is a matter of time if the cost of 

sequencing as well as the preparation time is dropping in the next years. 

2.2 Proteomics 

While the first proteomics studies happened in 1975, the term “proteomics” was only 

introduced in 1995. It is traditionally defined as the large scale analysis of proteins (Ames and 

Nikaido, 1975; Graves and Haystead, 2002). Proteins were first investigated by gel-based methods, 

such as two-dimensional gel electrophoresis (2-DE). While such techniques have high-resolution 

protein separation, it presented several limitations, e.g. time consuming, poor reproducibility and 

poor representation of low abundant proteins (Abdallah et al., 2012; Ning et al., 2016; Marcus et 

al., 2020). 2-DE-like methods were improved by the direct identification of protein from the gel by 

gel-free mass spectrometry (MS), giving birth to peptide mass fingerprinting techniques (PMF) 

(Bowman, 2014). Briefly the protein mass profiles obtained after MS analysis is compared with 

predicted mass values in databases by search engine (e.g. MASCOT) (Cottrell, 1994). Due to its high-

throughput, fast and accuracy characteristics, Matrix Assisted Laser Desorption/Ionization-Time of 

Flight (MALDI-TOF) MS became one of the preferred methods for PMF. 

Proteomics became trendy over the last two decades to study infectious pathogens. By looking 

at protein profiles, i.e. specific or signature of proteins, in clinical sample (e.g. blood), MS-

techniques could identify proteins associated with microbial activity, host-pathogen interaction, 

virulence factors and AMR (Graves and Haystead, 2002; Pérez-Llarena and Bou, 2016; Kathera, 

2018). For example, Foudraine et al. (2021) in a multi-omics approach investigated AMR in E. coli 

and K. pneumonia to detect mechanisms of resistance by using liquid chromatography tandem 

mass spectrometry (Foudraine et al., 2021). In their conclusion, the authors highlighted that MS 

aims to be a rapid and high-throughput method for AMR detection. Other studies reported its 

application for protein identification and quantification as well as the study of the microbial 

population of the gut microbiota (Shao et al., 2015; Angel and Aryal, 2020). 

Conventionally proteins are isolated in a first place by electrophoresis gel or chromatography 

and then broken up into peptide by enzymatic digestion (e.g. trypsin), so-called “bottom up” or 

shotgun proteomics (Armengaud, 2013; Dupree et al., 2020). However, in some cases, these steps 
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can be skipped resulting in an even faster workflow. In 2010’s MALDI-TOF MS was for the first time 

introduced under clinical settings and is still used as a fast, cost-efficient, reliable technique for the 

direct microorganisms identification after a whole cell analysis (Singhal et al., 2015). In this case, 

bacteria are directly applied on a target for testing and identified with a “top down strategy”, i.e. 

analysis of intact proteins (Torres‐Sangiao et al., 2021). At the end, sample preparation and machine 

time is around 25 min, which is much faster than current NGS. 

Beside the price of the significant high price of a MS apparatus (e.g. 160.000 euros for a 

complete MALDI-TOF MS system) and related maintenance (e.g. 25.000 euros per year), which is 

rapidly amortized by the low-cost of analysis and reagents (e.g. 0.53 euros of reagents and 

consumable for a 96 sample target), microbial proteomics presents wet-lab and dry-lab drawbacks 

just like genomics (Tran et al., 2015; Chabriere et al., 2018). In the case of shotgun proteomics, the 

dynamic range of mass spectrometers as well as protein database used to interpret MS/MS data 

need to be improved (Armengaud, 2013). Additionally, preparation of samples’ homogenization 

could be tricky due to the existence of a large number of methods and different technologies 

available (Dupree et al., 2020). In the case of top-down proteomics, low resolution, poor 

fragmentation and the need of purified samples must be highlighted (Catherman et al., 2014). 

Finally, the need of efficient bioinformatics tools to handle large datasets still needs to be addressed 

(Armengaud, 2013). 

In a post-genomics world, microbial proteomics will be a foremost complement to other omics-

powered technology as protein activity is the most important factor for understanding biological 

pathway. 

2.3 Lipidomics  

The development and advances in mass spectrometry permitted the investigation of lipids. In 

comparison to other presented omics technologies, lipidomics is a newly emerged discipline 

(Lagarde et al., 2003). It has been defined by Spener et al. (2003) as the “full characterization of 

lipid molecular species and of their biological roles with respect to expression of proteins involved 

in lipid metabolism and function, including gene regulation” (Spener et al., 2003). The investigation 

of such metabolites is relevant to access more information about cellular functions and hence 

essential to determine genic function (Rolim et al., 2015). Accordingly, lipids are involved in several 

metabolic pathways, hence perturbations or modifications in lipids will, as a cascade chain, affect 

other metabolic pathways (Rolim et al., 2015). MS-based shotgun lipidomics, or untargeted 

lipidomics, is  rapid, straightforward and count several advantages, such as high resolution and its 

ability to maintain intact molecular structure during ionization, to analyse a large variety of lipid 

classes (e.g. phospholipids, glycolipids, lipoproteins) (Köfeler et al., 2012; Yang and Han, 2016).   
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On the one hand, lipidomics has mainly be investigated for biomedical sciences, such as 

investigation of the metabolic syndrome, neurological disorders, cancer and nutrition (Yang and 

Han, 2016). On the other hand, microbial lipidomics has soared over the last decade with different 

type of applications (Appala et al., 2020). It has been described likewise genomics and proteomics, 

for bacterial identification, microbiota investigation, soil microbial ecology and viral mechanisms 

understanding (Layre et al., 2014; Appala et al., 2020; Ding et al., 2021; Kyle, 2021; Ren et al., 2021). 

Nevertheless, lipidomics has gained interest the past 3 years with the publication of reports 

suggesting that resistance to polymyxin antibiotic is possible by observing a modification in the lipid 

A by using the fast MALDI-TOF mass spectra (Dortet et al., 2018b; Furniss et al., 2019; Dortet et al., 

2020). Interestingly, application of different MS-based lipidomics, such as electrospray ionisation 

(ESI) MS, for AMR study has been known since at least 2013 (Singh et al., 2013). Singh et al. (2013) 

emphases gradual changes in different lipids classes after exposure to fluconazole antifungals in 

Candida albicans. While lipidomics might still have a stony way before being implemented under 

clinical settings, manufacturers also started to develop benchtop mass spectrometer combining 

positive and negative ions mode for lipids detection as well as lipids extraction kit (e.g. MBT Lipid 

Xtract) for research use only (RUO) (Bruker, 2019a). Therefore, the microbial diagnostics market 

seems attentive to the future of this technology. 

Like microbial lipidomics is currently at its early stage, limitations regarding its implementations 

in routine diagnostics are still fuzzy. Currently identification and quantification of lipid species and 

mapping of the whole cellular lipidome is still not fully achievable (Yang and Han, 2016). As for 

proteomics and genomics, the development of bioinformatic pipelines is needed for the 

management of  large data sets and the construction of metabolic pathways (Yang and Han, 2016). 

Integration of lipidomics to a multi-omics strategy, might bring deeper insights to understand 

complex molecular mechanisms (Rolim et al., 2015; Yang and Han, 2016). Lipidomics is still a niche 

to explore in microbiology, with several exciting venues and benefits to explore in the future. As for 

WGS it is only a matter of time before lipidomics be added to the physician’s toolkit. 

 

Omics-technologies generate innumerable data requiring even more new approaches to deal 

and extract relevant information from it. Bioinformatics tools have come a long way and became 

user-friendly for microbiologists with no specific knowledge in data treatment and analysis. Data 

driven technologies, such as artificial intelligence, were reported to be suitable to analyse clinical 

big-omics data thanks to their important computational power. 
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3. A digital microbiology: the artificial intelligence revolution 

Nowadays, artificial intelligence (AI) is applied to numerous field of applications from industrial 

marketing to medicine (Amisha et al., 2019). In the following section the background of AI, the 

performance and the future of machine learning (ML) in routine microbiology will be discussed. 

3.1 Overview and motivations 

Firstly described by Alan Turing in the 1950’s, AI was coined and defined by John McCarthy as 

“the science and engineering of making intelligent machines” (Ahuja, 2019). Global AI development 

knew two important eras of reduced funding and interest leading to fewer significant 

developments, from the 1970s to the 2000s, the so called AI winters (Kaul et al., 2020). 

Nevertheless, during this period, life sciences slowly adopted AI for eventual diseases diagnostics. 

CASNET (1976) and MYCIN (1970s), for the diagnosis/therapy of glaucoma and 

identification/treatment of several infections respectively, were the two first AI prototypes 

highlighted for their feasibility in healthcare (Kaul et al., 2020). Nowadays AI is widely and routinely 

employed on daily basis in healthcare facilities under diverse interfaces. 

AI in medical services could be described as an ensemble of technologies, including rule-based 

expert systems, physical robots, robotic process automation, natural language processing and 

machine learning (ML) (Davenport and Kalakota, 2019). Expert systems are programs which reason 

and make judgment based on facts and  “If conditions-Then action” rules (Hambali and Jimoh, 

2014).  Such method was used to diagnose diseases like malaria, typhoid fever or cholera (Hambali 

and Jimoh, 2014). Nowadays, physical robots are commonly employed and became the new 

standard of care (Lane, 2018). For example, the U.S food and drug administration (FDA) approved 

ROBODOC which was designed to improve hip replacement surgery (Lane, 2018). Robotic process 

automation aims to automatize repetitive numerical tasks or other supply chain processes by using 

computer software or ‘bots’ (Soeny et al., 2021).  Soeny et al. (2021) demonstrated that robotic 

process automation accelerates the process of prescription validation and digitalization with less 

human implication (Soeny et al., 2021). Natural language processing represents all machine 

program interpreting human language. Such program was successfully used to identify post-

operative surgical complications (e.g. renal failure, pneumonia or sepsis) while using medical 

reports (Murff et al., 2011). Finally, ML could be considered as a mathematical model based on 

structured data to make predictions (Zhang, 2017). It can be used in the medical imaging field to 

predict if the image contains benign or malignant tumour (Erickson et al., 2017). ML is currently the 

most common form of AI applied worldwide (Davenport and Kalakota, 2019). Overall, AI is applied 

at every stage in healthcare facilities. 
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Interest for AI in medical applications raised with the digitalization and the growing number of 

data generated in clinical settings. Indeed, the main motivations for applying AI in health cares was 

the ability of computer algorithms to derive diagnostics from a larger volume of data (e.g. diagnostic 

imaging, gene expression, electrodiagnosis or clinical symptoms). From this data, AI models could 

be trained and hence could assist under clinical settings. Thus, they have a positive impact on 

healthcare system by improving diagnostic accuracy, clinical operation and most importantly 

patient management and outcomes (Kaul et al., 2020; Leo et al., 2020). Currently AI is importantly 

tackling several types of diseases, such as diagnosis of cancer, nervous system and cardiovascular 

diseases. For example, a patient with quadriplegia retrieved movement thanks the development of 

intracortical microelectrodes arrays (Bouton et al., 2016). Besides these major fields of study, AI 

has been used for the investigation of other diseases (e.g. congenital cataract or diabetic 

retinopathy) and other clinical fields, such as microbiology (Jiang et al., 2017). 

3.2 Machine learning: how is it working? 

So, what is exactly ML and how does it work? ML could be imaged as an umbrella term referring 

to several disciplines, e.g. probability theory or statistics, that performs predictions based on a 

dataset (Qu et al., 2019). Four types of ML exist: supervised, semi-supervised, unsupervised and 

reinforcement learning (Figure 1.2).  

 

 
Figure 1.2. Machine learning algorithms overview (Omondi Asimba, 2019) 
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In this section we will focus mainly of on supervised ML as it is the most commonly model type 

employed in microbial studies (Goodswen et al., 2021). It can be grouped into two categories of 

algorithms: classification and regression. Classification algorithms will predict category or a discrete 

class label (e.g. resistant or susceptible), whereas regression will predict a continuous value (e.g. 

minimal inhibitory concentration). Therefore, the aim of supervised ML is to predict classification 

or value of unknown data (Goodswen et al., 2021). 

The “supervised” term underlines the need to teach the model. The demand of a ML approach 

is driven by the necessity to answer a specific question or to reach an industrial objective. In the 

current section, a ML strategy will be used to answer the following question: is my bacterial protein 

profile associated to an antibiotic resistant or a susceptible phenotype? This could be answered in 

five essential steps.  

The first one is the data gathering (Goodswen et al., 2021). The dataset is constituted of input 

data values (features or X), which are associated to an outcome (label or Y) (Nichols et al., 2019). In 

our example, the dataset could be assimilated to a list of isolates phenotypically characterized by a 

reference method such as disk-diffusion antibiogram (Y is resistant or susceptible) and associated 

with their protein profiles obtained by MS (X refers to n protein peaks with intensities values).  

The second step is data cleaning and pre-processing. During this stage, missing values, outliers 

and incorrect formatted data are checked (Nichols et al., 2019). When the dataset is clean, features 

could be selected, scaled or transformed. Such process is called features engineering, and it is use 

to prepare data for certain type of algorithms (Goodswen et al., 2021). Then the data is randomly 

split into two different sets, the training and test sets. The training set encompasses 70-80% of data 

and is used to build the model, whereas the test set with remaining data is used to evaluate 

previous model performance. Data included in the test set is never seen by the training one (Nichols 

et al., 2019; Goodswen et al., 2021). 

The third step is to select the best-fitting model to the current data. The general rule is to apply 

different models supported by diverse algorithms. According to the type of data studied, algorithms 

might perform in different manners (Goodswen et al., 2021). The most common algorithms in 

supervised ML are the k-Nearest Neighbors (k-NN), Naïve Bayes (NB), Support Vector Machine 

(SVM) and Random Forest (RF) (Qu et al., 2019). The training set, including protein profile (X) as 

well as AMR phenotype (Y), is then used to create a model. During this step, the model will search 

for statistical patterns using a selected algorithm to detect close patterns in future entries 

(Goodswen et al., 2021). Once the model is created, it will be used to predict the AMR phenotype 

(Y) of the test set’s isolates regarding their MS protein profiles (X).  
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The fourth step is the evaluation of the trained model. Test set predictions could be 

summarized in a confusion matrix, highlighting true positive, true negative, false positive and false 

negative values. From it, several performance metrics, such as the precision, the recall or the F1-

score could be computed (Grandini et al., 2020). The precision or positive predictive value express 

the portion of predicted isolates as phenotypically resistant by the model, which are actually 

resistant. Therefore, it underlines how much the model can be trusted when a positive outcome is 

given. The recall or sensitivity measures the ability of the model to recover all the resistant isolates 

in the test set. The F1-score is the harmonized means between the precision and recall, and hence 

assesses model’s performance (Grandini et al., 2020). If performance does not meet expectations, 

the training cycle, including a tuning step of algorithm parameters, could be performed until the 

model’s performance is good enough for the application (Goodswen et al., 2021). 

The final step is to do predictions using the refined model on “real world” data. Therefore, 

when an unseen protein profile will be analysed by the model, the algorithm will associate a 

“resistant” or “susceptible” label with it. Nonetheless, a wide choice of type of microbial data (e.g. 

DNA sequence, microscope pictures, AMR or typing profiles) is possible when using a ML approach, 

opening a tremendous field of applications.  

3.3 Machine learning applications in microbiology 

Over the last five years ML gained a tremendous interest in microbiology (Figure 1.3), due to 

the facility to collect high-throughput digital data, its economic computing power, its data storage, 

and its rapid transfer of data.  

 
Figure 1.3. Machine learning related publications in microbiology with key words “Microbiology” and 

“Machine Learning” on PubMed (search in December 2021) 
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It has been used in all microbiology research fields, including bacteriology, mycology, virology 

and parasitology (Goodswen et al., 2021). Supervised ML was successfully used for different 

thematics, such as gut microbiome studies (Chen et al., 2021), optimization of strain typing (Cohen 

et al., 2021), microorganism identification based on image recognition or motility (Sajedi et al., 

2020; Rani et al., 2021; Riekeles et al., 2021) and more recently on the detection of the coronavirus 

disease 2019 (COVID-19) severity in patients using blood and urine tests (Yao et al., 2020).  

To make a parallel with the current AMR crisis and the need to improve the understanding of 

AMR mechanism and develop rapid technology to screen AMR, the ML strategy was also 

successfully reported. For example, Pataki et al. (2020) investigated ML to predict ciprofloxacin’s 

minimal inhibitory concentration based on AMR genotype obtained by WGS. The created regression 

models accurately predicted fluoroquinolone resistance for E. coli with 93% (n=264/266) of 

correctly classified samples with only 4 features, considered as important by the model. These 

features of importance, i.e. mutations in gyrA residues Ser83 and Asp87, mutation in parC residue 

Ser80 and presence of the qnrS1 gene, were already associated with ciprofloxacin known resistance 

mechanisms (Pataki et al., 2020). Along the same line, Li et al. (2018) successfully evaluated the 

SourceTracker classification methods to track antibiotic resistance gene pollution from several 

sources based on metagenomic datasets (Li et al., 2018). Such study might have an important 

impact in terms of AMR control strategies.  

While Weis et al. suggested that their AMR predictive models based on MALDI-TOF mass 

spectra could give antibiotherapy guiding 12-72h earlier than traditional methods, there is currently 

no article describing the use of a ML system in clinical practice or reporting the impact on processes 

or clinical outcomes (Peiffer-Smadja et al., 2020; Weis et al., 2020a). Also, questions regarding the 

standardization of data, code sharing and handling, as well as the training of laboratory personnel 

is still to address (Egli, 2020). Nevertheless, by the digitalization of high-throughput data, 

implementation of ML and automatization of many diagnostics tests, the microbiology field is 

entering in a new challenging and exciting era. It is already supported that this new embracement 

with computational sciences will have a significant impact on the daily routine of laboratories. It is 

time for a fast and digital microbiology to enhance diagnostics and patient management (Egli et al., 

2020). 
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1. Mass spectrometry as a microbiological diagnostic tool 

Mass spectrometry (MS) became an analytical key of the “-omics” era (Girolamo et al., 2013). 

It is widely used in different application fields (e.g. material and biomedical sciences) for different 

purposes such as, the structural interrogation of new polymer materials or cancer biomarkers 

discovery (De Bruycker et al., 2020; Macklin et al., 2020). In this section, MS applied to routine and 

research microbiology will be discussed in depth. 

1.1 History 

MS has already been introduced in microbiological routine diagnostic for 15 years. However, 

MS  was discovered in the 1900s and was mainly applied to chemical and physics sciences to 

determine atomic weights of elements (Yates III, 2011). The first application for the analysis of  
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biomolecules was carried out in the late 1960s (Biemann et al., 1959). The first attempt to use MS 

for microbial identification happened more than a decade later (Anhalt and Fenselau., 1975). 

Indeed, Anhalt and Fenselau experimented a combination of pyrolysis and MS and highlighted that 

spectra obtained from different gram-negative bacteria had compositional differences. These 

differences were larger for bacteria with a large taxonomic difference than for smaller ones. Matrix-

assisted laser desorption ionization (MALDI) MS was first developed and introduced in the late 

1980s by Karas and colleagues (Figure 2.1)(Karas et al., 1987). 

 

 
Figure 2.1. A. Prof. Michael Karas. B. Prof. Catherine Fenselau. 

 C. Koichi Tanaka 
 

 Simultaneously, in 1988, the same discovery was also reported by Tanaka and colleagues 

(Tanaka et al., 1988). The latter were rewarded with a shared Nobel Prize in 2002, for the 

development of “soft desorption ionisation methods for mass spectrometric analyses of biological 

macromolecules”. MALDI method is qualified as a soft ionization method as the energy of the laser 

is mainly absorbed by the matrix instead of the analyte itself. Hence it caused limited or no 

fragmentation, allowing the identification of molecular ions (Calderaro et al., 2014).  

Since, MALDI-Time-Of-Flight (TOF) MS has been investigated for its application in microbiology 

(Claydon et al., 1996; Krishnamurthy and Ross, 1996; Jarman et al., 2000; Seng et al., 2009). The 

technique is rapidly considered as a quick, cost effective and reliable method for the identification 

of several bacterial phyla (e.g. Helicobacter, Bacillus or Staphylococcus) (Demirev et al., 1999; 

Nilsson, 1999; V et al., 2000). In 2009, the first MALDI-TOF MS system able to carry out microbial 

identification was produced by Bruker Daltonics located in Bremen, Germany (Seng et al., 2009). 

The MS apparatus, was a classical MALDI-TOF mass spectrometer, using an on-site database and a 

direct transfer of bacterial colony on the target. Nowadays, MALDI-TOF MS is commonly 

implemented in routine diagnostics. It became the reference method for daily microbial 

A. 

 

B.

 

C. 
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identifications, benefiting to public health and hospital hygiene through rapid identifications 

(Rodríguez-Sánchez et al., 2019). 

1.2 MALDI-TOF mass spectrometer operating 

1.2.1 Principle and Methodology 

MALDI-TOF analysis relies on a mass spectrometer apparatus. It could be decomposed in four 

main components: the sample introduction system, an ionization source, a mass analyser and an 

ion detector (Figure 2.2).  

 

Figure 2.2. Configuration overview of commonly used mass spectrometer systems. 

 

For each component several features exist and are selected depending on the analysed sample 

(Greaves and Roboz, 2014).  

In a case of a MALDI-TOF mass spectrometer, a solid probe (e.g. steel coating or disposable 

target) will be used as the sample introduction system. In routine diagnostics, targets used are 

spotted with direct smear of biological material such as bacterial colonies directly removed from 

agar plates (Figure 2.3).  

The MALDI methods will be used as the ionization source. In brief, the bacterial smear is co-

crystalized with an excess of chemical called matrix (e.g. α-cyano-4-hydroxycinnamic acid or HCCA). 

When dried, the analyte is submitted inside a vacuum chamber to laser pulses, resulting into the 

evaporation of the matrix, leading to the formation of reagent ions that protonate the sample. The 

produced ions are singly charge. 

The TOF analysers will be then used, to measure the time that ions are taking to travel through 

the system depending on their mass-to-charge ratio (m/z). 
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Figure 2.3. The process of MALDI-TOF MS for the identification of microorganisms (Adapted from Clark et 

al., (2013)). 

 

 Finally, ions separated according to their m/z are caught by the detector as they reach the end 

of the TOF tube. The ions TOF to reach the detector is used to compute the mass of the protein. 

Finally, the sum of analysed ions is translated by the data system into a mass spectrum or protein 

mass fingerprint (Carbonnelle and Nassif, 2011). Mass spectra are represented with the m/z ratio 

on the abscissa axis and the intensity of the signal as ordinate axis. In microbiology the typical 

investigated m/z range is 2-20 kDa, which represents ribosomal proteins and some housekeeping 

proteins (Ryzhov and Fenselau, 2001; Murray, 2012; Singhal et al., 2015). Then, identification of 

microorganisms at the genus or species level can be carried out. Identification relies on the 

comparison of m/z of the unknown mass spectra and already known microbial isolates mass spectra 

stored in a commercial or in-house database (Singhal et al., 2015; Seuylemezian et al., 2018). 

According to the commercial solution used, several libraries exist. 

Currently, certain MALDI-TOF systems including reference databases, like the MALDI Biotyper 

(Bruker Daltonics), cover 567 genus and 3159 species, including 1379 Gram-negative species, 1564 

Gram-positive species, 216 yeasts species (Bruker, 2020). Additionally, extra libraries are available 
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for filamentous fungi, covering 247 species, and mycobacterium, with 182 of the 201 known 

mycobacteria (Bruker, 2021d, 2021b). 

1.2.2 Commercial platforms 

While several mass spectrometers for microbial identification exist (e.g. Autof MS 1000 

(Autobio Diagnostics, China), AXIMA (Shimadzu, Japan), MicroIDSys (ASTA corp., South Korea)), the 

current European microbiological MS market is led by two analytical companies (Carbonnelle et al., 

2012; Lee et al., 2017b; Yi et al., 2021). The first one is Bruker Daltonics, located in Bremen, 

Germany and the second one is bioMérieux located in Marcy-Etoile, France. Both companies 

proposed several benchtop mass spectrometers for rapid microbial identifications (Figure 2.4). 

 

 
Figure 2.4. Mass spectrometers widely implemented in Europe 

 
 

MALDI Biotyper® Sirius, Bruker Daltonics  
(Bremen, Germany) 

 

MicroIDSys, ASTA corp. 
(Suwon, South Korea) 

  
VITEK® MS, bioMérieux  
(Marcy l’Etoile, France) 

VITEK® MS PRIME, bioMérieux  
(Marcy l’Etoile, France) 
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Each system has its own specificity (e.g. databases, extraction methods, cut-off scores) and are 

often compared together (McElvania TeKippe and Burnham, 2014; Lévesque et al., 2015; Lee et al., 

2017a). 

On the French company side, the VITEK® MS is commercially available. It is included as a part 

of the integrated identification/antimicrobial susceptibility test solution of bioMérieux. Indeed, 

when coupled with the semi-automatic antibiogram device VITEK® 2, the commercial real-time 

platform reports the identification and the antimicrobial susceptibly profile of the analysed isolates. 

In 2021, the company announced the release of the new MALDI-TOF MS identification generation 

system, the VITEK® MS PRIME. In comparison with the already well-known VITEK® MS, it offers a 

compact benchtop format with new features (e.g.  prioritization of urgent samples) (BioMérieux, 

2021). 

On the German company side, the MALDI Biotyper® (MBT) device was introduced in 2004 as a 

research tool and in 2009 as an in-vitro diagnostics (IVD) system. Several benchtop format MBT are 

currently commercialized (e.g. LT/SH, Sirius, Sirius One), based on different technologies, i.e. laser 

and ion modes. The latest released is the MBT Sirius system offering a laser technology of 200 Hz 

(smartbeam™) and positive and negative ion modes (Bruker, 2018). Both mass spectrometers 

systems are working based on the comparison of the different generated spectra to reference 

databases. Both commercial libraries for microbial identifications are updated with the addition of 

new or emerging pathogens (e.g. Candida auris, VITEK MS V3/KB3.2.0) mainly of clinical interest. 

However, libraries are built differently according to the platform used. For the MBT system, 

reference entries are kept as Main Spectra Profiles (MSPs). An MSP is summarizing multiple 

measurements, from multiple replicate spectra, of a unique strain under the same growing 

conditions. For the VITEK® MS, the SuperSpectra approach is used. Similarly enough, it is based on 

the accumulation of spectra of random and reference strains grown under different conditions (Van 

Belkum et al., 2012). In the end, both approaches do not evaluate the microbial diversity in the 

same way.  

1.3 Pros and Cons 

MALDI-TOF MS regard in laboratories may be explained by several aspects. The first one is its 

polyvalence in a routine context. Indeed, with a single MALDI-TOF MS system, identification of 

Gram-positive and -negative bacteria, and fungi is possible (Liébana-Martos, 2018). Such flexibility 

was not possible with classical biochemical differentiation methods. Its friendly user approach does 

not require any specific trained personnel neither microbiology, nor mass spectrometry knowledge.  

Additionally, MS is a robust and reproducible technic. Indeed, the method relies on the peak 

identification of major structural proteins, i.e. ribosomal proteins, meaning obtained protein 
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fingerprints are stable (Liébana-Martos, 2018). While comparing MALDI-TOF MS to conventional 

biochemical based-methods, e.g. API® (bioMérieux) or Phoenix® (Becton-Dickinson) systems, for 

the identification of clinically relevant bacteria regardless of the operating system, 94% of MALDI-

TOF MS identification were the same that those obtained by conventional methods (Benagli et al., 

2011). Another report suggested an agreement of 99% and 89% between MALDI-TOF MS and 

conventional methods for genus and species identification, respectively (El-Bouri et al., 2012). 

Nowadays, sequencing is considered as the gold standard for bacterial identification. Deng et al. 

(2014) reported similar results between MALDI-TOF MS and gene-sequencing for the genus 

identification of clinical enteropathogens, i.e. Salmonella, Aeromonas, Plesiomonas, Clostridium, 

Campylobacter, Yersinia and Vibrio by using the Vitek MS (Deng et al., 2014). While Vitek MS 

successfully assesses the species identification for Campylobacter, Pleisiomonas, Yersinia, 

Clostridium and Vibrio, the identification at the species level was not possible for Aeromonas and 

Salmonella (Deng et al., 2014). 

The last attractive features of MALDI-TOF MS are its cost-efficiency and rapidness. Indeed, in 

comparison to other traditional identification methods, MS could provide results at least one and 

up to six days earlier for regular organisms and fastidious or slow-growing bacteria, respectively 

(Tan et al., 2012). MALDI-TOF MS is not only presented as an innovative technology for its fast 

identification of microorganisms, but it also dispenses non-negligible cost-saving. While the 

acquisition and the annual maintenance of the apparatus is expensive, the analysis cost could be 

very low (Tran et al., 2015). A net saving of 87.8% and 72.5%, in reagent and direct costs 

respectively, compared to the use of traditional methods was reported by Tran and colleagues. 

Also, they estimated per sample an average of 3.14 USD, including reagent, technologist and 

maintenance, against 6.50 USD for traditional analysis (Tran et al., 2015). 

Nevertheless, as all techniques, MS is also known several shortcomings. These limitations are 

described in the below Table 2.1. Several of these well-known drawbacks, i.e. error in reference 

data, taxonomic discordances or absence of certain reference spectra, are currently being fixed by 

manufacturers by updating commercial databases regularly. For example, in the last revision (K) of 

the Bruker library (2020), the names of several of their entries according to the new taxonomy 

nomenclature were reviewed (e.g. Candida carpophila into Meyerozyma carpophila) (Bruker, 

2020). Along the same line, the upgrade of the database managed to improve identification of 

certain types of pathogens. Identification of anaerobes used to be challenging due to the absence 

or number of underrepresented reference isolates (Vega-Castaño et al., 2012; Rodríguez-Sánchez 

et al., 2016). In a recent study, Alcalá et al. (2021) compared the identification of anaerobic isolates 

with the latest Brucker commercial database upgrade with previous databases lacking some species  
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(Alcalá et al., 2021). In 2016, they reported that for the same collection, 85.8% of theses isolates 

were identified by MALDI-TOF MS at the species level (Rodríguez-Sánchez et al., 2016). 

 

Table 2.1. MALDI-TOF MS limitations 

 

Limitations Examples References 

Misidentification of closely 
related species 

Shigella spp. misidentified as E. coli 
 
 
 

Unable to distinguish Mycobacterium 
tuberculosis complex isolates into 

specific species 

(Bizzini et al., 2010; Khot and 
Fisher, 2013; Rychert, 2019) 

 
 

(Saleeb et al., 2011; 
Neuschlova et al., 2017; 

Akyar et al., 2018; Body et 
al., 2018) 

 

Limit of detection 

Sufficient biomass is a critical factor 
for successful identification 

(between 6 × 103 and 1 × 105 
CFU/spot) 

(Hsieh et al., 2008; Croxatto 
et al., 2012; Opota et al., 

2016; Cuénod et al., 2021) 

Database management 
 

Errors in reference spectra 
 
 

Taxonomical discordances 
 
 
 

Absence or lack of reference 
spectra 

 
 
 

 
 

Propionibacterium acnes wrongly 
identified as Eubacterium brachy 

 
Stenotrophomonas maltophila 
misidentified as Pseudomonas 

hibiscicola 
 

Reference spectra mainly limited to 
clinical strains. Development of in-

house databases and therefore 
database update dependant 

 

 
 

(Bizzini et al., 2010) 
 
 

(Croxatto et al., 2012) 
 
 
 

(Emami et al., 2012; 
Seuylemezian et al., 2018; 
Pinar-Méndez et al., 2021) 

Mixed bacterial population 

Non-existent mass spectrum 
generated 

 
Identification score hardly reach high 

confidence threshold score 
 

(Opota et al., 2016; Rahi et 
al., 2016) 

Spectrum quality and 
normalization 

Specific extractions protocols for 
certain organisms, e.g. Mycobacteria 
spp., Nocardia spp., yeasts and fungi 

(difficulty to lyse the cell wall 
structure) 

 
Fresh colonies must be used for 

MALDI-TOF MS identification 
(ribosomal protein degradation) 

(Buckwalter et al., 2016; 
Cuénod et al., 2021) 
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With the new available database enriched with new anaerobes, they reached 95.7% of correct 

identification at the species level, with no differences between Gram-positive and Gram-negative 

(Alcalá et al., 2021). 

 Also, it is worth noting that for a long-time the need to develop extra reference spectra related 

to highly pathogenic species (e.g. Bacillus anthracis), which were not included in the initial 

database, was highlighted (Holzmann et al., 2012). Since then, specific libraries have been 

generated (Rudrik et al., 2017).  

Nonetheless, there are still some identification issues to address for several pathogens. 

Identification of important human pathogen such as Neisseria meningitidis is still tricky by the lack 

of high-quality reference database (Cunningham et al., 2014; Deak et al., 2014). Hong et al. (2019) 

obtained 52% and 92% of specificity for the diagnosis of N. meningitidis, by using Bruker commercial 

and an in-house database (Hong et al., 2019).  

2. Application in routine laboratory 

Initially, identification of microorganisms relied on pure cultures, e.g. solid or liquid, performed 

from various sample origins (e.g. food, stools, urines or blood). From isolated colonies on selected 

medium or not, primary tests such as, oxygen requirement, Gram-staining, catalase and oxidase 

tests were performed to give out potential genus or species identification outcomes (Ferone et al., 

2020). Nevertheless, confirmatory tests (e.g. API gallery or serology assays) were required to 

completely characterize the germ (Castro-Escarpulli et al., 2015). Overall, the complete 

identification workflow was ranging from several days to weeks, for fastidious or slow-growing 

pathogens. 

2.1 Microorganisms identifications 

Over the last two decades, identification of microorganisms in diagnostics laboratories has 

tremendously changed. The advent and the wide implementation of MALDI-TOF MS in laboratories 

enhanced identification of several microbes, by reducing the patient-physician workflow. 

Nowadays, MALDI-TOF MS is one the reference method (ISO 16140-6:2019 certification for food 

microbiology) for routine identification of bacteria and fungi (Singhal et al., 2015). In the case of 

certain microorganisms such as Mycobacterium, specific protein extraction protocols (e.g. MycoEx 

or VITEK MS Mycobacterium/Nocardia kit) exist, including an inactivation step, which could be a 

heating step or the utilization of inactivation reagent with mechanical disruption (BioMérieux; 

Bruker, 2021e). In fact, Mycobacterium is manipulated in physical containment (PC) level 3 

containment facility making MALDI-TOF MS cumbersome. With the inactivation step, protein 

extract can be transferred to routine PC level 2 laboratories (Morales et al., 2018). 
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As described in the previous section (1.2.2 Commercial platforms), databases are included with 

MALDI-TOF MS commercial platforms. These databases contain average spectra of different cellular 

organisms such as, bacteria, including aerobes and anaerobes, and fungi. Certain manufacturers 

developed additional identification modules (e.g. MBT Mycobacteria IVD module) or libraries suites 

(e.g. MBT filamentous fungi) for specific organisms (Torres‐sangiao et al., 2021). Nevertheless, not 

all libraries’ packages are currently applicable in an IVD context. 

2.2 Identifications from complexes matrices 

Like classical microbial identification, mass spectrometry daily analysis relies on pure colonies 

on solid growth medium obtained from different samples matrices. Among them, blood was one of 

the matrices of interest for the MALDI-TOF MS development in routine laboratories (Hou et al., 

2019). In 2017, 48.9 million incident sepsis cases were recorded, as well as 11.0 million sepsis-

related deaths were reported worldwide (Rudd et al., 2020). However, traditional subculturing and 

biochemical or microscopic methods were time-consuming, delaying the final microbial 

identification (Chun et al., 2015). Therefore, new detection tools were required for a better 

patient’s management and outcome. Currently several MALDI-TOF MS commercial protocols exist, 

i.e. MBT Sepsityper® (Bruker Daltonics, Germany), rapidBACpro®  (Nittobo Medical, Japan) and 

Vitek® MS Blood Culture (BioMérieux, France) kit for the fast and direct identification of 

microorganisms from positive blood cultures (Kayin et al., 2019; Nomura et al., 2020; Oviaño et al., 

2021). These kits rely on the neutralization or the elimination of blood and nonmicrobial cells. 

Overall, such tests give identification results up to 48 hours earlier than classical methods, making 

MALDI-TOF MS an utmost tool in diagnostics (Morgenthaler and Kostrzewa, 2015).  

Urine and cerebrospinal fluids have also been successfully investigated in several research 

reports (Nyvang Hartmeyer et al., 2010; L et al., 2019). However, there are currently no commercial 

kit or standardized protocols for its application in routine diagnostics. Along the same line, there is 

no successful application of MALDI-TOF MS for direct microorganisms’ identification from stools. 

Indeed, a culture step is still required to obtain pure colonies. Nevertheless a comparative study of 

identification by MALDI-TOF MS and routine phenotypic methods for stool samples highlighted a 

shortening of 2-3 days with MALDI-TOF MS while using a culture step (He et al., 2010).  

Traditionally, routine identification of microorganisms is performed on pure microbial 

monoculture. Nevertheless, reports suggest that it may be possible to identify mixtures of bi- or 

ternary bacterial mixtures without a purification step (Mahé et al., 2014; Yang et al., 2018; 

Mörtelmaier et al., 2019). Yang et al. (2018) established a framework to identify bacterial mixtures 

by MALDI-TOF MS without purification procedures. While binary and tertiary mixtures reached 

sensitivity up to 95%, the sensitivity was weaker for quaternary and pentabasic mixtures with 69% 
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and 63% sensitivity (Yang et al., 2018). Such framework is still at the experimental stage, but it might 

be a relevant venue to explore to identify polymicrobial infections from complex matrices 

previously described in routine clinical microbiology practice. Meanwhile, conventional sepsis 

diagnostics methods seek for the presence of a unique pathogen, a recent metagenomic study 

highlighted the importance to consider the underestimated aspect of polymicrobial sepsis (Tan et 

al., 2021). Therefore, the development of polymicrobial identification workflows by MALDI-TOF 

combined to efficient kits for the direct identification of microorganisms from positive blood culture 

could breakthroughly make a difference into sepsis diagnostics. 

2.3 Selective testing of antibiotic resistances 

The antimicrobial susceptibility testing (AST) is a key in diagnostics and orients physicians for 

antimicrobial treatments. It knew a recent upgrading with the implementation of automated and 

semi-automated devices combining identification and AST (e.g. Vitek 2®), using an optical system 

for measuring changes in bacterial growth and determining antimicrobial susceptibility (Mitchell 

and Alby, 2017; Benkova et al., 2020). Nevertheless, while these phenotypic technics are effective, 

they are time-consuming, and leading to a lengthening before the choice of the definitive 

antibiotherapy. Yet, development of “fast microbiology” technologies or rapid diagnostic tests, 

including MALDI-TOF MS, results in the improvement of the antimicrobial stewardship by 

decreasing the “patient-physician” workflow before treatment (Bookstaver et al., 2017; Mangioni 

et al., 2019).  

Currently, several MALDI-TOF MS IVD-kits (e.g. MBT STAR-Cepha or -Carba) exist based on the 

analysis of enzymes activity (e.g. carbapenemase or cephalosporinase) produced by the bacteria 

(Ota et al., 2021). Briefly, after an incubation of 30 min with the antibiotic, the cleavage of the 

molecule into an inactive one could be observed by the detection of a mass shift in the MALDI-TOF 

mass spectrum. Additionally, these kits could be combined upstream with previous mentioned 

sepsis kits for rapid microbial identification (also called the Bologna workflow)(Cordovana et al., 

2018). In the end, bacterial identification and detection of antimicrobial activity on the same system 

could be performed in a turnaround time from 10 min to 1.5 h (Cordovana et al., 2018). Along the 

same line, manufacturers developed a typing module under the form of an early warning system. 

Specific peaks linked to specific AMR (e.g. MRSA, carbapenemase producing Enterobacteriaceae, 

Bacteroides fragilis encoding metallo-beta-lactamase enzyme) are recognized under an automated 

workflow (Bruker, 2018). 

 

Nevertheless, despite the general interest for the development of new MALDI-TOF MS kits or 

typing modules, and research related to the identification of AMR through mass spectra, there is 
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still a stony way before it could be applied for all antimicrobials in a routine context. While 

conventional phenotypic antibiograms remain currently the method of reference for AMR’s 

identification, MS could be an alternative technique to perform rapid AMR screening to lower the 

application of an empirical antibiotherapy strategy due to the lack of rapid orientation system. 

3. Current and future research applications 

While MALDI-TOF MS became the reference method for routine microbial identification, it 

could as well be used for other experimental purposes. In this section, underway applications, such 

as the improvement of antimicrobial susceptibly workflow, the identification of parasites and 

bacterial typing will be described. 

3.1 Investigations of different microorganisms 

As described previously, bacteria, mycobacteria and fungi are currently the only 

microorganisms identified by MALDI-TOF MS in daily diagnostics routines. However, several 

research reports highlighted the potential use of protein mass spectra fingerprints to identify a wide 

diversity of organisms (e.g. viruses, arthropods or protozoa) (Singhal et al., 2016; Iles et al., 2020). 

Therefore, this first part is committed to investigate the ability of MALDI-TOF MS to identify other 

organisms, through the helminthology example. In the following systematic review*, we look over 

the available scientific peer-reviewed literature and expose MALDI-TOF MS potential as a promising 

future diagnostics tool.  

 

 

 

 

 

 

 

 

 

 

 

*This work was published: 

Feucherolles M, Poppert S, Utzinger J, Becker SL. MALDI-TOF mass spectrometry as a diagnostic tool 

in human and veterinary helminthology: a systematic review. Parasit Vectors. 2019 May 

17;12(1):245.
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Abstract 

Background:  Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has 
become a widely used technique for the rapid and accurate identification of bacteria, mycobacteria and certain 
fungal pathogens in the clinical microbiology laboratory. Thus far, only few attempts have been made to apply the 
technique in clinical parasitology, particularly regarding helminth identification.

Methods:  We systematically reviewed the scientific literature on studies pertaining to MALDI-TOF MS as a diagnos-
tic technique for helminths (cestodes, nematodes and trematodes) of medical and veterinary importance. Readily 
available electronic databases (i.e. PubMed/MEDLINE, ScienceDirect, Cochrane Library, Web of Science and Google 
Scholar) were searched from inception to 10 October 2018, without restriction on year of publication or language. The 
titles and abstracts of studies were screened for eligibility by two independent reviewers. Relevant articles were read 
in full and included in the systematic review.

Results:  A total of 84 peer-reviewed articles were considered for the final analysis. Most papers reported on the appli-
cation of MALDI-TOF for the study of Caenorhabditis elegans, and the technique was primarily used for identification of 
specific proteins rather than entire pathogens. Since 2015, a small number of studies documented the successful use 
of MALDI-TOF MS for species-specific identification of nematodes of human and veterinary importance, such as Trich-
inella spp. and Dirofilaria spp. However, the quality of available data and the number of examined helminth samples 
was low.

Conclusions:  Data on the use of MALDI-TOF MS for the diagnosis of helminths are scarce, but recent evidence 
suggests a potential role for a reliable identification of nematodes. Future research should explore the diagnostic 
accuracy of MALDI-TOF MS for identification of (i) adult helminths, larvae and eggs shed in faecal samples; and (ii) 
helminth-related proteins that are detectable in serum or body fluids of infected individuals.

Keywords:  Diagnosis, Helminths, MALDI-TOF, Matrix-assisted laser desorption/ionization-time of flight, Neglected 
tropical diseases, Parasites
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Background
In clinical and laboratory diagnostic settings, mass spec-
trometry (MS) has been utilized for several decades as an 
approach for protein-centred analysis of samples in med-
ical chemistry [1, 2] and haematology laboratories [3]. In 

1975, Anhalt & Fenselau [4] proposed, for the first time, 
the modification of matrix-assisted laser desorption/ioni-
zation time-of-flight (MALDI-TOF) MS as a method to 
characterize bacteria. Indeed, it was demonstrated that 
different bacterial species show specific protein mass 
spectra, which can be used for rapid identification.

During the past decade, MALDI-TOF MS has been 
widely introduced as a diagnostic technique in microbiol-
ogy laboratories, where it has replaced most other tools 
(e.g. phenotypic tests, biochemical identification and 
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agglutination kits) as the first-line pathogen identification 
method due to its high diagnostic accuracy, robustness, 
reliability and rapid turn-around time [5]. MALDI-TOF 
MS is now routinely employed for identification of bac-
teria [5–8], mycobacteria [5, 9] and some fungi [8]. More 
recently, MALDI-TOF MS has been applied in research 
settings for the detection and identification of viruses 
[10], protozoans and arthropods [11, 12]. In clinical 
practice, a specific quantity is brought on a target plate 
(e.g. culture-grown pathogen). Next, the target plate is 
pre-treated with a chemical reagent (so-called matrix, 
e.g. α-cyano-4-hydroxycinnamic acid) and subjected to 
a mass spectrometer for further analysis. The MALDI-
TOF apparatus, which is commercially available through 
different manufacturers [13, 14], uses laser to disperse 
and ionize the analyte into different molecules, which 
move through a vacuum driven by an electric field before 
reaching a detector membrane. The time-of-flight of the 
various molecules depends on their mass and their elec-
tric charge. The specific time-of-flight data are assem-
bled, resulting in specific spectra that are compared to a 
commercial database, which allows for a rapid identifica-
tion of the infectious agent and diagnostic accuracy, the 
latter of which is usually expressed as a score.

MALDI-TOF MS has several strengths if compared to 
other diagnostic tools, such as polymerase chain reaction 
(PCR) assays. Once the mass spectrometer and the corre-
sponding databases are available in a laboratory, individ-
ual pathogen identification is inexpensive, and the sample 
preparation procedure does neither require highly skilled 
technicians nor complex additional laboratory infra-
structure. Of note, MALDI-TOF MS is considerably less 
prone to contamination and results are available within 
a few minutes. However, constant power supply is a pre-
requisite, which limits the suitability of the technique in 
resource-constrained settings. Yet, it should be noted 
that MALDI-TOF MS is no longer restricted to high-
income countries as it is increasingly available in refer-
ence laboratories in sub-Saharan Africa and elsewhere 
[15–19].

MALDI-TOF does not always require culture-grown 
colonies of a given pathogen. Instead, it can also be 
employed to identify microorganisms directly from 
positive blood culture broths [6] with high diagnostic 
accuracy [7]. Recently, Yang et  al. [20] proposed a new 
framework to analyse MALDI-TOF spectra of bacte-
rial mixtures (instead of only a single pathogen) and to 
directly characterize each component without purifica-
tion procedures. Hence, this procedure might become 
available to be employed directly on other body fluids 
(e.g. urine, respiratory specimens and faecal samples), 
which would further increase its relevance in clinical 
practice [21, 22].

In contrast to clinical bacteriology, little research has 
been carried out pertaining to the application of MALDI-
TOF MS for identification of parasites of human or vet-
erinary importance [23]. Several studies utilized the 
technique on protozoan parasites such as Leishmania 
spp. [24–26], Giardia spp. [27], Cryptosporidium spp. 
[28], Trypanosoma spp. [29], Plasmodium spp. [30–32] 
and Dientamoeba spp. [33]. These studies used pre-treat-
ment with ethanol and acetonitrile before subjecting the 
whole pathogens to MALDI-TOF analysis. Additionally, 
the technique has been used for identification of ectopar-
asites and vectors, such as ticks [34–37], fleas [38–41] 
and mosquitoes [42–49]. In contrast to the experiments 
on protozoans, only selected parts of the ectoparasites 
and vectors (e.g. legs, thoraxes or wings) were used and 
subjected to the same extraction method. A further novel 
approach to apply MALDI-TOF MS in clinical parasitol-
ogy is the identification of specific serum peptides that 
are detectable in parasite-infected individuals [50].

Helminth infections caused by nematodes (e.g. Ascaris 
lumbricoides, hookworm, Strongyloides stercoralis and 
Trichuris trichiura), cestodes (e.g. Taenia spp.) and 
trematodes (e.g. Fasciola spp. and Schistosoma spp.) 
account for a considerable global burden of disease and 
are among the most common infections in marginalized 
populations in the tropics and subtropics [51]. Indeed, 
according to estimates put forth by the Global Burden of 
Disease (GBD) Study, 3.35 million disability-adjusted life 
years (DALYs) were attributable to intestinal nematode 
infections and schistosomiasis in 2017 [52].

Diagnosis is pivotal for effective treatment but requires 
at least a basic laboratory infrastructure, light micro-
scopes and well-trained laboratory technicians who 
might not be available in remote areas of tropical and 
subtropical countries. In high-resource settings, in con-
trast, knowledge on microscopic identification of hel-
minths is waning in many laboratories. It is surprising 
that the potential applicability of MALDI-TOF MS as a 
diagnostic tool for helminths of human and veterinary 
importance has not yet been systematically assessed, in 
particular because the technique has been successfully 
employed for identification of nematode plant patho-
gens [53–58]. Hence, the goal of this systematic review 
was to summarize the available data on MALDI-TOF MS 
application for diagnosis of helminths of medical and vet-
erinary importance, and to provide recommendations for 
future research needs.

Methods
Search strategy
A systematic literature review was performed to identify 
all relevant scientific studies pertaining to MALDI-TOF 
MS as a diagnostic identification technique in medical 
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and/or veterinary helminthology. The research was 
performed according to the guidance expressed in the 
Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) Statement [59].

The following electronic databases were systematically 
searched: MEDLINE/PubMed, ScienceDirect-Embase, 
Cochrane Library, Web of Science and Google Scholar. 
All studies published from inception to 10 October 2018 
were eligible for inclusion without language restric-
tions. The bibliographies of all eligible documents were 
hand-searched for additional references. Conference 
abstracts or book chapters detected through these data-
bases and additional library searches were also consid-
ered. The search strategy comprised keywords related 
to the MALDI-TOF MS technique (e.g. “MALDI-TOF” 
and “matrix-assisted laser desorption/ionization time-of-
flight”) and helminthology (e.g. “helminth”, “nematode”, 
“cestode” and “trematode”). The full search strategies for 
every database are provided in Additional file 1 and the 
PRISMA checklist in Additional file 2.

Eligibility screening
After the systematic literature search, all duplicates were 
removed. Titles and abstracts of potentially eligible stud-
ies were screened to identify manuscripts relevant to the 
research question. Scientific reports on helminths of either 
plants or insects as well as studies on symbiotic bacteria of 
helminths were excluded for this review. However, we kept 
all publications related to the soil nematode Caenorhabdi-
tis elegans, as it is used as a model organism for biomedical 
research. Additionally, studies pertaining to MALDI-TOF/
TOF tandem MS were excluded, as this is a different modi-
fication of the MALDI-TOF MS technique, which is not 
routinely employed in clinical microbiology laboratories, 
but rather in research laboratory use for accurate charac-
terization or sequencing of components like amino acids, 
metabolites, saccharides, etc. [60–62].

Data extraction and analysis
The literature search was performed by the first author 
of this manuscript (MF). All titles and abstracts were 
then independently reviewed by the first and the last 
author (MF and SLB) for inclusion and any disagreement 
was discussed until consensus was reached. All extracted 
manuscripts were analysed using a reference manager 
software (Mendeley; http://www.mende​ley.com).

Results
Search results, number and year of publication of eligible 
studies
The search procedure and results obtained are shown 
in Fig.  1. In brief, the initial literature search yielded 

329 published studies, with an additional two abstracts 
identified through further search. Following removal of 
142 duplicates, a total of 189 articles were assessed in 
more detail, of which 66 studies were excluded based 
on the analysis of the respective titles and abstracts. 
A full-text analysis was carried out on the remaining 
123 studies; 39 articles were finally excluded because 
their scope was outside the current research question. 
Hence, 84 articles were included, and these were pub-
lished between 1997 and 2018. Figure 2 shows the num-
ber of publications, stratified by year of publication. The 
heterogeneity of data reported in the articles precluded 
any meaningful meta-analysis (Additional file 3).

Specific applications of MALDI‑TOF MS
The first two manuscripts published in 1997 described 
structural analyses of glycosphingolipids found in 
Ascaris suum and C. elegans [63, 64]. Indeed, 95% of 
all eligible studies used MALDI-TOF MS for identifi-
cation of specific components rather than for the iden-
tification of entire pathogens (Fig.  2). It was only in 
2015 when a report on MALDI-TOF MS as diagnostic 
tool for direct identification of Dirofilaria spp. became 
available [65]. Soon thereafter followed a proof-of-con-
cept study utilizing MALDI-TOF MS for identification 
and differentiation of Trichinella spp. and some narra-
tive reviews mentioning the lack of data on MALDI-
TOF in helminthology [32, 66, 67]. Yet, most studies 
focused on distinct analyses of specific components, 
such as peptides [66–86], proteins [69, 87–114], lipids 
[61, 62, 115–124], carbohydrates [125–143] and nucleic 
acids [144] in a research context. Hence, MALDI-TOF 
was mainly applied to study and compare the proteome 
or the peptidome of different helminth species, and 
most reports focused on C. elegans. For example, Hus-
son et al. [74] employed a new approach combining liq-
uid chromatography with MALDI-TOF MS to map and 
differentiate the neuropeptide profiles of C. elegans and 
the closely related species C. briggsae.

The two studies aiming at an identification of entire 
pathogens provided evidence that MALDI-TOF MS could 
reliably differentiate between species within the genus 
Trichinella [67] and Dirofilaria [65], respectively. In the 
study by Mayer-Scholl et  al. [67], nine species and three 
genotypes of Trichinella isolated from mice, domestic 
pigs, wild boars and guinea pigs were utilized to create 
an in-house database with 27 raw spectra generated per 
specimen. All tested isolates could be distinguished with 
high diagnostic accuracy. The study by Pshenichnaya 
et  al. [65], which had only been published as a confer-
ence abstract, investigated five Dirofilaria repens and five 
D. immitis specimens, the causative agents of human and 

http://www.mendeley.com
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veterinary dirofilariasis, and reported that these could 
be well differentiated by MALDI-TOF MS. However, 
data were limited regarding the origin of the study sam-
ples, the quality of the spectra obtained by MALDI-TOF 
and the repeatability of the results. Yet, during the revi-
sion of this systematic review, Pshenichnaya et  al. [145] 
published their work on dirofilariasis in a peer-reviewed 
journal and provided also data for two different species 
of Ascaris (i.e. A. suum and A. lumbricoides). These hel-
minths could be differentiated by MALDI-TOF based on 
specific peaks and protein spectra patterns after a cell lysis 
using the Sepsityper Kit 50 (Bruker Daltonics; Bremen, 

Germany) and a protein extraction with 70% formic acid 
and acetonitrile. However, this study has several limita-
tions, and it remains unclear whether calibration steps or 
assessments of the repeatability and reproducibility of the 
analyses were performed. An additional paper, published 
in 2017, reported on MALDI-TOF MS application for 
cyathostomin helminths, a very diverse group of intesti-
nal parasites infecting horses [66]. These so-called “small 
strongyles” show a high degree of resistance against ben-
zimidazole anthelminthics and may lead to severe equine 
enteropathy, colic and death [146]. The study examined 
several species belonging to the cyathostomin helminths 

Fig. 1  PRISMA diagram for a systematic review examining the application of MALDI-TOF mass spectrometry as potential tool in diagnostic human 
and veterinary helminthology
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(e.g. Coronocyclus coronatus, C. labiatus and C. labratus) 
and found distinct protein spectra among adult helminths 
of different species [66]. These findings were recently con-
firmed and substantiated by another study on the applica-
tion of MALDI-TOF for differentiation of cyathostomins, 
which was published in April 2019 [147].

Discussion
We systematically reviewed the available literature per-
taining to the application of MALDI-TOF MS for identi-
fication of helminthic pathogens of human and veterinary 
importance. While the technique has been successfully 
employed for many major classes of pathogens (e.g. bac-
teria, mycobacteria and fungi), data on its use in diagnos-
tic helminthology are scarce. Several studies reported on 
the differential analysis of specific components, such as 
proteins, peptides or lipids with MALDI-TOF MS tech-
niques, but only two recent manuscripts and one con-
ference abstract provided ‘proof-of-concept’ evidence of 
its potential utility in diagnosing and differentiating hel-
minth species of medical or veterinary relevance.

The majority of articles identified in this systematic 
review focused on protein-centred analyses of helminth 
samples. It is important to mention that some of the 
MALDI-TOF MS devices employed in these studies had 
been subjected to modifications that are not usually avail-
able in routine clinical laboratories. Additionally, these 
experiments frequently employed a complex sample pre-
treatment comprising a protein separation by high pres-
sure liquid chromatography (HPLC) or electrophoresis. 
Yet, some recent proof-of-concept studies have shown 

that MALDI-TOF MS is also capable of diagnosing entire 
helminthic pathogens and differentiating similar species 
within the same genus based on an analysis of their indi-
vidual protein spectra [66, 67]. Because no helminths are 
currently included in commercially available MALDI-
TOF MS identification databases, individual in-house 
databases need to be created through generation of main 
spectra libraries, ideally following established guidelines 
and protocols that are similar to those employed by the 
manufacturers of commercially available mass spectrom-
eters [148]. Indeed, previous studies have described the 
sensitive, reliable and highly reproducible identification 
of helminths that cause plant infections and have con-
cluded that MALDI-TOF MS should be more widely 
employed as a ‘rapid detection tool’ [54–58]. Ahmad et al. 
[56], for example, reported on the suitability of MALDI-
TOF MS to differentiate harmless and juvenile infective 
stages of single plant nematodes, as these showed unique, 
characteristic protein peak patterns. These studies 
should be considered as relevant because plant-parasitic 
nematodes can sometimes also be found in human stool 
samples [149, 150]. In Brazil, for example, eggs of the 
root-knot nematode Meloidogyne spp. were detected in 
human faeces using a microscopic sedimentation method 
[151]. Future studies should also employ MALDI-TOF on 
serum, as a recent study reported the detection of spe-
cific proteins in serum of mice infected with Schistosoma 
japonicum [50].

While helminth infections pose a considerable burden 
on human and animal health [152], an accurate diagno-
sis of these conditions is frequently challenging. Indeed, 

Fig. 2  Publications in the peer-reviewed literature pertaining to the application of MALDI-TOF mass spectrometry for identification of helminths or 
specific pathogen-related components, as revealed by a systematic review, stratified by year of publication
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simple diagnostic tools such as stool microscopy for soil-
transmitted helminth infections are of limited value if the 
infection intensity is low and highly sensitive diagnostic 
techniques such as PCR-based assays are only available 
in selected reference laboratories outside endemic areas 
[153]. In high-income countries, in contrast, knowledge 
regarding standard diagnostic parasitology is waning and 
differentiation of closely related helminth species based 
on their microscopic morphology requires skilled labora-
tory technicians [154]. Moreover, some infections can-
not be reliably distinguished with standard diagnostic 
techniques. A prominent example are infections caused 
by cestodes of the genus Taenia [155], which may cause 
a relatively harmless intestinal infection if cysts of Taenia 
saginata or T. solium are orally ingested with meat of cat-
tle or pig. While eggs of T. saginata are not infectious to 
humans, T. solium eggs can lead to the potentially fatal 
disease (neuro-)cysticercosis. While the correct diagnosis 
has important implications for treatment, patient man-
agement and potential contact screening (intestinal car-
riage of adult T. solium worms poses an increased risk of 
cysticercosis for close contacts, such as family members), 
it is impossible to distinguish both species based on the 
identical morphology of their eggs under a microscope. 
Molecular tools can achieve an accurate differentiation 
of the two species, but are only available in research set-
tings [155–157]. Sometimes, proglottids of adult worms 
are also passed in the faeces. While a distinct differen-
tiation is possible based on the uterine branches within 
a proglottid, misidentification using this approach has 
been reported in clinical practice [158]. Hence, achiev-
ing a species-specific differentiation based on MALDI-
TOF MS would contribute to an enhanced, more reliable 
identification, and future studies should thus address 
this issue. Similar considerations hold also true for other 
infective agents that can hardly be differentiated by other 
methods (e.g. different Echinococcus species), novel spe-
cies (e.g. hybrid species of Schistosoma spp., which have 
recently been reported from Corsica, France [159]) and 
notoriously difficult-to-detect infections (e.g. strongy-
loidiasis). An overview of pathogens for which develop-
ment of MALDI-TOF MS identification protocols would 
appear particularly promising is summarized in Table 1.

It is important to consider the fixative in which a para-
sitological sample is stored. Both formaldehyde and etha-
nol are commonly used to enable a long-term storage 
of biological specimens, but this may lead to profound 
changes of the protein structure [160], which is likely to 
influence on the results of MALDI-TOF examinations 
carried out on such samples. The virtual impossibility 
to amplify nucleic acids from formaldehyde-containing 
solutions [161] due to fragmentation of the single com-
ponents [162] renders most PCR tests useless on these 

sample types, but MALDI-TOF analyses of protein spec-
tra might still be possible, albeit with different spectra if 
compared to native samples. Hence, future studies should 
evaluate this technique on different kinds of fixatives and 
on samples that have been stored for prolonged periods.

The present review identified only a few success-
ful studies that employed MALDI-TOF MS to diagnose 
helminths. Limitations include the complicated pre-
treatment procedures employed in some studies and the 
rather incomplete data presentation in one of the more 
clinically oriented research projects [65]. New research 
is needed to determine whether this technique might 
become a clinically meaningful addendum to the current 
set of diagnostic options. However, experiences made in 
clinical bacteriology, mycobacteriology, mycology as well 
as with ectoparasites (e.g. ticks) and vectors (e.g. mosqui-
toes) [12, 37, 163] are promising. Whereas MALDI-TOF 
MS is mainly used on culture-grown colonies for iden-
tification of bacteria and mycobacteria, the goal in hel-
minthology will be to provide a species-specific diagnosis 
based on either macroscopic elements or eggs and larvae 
that are present in stool samples (or other body fluids and 
tissue samples). Hence, specific protocols will need to be 
elaborated to this end, which may include sample prepa-
ration, purification and concentration steps, including 
guidance on the most appropriate sample preservation. 
However, such protocols have been successfully devel-
oped in the past (e.g. for identification of mycobacteria 
or moulds) [164, 165]. More recently, specific pre-treat-
ment modifications have even allowed to apply MALDI-
TOF MS on blood culture broths [166] and fresh urine 
samples for direct identification of bacteria [167]. Addi-
tionally, detection of parasites in complex samples (e.g. 
blood), should be considered (e.g. as an antigen test for 
Wuchereria bancrofti [168] or for the detection of spe-
cific serum peptides [169]).

Yet, much research and rigorous validation is still 
needed before MALDI-TOF MS might be employed 
directly on stool samples, and priority should thus be 
given to (i) the establishment of in-house main spectra 
library databases to allow for species-specific identifica-
tion of selected helminths; (ii) the subsequent develop-
ment of sample treatment protocols; (iii) the validation of 
this technique on different clinical sample types; and (iv) 
the elaboration of MALDI-TOF MS to be employed on 
fixed samples.

Conclusions
The present systematic review elucidated that MALDI-
TOF MS, which is now routinely used in many clini-
cal microbiology laboratories for identification of 
bacteria, fungi and mycobacteria, could potentially 
also be employed in the context of helminth diagnosis. 
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Preliminary data suggest that MALDI-TOF MS might 
hold promise as a future diagnostic tool for direct and 
rapid identification of pathogenic helminths in clinical 
samples with sufficient diagnostic accuracy. Further stud-
ies are needed to evaluate these concepts and to develop 
specific databases for helminth identification, followed 
by rigorous validation on well characterised clinical 
specimens.
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3.2 Antimicrobial resistances screening improvement 

In this section, the current and future’s applications of mass spectrometry for foodborne 

pathogens antimicrobial resistance screening is investigated under the form of a mini review*. 
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Abstract: Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF
MS) is today the reference method for direct identification of microorganisms in diagnostic
laboratories, as it is notably time- and cost-efficient. In the context of increasing cases of enteric
diseases with emerging multi-drug resistance patterns, there is an urgent need to adopt an efficient
workflow to characterize antimicrobial resistance (AMR). Current approaches, such as antibiograms,
are time-consuming and directly impact the “patient-physician” workflow. Through this mini-review,
we summarize how the detection of specific patterns by MALDI-TOF MS, as well as bioinformatics,
become more and more essential in research, and how these approaches will help diagnostics in
the future. Along the same lines, the idea to export more precise biomarker identification steps by
MALDI-TOF(/TOF) MS data towards AMR identification pipelines is discussed. The study also
critically points out that there is currently still a lack of research data and knowledge on different
foodborne pathogens as well as several antibiotics families such as macrolides and quinolones,
and many questions are still remaining. Finally, the innovative combination of whole-genome
sequencing and MALDI-TOF MS could be soon the future for diagnosis of antimicrobial resistance in
foodborne pathogens.

Keywords: MALDI-TOF MS; biomarkers; foodborne pathogens; antimicrobial resistance; diagnostics

1. The Burden of Antimicrobial Resistances Worldwide: The Case of Foodborne Pathogens

For decades, antibiotics have been increasingly used in human and veterinary medicine, to treat
bacterial infections such as gastrointestinal, respiratory or urinary tract infections and septicemia [1].
Drugs of veterinary importance are not only used for therapeutic purposes, but also as a preventive
measure (metaphylaxis and prophylaxis) and growth promoter [2]. Hence, selected resistances
within pathogens appear along the food chain with most often humans as the final hosts. Likewise,
antibiotics overuse and inappropriate prescribing are other main reasons for bacterial genetic adaptation
and exchange facing selective pressure [3]. These mechanisms are naturally present in microbial
communities among various ecosystems, such as aquatic systems [4]. Nowadays, antimicrobial
resistance (AMR) is considered a major threat to global public health by its influence on human health
and the related economic issues. According to a report from the Organization for Economic Cooperation
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and Development (OECD), infections by resistant microorganisms will cause 2.4 million deaths in
Europe, North America and Australia in the next 30 years and cost up to $3.5 billion per year [5]. As well,
a World Health Organization (WHO) report highlighted a total of 349 million registered foodborne
illnesses and 187,285 deaths caused by bacteria worldwide in 2010 [6]. Among these pathogens,
Acinetobacter spp., Bacillus spp., Campylobacter spp., Citrobacter spp., Clostridium spp., Enterobacter spp.,
Escherichia spp., Klebsiella spp., Listeria spp., Salmonella spp., Shigella spp., Staphylococcus spp., Vibrio
spp. and Yersinia spp are the main causes of such diseases [7]. Specifically, foodborne pathogens
are in an ever-increasing focus due to the emergence of multi-drug resistance patterns worldwide.
Studying and understanding interfaces between human health, animal health and the environment
seems to be a requirement to understand the circulation of AMR among the food chain [8]. The “One
Health” approach combines various disciplines to ensure optimal health for humans, animals, wildlife,
plants and the environment on the local, national and global levels [8]. This concept is not new but is
experiencing an upsurge and has become increasingly popular within the past few years [9]. According
to Robinson and colleagues, AMR is the quintessential “One Health” issue, as it is linked to all domains
of life, especially with microbiology as its core [10]. Campylobacter spp. for example, is highly relevant
in a “One Health” approach. Campylobacteriosis is the first cause of bacterial gastroenteritis in humans
worldwide [11,12], where it occurs more frequently than infections caused by Salmonella spp., Shigella
spp. and Escherichia coli O157:H57 [13,14]. Since the introduction of fluoroquinolones and macrolides
as drugs of choice for the treatment of human gastroenteritis in the 1980s, many reports highlighted
the emergence of resistance patterns within the Campylobacter genus. Likewise, recent studies reported
the emergence of multi-resistant Campylobacter spp., to different classes of antibiotics from different
sources [15–18]. Gölz and colleagues point out that a better understanding of the sources and pathways
at the different stages of the food chain, thanks to a “One Health” approach, should allow better
control and prevention of the Campylobacter burden in humans [19]. The overall understanding of
the co-evolution dynamics between the three compartments is urgently needed to develop novel
approaches to study AMR [9,10]. Mangioni and colleagues already highlighted the important need for
the development of a “fast microbiology” era in diagnostics and especially in antimicrobial stewardship
policies, resulting in a more rapid optimization of antimicrobial therapy, in order to improve patients
handling and care [20]. The surveillance or quantification of AMR in all the different reservoirs is a
challenging task as it requires complex tools [21]. In 2015, WHO launched a new surveillance program,
called GLASS, for AMR monitoring of bacteria by regions, giving established guidelines to collect
data for several restricted clinical pathogens and antibacterial classes [22]. Collecting data will be an
important issue through antimicrobial susceptibility tests (AST) from diagnostic laboratories involved
in the program. Hence, diagnostic laboratories are on the frontline for the detection of AMR, and they
require fast and cost-effective tools for analysis. During the last decade, diagnostics underwent a real
revolution with the advent of molecular biology techniques (e.g., DNA based-methods or proteomics),
reducing the turn-around time [20]. However, the current “patient–physician” workflow (Figure 1) is
still relatively long depending on the type of primary sample (e.g., blood, urine, stool or cerebrospinal
fluid) and of the requirement for the full characterization of the pathogen, i.e., species/subspecies
and AMR identification. Mass spectrometry may be considered as one of the main actors in the
development of future fast microbiology technologies, as the method is already implemented in a
majority of health care infrastructures for routine identification of microorganisms.

The aim of this mini-review is to show how matrix-assisted laser desorption/ionization time of
flight mass spectrometry (MALDI-TOF MS) could be handful for a fast combined species and AMR
identification in enteric pathogens, by detecting specific biomarkers within protein spectra generated
by MALDI-TOF MS. Likewise, the use of tandem mass spectrometry and bioinformatics as support
tools for advanced identification of AMR will be discussed.
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Figure 1. MALDI-TOF MS related analysis workflow in clinical routine diagnostic and
research laboratories.

2. MALDI-TOF MS: A New Era for the Diagnostic Field

Current reference methods in routine laboratories for detection and identification of AMR, consist
of antibiogram disk diffusion or microdilution tests and automated antibiograms (e.g., VITEK® 2
apparatus from Biomérieux©). These approaches are time-consuming and require an incubation time
between 12–24 h before the physician is able to prescribe the right cohort of antibiotics to the patient.
In clinical research, molecular methods such as next-generation sequencing (e.g., whole-genome
sequencing (WGS)) or nucleic acid based methods (e.g., polymerase chain reaction (PCR) techniques)
are also used to detect and identify AMR genes [23]. However, even if PCR methods are already
implemented in many clinical diagnostic and reference laboratories and there is a notable decrease of
per-sample cost for WGS, their application in routine AMR surveillance especially in resource-limited
countries is restricted [24].

In the field of biology, soft ionization mass spectrometry, such as MALDI-TOF MS, has been
established for decades for the analysis of important biological molecules, such as proteins, peptides,
oligonucleotides, lipids or glycans [25]. In 1975, Anhalt and Fenselau proved that mass spectrometry,
coupled with pyrolysis, produced characteristic mass spectra for gram-negative bacteria [26].
The MALDI method was first introduced in biology in 1987 by Karas and colleagues, and followed by
Tanaka and colleagues who were awarded a Nobel prize in chemistry “for their development of soft
desorption ionization methods, for mass spectrometric analysis of biological macromolecules” [27–29].
With these findings and outcomes, growing interest in mass spectrometry and its application as a
screening and diagnostic research tool has emerged [30]. In the last decade, MALDI-TOF MS has become
popular in routine diagnostic laboratories and is now considered the new gold standard for the direct
identification of microorganisms, and somehow revolutionized the microbiology field by progressively
replacing all the biochemical (e.g., API gallery) and phenotypic tests [31] for species characterization.
Despite the price of the MALDI-TOF MS apparatus, analyzing a full 96 MALDI target is virtually
costless and only requires around 0.50 € of chemicals and consumables [32], and only requires a
maximum time of 25 min to give 96 reliable species identifications. Commercial databases included
with the device cover a large panel of bacteria [33], mycobacteria [29,34] and also fungi [35] of medical
interest. In addition, several reports highlighted its successful application in other microbiology areas,
for the identification of viruses [36], ectoparasites [37], protozoa [38] and helminths [39,40]. In clinical
application, organisms isolated from different matrices (e.g., blood, urine, stool and cerebrospinal
fluid), are applied directly on the target and covered by an acid reagent. Then the target is subjected
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to mass spectrometry for analysis, where a laser will shoot and ionize proteins that are separated by
their mass-to-charge ratio (m/z) and analyzed by a detector. The signal will be translated into spectra,
which will be compared with commercial or in-house databases and provide a rapid and reliable
identification at a low cost and high precision (e.g., relevance score) [41].

Since the introduction of mass spectrometry in the field of microbiology, the speed of pathogen
identification has tremendously increased, thereby improving antimicrobial therapy, infection
prevention and leading to a major impact in public health and epidemiology [42]. Today, direct
antimicrobial resistance detection in the acquired mass spectra is one of the most suggested and
asked about applications in specialized reviews [43–47]. Four main uses have been successfully
tested: (1) the detection and expression of antibiotic resistance mechanisms (e.g., β-Lactamase, rRNA
methyl-transferase activity), (2) specific mass peak profiles within spectra, (3) the detection of stable
isotope-labeled biomarkers and (4) the estimation of the effect of antibiotics on microorganism growth.
On one hand, the detection of antibiotic resistance mechanisms is the most explored method so
far, as the degradation of antibiotics produces intracellular metabolites that generate specific peaks
on spectra [48,49]. These peaks are directly visible on the spectra during analysis of the latter
(Figure 2A,B). Nevertheless, those investigations still imply supplementary incubation time, yet less
than for antibiograms, but are inherently further postponing the diagnosis to setting up an optimal
antibiotherapy. Hence, the “patient–physician” workflow requires a concrete optimization for AMR
detection with novel MALDI-TOF MS approaches, which is a special scope of this review. Identification
of specific biomarkers within the protein spectra presents obvious advantages compared to other
techniques (Figure 2C,D). Indeed, thanks to a unique spectrum, it will be possible to couple an accurate
identification at the species/subspecies level as well as antimicrobial resistances only after a 25 min run
of the MALDI-TOF (Figures 1 and 2). It will drastically decrease workflow time, cost for diagnosis
and hence, allow the physician to apply the effective cohort of antibiotics in an optimized time to
the patient.

Figure 2. Schematic representation of possible MALDI-TOF MS spectra patterns for direct determination
and identification of antimicrobial resistance. (A) Sensitive strain. (B) Detection of antimicrobial
resistance by the detection of metabolites related to the degradation of the antibiotic. (C) Detection of
antimicrobial resistance by the detection of a peak shift, which could be related to a mutation in the
biomarker gene that confers antimicrobial resistance (AMR). (D) Detection of antimicrobial resistance
by the detection of unique biomarkers, which could be related to the production of a specific molecule
(e.g., enzymes, porins). (*) Peak differences in comparison with the sensitive strain spectra (A).
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3. Specific Biomarkers as a Future Key for the Detection of AMR

In the clinical field, biomarkers are defined as biomolecules that are determined in a tissue or body
fluid of a patient to identify a disease at the molecular level [50]. Developments of protein biomarker
descriptions have been done for biological fluids, cell lines and solid tissues for many purposes like
diagnosis, treatment, follow-up, etc. [50]. In mass spectrometry, a biomarker could be defined and
identified as a specific unique peak, numerous peaks or a shift in the mass-to-charge ratio. Since the
application of MALDI-TOF MS for the identification of microorganisms, only several publications
remarked on its potential usefulness in detecting and characterizing antimicrobial resistances through
specific biomarker(s) (Table 1). In 2000, Edwards-Jones and colleagues carried out the first work on
the subject by noticing specific biomarkers, allowing the distinction between methicillin-sensitive
(MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) by intact cell mass spectrometry (ICMS),
and concluded that ICMS could have the capacity to identify and perform typing of MRSA [51].
Their results were validated two years later by another group working on S. aureus [52], by also
demonstrating a variation between the spectral profiles in the mass range of m/z 500–3500 Da.

Table 1. Specific whole-cell MALDI-TOF MS spectra patterns literature for identification of antimicrobial
resistance in enteric bacteria.

Organism Antibiotic Classes
Tested Biomarkers Year Reference

Staphylococcus
aureus β-lactams MRSA: 891, 1140, 1165, 1229 and 2127 m/z

MSSA: 2548 and 2647 m/z 2000 [51]

Staphylococcus
aureus β-lactams

Variation between in the
spectral profiles in the mass range of m/z

500–3500 Da
2002 [52]

Lactococcus lactis
Bacillus coagulans

Escherichia coli

Bacteriocins
(lantibiotic)

Lacticin 481: 2902, 2924,2940 m/z
Nisin A: 3392 m/z

Coagulin: 4650 m/z
2003 [53]

Escherichia coli β-lactams Ampicillin: 29.000 m/z 2007 [54]

Bacteroides fragilis Carbapenems

cfiA negative: 4711, 4817, 5017, 5204, 5268
m/z

cfiA positive: 4688, 4826, 5002, 5189, 5282
m/z

2011 [55]

Klebsiella spp. Carbapenems OmpK36 porin: 38000, 19000 m/z 2012 [56]
Enterococcus faecium Glycopeptides VanA/B: 6603 m/z 2012 [57,58]

Enterobacteriaceae Carbapenems blaKPC: 11109 m/z 2014 [59]

Campylobacter jejuni
β-lactams

Tetracyclines
Glycopeptides

Spectrum processing parameters
increased the resistance detection 2016 [60]

Staphylococcus
aureus

Staphylococcus
epidermidis

β-lactams mecA: 2415 m/z 2016 [61]

Escherichia coli Polymyxin Lipid A modification: 1919 m/z 2018 [62]
Klebsiella pneumonia
Enterobacter cloacae

Escherichia coli
Serratia marcescens
Citrobacter braakii,

Pseudomonas
aeruginosa

Carbapenems KPC-2: 28544 m/z 2019 [63]

Bacteroides fragilis Carbapenems Identification of B. fragilis with the
validated “cfiA library” [55] 2019 [64]

Hindre and colleagues showed that it was possible to detect bacteriocins without specific
purification from bacterial colonies, as lacticin, nisin and coagulin producing bacteria generate specific
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mass to charge ratio peaks for each molecule [53]. Additionally, Camara and Hays [54] differentiated
wild-type E. coli from ampicillin-resistant plasmid-transformed E. coli strains by direct visualization of
β-lactamase in the spectra. In 2011, another team reported the successful application of MALDI-TOF
MS to differentiate between cfiA-positive and cfiA-negative Bacteroides fragilis, and hence their capacity
to be potentially resistant to carbapenems, by the observation of a protein profile shift between the two
different classes [55]. Currently the major avenue with MALDI-TOF MS is seeking specific peaks linked
to porins [56], enzymes (e.g., VanA/B, mecA, KPC-2) [57–59,61,63] or even lipid modifications [62].
Furthermore, number of listed studies settle not only on the detection of specific biomarkers, but focus
on processing parameters and creation of in-house databases, and therefore bioinformatics.

4. Bioinformatics: A Powerful Tool to Reinforce Diagnostics

Early automatic typing methods were mainly of a phenotypic nature (e.g., serotype or biochemical
characteristics). However, with the advent of molecular biology, bioinformatics became unmissable
and hence, a must in research to proceed and analyze genomic data in research. Bioinformatics can be
defined as an interdisciplinary field developing methods and software tools for a better understanding
of biological systems.

In diagnostics, dilution- or diffusion-based antibiograms are still currently the reference methods
for phenotypic detection of AMR. With the emergence of new sequencing technologies, such as
whole-genome sequencing (WGS), genomic data are more and more used for the identification
and prediction of AMR thanks to the detection of specific sequences. Nowadays, different online
user-friendly platforms able to use whole-genome data to extract relevant information, such as AMR
genes, exist. The real advantage of these tools is that they are intended for scientists who do not
necessarily have advanced bioinformatic skills. Many pipelines that are able to predict AMR patterns,
such as Resfinder [65], AMRFinder [66], ARGS-OAP [67], SEAR [68] or ARGminer [69] are today online.
Historically, Resfinder, developed by the Center for Genomic Epidemiology, was one of the first types
of platforms of this kind, and it is a widely used AMR determinant detection program [65]. It is a
web server that uses data for identifying acquired AMR genes and/or chromosomal mutations in total
or partial sequenced isolates of bacteria, referring to nucleotide sequences from the National Center
for Biotechnology Information (NCBI) databases (http://www.ncbi.nlm.nih.gov/nuccore/). Recently,
NCBI developed a new tool, AMRFinder, using either protein annotations or nucleotide sequences to
identify AMR genes. A first report comparing AMRFinder and Resfinder performance, using bacterial
isolates from a collection from the U.S. AMR surveillance system program (NARMS) [66], highlights
that incomplete or incorrect databases can lead to AMR misidentification. As an example, in some
cases, where Resfinder generates a high scoring for an identification, the latter was incorrect due to the
absence of a specific sequence in the database. However, the database issue is currently the same with
MALDI-TOF MS for the identification of different species, with the results depending on the quality of
the used database. Hence, even if online AMR detection platforms are useful to give a first glimpse of
which AMR could be present, there is still a need to improve and implement databases with new and
reliable sequences. For now these bioinformatics tools should be combined with phenotypic methods.

Mass spectrometers manufacturers, such as Bruker Daltonics© (https://www.bruker.com/) propose
software platforms (e.g., FlexControl™, FlexAnalysis™, Maldi Biotyper Compass Explorer™ and
Clinpro Tools™) allowing the acquisition, processing of spectra and the creation of customized databases,
and together with other bioinformatics pipelines provide new performant tools to the MALDI-TOF
MS community [70,71]. Applied Maths NV© (http://www.applied-maths.com/bionumerics), notably,
proposes BioNumerics™, a pipeline platform for advanced analysis of spectra. It offers a large panel of
competitive analysis applications, including fingerprinting, typing, MALDI spectrum processing and
the creation of in-house databases, by the utilization of different default or customized modules [72].
Among the publications listed in Table 1, reports highlighted that spectrum-processing parameters
(e.g., baseline subtraction and curve smoothing) increased the detection of AMR from Campylobacter
jejuni [60]. Indeed, by applying optimized processing parameters, beta-lactam resistances detection
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was increased by 34%. Spectrum processing parameters should not be neglected and indeed enhance
screening performance. Several other MALDI-TOF MS studies used BioNumerics™ as their main
tool for analysis [73–75]. However, even if previously mentioned software suggests a high capacity
to customize and optimize spectra, it is also important to highlight the fact that it is also possible
to carry it out during the acquisition step by modifying MALDI-TOF parameters. Variables such as
acquisition range (e.g., 2–20 kDa or 300 Da for the detection of antibiotic hydrolysis products), laser
intensity, spectrum evaluation (e.g., peaks limit intensity) or ion source modifications (e.g., increase the
resolution for low- and high-weight molecules), might be modified and adjusted. The combination of
appropriate acquisition parameters and processing/optimization steps is key for MALDI-TOF spectra
analysis and exploitation.

Various other software gives the opportunity to create and perform in-house databases. Jeverica
and colleagues have successfully screened routine clinical B. fragilis isolates and determined their
division (e.g., I or II), hence their potentiality to be resistant to carbapenems, thanks to the created
in-house database of Nagy and colleagues [55,64]. Therefore, the creation of in-house databases,
ideally sharing close experimental conditions and spectrum processing parameters should be the main
avenues to be explored in the future, for the full optimization of the application of MALDI-TOF MS to
detect AMR. In complement to commercial libraries, in-house, online or external databases exist and
allow the comparison of user spectra. For example, the Centers for Disease Control and Prevention
(CDC) curates a platform: MicrobeNet (https://microbenet.cdc.gov/), which is a free online database
launched in 2013 with the goal to help clinical laboratories to improve their diagnostics. Moreover,
they developed a collaboration with Bruker©, allowing users to search the database directly from the
generated MALDI-TOF mass spectra. It is yet possible to match unknown acquired spectra to find
out if someone else already identified it. As an example, a recent study [76] showed the application
of external databases, such as SARAMIS™ (Spectral Archive and Microbial Identification System
database) and PAPMID™ (Putative Assigned Protein Masses for Identification Database), and the
5800 TOF/TOF MALDI research instrument from Absciex©, as an efficient tool for the identification
of 26 bacterial strains, with comparable accuracy to a commercial system. If the primary use of this
online-database is widened to AMR thematics, it will be possible to share freshly discovered AMR
biomarkers far more easily. In brief, bioinformatics offers a wide range of tools for the detection and
identification of AMR, easily practicable in combination with MALDI-TOF MS.

5. MALDI-TOF/TOF Tandem Mass Spectrometry: To Infinity and Beyond

The development of soft-ionization methods such as MALDI or electrospray ionization (ESI)
were important discoveries, as it was preserving the integrity of larger molecular weight compounds
like proteins, carbohydrates or lipids [77]. MALDI-TOF MS would detect mainly ribosomal proteins,
housekeeping proteins and structural proteins that are abundant in the cell, relatively independent of
the growth state of the microorganism, in a mass range between 2 to 20 kDa [78]. However, this type
of mass spectrometry is somehow self-limiting in its efficiency, depending on the mode used to give
primary information, such as the mass of the analyzed compound [79]. Indeed, mass spectrometry
technology presents different possible parameter adjustments, such as the linear (i.e., ion moves in
a straight line from the source to detector) and reflectron (i.e., ion mirrors increasing the time of
flight and the resolution) modes, or the investigation of positive and/or negative ions, to increase
the resolution and selectivity of generated spectra [79]. The desire to know more than the mass of
molecules brought up the development of complex mass spectrometers combining two analyzers
(e.g., quadrupole, ion trap and TOF), called multi-analyzer systems or MS/MS [79]. The association of
two identical types of analyzers is a tandem instrument. Among these tandem mass spectrometers,
MALDI-TOF/TOF MS is commonly used in proteomic research, for the sequencing of peptides [80].
The first TOF analyzer serves as a mass filter [81], to select an ion of interest, whose corresponding
fragment is communicated (or not) to the second analyzer [81]. High resolution and mass selectivity
enable the identification of peptides, i.e., an individual biomarker from the protein, essential for the

https://microbenet.cdc.gov/
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analysis of closely related species (or strains) or gene expression patterns [77]. However, fragmentation
is only feasible for low mass weights (up to approximately 3 kDa), and if identified biomarkers have a
higher mass, there will be a need to process through other MS approaches. As mentioned in previous
sections, antimicrobial resistance can be targeted thanks to the presence of a specific peak related
to the presence of enzymes, by peak shifting due to chromosomic mutation(s), and/or also by the
presence of degradation molecules (Figure 2). The standard MALDI-TOF MS is able to detect such
mechanisms. However, to know in precision which enzyme or mutation is involved in these specific
mass-to-charge ratios, advanced analysis is required. In 2006, Pieper and colleagues carried out
proteomic analyses of a sub-cellular fraction of S. aureus isolate VP32 with different resistances to the
cell-wall targeting compound vancomycin [82,83]. They analyzed and determined significant protein
abundance differences for 65 proteins by MALDI-TOF/TOF MS and liquid chromatography-MS/MS.
Among these proteins, several enzymes involved in the biosynthesis of purines, peptidoglycan
hydrolases and penicillin-binding proteins were identified. They concluded that different expression
levels of these proteins might be responsible for structural changes of the peptidoglycan and hence
conferring resistance to glycopeptide antibiotics. Such studies largely support the idea to link, in a close
future, specific biomarkers detected by MALDI-TOF MS spectra to characteristic and often well-known
biological phenotypic mechanisms.

However, until a MALDI-TOF MS spectrum could be able to give the utmost information at once,
there is still a long way to go and issues can already be identified. First of all, before carrying out
MALDI-TOF/TOF MS analysis, there is the need to identify a specific antimicrobial resistance biomarker.
Nevertheless, if the biomolecules of interest, here an enzyme, is expressed in a low quantity by the cell,
there are three possible limiting scenarios. The first one will be that MALDI-TOF MS does not detect it,
due to too low intensity and hence no appearance on the spectra. The second one, the peak exists but
the intensity is that low that during spectrum processing it could disappear. The last one, the specific
peak will go through all the steps but would still have a too low intensity to be explored. An important
point to mention is the resolution of the device itself. Indeed, manufacturers do not propose all the
same resolution for their mass spectrometers. Most of the software used for the identification of spectra
are working with three different components: (1) mode forward: How many peaks of the spectrum
to be identified are present in the reference spectrum, (2) reverse mode: How many peaks in the
spectrum of reference are present in the sample and (3) symmetry: Count the common peaks, and
sum the intensity ratios. In this configuration, intensity is an important factor, whereas the frequency
of apparition of peaks is not taken into account. As a suggestion, identification software should
consider integrating into their algorithm a special mode dedicated to the calculus of peak frequency
between the different analyzed spectra. Finally, there remains the question of the transition between
the MALDI-TOF/TOF and MALDI-TOF spectra: Will it be possible to integrate specific biomarkers data
from the MALDI-TOF/TOF spectra into a MALDI-TOF database? Indeed, the main objective for routine
diagnostic laboratories will be to couple species identification, subtyping and antimicrobial resistance
identification after the generation of one single spectrum. However, the detection of shifts due to the
mutation of one or two bases in the genome requires high sensitivity and resolution. The integration of
tandem TOF/TOF MS data will be ideal for the detection of such shifts, as the tandem technology has a
higher setting than single MALDI-TOF MS. Straightaway, there is no report of a successful transfer of
MALDI-TOF/TOF data through a MALDI-TOF system so far, which means there is still a specific need
for further scientific and technological development. In the same line of thought, the cost of such a
device and the development of specific skills for spectra analysis are currently still a serious stumbling
block for its concrete implementation in diagnostics.

6. Outlook and Future Challenges for MALDI-TOF MS and AMR in the Diagnostic Field

During the last decade, antimicrobial resistance obviously became a serious issue for public
health. However, international projects (e.g., EU-JAMRAI, EFFORT, JPIAMR, etc.) and challenging
competitions (e.g., Antimicrobial Resistance Rapid, Point-of-Need Diagnostic Test-Challenge) have
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surfaced to find a way to reduce and/or optimize the use of antibiotics. Amongst others, the Longitude
prize launched in 2014, with the aim to reward teams that can develop a cheap, accurate, rapid and
easy-to-use point-of-care diagnostic test for bacterial infection, with a focus on antimicrobial resistance.
In the context of developing a fast technology for diagnostics, much effort has been directed toward
finding new alternatives for the detection of antimicrobial resistances implying MALDI-TOF MS as
a new potential reference tool, and has now largely gone beyond the proof-of-concept stages [84].
The diagnostics mass spectrometry stage is mainly represented by the two manufacturers Bruker© and
Biomérieux©, which have largely contributed to the most recent innovation in terms of AMR detection
by mass spectrometry. In one hand, Biomérieux© proposes a complete automated identification (ID)
/AST system, i.e., the VITEK® SOLUTION (https://www.biomerieux-diagnostics.com/vitek-solutions),
by coupling two of their devices: the MALDI-TOF VITEK® MS, which furnishes the ID, and the
VITEK® 2 for AST. The ID/AST complex is supposed to give a result to clinicians within 14–20 h. On the
other hand, during the ASM Microbe conference 2019 (www.asm.org), Bruker© announced the launch
of the MALDI Biotyper® Sirius system [85], a versatile MALDI-TOF system for research purposes.
It supports a novel negative/positive-ion switch mode assay for research and clinical studies in fast
antibiotic resistance testing, such as colistin resistance in gram-negative bacteria [85]. Simultaneously,
they introduced the MBT-STAR assay kit for detection of carbapenem and cephalosporin resistance.
It measures the level of hydrolysis of the β-lactam ring after a 30 min incubation, thus providing a result
within 60 min, after analysis by the MBT STAR-BL software module [85]. Finally Bruker© developed a
software module for subtyping antimicrobial resistances such as KPC-producing K. pneumonia, MRSA,
and B. fragilis cfiA [86], inspired by the previously described studies in Table 1. According to the
manufacturer, after a simple direct transfer on the target from the agar plate, the software will be
able, after a high confidence identification, to process an automated typing (e.g., “presumptive KPC”,
“presumptive PSM positive MRSA”) thanks to the detection of specific biomarkers [87]. However,
much work still needs to be accomplished before exporting this technology to diagnostic and reference
laboratories [84]. The detection of specific biomarkers in foodborne pathogens should give an advantage
to obtaining the three-fold information within a single spectrum: species identification, sub-typing
and antimicrobial susceptibility, to efficiently treat foodborne infections. The elaboration of in-house
databases and processing parameters should be considered a key step to make MALDI-TOF MS a
potential new gold standard for AMR detection.

The successful detection of specific antimicrobial resistance biomarkers on MALDI spectra within
the same bacterial genus has been described in previous sections. However, a question still remains:
could a specific AMR biomarker from one bacterial genus be applied and steadily transferred to another
one? A working group detected the presence of biomarkers for the protein pKpQIL_p019, conferring
carbapenem resistances in the Enterobacteriaceae family, in three different bacteria: K. pneumoniae, E. coli
and E. gergoviae, at a mass-to-charge ratio of 11,109 m/z [87,88]. They specified the implementation of
screening and analysis in the routine clinical workflow of their laboratory, with all spectra scanned by
the automated script for peaks within a window of 11,109 ± 15 Da using Bruker©-provided platform
software. By the creation of specific peak scripts peculiar for specific antimicrobial resistance, it is
possible to detect antimicrobial mechanisms or resistances for different bacteria and to integrate these
in a diagnosis workflow. However, this technique still needs to be explored for more antibiotics classes
such as β-lactams, glycopeptides or macrolides.

Nowadays, WGS is considered as the current approach with the highest levels of discrimination
in terms of subtyping, and studies have already reported its application as being effective to predict
antimicrobial resistance in bacteria [89–91], and making it a valuable tool for antimicrobial resistance
surveillance [23]. However, even if the sequencing price has significantly decreased during the past
decade, this technology is not implemented in every diagnosis laboratory, and the analysis requires
much more time than mass spectrometry. Yet still, very few studies show the tandem utilization
of WGS and MALDI-TOF MS [92,93]. Both techniques present advantages and disadvantages but
seem to show a particular complementarity. As an example, colony identification of Elizabethkingia
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spp., a ubiquitous bacteria found both in the environment and hospital settings, was carried out by
MALDI-TOF MS [93]. WGS was used for the detection of antimicrobial resistance genes and to confirm
MALDI-TOF MS identification. WGS showed a better identification rate than MALDI-TOF MS, due to
the lack of reference spectra for Elizabethkingia spp. in MALDI-TOF MS commercial databases at the
time of the study. They concluded that MALDI-TOF MS databases should be continuously updated
and upgraded, while WGS proved to be a valuable tool for species identification confirmation and
quite detailed characterization of multidrug-resistance. Further, a report [92] studied the usefulness of
MALDI-TOF MS in an outbreak of vancomycin-resistant Enterococcus faecium in a hospital in comparison
to WGS. They reported, due to multiple cluster types involved in the outbreak, that the cohort showed
discrepancies between the two techniques. The authors highlighted MALDI-TOF MS limitations in
this situation and suggested to study results carefully, while WGS can be used for determination of
evolutionary distance between isolates. However, another important point to highlight, which is not
mentioned in the latter studies, is that WGS is certainly able to accurately spot resistance genes, but it
does not give any information on gene expression, while phenotype-based MALDI-TOF MS generates
a spectrum based on protein expression and hence, gene expression. As MALDI-TOF MS is mainly
used as a frontline tool in diagnostic laboratories, first results, such as species identification or AMR in
the future, could be obtained rapidly, while species confirmation and antimicrobial resistance detection
on the genome side could be obtained in a more delayed second step by WGS. MALDI-TOF MS and
WGS should be seriously considered as complementary tandem tools and more studies should be led
on this dual application.

Escherichia coli, Staphylococcus aureus and Bacteroides fragilis are the most MALDI-TOF MS studied
enterobacteria according to Table 1. However, other enteric pathogens with a high impact incidence on
human and animal health exist, which were not included in research reports so far. Lately, Batz and
colleagues in their “Ranking the risk report” [94], list the three first bacterial foodborne pathogens
as Campylobacter spp., Salmonella spp. and Listeria monocytogenes. Zautner and colleagues already
reported the ability of MALDI-TOF MS to subtype Campylobacter spp. by shifts in biomarker masses,
due to amino acid substitutions caused by single-point mutations in the respective biomarker gene [95],
and they further described proteotyping as a promising tool for microbial typing at the species,
subspecies, and even below subspecies levels [96–98]. These last studies show how generated spectra
are exploitable and accurate enough to detect various AMR biomarkers in important pathogens such
as Salmonella spp. or Listeria spp. Along the same line, carbapenems and β-lactams antibiotics families
were the most tested and studied. However, gastroenteritis is the main end-up of a foodborne pathogen,
and quinolones (e.g., ciprofloxacin) and macrolides (e.g., azithromycin and erythromycin) are the
first frontline antibiotics used to treat such diseases [99]. Moreover, WHO categorized these two
antibiotics as critically important [100] due to a high resistance prevalence concerning pathogens such
as Campylobacter spp., E. coli, or non-typhoidal Salmonella spp. Nevertheless, at the moment there are
no reports highlighting potential biomarkers for AMR to quinolones and macrolides. In a context
where emerging multiple antimicrobial resistances are a critical issue, there is a need to collect data at
least on these two antibiotic classes in order to ensure the collection, within one spectrum, of all the
needed information.

Regarding our review on the detection of AMR by specific MALDI-TOF spectra patterns, there is
still a lot to accomplish before MALDI-TOF MS could be considered the new reference method for
the detection of antimicrobial resistance in routine diagnostics. Many questions still remain open and
more studies should specifically be led on foodborne pathogens. Exploration on critical important
antibiotics such as quinolones or macrolides, which are widely used for the treatment of foodborne
illnesses, but unfortunately with no available data on it, should be of major interest for the scientific
community. Finally, the dual combination of WGS and MALDI-TOF MS should soon become the main
approach for the utmost reliable and fast identification of AMR in foodborne pathogens.
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3.3 Bacterial typing and detection of virulence factors 

The subtyping could be defined as a method to identify different strains of a specific bacterial 

species. Fine-drawn divergence in the genome could distinguish strains stemming from a common 

source from an unrelated one (Ann Luna, 2016). DNA-based methods relying on amplification or 

restriction such as multi-locus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) 

are the major reference methods for bacterial typing at the strain level (i.e. genetic variant or 

subtype of a microorganism) (Opota et al., 2016). Investigation at the subpopulation level is 

essential for molecular epidemiology and routine surveillance in order to track outbreaks (Ann 

Luna, 2016). 

While these methods are fairly discriminant and efficient, the total cost and time-consuming 

workflow have led scientists to find more straightforward, rapid and cost-effective methods. The 

versatile MALDI-TOF MS has been successfully investigated in several reports for the typing of 

several bacterial species such as, methicillin resistant Staphylococcus aureus (MRSA), 

Enterobacteriaceae, Mycobacterium spp. or other bacteria (e.g. Pseudomonas aeruginosa, 

Acinetobacter baumannii or Campylobacter jejuni) (Zautner et al., 2013; Sauget et al., 2017). 

Likewise MALDI-TOF MS AMR screening, bacterial profiling at the strain level relies on the 

investigation of specific peaks or signature of peaks identified by either visual or bioinformatics 

inspections (Culebras, 2018). Although MALDI-TOF MS is a promising tool for bacterial typing, there 

is still numerous questions remaining, such as the level of assignation and technical settings used 

in routine laboratories settings. 

By using the same process as previously described for AMR screening and subtyping, MALDI-

TOF MS also has been investigated for the detection of bacterial virulence factors (e.g. toxins and 

antigens) (Rojo-Martín, 2018). For example, healthcare-associated infection caused by 

hypervirulent Clostridium difficile NAP1/ribotype 027 is associated with high-mortality rate 

(Valiente et al., 2014). Recently, two biomarkers, i.e. 6,654 Da and 6,712 Da, with an overall good 

performance to discriminate 027 from non-027 ribotype C. difficile was highlighted (Flores-Treviño 

et al., 2019). Therefore, MALDI-TOF MS may be also a promising tool for the fast detection of 

virulent strains in diagnostics. 
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1. Campylobacter: An irksome foodborne pathogen 

Firstly reported as a non-culturable spiral-shaped bacteria by Theodore Escherich (Silva et al., 

2011), Campylobacter, at this time known as Vibrio fetus, was identified for the first time in 1906 

and was associated as the “vibrionic abortion” (Skirrow, 2006). It is only in 1963, that the genus 

“Campylobacter” was proposed by Sebald and Véron (On, 2001). Since the apogee of molecular 

DNA-based methods, the taxonomic structure and ecological comprehensive aspects of the 

Campylobacter genus have tremendously evolved. In this section, an emphasis on the 

Campylobacter landscape will be presented. 
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1.1 Overview of the Campylobacter genus 

The Campylobacteraceae family comprises three different taxa, including Campylobacter, 

Arcobacter and Sulfurospirillum (Lastovica et al., 2014). The genus Campylobacter presents an 

important diversity with currently at least 35 validly described taxa 

(https://www.bacterio.net/genus/campylobacter, accessed in November 2021) more or less 

related, and 11 subspecies (Figure 3.1). Campylobacter spp. are small (0.5-5 µm long and 0.2-0.9 

µm wide), curved or spiralled gram-negative rods (Figure 3.2), that could form coccoid under 

certain form of stress (e.g. lack of nutriments) (Fitzgerald, 2015; Facciolà et al., 2017). Special 

growth requirements are needed in terms of atmosphere and temperature of incubation making 

their daily culture fastidious in vitro. On the one hand, the majority of Campylobacter spp., such as 

C. fetus or C. lari are growing at 37°C. On the other hand, relevant Campylobacter spp. in human 

infections, such as C. jejuni and C. coli, are thermophilic organisms, with an optimum growth 

temperature among 40-42°C (Silvan and Martinez-Rodriguez, 2018; Costa and Iraola, 2019). As well, 

they are microaerophilic organisms, meaning a reduced oxygen, i.e. 5-8%, and elevated dioxide 

carbon i.e. 3-10% concentrations are compulsory (Silvan and Martinez-Rodriguez, 2018). However, 

certain strains could grow and survive under anaerobic or aerobic conditions (Fitzgerald, 2015). 

Campylobacter spp. are highly motile due to the presence of one or two flagella, which are required 

for the colonization of the gastrointestinal tract mucus lining (Guerry, 2007; Devi, 2019). 

Nevertheless their flagella could be useful for other pathogenesis purposes such as the secretion of 

non-flagellar proteins modulating virulence (e.g CiaB, FspA or FlaC) or biofilm formation (Guerry, 

2007). Regarding the genome size, Campylobacter spp. have a small genome around 1.6 Mb with a 

30.6 % G+C. It is predicted to encode 1,654 proteins and 54 RNA species in the C. jejuni case (Parkhill 

et al., 2000; Pearson et al., 2007). 

1.2 Occurrence and burden 

The EFSA defines zoonoses as infections or diseases that can be transmitted directly or 

indirectly between animals and humans. Zoonoses can occur by consuming food or drinking-water 

(indirect), or touching food (direct) contaminated by pathogenic agents (e.g. bacteria, parasites or 

viruses) (EFSA, 2014). Over the 13 zoonoses monitored in 2019, campylobacteriosis was the most 

commonly reported zoonosis in the EU and this since 2005 (EFSA and ECDC, 2021a). While C. jejuni 

and C. coli counted for more than 93% of reported cases, other Campylobacter spp. such as C. lari, 

C. fetus or C. upsaliensis were also less frequently detected (EFSA and ECDC, 2021a). While looking 

for Campylobacter, most laboratories incubate their cultures at 42°C, and thus miss Campylobacter 

spp. growing at 37°C, such as C. lari or C. fetus. Nevertheless, the implementation

https://www.bacterio.net/genus/campylobacter
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Figure 3.1. 16S phylogenetic tree representing Campylobacter type strains. Adapted from Parisi et al., (2021) 

 

Figure 3.2. Transmission electron micrograph of Campylobacter jejuni (x2200 magnification). Image taken 
by Dr Aidan Taylor of the University of Sheffield 
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 of non-culture-based methods (e.g. PCR) in private laboratories for the identification of 

Campylobacter, like in Luxembourg, might increase C. lari and C. fetus detection in the future (EFSA 

and ECDC, 2021a).  

The average EU notification rate in 2019 was 59.7 per 100,000 population (Table 3.1).  

Table 3.1. Top 5 of highest country-specific notification rate and cases in Europe in 2019 (EFSA and ECDC, 
2021a). 

 

Rank 

 
European member 

states 
 

Confirmed cases 
Notification rate (cases per 

100,000 population) 

1 Czech Republic 22,894 215.0 

2 Slovakia 7,829 141.1 

3 Denmark 5,402 93.0 

4 United Kingdom 58,718 88.1 

5 Finland 4,382 79.4 

… … … … 

14 Luxembourg 271 44.1 

 
Nevertheless, each notification rate should be cautiously compared as Campylobacteriosis 

notification is not mandatory in all member states of the EU. While reporting is compulsory in 26 

EU countries, France and the United Kingdom use a voluntary system (EFSA and ECDC, 2021a). 

As well, the health and economic burden of Campylobacter must be mentioned. Indeed, 

according to the last Global Burden of Diseases study published in 2010, it represented 7.5 million 

DALYs (time-based measure comprising years lost due to premature  mortality and years of healthy 

life lost due to disability) and an important cost-of-illness (e.g. 82 Mio EUR in Netherland in 2011) 

(Murray et al., 2012; Devleesschauwer et al., 2016). Interestingly a clear seasonality phenomenon 

for Campylobacteriosis cases exist, where a peak is reached during summer months (EFSA and 

ECDC, 2021a). Nevertheless, such event is still not fully understood and remains unclear. In the EU 

campylobacteriosis cases are mainly sporadic with few recognized foodborne outbreaks (Silva et 

al., 2011). In 2019, 0.6% of human campylobacteriosis cases in EU would be linked to foodborne 

outbreaks  (EFSA and ECDC, 2021a). 

1.3 Sources of infections 

In the EU most of the recognized or suspected human outbreaks are caused by the 

consumption of contaminated broiler meat and milk (EFSA and ECDC, 2021a). On the one hand, 

Campylobacter spp. are commensals found in live stocks (e.g. bovine, sheep and poultry) or wild 

animals (e.g. swine), considered as reservoirs or amplifying hosts (Figure 3.3) (Silva et al., 2011; 
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Wagenaar et al., 2014). Poultry and more specifically chickens are the main reservoir infecting 

humans worldwide  

Figure 3.3. Route of transmission of Campylobacter infections. Adapted from Chlebicz and Śliżewska (2018) 
 

and are often associated with outbreaks (Wagenaar et al., 2014; Wensley et al., 2020). Studies 

highlighted that specific subgroups of C. jejuni were frequently associated with specific hosts 

(Sheppard et al., 2010, 2011, 2014; Epping et al., 2021). 

On the other hand, Campylobacter spp. excreted by specific hosts could be then transported 

by different pathways, such as the food chain, water cycle (e.g. surface or recreational water) or 

insects (e.g. flies), or less frequently by direct contact with infected organisms (Hald et al., 2008; 

Wagenaar et al., 2014). In this context, in the USA a C. jejuni outbreak was identified after people 

got direct contact with sick puppies in a pet store (Watkins et al., 2021). These different pathways 

result in the potential contamination of edible goods (e.g. meat or milk) that could contaminate 

humans or other susceptible hosts.  

While consuming contaminated food is recognized as the main source of human infection 

(EFSA and ECDC, 2017), cross-contamination (e.g. rinsing chicken) and poor hygiene (e.g. proper 

hand washing) in the kitchen is also a major key in its transmission (Cardoso et al., 2021). While 

50% to 80% human cases could be attributed to the poultry reservoir, up to 30% of human 

campylobacteriosis cases could be attributed  to the handling, preparation and consumption of 

broiler meat (EFSA, 2010). Luber et al. (2006) estimated that the Campylobacter spp. mean transfer 
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from hands or kitchen utensils to foods were ranging from 3% to 28% (Luber et al., 2006). Along the 

same line, while preparing naturally contaminated poultry, cross-contamination can occur in the 

kitchen. Indeed, Gorman et al. (2002) highlighted contamination of surfaces, such as oven handle, 

counter-top and draining board (Gorman et al., 2002).  

Therefore, consuming contaminated drinking/untreated water (e.g. well water), not washing 

hands before/after food preparation, or not cleaning a knife after using it for raw meat represent a 

pathorisk to be infected by Campylobacter spp. (Kapperud et al., 2003; Mughini Gras et al., 2012). 

In 2015, a risk factor analysis for Campylobacter infections in Norway between 2010 and 2011 was 

performed. Drinking water directly from river or lake (odds ratio: 2.96) was more likely to increased 

Campylobacter infections risk than eating chicken (odds ratio:1.69) (MacDonald et al., 2015). A 

similar study was conducted in Luxembourg for the 2010-2013 frame time (Mossong et al., 2016). 

Consumption of chicken at both home and outside (odd ratio: 4.77) was one of the significant risk 

factors for human campylobacteriosis. 

1.4 Campylobacteriosis & associated diseases 

Recognized to have a role in sheep’s abortion from 1906 to nowadays, Campylobacter spp. 

were only identified as a major agent enteritis disease in the 1970’s (Butzler et al., 1973; Skirrow, 

1977). The majority of campylobacteriosis are significant self-limiting zoonotic foodborne diseases 

in humans, resulting in watery and/or bloody diarrhea, cramps and sometimes fever and last 

around 6 days (Kaakoush et al., 2015). Reports suggested that the dose to get illness was ranging 

from 100 to 800 Campylobacter cells (Igwaran and Okoh, 2019). While most of human infections 

are caused by C. jejuni and C. coli, other emergent species (e.g. C. concisus, C. hepaticus, C. 

hyoinstestinalis, C. ureolyticus, C. upsaliensis)  were sporadically associated with humans and 

animals illness (Costa and Iraola, 2019). Beside the diarrheic side of Campylobacter infections, other 

gastrointestinal and extra-gastrointestinal post-infection sequelae could be highlighted (Kaakoush 

et al., 2015). Inflammatory bowel, oesophageal and celiac diseases could be cited for 

gastrointestinal infections. Extra-gastrointestinal infections could be defined as complications 

outside the gastrointestinal tract. This includes Guillain Barré syndrome, reactive arthritis, 

meningitis as well as bacteremia in the Campylobacter case (Kaakoush et al., 2015; Igwaran and 

Okoh, 2019).  

1.5 Campylobacter in a One World – One Health 

The majority of human campylobacteriosis cases are linked to the consumption of 

contaminated food products, including poultry. While in some cases the establishment of a direct 

link to a specific source is missing, several studies have pointed out the importance of non-poultry 
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(e.g. wild-life and surface water) sources or vectors for human campylobacteriosis or colonization 

of poultry flocks (Figure 3.4)(Gölz et al., 2014; Cody et al., 2015; Mossong et al., 2016; Mughini-Gras 

et al., 2016).  

 

 
Figure 3.4. Overview of Campylobacter spp. sources and transmission Campylobacter spp. reside in large 
numbers in the gastrointestinal tract of chickens, where bacteria are spread throughout the flock via the 

fecal-oral route (A). In the developed world, Campylobacter is usually acquired by consuming under-cooked 
poultry (B). However, outbreaks have been associated with different types of fresh produce (C) and dairy 
products (D). Campylobacter spp. is frequently found in surface water, usually from contamination from 
animal feces, and has been known to infect humans (E)). It has also been postulated that Campylobacter 
may be able to infect amoebae, which may serve as a reservoir (F) (Adapted from Johnson et al. (2017) 

 

Thermophilic Campylobacter, including C. jejuni and C. coli, are ubiquitously and commensally 

found in the intestinal tract of animals. C. jejuni was identified in numerous avian species, including 

wild birds (e.g. feral pigeon, house sparrow, common blackbird) and poultry, as well as cattle and 

pigs (Hald et al., 2016). In 2018, a Campylobacter prevalence of 26% in broiler chicken and 71.6% in 

turkeys was reported, where C. jejuni and C. coli were highly represented (Backert, 2021). While 

the vertical transmission, i.e. from breeders to their progeny, of Campylobacter spp. is supposed to 

be negligible, horizontal transmission is considered as the principal introduction pathway of 

Campylobacter in broilers flocks at the farm level (Agunos et al., 2014; Ingresa-Capaccioni et al., 

2016). The presence of the wild or domestic animals (e.g. insects, adjacent broilers or pets) or 

human equipment (e.g. transport crates were suggested as Campylobacter source (Kittler et al., 

2021). Therefore livestock farms could have an important role in Campylobacter spread in the 

environment and in humans (Backert, 2021). 
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Campylobacter infections in human are principally self-limiting and do not require 

antibiotherapy. In case of persistent, invasive cases, immunocompromised patients or severe 

infections, the prescription of antibiotics may be needed to treat it. Over the last decades, the 

excessive administration of antibiotics to food animals for nontherapeutic (e.g. growth promotion) 

purposes was linked to significant bacterial AMR (Marshall and Levy, 2011). Actually, numerous 

critically important antibiotics considered as essential in human medicine, is also used in veterinary 

medicine (WHO, 2019b). However, the overuse and misuse of such molecules for animal production 

is to be expected to rapidly increase the emergence of AMR in pathogens (Agyare et al., 2019). Such 

situation might lead to inefficient treatment, economic losses and human transmission. While 

macrolides and fluoroquinolones are used in poultry, such molecules are considered to be the first- 

and second-line drugs for Campylobacter human infections when antibiotherapy is required 

(Luangtongkum et al., 2009; Roth et al., 2019). Nevertheless, according the last EFSA report 

approximately 61% and up to 86.7% for both C. coli and C. jejuni isolates from human and poultry 

respectively were resistant to fluroquinolones (EFSA and ECDC, 2021b). Therefore, the increase of 

fluroquinolones resistance among Campylobacter had limited treatment options for patients (CDC, 

2019). Even more worrisome is the emergence of multi-resistant Campylobacter spp. (Du et al., 

2019; Noreen et al., 2019).  

2. Antimicrobial resistance mechanisms  

Ever-increasing multi-drug resistance patterns among Campylobacter in Europe is a concerning 

public health issue. While up to 85% of isolates are already resistant to at least one or two 

antimicrobial classes, 26.9% C. coli  food isolates were multi-resistant to four antimicrobials in 2019 

(EFSA and ECDC, 2021b). It underlines the need for enhanced effort to obtain straightforward AMR 

assessment information. As a first step toward it, a better knowledge on AMR mechanisms is 

required. In this section, Campylobacter’s antimicrobial known and emergent resistance 

mechanisms will be discussed. Table 3.2 summarizes identified AMR mechanisms of 

Campylobacter. 

2.1 Resistances due to target mutations 

Microorganisms can reach AMR by different genetic events. Alteration of the antibiotics target 

site is one of the most common mechanism of resistance (Lambert, 2005). 

(Fluoro)quinolone molecules belong to a broad spectrum of antibiotics, including ciprofloxacin 

and nalidixic acid. They target DNA gyrase and topoisomerase IV and thus, impede DNA replication 

(Higgins et al., 2005). Mutations within GyrA, GyrB and ParC and ParE are responsible of bacterial 

fluoroquinolone resistances (Shen et al., 2018). The main Campylobacter fluoroquinolone 
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resistance mechanism is an amino acid substitution in the quinolone resistance determining region 

(QRDR) involved in the DNA binding domain of the GyrA (Payot et al., 2006). The single point 

mutation C257T in the gyrA gene leads to the Thr86Ile amino acid substitution and corresponds to 

the main molecular mechanism conferring a high level to fluoroquinolone resistance. Other amino 

acid  substitutions, such as Asp90Asn, Thr86Lys, Thr86Ala, Thr86Val, and Asp90Tyr are associated 

with a lower level of resistance (Tang et al., 2017b). 

 

Table 3.2. Summary of antibiotic resistance mechanisms of Campylobacter (adapted from Iovine, 2013). 
MOMP: Major outer membrane protein. 

 

Inhibition 
mechanism 

Classification Antibiotics Resistance mechanisms 

Cell wall synthesis β-Lactams 
 

ampicillin, amoxicillin 
 

▪ Enzymatic inactivation (β-
lactamase OXA-61) 

▪ Membrane permeability 
due to MOMP 

▪ Efflux through the (RE)-
CmeABC pump 

DNA 
topoisomerase 

(Fluoro)quinolones 

 
ciprofloxacin, nalidixic 

acid 
 

▪ DNA gyrase single point 
mutation (e.g. Thr-86-ile; 
Asp-90-Asn, Ala-70-Thr) 

▪ Efflux through the (RE)-
CmeABC pump 

Protein synthesis 

Macrolides 

 
erythromycin,  
azithromycin 

 

▪ 23S rRNA single point 
mutation (e.g. A2075G, 
A2074G, A2074C) 

▪ Mutations in L4/L22 
ribosomal protein 

▪ Horizontal transferable 
erm(B) gene 

▪ Efflux through the (RE)-
CmeABC pump 

▪  Membrane permeability 
due to MOMP 

Tetracyclines 
 

tetracycline 
 

▪ Modification of the 
ribosomal target A by 
ribosomal protection 
protein (e.g. Tet(O)) 

▪ Efflux through the (RE)-
CmeABC pump  

▪ Membrane permeability 
due to MOMP 

Aminoglycosides 

 
gentamycin, 
kanamycin, 

streptomycin 
 

▪ Contribution of modifying 
enzymes (e.g. Apha, AadE) 

▪ Mutation in the rpsL gene 
(streptomycin)  

Phenicol 
 

chloramphenicol 
 

▪ Conjugative plasmid born 
cfr(C)  
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Macrolide antimicrobials, including erythromycin and azithromycin, are drugs of choice for the 

treatment of Campylobacter infections, when antibiotherapy is required (Yang et al., 2019). These 

agents inhibit the protein synthesis by targeting the 50S subunit of the ribosome (Iovine, 2013). The 

main mechanism of macrolide resistance in Campylobacter is the modification of the ribosome 

target. Modifications include point mutations in the 23S rRNA, which is the most common 

mechanism for high-level macrolide resistance. Changes in the nucleotide sequence mainly occur 

at positions A2075G, A2074G, A2074C, and to a lesser extend are associated with A2074T 23S rRNA 

substitutions (Bolinger and Kathariou, 2017). Low-intermediate macrolide resistances are rather 

related to changes in the L4 and L22 ribosomal proteins and substitutions and insertions in the in 

rplD and rplV of the ribosomal proteins (Bolinger and Kathariou, 2017).  

2.2 Resistance due to acquired genes  

Acquisition or interchanging genes, so called horizontal gene transfer, is one of the numerous 

mechanisms deployed by microorganisms to become resistant to antimicrobials (Van Hoek et al., 

2011). 

 Tetracyclines is one of the most important and used class of antibiotics, targeting the 

inhibition of the protein synthesis by interacting with the 30S ribosomal subunit (Tang et al., 2017b). 

While it has been successfully used in human and veterinary medicine, its heavy use lead to a 

widespread of resistances, limiting its use nowadays (Iovine, 2013). In 2019, between 47.2% and 

66.9% of C. jejuni and C. coli human isolates, respectively, were resistant to tetracyclines (EFSA and 

ECDC, 2021b). Tetracycline resistances are mainly due to the expression of tet(O) gene encoding 

ribosomal protection proteins (Wieczorek and Osek, 2013). Tet(O) binds to an unoccupied 

ribosomal A site and initiates a conformation change of the molecular structure, resulting in the 

release of the bounded antimicrobials (Roberts, 2005). While the A site configuration is different, 

the site is still stable and functional for protein elongation (Roberts, 2005). The tet(O) gene could 

be located on the chromosomal DNA or on a plasmid, such as pTet in C. jejuni and pCC31 in C. coli 

(Shen et al., 2018). 

Developed in 1944, the aminoglycosides class, including gentamycin, streptomycin or 

kanamycin antibiotics, is one of the oldest developed class of antibiotics (Falagas et al., 2008). 

Elaboration of new compound classes as well as adverse events  (e.g. nephro- and ototoxicity for 

the gentamycin) associated to its consumption, resulted into a decrease in the use of  

aminoglycosides (Tang et al., 2017b). Nevertheless, global AMR increased obliged clinicians to 

revaluate its use (Falagas et al., 2008). Like tetracyclines, aminoglycosides interact with the 

decoding region of the A site of 30S ribosomal proteins, leading to the biosynthesis of aberrant 

proteins (Wieczorek and Osek, 2013).  In Campylobacter aminoglycoside resistance genes 
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producing modifying enzymes such as aminoglycoside phosphor-transferase (e.g. AphA-3) and 

adenyl-transferase (e.g. AadE) were described (Wieczorek and Osek, 2013). Campylobacter’s AphA-

3 phospho-transferases is the main transforming enzyme in Campylobacter spp., conferring a 

phosphorylation to aminoglycoside molecules (Iovine, 2013). While the majority of these resistance 

genes are plasmid-borne, several studies report the existence of chromosomally encoded 

aminoglycoside resistance genes (e.g. aph(2″)-If) and transferable multidrug resistance genomic 

island (e.g. aadE–sat4–aphA-3 cluster, aacA-aphD, aac, and aadE) (Qin et al., 2012; Tang et al., 

2017b; Yao et al., 2017). The potential emergence and the dispersion worldwide of such genomic 

structure constitute a direct threat to public health. While aminoglycosides resistances are mainly 

driven by specific resistance genes chromosomally encoded, it could be less frequently associated 

with a single mutation. Indeed, the Lys43Arg single point mutation in the rpsL gene has been shown 

to be involved in the streptomycin resistance in C. coli and C. jejuni (Olkkola et al., 2010; Hormeño 

et al., 2018; Ocejo et al., 2021). 

β-lactams are the most widely used antimicrobials class worldwide (Bush and Bradford, 2016). 

In the European Union, consumption of β-lactams for systematic use in the community reached 8 

defined daily dose (DDD) per 1000 inhabitants per day in 2019, which is fourfold higher for 

tetracyclines or macrolides (ECDC, 2020). β-lactams class regroups different subclasses: penicillin, 

cephalosporins, cephamycin, monobactams and carbapenems.  Such antimicrobials interrupt 

bacterial cell wall synthesis by binding to penicillin-binding proteins, which are involved in the final 

cell wall biosynthesis  (Bush and Bradford, 2016; Shen et al., 2018). The main gene responsible of 

producing β-lactamase in Campylobacter is blaOXA-61 chromosomally encoded. Nevertheless, it was 

reported that a majority of Campylobacter harbouring the OXA-61 enzyme were in fact susceptible 

to ampicillin (Griggs et al., 2009; Shen et al., 2018). Therefore, the level expression of this gene 

regulates Campylobacter final resistance phenotype (Zeng et al., 2014). Ocejo et al. (2021) analysed 

by WGS 70 Campylobacter strains. 57 were harbouring genes coding for β-lactamases. 

Nevertheless, over the 57 identified strains, only 25 isolates were phenotypically resistant to 

ampicillin. Interestingly, single nucleotide G-T transversion in the blaOXA-61-like promoter area, was 

associated with high level of ampicillin resistance in 24 isolates (Ocejo et al., 2021). Therefore, the 

presence of the guanine is associated with ampicillin susceptible phenotype, whereas the presence 

of the thymine is associated with resistant phenotype. The authors suggested that the combination 

of the blaOXA gene combined with the thymine mutation could provide a performant WGS-based 

resistance prediction (Ocejo et al., 2021). 
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2.3 Intrinsic resistances 

In addition to resistance obtained after the acquisition of specific resistance genes or single 

point mutations, intrinsic resistances in both C. jejuni and C. coli were described. 

Efflux pumps are commonly found in Gram- positive and -negative bacteria as well as in 

eukaryotic cells (Webber and Piddock, 2003). While specific substrate pumps exist, other ones could 

transport large range of molecules, which could include antimicrobials. In Campylobacter, 14 

possible efflux pumps were reported (Iovine, 2013). The best-described one is the tripartite 

CmeABC multidrug efflux pump (Lin et al., 2002). CmeC is an outer membrane protein, CmeB is an 

inner membrane drug transporter and CmeA is periplasmic protein bridging CmeB and CmeC (Lin 

et al., 2002). This efflux pump is both implied in acquired and intrinsic resistances to a broad 

spectrum of antimicrobials (e.g. fluoroquinolones, β-lactams, tetracyclines) and to bactericidal 

detergents such as bile (Shen et al., 2018). In fact, the recurring pattern in Campylobacter 

resistances is the synergy between antibiotic efflux and another AMR mechanism (Iovine, 2013). It 

is worth noting that two other multidrug efflux pumps also exist in Campylobacter, i.e. CmeDEF and 

CmeG, which will not be described in this section. Antibiotics exclusion via the major outer 

membrane porin (MOMP) also confers resistance (Iovine, 2013). 

As well, Campylobacter exhibits natural resistance to several antimicrobials, hypothetically due 

to the absence of specific targets or poor affinity to binding targets (Iovine, 2013). Intrinsic 

resistances to novobiocin, bacitracin, vancomycin, polymyxin/colistin, sulfamethoxazole,  

trimethoprim and rifampicin for both C. jejuni and C. coli were described (Iovine, 2013; Wieczorek 

and Osek, 2013). Nevertheless, intrinsic resistance mechanisms still remain unclear but active efflux 

by previously described multidrug-efflux pumps may play an key role in it (Luangtongkum et al., 

2009). 

2.4 Emergent resistance mechanisms  

Previous described Campylobacter AMR mechanisms are linked to the resistance of critically 

important antimicrobials, such as fluoroquinolones or macrolides. While such resistances were 

already threatening for the global public health, variants or new AMR genes recently emerged in 

Campylobacter. 

A variant of the CmeABC efflux pump, so called resistance-enhancing (RE)-CmeABC, was firstly 

described in China (Yao et al., 2016). The RE-cmeABC operon has a specific cmeB sequence with 

only 80% amino acid identity to other cmeB Campylobacter (Shen et al., 2018). This sequence 

variation confers a high-level resistance to fluoroquinolones, phenicols, macrolides, 

and tetracyclines and reduces intracellular antibiotics accumulation (Liu et al., 2020). While this 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/tetracycline


 

68 | P a g e  
 

new efflux pump is highly prevalent in China, it has not been yet encountered in Europe (Shen et 

al., 2018). 

Additionally, two new emergent resistance genes were recently described. A rRNA 

methyltransferase encoded by the cfr gene confers the resistance to several antimicrobial classes 

such as phenicols or lincosamides (Tang et al., 2017a). For the first time, Tang and colleagues 

reported in 2017, a novel plasmid born harbouring a cfr-gene like, called cfr(C), in the foodborne 

pathogen Campylobacter. Likewise to other known cfr genes,  cfr(C) confers transferable multi-

drugs resistance, i.e. oxazolidinones, phenicols, lincosamides and pleuromutilins (Tang et al., 

2017a). Along the same line, the Erm(B) rRNA methylase may confer to Campylobacter a high-level 

resistance to macrolides, lincosamides and streptogramin B antimicrobials (Qin et al., 2014). It is 

the first transferable horizontal  macrolides resistance mechanism described in Campylobacter (Qin 

et al., 2014). Originally described in Asia, this rRNA methylase has now also been detected in animal 

isolates in Europe and overseas (Florez-Cuadrado et al., 2016; Chen et al., 2018).  

The emergence of such new AMR mechanisms and their potential dispersion worldwide would 

be a significant threat to the global public health. To watch it, the EFSA and ECDC highlighted the 

need of a better detection of “emerging and threatening” AMR mechanisms as well as their genetic 

supports (e.g. plasmids or multi-drug resistance genomic island) in Campylobacter. Finally, they 

recommended to apply NGS to highlight genes, clones and compare animal to human isolates, 

leading to a better understanding of Campylobacter resistance dynamics (EFSA and ECDC, 2021b). 

3. Typing technics 

Campylobacter cases occur sporadically and are rarely associated with outbreaks (Taboada et 

al., 2013). Additionally, infected people may have issues to remember the potential ingested 

contaminated food because of incubation time between infection and first clinical manifestation, 

which could take up to 4.3 days on average (Awofisayo-Okuyelu et al., 2017). Thus it is making hard 

to trace the route and source of transmission (Eberle and Kiess, 2012). Typing methods are helpful 

to compare strains at the species and subspecies level. Characterization of these isolates enables 

to study several parameters such as the investigation or the detection of potential human clusters 

and support Campylobacter surveillance (Eberle and Kiess, 2012). In this section, traditional and 

emergent typing tools will be presented. Table 3.3 summarizes the advantages and the drawbacks 

of the presented tools. 

3.1 Phenotyping 

The presence or absence of biological traits or activities could be used to differentiate isolates 

and could be referred as phenotyping. Biotyping, serotyping and multilocus enzyme electrophoresis 
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(MEE) used to be the most popular phenotypic methods to type Campylobacter due to their low-

cost and friendly use to perform. However, the discriminatory power and reproducibility was poor   

Table 3.3. Advantages and disadvantages of typing methods for Campylobacter spp. (Adapted from Eberle 
and Kiess (2012)) 

 

Method Advantage Disadvantage 

Phenotypic 

Biotyping Cost and easy procedures 
Low discriminatory power and 

reproducibility 

Serotyping Reproducibility and typeability 
Discriminatory power, cost, 

tedious procedures, and time 

Multilocus enzyme 
electrophoresis (MEE) 

Discriminatory power 
Exchange of results and 

reproducibility 

Genotypic 

Polymerase Chain reaction 
(PCR) 

Discriminatory power, 
equipment availability, and 

reproducibility 

Characterisation of a limited size 
of the genome, optimization of 

reaction conditions can be 
tedious, time-consuming 

Pulse-field gel electrophoresis 
(PFGE) 

Discriminatory power 
Cost, Time-consuming, 

reproducibility of results across 
different laboratories 

Ribotyping 
Large percentage of strains 

assigned to a type (typeability) 
Discriminatory power, cost, and 

time 

Flagellin typing Discriminatory power and time 

Instability of the marker, accuracy 
of results due to intra- and 

intergenomic recombination of 
genes 

Amplified fragment length 
polymorphism (AFLP) 

Discriminatory power, 
reproducibility, and typeability 

Complex analysis and pure culture 
required to prevent 

misinterpretation of results due to 
foreign DNA 

Multilocus sequence type 
(MLST) 

Easy reproduction, 
interpretation, and transfer of 
results, population structure 

study 

Cost, Time-consuming, complexity 
of the technique, no difference 

between genetically highly related 
isolates (clones), not for 

traceability 

Core genome MLST (cgMLST) Resolution and reproducibility 
Time-consuming, cost and 

complexity to perform technique, 
dry-lab part, i.e. bioinformatics 

pipelines and data storage 
Whole genome MLST (wgMLST) 

Sensitive, high resolution to 
differentiate isolates from a 
same outbreak, from a same 

source 

Proteomic 

Mass spectrometry-based 
phyloproteomics (MSSP) 

Fast, straightforward, cost-
efficient and possibility to 

combine it with MLST 

No common nomenclatures, no 
database 

Number of sequence data 
available is decisive for the quality 

of the typing scheme 
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(Eberle and Kiess, 2012). Biotyping refers at the characterization of bacterial isolates by studying 

biological activities, i.e. colonies morphology, environmental tolerance or biochemical reactions 

(Eberle and Kiess, 2012). Beside conventional tests to identify Campylobacter genus, such as the 

utilization of selective growth medium, i.e. blood agar combined with antibiotics, or biochemicals 

tests, such as Gram-staining, oxidase and catalase, biotyping schemes were developed (Skirrow, 

1977; Leaper and Owen, 1981).  In 1980, a first Campylobacter biotyping scheme relying on 

Hippurate hydrolysis and rapid H2S tests, was able to differentiate not only C. coli from C. jejuni, but 

also to subtype C. jejuni into two groups, so-called biotypes on Hippurate hydrolysis, rapid H2S tests 

and DNA hydrolysis for the distinction between C. jejuni, C. coli and “C. laridis” (now C. lari), 

resulting in four biotypes (Lior, 1984). While they are cost-effective and easy to perform, such 

methods had poor reproducibility and discriminatory power due to biochemical variability between 

isolates (Eberle and Kiess, 2012). Nevertheless, biotyping efficiency may be increased by the 

utilization of other phenotypic methods such as serotyping. 

The study of microbial surface differences, so called serotyping, plays an important role in 

subdividing isolate from a same species and subspecies of various bacteria based on the use of 

antisera and antibodies. In the case of C. jejuni, surfaces structures such as lipopolysaccharides or 

membrane proteins could be cited (Logan and Trust, 1982). Since 1971, different serotyping scheme 

for Campylobacter were developed (Berg et al., 1971; Penner and Hennessy, 1980; Lior et al., 1982). 

While similar efficiency was observed for the different schemes, serotyping remains a tedious and 

time-consuming method (Patton et al., 1985). While serotyping is currently not the method of 

choice for Campylobacter, it is still applied for bacteria such as Salmonella spp. in routine 

laboratories. Nevertheless, in silico genome-based serotyping (e.g. SeqSero2 or Salmonella 

TypeFinder) could become the new reference standard for Salmonella in a close future (Zhang et 

al., 2015; Longo et al., 2019; Banerji et al., 2020). 

Finally, MEE represented the first method used for epidemiological studies and was firstly 

applied in 1989 to characterize Campylobacter isolates from human and non-human sources 

(Aeschbacher and Piffaretti, 1989). It investigated the protein polymorphism by using a gel 

electrophoresis. Alteration in the amino acid sequence resulted into different pattern of mobility 

or electromorph type. Nevertheless, several nucleotides substitutions resulted into silent 

mutations in the amino acid sequence leading to low-resolution power (Araujo and Sampaio-Maia, 

2018).  

3.2 Genotyping 

In comparison to phenotyping methods, molecular DNA-based typing tools have a higher 

reproducibility, typeability, i.e. portion of the population strains that can be assigned to a type, and 
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discriminatory power but they are time-consuming and expensive (Hunter, 1990; Eberle and Kiess, 

2012). They have enhanced epidemiological surveillance, outbreak identification and furnished 

important insights into isolates from different reservoirs, i.e. human, environment and animal 

(Sheppard et al., 2012; Magana et al., 2017). Numerous genotypic methods for Campylobacter 

could be cited: the amplified fragment-length polymorphism (AFLP), the ribotyping, the polymerase 

chain reaction (PCR), the flagellin typing, the pulsed-field gel electrophoresis (PFGE), the multilocus 

sequence typing (MLST), the core genome MLST (cgMLST) and whole-genome MLST (wgMLST). 

Among these techniques, PFGE and MLST are the more common methods used for studying the 

epidemiology of Campylobacter infection (Magana et al., 2017). 

Developed in 1984, the PFGE is the first DNA-based typing method widely applied for bacteria, 

including Camyplobacter spp (Schwartz and Cantor, 1984; Eberle and Kiess, 2012). The fingerprint 

is obtained after the separation of large bacterial DNA molecules by applying a periodical electric 

field to the electrophoresis gel. It was assumed to be the reference standard for bacterial typing 

and online molecular surveillance network (e.g. PulseNet) of several bacterial genus, such as 

Salmonella, E. coli, Shigella and Listeria (Tolar et al., 2019). While such approach is valid for 

Campylobacter typing in a determined space time (e.g. slaughterhouse study), PFGE used for 

routine surveillance was considered as controversial, due to the small number outbreaks and 

numerous isolates to investigate (Hedberg et al., 2001). Nowadays, WGS-based methods are 

validated for Campylobacter typing and surveillance national programs started the transition 

toward the age of the NGS for surveillance (Ribot et al., 2019; Tong et al., 2021). 

MLST is another widely used method for the typing of Campylobacter. Thanks to the cost-

accessibility of whole genome sequencing (WGS) and improvement in bioinformatics, MLST, 

cgMLST or wgMLST became affordable over the last few years. Developed on the principle of MEE, 

MLST is a gene-by-gene approach looking into the DNA sequencing of several housekeeping genes 

(Maiden et al., 1998). Housekeeping genes are constitutive genes required for the maintenance of 

basic cellular functions and essential for the existence of the cell (Keim, 2005). The first 

Campylobacter MLST scheme was developed for C. jejuni based on seven genes, i.e. aspA, glnA, 

gltA, glyA, pgm, tkt, uncA  (Dingle et al., 2001). Additionally, extended MLST schemes were 

developed for species such as C. coli, C. lari, C. upsaliensis or C. helveticus (Miller et al., 2005). As a 

result of MLST, a unique Sequence Type (ST) is assigned to a unique combination of alleles (for 

details please see http://pubmlst.org/campylobacter/). Therefore, it is reflecting the 

Campylobacter population structure and host specificity. MLST method improved the 

understanding on Campylobacter spp. transmission route causing human infections as well as the 

identification of ecological niches (Sheppard et al., 2011; Magana et al., 2017). In terms of 

http://pubmlst.org/campylobacter/


 

72 | P a g e  
 

resolution, MLST has a higher resolution than 16S rRNA sequencing. While 16S rRNA (1 locus) 

identifies bacteria to the genus level, MLST (7 loci) goes to the species by categorizing isolates in 

lineages or clonal complex (Maiden and Harrison, 2016). Interestingly by including porA and gyrA 

to the traditional MLST scheme the resolution scale can be refined, resulting into a so-called 

extended MLST typing method (Nennig et al., 2021). The 9-loci method can define different lineages 

and human clusters (Dingle et al., 2008; Ragimbeau et al., 2014). 

cgMLST could be consider as the extension of the MLST concept to the genome level through 

the combination of hundred to thousand core genes, which could be defined as conserved genes 

throughout a group of genomes from a same species (Segata and Huttenhower, 2011). 

Alternatively, wgMLST is also a gene-by-gene approach which utilized all identified C. jejuni and C. 

coli loci of absolute presence (Cody et al., 2013). These methods show a higher resolution and 

discriminatory power than classical MLST typing schemes and can determine relationships between 

isolates up to the clone level (Maiden and Harrison, 2016). Likewise, it could give additional 

information (e.g. resistome) for the full characterization of the strain, with the condition that the 

typing scheme include acquired genes for resistances. However, the main goal of cgMLST and 

wgMLST is to determine the genetic distance between different isolates (Jamin et al., 2021). As an 

example, studies successfully evaluated cgMLST techniques for source attributions  of human 

pathogenic strains of C. coli and C. jejuni (Hsu et al., 2020; Harrison et al., 2021). 

 It is now clear that WGS-based typing methods will have an important role and benefits into 

its integration for the routine monitoring and outbreak investigation of Campylobacter (Llarena et 

al., 2017). 

3.3 Proteotyping 

The term “Proteotyping” refers to a typing method based on protein mass spectra analysis 

(Karlsson et al., 2015). It is used to characterize microbial communities viruses and bacteria such as 

Salmonella or Staphylococcus aureus based on the expressed proteins (Hugo et al., 2012; Kuhns et 

al., 2012; Nguyen and Downard, 2013; Kondori et al., 2021). For example, Kuhns et al. (2012) tested 

the ability of MALDI-TOF MS to discriminate S. enterica subsp. enterica serovar Typhi from other 

serovars (Kuhns et al., 2012). They suggested that even by using a direct bacterial smear for analysis, 

MALDI-TOF MS was able to discriminate clinically important serovars. 

In 2013, Zautner and colleagues used whole cell MALDI-TOF MS for the first time to 

discriminate C. jejuni clinically relevant and less relevant isolates, based on protein biomarker shifts 

and PCA-clustering. They suggested that this technic may be “a more meaningful typing approach 

than MLST” (Zautner et al., 2013). Later the name mass spectrometry-based phyloproteomics 

(MSPP) was highlighted and suggested as a novel microbial typing method (Zautner et al., 2015, 
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2016). While the first study was based on clustering approaches where the presence and absence 

of a peak is used, MSPP investigated mass changes in specific set of allelic isoforms of the same 

protein. Additionally MSPP was investigated for other Campylobacter species such as C. fetus or C. 

coli, isolated from diverse sources (e.g. blood culture, preputial washing, faeces or chicken) (Emele 

et al., 2019a, 2019b). 

Historically, several techniques were developed for the subtyping of Campylobacter. 

Nowadays, only a few of them, such as MLST-based methods, are still applied in laboratories for 

this purpose. The existence of these numerous different typing methods underlines the fact that 

there is not a unique reference method methodology to subtype Campylobacter spp. 
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CHAPTER 4 

Research aims, objectives and methodology 

The current AMR crisis is one of the most important public health challenges of the 21st 

century. While the emergence of multidrug resistant pathogens is growing, there are few new 

antimicrobials under development. Nevertheless, there are alternative actions to initiate an 

effective management of AMR. The improvement of laboratory testing, for the rapid and reliable 

detection of resistances and their related epidemiology, is one of them.  

While current bacterial infection investigation, including identification and antibiotic 

susceptibility testing, could take between 2-3 days, an antimicrobial empiric treatment strategy is 

established without the diagnosis of the potential pathogen. In 50% of cases, the latter results in 

an inappropriate prescription, leading to an overuse and overexposure of antimicrobials (Vasala et 

al., 2020). The development of rapid, simple to use, low-cost and with short results time, i.e. 1-2 

hours, diagnostic tests could improve the use of antibiotics by determining an appropriate tailor-

made antibiotherapy. By answering these everyday questions from a single cell monitoring method: 

what kind of bacteria is causing the infection? Are the bacteria causing the infection resistant or 

susceptible? What is the best antibiotic to fight against the infection? Rapid diagnostic tests will 

reduce unnecessary prescription, improve infection control and restrain potential spread of 

multidrug pathogens  (Health First Europe, 2017; Sykes, 2018). 

On the one hand, swift and accurate tool such as the whole-cell MALDI-TOF MS has been 

successful applied in routine laboratories for the identification of microorganisms. On the other 

hand, this technology has been also successfully used for the typing of several bacterial genera and 

the detection of specific AMR in a research context. Nevertheless, it was only mainly investigated 

for several clinical pathogens and few antibiotic families. Since 2005, Campylobacter is considered 

as the major cause of foodborne gastrointestinal diseases worldwide. As well, ever-growing 

Campylobacter’s resistances to critically important antibiotics, such as quinolones or macrolides, 

for human and veterinary medicine is particularly of concern. While MALDI-TOF MS was partially 

investigated for the typing of several Campylobacter species, identification of resistances by MALDI-

TOF MS within foodborne pathogens is poorly documented. 

Considering that MALDI-TOF MS signals are mainly based on ionised ribosomal proteins 

released from bacterial lysis, the aim of this research is to answer the following questions:  

1. Could those proteins reflect the AMR profile of Campylobacter spp.? If yes, how could 

it been explained? 
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2. Could the same protein profile be used to have an insight on the genetic diversity and 

population structure of Campylobacter spp.? 

These hypotheses were based on facts that MALDI-TOF MS successfully allows the identification 

of variations within the genomic structures, such as the presence of antimicrobial resistance genes 

or specific allelic profiles, resulting in the presence of related protein biomarkers. Additionally, the 

combination of MALDI-TOF MS and Machine Learning (ML) enhances the research of biomarkers 

by recognizing specific peak patterns. Therefore, these questions will be answered through the 

development of MS-based workflows, WGS and on a ML approach. 

 

The groundwork of this research will consist into the characterization of a One-Health 

Campylobacter collection (Chapter 5). Isolates will be selected from previous and on-going projects 

located in the Greater Region. AMR profiles will be phenotypically assessed and genotypically based 

on the whole genome sequence. Every isolate will be analysed by MALDI-TOF MS after different 

types of protein extraction, i.e. direct bacterial colonies smear, off-plate and on-plate extractions. 

Firstly, MALDI-TOF mass spectra will be investigated to screen AMR to different class of antibiotics 

and to retrieve putative biomarkers related to already known AMR mechanisms (Chapter 6). The 

second part will evaluate the ability of MALDI-TOF MS to cluster mass spectra according the genetic 

relatedness of isolates and congruently compare it to reference genomic-based methods (Chapter 

7). 
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Figure 5.1. Organization of the results part 
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CHAPTER 5 

The One-Health Campylobacter spp. collection 

The current collection is the result of the gathering of isolates of two different research projects 

and routine identifications of different institutions in the Greater Region, i.e. area covering Saarland 

and Rhineland-Palatinate in Germany, the Grand Duchy of Luxembourg, the French region of 

Lorraine as well as Belgian Wallonia with its French and German-speaking communities.  234 

isolates stemming from two FNR funded main Luxembourgish research projects running over the 

last decade were selected. The first one is the HypoCamp project (C09/BM/09 - 2010-2013), which 

aimed to investigate environmental contamination sources of Campylobacter infections in the 

Grand Duchy of Luxembourg. The second one is the still on-going CampylOmic project 

(C17/BM/11684203 - 2018-2022), which aims to explore the phenomenon of recurring genotypes 

by using genomics. The cited projects were led by the National Health Laboratory of Luxembourg 

(LNS) and were conducted in collaboration with the LIST. Additionally, strains isolated and identified 

in routine or monitoring settings (n = 232)  at the LNS, the Luxembourg veterinary governmental 

laboratory, the medical university of Saarland and the Belgium national Campylobacter reference 

centre were picked out based on their phenotypic AMR profiles and genetic diversity. Therefore, a 

total of 466 isolates, including 116 C. coli and 350 C. jejuni based on their phenotypic AMR profiles 

and genetic diversity were retained for the collection. 

The collected isolates were sampled from various origins, including humans (n = 309), cattle (n 

= 97) and environment (n = 60) reservoirs. Details of the origins are listed in the following Table 5.1. 

Isolates were grown on chocolate agar plates with a loopful of a -80°C stock suspension stored in a 

combination of ferrous sulphate, sodium metabisulfite and sodium pyruvate (FBP) medium 

complemented with a Campylobacter growth supplement. Then, agar plates were incubated for 

48h ± 2H at 42°C under microaerophilia condition using a gas pack.  

Table 5.1. Samples’ origins. 

 

Type of samples n 

Humans 309 

Poultry 56 

Bovine 39 
Pig 1 

Ovine 1 

Surface water 35 

Wild birds 17 
Wildlife  8 
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Two independent isolate panels, to explore the AMR (Chapter 6) and typing side (Chapter 7) 

of the research work, were established. On the one hand, a dataset of 224 C. jejuni and 116 C. coli 

was characterized by disk-diffusion antibiograms. Seven antibiotics, i.e. ampicillin, ciprofloxacin, 

tetracycline, kanamycin, streptomycin, gentamycin and erythromycin were tested. These were 

explored because C. jejuni and C. coli are known to have resistance mechanisms to these antibiotics 

but also because some of these antibiotics’ families, e.g. fluoroquinolones, macrolides, 

tetracyclines and aminoglycosides are used in both veterinary and human medicine (Chapter 3). 

Thus, for each isolate a suspension of 0.2 OD600 (eq. 0.5 McFarland) was streaked on a Mueller-

Hinton agar combined with 5% horse blood and 20mg/L of B-NAD (MH-F). Agar plates were 

incubated during 24h ± 2h at 42°C under microaerophilia (5% O2) conditions. Interpretation of the 

inhibition halo was performed by using the French Microbiology Society (SFM, recommendations 

2020 v1.1 April)  based on EUCAST recommendations resulting in patterns addressed in Figure 5.2 

(CASFM, 2020).  

 
Figure 5.2. Campylobacter resistances and susceptibility characteristics for C. jejuni (A-B) and C. coli (C-D). 

 

For antibiotics not described for Campylobacter spp., i.e. kanamycin and streptomycin, EUCAST 

recommendation for the Enterobacteriaceae group was applied. An isolate is considered 

susceptible when it is susceptible to the seven tested antibiotics.  
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On the other hand, a subset of 126 C. jejuni was selected from the Luxembourg national 

molecular monitoring program, performed between 2005 and 2021. Each strain isolated from 

various origins (e.g. food samples, human and environment) was subjected by WGS and 

characterized by in silico MLST and cgMLST by using the Ridom SeqSphere+ software platform 

resulting in 10 CCs, 21 STs and 42 CTs.  The detail of the typing collection is summarized in the 

following Table 5.2. Among those strains, 74 were assigned to four different lineages, i.e. A (n = 34), 

B (n = 15), C (n = 15) and D (n = 10) by Nennig et al. (2021) (Nennig et al., 2021). The classification 

was initially based on their extensive ST-gyrA-porA combination and their frequency in human 

infection over time. Actually, the four lineages were confirmed to share the same core genome by 

using 3 cgMLST schemes i.e. SeqSphere+ (n = 637 loci), Oxford (n = 1,343 loci), INNUENDO (n = 678 

loci). Additionally, most of the isolates classified in lineages A, B and D were identified as clonal by 

sharing a same pangenome within each subgroup respectively (same profile in wgMLST with less 

than 9 differences in alleles out 2795 targets screened and compared). 
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Table 5.2. Details of the typing collection. 

Clonal complex (CC) 
Sequence Type 

(ST) 
Complex Type (CT) 

Total 
(n =126) 

Lineages Clones 

21 

19 

82 34 A (n = 34) n = 31 

588 1   

1300 1   

1333 1   

1355 3   

2474 1   

21 

46 5   

50 1   

681 2   

1648 1   

50 

364 1   

441 1   

606 1   

1377 1   

2249 1   

2383 1   

104 1643 1   

336 1650 1   

861 1652 1   

883 2477 1   

3574 1639 2   

3633 2542 1   

6175 543 10 D (n = 10) n = 9 

10298 2149 3   

42 42 1644 1   

45 5503 1649 1   

48 
48 

660 1   

1646 1   

1661 1   

5173 1642 1   

206 122 1640 1   

257 2254 51 15 B (n = 15) n = 12 

353 2882 1641 1   

354 354 772 1   

464 464 

75 16 C (n = 15)  

596 3   

1428 1   

1514 1   

1668 2   

2130 1   

607 607 1645 1   
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CHAPTER 6 

MALDI-TOF MS as a fast and straightforward routine screening 

tool for the detection of antimicrobial resistances 

 

In this chapter*, C. jejuni and C. coli protein profiles generated by MALDI-TOF MS were 

explored by ML to predict resistances to different class of antimicrobials, i.e. quinolones, 

macrolides, β-lactams, tetracyclines and aminoglycosides. Firstly, AMR predictions based on mass 

spectra were investigated at the species- and antibiotic resistances level. Secondly, the impact of 

the different protein extraction methods, i.e. on- and off-plate extraction, on resistance predictions 

was performed. Finally, features tagged as relevant for the prediction of specific AMR were probed, 

to identify known and unknown AMR biological mechanisms. 

Highlights: 

• High performance was observed for classifiers detecting susceptible as well as 

ciprofloxacin and tetracycline resistant isolates. 

• A maximum sensitivity and a precision of 92.3% and 81.2%, respectively, were reached. 

• No significant prediction performance differences were observed between on- and off-

plate types of protein extractions. 

• Three putative AMR biomarkers for fluoroquinolones, tetracyclines and 

aminoglycosides were identified during the current study. 

• Combination of MALDI-TOF MS and machine learning could be an efficient and 

inexpensive tool to swiftly screen certain AMR in foodborne pathogens, which may 

enable a rapid initiation of a precise, targeted antibiotic treatment. 

 

 

 

 

 

 

*This work was published: 

Feucherolles M, Nennig M, Becker SL, Martiny D, Losch S, Penny C, Cauchie HM, Ragimbeau C. 

Combination of MALDI-TOF mass spectrometry and Machine Learning for rapid antimicrobial 

resistances screening: the case of Campylobacter spp. Front. Microbiol. 2022, 12:80484.
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Campylobacter spp.
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While MALDI-TOF mass spectrometry (MS) is widely considered as the reference
method for the rapid and inexpensive identification of microorganisms in routine
laboratories, less attention has been addressed to its ability for detection of antimicrobial
resistance (AMR). Recently, some studies assessed its potential application together
with machine learning for the detection of AMR in clinical pathogens. The scope of
this study was to investigate MALDI-TOF MS protein mass spectra combined with
a prediction approach as an AMR screening tool for relevant foodborne pathogens,
such as Campylobacter coli and Campylobacter jejuni. A One-Health panel of 224
C. jejuni and 116 C. coli strains was phenotypically tested for seven antimicrobial
resistances, i.e., ciprofloxacin, erythromycin, tetracycline, gentamycin, kanamycin,
streptomycin, and ampicillin, independently, and were submitted, after an on- and
off-plate protein extraction, to MALDI Biotyper analysis, which yielded one average
spectra per isolate and type of extraction. Overall, high performance was observed
for classifiers detecting susceptible as well as ciprofloxacin- and tetracycline-resistant
isolates. A maximum sensitivity and a precision of 92.3 and 81.2%, respectively, were
reached. No significant prediction performance differences were observed between on-
and off-plate types of protein extractions. Finally, three putative AMR biomarkers for
fluoroquinolones, tetracyclines, and aminoglycosides were identified during the current
study. Combination of MALDI-TOF MS and machine learning could be an efficient and
inexpensive tool to swiftly screen certain AMR in foodborne pathogens, which may
enable a rapid initiation of a precise, targeted antibiotic treatment.

Keywords: MALDI-TOF MS, antimicrobial resistance screening, AMR, machine learning, Campylobacter,
diagnostics

Frontiers in Microbiology | www.frontiersin.org 1 February 2022 | Volume 12 | Article 804484

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2021.804484
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2021.804484
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2021.804484&domain=pdf&date_stamp=2022-02-18
https://www.frontiersin.org/articles/10.3389/fmicb.2021.804484/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-804484 February 14, 2022 Time: 15:55 # 2

Feucherolles et al. MALDI-TOF MS for AMR Screening

INTRODUCTION

Antimicrobial susceptibility testing (AST) is a key technology
in diagnostic microbiology and is essential for a targeted
treatment and to limit the widespread use of broad-spectrum
antibiotics. Over the past decades, many improvements have
helped to accelerate, standardize, and harmonize testing
facilities, e.g., through the implementation of automated
and semi-automated devices combining identification and
AST (e.g., Vitek 2 R©), using optical systems for measuring
changes in bacterial growth and determining antimicrobial
susceptibility, and using rapid diagnostic tests for same-day
AST results (Mitchell and Alby, 2017; Benkova et al., 2020;
Roth et al., 2021). In a concern for harmonization, disk-
diffusion and microdilution antibiograms, recommended
by the European committee on antimicrobial susceptibility
testing (EUCAST, human medicine) or the European
food safety authority (EFSA, veterinary medicine), are still
the reference methods for determination of antimicrobial
resistances (AMR). These tests are based on bacterial growth,
requiring between 16 and 24 h for rapid growing pathogens
and longer for fastidious pathogens (e.g., mycobacteria and
Helicobacter pylori) (Barlam et al., 2016; Arena et al., 2017).
Results are usually qualitative and classed into categories,
i.e., susceptible or resistant, depending on the breakpoint
calibrated by the EUCAST, or expressed as minimum inhibitory
concentration (MIC) (Benkova et al., 2020). While these
conventional methods are effective, they are cumbersome,
time-consuming, and do not enable the rapid choice of an
effective targeted anti-infective treatment. Yet, development
of “fast microbiology” technologies or rapid diagnostic tests,
including Matrix assisted laser desorption/ionization time of
flight mass spectrometry (MALDI-TOF MS), results in the
improvement of the antimicrobial stewardship by decreasing
the “patient–physician” workflow before treatment (Bookstaver
et al., 2017; Mangioni et al., 2019).

MALDI-TOF MS is a soft-ionized mass spectrometry method
developed as an analytical tool to identify and understand
the structure of unknown biomolecules (Gibson and Costello,
2000). In an evolving field, this automatic technique became
the reference method for identifying microorganisms such as
bacteria (Clark et al., 2013; Singhal et al., 2015), mycobacteria
(Rodriguez-Granger et al., 2018; Rotcheewaphan et al., 2019) and
fungi (Florio et al., 2018; Robert et al., 2021). The resolution
power of the system operates at the species level and even
at sub-species level for a number of pathogens in clinical
microbiology (Fall et al., 2015; Feucherolles et al., 2021). It is a
fast and cost-efficient process, with a positive impact on public
health analytical pipelines (Ge et al., 2017; Rodríguez-Sánchez
et al., 2019). Identification of other organisms, like protozoa
(Del Chierico et al., 2016), helminths (Bredtmann et al., 2017;
Feucherolles et al., 2019b; Sy et al., 2021; Wendel et al., 2021),
viruses (Iles et al., 2020; Rybicka et al., 2021), and arthropods
(Tahir et al., 2017; Boucheikhchoukh et al., 2018; Tandina et al.,
2018), is also feasible in a research context. However, only
the routine identification part of the diagnostics workflow is
currently carried out by MALDI-TOF MS.

Over the last 5 years, machine learning (ML), a subset
of artificial intelligence, has gained interest in many areas of
research pertaining to an improved diagnosis of diseases (e.g.,
cancer detection, infectious diseases, etc.) (Caballé et al., 2020;
Goodswen et al., 2021; Nami et al., 2021). This popularity is
greatly explained by the current era, where large daily amounts
of data are being collected digitally, known as big data, which
are requiring new approaches to investigate it. Mass spectra are
routinely generated by MALDI-TOF MS and most of the time not
exploited for additional analysis beyond the sole identification
of microorganisms. Even if several reports highlighted successful
applications of MALDI-TOF MS for detection of bacterial AMR,
by the presence of specific biomarkers (Feucherolles et al., 2019a;
Oviaño and Bou, 2019; Yoon and Jeong, 2021) identified by
classical statistical methods, there is still a mine of information
encrypted in the mass spectra. More recently, a growing number
of reports combining MALDI-TOF mass spectrometry and ML
have shown promising results for clinical big data problems, such
as AMR screening (Weis et al., 2020a,b). The majority of these
studies used pathogens such as Staphylococcus aureus and the β-
lactam antibiotic family (Sogawa et al., 2017; Wang et al., 2018;
Tang et al., 2019). Therefore, there are very few published data
concerning other relevant clinical or foodborne pathogens or
antimicrobials such as the quinolones (e.g., ciprofloxacin) and
macrolides (e.g., erythromycin and azithromycin) (Sabença et al.,
2020; Sousa et al., 2020). However, macrolides and quinolones are
frontline antibiotics used to treat severe infectious gastroenteritis
and categorized by the World Health Organization (WHO) as
critically important in human medicine (WHO, 2019).

Campylobacteriosis, mainly caused by C. jejuni and C. coli,
is the main global cause of bacterial gastroenteritis in humans
(Chlebicz and Śliżewska, 2018). Likewise, 10.9 and 0.6% of
C. coli and C. jejuni, respectively, isolated from humans were
multi-resistant to ciprofloxacin, erythromycin, tetracycline, and
gentamycin in 2019 (EFSA and ECDC, 2021). In food-producing
animals, 26.9% of C. coli isolated from calves were resistant to
at least three of the previously cited antimicrobials. MALDI-
TOF MS already has been applied for proteo-typing of C. coli,
C. fetus, and more recently for C. concisus genomospecies
(Emele et al., 2019a,b; On et al., 2021). Also, its ability to
distinguish β-lactam-resistant strains from sensitive ones by pre-
processing mass spectra before analysis was reported (Penny
et al., 2016). However, there are no published reports concerning
the direct application of the mass spectrometry and ML for direct
prediction of AMR in Campylobacter spp.

Therefore, the aim of this study is to show that MALDI-TOF
MS combined with an ML approach could be a useful tool for a
fast and precise AMR screening of relevant foodborne pathogens,
such as C. coli and C. jejuni. While campylobacteriosis is mainly
self-limiting and do not require specific antibiotherapy, such a
combination strategy may aid to swiftly prescribe a definitive
antimicrobial therapy and therefore limit an empirical broad-
spectrum strategy for other pathogens. ML prediction based
on protein mass spectra will be investigated at the species-
specific and antibiotic resistance level. The impact of different
protein extraction methods, i.e., on- and off-plate extraction, on
resistance predictions will also be considered.
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MATERIALS AND METHODS

Campylobacter Collection
Strains
A One-Health collection of 224 C. jejuni and 116 C. coli isolates,
obtained from humans (n = 226), in environmental samples, i.e.,
surface water (n = 33), and animals including wild life: raccoons
(n = 8), wild birds (n = 17), and cattle, i.e., bovine (n = 20), pig
(n = 1), and poultry (n = 35), were used in the current study.

Antimicrobial resistances patterns were established by disk
diffusion antibiograms for fluroquinolones [ciprofloxacin (Cip,
5 µg)], macrolides [erythromycin (Ery, 15 µg)], tetracyclines
[tetracycline (Tet, 30 µg)], aminoglycosides [gentamycin (Gent,
10 µg), kanamycin (Kana, 30 µg), Streptomycin (Strep, 10 µg)],
and β-lactams [ampicillin (Amp, 10 µg)] following the French
Microbiology Society (SFM) and EUCAST recommendations
(Recommendations 2020 v1.1 April) resulting in patterns
addressed in Table 1. For antibiotics not described for
Campylobacter spp., i.e., kanamycin and streptomycin, EUCAST
recommendation for the Enterobacterales group was applied. The
latter was added to the study based on ResFinder analysis by
using Whole Genome Sequencing (WGS) data (Bortolaia et al.,
2020). The Lys43Arg mutation in the rspL gene as well as ant(6)
and aadE genes and conferring the streptomycin resistance were
detected (Olkkola et al., 2010; Fabre et al., 2018). Likewise,
the aph(3) gene conferring among other kanamycin resistance
was detected (Fabre et al., 2018). The phenotypic details of the
collection are described in Supplementary File 1.

Growth Conditions
All strains were inoculated on chocolate agar plates (Thermo
Scientific, Waltham, MA, United States) with -80◦C stock
suspension stored in FBP medium complemented with
Campylobacter growth supplement (Thermo Fisher Scientific),
and incubated for 48 ± 2 h at 42◦C under micro aerobic
conditions using CampyGen 2.5 L gas packs (Thermo
Fisher Scientific).

Matrix Assisted Laser
Desorption/Ionization Time of Flight
Mass Spectrometry Analysis
Sample Preparation
For every biological assay, an off- and on-plate extraction and a
direct deposit were performed. For the off-plate or also known
as ethanol/formic acid protein extraction (EtOH/ACN), bacteria
were suspended in 300 µl milliQ water and 900 µl absolute
ethanol (Merck, Darmstadt, Germany). The mix was centrifuged
for a further 2 min and the residual ethanol was discarded. A total
of 25 µl for both 70% (v/v) formic acid (Merck, Darmstadt,
Germany) and acetonitrile (Merck) were mixed up to the dry
pellet. A final centrifugation was performed, and then 1 µl of
supernatant was spotted onto a one-use MALDI Biotarget (96
targets; Bruker Daltonics GmbH, Bremen, Germany). For the
formic acid on-plate extraction (FA), a smear of a bacteria colony
is directly carried out on the biotarget and then overlayed with a
1 µl 70% formic acid. For the direct deposit, a bacteria colony is

directly streaked on the biotarget. For all deposits and extractions,
as soon as the sample was dried, the spot was overlaid with 1 µl
of portioned HCCA matrix solution (Bruker Daltonics GmbH)
prepared with standardized acetonitrile 50%, water 47.5%, and
trifluoroacetic acid 2.5% solution (Sigma-Aldrich, Saint Louis,
MO, United States). Bruker bacterial test standard (BTS) was
used for an external calibration of the apparatus.

For each method of extraction, three independent cultures
(biological replicates) on three different days (reproducibility)
were performed. Each biological replicate was spotted thrice
(technical replicates) on the same day (repeatability), resulting in
nine spectra per isolate.

Data Acquisition
MALDI-TOF MS analysis was performed using a Biotyper
Microflex LT/SH (Bruker Daltonics GmbH) by using the
AutoXecute acquisition method (MBT_AutoX) in FlexControl
software v3.4., with a 2–20 kDa mass-to-charge ratio (m/z) range
in a positive linear mode. Before measurement, the system was
calibrated using the automatic calibration feature with the BTS.
For each sample spot, an automatic acquisition with 240 laser
shots was performed.

Mass Spectra Analysis
All protein spectra were identified by using the BDAL Bruker
database (n = 8,468 MSPs), containing at least 3,000 different
bacterial and fungi species, through the MBT Compass Explorer
interface (v.4.1). The software attributed a log score value
between 0 and 3.00. A score between 0 and 1.69 was considered
as a not reliable identification. A score between 1.70 and 1.99
was considered as probable genus identification and scores from
2.00 to 2.29 as reliable genus identification and a probable species
identification. Finally, a score between 2.30 and 3.00 was deemed
as highly probable species identification.

Then, spectra were uploaded on FlexAnalysis v3.0 (Bruker
Daltonics GmbH) and an internal calibration was carried out on
the 4,365 m/z peak, identified as a 50 S ribosomal protein L36
by Zautner et al. (2016) in Campylobacter, which is shared by all
samples and the BTS. Mass spectra were converted into mzML
files and imported into BioNumerics v7.6 software platform
(BioMérieux, Craponne, France). Spectra were pre-processed
using the workflow described by Penny and collaborators [binned
baseline (size = 77), Kaiser Window (size = 33), Moving bar
(width = 129)], with a sound-to-noise ratio threshold of 10
(Penny et al., 2016). The peak detection parameters were the
following: Continuous wavelet transformation (CWT) ridges,
double peaks, and a relative intensity of 2%. Biological replicate
spectra were summarized to create an average spectrum, or Main
Spectra Profile (MSP), per isolate and extraction. Finally, a peak
matching was performed on MSPs, resulting in 91 peaks.

Machine Learning Analysis
Pre-processing
Tables including intensity values of the peak matching MSPs
for the three types of extraction were exported into csv
files (Supplementary File 2) for ML analysis using Python
programming language (v3.7.6) and Scikit-learn package
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TABLE 1 |

(A) Antimicrobial susceptibility patterns of Campylobacter isolates used in the present study.

Resistant isolates

Antibiotic classes Antibiotics C. jejuni (n = 224) C. coli (n = 116)

Susceptible (S)* 70 (31.2%) 25 (21.6%)

Fluroquinolones Ciprofloxacin (Cip) 123 (54.9%) 60 (51.7%)

Macrolides Erythromycin (Ery) 2 (0.9%) 31 (26.7%)

Tetracyclines Tetracycline (Tet) 90 (40.2%) 70 (60.3%)

Aminoglycosides Gentamycin (Gent) 1 (0.4%) 11 (9.5%)

Kanamycin (Kana) 18 (8.0%) 18 (15.5%)

Streptomycin (Strep) 11 (4.9%) 35 (30.2%)

Beta-Lactams Ampicillin (Amp) 90 (40.2%) 58 (50.0%)

(B) Diversity of antimicrobial resistance pattern in the collection.

*Susceptible to all tested antimicrobials.

(v0.22.1) in Jupyter NoteBook (v6.0.3). Then, MSPs were
grouped by their AMR profiles and eight distinct files have
been created according their AMR classes and susceptibility,
i.e., S, CipR, TetR, AmpR, EryR, GentR, StrepR, and KanaR
(Figure 1). Category names (e.g., S and R) were binarized, where
0 and 1 represented MSPs susceptible and resistant to the AMR
class studied, respectively. All peaks, here called features, were
transformed using a Min-Max scaler which transformed values
into the (0,1) range. Such a step is necessary to bring different
variables at the same level, as variables that are measured at
different scales may not contribute equally to the model fitting.

Feature’s Selection
Dataset with many features, which could be redundant or
irrelevant, may lead to an overcomplicated algorithm with low
prediction accuracy and long training time. Feature selection is
the process of choosing relevant features, to use in a classification
model construction, either to improve accuracy scores or to boost
performance. For this purpose, a meta-transformer based on a
Random Forest estimator, implemented into scikit-learn library,
was used to discard irrelevant features.

Model Selection
MSPs were randomly split into 70% training and 30% test
datasets, with a stratification based on their binarized AMR
profiles. The training dataset is implemented to build up a

prediction model, while the test dataset is used as an external
validation step of the trained model. For each studied AMR
classes, Random Forests (RF), Logistic Regression (LR), and
Naïve Bayes (NB) models were built, as they are common
algorithms used in microbiology (Goodswen et al., 2021). RF
is currently among the most used ML methods due to its
robustness. It is essentially a collection of independent decision
trees, where each tree could be different from the others, as
the algorithm will make completely different random choices to
make sure trees are distinct. Such algorithms make aggregated
predictions using a group of decision trees. LR is a linear
classifier, which predicts the probabilities of success and failure
event. It is easy to implement and interpret and efficient to
train. NB classifier assumes that the presence of a particular
feature is not related to the presence of another feature. It
is easy to interpret and is often applied for many medical
applications. The area under the precision recall curve (AUPRC)
was investigated to determine the most performant model
(data not shown).

Tuning
Upon selection of the best performing model, it was optimized
by looking for the best combination of hyper-parameters
according to the F1-score, described in the metrics section.
Hyper-parameters for each selected model were tuned by using
an instance which generates candidates from a grid of given
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FIGURE 1 | Schematic overview of the machine learning workflow.

parameter values, a grid search, with a 10-fold cross validation,
with a scoring method looking for the more optimized F1-score.
K-fold cross validation is a resampling method, which estimates
the performance of the ML model.

The 0.5 default probability score threshold may not represent
an optimal interpretation and can result in poor performance.
Therefore, a threshold adjustment was investigated to bring a

higher predictive performance (Weis et al., 2020a). A threshold
selection, for each classifier, based on their precision recall
curve (PRC) was applied, according to the best F1-score. In
the case of imbalance classes, like the current dataset, PRC can
suggest an optimal threshold (Saito and Rehmsmeier, 2015). In
this study, detection of resistant isolates (true positives) is the
key point of the study. PRC is based on true positive values,

Frontiers in Microbiology | www.frontiersin.org 5 February 2022 | Volume 12 | Article 804484

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-804484 February 14, 2022 Time: 15:55 # 6

Feucherolles et al. MALDI-TOF MS for AMR Screening

i.e., true positive and positive predictive values, among positive
prediction. Hence, PRC relies on positive classes regardless of
true negative value, making it a tool of choice for the study
threshold selection. In the end, values less than the custom
threshold are assigned to class 0, or susceptible, while value
greater than or equal to the custom threshold are assigned to class
1, or resistant.

Performance and Metrics
As a next step, performance of the selected classifier needed
to be assessed on data not yet seen by the model. For this,
an external validation has been carried out by using the test
dataset. Classification of spectra was summarized in a confusion
matrix. From it, several performance metrics, such as the
specificity, the recall, the precision or the positive predictive
value (PPV), the negative predictive value (NPV), and area
under the receiver operating characteristic curve (AUROC) and
PRC were calculated. The PPV tells us how much we can
trust the model when a resistant result is predicted, and in
the other way, the NPV tells us how much we can trust the
model when a sensitive result is predicted. The recall, also
called sensitivity, measures how the model can find all positive
units. The specificity refers to the model’s ability to give a
negative result when an isolate is susceptible. The ROC curve
is a graphical way to represent the performance of the classifier
for all threshold classifications, with the false-positive rate and
true-positive rate as axis. Therefore, the AUROC can be used
to measure the model’s discriminative ability. Usually, an AUC
of 0.5 is assimilated to a non-discriminative model, while 0.7–
0.8 is considered acceptable, 0.8–0.9 is excellent, and more than
0.9 is considered outstanding (Hosmer et al., 2013). Along the
same line, the PRC is a graphical visualization that combines
the precision and the recall. The higher curve on the y-axis,
the better the performance. Therefore, the AUPRC returns a
value between 0 and 1, where 0 is the worst and 1 is the best.
Finally, the F1-score is calculated from the precision and the
recall. It conveys balance between the precision (PPV) and the
recall (sensitivity).

Detailed information on ML analysis is shown in
Supplementary File 3.

Biomarker Identification
Features of importance, based on RF algorithm trained on
the whole dataset, were investigated to potentially identify
already known antimicrobial resistance mechanisms or new
antimicrobial targets. It rates how important each feature is
for the decision tree. A score based on between 0 and 1
for each feature is calculated, where 0 means “Not used”
and 1 highlighted a “perfect biomarker.” Score for features of
importance is computed as the mean and standard deviation
of accumulation of the impurity decrease within each tree.
Therefore, it describes the relevancy of a peak and, hence,
can help to understand the biological problem. The five first
features with the higher importance were checked in on Uniprot1

according their mass in Da. Average theoretical masses were

1https://www.uniprot.org/

calculated using the online Expasy portal tool2 based on Uniprot
amino acid sequence.

Statistical Analysis
Effects of extraction methods on AMR predictions were analyzed
based on analysis of variance (ANOVA) of the sum of AUPRCs
of the different antimicrobial classifiers. ANOVA assumptions
were verified with a Shapiro-Wilks and Levene tests. Shapiro-
Wilks test determines if your data are normally distributed. The
Leven test evaluates the equality of the variance. Differences were
considered significant at p < 0.05.

RESULTS

Spectra Quality and Reproducibility
A total of 9,180 mass spectra were generated. An average
identification log score of 2.0 was obtained for all spectra.
Outlines, flatlines, and spectra not identified at the
Campylobacter genus level were discarded for the analysis,
resulting into 9,173 spectra. The latter was transformed into
1,020 MSPs, including 672 and 348 MSPs for C. jejuni and
C. coli, respectively. Three different types of extractions, i.e.,
off-plate ethanol/acetonitrile extraction, direct deposit, and
on-plate acid formic extraction, were carried out for both
species. Hence, reproducibility was tested for the three biological
replicates. Average similarities in percentage between the type
of extraction and species are provided in Figure 2. For both
species, no significant differences were observed between off-
and on-plate extractions. Average similarity of means ranged
from 77.1 to 92.7% between biological replicates for C. jejuni and
C. coli, respectively.

Antimicrobial-Specific Screening
As a first step, different ML models, i.e., RF, LR, and NB,
were trained for specific antimicrobials from different classes,
regardless of the species identification to evaluate the potential of
fast AM-screening without knowing the microbial identification.
For this purpose, 1,020 MSPs, combining the three types of
extractions and the two species, were split into a training and a
validation set. The training set served to build the model, and
the test set, to evaluate the performance of the model. Seven
classifiers were built with RF and one with an LR algorithm.
ROC and PR curves were computed to investigate the model’s
performance for each antibiotic (Figure 3), as well as other
evaluation metrics such as sensitivity, specificity, PPV, and NPV
summarized in Table 2.

Among the eight antimicrobials tested, three models
performed better than the other considering both AUROC and
AUPR curves. The best-performing model was the classifier
allowing the distinction between resistant and completely
susceptible isolates, with an area of 0.80 and 0.89 under
the ROC and PR curves, respectively. The ciprofloxacin
and tetracycline classifiers were the two other performant
models according to their AUROC and the AUPR curves,

2http://web.expasy.org/compute_pi/
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FIGURE 2 | Biological reproducibility of MALDI-TOF mass spectra based on their protein extraction type and species level. Boxplots show the isolates average
similarities in percentage. Green triangle represented the mean. Direct, direct deposit; FA, formic acid extraction; EtOH, ethanol/acetonitrile extraction.

FIGURE 3 | (A) Receiver operating characteristic (ROC) curve and (B) recall–precision (PR) curves, and their related area under the curve, of specific antimicrobials
based on combined C. jejuni and C. coli MALDI-TOF main protein spectra profiles (MSPs) of the test set (30%, n = 306). RF, Random Forest algorithm; LR, Logistic
Regression algorithm; AUROC, Area Under the ROC Curve; AUPRC, Area Under the Precision Recall Curve.

an area of 0.87, 0.83, and 0.88, 0.80 under the AUROC
and AUPRC, respectively (Figure 3). While the specificity
was low for the three models, with a maximum of 63.8%,
a sensitivity ranging from 87.5 and 92.3% was obtained
(Table 2). Additionally, 74.6 and 85.7% of predicted values of
the ciprofloxacin classifier could be reliable for resistant and
susceptible values, respectively.

Remaining models had an AUROC of up to 0.92. However,
considering the precision and the recall, they performed poorly.
Indeed, the AUPR curve was between 0.34 and 0.69. Sensitivity

and specificity may be high, but PPVs were low, e.g., 80.0, 88.4,
and 42.8%, respectively, for the erythromycin model.

Species-Specific Screening
In a second phase, C. coli and C. jejuni MSPs were investigated
separately to look over potential differences between tested
antimicrobials. Previously, ROC and PR curves and their
respective area under the curve have been computed, based
on 202 and 105 MSPs, for the C. jejuni and C. coli test sets,
respectively (Figure 4). As well, performance metrics were
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TABLE 2 | Performance of retained machine learning classifier using combined C. jejuni and C. coli MALDI-TOF main protein spectra profiles (MSPs) of the test set
(30%, n = 306 MSPs), grouped by the resistance profile.

Species Antibiotics Sensitivity (%) Specificity (%) PPV (%) NPV (%)

C. jejuni and C. coli (n = 306 MSPs) Susceptible* (n = 86) 92.3 45.3 81.2 69.6

Ciprofloxacin (n = 165) 90.9 63.8 74.6 85.7

Erythromycin (n = 30) 80.0 88.4 42.8 97.6

Tetracycline (n = 144) 87.5 62.3 67.4 84.9

Ampicillin (n = 133) 90.2 47.4 56.9 86.3

Kanamycin (n = 32) 43.8 91.6 37.8 93.3

Streptomycin (n = 41) 78.0 87.2 48.5 96.3

Gentamycin (n = 11) 72.7 93.6 29.6 98.9

Threshold applied for metrics calculation is based on the best F1-scores. PPV, positive predictive value; NPV, negative predictive value. *Susceptible to all tested
antimicrobials.

FIGURE 4 | Receiver operating characteristic (ROC) curve and recall–precision (PR) curves, and their related area under the curve, of specific antimicrobials based
on 202 C. jejuni (A) and 105 C. coli (B) MALDI-TOF main protein spectra profiles (MSPs) of the test set (30%). RF, Random Forest algorithm; LR, Logistic regression
algorithm; AUROC, Area under the ROC curve; AUPRC, Area under the precision–recall curve.

calculated (Table 3). Due to few gentamycin- and erythromycin-
resistant isolates for C. jejuni in the initial collection (one and
two, respectively), no model was built for these two antibiotics.
RF and LR were once again fitting the best data. All six C. jejuni
models were based on RF algorithms. Four models were built
using LR and the remaining four were built using RF algorithms
for C. coli.

As described in the specific antimicrobial section, the
susceptible, ciprofloxacin, and tetracycline classifiers were the
three best-performing models in both species, with an AUROC

and AURP curve ranging from 0.80 to 0.89 and from 0.72
to 0.96, respectively (Figure 4). The susceptible classifier was
the more performant model in both C. jejuni and C. coli.
Tetracycline classifier was the second more effective model
for C. coli, with an AUROC of 0.87 and AUPRC of 0.90,
while it was the ciprofloxacin classifier for C. jejuni, with
an AUROC of 0.80 and AUPRC of 0.82. Overall, sensitivity
values up to 98.8% were obtained for these models. High
PPVs and NPVs were obtained for susceptible classifiers. C. coli
tetracycline classifier also performed well with a 79.2 and 92.9%
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TABLE 3 | Performance of retained machine learning classifier using C. jejuni (n = 202 MSPs) and C. coli (n = 105 MSPs) MALDI-TOF main protein spectra profiles
(MSPs) of the test set (30%), grouped by the resistance profile.

Species Antibiotics Sensitivity (%) Specificity (%) PPV (%) NPV (%)

C. jejuni (n = 202 MSPs) Susceptible* (n = 63) 92.8 55.6 82.2 77.8

Ciprofloxacin (n = 111) 96.4 41.8 66.9 90.5

Erythromycin (n = 2) NA NA NA NA

Tetracycline (n = 81) 92.6 47.1 53.9 90.5

Ampicillin (n = 81) 77.7 70.3 63.6 82.5

Kanamycin (n = 16) 62.5 97.9 71.4 96.8

Streptomycin (n = 10) 70.0 100.0 100.0 98.5

Gentamycin (n = 1) NA NA NA NA

C. coli (n = 105 MSPs) Susceptible* (n = 23) 98.8 60.9 90.0 93.3

Ciprofloxacin (n = 54) 98.2 45.1 65.4 95.8

Erythromycin (n = 28) 71.4 70.1 46.5 87.1

Tetracycline (n = 63) 96.8 61.9 79.2 92.9

Ampicillin (n = 52) 86.5 64.1 70.3 82.9

Kanamycin (n = 16) 62.5 86.5 45.5 92.7

Streptomycin (n = 32) 84.3 75.3 60.0 91.7

Gentamycin (n = 10) 70.0 93.7 53.8 96.7

Threshold applied for metrics calculation is based on the best F1-scores. PPV, positive predictive value; NPV, negative predictive value. *Susceptible to all tested
antimicrobials. NA, Not applicable due to few isolates in the category.

for PPV and NPV, respectively. Surprisingly, the ciprofloxacin
classifier was less efficient in both species. Indeed, a lower
PPV was obtained, i.e., 10% differences, in comparison with
previous results where the microbial identification was not
taken into consideration. For erythromycin, kanamycin, and
gentamycin classifiers, observations described in the previous
section could be assessed.

Differences were observed for the ampicillin and streptomycin
classifier for C. coli and C. jejuni. C. jejuni streptomycin’s
classifier performed more efficiently than the one of C. coli.
PPVs and NPVs of 100 and 98.5%, against 60.0 and 91.7%, were
calculated, respectively. C. coli ampicillin’s classifier was more
performant than that of C. jejuni, while similar AUROC and
AUPR curves were found. Indeed, PPVs and NPVs of 70.3 and
82.9% against 63.6 and 82.5% were calculated for C. coli and
C. jejuni, respectively (Table 3).

Protein Extraction Impact on Resistance
Predictions
Thirdly, methods of extraction, i.e., direct deposit, FA on-
plate, and EtOH/ACN off-plate extraction, were investigated to
check potential variation for specific antimicrobials. Thereby,
MSPs acquired for each extraction for both C. jejuni (n = 224
MSPs) and C. coli (n = 116 MSPs) were used to build a
specific ML model per antimicrobial. Models are compared in
Figure 5. The ANOVA resulted in 0.976 and 0.936 (p > 0.05)
values for C. jejuni and C. coli, respectively. Therefore, the
null hypothesis, i.e., there is no difference between extraction
methods, is retained.

Nevertheless, in the case of the C. coli gentamycin’s classifier,
while the performance is low for the EtOH/ACN extraction
(AUPRC = 0.23), the classifier for the direct deposit is more
efficient (AUPRC = 0.92). Features of extractions for both

classifiers were investigated. For the EtOH/ACN classifier,
2,356.29 Da was the more important feature. For the direct
deposit classifier, 10,323.79 Da was the more important feature.
While these features in a model were particularly important, they
were the less important features in the other model. The 10,323.79
Da peak was detected in both extractions, while softly shifting
for the EtOH/ACN, i.e., 10,333.67 Da. The 2,356.29 peak was not
detected in the direct deposit (Figure 6).

Biomarkers: Antimicrobial Resistance
Mechanisms
RF classifiers performing the best, i.e., susceptible, ciprofloxacin,
and tetracycline, while microbial species is not known, were used
to retrieve features of importance. Then, the Uniprot database
was investigated to potentially identify each feature according
their mass in Dalton, regardless post-translational modifications.
Table 4 summarizes the top five features for each classifier.
When several proteins had the same mass, proteins with the
most probable function linked to AMR were retained. No protein
for C. jejuni or C. coli was identified at 6,436.22 Da. The DNA
methyltransferase at 6,436 Da was in Helicobacter pylori, a closely
related genus of Campylobacter.

DISCUSSION

Several reports described MALDI-TOF MS as a more time-
and cost-effective alternative approach to current classic AST
methods (Hrabák et al., 2013; Oviaño and Bou, 2019). Being
combined with ML, such an approach may be even more relevant
for AST in routine diagnostics (Weis et al., 2020b). However, to
our knowledge, no study implying relevant foodborne pathogens
for AMR screening has been published yet. Therefore, the scope
of this study was to consider whether a mass spectrometry

Frontiers in Microbiology | www.frontiersin.org 9 February 2022 | Volume 12 | Article 804484

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-804484 February 14, 2022 Time: 15:55 # 10

Feucherolles et al. MALDI-TOF MS for AMR Screening

FIGURE 5 | Comparison of precision-recall curves for the three-extraction tested on (A) C. jejuni (n = 68 MSPs) and (B) C. coli (n = 35 MSPs) of the test set (30%).
EtOH/ACN: complete ethanol/acetonitrile-based proteins extraction. RF, Random Forest algorithm; LR, Logistic Regression algorithm; NB, Nave Bayes algorithm.

FIGURE 6 | Pseudogel view representation of mass spectra from C. coli from the direct deposit (direct, n = 8) and the ethanol/acetonitrile off-plate extraction
(EtOH/ACN, n = 8). The x-axis represents the mass-to-charge (m/z) ratio in Da. Strips intensities is function of the peak intensity. The red dashed lines represent the
observed peaks, i.e., 2,356.29 and 10,323.79 Da.

technique combined with an ML approach could be utilized for
a combined rapid species identification and AMR screening for
foodborne pathogens.

The main result of this study was to observe whether
mass spectra with 91 protein peaks selected by automatic
peak-matching could predict with a high average sensitivity

and precision the strains’ susceptibility and resistance to
ciprofloxacin and tetracycline, independent of the microbial
species identification. Therefore, these models were missing
very few resistant isolates. Similarly, Weis and colleagues,
computed an AUROC for 42 different antibiotics on a large
“real-world” clinical dataset by combining multiple species
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TABLE 4 | Top five ranking of Random Forest features of importance.

Classifier Rank Features (Da) Average theoretical mass (Da) Protein UniProt ID

Susceptible 1 8460.76 8460.07 Transcriptional regulator A0A1T1ZLP8

2 3257.41 3256.98 GNAT family N-acetyltransferase A0A6N3Q833

3 5867.81 5867.86 ATP-binding protein A0A2A5MAC7

4 2766.98 2767.13 Poly(A) polymerase A0A5T1K937

5 4365.25 4364.39 50 S ribosomal protein L36 A0A1E7P1M9

Ciprofloxacin 1 6436.22 6435.55 DNA methyltransferase* A0A438RVN3*

2 2766.98 2767.13 Poly(A) polymerase A0A5T1K937

3 2241.84 2241.67 Type II toxin-antitoxin system HicB family antitoxin A0A691V648

4 3257.41 3256.98 GNAT family N-acetyltransferase A0A6N3Q833

5 7083.30 7083.03 MmgE/PrpD family protein A0A4Y8C2R1

Tetracycline 1 4365.25 4364.39 50 S ribosomal protein L36 A0A1E7P1M9

2 2766.98 2767.13 Poly(A) polymerase A0A5T1K937

3 7083.30 7083.03 MmgE/PrpD family protein A0A4Y8C2R1

4 6436.22 6435.55 DNA methyltransferase* A0A438RVN3*

5 2713.95 2713.06 Superoxide dismutase A0A431FY74

Da, Dalton. *Identified in the closely related genus Helicobacter pylori (former Campylobacter pylori).

(Weis et al., 2020a). They pointed out that they reached
AUROC values above 0.90 for 23 of the tested antibiotics.
Such results support the idea that mass spectra could provide
far more than simple species information. Nevertheless, in
the literature, most of the publications focused on specific
species such as S. aureus, Escherichia coli, and Klebsiella
pneumoniae. Additionally, they mainly analyzed one type of
antimicrobial classes, e.g., glycopeptides such as vancomycin
(Mather et al., 2016; Asakura et al., 2018; Wang et al., 2018;
Candela et al., 2021). For example, Asakura et al. (2018)
obtained a sensitivity of 99.0% and a specificity of 88.0%
while comparing vancomycin-susceptible and heterogeneous
vancomycin intermediately resistant S. aureus.Wang et al. (2018)
obtained similar results with a 77.0 and 81.4% sensitivity
and specificity, respectively, for the same comparison. When
comparing C. jejuni and C. coli separately and for different
antimicrobials, we found that susceptible, ciprofloxacin, and
tetracycline classifiers were the three best-performing models
in both species, while the others performed less accurately.
Similarly to other studies, a sensitivity ranging from 92.6 to
98.8% was obtained for both species and the three performant
classifiers. Weis et al. (2020a) also looked at species-specific
antimicrobial resistance prediction for S. aureus, E. coli, and
K. pneumoniae. They reported an AUROC ranging from 0.77 to
0.81, and an AUPRC ranging from 0.52 to 0.70 for ciprofloxacin
predictions. In the current study, similar AUROC values were
found but a higher AUPRC was observed with 0.82 and 0.81
for C. jejuni and C. coli, respectively, meaning that the current
model may accurately predict ciprofloxacin-resistant isolates.
Considered as a critically important antimicrobial, ciprofloxacin
is widely used for the treatment of broad human bacterial
infections, including enteric ones (WHO, 2019). Therefore,
early screening of its resistance may play an essential role
for the administration of the definitive antimicrobial therapy.
Nevertheless, the comparison between the different studies is
intricate to perform due to the number of isolates, the genus

analyzed, the type of extraction, as well as the type of algorithm
used. In the current study, classifiers performing poorly, i.e.,
kanamycin, streptomycin, gentamycin, and erythromycin, were
subject to a highly imbalanced dataset, with an average of 10/90
resistant/susceptible ratio, instead of a close 50/50 ratio one (e.g.,
36 gentamycin-resistant MSPs for 984 gentamycin-susceptible
MSPs). Precision disparities were observed for the ciprofloxacin,
ampicillin, and streptomycin classifiers of both species, in
comparison to classifiers not considering the species level.
While such differences could be attributed to the unbalanced
number of resistant isolates for ampicillin and streptomycin,
the ciprofloxacin classifier was in contrast well balanced. The
ciprofloxacin classifier may be less effective for predictions, while
looking specifically at the species level. In the end, prediction
based on protein mass spectra grouped by AMR, regardless of
bacterial species, may be the best option for an efficient and
swift AMR-screening. Such observations might also be explained
by average similarity differences obtained between C. jejuni and
C. coli. Cuénod and Egli (2021), Cuénod et al. (2021) reported
that the preparation protocol used, the duration of incubation,
maintenance of the device, for example, could potentially impact
the quality of the spectra. Inevitably it may have influenced
the final prediction for both species. Hypothetically, such
observations may also show that AMR screening by MALDI-
TOF MS is going beyond the bacterial genus or species and
might be directly linked to the resistance mechanism and
protein/metabolite expression itself. To our knowledge, this is
the first study establishing that ML and MALDI-TOF MS could
be applied for AMR screening of foodborne pathogens, such as
Campylobacter spp.

Nevertheless, in the current study, the specificity was
not as high as the specificity described by the previously
mentioned studies. While creating the ML pipeline, sensitivity
was chosen as the most important parameter to adjust the
threshold score during the tuning part. Hence, the optimal
threshold was selected based on the F1-score, meaning the
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best compromise between higher sensitivity and precision,
specific to each classifier. Classifiers guiding antibiotic therapy
decision must have high sensitivity (Weis et al., 2020a).
On the one hand, assuming an isolate is susceptible, while
it is resistant, may lead to an ineffective treatment and
eventually have an important impact on patient management.
On the other hand, assuming an isolate is resistant, while
it is susceptible, may still lead to an effective treatment.
However, while seeking and picking to have high sensitivity,
it will inevitably decrease the specificity, by decreasing it. In
the previously cited reports, threshold adjustments were not
mentioned. Therefore, threshold adjustment may be a key step
while elaborating ML pipeline for routine laboratories based on
MALDI-TOF mass spectra.

The impact of protein extraction methods was also evaluated.
Indeed, the EtOH/ACN extraction is the most popular extraction
protocol when it comes to research investigations. However,
the direct deposit and the on-plate FA extractions are the
most straightforward methods used in routine laboratories. No
significant differences were observed between the direct deposit,
the FA on-plate, and the EtOH/ACN extraction. Therefore,
in order to rapidly obtain straightforward AMR assessment
information, the application of the direct deposit method could
be applied for species identification as well as AMR screening
in Campylobacter. Interestingly, C. coli gentamycin classifier
performance was different between EtOH/ACN extraction
and the direct deposit. Indeed, with a simple biological
smear on the MALDI-TOF target, gentamycin’s prediction
was more precise. Surprisingly, the absence of the 2,356.29
Da peak resulted in a higher AUPRC for the direct deposit
classifier. In the literature, the loss of a specific peak
between different types have already been described (Josten
et al., 2014). However, in their case, the loss of a protein
happened during the ethanol washing step of the EtOH/ACN
extraction. Thus, the peptide was only present during a direct
deposit measurement. However, to confirm our observation,
additional gentamycin-resistant isolates should be analyzed
as currently too few gentamycin isolates are present in the
current dataset.

Along the same line, putative biomarkers have been identified
for each class of studied antibiotics by looking into RF
algorithm features of importance. Majority of these proteins,
such as transcriptional regulator, ATP-binding, GCN5-related
N-acetyltransferase, DNA-methyltransferase, toxin-antitoxin
system, PrpD, and superoxide dismutase proteins had a direct
or indirect link with already known antibiotic resistance,
tolerance, or spread mechanisms in different genera of bacteria
(e.g., Salmonella, Enterococcus, Escherichia, Mycobacterium,
and Pseudomonas) (Draker and Wright, 2004; Yugendran and
Harish, 2016; Hicks et al., 2018; Kang et al., 2018; Martins
et al., 2018; Su et al., 2018; Shaheen et al., 2020). Nevertheless,
Campylobacter’s AMR mechanisms are either chromosomal
mutations, such as the single mutation C257T in the gyrA gene
or the A207G mutation in the 23 S rRNA gene for ciprofloxacin
and erythromycin, respectively, or acquired genes, such as
tet(O), blaOXA-61 and aph(3’)-III for tetracycline, ampicillin,
and gentamycin resistances, respectively (Payot et al., 2006;

Iovine, 2013). Overall, these mechanisms are working in synergy
with the cmeABC efflux pump or porines, such the Major-
Out-Membrane Porines (MOMP) (Lin et al., 2002). Over the
biomarkers identified as relevant by RF susceptible classifier,
the GCN5-related N-acetyltransferase and the 50 S ribosomal
protein L36 may be linked to already known aminoglycosides
or tetracyclines resistance mechanisms of Campylobacter,
respectively. On one hand, aminoglycoside-modifying enzymes,
such as acetyltransferase [e.g., aac(6′)-Ie–aph(2′′)-If2] were
already detected in gentamycin-resistant Campylobacter
isolates (Zhao et al., 2016). On the other hand, the Tet(O)
ribosomal protection protein is known to bind on both 30S
and 50S subunits, conferring tetracycline resistance (Li et al.,
2013). Interestingly, the L36 proteins were the first feature
of importance highlighted for the tetracycline classifier.
Identification of specific proteins directly implied to AMR
mechanisms, while using MALDI-TOF MS within the 2–20 kDa
range, could be problematic (Welker and Van Belkum, 2019).
Indeed, proteins responsible for resistances are large proteins
(e.g., GyrA = 96,974 Da). Therefore, in case an indicative
biomarker is identified, it may not be a necessary protein
conferring the resistance itself, but it may be a protein or
peptide co-coded on the plasmid of the protein responsible
of the resistance (Lau et al., 2014). Therefore, the 4,365.25
m/z peak may be a biosignature linked to the presence of
the tet(O) gene. In the literature, two protein biomarkers,
i.e., 3,665.79 m/z and 6,036.59 m/z, have been reported to be
a potential biomarker of the tetracycline resistance in other
bacterial genera (Sabença et al., 2020; Sousa et al., 2020).
However, these biomarkers were not observed here. Along
the same line, the 6,436.22 Da protein was considered as
the most important feature for the ciprofloxacin’s classifier.
The protein was identified as a DNA methylase in H. pylori,
formerly related to the Campylobacter genus. Yugendran and
Harish put in light the hypothesis that ciprofloxacin-resistance
in E. coli may be induced by DNA methylation, leading to
the possible involvement of some mechanism other than the
quinolone-resistance determining region (QRDR) capable of
inducing fluoroquinolone resistance (Yugendran and Harish,
2016). While the single point mutation in gyrA represents the
major fluoroquinolones resistance mechanism in Campylobacter,
such venue may be worth exploring in the future. Other
potential ciprofloxacin biomarkers, neighboring 6,300 Da,
were put recently in light for other E. coli (Sousa et al., 2020)
and Enterococcus (Sabença et al., 2020; Sousa et al., 2020).
Nevertheless, interpretation on the biological role of features
may be cautiously interpreted, and a peptide sequencing by
tandem mass spectrometry should be performed to assess the
real biological function of these biomarkers.

Little is known on the impact of such approaches as described
here on the health management potential cost savings in
clinical practice. Weis and colleagues affirmed in their study
that the application of such workflow provided a treatment
guidance 12–72 h earlier than classical approaches and to have
a significant impact on the physician–patient workflow (Weis
et al., 2020a). It is worth mentioning that the ML is intended
for supporting the decision making process. Therefore, it is a

Frontiers in Microbiology | www.frontiersin.org 12 February 2022 | Volume 12 | Article 804484

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-804484 February 14, 2022 Time: 15:55 # 13

Feucherolles et al. MALDI-TOF MS for AMR Screening

support giving guidance on possible resistance outcomes that
lead early antibiotherapy in a specific direction. ML may be
used as an AMR screening tool, displaying an alert message
on the MALDI-TOF MS microbial identification report, when
the isolate is classified as a positive category value. It is
already the case for several Bruker subtyping modules (e.g.,
MRSA, cfiA positive or blaKPC modules). Therefore, instead of
giving an empirical treatment until the AMR confirmation by
reference AST, the patient’s antibiotherapy may be defined faster
(e.g., 24 h earlier).

Phenotypic antibiogram should still follow up to establish
the AMR profile and, in case, reorient the antibiotherapy.
Additionally, 2025 AMR monitoring of food-producing isolates,
such as ESBL/AmpC/carbapenemase-producing E. coli, will be
done by WGS (Aerts et al., 2019). Therefore, a combination
of MALDI-TOF MS, ML, and WGS could be an interesting
monitoring tool with a relevant impact on the control of
the emergence of AMR in the European Union. As well,
the application of MALDI-TOF MS in microbiology for lipid
investigation has conceptualized several breakthroughs for AMR
screening (Bruker, 2019; Furniss et al., 2019; Dortet et al., 2020).
In case of the ability of such method to distinct microbial lipids
directly from body fluids such as serum, blood, and urine, there
will be no need of a culture step (Solntceva et al., 2021). So
far, only the last-line treatment for multidrug-resistant Gram-
negative bacteria, i.e., polymyxin, has been investigated without a
ML approach. Lipidomics combined to artificial intelligence may
be a new venue to explore AMR problem cases that proteomics
could not solve. However, there is still a stony way before the
long-term implementation of ML in routine laboratories for
AMR screening. Nevertheless, a single protein mass spectra may
be used in the future as an utmost “One-fits all” diagnostics tool
for: species identification, AMR screening, and genetic diversity
(Feucherolles et al., 2021).

Several limitations of our study are offered for consideration.
First, the employed dataset might be considered as relatively
small to train an ML algorithm properly. Indeed, lack of
data could lead a model to overfit or underfit the data.
Several models (e.g., gentamycin or kanamycin) were trained
on heavy unbalanced classes, which is not recommended
to build a robust and reliable tool for AMR predictions.
Therefore, extra isolates resistant to these antimicrobials should
be added to the current dataset. Additionally, only three ML
algorithms, i.e., RF, LR, and NB, were tested. The support vector
machine algorithm was not included in the study, while it is
also a widely used algorithm for AMR predictions. Another
limitation of the study is the use of disk-diffusion antibiograms,
which—while being a valid and highly reproducible method
to characterize an isolate as resistant or susceptible—do not
allow quantifying the minimal inhibitory concentration (MIC)
of a given antibiotic. Additionally, it would have been possible
to test for further antibiotics, e.g., carbapenems. The final
limitation of this study could be the fact that the RF model,
used for putative biomarkers identification, was trained on the
whole dataset. Indeed, under these settings, there is no proof
that these biomarkers could work in a given analysis. For
such investigations, the model should have been trained on a

split dataset, including a training and test set, with a 70/30%
ratio, respectively.

CONCLUSION

On the one hand, MALDI-TOF MS in combination with
supervised ML may be a powerful tool for the fast screening of
foodborne pathogens such as C. coli and C. jejuni, which might be
susceptible, ciprofloxacin, or tetracycline resistant. On the other
hand, other antimicrobials tested, i.e., ampicillin, gentamycin,
kanamycin, streptomycin, and erythromycin, did not provide
good results to reach a conclusion for its application under
clinical settings, due to unbalance datasets. Nonetheless, this
work could serve as a proof-of-concept, and future research
should include other important foodborne pathogens such as
Salmonella spp. Our approach has the potential to obtain the
following information from one single protein spectrum analysis:
species identification, antimicrobial susceptibility patterns, and
genetic diversity.
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In this section, protein mass spectra were only investigated at the antibiotic resistance level. 

While associated with species identification, MALDI-TOF MS could already have an added value for 

routine diagnostics. Nevertheless, Campylobacter spp. diversity, which may also display specific 

biomarkers, was not taken into consideration. Therefore, Campylobacter diversity will be explored 

in the following chapter. 
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CHAPTER 7 

MALDI-TOF MS as a complementary tool for the daily surveillance 

of Campylobacter jejuni 

 In this chapter*, the ability of the MALDI-TOF MS is investigated as an alternative and  

straightforward surveillance tool to assess C. jejuni genetic diversity and population structure 

through two stages. In a first section, C. jejuni mass spectra were congruently compared to MLST 

and cgMLST genomic classification. In a second one, supervised machine learning is explored to 

automatically subtype C. jejuni strains and identify putative biomarkers linked to Campylobacter 

genetic structure. 

Highlights: 

• As AMR characterization introduced in the Chapter 6, protein profiles generated by 

MALDI-TOF MS were successfully used for assessing genetic relatedness of C. jejuni 

isolates.  

• During this specific phase of the research project, it was observed that isolates 

clustered together were belonging to the same ST.  

• As well, a similar discriminatory power and high concordance to the cgMLST method 

was highlighted. 

• While performing Random Forest machine learning analysis, the model was able to 

unambiguously predict four different STs based on protein profiles and related 

features intensities. Finally, the single 4174.19 and 4159.99 m/z peak shift, assimilated 

to the flagellin subunit protein, was able to distinguish ST-6175 and ST-2254 isolates. 
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Abstract: There is a need for active molecular surveillance of human and veterinary Campylobacter
infections. However, sequencing of all isolates is associated with high costs and a considerable
workload. Thus, there is a need for a straightforward complementary tool to prioritize isolates to
sequence. In this study, we proposed to investigate the ability of MALDI-TOF MS to pre-screen C.
jejuni genetic diversity in comparison to MLST and cgMLST. A panel of 126 isolates, with 10 clonal
complexes (CC), 21 sequence types (ST) and 42 different complex types (CT) determined by the
SeqSphere+ cgMLST, were analysed by a MALDI Biotyper, resulting into one average spectra per
isolate. Concordance and discriminating ability were evaluated based on protein profiles and different
cut-offs. A random forest algorithm was trained to predict STs. With a 94% similarity cut-off, an
AWC of 1.000, 0.933 and 0.851 was obtained for MLSTCC, MLSTST and cgMLST profile, respectively.
The random forest classifier showed a sensitivity and specificity up to 97.5% to predict four different
STs. Protein profiles allowed to predict C. jejuni CCs, STs and CTs at 100%, 93% and 85%, respectively.
Machine learning and MALDI-TOF MS could be a fast and inexpensive complementary tool to give
an early signal of recurrent C. jejuni on a routine basis.

Keywords: Campylobacter; MALDI-TOF MS; subtyping; MLST; cgMLST; machine learning

1. Introduction

Campylobacter spp. was recognized as an important human pathogen in the 1970s
even if it had been previously described at the end of the 19th century by Escherich in the
colons of children [1]. It has emerged as being the main cause of enteritis in humans and
the most common foodborne bacterial zoonosis, superseding Salmonella spp. infections
worldwide. Since 2005, campylobacteriosis is the most prevalent bacterial zoonosis in
Europe with an underestimated incidence of 59.7 per 100,000 population in 2019 [2]. It is
frequently mentioned as an important health and economic burden [3], which represented
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7.5 million disability-adjusted life years (DALYs) in the 2010 Global Burden of Disease
Study [4]. According to the European Food Safety Authority (EFSA) and European Centre
for Disease Prevention and Control (ECDC) 2019 zoonoses report, C. jejuni represented
83.1% of the confirmed cases of campylobacteriosis in Europe [2]. Therefore, C. jejuni plays
a key-role in the overall campylobacteriosis cases.

The genomic surveillance of C. jejuni infections is only applied in few European
countries [5], despite the proven applicability of advanced molecular methods (e.g., next
generation sequencing (NGS)) in routine surveillance [6] and following standard protocols
(cf. ISO/DIS 23418 standard under development [7]). On the other hand, EFSA will request
the use of whole genome sequencing (WGS) for the harmonisation of the monitoring
of antimicrobial resistances in food-producing animals and derived meat by 2026 [8].
Driven by a high incidence over the last decade (i.e., 103.8 per 100,000 inhabitants in 2018),
Luxembourg has the molecular monitoring of Campylobacter stemming from patients, food,
animal reservoirs and environmental samples at a national level [9–11].

Multi-locus sequence typing (MLST) consists of the analysis of internal fragments
of seven housekeeping genes, i.e., aspA, glnA, gltA, glyA, pgm, tkt, uncA, resulting in an
allelic profile. It was the first proposed and widely used “gene-by-gene” method to classify
Campylobacter isolates into genotypes, revealing an unexpected semi-clonal population
structure through its application [12,13]. A unique sequence type (ST) is assigned to a
unique combination of alleles. Alternatively, core-genome MLST (cgMLST), which is an
improvement of the MLST, contains a hundred to a thousand of core genes, and therefore
show a higher discriminatory power than classical MLST typing scheme. Genomics may de-
termine the clonal relationships between isolates with an unprecedented resolution [14,15].
For C. jejuni, three main cgMLST typing schemes were developed, i.e., the Oxford scheme
with 1343 loci [16]; the one from Ridom SeqSphere+ software (Ridom GmbH, Münster,
Germany) with 637 loci, resulting into complex type (CT), and the INNUENDO scheme
with 678 loci [17,18]. All showed high concordance when compared together [19]. However,
the existence of different typing methods with different typing schemes underlines there
is not a unique standard subtyping methodology for Campylobacter [20] and the lack of a
common nomenclature.

Over the past 15 years, the diagnostics field took a new turn with the development of
cheaper molecular tests, such as DNA-based assays (e.g., polymerase chain reaction) or pro-
teomic analyses. Matrix-assisted laser desorption/ionization time of flight (MALDI-TOF)
mass spectrometry (MS), based on protein fingerprints, has become a popular technique
in clinical microbiology and is now the reference method for the fast, reliable, and cost-
efficient identification of microorganisms. On one hand, it has been successfully applied in
routine for the identification of various microorganisms at the species level including aero-
bic and anaerobic bacteria, mycobacteria and yeasts including mycobacterium, and fungi
in diagnostics [21–23]. On the other hand, researches in taxonomy usefulness extended to a
wider range of organisms have suggested new perspectives, such as for helminths [24–26],
for ectoparasites (e.g., ticks, fleas, mosquitoes), protozoa, and even more recently for the
screening of the SARS-CoV-2 [27–30]. Further, MALDI-TOF MS has been used for other
research proposes such as antimicrobial resistance screening [31–33].

Several reports highlighted the ability of MALDI-TOF MS to subtype different mi-
croorganisms at the sequence type (ST) level and even single clones, by the identification
of specific peaks [34–36]. For example, Meng et al. (2019) investigated the molecular
epidemiology of carbapenem-resistant Klebsiella pneumoniae by using MALDI-TOF MS and
MLST [37]. Giacometti et al. (2018) evaluated the ability of MALDI-TOF MS to characterize
Arcobacter butzleri strains according their peak patterns and performed a comparative
analysis with MLST and pulsed field gel electrophoresis (PFGE) [38]. Along the same line,
several reports showed it was possible to differentiate allelic isoforms within Campylobacter
spp. spectra [39–42]. Indeed, thanks to the presence of specific peak shift in the 2–20 kDa
range, Zaunter and colleagues developed the mass spectrometry-based phyloproteomics
(MSPP), with the creation of a scheme including 14 different biomarkers, enabling the
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subtyping as well as sub-grouping C. jejuni ssp. doylei [43]. Nevertheless, most of the
cited studies rely on empirical observations or statistical methods for the identification of
discriminatory peaks.

Important breakthroughs have been possible thanks to the optimization of analysis
of mass spectra with machine learning methods [44]. Conventional mass spectra analysis
relies on few features, such as peak height or area under the peak, whereas machine
learning algorithms are able to extract and analyse useful information which are embedded
in mass spectra, that conventional approaches cannot detect, making it a powerful and
promising tool for further applications [44]. Studies combining mass spectrometry and
machine learning algorithms are focusing on antimicrobial susceptibility testing in both
bacteria and fungi [45,46]; on the differentiation of close related species (e.g., Escherichia
coli and Shigella spp.) [47] and on serotyping [48]. Moreover, such prediction approach has
also been employed for the differentiation of clonal lineages of relevant clinical pathogens,
such as methicillin-resistant Staphylococcus aureus [49,50].

As highlighted earlier, campylobacteriosis is the most reported bacterial zoonosis
worldwide. The actual problem with Campylobacter surveillance is the numerous amounts
of isolates to sequence daily and its generated high cost. While it is already implemented in
routine at the Luxembourg’s reference national center level, many European member states
and routine laboratories may not be able to assume such routine for financial and staff rea-
sons. Thus, there is a need of a straightforward and faster alternative/complementary tool
to current surveillance methods. Such a tool should give an early signal putting forward
related cases of campylobacteriosis, and hence making easier strain sorting for sequenc-
ing. Therefore, the aim of this study was to figure out whether, the widely implemented
MALDI-TOF MS, best-known for its analysis of speed and cost-efficiency, was able to assess
the genetic diversity and the population structure of a selected Luxembourg One-Health C.
jejuni collection, congruently to genomic classification by MLST and cgMLST. Addition-
ally, an exploration of the potential of machine learning for making subtyping swift and
automatic is also considered to look over its potential for future routine application.

2. Materials and Methods
2.1. Collection

A set of 126 strains of C. jejuni was selected from the national molecular monitoring
program, carried out between 2005 and 2021, in Luxembourg. Strains were isolated from
food samples (e.g., bovine, ovine and poultry) (n = 41), human (n = 83) and environment
(e.g., surface water, n = 2) sources. All strains were subjected to WGS and characterized
by MLST (n = 7 loci) and cgMLST (n = 637 loci) by using the Ridom SeqSphere+ software
platform (Ridom GmbH, Münster, Germany) resulting in 10 Clonal Complex (CC, MLST),
21 Sequence Type (ST, MLST) and 42 Complex Type (CT, cgMLST).

Among these isolates, a total of 74 were identified in a previous study, Nennig et al.
(2021), as belonging to four different lineages, i.e., A (n = 34), B (n = 15), C (n = 15) and D
(n = 10), based on their ST-gyrA-porA combination and their frequency in human infection
over time. Three clones, defined as a set of independent isolated bacteria with similar
genotypic characteristic, were identified in isolates (Lineage A (n = 31), B (n = 12) and D
(n = 9)), by complete genomic analysis, including 3 cgMLST schemes and whole genome
MLST (wgMLST). Concerning the rest of the collection, no other clones were identified.
Details of the collection are available in the Supplementary File S1.

2.2. MALDI-TOF MS Analysis
2.2.1. Sample Preparation

Each strain was streaked on chocolate agar plates (Thermo Scientific, Waltham, MA,
USA) with a loopful using a −80 ◦C stock suspension stored in FBP medium complemented
with Campylobacter growth supplement (Thermo Scientific, Waltham, MA, USA), and
incubated for 48 ± 2 h at 42 ◦C under micro-aerobic conditions (5% O2, 10% CO2, 85% N2)
using CampyGen 2.5 L gas packs (Thermo Scientific, Waltham, MA, USA).
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For each biological assay, a standardized ethanol/acetonitrile protein-based extraction
was performed. Each strain was suspended in 300 µL milliQ water and 900 µL absolute
ethanol (Merck, Darmstadt, Germany). The mix was centrifuged for 2 min and the residual
ethanol supernatant was discarded. A total of 25 µL of both 70% formic acid (Merck,
Darmstadt, Germany) and acetonitrile (Merck, Darmstadt, Germany) were added up
to the dry pellet. A final centrifugation was performed, and then 1 µL of supernatant
was spotted thrice onto a one-use MALDI Biotarget 96 targets (Bruker Daltonics GmbH,
Bremen, Germany). As soon as the samples were dried, the spots were overlaid with 1 µL
of portioned HCCA matrix solution (Bruker Daltonics GmbH, Bremen, Germany) prepared
with standardized acetonitrile (50% v/v), water (47.5%) and trifluoroacetic acid (2.5%)
solution (Sigma-Aldrich, Saint Louis, MO, USA). Bruker Bacterial Test Standard (BTS),
which is a mix of Escherichia coli proteins supplemented with RNAse A and myoglobin,
was used for external calibration of the apparatus.

2.2.2. Data Acquisition

MALDI-TOF MS analyses were fulfilled with a Biotyper Microflex LT/SH (Bruker Dal-
tonics GmbH, Bremen, Germany) by using the AutoXecute acquisition method (MBT_AutoX)
in FlexControl software v3.4., with a 2–20 kDa mass-to-charge ratio (m/z) range in a pos-
itive linear mode. Before measurement, the system was calibrated using the automatic
calibration feature with the BTS. For each sample spot, an automatic acquisition with
240 laser shots was performed.

The workflow was performed on three different days (reproducibility) with three
technical replicates on the same day (repeatability), resulting in nine spectra per isolate.

2.2.3. Mass Spectra Analysis

Spectra were uploaded on FlexAnalysis v3.0 (Bruker Daltonics GmbH, Bremen, Ger-
many) and an internal calibration was carried out on the 4365.00 m/z peak, which is shared
by all samples and the BTS, with no shift observed in C. jejuni [43]. Then, mass spectra
were converted into mzML files and imported into BioNumerics v7.6 software platform
(BioMérieux, Craponne, France). Spectra were pre-processed using the strict program
template (rolling disc: 50 points, CWT noise, Kaiser window: 20 points/beta = 10, rolling
disc: 200 points) with a sound-to-noise ratio threshold of 20. Spectra of technical replicates
were summarized to create an average spectra or main spectra profile (MSP) per isolate.

MSP were used to calculate an unweighted pair group method with arithmetic mean
(UPGMA) dendrogram using a curve based ranked Pearson correlation similarity coeffi-
cient, as it is less sensitive to outliers. The corresponding ST has been indicated using a
colour code, a same ST can be classified in different CTs. Three cut-offs of, 92%, 93% and
94% of similarity, have been selected to have a close number of clusters than CC, ST and
CT respectively defined by cgMLST analysis. Threshold choice was made by investigating
the similarity-cluster size plot (Supplementary File S2).

For each similarity-based cluster identified, a MALDI-profile number was attributed to
each MSP, allowing partitions mapping. Specific peak matching parameters were applied:
constant tolerance: 1 m/z, linear tolerance: 300 ppm, peak detection rate: 20%, on all
peak classes. Therefore, peaks within this range were appraised to belong to the same
peak group.

2.3. Typing Methods Concordance

Concordance and discrimination power of the three typing methods, i.e., MLST,
cgMLST and MALDI-TOF MS, were estimated by using the adjusted Wallace coeffi-
cient (AWC) [51] and the Simpson’s index of diversity (SID) [52], respectively, using
the online comparing partitions tool (http://www.comparingpartitions.info/ accessed
on 10 August 2021). AWC is the probability that two strains with the same typing profile
are classified together through a given method while using another typing method. SID

http://www.comparingpartitions.info/
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translates the probability that two different strains will be placed into different typing
groups. Both values were estimated with their 95% confidence interval (CI).

2.4. Machine Learning Approach
2.4.1. Data Pre-Processing

A character table showing peaks intensity values of the peak matching table was
exported into a csv. file and was labelled with the respective ST profiles. ST groups
with less than 5 representatives were excluded from this part of the study, resulting into
91 MSPs to analyse. Such criteria of selection have been applied to avoid having less than
two representatives during the validation phase. All features were standardized using a
min–max scaler, which transformed values into the (0, 1) range, where 0 and 1 will be the
minimum and the maximum respectively. Such a step is performed as variables that are
measured at different scales may not contribute equally to the model fitting, thus creating
a bias in the end. MSPs were randomly split into 80% (n = 63 MSPs) training and 20%
(n = 28 MSPs) test datasets, with a stratification based on their ST. The training dataset is
implemented to build up a prediction model, while the test panel is used to validate the
trained model.

2.4.2. Prediction Models and Evaluation

A random forest model was trained. A 10-fold cross validation was performed to
establish the overall accuracy of each model. K-fold cross validation is a resampling method
which estimates the performance of the machine learning model. Once the best performing
model has been chosen based on metrics described below, performance on data not yet
seen by the model, has been carried out by using the test dataset.

2.4.3. Evaluation Metrics

To evaluate the different and final models, a multiclass confusion matrix was carried
out. Different metrics for multiclass classification, such as the model’s precision, recall,
macro F1-score and balanced accuracy will be calculated as they are not affected by the
number of cases of each class in case of an imbalanced dataset [53]. The precision, also
called positive predictive value, reflects the reliability of the model when a positive value
is predicted. The recall, also called sensitivity, measures how the model can find all true
positive values. The accuracy computes how much the model is correctly predicting on
the entire dataset. In the case of a balanced accuracy, a mean of the recall for each class
is calculated, therefore, every class has the same importance and weight. The F1-score
measures the model accuracy by aggregating the precision and the recall into a harmonic
mean, where 1 is the best score whereas 0 is the worst. In case of a macro F1-score, classes
with different size are equally weighted.

2.4.4. Retro-Engineering

To go further in the analysis, algorithms such as decision tree (DT) based on the dataset,
showed features of importance, meaning the peaks that the algorithm used to classify
spectra based on their ST. DT is a widely used supervised machine learning algorithm,
represented under the shape of a tree with nodes and branches. Here, each branch depends
on the intensity of each mass spectra peak. Inside each node, information about the feature
name, impurity, i.e., the Gini ratio, the number of isolates per nodes and categories, and the
class gave at each node. The Gini index measures the probability of an isolate to be wrongly
classified when it is randomly chosen where 0 denotes that all isolates belong to a certain
class and 1 denotes all elements are randomly distributed. In biology such algorithms
may be helpful to potentially understand biological mechanisms. In our case, it will be to
understand which protein may be associated with a specific MLST or cgMLST profiles. All
biomarkers retained by the algorithm were checked on Uniprot (https://www.uniprot.org/
accessed on 13 August 2021) according to their mass in Da. Average theoretical masses

https://www.uniprot.org/
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were calculated using the online Expasy portal tool (http://web.expasy.org/compute_pi/
accessed on 13 August 2021) based on Uniprot amino acid sequence.

The machine learning workflows were carried out using Python programming lan-
guage (v3.7.6) and the Scikit-learn package (v0.22.1) in Jupyter Notebook (v6.0.3). Detailed
information on data analysis is shown in Supplementary File S3.

3. Results
3.1. Spectra Quality

A total of 1134 spectra acquired after an ethanol/acetonitrile extraction were identified
by the Bruker BDAL database (n = 8468 spectra) on MBT compass explorer (v4.1). All
isolates were identified as C. jejuni with a score average ≥ 2.00 and all BTS were identified
as E. coli with a score average ≥ 2.00. A score of ≥ 2.30 represents reliable species level
identification; score 2.00–2.29, probable species level identification; score 1.70–1.90, probable
genus level identification, and score ≤ 1.70 is considered an unreliable identification.
Then, the reproducibility of MSPs based on spectra similarity, using a Pearson correlation
coefficient, was established. Inter-spectra similarity average was 85.6% with a standard
deviation of 12.9%.

3.2. Classification

As a first step, the clustering of MSPs was investigated in relation to their ST and
CT determined by cgMLST. A dendrogram was generated using the 126 MSPs (n = 1134
spectra) with all peak classes (n = 91 peaks) (Figure 1). Consequently, strains associated
to ST-464 (n = 24) were subdivided into two main clusters, one grouping a majority of
CT-75 (n = 14/16) and another one grouping other CTs such as CT-596 or CT-1514. Overall,
several isolates which were clustered together belongs to the same ST. For example, 86.7%
of ST-2254 (n = 13/15), 90.0% ST-6175 (n = 9/10), 100.0% ST-10298 (n = 3/3) and 100.0%
ST-3574 (n = 2/2) were clustered together.

Then similarity threshold according to the number of CC, ST and CT’s clusters were
selected. Each MSP, sharing more than 92%, 93% and 94% similarity, were assigned to a
same MALDI profile number. This resulted in 12, 20 and 40 distinct clusters. A partition
mapping has been carried out for STs and CTs grouped by their MALDI profiles, resulting
in a contingency table available in Supplementary File S4. The discriminatory ability
between proteomics and genomics methods was tested. For this, a SID was calculated for
the three methods, i.e., MALDI-TOF MS, including the three different similarity thresholds,
cgMLST and MLST from the SeqSphere+ software platform (Table 1).

Table 1. Simpson’s index diversity (CI 95%) for typing schemes comparison.

Clusters SID CI (95%)

Complex Clonal (CC) 10 0.579 0.495–0.664
Sequence Type (ST) 21 0.829 0.785–0.873
Complex Type (CT) 42 0.887 0.849–0.926

MALDI-TOF MS (Cut-off = 92%) 12 0.830 0.800–0.861
MALDI-TOF MS (Cut-off = 93%) 20 0.862 0.828–0.897
MALDI-TOF MS (Cut-off = 94%) 40 0.939 0.918–0.960

SID of MALDI-TOF profiles with a threshold of 92%, 93% and 94% were compared
to CC, ST, and CT respectively. On one hand, mass spectrometry had a significant higher
discriminatory power than MLSTCC, i.e., 0.830 versus 0.579 respectively. On the other hand,
with a SID of 0.862 and 0.939, mass spectrometry had a similar discriminatory power than
MLSTST and cgMLST, with a SID of 0.829 and 0.887.

MALDI-TOF MS profiles (threshold = 94%) were investigated for the three clones,
identified in a previous study (Supplementary File S1). Clone belonging to the Lineage
A (n = 31/34) was represented by four different MALDI-TOF MS profiles: 19 (n = 9/31),
20 (n = 1/31), 30 (n = 1/31), which were specific to the clone, while the MALDI-TOF

http://web.expasy.org/compute_pi/
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MS Profile 22 (n = 20/31) also referred to three other isolates of the Lineage A. Clone
belonging to the Lineage B (n = 11/13) was assimilated to three MALDI-TOF MS profiles:
14 (n = 1/11), 15 (n = 1/11), 40 (n= 1/11), which were specific to the clone, while the
MALDI-TOF MS Profile 13 (n = 9/11) is found in the two other isolates of the Lineage B.
Clone belonging to the Lineage D (n = 9/10) was linked to four MALDI-TOF MS profiles:
2 (n = 1/9), 3 (n = 1/9), 34 (n = 1/9), which were specific to the clone, while MALDI-TOF
MS Profile 1 (n = 6/9) also referred to another isolates of the Lineage D. In the end, those
MALDI-TOF MS profiles were only found in Lineages A, B and D. As well MALDI-TOF
MS profiles 10 (n = 8/14), 11 (n = 1/14) and 12 (n = 5/14) were only linked to Lineage
C. Average similarity between specific lineage MALDI-TOF MS profiles was close to the
defined cut-off (94%). For example, for Lineage A, when the MALDI-TOF MS Profile 19 is
compared to the Profiles 20 and 22, the average similarity was 93.6% and 93.3% respectively.
The MALDI-TOF MS Profile 30 was less close to the MALDI-TOF MS Profile 19 (90.0%).
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 Figure 1. Circular top-score UPGMA dendrogram (ranked Pearson correlation coefficient) based on MSPs grouped by
their sequence type (ST) profiles using logarithmic scaling. The whole spectra have been used to compute the figure
(n = 91 peaks). Colours represents specific ST and outside numbers are CT profiles. Gray colour represents groups with one
representant per ST.

3.3. Congruency: Proteomics vs. Genomics

According to previously described results, MALDI-TOF MS spectra may be clustered
with spectra related to the same genotype, as defined as specific combination of alleles.
Therefore, we looked over for the congruency between proteomics and genomics methods.
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For this, an AWC has been calculated for the three methods, i.e., MALDI-TOF MS, cgMLST
and MLST (ST and CC) from the SeqSphere+ software platform (Table 2) by using MALDI-
TOF MS profiles with the three different thresholds, i.e., 92%, 93% and 94%, STs and CTs.
Overall, MALDI-TOF MS with a 94% similarity threshold shown a high concordance for
both MLST and cgMLST typing scheme.

Table 2. Adjusted Wallace coefficient (CI 95%) for typing schemes comparison.

Adjusted Wallace Coefficient MLST (CC) MLST (ST) cgMLST (CT) MALDI (94%) MALDI (93%) MALDI (92%)

MLST (CC) 0.284
(0.171–0.396)

0.175
(0.079–0.270)

0.090
(0.040–0.140)

0.212
(0.132–0.293)

0.248
(0.179–0.317)

MLST (ST) 1.000
(1.000–1.000)

0.616
(0.474–0.758)

0.297
(0.197–0.396)

0.563
(0.427–0.699)

0.567
(0.447–0.686)

cgMLST (CT) 1.000
(1.000–1.000)

1.000
(1.000–1.000)

0.439
(0.317–0.561)

0.829
(0.703–0.955)

0.824
(0.696–0.951)

MALDI-TOF MS (94%) 1.000
(1.000–1.000)

0.933
(0.916–0.949)

0.851
(0.830–0.872)

1.000
(1.000–1.000)

1.000
(1.000–1.000)

MALDI-TOF MS (93%) 0.965
(0.934–0.996)

0.725
(0.608–0.843)

0.658
(0.551–0.765)

0.410
(0.309–0.511)

1.000
(1.000–1.000)

MALDI-TOF MS (92%) 0.881
(0.830–0.932)

0.572
(0.470–0.673)

0.512
(0.423–0.602)

0.321
(0.236–0.406)

0.783
(0.724–0.841)

MALDI-TOF MS profiles with a threshold of 92%, 93% and 94% were compared to
CC, ST, and CT respectively. When the threshold was settled according to the CCs, mass
spectrometry was able to predict 88.1% of CCs. As well, when the ST’s threshold was
applied, mass spectrometry could predict 72.5% of STs. Finally, when the CT’s threshold
was settled, MALDI-TOF MS was able to predict 85.1% of CT. Overall if the last threshold
(94%) was kept for analysis, MALDI-TOF MS could predict 100.0%, 93.3% and 85.1% of
CCs, STs, and CTs, respectively.

3.4. Machine Learning for Automatic Attribution of ST

MALDI-TOF MS has a high concordance for the MLST method, so a supervised
Machine Learning approach was applied to swiftly predicted STs of unknow spectra. In
this context, a total of 91 MSPs were examined, associated to ST-19 (n = 42); ST-464 (n = 24);
ST-2254 (n = 15) and ST-6175 (n = 10).

A random forest has been trained and evaluated by using the training dataset. Metrics
such as balanced accuracy, precision, recall and F1-score have been calculated with for
this purpose. Results are described in Figure 2A. Overall, the trained model had a high
performance for the training set (n = 63 MSPs), used to build up the prediction model, used
to build the model, with values ranging from 96.6% to 97.5%. Therefore, this model was
evaluated by performing an external validation by using the test dataset (n = 28 MSPs), to
appreciate how the model will performed when encountering data, it has not been trained
on (Figure 2B). A high performance was obtained for the test set with scores between 95.0%
and 97.5%. According to the confusion matrix, the trained random forest classifier could
correctly classify studied STs, except for ST-19 where one mismatch was observed. In the
end, an average sensitivity and specificity of 98.1% and 100% respectively, were obtained
for the current classification.
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3.5. Features of Importance: Beyond Biomarkers

Certain machine learning algorithms, such as DT, do not only predict a result based
on a probabilistic score, but it may also give a new venue to visualize pattern of features,
here proteins, which may be linked to biological mechanisms. In this context, a DT model
has been trained on the previous dataset with ST groups with at least five representatives.
The related tree was plotted in Figure 3.
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In the latter, patterns of protein peaks, based on their intensities, retained by the
algorithms for each class could be observed (Figure 4). Overall, for the classification
into four different STs, the DT algorithm was considering only to five proteins over the
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91 initially identified by the peak matching. A combination of three peaks was enough for
the algorithm to distinguish the three different STs: ST-19, ST-2254 and ST-6175. However,
the identification of ST-464 seemed a bit trickier with the involvement of several biomarkers,
which may be linked the genetic diversity of isolates classified in six different CTs (75, 596,
1428, 1514, 1668 and 2130) (Figure 1). Interestingly, the 4174.19, 5897.77 and 8271.93 Da
peaks are associated with 14.20 Da, 30.17 Da, 15.27 Da shifts respectively, while the 7083.30
and 10,276.02 Da peaks were linked to the intensity’s level. Therefore, those proteins are
putatively related to the genetic diversity of C. jejuni. The Uniprot database has been
investigated to give a potential identification of these latter, regardless potential post-
translational modifications. Identifications are summarized in the Table 3.
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Table 3. Putative biomarkers linked to the Campylobacter type and their identification through the Uniprot database.

Mass Observed (Da) Theoretical Average
Molecular Weight (Da) Gene Names Protein Name UniProt ID

4159.99 4158.55 APU78_09005 Flagellin subunit protein FlaA A0A690Z7F7

4174.19 4173.56
CDX23_07240,
FQZ36_04085,
FV854_03335

Uncharacterized protein A0A5Z0CYS5

5867.60
5868.02
5867.95
5867.84

FH034_10320
F1576_10330

FDW21_07355

Sulfurtransferase-like selenium
metabolism protein YedF

Magnesium transporter CorA family
protein

Motility accessory factor

A0A5C4YC48
A0A698D3Z1
A0A3Z8JXU3

5897.77 5897.85
5895.96

GSG42_09710
FXB36_09400

Polysaccharide deacetylase
DNA adenine methylase

A0A7I9U468
A0A7I9S1R5

7083.30 7081.66

B9Q65_09070,
E7P40_09640,
F0N82_09625,
FC283_09220,
FW424_09040

Uncharacterized protein A0A400EER0

8256.66

8256.27
8256.39
8255.77
8256.96

JJD26997_1194
GD714_06815
EJC82_07015
TM42_09010

Conserved domain protein
Uncharacterized protein
Uncharacterized protein

Membrane protein

A7H434
A0A6W1IK17
A0A6C7UKG7
A0A0D7V4A9
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Table 3. Cont.

Mass Observed (Da) Theoretical Average
Molecular Weight (Da) Gene Names Protein Name UniProt ID

8271.93
8270.56
8271.37
8271.52

N/A
FW192_09775
B7Q70_09720

Uncharacterized protein
Integrase

Terminase small subunit

Q4VRA4
A0A7I9QCT5
A0A5T0PDL9

10,276.02
10,276.22
10,276.17
10,274.87

JJD26997_0928
AT778_09125,
B7Q70_06195,
C3H43_07780,
C3H69_07590,
C3H86_07890
A2E15_06760

Uncharacterized protein
Uncharacterized protein

Glycosyltransferase Family 9 protein

A7H3G2
A0A2U0QNA2
A0A5T0CX51

4. Discussion

Nowadays, WGS is established as a successful and highly discriminating typing
method, providing opportunities for the surveillance and outbreak investigation of food-
borne pathogens, such as Campylobacter spp. [54]. The main drawback of Campylobacter
surveillance is the important number of isolates to sequence, due to its status as first
bacterial human zoonosis. A high-throughput and cost-efficient method, such as MALDI-
TOF MS, could be an efficient pre-screening tool to relevant isolates that warrant further
sequencing. By coupling WGS with mass spectrometry, it could increase typing’s ability
and therefore, elucidate genotypes circulating in human infections, animal production
and environment. The aim of this study was to investigate the ability of MALDI-TOF
MS, increasingly implemented in routine laboratories, to assess C. jejuni genetic diversity
and to compare its congruency to MLST and cgMLST methods as gold standards for
epidemiologic surveillance.

The main result of this study was to observe that a mass spectrometry approach on 91 au-
tomatically generated peaks had a higher discriminatory power than the classical MLST scheme
with seven loci for attribution of CCs (SIDMLST-CC = 0.579, SIDMALDI-92% = 0.830). However,
similar discriminatory power has been found for attribution of STs (SIDMLST-CC = 0.829,
SIDMALDI-93% = 0.862). As well, proteomics was compared to the cgMLST scheme, which is
more discriminant than MLST typing methods. The discriminatory ability of MALDI-TOF
MS was comparable to SeqSphere+ cgMLST scheme based on 637 loci (SIDcgMLST = 0.889,
SIDMALDI-94% = 0.939). Sequence based methods, such as MLST, are known to reflect the
population genetics and where STs are often related to ecological niches [13,55]. As an
outlook of the present study, mass spectra should be investigated to check the potential link
between protein profile and host specificity, barely described in the literature for Campy-
lobacter spp. [56]. Lawton et al. (2018) reported that MALDI-TOF MS was non-congruent
to Campylobacter clade identified by either 16S rDNA or WGS and therefore unlikely to
be useful for assessing genetic relationship among C. jejuni isolates [57]. Nevertheless, in
the current study high concordance between genomic and proteomic typing methods was
found. MALDI-TOF MS could predict 100.0%, 93.3% and 85.1% of CCs, STs and CTs, respec-
tively. To our knowledge this is the first time that this was demonstrated for cgMLST. There
are few reports highlighting the ability of MALDI-TOF MS to subtype bacterial species at
the ST level. During a Klebsiella pneumoniae outbreak in central China, the vast majority
of the epidemic ST11 strains were associated with similar MALDI-TOF MS profiles [37].
MALDI-TOF MS was explored for the subtyping of Arcobacter butzleri and compared with
MLST. MALDI-TOF MS was less discriminant (SIDMLST = 0.920, SIDMALDI = 0.863) but still
comparable to MLST. Therefore, the possibility of subtyping by MALDI-TOF MS displayed
variability in performance according to bacterial species. In addition, it may be explained
by the quality, pre-processing steps and chosen similarity cut-off, depending on the level
of concordance intended, of mass spectra. Indeed in the study by Meng et al. (2019),
a similarity cut-off of 70% was applied according to the ST assignment of K. pneumoniae,
whereas a 93% one has selected for the current study, based on the number of ST clusters.
This difference may be explained by the type of extraction, such as the off-plate procedure,
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used in this study, and the on-plate protocol. Standardisation of protocols for such analysis
should be as well essential. Indeed, it has been pointed out that growing medium type and
conditions could influence MALDI-TOF MS data and congruence with the PFGE typing
method [58]. Additionally, other parameters such as preparation protocol used, duration
of incubation, maintenance of the device and so on, could impacted the quality of the
spectra and hence the MALDI-TOF MS discriminatory power [59]. Additionally, fastidious
growing conditions (e.g., microaerophilia), such as the one encountered for Campylobacter
spp., may be impacting for the spectra.

Analysis of the decision tree pointed out several protein peaks or biomarkers, which
may be associated to specific STs. Since 2011, pioneering studies highlighted the extended
application of MALDI-TOF MS as a tool to discriminate several genera (e.g., Clostridium,
Salmonella and Staphylococcus) at subgroups level based on specific biomarkers [60–62].
The Campylobacter community is not an exception to the rule, and several reports bring
biomarkers links with allelic profiles to light [39,40,42,43]. In the case of C. jejuni, it
was already described in the literature that it was possible to discriminate some STs
with 14 specific biomarkers while using ethanol/acetonitrile extraction and direct smear
deposit based on PCA-dendrograms [39,43]. One biomarker retained in this study was
commonly described previously by Zautner and colleagues (e.g., 10,276.02 Da). They
ambiguously identified the previous biomarker as a 30S ribosomal protein S18 while it
was uncharacterizable in our study. In the same process, the latter authors tentatively
tried to identify relevant biomarkers based on the calculated masses ORFs from WGS
data. While most of their biomarkers were ribosomal proteins, several current identified
proteins are not related to known functions or involved in metabolic pathways encoded by
housekeeping genes. However, it is worth to notice that the comparison of biomarkers in
both studies is tricky due to the choice of the internal calibration point: recombinant human
insulin peak (5808.29 m/z) and the shared BTS peak (4365.00 m/z), in the two studies.
Interestingly, the DT algorithm used the shift between the 4159.99 Da and 4174.19 Da peaks
to distinguish ST-2254 and ST-6175. It is worth highlighting that isolates from ST-2254 and
ST-6175 have different phenotypic behaviour, in term of adhesion and biofilm formation
(Nennig et al., manuscript in preparation). The only known protein matching this molecular
weight was the flagellin subunit protein FlaA. Combination of MLST with the major
outer membrane protein gene (porA) and/or with flagellin A gene (flaA), called extended
MLST, has been widely described in the literature, for the typing of C. jejuni, underlining
one more time the close similarity between genomics and proteomics methods [9,63–65].
Nevertheless, flaA is an accessory gene, giving more flexibility to bacteria for environmental
adaptation. In addition, flaA shows common and highly variable domains, suggesting
that this protein alone, could not be considered as a stable biomarker to assess C. jejuni
genetic diversity [66,67]. As well, no biomarkers retained in this study had a direct link
with housekeeping genes classically used for MLST typing. This assessment is not aberrant,
as most of these genes produced proteins with a molecular weight exceeding the 2–20 kDa
windows (e.g., AspA: 51,765 Da, GlnA: 53,945 Da) used in the study. To go further, a real
peptides sequencing should be performed to assess the actual identity and function of
each biomarker.

Several reports highlighted the ability of MALDI-TOF MS to classify different Staphy-
lococcus aureus clonal lineages with the help of different machine learning models (e.g.,
supervised neural network, support vector machine (SVM) and genetic algorithm (GA)).
Camoez et al. (2016) reported a sensitivity and specificity of 100.0% and 99.1% for the
classification of four S. aureus CCs, i.e., which is a group compiling close STs and therefore
more general than the ST level. While Zhang et al. (2015) described for the assessment
of S. aureus ST-239, ST-5, ST-59 and ST-45 by using GA, a sensitivity between 81% and
100% and a specificity between 92% and 100%, we observed an overall sensitivity and
specificity for four STs of ranging from 98.1% to 100.0%, respectively. Wang et al. (2018)
also described close results on same STs by using a SVM model with an accuracy of 86.4%.
All previous cited studies support the idea that machine learning and MALDI-TOF MS
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present obvious advantages for MRSA typing, such as rapidity, accuracy and cost-efficiency
in comparison with MLST and it can be carried out at the same time that routine identi-
fication of isolates. In addition, such an approach may remove the need of retrospective
epidemiological analysis. While cgMLST is the reference method for the surveillance of
Campylobacter spp., the combination of mass spectrometry and artificial intelligence may
be a suitable tool to make a pre-selection of what need to be sequenced. Indeed, it has
been shown recently that genetic lineages were frequently identified in human infection
over-time in Luxembourg [19]. Using the same lineage isolates of Nennig et al. (2021), we
pushed the study at the clone level, confirmed by three cgMLST schemes and by compar-
ing the pangenome (wgMLST). Eleven specific MALDI-TOF profiles have been linked to
specific lineages identified over-time in Luxembourg. In addition, several close-related
MALDI-TOF profiles where only related to these three clones. Thus, C. jejuni protein mass
spectra may be enough to make an early detection of these recurring lineages. Machine
learning is for supporting decision making process and giving suggestions on possible
outcomes that lead research in a specific direction. Machine learning prediction based
on MALDI-TOF mass spectra may be a frontline tool to make a preliminary screening of
these recurring genotypes and identify related MALDI-TOF profiles. Nevertheless, WGS
may still follow to further elucidate molecular details in case of an outbreak as it has been
recently described in Denmark [5].

Along the same line, a recent preprint introduced a pipeline using a surveillance
system recording routine results from clinical laboratories, among them MALDI-TOF mass
spectra identification [68]. The system detected an abnormal increase of Streptococcus
pneumoniae identification in a short interval of time. More identification than planned
were recorded by the system. Spectra responsible of the alert and the other records from
previous months were retained for clustering analyses, resulting in two subtrees which
may be associated to two epidemiological events. Authors highlighted that such an
investigation technique is not for subtyping but helps in detecting a possible suspicion
of bacterial species spread and to prevent or slow down possible outbreaks. In summary,
combination of MALDI-TOF MS, machine learning and WGS could be valuable tools
for accurate epidemiological surveillance of Campylobacter and potentially other relevant
clinical or foodborne pathogens.

Nevertheless, the present study presents several limitations. Thus, so far, only four
different STs were used to build the current model. Therefore, if the latter is used to
identify another STs, then it will be misclassified. Additionally, to build the current model
only strains from the Luxembourg monitoring program have been used, hence model’s
adaptation will be needed, with the implementation of STs depending on the area of
utilization. In the case of Campylobacter spp., where the question of the possibility of
cross-border genotype existing, it may be critical for long-term monitoring, while using
MALDI-TOF MS and machine learning only. However, further analysis must be done to
include additional STs, to avoid misclassification, for an accurate and robust screening
tool. Additionally, all MALDI-TOF MS analyses were carried out by a unique operator
the whole study. Therefore, the operator variation has not been established and may
affect conclusions [69]. Finally, spectra were investigated after using the standard off-plate
protein extraction using ethanol, formic acid and acetonitrile, used to obtain high-resolution
spectra. However, such extraction is not straightforward in a routine context. For that
reason, further analyses must be carried out to evaluate the ability of MALDI-TOF MS to
subtype C. jejuni with spectra obtained with on-plate extraction or direct deposit.

5. Conclusions

In the present study our results provide evidence that MALDI-TOF MS could be a valu-
able tool to swiftly subtype C. jejuni. Such applications may be suitable as a cost-efficient
alternative to NGS technologies, with several advantages such as rapidness or congruency
with genomics methods up to the CC, ST and CT level. For a “universal”, accurate, and
early surveillance and integration of routine laboratories, a single mass spectrum analysis
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could combine several tests into one examination, i.e., species identification, antimicrobial
susceptibility screening and the assessment of genetic diversity. However, WGS may still
be needed in addition to MALDI-TOF MS to further assess the relatedness between isolates
(e.g., source attribution) in case of an outbreak.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/diagnostics11111949/s1. Supplementary File S1—list and details of isolates used for MALDI-
TOF mass spectrometry and machine learning analysis. Supplementary File S2—similarity cluster
size plot. Supplementary File S3—Python algorithm for machine learning analysis. Supplementary
File S4—contingency table for MALDI, ST and CT profiles comparison. Supplementary File S5—mass
spectra peak matching table used for machine learning analysis.
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1. A look back on the research project  

For decades, AMR has been considered as a global long-lasting challenge. If no action is taken, 

AMR-related diseases could give a rise up to 10 million deaths each year by 2050 and 24 million 

people might end into extreme poverty, mainly in low-income countries (O’Neill, 2016; IACG, 2019). 

In this first section of the discussion, societal challenges as well as means used in the presented 

research work will be put back in context. 

1.1 The urge to use a One-Health approach 

Two extensive drivers of AMR could be highlighted. The first one is the use of antibiotics 

exerting a pressure of selection on bacterial population, enabling the emergence or the persistence 

of resistant microorganisms (ECDC, 2014). The second one is the spread and cross-transmission of 

drug-resistant organisms between human, animal and environment (ECDC, 2014). For example, top 

ranking zoonotic pathogens including Campylobacter and Salmonella are present all along the farm-
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to-fork chain (Wielinga and Schlundt, 2014). Because of the overuse of antibiotics in food-producing 

animals for therapeutic and non-therapeutic (e.g. prophylaxis or growth promotion (banished in 

2006 in the EU)) purposes, they could carry multidrug resistant pathogens that could be transmitted 

from animals to humans via food sources or from direct animal contact (EU, 2005; ECDC, 2014). A 

significant positive association between consumption of fluroquinolones by food-producing 

animals and occurrences of resistance in C. jejuni and C. coli from these animals were reported 

between 2013 and 2015 (ECDC et al., 2017). Similar observation was made between the occurrence 

of resistance to fluoroquinolones in C. jejuni and C. coli from animals and the occurrence of 

resistance in C. jejuni and C. coli from human infections (ECDC et al., 2017). Therefore, over the last 

years, international policies makers, e.g. WHO, ECDC, CDC, OIE and FAO, strongly encouraged a 

One-Health approach to solve this global burden, recognizing that the human health is connected 

to animals and environments (FAO et al.; CDC, 2015; WHO, 2019; ECDC, 2021; European 

Commission, 2021).  

1.2 Rapid diagnostics tests to tackle AMR 

Nowadays, rapid diagnostics tests are considered as a key tool in diagnostics for the swift 

identification of infectious organisms as well as the fight against AMR. While such tests were 

reported to reduce mortality, decreased healthcare costs and lessen hospital stays, they were 

proved to reduce antibiotics use (Kaprou et al., 2021). Holmes et al. (2018) evaluate the use of 

point-of-care C-Reactive protein testing in routine primary care with patient with acute respiratory 

tract infections. They evaluated a decreased of 74% and 89% in antibiotic and unnecessary 

prescribing, respectively (Holmes et al., 2018). By detecting earlier AMR, adapted antibiotherapy 

might be administrated promptly shifting from empirical to evidence-based practices, conserving 

effectiveness of certain antimicrobials (Holmes et al., 2018; Vasala et al., 2020). While the 

development of such diagnostics tests is actively strengthened by policies makers, competitions 

(e.g. Longitude prize, https://longitudeprize.org/), are also calling for innovative ideas to tackle 

AMR. In 2020, Visby Medical Inc. received the 19 million USD prize of the AMR Diagnostic Challenge, 

for the development of a rapid test able to identify organisms that cause gonorrhoea and its related 

susceptibility profile under 30 min (NIH, 2020). 

The already implemented cost- and time-efficient MALDI-TOF MS in routine laboratories for 

the identification of microorganisms based on expressed protein profiles, was successfully applied 

for bacterial typing and detection of specific AMR peak in a research context (Feucherolles et al., 

2019). Over the last five years, the breakthrough combination of MALDI-TOF MS with ML was 

investigated for both AMR prediction and subtyping (Weis et al., 2020b). While, conventional mass 

spectra analysis relies on few features, such as peak height or area under the peak, ML algorithms 

https://longitudeprize.org/
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are able to extract and analyse useful information which are embedded in mass spectra, that 

conventional approaches cannot detect (Weis et al., 2020b). In the line of developing rapid tests 

for diagnostics, MALDI-TOF MS seemed to be an ideal candidate for a powerful and promising “One 

fit-all” diagnostics tool. 

1.3 Play your part 

As a reminder, the presented research work aimed to investigate two principal axes. The first 

one was to determine if mass spectra profiles generated by MALDI-TOF MS, mainly based on the 

expression of mainly highly conserved housekeeping proteins comprised in the 2-20 kDa range (e.g. 

ribosomal proteins L35 at 7159 m/z), commonly used for microorganism’s identification could 

reflect the AMR background of Campylobacter spp. (Chapter 6) (Ryzhov and Fenselau, 2001). If such 

observation turned out to be accurate, so putative protein biomarkers were explored to make a 

possible link between the protein expression and known or unknown biological mechanisms. 

Additionally, spectra generated for previous purposes were analysed to determine if they could 

give a vision on the population structure and diversity of Campylobacter spp (Chapter 7). For this, 

a Campylobacter collection, based on C. jejuni and C. coli isolates from humans, livestocks, including 

poultry, ruminants, ovine, pigs, and environment sources, such as surface water and wildlife was 

established. Before MS analysis isolates were phenotypically and genotypically characterized at the 

AMR and subtype level by conventional methods, i.e. disk-diffusion antibiogram and WGS. 

2. Key information embedded in protein profiles 

In this second section, results obtained in the results part will be discussed with a One-Health 

perspective regarding the technical and scientific questions. 

2.1  MALDI-TOF MS as an important tool for tackling AMR 

One of the objectives of this research work was to determine if the analysis of the proteins 

expressed in the 2-20 kDa MALDI-TOF mass spectrometer’s range could allow the profiling of AMR 

in Campylobacter spp. Through the Chapter 6, protein mass spectra of 340 Campylobacter isolates, 

tested phenotypically for seven antibiotics, were explored by using a ML prediction approach as an 

AMR screening tool. The key findings of this part were the (1) high performance of three Machine 

Learning (ML) classifiers, i.e. susceptibility, ciprofloxacin and tetracycline, (2) regardless or not of 

the microbial identification and (3) the type of protein extractions performed. While a specific 

expression of proteins might be linked to the fluoroquinolones and tetracyclines resistance profile, 

lower prediction performances for other antimicrobial classes, i.e. aminoglycosides, β-lactams and 
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macrolides were obtained. Such approach for the rapid screening of fluoroquinolones and 

tetracyclines in both veterinary and human medicine could be interesting.  

On the one hand,  61% of C. jejuni and C. coli isolated in 2019 in humans were resistant to 

ciprofloxacin, while association of macrolides and fluoroquinolones are still drugs of choice for the 

treatment of enteric illness (Sproston et al., 2018; EFSA and ECDC, 2021). Therefore, 

fluoroquinolones resistant Campylobacter spp. are responsible of treatment failure and 

symptomatic relapsed (Yang et al., 2019). Already in the late 1980’s, 20% of patients with 

Campylobacter infections were relapsing because of resistant isolates (Piddock, 1999). Additionally, 

the co-resistance to fluoroquinolones and macrolides (which is generally low for C. jejuni (1%) and 

moderate for C. coli (10%)) is concerning in Europe from human clinical isolates (EFSA and ECDC, 

2021). On the other hand, 74% and 87% of respectively C. jejuni and C. coli isolated in broilers were 

resistant to ciprofloxacin in Europe in 2018-2019. As well, 7% and 17% of C. coli isolated in broilers 

and turkey respectively were resistant to erythromycin (EFSA and ECDC, 2021). While it is known 

that occurrence of fluoroquinolones in food animal producing and human is strongly associated, 

there are still common antibiotic classes used in both human and animal medicine for therapeutic 

or prophylactic purposes (ECDC et al., 2017). For example, erythromycin is used in poultry for the 

control of respiratory diseases caused by Mycoplasma but also for the treatment of complicated 

Campylobacter infections in humans (Trott et al., 2021). Likewise for human diagnosis, the 

European commission encouraged the used of rapid diagnostic tests to reduce and improve 

antibiotics use in food-producing animals (European Commission, 2015; Buller et al., 2020; Chan et 

al., 2020). Nevertheless, over the last past years significant advances were made for rapid 

diagnostics in humans in comparison to the veterinary field (Chan et al., 2020). 

  In the presented study, the fluoroquinolone prediction model was able to predict positively in 

75% of the cases Campylobacter ciprofloxacin resistance based on MALDI-TOF protein profile. Few 

isolates were erythromycin resistant (n = 33/340 isolates). Therefore, little isolates were available 

to build a reliable and precise prediction model. For example, when a spectrum was returned as 

macrolides resistant, there was 43% of probability that the actual spectrum was resistant to 

macrolides. In order to ensure that erythromycin resistance could not be detected using protein 

spectra, additional resistant strains should be analysed to balance the current dataset. 

Furthermore, the size of the training set was underlined as critically important for classifier’s 

predictive power and pattern recognition (Figueroa et al., 2012; Vabalas et al., 2019). While in this 

context it could be asked how much the size of the initial training set should had be to validate the 

current research work, it is a complex question, and it is unknowable in advance (e.g. complexity of 

the problem or learning algorithm). At the time of the experimental design, it was not known that 
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ML based methods exist to estimate the training sample size required to a specific accuracy target 

(Brownlee, 2017).  Figueroa et al. (2012) designed a sample size prediction algorithm that can help 

to determine sample size for supervised machine learning. Also by investigating the learning curve, 

i.e. visual representation of the training and validation scores with an increasing number of training 

sample, it might be able to identify how much or little data you actually need (Brownlee, 2017). 

According to the learning curve of the erythromycin dataset, while up to 200 Main Spectra profiles 

are used as a training set, the accuracy remains unchanged between the training and test set. 

However, beyond 200 spectra it exists a gap between both sets. Therefore, it might be wiser to use 

this ratio for the training of the prediction model. 

Due to the weaknesses of the Campylobacter European surveillance and the poor information 

regarding macrolides resistance predictions using MALDI-TOF protein mass spectra, there is a niche 

to develop rapid tests for the detection of such resistance. Thus, it will be worth to further explore 

the ability of prediction of erythromycin resistance based on proteins profile, by implementing 

additional isolates (Weis et al., 2020a; Yoon and Jeong, 2021). By developing such prediction 

approach for the screening of fluoroquinolones and macrolides resistances in clinical or veterinary 

diagnostic practice, it might rationalize antimicrobials use by adapting earlier the definitive 

antibiotic treatment. Therefore, it could limit the empirical treatment strategy and optimize 

treatment success. However, as mentioned in Chapter 6 discussion, little is known on the impact of 

combination of ML and MALDI-TOF MS on health management. Reports suggested that applications 

of such technique could provide a treatment guidance from 12 to 72 hours earlier than classical 

approaches (Weis et al., 2020a). On the veterinarian side, the implementation of rapid tests might 

be also useful to tackle AMR.  Likewise for human diagnostics, rapid AMR tests could help reduce 

the emergence of AMR, by enabling the use of the most appropriate antimicrobial when therapy is 

required (OIE, 2015). Nevertheless, Chan et al. (2020) reported that in the United Kingdom 70% of 

farm vets rather rely on their skills and experiences, instead of diagnostic tests for prescribing 

antibiotics treatments (Chan et al., 2020). Therefore, an additional awareness-raising work 

concerning the need for accurate testing might be performed upstream with farmers and 

veterinarians. 

The proof of concept to use MALDI-TOF and ML to screen AMR was performed for C. jejuni and 

C. coli. Other enteric pathogens, such as E. coli, Yersinia enterolitica, Salmonella spp. and Shigella 

spp., tested for four different antibiotics were also submitted for MALDIT-TOF MS analysis (Figure 

8.1). Protein mass spectra were grouped according their similarity. While distinct groups could be 

observed for E. coli, Y. enterolitica and S. flexneri, no clear distinction was obtained for Salmonella 

spp. and S. sonnei. Thus, proteins expressed in the 2-20 kDa range might be relevant to rapidly  
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Figure 8.1. Multidimensional Dimensional Scaling (MDS) of different enteric pathogens based on their 

MALDI-TOF MS protein profiles grouped by their phenotypic AMR. A: Escherichia coli (n = 2). B: Yersinia 

enterolitica (n = 3). C: Salmonella spp. (n = 10). D: Shigella sonnei (n = 5). E: Shigella flexneri (n = 4). 

Abbreviations: S, susceptible to the four tested antibiotics; Am, ampicillin; Cip, ciprofloxacin; Sxt, 

trimethoprim/sulfamethoxazole; Tax, cefotaxime. 

 

screen resistance for those species. However, due to the small sample size of each species it 

should be cautiously interpreted. While, specific MALDI-TOF MS biomarker related to AMR were 

reported in the literature for E. coli and other enterococci, few data is available for Shigella or 

Yersinia (Sabença et al., 2020; Sousa et al., 2020). Additionally, MALDI-TOF MS is mainly 

investigated as an alternative to serotyping methods for the identification of Salmonella serovars 

(e.g. Enteritidis, Typhimurium and Thompson)(Yang et al., 2021). However, there is no 

documentation on its application for AMR screening. Recently more and more research works are 

focusing on the use of WGS data and ML for the in silico assessment of AMR (Nguyen et al., 2019; 

Steinkey et al., 2020; Barros, 2021). For example, Nguyen et al. (2019) trained an algorithm on 

numerous non-typhoidal S. enterica WGS data to predict the minimal inhibition concentration for 

15 antibiotics. Their model obtained an overall 95% of accuracy (Nguyen et al., 2019). In line with 

the previous example, it is worth noting that WGS has a higher resolution and discriminatory power 

than MALDI-TOF MS, and is on its way to become the reference method for AMR detection in 

routine diagnostics (Rossen et al., 2018). Additionally, from 2025 AMR monitoring of food-

producing isolates, such as ESBL/AmpC/carbapenemase-producing E. coli, will be done by WGS 

(Aerts et al., 2019). Therefore, a combination of MALDI-TOF MS, ML and WGS could be an 
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interesting monitoring tool with a relevant impact on the control of the emergence of AMR in the 

European Union. 

To wrap up the AMR part of the discussion, work findings suggested that proteins involved in 

the acquisition of MALDI-TOF mass spectra could reflect the AMR profile of certain resistances, such 

as ciprofloxacin and tetracycline in Campylobacter spp. Regarding other resistances, further 

analysis with additional isolates are needed to confirm current observation. For further reasoning, 

while performant prediction signals were obtained while investigating specifically AMR, the latter 

were obtained for resistance due to a mutation in the gene, i.e. fluoroquinolones, and the 

acquisition of a specific resistance gene, i.e. tetracyclines. Therefore, it could be interesting to 

explore the possibility that beyond the species identification, it is the resistance mechanisms 

themselves (e.g. MOMP or CmeABC efflux pump) that could be highlighting through protein spectra 

and potentially transferable to other foodborne pathogens. As ciprofloxacin is a drug of interest in 

both clinical and veterinary practice, implementation of MALDI-TOF MS and ML for rapid species 

identification and susceptibility screening could be an interesting tool to tackle AMR by optimizing 

antibiotic prescription.  

2.2 MALDI-TOF MS as a powerful subtyping method  

The second objective of this study was to determine if the same protein profile used for 

AMR screening could also give an appreciation on the genetic diversity of Campylobacter spp. and 

hence its population structure. Through Chapter 7, protein mass spectra generated by MALDI-TOF 

MS of 126 C. jejuni isolates featuring different CC, ST and CT determined by the SeqSphere+ cgMLST 

were subjected to congruence and ML analysis. The main findings of this part were that (1) protein 

profiles allowed to predict C. jejuni CCs, STs, and CTs at 100%, 93% and 85% respectively, and (2) 

ML based on protein fingerprints enables to efficiently predict STs with a sensitivity and specificity 

of 98.1% and 100%, respectively.  

Currently WGS remains the reference method for the typing and hence surveillance and 

outbreak investigation of Campylobacter spp. (Uelze et al., 2020). On the one hand, as already 

mentioned, and reviewed in the discussion of the Chapter 7, due to extensive number of isolates 

to sequence, high-throughput and cost-efficient MALDI-TOF MS could pre-screen relevant isolates 

that warrant further sequencing. Therefore, by combining WGS and MS it could increase 

Campylobacter typeability through a rapid, accurate and early surveillance by routine laboratories 

and national reference centres. On the other hand, a gene-by-gene approach like MLST reflects 

Campylobacter spp. population genetics (i.e. variation in the genes found within group of 

individuals and changes in allele frequency) and STs are often assimilated to specific or multi hosts 

(Dingle et al., 2001; McCarthy et al., 2007; Sheppard et al., 2011). While isolates belonging  to ST-
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257 and ST-61 are strongly associated to chickens and ruminants, respectively, most common 

disease strains (e.g. ST-21, ST-45 and ST-828) causing human infections could be isolates from 

various animal species and are burdensome to attribute to a specific source by using MLST 

(Sheppard et al., 2011; Dearlove et al., 2016). Gripp et al. (2011) highlighted extensive genomic and 

phenotypic micro-diversity within the ST-21 group, which could be caused by the recombination 

and acquisition of phage related genes. Therefore such strains carry the stigmata, i.e. high genetic 

flexibility, of a generalist variant (Gripp et al., 2011). Due to its clinical importance, source tracking 

Campylobacter spp. infections is important to identify source of infection and take preventive and 

control measures to eliminate the contamination. 

 The development of efficient bacterial typing methods for source-attribution and source 

tracking studies is essential to investigate and determine the source and origin of a specific strains 

causing human infection (Dieckmann et al., 2016). On the one hand, genotyping methods such as  

MLST are the reference method for Campylobacter source-attribution (Mossong et al., 2016; Cody 

et al., 2019). To date there is few studies reporting the use of WGS data for such purpose (Thépault 

et al., 2017; Mughini-Gras et al., 2021). Nevertheless, such techniques are still time-demanding and 

could be considered as expensive. On the other hand, our present work suggested that MALDI-TOF 

MS could be a suitable tool for the typing of Campylobacter at the ST level. Bacterial typing by 

MALDI-TOF MS was suggested to determine the origin of specific strains by grouping isolate’s 

protein profile by sources, so-called bacterial source tracking (Santos et al., 2016). Two ground-

breaking studies evaluated the use of MALDI-TOF MS to identify the source of bacteria in 

recreational and surface water (Siegrist et al., 2007; Giebel et al., 2008). Giebel et al. (2008) 

analysed protein mass spectra of Enterococcus isolates from sources, including human, dog, duck, 

cow, goose, gull and chicken. Siegrist et al. (2007) used mass spectra to characterize closely related 

E. coli and classify them according their respective sources. Both studies recognized MALDI-TOF MS 

as a potential promising and rapid tool to address the problem of fecal contamination of water. 

Jadhav et al. (2015) explored MALDI-TOF MS as a single identification and source-tracking tool for 

Listeria monocytogenes. They compared source-tracking discriminatory index and congruence 

between MALDI-TOF MS and PFGE methods (Jadhav et al., 2015). Chiefly, they underlined MALDI-

TOF MS as a rapid and cost-effective source-tracking technique for L. monocytogenes. Concerning 

MALDI-TOF MS based source-tracking for Campylobacter spp., only a conference poster and 

presentation recounted its potential application. Denis et al. (2019) compared C. jejuni by protein 

profiles to identify the relationship between different origins such as poultry, bovine, sheep, 

shorebird, river and shellfish (Denis et al., 2019). Their preliminary study suggested that rivers’ 

contamination might be attributed to shorebirds, bovines and sheep, which is congruous with 
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results obtained by MLST (Mughini-Gras et al., 2016). Along the same line, Py et al. (2021) explored 

the ability of MALDI-TOF MS to identify the origin of a Campylobacter contamination. Several C. 

jejuni and C. coli isolates from various origins were subjected to MALDI-TOF MS (Py et al., 2021). On 

the one hand, the distinction between C. jejuni isolates sampled from sheep, bovine and poultry 

was hazy. Also, C. jejuni birds and rivers isolates were close-related. On the other hand, C. coli 

isolates sampled from avian, i.e. birds and poultry, were close related to environmental samples, 

i.e. shellfish and rivers, by sharing a similar mass peak at 6126 Da, identified by a gel view approach. 

Nevertheless, while in the case of C. jejuni it might be complex to assess the source of the 

contamination, further investigations (e.g. classification with MLST profiles) are required to 

conclude on C. coli (Py et al., 2021). Also, authors used conventional approaches, i.e. heatmap or 

pseudo gel view, to identify specific biomarkers. Nevertheless, such approaches could be limiting 

considering the high genetic diversity of Campylobacter, resulting in a potential shift within the 

species or origins group. Indeed, by looking to a unique biomarker for source attribution without 

knowing MLST or AMR profiles might be a laborious task.  

 In the current research work, a ML approach was used to identify biomarkers related to the 

genetic diversity of C. jejuni. Nevertheless, the source attribution side of the MALDI-TOF MS was 

not explored. Integration of ML for the identification of specific or signatures of protein peaks might 

be relevant for source tracking. Actually, reports are growingly using ML to make bacterial source 

attribution (Lupolova et al., 2019; Mathai et al., 2020; Munck et al., 2020; Wu et al., 2021). Munck 

et al. (2020) considered ML to predict the animal source of strains isolated from human 

salmonellosis based on WGS data. The Logit boost algorithm was able to predict the origin of 81% 

of sporadic human salmonellosis (Munck et al., 2020). Recently, a similar experiment was 

performed for campylobacteriosis, including cgMLST and WGS data (Arning et al., 2021). Authors 

reported an overall accuracy improvement of 33% over existing methods that use a subset of genes. 

Therefore such approach could be used to understand the global epidemiology of Campylobacter 

and enable a continuous disease surveillance (Arning et al., 2021). For instance, in 2019, 

contamination of drinking water caused a large campylobacteriosis waterborne outbreak in Norway 

(Hyllestad et al., 2020; Paruch et al., 2020). After investigation, it was highlighted that the 

Campylobacter contamination was due to cracks in the back of the holding water drinking pool. 

Paruch et al. (2020) determined the origin and source of the Campylobacter water contamination 

by using DNA-based methods, such as quantitative PCR, as well as quantitative microbial source 

tracking using genetic markers. They highlighted a 100% zoogenic contamination, where the test 

displayed 69% coming from horses, 6% from ruminants, and 25% from other animals (e.g wildlife). 

Two transport routes through the defective water tank were suggested. The first one was that 
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horses defecated on the hill over the pool cave and their faeces were washed down directly to the 

crack. The second one could be the scattering of horses faeces by other animals directly into the 

pool as openings between the wall and the ground were identified (Paruch et al., 2020). The whole 

process was composed of several steps. Considering a MALDI-TOF single mass spectrum approach 

to identify the microbial contaminant at the species level, determine the genetic diversity and 

potentially track the source of the contamination, could have been faster giving the possibility to 

undertaken pre-actions with local regulatory agencies (e.g. expansion or creation of groundwater 

protection zone). While in theory, the faster the information is known, the faster solutions and 

actions could be carried out to contain the contamination, in reality decision making is a long 

process including several stakeholders. In the end, while protein mass spectra could be investigated 

for source tracking, it will mostly be used as a complementary information for surveillance, whereas 

WGS will remain the reference method for decision making. Therefore, such approach might be 

worth exploring to assess MALDI-TOF MS as an utmost tool for a fast and complete screening of 

isolates. At the time of writing this dissertation, no reports investigated the use of ML and on 

MALDI-TOF protein profile for bacterial source attribution.  

To conclude on the subtyping part, work findings underlined that protein released during 

protein extraction and detected in the 2-20 kDa range could displayed Campylobacter genetic 

diversity in addition to ciprofloxacin and tetracycline resistance. Additionally, protein fingerprints 

generated by MALDI-TOF MS combined to a prediction approach might be relevant to source track 

bacterial contamination. However, further work needs to be addressed in the case of 

Campylobacter spp. Overall, a single spectrum based on bacterial expressed protein could be used 

for species identification, AMR screening and potentially as a complete pre-screening for daily 

surveillance, including genetic diversity and source attribution after further analysis. 

3 A fresh look on rapid mass spectra-based diagnostics tests: outlook and 

challenges 

In this final section, MALDI-TOF protein mass spectra as a key tool for the establishment of a 

“One-fit all” screening  method in human and veterinary Campylobacter’s diagnostics will be 

discussed in relation to the current diagnostic market and its emerging technologies, including a 

look at the challenges and prerequisites. 

        3.1 The emphasis of biomarkers: characterization and validation  

3.1.1 Characterization 

All along the project, a crosscut objective was to determine if identified biomarkers, based 

on protein expression, were linkable to known biological mechanisms related to AMR or genetic 
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diversity of Campylobacter. As a reminder, a biomarker could be defined in our case as a MALDI-

TOF MS protein peak which could be an indicator of normal biological processes or pathogenic 

processes (Hunter et al., 2010). By using the online Uniprot database, putative biomarkers linked 

to (1) AMR mechanisms and (2) population structure, i.e. variation in the genes found within group 

of individuals and changes in allele frequency, were identified for Campylobacter. On the one hand, 

biomarkers putatively associated to fluoroquinolones, aminoglycosides and tetracyclines 

resistances were identified. The one for aminoglycosides at 3257.41 Da, i.e. GCN5-related N-

acetyltransferase fragment, and tetracyclines at 4365.25 Da, i.e. 50S ribosomal protein L36 may 

potentially be linked to biological known mechanisms of Campylobacter. Moreover, the first 

biomarker identified for fluoroquinolones (6436.22 Da) was assimilated at a predicted (i.e. in 

Uniprot protein predicted refers to entries without evidence at protein, transcript or homology 

level) DNA methyltransferase in H. pylori (former C. pylori). While DNA methylation was suggested 

to be capable to induce fluoroquinolones resistance, such mechanisms was never suggested for 

Campylobacter spp. (Chapter 3) (Yugendran and Harish, 2016). On the other hand, the single 

biomarker represented as a shift between the 4159.99 Da and 4174.19 Da peaks, suggested as the 

flaA gene, were able to distinguish ST-2254 and ST-6175. Nevertheless, interpretation on the 

biological role of these features may be cautiously interpreted as no peptide sequencing was 

carried out.  

Griffin et al. (2012) identified a specific protein peak at 5092 Da after examining a set of 

vancomycin-resistant Enterococcus faecium showing a sensitivity of 92.4% and specificity of 85.2% 

after internal validation (Griffin et al., 2012). However, a recent study investigated the suitability of 

this approach (Brackmann et al., 2020). After identifying the same peak than Griffin and colleagues, 

authors determined the protein sequence using a tandem mass spectrometry. The peak was 

identified as a hiracin protein (HirJM79), a sec-dependent bacteriocin. Then they investigated the 

usability of this protein as a biomarker for VanB-type vancomycin-resistant E. faecium by analysing 

available vanB- and hirJM79 encoding genome. Interestingly both genes co-occurred in several 

strains, yielding a predictive power of 36%. They concluded  that the hiracin gene could not be 

directly linked to the presence of a VanB-type E. faecium and hence cannot be used routinely in 

diagnostics (Brackmann et al., 2020). Such study underlines the need to properly characterize 

MALDI-TOF MS biomarkers to completely understand information hidden behind the protein 

fingerprint. Additionally, further exploration has been conducted concerning the previous 

identified flaA biomarker. Two extra isolates, identified in 2006 and 2010, classified as belonging to 

the CC-257 and ST-257 harbouring the flaA16 allele were analysed by MALDI-TOF MS. Interestingly 

a peak at 4174 Da was also identified, like for isolates of the ST-2254. While the peak shift was 
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thought to be associated with ST-2254 (CC-257), it might actually be possibly linked either to the 

flagellin itself or to the CC-257. As mentioned by Brackmann et al. (2020), deeper proteomic 

analysis, notably peptide sequencing, may be performed to ensure the usability of a biomarker. 

3.1.2 Validation 

There are important requirements to further explore pre-analytical steps and to develop 

standardized MALDI-TOF MS protocols. Even more important will be the transfer of identified and 

characterized predictive biomarkers to diagnostics companies to turn them into in vitro diagnostics 

tests and potentially “companion diagnostics” (CDx) for a personalized medicine. CDx is defined by 

the European medicines agency (EMA) as “an IVD test that supports the safe and effective use of a 

specific medicinal product, by identifying patients that are suitable or unsuitable for treatment”. 

They are mainly developed in oncology but its development in infectious disease treatment is still 

rare (Zhou et al., 2018; Dailey et al., 2020). During the presented research work, putative predictive 

biomarkers related to Campylobacter spp. AMR and population genetics were identified based on 

a machine learning approach. AMR biomarkers could predict if a specific antimicrobial will be 

suitable for the treatment of patients. Currently there are numerous microbial biomarkers which 

have been described in the literature (Zautner et al., 2013; Camoez et al., 2016; Emele et al., 2019; 

Feucherolles et al., 2019). Nevertheless, only few of them are now available under commercial 

solutions for IVD or research use only purposes (Bruker, 2019b). This could be explained by the fact 

that the path between the biomarker discovery and validation is full of pitfalls. Firstly, biomarker 

development is a long process divided in five steps (Figure 8.2): 

 

 

Figure 8.2. Typical biomarker discovery and validation workflow (adapted from Marshall (2020)) 

 



129 | P a g e  
 

 the discovery, qualification, verification, validation and the marketing (Lee, 2009; Research 

Advocacy Network, 2013; Karlsson et al., 2020).  

The discovery part is the unbiased process of identifying specific protein or peptides in e.g. 

bacterial cultures, employing binary comparison between susceptible and resistant isolates (Rifai 

et al., 2006). Highlighted protein consistency, i.e. the biomarker must be found to distinguish 

resistant to susceptible isolate using different methods. In the verification and validation stage, the 

analysis is carried out on a larger number of isolates from various sources to evaluate genetic or 

biological variation in the population tested. This allows computing the sensitivity and specificity of 

candidates. Biomarkers performing well during the previous steps may be selected for a potential 

commercialisation for clinical use and hence go through regulatory pathway to have the clearance 

of the US Food and drug administration (FDA) or EMA (Rifai et al., 2006; Research Advocacy 

Network, 2013; Ritzhaupt et al., 2020). Similarly to our research work, the majority of studies 

stopped at the discovery stage and in-house solution were developed (Zautner et al., 2016). For 

example, Zautner et al. (2016) published in The Journal of Visualized Experiments a step-by-step 

and in-house protocol to proteo-type C. jejuni ssp. doylei based on allelic isoforms biomarkers 

identified during a previous study (Zautner et al., 2013, 2016). Secondly, while in some cases protein 

biomarker candidates may be not as performant as expected, development of diagnostic 

biomarkers requires tremendous investments of time. As well, the establishment of benefits and 

drawbacks in the context of a clinical use, i.e. clinical utility, and compliance regarding regulatory 

administration (e.g. FDA and EMA) remain fastidious, uncertain and costly (Rifai et al., 2006). The 

fondness for straightforward and high-throughput omics technologies, including proteomics, 

combined to artificial intelligence to address the current global microbial public health issues, such 

as septicaemia or AMR, will hopefully reverse the trend in the coming years.  

3.2 The emergence of new applicable technologies in diagnostics 

3.2.1 Fourier transform infrared spectroscopy (FT-IR) 

Fourier transform infrared spectroscopy (FT-IR) is a non-destructive biophysical method 

conventionally used in chemistry to characterize molecules of different samples (Novais and Peixe, 

2021). Such characterization is possible by observing changes in vibrational mode of chemicals 

bonds in a sample after the absorption of the IR (Novais and Peixe, 2021). In a case of a 

microbiological sample, IR interactions with cells component such as proteins, lipids, nucleic acid 

and carbohydrates, result in a spectrum expressing abundance of the different group at different 

wavenumbers (Figure 8.3) (Novais and Peixe, 2021).  
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FT-IR was firstly attempted for analysing microorganisms in the 1950s (Randall et al., 1951). 

However, It is only in the 1990s that FT-IR started to be mainly used in microbiology for bacterial 

discrimination at the genus, species  and even strain level (Wenning and Scherer, 2013; Lasch and 

Naumann, 2015). In the case of Campylobacter spp. Mouwen et al. (2006) successfully used 

supervised machine learning algorithms to analyse Campylobacter infrared spectral data (Mouwen 

et al., 2006). Similar to MALDI-TOF MS, cluster analysis based on biochemical Campylobacter 

fingerprints showed a differentiation between different species, which was in agreement with 16S 

rRNA based phylogenetic tree. (Muhamadali et al., 2016). Josefsen et al. (2012) compared the 

discriminatory power of fla Short Variable Region sequencing-based method (SVR) to FT-IR on C. 

jejuni strains. Both techniques showed a high degree of congruence, by assigning isolates to similar 

cluster  

 
Figure 8.3. Klebsiella pneumoniae Fourier Transform infrared spectrum (FT-IR) (Adapted from Novais et al. 

(2019)) 

 

structures (Josefsen et al., 2012). Therefore, FT-IR might be suitable for the bacterial typing for large 

numbers of strains in the same manner as MALDI-TOF MS was suggested in the present research 

work. Nonetheless, due to inaccuracy of bacterial classification systems at that time (e.g. scarcity 

of performant typing methods), lack of standardised protocols and databases, as well as the 

development of DNA-based methods in the 1990s, FT-IR was dropped out. Additionally, at this time 

such methods were complicated and time-consuming (Novais and Peixe, 2021). Nevertheless, the 
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culmination of WGS resulted in bacterial taxonomy improvement, bringing FT-IR to the forefront of 

microbial diagnosis (Novais and Peixe, 2021). 

The renewal of interest of FT-IR over the last five years could be seen on the current 

analytical market. In 2017, Bruker Daltonics introduced the bench-top IR Biotyper® (IRBT). It is an 

automated system for microorganisms typing based on FT-IR technology. During the 31st European 

Congress of Clinical Microbiology and Infectious Disease, the company launched the IRBT®3.1 

software, including artificial neural network (ANN) machine learning algorithm, for strain typing for 

hospital hygiene management (Bruker, 2021a). Therefore, manufacturers such as Bruker are signing 

up machine learning as a concrete approach for microbial routine diagnostics. IRBT was used for 

the microbial typing of typhoid and paratyphoid fever-associated Salmonella isolates using an 

automated classifier using a ANN model (Cordovana et al., 2021). Classifier accuracy ranges from 

87.0% to 99.9% for the different strains. Authors underline FT-IR as a fast, cost-effective and reliable 

technique as a suitable alternative to conventional approaches for surveillance and diagnostic 

purposes.  

While IRBT is suggested as comparable to reference DNA-based molecular methods (e.g. 

MLST, PFGE and WGS) often considered as time consuming and demanding in resources, such 

method could also provide solutions to some MALDI-TOF MS limitations (Hu et al., 2021). As 

mentioned in the Chapter 2 of the introduction part, it is the incapacity of the protein-based MALDI-

TOF MS to distinguish specific species within bacterial complex (e.g. Mycobacterium tuberculosis 

complex). In the case of Enterobacter cloacae complex, the distinction between E. cloacae and 

other closely related species and subspecies are challenging while using MALDI-TOF MS as they are 

genotypically close and the taxonomy of the genus is still under debate (e.g. Enterobacter 

aerogenes suggested to be reclassified as Klebsiella)(Davin-Regli et al., 2019). Two studies explored 

IRBT systems for the discrimination of species within the E. cloacae complex (Vogt et al., 2019; 

Candela et al., 2021). Vogt et al. (2019) demonstrated that with an ANN trained on FT-IR spectra, it 

improved the recognition of close isolates. Furthermore, authors investigated strains from an E. 

cloacae complex outbreak and obtained fast typing results confirmed by WGS. Candela et al. (2021) 

reported in a pre-print the rapid and accurate discrimination of species within the Enterobacter 

cloacae complex using MALDI-TOF MS and FT-IR coupled with ML tools (Candela et al., 2021). 

However, while FT-IR enabled differentiation between E. hormaechei from non-E. hormaechei, the 

distinction within the non-E. hormaechei was difficult (62.7% of correct identification) (Candela et 

al., 2021). 
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LikeMALDI-TOF MS, FT-IR is an attractive technology due to its high-throughput, time- and 

cost-efficient aspect for bacterial typing. Therefore, development of FT-IR in diagnostics seems to 

be promising for real-time surveillance and outbreak analysis. 

3.2.2 Mass spectrometry based Lipidomics 

 Lipids are highly abundant in microbial cells making them an interesting molecular 

component to explore by using MALDI-TOF MS. Over the last decade, reports underlined the 

successful application of MALDI-TOF MS based lipidomics for bacterial identification based on lipids 

fingerprints (Voorhees et al., 2013; Larrouy-Maumus and Puzo, 2015; Leung et al., 2017; Jia Khor et 

al., 2021). Leung et al. (2017) reported the possible identification of ESKAPE pathogens 

(Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, 

Pseudomonas aeruginosa, and Enterobacter species) based on a library of glycolipid mass spectra, 

which might provide an alternative to current diagnostics methods. However, it is only over the 

past few years that its applicability in diagnostics was put in the spotlight. 

On the one hand, the current study investigated protein profiles generated by a benchtop 

MALDI-TOF MS in a linear positive ion mode. On the other hand, to study lipids a negative ion mode 

is required. In 2019 Bruker Daltonics introduced the MALDI Biotyper Sirius benchtop system at the 

American Society for Microbiology conference (Bruker, 2019a). The apparatus combines a negative 

and positive ion mode enabling rapid microbial identification as well as analysis of lipids for research 

purposes. Research and development of such technology was based on pioneering studies (Larrouy-

Maumus et al., 2016; Dortet et al., 2018a). Initially Larrout-Maumus and al. (2016) reported a 

method using 2, 5-dihydroxybenzoic acid matrix for the direct detection of lipid A from intact Gram-

negative bacteria by investigating spectrum between 1000 and 2200 m/z. From it, Dortet et al. 

(2018) developed a MALDI-TOF MS based method, so-called MALDIxin test, enabling the detection 

of polymyxin resistance linked to modification of the lipid A in E. coli. The test was developed on 

the fact that polymyxin resistance is associated with addition of phosphoethanolamine (pETN) on 

the phosphate group at position 4’ or 1 of lipid A, resulting in an increase of 123 Da (Figure 8.4).  
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Figure 8.4. A. Lipid A modifications caused either by chromosome encoded determinant or enzymes. B. 
Results of the MALDIxin test on polymyxin-susceptible and -resistant E. coli (Adapted from  Dortet et al. 

(2018a)) 

 

Negative mass spectra were scanned between 1600 and 2200 m/z. The major peak at 

1796.2 was known to be the native lipid A and the 1919.2 m/z one corresponded at the addition of 

the pETN on native lipid A. Additionally, a third peak at 1821.2 m/z appeared to be a specific marker 

of MCR-like enzymes (Dortet et al., 2018a). Therefore, by the identification of these specific peaks, 

MALDIxin test managed to reliably and rapidly identify plasmid-encoded pETN transferase-

producing strains. Since several original articles were published assessing the MALDI-TOF MS 

technology as an utmost tool for rapid diagnosis of AMR spectra (Dortet et al., 2018b, 2020; Furniss 

et al., 2019). To make such workflow closer to its potential future integration in diagnostics settings, 

a new RUO Bruker kit of lipid extraction, MBT Lipid XtractTM kit was developed and launched at the 

occasion of the 31st European Congress of Clinical Microbiology and Infectious Disease (Bruker, 

2021a). This kit allows the sample preparation of the Lipid A molecule and related modification for 

colistin resistance detection within less than 15 min (Bruker, 2021b). Accompanying this new fast 

kit, the MBT LipidART software module was developed to identify mass differences related or not 

to the resistance induced by the Lipid A modification (Bruker, 2021b). 

Likewise, FT-IR, MS-based lipidomics might overcome limitations encountered with MS-

based proteomics. Indeed, protein profiling demonstrated limitations for the closely related species 

and subspecies (Kostrzewa et al., 2019). As previously mentioned, MALDI-TOF MS is unable to 

distinguish the Mycobacterium tuberculosis complex into specific species (Saleeb et al., 2011; 

A. B. 
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Neuschlova et al., 2017; Akyar et al., 2018; Body et al., 2018). It is known that specific lipids such as 

sulphoglycolipids or polyacyltrehaloses are specific to the Mycobacterium tuberculosis complex, 

while C-mycoside glycopeptidolipids are only found in non-tuberculous mycobacteria (Gonzalo et 

al., 2021). Therefore, a deeper investigation of mycobacterial lipids might be relevant for the rapid 

discrimination of Mycobacterium tuberculosis complex species. Larrouy-Maumus and Puzo (2015) 

analysed mycobacterial envelope lipid fingerprints from direct MALDI-TOF MS analysis of intact 

cells. Interestingly different lipid profiles were obtained for M. tuberculosis lineages (Larrouy-

Maumus and Puzo, 2015). Another study reported high performances for the identification of 

isolates belonging to the  M. tuberculosis complex (96.7%) and non-tuberculous mycobacteria 

(91.7%) based on lipid fingerprint generated by MALDI-TOF MS (Gonzalo et al., 2021). Along the 

same line, species-specific lipid profiles were explored for the rapidly discriminate mycobacteria 

within the Mycobacterium abscessus complex (Jia Khor et al., 2021). Overall, the development of 

simple workflow to identify Mycobacterium spp. and screen AMR using time- and cost-efficient MS-

based lipidomics could be a significant advantage for clinical microbiology laboratories for decision 

making improving patient outcomes. 

 To date, no study reported the use of lipidomics based MALDI-TOF MS for Campylobacter. 

Therefore, it opens the field of possibilities to create new research projects. 

Lipooligosaccharide (LOS), i.e. glycopeptides including core oligosaccharide and lipid A, is 

considered to be implied in Guillain-Barré syndrome induced by Campylobacter (Nachamkin et al., 

2002; Moran, 2010). Mimicry between LOS and gangliosides presented on human peripheral nerve 

drives immune response, resulting in immune-mediated nerve damages (Yuki et al., 2004). 

However, not all Campylobacter synthetize ganglioside mimics. Currently identification of high-risk 

strains for Guillain-Barré syndrome is carried out by the genomic analysis of the LOS biosynthesis 

locus. Several LOS locus classes exist from A to W, where LOS A, B and C types are highly dominant 

in Guillain-Barré-induced C. jejuni population (Hameed et al., 2020; Zang et al., 2021). Interestingly, 

several studies reported concordance between ST and LOS classes (Islam et al., 2009; Ellström et 

al., 2013). Islam et al. (2009) reported concordance between LOS B class and ST-403 complex. To 

echo this present study, where it was suggested that protein based MALDI-TOF mass spectra were 

concordant to genomic typing tools, it might be worth investigating lipid-based mass spectra to 

swiftly determine LOS classes and hence highlighted high-risk strains for Guillain-Barré syndrome 

in routine diagnostics. 

 While, the microbial diagnostics market seems attentive to the future of this technology, 

reports already acknowledge Bruker MBT Sirius as the next generation clinical microbiology system. 
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3.2.3 Shotgun proteomics 

Currently, there are remaining questions concerning the use of proteomic top-down approach 

in microbiology such as whole-cell MALDI-TOF MS (Grenga et al., 2019). To quote some of them: 

the discriminative power for strain epidemiology, addressed in this this study for C. jejuni, the 

possibility to identify mixtures of organisms, or the possibility to directly identify microorganisms 

from clinical samples (e.g. stools) (Grenga et al., 2019). MALDI-TOF MS applied in routine 

laboratories is based on a culture step of pure bacterial colonies, even if research reports 

highlighted the potential to identify bacteria from complex polymicrobial mixtures (see Chapter 2) 

(Mahé et al., 2014; Yang et al., 2018; Mörtelmaier et al., 2019).  

However, by using a proteomic independent culture approach, such as bottom-up proteomics 

also referred as shotgun proteomics, such issue might be overcome. Briefly, shotgun proteomics 

consists in a first place of the proteolysis of proteins isolated from biological samples, i.e. clinical 

samples (e.g. stools) (Gouveia et al., 2020). Then most abundant generated peptides are analysed 

and sequenced by a high-resolution tandem mass spectrometer (MS/MS) coupled to a 

chromatography system (Figure 8.5). Then the numerous MS/MS spectra obtained could be 

assigned to peptide sequences using genome-derived protein sequences databases (e.g. NCBInr) 

(Pible and Armengaud, 2015). In comparison to targeted proteomics such as MALDI-TOF MS, 

shotgun proteomics enables to obtain a general cellular metabolic view on samples without an a 

priori identification of peptides (Armengaud, 2020). It enables the identification and the 

quantification of unique or polymicrobial mixtures (Hayoun et al., 2020; Pible et al., 2020). Pible et 

al. (2020) developed a new method, so-called phylopeptidomics, which evaluates the biomass 

contribution based on the signature of peptide sequences shared with all other organisms. They 

evaluated their new tool to estimate the abundance used in artificial mixture of closely related 

pathogens, i.e. Salmonella bongori and Shigella flexneri, and complex microbiota models. 

Concerning Salmonella and Shigella  
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Figure 8.5. Shotgun proteomics and tandem mass spectrometry workflow (Adapted from Armengaud (2013) 

 

mixtures, two distinct phylopeptidomics signatures were obtained as well as a linear response 

with a performant estimation of the bacterial ratio (Pible et al., 2020). Finally, the same observation 

was made for two data sets of 10 and 22 microorganisms, including Gram-positive and -negative 

bacteria, fungi, archaea and phage viruses. Therefore, such methods could be relevant to rapidly 

and directly screen clinical polymicrobial mixtures in diagnostics (Kondori et al., 2021). Recently, 

Chen et al. (2020) explored shotgun liquid chromatography-MS/MS to screen AMR determinants in 

C. jejuni isolates using the Comprehensive Antibiotic Resistance Database (CARD) (Chen et al., 

2020). Interestingly, three isolates harboured the blaOXA-61 gene (occurring β-lactams resistance), 

but only one isolate presented a higher OXA-61 protein abundance. This was consistent with an 

elevated ampicillin MIC. As detailed in Chapter 3, the single nucleotide G-T transversion in the 

blaOXA-61-like promoter area is associated with high levels of ampicillin resistance, due to the 

overproduction of OXA-61 proteins (Ocejo et al., 2021). After genomic investigation, Chen et al. 

(2020) observed this specific mutation in the related isolate. They also underlined the fact that 

neither bioinformatics tools like ResFinder or databases such as CARD give such information, which 

could lead to wrong AMR predictions (Chen et al., 2020). In summary, their proof-of-concept 

suggested that despite the fact that phenotypic antibiograms are reference methods and WGS is 
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faster, whole-proteome sequencing could be relevant for AMR predictions and provide additional 

information to in silico genomics. Likewise, during the current study, WGS of the AMR isolates 

panels were also submitted to the ResFinder online platform to compare phenotypic and molecular 

antibiograms (data not shown). Over the 340 isolates analysed, 148 were phenotypically resistant 

to ampicillin. However, Resfinder detected blaOXA genes in 279 isolates resulting in in silico predicted 

β-lactams resistance phenotype. It might be possible by investigating the relative protein 

abundance of our isolates to obtain the same scheme than Chen et al. (2020). 

Overall shotgun proteomics could obtain the same information than MALDI-TOF MS based-

protein or -lipids, and FT-IR all together combined, with a theoretically greater discriminatory power 

(Grenga et al., 2019). However, it presents some obstacles for its implementation in laboratories 

routine. The major constrains are that such methods are time-consuming, could be laborious and 

require expertise for sample preparation, analysis and data processing (Grenga et al., 2019). Beside 

the fact that high-resolution MS/MS apparats could be  expensive,  there is an significant need of 

accurate and high quality genomic sequence databases with a stable taxonomy (Pible and 

Armengaud, 2015). The presence of errors in DNA sequences leads to erroneous protein sequences, 

which results in false peptides identification and quantification (Pible and Armengaud, 2015). In a 

study, over 486 polypeptides identified, 64 were originally wrongly annotated (Christie-Oleza et al., 

2012). Errors in sample handling (e.g. initial culture contamination) and taxonomic characterization 

(e.g. 16S RNA sequence anomalies) might be as well a source of confusion in meta-omics analysis 

(Ashelford et al., 2005; Shrestha et al., 2013; Pible and Armengaud, 2015). Finally, while 

bioinformatics tools (e.g. DeconSeq) exist to identify and remove sequence contaminations from 

genomic and metagenomics datasets, cross-contamination among genome sequences is still a 

problem (Schmieder and Edwards, 2011; Pible and Armengaud, 2015). For example, Wolbochia 

genomes were identified in several Drosophilia genomesn (Salzberg et al., 2005). More recently, 

Pible and Amengaud (2015) investigated the cucumber genome because it was systematically 

appearing in metaproteomic analysis comprising Enterobacter spp., initially present in plants roots 

for nitrogen fixation. After investigation, they concluded that these cross-contaminations probably 

came from the preparation of DNA extraction priori genome sequencing. 

  Despite the previous introduced limitations, shotgun proteomics seems to be a promising 

high-throughput tool to rapidly identify at the species level, quantify, subtype, AMR screening 

polymicrobial mixtures from the three life tree branches from complex matrices (e.g. blood, urine 

or stool).  
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3.3 Ongoing digitalization of microbiology laboratories 

Over the last decades, introduction of (meta)omics technologies in life sciences 

transcended routine laboratories, resulting into an unavoidable digitalization of these latter. 

Digitalization of laboratories could be defined as the changes associated with the use of digital 

technologies, such as DNA sequencing, in laboratories. AI and digital technologies kindle high 

interest for healthcare, giving birth to a digital microbiology (Egli et al., 2020). Egli et al. (2020) 

defined digital microbiology as “the usage of big data, ML based algorithms, and other digital 

technologies in the diagnostic process of clinical microbiology”. Development and utilization of 

(meta)omics, bioinformatics tool as well as ML based approaches in microbiology enhance to bring 

clinical microbiology to a new level (Krüger et al., 2020).  

In the context of the global AMR crisis, identification of multidrug resistant pathogens or 

design of rapid diagnostics tests for personalised medicine might be at hand in this digital era. While 

reference methods for AMR identification in routine diagnostics is phenotypic antibiograms, i.e. 

disk diffusion or microdilution antibiogram, new meta(omics) tools are on their way to be 

implemented for additional insights of AMR diagnostic. Currently, the development of online 

platforms to investigate genomic and metagenomic datasets is flourishing. For example, De Nies et 

al. (2021) developed the freely available PathoFact pipeline (https://pathofact.lcsb.uni.lu) for the 

prediction of virulence factors, bacterial toxins and AMR genes from metagenomics datasets with 

high accuracy (de Nies et al., 2021). As already mentioned in the manuscript, the EFSA will request 

the use of WGS for the harmonization of the monitoring of antimicrobial resistances in food‐

producing animals and derived meat by 2026 (EFSA and ECDC, 2020). As a support to analyses, this 

genomics data could be either investigated by online open access platform such as ResFinder 4.0, 

for identification of known AMR genes, or the implementation of ML workflow, for the estimation 

of e.g. minimum inhibitory concentrations (Nguyen et al., 2019; Bortolaia et al., 2020). Additionally, 

the wide range of possibilities offered by the recent fusion of ML and protein expression-based 

method, such as MALDI-TOF MS, in clinical microbiology will play a key role in the fast screening of 

AMR (Egli, 2020; Egli et al., 2020). As highlighted by Egli (2020), such advances in data-driven 

technologies in medicine already changed and will considerably change analytical workflow in 

diagnostics laboratories (Egli, 2020).  

Nevertheless, there is still a stony way before their full implementation as reference 

methods in routine settings. Indeed, as alluded to in the introduction part, the application of such 

powered-omics methods in clinical laboratory requires sufficient data storage infrastructure, 

bioinformatical expertise to support microbiologists and infectious diseases specialists, and 

standardized data format (Egli, 2020). Indeed, the ever-exponential accumulation of these daily 

https://pathofact.lcsb.uni.lu/
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gigabytes of data, including MALDI-TOF mass spectra, sequencing data, real-time PCR or serological 

results, need to be stored for quality controls, legal reasons and researches (Egli et al., 2020). Egli 

et al. (2020) summarized the need of data collected through healthcare data warehouse, which is 

centralized repository for electronic health records and clinical data, as well as the need of large 

structured, interoperable and interconnected datasets. Along the same line, they underlined the 

need of further standardization and annotation of clinical data. 

In parallel to data storage, data management and security, private issues are also important 

to consider (Galetsi et al., 2019). Due to the rapid evolution of form, transfer, sharing of data, this 

topic is the centre of attention. A study reported 1042 data safety breaches involving sensitive 

demographic and financial information enabling the theft of identity (Jiang and Bai, 2020). Enforced 

in May 2018, the General Data Protection Regulation (GDPR) aims to provide an ensemble of data 

protection laws in the EU. Therefore, the GDPR has a direct impact on medical data science 

(Rumbold and Pierscionek, 2017). The GDPR defined medical data as “personal data related to the 

physical or mental health of a natural person, including the provision of health care services, which 

reveal information about his or her health status.” Currently, pseudonymized data is considered as 

personal data and will require consent or authorization (Rumbold and Pierscionek, 2017). However, 

ML algorithms are “data-hungry” and require large datasets to learn. In some cases, AI in medicine 

encounters dataset limitation due to the lack of standardization of data ensuring patient privacy 

(Kaissis et al., 2020). Therefore, for long-term development of accurate ML, there is an important 

need to assure patient privacy while promoting scientific research in order to improve patient 

management and outcomes (Kaissis et al., 2020).    

 Finally, while ML decision-making algorithms would probably improve diagnosis and 

“physician workflow”, there are still several uncertainties regarding its transparency. Indeed, 

understandability of model prediction from both patient and clinician is important for a long term 

success of these methods for moral, scientific and legal reasons (Watson et al., 2019). However, 

despite the will of tech companies to make ML algorithms more explainable, ML opacity, often 

referred to as “black box”, is well known for top performing algorithms such as deep neural network 

(Watson et al., 2019; Grote and Berens, 2020). It is feared that superficial understanding of black 

box predictions could prohibit decision makers, here clinicians, to build knowledge on phenomena 

or disease, which will consequently make them lose their ability to make decisions (Newell and 

Marabelli, 2015; Galetsi et al., 2019). Another interesting fact is the ethical aspect of such decision-

making algorithms. Grote and Berens (2020) extensively described this pitfall in their report entitled 

“On the ethics of algorithmics decision-making in health care”. Briefly, clinicians are normally being 

held accountable for their decisions. However, in the case when the decision is made by the 
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algorithm, how much blame should the clinician receive? As well, what if there is a disagreement 

between the machine and the clinician on the results outcome? Authors summed up that ML 

algorithms might drive to a mechanisms of “defensive medicine” among clinicians (Grote and 

Berens, 2020). Toker et al. (2004) defined defensive medicine as “physician’s deviation from what 

is considered to be good practice to prevent complaints from patients or their families” (Toker et 

al., 2004). 

  

Therefore, by gaining a better understanding of microbial cells and a better explainable and 

transparency of ML algorithms, it will bring microbiology to an all-new level. Therefore, 

combination of omics technologies, bioinformatics and artificial intelligence might be the new black 

to develop fast, accurate, personalised and complete screening strategies for tailor-made 

treatment in routine diagnostics. 
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CHAPTER 9 

Conclusions  

 

AMR is considered as a global long-lasting challenge. If no action is taken, AMR-related 

diseases could give a rise to up to 10 million deaths each year by 2050 and 24 million people might 

end into extreme poverty, mainly in low-income countries (O’Neill, 2016; IACG, 2019). One of the 

numerous solutions to curb AMR is to develop rapid diagnostics tests. Indeed, by detecting earlier 

AMR, an adapted antibiotherapy might be administrated promptly, shifting from empirical to 

evidence-based practices, conserving effectiveness of certain antimicrobials. Since 2005, 

Campylobacter is considered as the major cause of foodborne gastrointestinal diseases worldwide. 

As well, ever-growing Campylobacter’s resistances to critically important antibiotics, such as 

quinolones or macrolides, both used for human and veterinary therapeutic purposes, are 

particularly of concern. Indeed, around 61% and up to 86.7% for both C. coli and C. jejuni isolates 

from human and poultry respectively, were resistant to fluroquinolones (EFSA and ECDC, 2021b). 

Along the same line, it is known that an occurrence of resistance to fluoroquinolones exists in C. 

jejuni and C. coli from animals, as well as the occurrence of resistance in C. jejuni and C. coli from 

human infections (ECDC et al., 2017). Therefore, the increase of fluroquinolones resistance among 

Campylobacter in food-producing animals had limited treatment options for human patients (CDC, 

2019). While protein based MALDI-TOF MS was partially investigated for the typing of several 

Campylobacter species, identification of resistances by MALDI-TOF MS within foodborne pathogens 

is poorly documented. 

During the presented research work, different key findings were highlighted. The first one 

was that MALDI-TOF MS protein profiles combined to ML displayed promising results for the 

prediction of the susceptibility and the ciprofloxacin and tetracycline Campylobacter’s resistances. 

Additionally, MALDI-TOF MS C. jejuni protein clusters were highly concordant to conventional DNA-

based typing methods, such as MLST and cgMLST, when a similarity cut-off of 94% was applied. As 

well, a similar discriminatory power between 2-20 kDa expressed protein and cgMLST profiles was 

underlined. Finally, putative biomarkers either linked to known or unknown AMR mechanisms, or 

genetic structural population of Campylobacter were identified. 

Through this work, the following questions were investigated: could conserved ribosomal 

and surface protein profiles reflect the AMR profile of Campylobacter spp.? Could the same protein 

profiles be used to have an insight on the genetic diversity and population structure of 

Campylobacter spp.? If it was the case for both parameters, how could it be explained? According 

to the previous paragraph, our work findings suggested that proteins involved in the acquisition of 
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MALDI-TOF mass spectra could reflect the AMR profile of certain Campylobacter’s resistances, such 

as ciprofloxacin and tetracycline in Campylobacter spp. Likewise, results underlined that protein 

detected in the 2-20 kDa range could display Campylobacter genetic diversity. It seems that 

according to Campylobacter characteristics, i.e. AMR or cgMLST profiles, the presence of certain 

peaks could be linked to specific known biological mechanisms (e.g. protein synthesis inhibition)  

Such suggestions can be put into perspective with current diagnostics needs. On the one 

hand, the combination of MALDI-TOF MS protein spectra and ML approach could be a useful 

diagnostics tool for a fast and precise AMR screening of relevant foodborne pathogens, such as C. 

coli and C. jejuni. While campylobacteriosis is mainly self-limiting and does not require specific 

antibiotherapy, such a combination strategy may aid to swiftly prescribe a definitive antimicrobial 

therapy and therefore limit an empirical broad-spectrum strategy for other pathogens. This work 

could serve as a proof-of-concept, and future research should include other important foodborne 

pathogens such as Salmonella spp. On the other hand, high‐throughput and cost‐efficient MALDI‐

TOF MS could be an efficient pre‐screening tool to relevant isolates that warrants further 

sequencing. In fact, due to its status as the first bacterial human zoonosis, there are an important 

number of isolates to sequence, which is the main drawback of Campylobacter surveillance. By 

coupling WGS with MS supported by ML, it could increase typing ability and therefore, elucidate 

genotypes circulating in human infections, animal production and environment. In the end, MALDI-

TOF MS protein-based method coupled with ML turned to be the perfect candidate for a 

“universal”, accurate, and early surveillance and integration of routine laboratories. Through a 

single protein mass spectrum analysis of several tests, i.e. species identification, antimicrobial 

susceptibility screening and the assessment of genetic diversity, could be summed up into one 

examination. Therefore, MALDI-TOF MS protein-based seems to be a promising and utmost “One-

fit all” diagnostics tool. 
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Appendix 1 

Evaluating Different Storage Media for Identification of Taenia saginata 

Proglottids Using MALDI-TOF Mass Spectrometry 

 

While pursuing the current research project, close collaboration with the former employer, i.e. 

the University of Saarland, on the previous MALDI-TOF MS and parasites project was maintained. In 

this context, an original research article was published on the evaluation of liquid chromatography 

(LC)-MS grade water, sodium chloride solution, ethanol, and formalin as storage media for T. saginata 

proglottids for MALDI-TOF MS analysis*. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*This work was published: 

Wendel T, Feucherolles M, Rehner J, Poppert S, Utzinger J, Becker S, Sy I. Evaluating Different Storage 

Media for Identification of Taenia saginata Proglottids Using MALDI-TOF Mass Spectrometry. 

Microorganisms. 2021, 9(10), 2006. 
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Abstract: Taenia saginata is a helminth that can cause taeniasis in humans and cysticercosis in cattle.
A species-specific diagnosis and differentiation from related species (e.g., Taenia solium) is crucial
for individual patient management and disease control programs. Diagnostic stool microscopy
is limited by low sensitivity and does not allow discrimination between T. saginata and T. solium.
Molecular diagnostic approaches are not routinely available outside research laboratories. Recently,
matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS)
was proposed as a potentially suitable technique for species-specific helminth diagnosis. However,
standardized protocols and commercial databases for parasite identification are currently unavailable,
and pre-analytical factors have not yet been assessed. The purpose of this study was to employ
MALDI-TOF MS for the identification of T. saginata proglottids obtained from a human patient,
and to assess the effects of different sample storage media on the technique’s diagnostic accuracy.
We generated T. saginata-specific main spectral profiles and added them to an in-house database
for MALDI-TOF MS-based diagnosis of different helminths. Based on protein spectra, T. saginata
proglottids could be successfully differentiated from other helminths, as well as bacteria and fungi.
Additionally, we analyzed T. saginata proglottids stored in (i) LC–MS grade water; (ii) 0.45% sodium
chloride; (iii) 70% ethanol; and (iv) 37% formalin after 2, 4, 6, 8, 12, and 24 weeks of storage. MALDI-
TOF MS correctly identified 97.2–99.7% of samples stored in water, sodium chloride, and ethanol,
with log-score values ≥2.5, thus indicating reliable species identification. In contrast, no protein
spectra were obtained for samples stored in formalin. We conclude that MALDI-TOF-MS can be
successfully employed for the identification of T. saginata, and that water, sodium chloride, and
ethanol are equally effective storage solutions for prolonged periods of at least 24 weeks.

Keywords: cestodes; diagnosis; helminth infections; matrix-assisted laser desorption/ionization
time-of-flight (MALDI-TOF) mass spectrometry; neglected tropical diseases; taeniasis

1. Introduction

The beef tapeworm, Taenia saginata, is a zoonotic cestode that can cause taeniasis, an
intestinal infection in humans, and cysticercosis in bovines [1]. It is the most common and
most widely distributed Taenia species. While humans are the definitive host, cattle serve
as intermediate hosts for T. saginata. Taenia solium and Taenia asiatica are less frequently
occurring species, with T. solium being of particular clinical relevance, as it gives rise to
intestinal disease and the potentially fatal human (neuro-)cysticercosis [2]. Humans acquire
intestinal Taenia infection through the consumption of raw or undercooked meat of infected
animals. Intestinal taeniasis mainly causes mild and unspecific symptoms, such as weight
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loss and general malaise. More pronounced symptoms (e.g., diarrhea, abdominal pain, and
nausea) are less frequent [3]. Severe complications, such as appendicitis or gall bladder
perforation, have rarely been reported [4].

After the ingestion of infected bovine muscle tissue, a Taenia cysticercus develops
within the human host’s intestine into an adult worm during a prepatency period of
approximately 2 months, and produces eggs and gravid proglottids, which are shed with
the feces. In settings with poor sanitation, eggs can spread through water, wind, or simply
attach to vegetation. Cattle become infected by ingesting contaminated plants [5].

Taeniasis is considered a neglected tropical disease (NTD) [6]. In recent years, several
studies carried out by the European CystiNet network and others investigated the global
occurrence of taeniasis. It was found that Taenia tapeworms occur worldwide, and that T.
saginata is particularly frequent in East, Southeast, and South Asia [7]. In Europe, taeniasis
cases are reported in 12 out of 18 surveyed countries, with an estimated prevalence ranging
from 0.02 to 0.67% [1]. As taeniasis is associated with poor sanitation, low-income settings,
and understaffed meat inspectorates, the disease is also frequently reported from parts
of the Middle East, Africa [8], and Central and South America [9]. However, prevalence
estimates lack accuracy, as taeniasis is a non-notifiable disease in most countries, and as for
many NTDs, public health campaigns pay little attention to this disease [10]. In 2007, it
was estimated that at least 60 million people were infected with T. saginata [11]. However,
the global burden of taeniasis, as expressed in disability-adjusted life years (DALYs), has
yet to be determined [12].

The diagnosis of human taeniasis mainly relies on the direct visualization of proglot-
tids, or the microscopic detection of eggs in stool samples [4]. In research settings, other
methods are also used, such as stool-based polymerase chain reaction (PCR) assays or
copro-antigen enzyme-linked immunosorbent assay (ELISA) tests, which detect specific
secretory antigens in fecal samples [3]. However, these techniques have several limitations.
While the commonly employed microscopy can be rapidly performed and does not require
well-equipped laboratories, its sensitivity is low [4], and a species differentiation between
T. saginata and T. solium is only possible if proglottids are shed in the feces, because the eggs
of both species are indistinguishable [13]. The copro-antigen ELISA is characterized by a
relatively low specificity, as studies carried out on samples stemming from cattle reported
relatively high rates of cross-reactivity with related species of veterinary importance, such
as Taenia hydatigena and Taenia multiceps [14]. PCR-based assays allow highly sensitive
species identification, but are costly, rarely available outside research laboratories, and
require specific technical expertise. Hence, there is a need for simple-to-use, accurate
diagnostic methods for taeniasis, as the correct identification of Taenia infections at the
species level is an important requirement for clinical management and contact screening,
particularly in case of T. solium infections that pose the risk of human neurocysticerco-
sis [15].

Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spec-
trometry (MS) is an extensively validated diagnostic technique, which is nowadays rou-
tinely used in clinical microbiology laboratories for the species-specific diagnosis of bacteria
and fungi in high-income countries [16]. Recently, several studies also reported MALDI-
TOF MS, which analyzes pathogen-specific protein spectra to reach a specific diagnosis, as
a suitable method for the identification of parasites [13], including helminths (e.g., Fasciola
spp. [17], Trichinella spp. [18], and Anisakis spp. [19]). Besides high accuracy, the low cost
of reagents needed for MALDI-TOF analysis in comparison to reagents required for PCR
assays is a competitive advantage. However, there is uncertainty regarding the standard-
ization of MALDI-TOF analytical protocols, and the effects of pre-analytical factors need
to be elucidated. In this study, we utilized T. saginata proglottids to systematically assess
whether the use of different sample storage media or the duration of storage affect the
composition of the resulting protein spectra, and hence, the ability of MALDI-TOF MS to
reach species-specific identification.
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2. Materials and Methods
2.1. Ethics Statement

The T. saginata sample used in this study was obtained from an infected patient who
sought routine diagnostic work-up for suspected parasite infection at the Swiss Tropical
and Public Health Institute (Swiss TPH) in Basel, Switzerland. All procedures adhered to
local laws and regulations.

2.2. Sample Collection

T. saginata proglottids were collected by an experienced medical laboratory technician
from the stool sample of an infected patient at Swiss TPH in Basel. The specimen was
stored in a freezer at −20 ◦C in 0.45% (v/v) sodium chloride solution. In October 2018, the
sample was transferred to the Institute of Medical Microbiology and Hygiene in Homburg,
Germany for further examination.

2.3. Study Design and Experimental Set-Up

Upon receipt at the Institute of Medical Microbiology and Hygiene in Homburg, the
Taenia specimen was subjected to nucleic acid extraction, PCR, and partial sequencing for
species-specific identification as T. saginata. Next, MALDI-TOF MS was carried out to
generate protein spectral profiles, which were then transferred into an in-house database
for MS-based identification of helminths. Subsequently, proglottids were put into different
storage media and re-analyzed by MALDI-TOF MS after 2, 4, 6, 8, 12, and 24 weeks. At
each time, the obtained spectra were compared to the initially measured spectra.

2.4. Molecular Diagnosis Using PCR and Partial Sequencing

For confirmatory molecular species identification, one proglottid of the Taenia spec-
imen was thawed and subjected to DNA extraction using the DNeasy Blood and Tissue
Kit (Qiagen GmbH; Hilden, Germany). In brief, a sample measuring approximately 1 cm
was pounded into small pieces. Next, 180 µL of ATL buffer was added, the sample was
vortexed, and 20 µL of proteinase K was added. The mix was vortexed and incubated at
56 ◦C in a thermomixer (Eppendorf; Hamburg, Germany) for 1 h. After incubation, the mix
was vortexed again, and both 200 µL of AL buffer and 200 µL of 100% (v/v) ethanol were
added. Subsequently, the DNeasy Mini column system (Qiagen; Hilden, Germany) was
used for nucleic acid extraction, adhering to the manufacturer’s protocol.

For gene amplification, the partial mitochondrial cytochrome oxidase 1 gene (COX-1)
was used to perform a PCR as previously described [20]. Specific forward (5′-
CATCATATGTTTACGGTTGG-3′) and reverse (5′-GACCCTAATGACATAACATAAT-3′)
primers were used to amplify a gene of around 350 base pairs (bp), utilizing a peqSTAR
thermocycler (VWR; Radnor, PA, USA). In brief, the assay consists of 12.5 µL Hotstart Mix
(Qiagen; Hilden, Germany), 0.5 µL of forward primer, 0.5 µL of reverse primer, 9.5 µL of
water, and 2 µL of Taenia DNA. The cycling conditions comprised an initial denaturation
step at 95 ◦C for 5 min, followed by 56 ◦C for 1 min, and 72 ◦C for 2 min. Then, 45 am-
plification cycles were performed, each consisting of a denaturation step at 95 ◦C for 30 s,
annealing at 56 ◦C for 30 s, and elongation at 72 ◦C for 30 s. Afterwards, a final elongation
step at 72 ◦C for 4 min was performed.

For sequencing of the generated amplicons, the Capillary Electophoretic Genome-
Lab genetic analysis system (Beckman Coulter; Brea, CA, USA) was used. Consensus
sequences were created by editing and merging raw forward and reverse sequences, us-
ing the BioEdit© software version 7.2.5 (Tom Hall; Carlsbad, CA, USA). The consensus
sequence was aligned with sequences deposited in the National Center for Biotechnology
Information (NCBI) GenBank database for final identification.

2.5. Differential Sample Storage Conditions

Taenia proglottids were removed from the original storage medium (sodium chloride
0.45% (v/v)) and placed on a Petri dish. Using a sterile scalpel, individual proglottids were
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cut into small pieces of approximately 1 cm. Next, each specimen was placed into a 1.5 mL
Eppendorf tube, and 1 mL of one of the following four different storage solutions was
added: (i) sodium chloride 0.45% (v/v) (Merck KG; Darmstadt, Germany); (ii) ethanol 70%
(v/v) (Merck KG); (iii) liquid chromatography (LC) MS grade water (Merck KG); and (iv)
formalin 37% (v/v) (Merck KG). All samples were then stored at −20 ◦C in these media,
before being consecutively subjected to MALDI-TOF MS after the aforementioned exposure
periods. The experiment was carried out with 6 specimens for each storage medium, i.e.,
24 proglottids in total.

2.6. MALDI-TOF Analysis
2.6.1. Protein Extraction

Prior to analysis, each proglottid sample was thawed and cut into three equal parts.
Each part was then transferred to a new tube for subsequent MALDI-TOF MS measure-
ments. For protein extraction, we employed a previously developed protocol [17].

2.6.2. MALDI-TOF Target Plate Preparation and Measurements

Using the protein extract, 1 µL of the supernatant was spotted onto the MALDI target
plate. For each sample, eight specific spots on the target plate were used, as recommended
by the manufacturer (MSP creation protocol V1.1; Bruker Daltonics; Bremen, Germany).
After drying, 1 µL of α-cyano-4-hydroxycinamic acid (CHCA) matrix solution (Bruker Dal-
tonics), composed of saturated CHCA, 50% (v/v) of acetonitrile, 2.5% (v/v) of trifluoracetic,
and 47.5% (v/v) of LC–MS grade water, was added to each spot. A commercially available
Bacterial Test Standard (BTS; i.e., Escherichia coli extract connected with two high molec-
ular weight proteins) was used to calibrate the mass spectrometer. After drying at room
temperature, the MALDI target plate was placed into the Microflex LT Mass Spectrometer
(Bruker Daltonics; Bremen, Germany) for MALDI-TOF MS analysis. Each sample spot was
measured four times to generate a total of 32 raw spectra (8 spots × 4). This procedure
was carried out on two replicates on the same day (repeatability analysis), and on one
additional replicate on a subsequent day (reproducibility analysis). Hence, a total of 96 raw
spectra were acquired for each sample.

2.6.3. MALDI-TOF MS Parameters

All measurements were performed using the AutoXecute algorithm in the FlexControl®

software version 3.4. (Bruker Daltonics; Bremen, Germany). For each spot, 240 laser shots
(40 laser shots each using six random positions) were used to generate protein spectral
profiles in linear positive ion mode. The laser frequency was 60 Hz, and a high voltage of
20 kV and pulsed ion extraction of 180 ns were employed. The mass charge ratio range
(m/z) was measured between 2 and 20 k Da.

2.6.4. Spectral Analysis, MSP Creation, and Clustering Analysis

All raw spectra were analyzed with the FlexAnalysis® software version 3.4 (Bruker
Daltonics; Bremen, Germany). To improve the spectral quality, raw spectra were edited by
removing all flatlines and outlier peaks. The intensities were smoothened, and baseline
subtraction was performed, as appropriate. Peak shifts within spectra were also edited
when they exceeded 500 ppm. Following these steps, replicates containing at least 22
remaining spectra were maintained, and the measurement was repeated if these conditions
were not reached.

The edited spectra of the initial Taenia sample were used to create a species-specific
main spectral profile (MSP), utilizing the automated function of the MALDI Biotyper
Compass Explorer® software version 4.1 (Bruker Daltonics; Bremen, Germany). The newly
created Taenia MSP was added to a previously developed in-house database with several
species, including cestodes (e.g., Diphyllobothrium spp.), nematodes (e.g., Ascaris spp.),
and trematodes (e.g., Fasciola spp.), for helminth identification, and served as a reference
spectrum for comparative analysis under different storage conditions. Subsequently, a
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clustering analysis was performed on the edited spectra obtained after 2, 12, and 24 weeks
using the BioNumerics® software version 7.6 (Applied Maths N.V.; Sint-Martens-Latem,
Belgium). A dendrogram was generated using an unweighted pair group method with
the arithmetic mean (UPGMA), and a curve-based similarity matrix was calculated using
Pearson correlation. A principal components analysis (PCA) and a discriminant analysis
were carried out using quantitative values.

2.6.5. MALDI-TOF Identification Parameters

All measured spectra were initially analyzed using the official Bruker Taxonomy
Database designed for bacteria and fungi, containing 8936 MSPs, which is routinely used in
clinical microbiology laboratories, to detect possible contamination with bacterial or fungal
organisms. Next, protein spectra were analyzed by a combination of this official Bruker
database (Bruker Taxonomy) and the previously developed in-house helminth database
with around 98 MSPs, including the MSP of the initially analyzed Taenia proglottid. The
reliability of identification was evaluated by log score values (LSVs), which were generated
by MALDI-TOF MS. We followed the LSV thresholds used in routine microbiology for the
identification of bacteria and fungi, i.e., LSVs ≤1.69, indicating an unreliable identification;
LSVs ranging between 1.70 and 1.99, indicating an accurate genus and probable species
identification; and LSVs ≥2.0, suggesting a reliable species identification.

3. Results
3.1. Molecular Identification of Taenia Proglottids

PCR and sequencing of the initial Taenia proglottid sample using primers of the COX1-
gene confirmed the species diagnosis. An analysis using NCBI GenBank showed 100%
sequence homologies with a previously described T. saginata sequence (reference accession
number: MT074048.1). The sequence of our Taenia sample was deposited in the GenBank
database (accession number: MZ720823).

3.2. Comparative MALDI-TOF MS Analysis after Different Storage Periods
3.2.1. Protein Spectra and LSV Analysis

A representative protein spectral profile for each storage medium is displayed in
Figure 1. High peak intensities were observed and reached up to 1.0 × 104 arbitrary units
(a.u.). With regard to the position and the intensity of the measured peaks, Taenia samples
stored in LC–MS grade water, ethanol, and sodium chloride showed a similar profile to the
original sample, with no significant changes over time. For samples stored in formalin, no
protein spectra were found at any time point.

For all samples, the commercially available MALDI-TOF database for the identification
of bacteria and fungi did not yield a reliable identification, with an LSV of 1.37 for the
bacterium Arthrobacter monumenti being the highest score. When submitting the spectra to
a combination of the commercially available and in-house helminth databases, a correct
identification was achieved in 97.2%, 99.7%, and 99.0%, for samples stored in sodium
chloride, ethanol, and LC–MS grade water, respectively, with LSVs ranging between 2.53
and 2.57. No identification was achieved for spectra of Taenia proglottids stored in formalin
(Table 1).

When analyzing identification patterns over time, a high LSV (≥2.3) was constantly
observed at all measurements for each storage solution, except formalin. Small fluctuations
of LSVs were found for all storage solutions, with slightly more fluctuation in the sodium
chloride medium (Figure 2).
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Figure 1. Protein spectral profiles of Taenia saginata proglottids. The peaks obtained when measuring the original sample,
and protein profiles after prolonged storage in four different media, are displayed. X-axis, mass-to-charge ratio of (m/z);
Y-axis, peak intensities of ionized molecules; a.u., arbitrary unit.

Table 1. Identification of Taenia saginata proglottids stored in different storage media (A) using Bruker Taxonomy, the
commercially available database for bacteria and fungi, and (B) using a combination of Bruker Taxonomy and an in-house
helminth database.

(A)

Sample Preservation
Medium

Number of
Samples Number of Spectra

Bruker Taxonomy Database

Correct
Identification Average LSV Most Frequently Suggested

Result

0.45% sodium
chloride 6 560 0% 1.38 Arthrobacter monumenti

70% ethanol 6 574 0% 1.39 Arthrobacter monumenti
LC–MS grade water 6 570 0% 1.38 Arthrobacter monumenti

37% formalin 6 0 0% 0 None

(B)

Sample Preservation
Medium

Number of
Samples Number of Spectra

Combination of Bruker Taxonomy and In-House Helminth Database

Correct
Identification Average LSV Most Frequently Suggested

Result

0.45% sodium
chloride 6 560 97.2% (560/576) 2.54 T. saginata proglottid

70% ethanol 6 574 99.7% (574/576) 2.53 T. saginata proglottid
LC–MS grade water 6 570 99.0% (570/576) 2.57 T. saginata proglottid

37% formalin 6 0 0% 0 -
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Figure 2. Average LSVs of protein spectra stemming from Taenia proglottids in different preservation media during a
24-week observation period. Spectra were identified using a combination of Bruker Taxonomy and an in-house helminth
database.

3.2.2. Cluster Analysis

Cluster analysis to display the relatedness of the Taenia proglottids stored in sodium
chloride, ethanol, and LC–MS grade water showed that all these proglottids clustered
together and showed relatedness levels >85% (Figure 3). Subsequent statistical analyses
(both PCA and discriminant analysis) performed on the summary spectra of T. saginata
proglottids did not show specific differences pertaining to the different preservation media
or the duration of storage (Figure 4), thus indicating an almost identical pattern of the
protein spectra.

Figure 3. Dendrogram derived from a clustering analysis to assess and compare the different protein spectra of Taenia
saginata proglottids stored in three storage media for different time periods. The cestode Diphyllobothrium spp. and the
trematode Fasciola gigantica were added as outgroup samples.
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Figure 4. Discriminant analysis and principal components analysis (PCA) of Taenia saginata proglottids stored in different
preservation media for different time periods. Each storage medium is depicted with a different color. Both statistical
analyses indicate that the clusters are highly related and cannot be separated. (A) Two-dimensional view of the discriminant
analysis. (B) Three-dimensional view of the PCA.

4. Discussion

The purpose of this study was to determine whether MALDI-TOF MS can be used
as a diagnostic tool for the identification of T. saginata proglottids, and whether the use of
different storage media may affect the technique’s diagnostic accuracy. We found that T.
saginata can be diagnosed by MALDI-TOF MS, and that its protein spectral analysis allows
for reliable differentiation from other helminths, bacteria, and fungi. Indeed, T. saginata
was consistently identified correctly in ≥97% of cases if LC–MS grade water, ethanol, or
0.45% sodium chloride was used as a storage solution, with no changes over time for
storage periods of up to 24 weeks. Notably, preservation in 37% formalin did not allow for
subsequent MALDI-TOF MS examinations.

Our findings might have important implications for future helminth diagnosis in
epidemiologic studies. Indeed, MALDI-TOF MS is a widely used diagnostic tool in micro-
biologic routine diagnosis [21,22], which will also be increasingly available in laboratories
of low- and middle-income countries [23]. Besides the identification of bacteria and fungi,
this technique has also been successfully used for the differentiation of ticks and fleas [24],
mosquitos [25], lice [26], and more recently, different helminths of medical and veterinary
importance [13]. Hence, MALDI-TOF MS could also be employed for confirmatory testing
of helminths in reference laboratories, for example, when no unambiguous identification
is reached by conventional methods. However, prolonged transport periods of samples
from peripheral healthcare centers to such reference laboratories are likely to be expected,
and hence, information on the most appropriate sample storage media is key to ensure a
reliable analysis by MALDI-TOF MS. In this context, it is important to note that different
protocols were utilized in studies conducted thus far, as there is no consensus on the most
suitable storage media. For the identification of Fasciola spp. [17], cyathostomins [27],
and lice [26], 70% (v/v) ethanol was used as a storage solution, while studies on Anisakis
spp. [19], Dirofilaria spp., and Ascaris spp. [28] employed a sodium chloride solution, which
was sometimes even supplemented with antibiotics to prevent bacterial contamination.
Nebbak et al. [24] analyzed the effects of different storage conditions on the identification
of arthropods. The authors concluded that the immediate freezing of samples without the
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addition of any fixative might be the best approach, closely followed by storage in 70%
(v/v) ethanol at room temperature.

Only a few investigations have assessed the potential effects of different storage
conditions on the subsequent MALDI-TOF MS-based identification of helminths. A study
focusing on Trichinella spp. did not observe significant differences in identification rates
when either freezing without any fixative or using 70% ethanol. Indeed, only minor
alterations of measured peak intensities were reported, but no change in peak patterns or
obtained LSVs [29]. In our study, LC–MS grade water, ethanol, and sodium chloride were
equally effective in maintaining a high quality of protein spectra for up to 24 weeks, with
correct identification rates ranging from 97.2% for sodium chloride to 99.7% for ethanol at
−20 ◦C. In addition, a statistical analysis of the protein spectra did not reveal fixative-related
clusters, thus confirming that all three media can be equally used as storage solutions
for T. saginata proglottids until MALDI-TOF MS is carried out. Notably, preservation in
formalin and subsequent protein extraction using formic acid and acetonitrile impeded any
MALDI-TOF-based identification, and hence, should not be employed. This observation is
not surprising, as formalin induces considerable molecular cross-linking that may change
protein structures [30].

Several limitations restrict the generalizability of our findings. First, the proglottids
used in this study were originally stored in sodium chloride for 12 months, before being
assigned to the different storage media. Hence, future studies should employ fresh spec-
imens. However, data from a study on suitable buffers for MALDI-based screening of
biochemical targets suggest no concerns with regard to the use of sodium chloride [31].
The results obtained in this study may confirm this fact. Second, we only assessed potential
effects on T. saginata; the in-house database is restricted as it does not contain other Taenia
species, such as T. solium. While it is unlikely that other helminth species would react
differently, a broader validation on similar cestodes—most importantly T. solium—as well
as on nematodes and trematodes is desirable. Specifically, all developmental stages of
helminths, including their eggs, should be subjected to MALDI-TOF-based examinations.
Third, we compared the effects of different media stored at −20 ◦C, while future research
should also assess the potential effects of storage at different temperatures.

5. Conclusions

We conclude that MALDI-TOF MS is a promising tool for the rapid and accurate
identification of T. saginata proglottids. Samples can be reliably identified after prolonged
storage in LC–MS grade water, sodium chloride solution, and ethanol, while formalin
cannot be used as a fixative for later MALDI-TOF MS analysis.
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