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CELL BIOLOGY

Neural network learning defines glioblastoma features
to be of neural crest perivascular or radial glia lineages

Yizhou Hu't, Yiwen Jiang't, Jinan Behnan', Mariana Messias Ribeiro?, Chrysoula Kalantzi',
Ming-Dong Zhang', Daohua Lou’, Martin Hiring’, Nilesh Sharma', Satoshi Okawa?,
Antonio Del Sol***, Igor Adameyko®®, Mikael Svensson’"8, Oscar Persson’8, Patrik Ernfors'*

Glioblastoma is believed to originate from nervous system cells; however, a putative origin from vessel-associated
progenitor cells has not been considered. We deeply single-cell RNA-sequenced glioblastoma progenitor cells of
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18 patients and integrated 710 bulk tumors and 73,495 glioma single cells of 100 patients to determine the relation
of glioblastoma cells to normal brain cell types. A novel neural network-based projection of the developmental trajectory
of normal brain cells uncovered two principal cell-lineage features of glioblastoma, neural crest perivascular and radial
glia, carrying defining methylation patterns and survival differences. Consistently, introducing tumorigenic alterations
in naive human brain perivascular cells resulted in brain tumors. Thus, our results suggest that glioblastoma can
arise from the brains’ vasculature, and patients with such glioblastoma have a significantly poorer outcome.

INTRODUCTION
Glioblastoma is the most common brain tumor (I), and it has an
invariably poor prognosis despite aggressive therapy. A combination
of high-throughput genomic and epigenetic data with bioinformatic
analyses has provided a comprehensive view of genetic mechanisms
underlying glioblastoma oncogenesis and progression (2, 3).
Analyzing transcriptional intertumor heterogeneity within The Cancer
Genome Atlas (TCGA) project identified three main subtypes, which are
tightly associated with genomic alterations: TCGA-classical, TCGA-
proneural, and TCGA-mesenchymal (TCGA-mes) (4). However, there
is also notable intratumoral heterogeneity where different cells from
the same tumor can be classified into different TCGA subtypes (5).
Gliomas are believed to arise from one of the two major types
of neural cells of the brain: neuronal or glial by a reactivation of
stem-like developmental gene programs. This cancer stem cell (CSC)
hypothesis implicates a hierarchical continuum of differentiating
cells within the tumor, with the CSC at the apex, having tumor-
initiating and -propagating properties with resistance to therapy (6).
Single-cell RNA sequencing (scRNA-seq) studies support this con-
jecture, and transcriptional profiles of various types of gliomas are
consistent with neural progenitor-like, oligodendrocyte precursor
(OPC)-like, or astrocytic-like cells (5, 7-10). Introducing identical
glioblastoma driver mutations into human glial or neuronal progenitor
cells results in molecular distinct subtypes, highlighting the importance
of the originating cell lineage for tumor phenotype and stratification
(11, 12). However, less is known of the cellular origin of the highly
malignant glioblastoma with mesenchymal features (5, 13).
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Thus, previous computational cell-of-origin classifications mapped
most glioblastoma to neuronal and glial cell types (5, 9, 10) and
additional studies have identified possible mechanisms for these to
transition into mesenchymal-like glioblastoma. However, the rela-
tion of mesenchymal glioblastoma to alternative nonneural progenitor
cells residing in the brain has not been explored. Perivascular mural
cells of the brains’ blood vessels are of neural crest origin (14, 15).
As blood vessels descend into the brain parenchyma during develop-
ment, vessel-attached neural crest-derived cells differentiate into the
different perivascular cell types, with those remaining behind dif-
ferentiating into leptomeningeal cells (14, 16). Recently, a previously
unknown perivascular fibroblast (vFB)-like cell type was identified
(17), which appears to function as a restricted stem-like cell type that
generates pericytes and mesenchymal smooth muscle cells (SMCs)
in both the developing and adult brain (18, 19).

Here, we deeply sequenced 4073 glioblastoma progenitor cells
from 18 patients and integrated data from an additional 8443 tumor
cells from 16 patients with low-grade glioma and 60,979 tumor cells
from 66 patients with glioblastoma in the analysis. A novel neural
network-based projection was used to learn the transcriptional features
from normal brain cell types and thereafter used to assign individual
tumor cells as well as deconvoluted bulk tumors at the level of both the
cellular steady state and the developmental trajectory dynamics. Our
analysis revealed two principal cell lineage patterns in glioblastoma—
neural and perivascular. The most undifferentiated adult naive cell type
correlate in the neural cell lineage pattern was radial glia (Rgl), and in
the vascular, it is the vFB cell type. Patients with perivascular glio-
blastoma exhibited significantly poorer survival. Animals with xeno-
grafts of naive human perivascular cells harboring targeted genetic
changes observed in glioblastoma present with tumors, indicating that
the brain perivascular cells are competent to initiate brain tumors.

RESULTS

Neural network classifier maps glioblastoma tumor
progenitor cells to two principally different endogenous cell
lineages of the brain

We enriched tumor progenitor cells from 18 patients of high-grade
glioblastoma for scRNA-seq (data file S1) and validated the
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tumorigenicity of these cells by intracranial orthotopic xenografts
with follow-up histological analyses (fig. S1A). Fourteen of the
18 patient samples reduced overall survival in the xenograft experi-
ment (fig. S1B). A total of 4073 high-quality single cells (median
2.87 million total reads per cell; fig. S1C) were included in a copy
number variation (CNV) analysis, confirming alterations associated
with brain tumors (data file S1) and subsequently clustered. Excluding
a cluster of CD45" immune cells, the remaining 19 clusters were
assigned into TCGA subtypes by a neural network classifier trained
by the original TCGA data and subsequently named after TCGA
subtype names (MS1-8, CL1-8, PN1-2, and NL1) (fig. S1D). Most
clusters dominantly differed among individual patients, except
for two cell clusters of TCGA-mes subtypes (MS3 and MS5) that
spanned across different patients (fig. S1E, left). The cell clusters
were organized into two clouds of coclustered cells when using
Uniform Manifold Approximation and Projection (UMAP). Cells
of the TCGA-mes subtype were in one cloud, while cells of all other
TCGA subtypes were located in another cloud (Fig. 1A and fig.
SIE, right).

To identify the endogenous brain cell-type correlates of the
patients’ glioma cells, we applied the machine learning classifiers
with learned transcriptional features from normal brain reference
cell types derived from the neurogenic niche of the developing
mouse brain (20). After comparing four classifiers driven by logistic
regression, support vector machine, vanilla neural network, and
node-level graph neural networks, we decided to use a vanilla
neural network classifier for further studies according to the prediction
accuracy, time consumption, and overfitting control, as described
in Materials and Methods. The classifier accuracy was further
validated by an independent integrated dataset of normal cells from
human embryonic midbrain (21) and cortex (fig. S1F) (22), and a
randomized expression matrix (fig. SIG). Throughout the study, we
refer to previously annotated cell types as “reference” cell types, and
such closely related reference cell types were annotated in this study
into cell lineages on the basis of the known differentiation trajectories.
Using this neural network classifier, most tumor cells of the TCGA-
mes subtype were assigned to the reference pericytes and vascular
leptomeningeal cells (VLMCs), both of the perivascular lineage,
while tumor cells of other TCGA subtypes were similar to reference
neuronal or glial cells (i.e., reference Rgl, neuroblasts, astrocytes,
oligodendrocyte cells, and immature granule neurons) (Fig. 1B and
fig. S1H). Cells that failed to assign into one single cell type were
located in the center of the radar plot, indicating cells of unknown
cell type or a transcriptional plasticity of multiple cell types.

The neural crest-derived perivascular cells (reference pericytes
and VLMCs) of the brain and the reference radial glia-derived
neural cells (all neuronal and glial cell types of the brain) represent
entirely different developmental cell lineages. When stratifying
patients into either an Rgl-lineage type or a perivascular (PeriV)-
lineage type based on the dominant cell percentage of one type and
nonsignificant cell percentage of the other type in each patient, we
did not observe significant differences of overall survival in the
xenograft experiment (fig. S1, A and B). To further increase the
resolution of reference brain cell types, we applied the machine
learning classifier with learned transcriptional features from human
developing brain cell types (23) and validated the observation of the
existence of both Rgl-lineage—type and PeriV-lineage-type glio-
blastoma cells (fig. S1I). Thus, these results suggest that glioblastoma
cells share molecular features with either the Rgl-lineage [including
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Rgl-like tumor progenitor cells; a neuronal sublineage including
neuroblasts and neurons; an oligodendrocyte-sublineage (Olig-
sublineage) including oligodendrocytes and its precursors, the OPCs
and newly formed oligodendrocytes (NFOL); and an astrocyte-
sublineage including differentiating and adult astrocytes] or the
PeriV-lineage including perivascular cells and VLMCs.

Analysis of the differentially expressed genes between Rgl-lineage—
and PeriV-lineage-type glioblastoma cells that were also expressed
in their respective naive cell types (i.e., normal reference brain Rgl
and PeriV cells) revealed the existence of mutually exclusive ex-
pression between lineages but highly shared features with their
corresponding endogenous reference cell types of each lineage in
glioblastoma cells (Fig. 1C) and in the naive cell types of the develop-
ing mouse brain (fig. S1J).

Perivascular lineage-type tumors exclusive to

high-grade glioma

The previously analyzed cells were from high-grade glioma. We
therefore made use of scRNA-sequenced cells obtained from resected
and dissociated high- and low-grade gliomas (5, 7, 9, 10, 24-26) to
validate our results and to compare the cell-type composition of
PeriV- and Rgl-lineage tumor cells between high- and low-grade
gliomas. A total of 8443 cells from low-grade glioma and 65,052 cells
from glioblastoma originally defined as tumor cells were applied
for the neural network classifier described in Fig. 1B. We found that
low-grade glioma contains tumor cells with higher cell-type simi-
larity to native reference cell types (high cell-type probability) than
high-grade glioblastoma (Fig. 1, D and E, left, and fig. S1K, left). To
exclude the fact that this result is caused by variability of sequencing
quality between platforms of scRNA-seq, and to exclude a bias due
to required threshold in the similarity scoring, we also validated this
observation using only data generated from the same technical
platform and applied different threshold requirements (fig. S1K,
right). Low-grade glioma cells were most similar to reference Rgl,
OPCs/NFOLs, and astrocytes, which together accounted for 99.48% of
all tumor cells (Fig. 1D, right). In contrast, almost all glioblastomas
were composed of multiple cell types, including high similarity to
reference pericytes/VLMCs, to Rgl (i.e., Rgl-like tumor cells), as
well as substantial numbers to the more differentiated progenies
(astrocytes of the Astro-sublineage; OPC, NFOLs, and oligo-
dendrocytes of the Olig-sublineage; neuroblasts and immature
granule cells “Granule” of the Neuronal-sublineage) (Fig. 1E, right).
Among the glioblastoma cells, 11.1% were assigned to the reference
PeriV-lineage, while none of the low-grade glioma cells were assigned
to these (Fig. 1F and fig. SI1L). Thus, the existence of glioma assign-
ing to the PeriV-lineage reference cells is specific to high-grade
glioma among all 100 patients.

Rgl-lineage glioblastoma cells acquire higher cellular
plasticity after mesenchymal transition but rarely transition
into PeriV-lineage cell types

The acquisition of a mesenchymal transcriptional profile in glio-
blastoma cells can be forced by the microenvironment or by an
intrinsic transition under certain selective pressure (13). To examine
whether the PeriV-lineage tumor cells can transition from Rgl-lineage
glioblastoma cells, we applied the neural network classifier on a
recent published scRNA-seq dataset containing spontaneous mouse
glioblastoma that was initiated from glial fibrillary acidic protein
(GFAP)-expressing cells (27). In this model, a mesenchymal cell
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Fig. 1. Cell-type assignment of high- and low-grade glioma revealed that perivascular lineage tumor cells are present only in high-grade glioma. (A) UMAP visualization
of patient-derived glioblastoma cells. Color coding based on cell clusters. The contours of two main clouds of cells outlined with a dashed line and labeled with TCGA
subtypes on the top. CL, classical; MES, mesenchymal; PN, proneural. (B) Radar plot visualization of the cell-type scores of glioblastoma cells in relation to the trained
reference brain cell types. Color coding based on cell clusters (left) or cell-type lineages (right, blue: Rgl-lineage; green, PeriV-lineage). The position of each dot indicates
the cell-type score between that cell and the trained reference cell types, which are indicated outside each wheel bend. Abbreviations are as in fig. S1F. (C) Heatmap of
differential gene expression between PeriV-lineage and Rgl-lineage glioblastoma cells. Selected gene symbols are at the bottom. Color bar indicates the expression intensity
at the top left. (D and E) Left: Radar plots show the cell-type scores of low-grade glioma and glioblastoma cells in relation to the trained reference brain cell types. Right:
Donut charts show the quantitative distribution of cell type-defined glioblastoma cells. The inner donut layer represents the reference cell types that tumor cells are
assigned to, and the outer layer represents the normal cell-type lineages. (F) The distribution of low-grade glioma and glioblastoma cells to defined reference cell-type
lineages. ***P < 0.001. (G) Scatter chart represents the significant cell-type score of control (Ctrl) and oncostatin M (OSM)-treated glioblastoma multiforme (GBM) cells
against each defined reference brain cell type. “Cell type defined” represents glioblastoma cells with high cell-type scores above the cutoff, and “cell type undefined”
represents cells with low scores. Dot colors are indicated at the top. *P < 0.05.
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transition from the GFAP" Rgl-lineage could be induced by
oncostatin M (OSM) (27). Thus, if the identified PeriV-lineage glio-
blastoma represents a transition from the Rgl-lineage through this
mechanism, we expected to identify PeriV-lineage glioblastoma
cells in this dataset. Nearly all GFAP-derived glioblastoma cells
were assigned to reference Rgl-lineage cells (Rgl, neuroblasts, and
granule cells), but none to pericytes/VLMCs (fig. SIM). Because
OSM induced a mesenchymal transition of these glioblastoma cells
(27, 28), we compared three glioblastoma cell lines with or without
OSM treatment in our classifier of TCGA subtypes and observed that
OSM significantly increased mesenchymal features and inhibited
proneural features (fig. SIN), in line with previous findings. Never-
theless, our classifier of endogenous reference brain cells did not
recognize the OSM-transformed mesenchymal cells as PeriV cells, and
instead assigned these mesenchymal cells into an undefined state
(Fig. 1G and fig. S10). These results corroborate that OSM initiates
plasticity of glioblastoma cells including initiation of mesenchymal
features and that this mechanism could account for some glioblastoma
classified as mesenchymal. However, our results suggest that glio-
blastoma with perivascular features as defined using our classifier
cannot be explained by an OSM-driven cell state transition.

Clinical relevance and CpG methylation of PeriV-lineage

and Rgl-lineage glioblastoma

To explore the clinical relevance of tumors with PeriV-lineage
and Rgl-lineage signatures, we scored the data of 161 bulk RNA-
sequenced glioblastoma from the TCGA using the classifier. However,
the bulk data reflect transcriptional features of multiple cell types
(fig. S2A) that are highly heterogeneous, consistent with previous
results (5). To identify the dominant cell types, the bulk data were
transformed (29) and deconvoluted into single-cell resolution (fig.
S2B) (30), and the deconvoluted data were then scored and visual-
ized in a radar plot (Fig. 2A). The majority of the TCGA classified
glioblastoma subtypes (TCGA-mes, TCGA-proneural, TCGA-classical,
and TCGA-neural) were robustly assigned into four endogenous
reference brain cell types: 19 tumors were assigned to reference cells
of the PeriV-lineage (perivascular cells and VLMCs) and the remain-
ing tumors were assigned to Rgl-lineage reference cells, including
53 to astrocytes, 32 to Rgl, and 9 to OPCs/NFOLs, accounting for
70.19% of all tumors. The lack of assignment of tumors to reference
granule and neuroblast cells in bulk sequenced data likely reflects
that these differentiated cells are rare in the tumors and might
therefore become dwarfed when bulk-sequenced. In line with previ-
ous results obtained from scRNA-seq data, 9 of 10 top scRNA-seq
enriched marker genes of PeriV-lineage-type and Rgl-lineage-type
reference cells (data file S2) were found to be differentially expressed
between PeriV-lineage-type and Rgl-lineage-type glioblastoma
tumors sequenced in the TCGA framework (Fig. 2B). We next
examined the relation between PeriV- and Rgl-lineage tumor types
to TCGA subtypes by cross annotation. PeriV-lineage glioblastoma
was overwhelmingly composed from the TCGA-mes subtype (Fig. 2C,
top). In contrast, only 44.4% of TCGA-mes subtypes were of the
PeriV-lineage, while the rest were most similar to the reference
Rgl-lineage (including Rgl-like cells and cells in sublineages of Rgl)
(Fig. 2C, bottom), indicating that the TCGA-mes subtype might
consist of two different transcriptional states, one but not the other
showing high similarity to the reference PeriV cells. The TCGA-
classified proneural and glioma cytosine-phosphate-guanine (CpG)
island methylator phenotype (G-CIMP) subtype mostly shared features
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with reference Rgl, while TCGA-classical and TCGA-neural subtypes
mostly shared features with reference astrocyte cells (fig. S2C). To
exclude that this finding was a result of a distortion due to analysis
of bulk RNA-sequenced data, we classified the merged set of all
scRNA-seq high-grade glioblastoma cells into TCGA subtypes and
thereafter cross-annotated the cells of the TCGA-mes subtype to
native reference brain cell types (Fig. 2D and fig. S2D). This analysis
confirmed that glioblastoma cells of the TCGA-mes subtype are
mainly assigned to PeriV cells, with most of the remaining cells
showing the greatest similarity to reference Rgl and astrocytes of the
brain. Furthermore, we re-examined glioblastoma cells from a public
dataset (7) in our classifier of endogenous brain cells. In this study,
tumor cells were assigned as “glial progenitor cancer cell,” “oligo-
lineage cancer cell,” “astrocytic cancer cell,” “mesenchymal cancer cell,”
and “neuronal cancer cell” on the basis of the similarity to develop-
ing brain cell types (7). Our classifier confirmed these previous
results (Fig. 2E) and, in addition, corroborated that their annotated
mesenchymal cancer cells are assigned to either PeriV-lineage or
Rgl-lineage reference cells (Fig. 2F).

In the bulk RNA-sequenced glioblastoma of the TCGA, 106 of
113 cell type—defined IDH1 wild-type (wt) glioblastoma patients with
survival information were used for survival analysis. Glioblastoma
with a dominant PeriV-lineage-type phenotype predicted markedly
shorter survival than the Rgl-lineage type, and 18 of 19 patients’ life
spans were <24 months (Fig. 2G). This observation was further
validated when stratifying the Rgl-lineage into sublineages on the
basis of assignment to the dominating reference cell types (Rgl-like,
Astro-sublineage, and Olig-sublineage) (fig. S2E).

We next explored the mutational burden among the glioblastoma
defined by PeriV-lineage- and Rgl-lineage-type signatures. Thirty-two
genes with high frequency of mutation were significantly enriched
(fig. S2F and data file S3). PeriV-lineage-type and Rgl-lineage-type
glioblastoma carried a shared enrichment in mutations of TTN, PKHDI,
TP53, PTEN, and FLG genes, and a differential mutational burden
with NFI gene strongly associated to the PeriV-lineage type and
EGFR gene to the Rgl-lineage type, especially the astrocyte subtype.

In addition to the transcriptional level, we tested if the methylation
status can be used to predict the lineage-based classification of
glioblastoma. We first enriched the differential methylation sites
with PeriV-lineage-type and Rgl-lineage-type signatures. Hierarchical
clustering using these signature methylation sites confirmed a clas-
sification congruent to transcription for nearly all patients (Fig. 2H,
fig. S2G, and data file S4). Examining the signature methylation
sites revealed that tumors of the PeriV-lineage type displayed, for ex-
ample, increased methylation of GFAP gene and S100B gene, while
MGMT gene and STAT6 (signal transducer and activator of transcrip-
tion 6) gene were more unmethylated, indicating a suppression of glial
genes and an enhanced malignant expression pattern. In agreement,
STAT®6 has been shown as a unique marker and driver of meningeal
hemangiopericytoma, a type of brain tumor that originates from peri-
cytes (31). Thus, the methylation signatures reflected the innate cell-
type features of PeriV-lineage- and Rgl-lineage-type glioblastoma.

We examined if the methylation status can predict tumor type
using machine learning. A neural network classifier was generated by
training transcriptionally defined PeriV-lineage- or Rgl-lineage-type
glioblastoma with the methylation signatures. Similar to the hierar-
chical clustering (Fig. 2H), the methylation-based classifier assigned the
majority of tumors to the corresponding transcriptionally defined
PeriV-lineage-type and Rgl-lineage-type glioblastoma with high
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Fig. 2. Tumor subtype assignment, methylation status, and survival of deconvoluted bulk tumor data from TCGA/DFKN. (A) Radar plot visualizes the cell-type
scores for deconvoluted bulk glioblastoma in relation to trained reference brain cell types. Colors represent the TCGA-defined subtype of each tumor. (B) Violin swarm
plot of the original gene expression of selected marker genes in the PeriV-lineage and Rgl-lineage of TCGA glioblastoma; blue background represents Rgl-lineage tumors
and green background represents PeriV-lineage tumors. Dot colors represent the defined reference brain cell types of each tumor in (A). The dashed line in each violin
plot represents the distribution quartiles. P value of Student’s t test on top. Abbreviations are as in fig. S2C. (C and D) Pie plots representing the composition of TCGA-classified
subtypes in the PeriV-lineage (C, top), cell-type sublineages identified in the TCGA-mes subtype (C, bottom) of bulk glioblastoma, or cell-type sublineages identified in the
TCGA-mes subtype of scRNA-seq glioblastoma cells (D). (E) Radar plot visualizes cell-type scores of state-defined glioblastoma cells in relation to trained reference brain
cell types. (F) Dot plot represents the percentage of the defined cell states of glioblastoma cells in each originally defined cell-type state. Dot sizes from small to big
represent the percentage from low to high. (G) Patient survival of isocitrate dehydrogenase 1 (IDHT) wild-type glioblastoma from the TCGA assigned as belonging to the
Rgl-lineage and PeriV-lineage. (H) Heatmap representing the differential methylated site—based hierarchical clustering of the TCGA glioblastomas assigned to the
PeriV-lineage and Rgl-lineage type. Selected target genes of the methylated sites are listed at the bottom. Color bar indicates the expression intensity at the top left.
STATS, signal transducer and activator of transcription 6. (I) Patient survival of glioblastoma from TCGA assigned to Rgl-lineage, PeriV-lineage, IDH7-mutant types, and

nonclassified based on methylation.

accuracy (fig. S2H). Next, we used this trained classifier for scoring
559 glioblastomas from a merged TCGA/DKFZ dataset (data file S4)
and evaluated patient survival. Consistent with previous studies,
isocitrate dehydrogenase 1 (IDHI)-mutant glioblastoma predicted
a better outcome. In the remaining 288 IDH1 wt patients that include
life span information, the PeriV-lineage type predicted the poorest
patient survival with 0% 2-year survival (Fig. 2I). We also applied the
same classifier for an independent dataset of 151 patients from
the CGGA (Chinese Glioma Genome Atlas) (32) and further evaluated
the IDHI wt patient survival. A comparable survival to that of the
TCGA/DKFZ studies was observed. Although the difference was not
significant, none of the glioblastoma patients with PeriV-lineage-
type signatures were alive after 2 years (fig. S2I).
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Perivascular lineage-type glioblastoma consists of cells
similar to vFBs, pericytes, and vascular SMCs

To examine whether cells of PeriV-lineage glioblastoma cells can be
assigned to a specific perivascular cell type, we used a high-quality
dataset of reference brain vascular cells, generated by Smart-seq2
scRNA-seq (17). Thus, we trained a neural network classifier with
learned features from this dataset (fig. S3, A and B), and then
assigned the merged dataset of low- and high-grade glioma cells to
the reference vascular cell types. Consistent with our previous finding
(Fig. 1), glioblastoma cells that were previously assigned to pericytes/
VLMCs (fig. S3C, left) were robustly assigned to one of the three
perivascular cell types: the immature stem-like vFBs, SMCs, and
pericytes. Bulk sequenced data from TCGA were robustly assigned

50f18

2202 ‘0Z aunt uo BI0"80uUs 105" MMM/:SAIY WO | PaPE0 JUMOC



SCIENCE ADVANCES | RESEARCH ARTICLE

to vFBs (fig. S3C, middle). In contrast, low-grade glioma cells were
rarely assigned to any vascular cell types (fig. S3C, right).

Reconstruction of glioblastoma cells along

the developmental trajectory of the radial glia and neural
crest cell lineages

Meningeal cells as well as the brain perivascular cell types arise from
mesenchymal neural crest cells (15, 19) attaching to blood vessels
descending into the brain parenchyma during development (19).
We therefore next examined the similarity of glioblastoma cells to
cranial neural crest and neural tube cells captured from the devel-
oping mouse embryo at the time when neural crest cells delaminate
from the neural tube (33) to meningeal cells (34) and to perivascular
cells (17), as well as cells of the Rgl-lineage including adult Rgl,
neuroblasts (35), oligodendrocytes, and astrocytes. All these data
were generated using the Smart-Seq2 platform. On the basis of our
previous analyses, these cell types together represent the endogenous
cell types that glioblastoma displays similarities to. To track the
developmental location of each glioblastoma cell along the lineage
trajectory of brain cells, we developed a neural network-based
projection model, SWAPLINE (Single-cell Weighted Assignment
and Projection on developmental LINEages) (fig. S3D). We first
visualized the normal reference brain cell types in a UMAP (Fig. 3A).
Each cell-type cluster’s position in the UMAP reflects its transcrip-
tional status in the relatively flattened topology in partition-based
graph abstraction (PAGA) and the predicted cells must be assigned
according to the limited PAGA nodes supervised by machine learn-
ing (fig. S3E). Nevertheless, the result is consistent with previous ex-
perimental lineage tracing studies, confirming the validity of the
model. Consistently, all assigned tumor cells via SWAPLINE ex-
hibited marker expression consistent with their position and naive
reference cell types (see below). This UMAP was later used as refer-
ence map for the projection of glioblastoma cells onto the brain’s
normal differentiation trajectories.

The accuracy of the SWAPLINE model was tested and confirmed
using the independent sets of human brain cells (fig. S3, Fand G) (21, 22).
SWAPLINE assigned cells correctly in the lineage trajectories, while un-
related control cells (endothelial cells and microglia) were filtered out
automatically in the model because of low scores. Next, we applied the
model to project each glioblastoma cell into the differentiation trajecto-
ries of brain cell types (fig. S3H). The relative tumor cell position in rela-
tion to the background map plot of reference developmental/endogenous
cell types was visualized (Fig. 3B). To disentangle the transcriptional
roadmap of glioblastoma cells, we generated a statistical ensemble of
principal branching tree trajectories (36) from the high-dimensional
transcriptional space (Fig. 3C). The main tree structure summarized
glioblastoma cell distribution and comprehensively showed the progres-
sion of glioblastoma cells along each developmental lineage trajectory.
Two main glioblastoma lineage structures were observed with differenti-
ated cells at termini, after which each branch was named. One lineage
was organized around a shared center of Rgl reference cells with branches
of cancer cells toward reference astrocytes (Astro-sublineage glio-
blastoma cells), neuroblasts (Neuronal-sublineage glioblastoma cells),
and oligodendrocyte cells (Olig-sublineage of glioblastoma cells). Here,
reference Rgl from two developmental stages was included (adult Rgl and
developmental Rgl). The other lineage structure was the PeriV-lineage
represented as a single line structure, with PeriV-lineage glioblastoma
cells positioned from the most undifferentiated early reference migra-
tory neural crest cells to differentiated reference perivascular mural cells.

Hu etal., Sci. Adv. 8, eabm6340 (2022) 8 June 2022

Cross-annotation of patients and lineage branches revealed that
all patients dominantly contained glioblastoma cells assigned either
to the reference Rgl-lineage (Astro-sublineage, Neuronal-sublineage,
or Olig-sublineage) or to the reference PeriV-lineage cells (fig. S3I).
For patients with an Rgl-lineage-type glioblastoma, all subbranches
coexisted in all patients, although at different proportions, reveal-
ing the intratumor lineage heterogeneity among patients with an
Rgl-lineage signature.

To further explore the most similar cell type of PeriV-lineage
glioblastoma cells along the differentiation trajectory from un-
differentiated reference migratory neural crest cells to differentiated
reference perivascular mural cells, we constructed a new cranial
neural crest cell reference dataset via integrating the migrating
cranial neural crest cells, neural crest mesenchymal progenitor cells
(33), meningeal cells (34), and brain perivascular cells (17), which
should represent all known neural crest derivatives in the brain
region. After training with this reference dataset in the neural net-
work model, we found that the PeriV-lineage tumor cells are most
similar to vFBs and migrating neural crest cells (fig. S3]).

The existence of two lineages in glioblastoma cells was further
confirmed by SWAPLINE lineage reconstruction for two inde-
pendently published glioblastoma datasets, including (5) (fig. S3, K
to N) and (7) (fig. S3, O to R). Moreover, we applied SWAPLINE
assignment for glioblastoma cells with or without OSM treatment
and found that almost all cells were assigned to Rgl-lineage cells
(fig. S3, S and T), indicating that the cell-type state of glioblastoma
cells remains conserved even after the OSM-induced transition to a
more mesenchymal-like state. However, OSM-treated cells exhibited
an increased feature of delaminating neural crest cell (fig. S3U) and
reduced feature of radial glia, suggesting that the mesenchymal signa-
ture induced by OSM reflects features of the epithelial-mesenchymal
transition of premigratory neural crest cells (37).

Next, we enriched pseudo-time marker genes that associated
with each branch trajectory (data file S5), and the normalized
expression of the selected marker genes along the Rgl-lineage
branches was visualized in the branching tree (Fig. 3D). For example,
STMN2 and SOX10 were specifically expressed in glioblastoma
cells at the distal part of the neuronal- and Olig-sublineages, respec-
tively, suggesting the existence of stable transcriptional status along
these two branches. In contrast, Rgl-like tumor cells and glioblastoma
cells at the distal part of the Astro-sublineage and Rgl-enriched
SOX9 and GFAP were, albeit at lower levels, also expressed across all
branches, indicating lack of unique markers for these glioblastoma
cells. Consistently, RGS4, which is transiently expressed during
neural crest differentiation (38), was also expressed in PeriV-lineage
glioblastoma, specifically enriched in the progenitor-like cells of
such tumors (Fig. 3E), while expression of lumican (LUM) and
actin alpha 2, smooth muscle (ACTA2) was consistently enriched
in glioblastoma cells corresponding to the more differentiated brain
vEBs and SMCs, respectively.

Cell cycle and differentiation potential along differentiation
branches of glioblastoma cells

Tumor initiation and propagation requires cell division. In our
dataset and two independent glioblastoma datasets (5, 7), cycling
tumor cells were mainly observed at the region of reference Rgl and
between the reference migrating neural crest and vFB cells, while
tumor cells in all branch termini were relatively quiescent (fig. S4, A
to C). These observations suggest that the mitotic hyperactivity
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of progenitor-like tumor cells is a general rule for tumors with an
Rgl-lineage-type and PeriV-lineage-type transcriptional signature.
Mitotic events developmentally couple with cell differentiation and
fate decision (39). RNA velocity analysis (40) revealed that the main
trend of differentiational status change along each sublineage branch
was from the progenitor region to differentiated termini (Fig. 3F
and fig. S4D). Both the neuroblast and the oligodendrocyte branch
of glioblastoma cells showed reduced differentiation at the develop-
mental terminus, consistent with pseudo-gene results in Fig. 3D. Tumor
cells at the terminus of the astrocyte branch exhibited lineage rever-
sal, indicating bidirectional glioblastoma cell differentiation along
the reference Rgl to astrocyte differentiation trajectory. In the
PeriV-lineage, the main differentiation trend of glioblastoma cells
was from reference migrating neural crest cells to perivascular cells.
We also found that some of the most undifferentiated glioblastoma
cells assigned to the PeriV-lineage displayed differentiation vectors
toward reference spinal cord Rgl cells.

The most undifferentiated glioblastoma cells are expected to be
enriched at the regions of the reference Rgl and neural crest cells
(fig. S4E). To enhance the resolution of the reference map for a
subsequent annotation of the most undifferentiated stem-like glio-
blastoma cells, we extracted these cells according to the density
estimation and performed a zoom-in projection on the recently
released mouse developmental brain atlas (16) again using the
SWAPLINE projection (fig. 3G and fig. S4, F to I). The summarized
tree structures and RNA velocity estimation further disentangled
the progression of glioblastoma progenitor-like cells along each
embryonic developmental brain lineage (Fig. 3, H to J, and fig.
§4J). Confirming the above results, some tumor cells clustered with
reference Rgl cells as well as along branches of reference cell differ-
entiation into astrocytes, neuroblasts, and oligodendrocytes. Other
glioblastoma cells were mainly located at the reference embryonic
neural crest/VLMC region of the map with a branch toward reference
perivascular cells. Reference cell lineage markers further confirmed
that the tumor cells assigned to a developmental position also ex-
pressed the expected markers of naive cells in that differentiation
branch of the embryonic brain (Fig. 3I and data file S5). Furthermore,
the relation of glioblastoma cells to these reference embryonic
developmental lineages was further validated by SWAPLINE lineage
reconstruction for two independent published glioblastoma data-
sets from (5) (fig. S4, K to M) and (7) (fig. S4, N to P), with similar
results. To enhance the resolution of the reference brain cell types,
we applied the machine learning classifiers with learned transcrip-
tional features from early human developing brain cell types (fig.
$4Q) (41), further validating our observation (fig. S4R). Combined,
these results indicate that heterogeneity in glioblastoma can be
explained by two main cell-type lineages of the brain, the radial glia
and the PeriV-lineage, with tumor cell transcriptional programs at
large recapitulating normal transcriptional routes of differentiation.

The direct lineage relationship of glioblastoma cells to develop-
mental and adult brain cells indicates that transcription factors
(TFs) that define cell types and thereby drive differentiation in the
developing brain also contribute to the diversity of glioblastoma
cells along the lineage trajectories. Thus, we divided our tumor cells
into six lineage clusters according to their lineage branches and
progenitor feature relationship to reference cells. Subsequently, we
enriched the differentially expressed TFs from each glioblastoma
lineage cluster as described in fig. S4E. Next, we applied the same
enrichment for the published glioblastoma dataset (5), as well as for

Hu etal., Sci. Adv. 8, eabm6340 (2022) 8 June 2022

the annotated reference dataset of normal brain cell types (20). By
comparing these three datasets, we identified unique TFs defining
Rgl-lineage (30 TFs) and PeriV-lineage tumor cells (6 TF genes:
FLI1, FOXCI, STAT6, KLF2, TFAP2C, and MSC) shared with normal
development and a few glioblastoma-specific factors within each of
the lineages (Fig. 4, A and B, and data file S6). Next, we applied
SCENIC for identifying gene networks regulated by master TFs
(regulon activity) in both Rgl-lineage and PeriV-lineage cells. After
comparing the enriched TFs, 20 master TFs were identified with
significant regulon activity (fig. S4S). The Rgl-lineage consisted of
14 TF regulons, including some known Rgl-specific TF genes, such
as HES5, RFX4, and SOX10. We identified six TF regulons specific
for PeriV-lineage, including STAT4, STAT6, TFAP2C, FOXCI, FLI1,
and MSC. Furthermore, analysis showed that shared features between
the two lineages (PeriV and Rgl) all relate to the cell cycle, including five
cell cycle-regulating TFs (FOXM1, MIS18BP1, MYBL1, MYBL2, and
WDHDI) (Fig. 4C and data file S6). Two lineage-specific TFs, PROX1
for Rgl-lineage and FOXCI for PeriV-lineage, were validated in the
tumor tissue of patient-derived xenografts (Fig. 4D). SOX2 and POU3F2
are driver genes in glioblastoma-propagating cells (42) that are induced
during oncogenesis since they are not expressed in normal peri-
vascular cells but present in migrating neural crest (43). Therefore,
we also validated these two genes as lineage-shared TFs (Fig. 4E).

Initiation of PeriV brain tumors from perivascular cells
Mouse models have indicated that glioblastoma can efficiently be
initiated from the glial and stem cell compartments of the brain
(11). The notable similarity of PeriV-lineage-type tumor cells to
endogenous reference perivascular cells suggests that perivascular
cells can also be susceptible for malignant transformation. To test
whether perivascular cells might initiate brain tumors when carrying
genetic alterations mimicking glioblastoma, we first investigated the
expression profiles of the spontaneous glioblastoma tumors from
both Nes-CreERt2 Pten/Trp53/Nfl KO mice and NG2-CreERt2
Pten/Trp53/NfI KO mice (11, 12). Nestin is predominantly expressed
in neural stem cells (i.e., radial glia cells), but NG2 is typically
expressed in oligodendrocytes as well as in perivascular cells in
the mouse brain (44). Thus, we hypothesized that tumors from
NG2-CreERt2 Pten/Trp53/NfI KO mice can arise from either naive
oligodendrocytes or perivascular cells of the brain, while tumors
from Nes-CreERt2 Pten/Trp53/Nfl KO mice should arise only from
radial glia cells. Hierarchical clustering revealed that two of the seven
sequenced tumors derived from NG2" cells were PeriV-lineage and
the other five were Rgl-lineage. Furthermore, none of the seven
glioblastomas induced from Nes* cells carried any perivascular sig-
nature pattern (fig. S5A).

Platelet-derived growth factor (PDGF) acting through PDGF
receptors induces proliferation and migration of perivascular cells
(45). We therefore estimated the tumorigenesis potential of human
brain perivascular cells by introducing PDGFB and depleting
CDKN2A (p16INK4A and p14ARF) in primary human brain peri-
cytes (Peri’POFB/CDRN24) 31 introducing PDGFB and co-depleting
NF1/TP53 in human primary brain vEBs (fibroblast?PCFB/NFI/TPS3y yith
green fluorescent protein (GFP) introduced into both cell types (fig.
S5, B to D). These alterations led to marked increases in in vitro
growth compared to naive cells and significantly promoted the
colony formation in vFBs (Fig. 5, A and B, and fig. S5E). To explore
the consequences of these genetic alterations on cell identity, we
scRNA-sequenced vFBs with and without the alterations. We observed
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comprehensive CNV changes in genetically modified vFBs (Fig. 5C
and fig. S5F), with the significant deletion of Chr.4q, 1q, 9q, and
18q, and amplification of Chr.12q and 5q, indicating that a few
founding mutations can lead to large genetic alterations. In particular,
the alterations of Chr.18q and 5q have been identified in mesenchymal
glioblastoma (5) and meningioma (46)—another type of brain
tumor derived from the neural crest lineage. SWAPLINE projection
of the control and genetically modified vFBs in the developmental
adult reference plot revealed a marked dedifferentiation of the modi-
fied vFBs toward reference neural crest progenitors (Fig. 5, D and E).
Consistently, more G,-M cycling cells were observed in modified
vEBs (Fig. 5F and fig. S5G). By comparing the transcriptional profile

Hu etal., Sci. Adv. 8, eabm6340 (2022) 8 June 2022

between control and modified vFBs, we identified 773 up-regulated
and 638 down-regulated genes (data file S7). Pathway enrichment
revealed that “cell cycle and chromatin reorganization” and “neural
crest differentiation” were significantly increased, while “HOX
gene-related tissue patterning” was suppressed, indicating a
dedifferentiation toward a neural crest stem cell state and a loss of
anterior-posterior positioning information (Fig. 5G and data file S7).
The cells were introduced into the brain in the orthotopic mouse
model to test for tumor initiation. Both the modified pericytes and
vFBs generated tumors, and the mice exhibited poorer tumor-
associated survival than the control group receiving naive cells (fig.
S5H). Consistently, none of the control groups transplanted with
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Hu etal., Sci. Adv. 8, eabm6340 (2022) 8 June 2022 100f 18

2202 ‘0Z aunt uo BI0"80uUs 105" MMM/:SAIY WO | PaPE0 JUMOC



SCIENCE ADVANCES | RESEARCH ARTICLE

the corresponding naive cell types had a confirmed brain tumor by
histological analysis, while all genetically altered perivascular cells did.
Fluorescence staining confirmed that the brain tumors were of human
cell origin (anti-human lamin A/C and GFP; Fig. 5, H and I, and fig. S5,
I to K). Both Peri’PCFB/CDKN2A ice and fibroblast” PFB/NFIPS3 ice
exhibited extensive neoplastic growth and most animals displayed a
diffuse and infiltrative phenotype. The xenograft tumor tissue exhibited
cellular mitotic activity (Ki67), altered microvascular patterns (CD31),
and abnormal remodeling of extracellular matrix proteins (fibronec-
tin and collagen VI) (fig. S5L). Furthermore, the expression of PeriV-
lineage tumor marker genes (POU3F2, FOXCI, SOX2, and LIF) in the
tumor tissue of the grafted mice was observed, while Rgl-lineage
genes NEURODI and OLIG2 were rarely observed (Fig. 5]). We
observed some tumor cells coexpressing the neural crest progenitor
marker SOX10, in line with our in silico observation of a cellular
dedifferentiation in transformed tumor cells (Fig. 5, D and E).

DISCUSSION

scRNA-seq has provided unparalleled insights into the molecular
nature of glioblastoma cells and has offered new means to explain
the cell of origin, tumor phenotype, cell heterogeneity, and patient
outcome (47). In this study, we combined the application of a neural
network classifier and the trajectory analysis of native brain cells to
identify the relation of glioblastoma cells to normal brain cells. Our
results identified that some glioblastomas display high similarities to
radial glia and its progenies (Rgl-lineage), consistent with previous
studies assigning tumor cells to neural cell types using a list of
defined marker genes, hierarchical clustering, or reference cells in
principal components analysis (PCA) (5, 7, 8, 10, 26). Unexpectedly, we
identified the remaining glioblastoma to be similar to perivascular
cells (PeriV-lineage), and consistently, tumor cells were robustly
allocated along one of the two cell lineages. Furthermore, we
validated the tumor-propagating ability of naive brain perivascular
cells. According to our neural network classification of scRNA-seq
data as well as deconvolution of bulk data, glioblastoma of a
PeriV-lineage type represents a proportion of the TCGA-mes
subtype. Furthermore, consistent results were obtained on patient
survival using gene expression- or methylation-based patient stratifi-
cation into Rgl-lineage or PeriV-lineage. Patients with a PeriV-
lineage-type signature show significantly poorer survival than those
with an Rgl-lineage type. Combined, our results suggest the existence
of a subgroup of glioblastoma with similarities to perivascular cells
of the brain, which is distinct from the Rgl-lineage.

Although transcription can be affected by both mutations driving
transformation as well as the microenvironment (5), the originating
cell lineage can represent an important determinant of glioblastoma
molecular characteristics (12). Among the conserved markers
expressed in most cell types of each of the lineage (Fig. 1C), there
is a high expression in Rgl-lineage cells of PTPRZ1 and SLCIA3,
which previously have been shown to contribute to glioblastoma
initiation and progression (10). Furthermore, the expressions of
PeriV-lineage markers, LUM and platelet-derived growth factor
receptor beta (PDGFRB), have also been previously evidenced in
glioblastoma (48, 49). Because glioblastoma tumors exhibit cells with
features consistent with precursor populations, shared developmental
determinants of the progenitor cell fates could contribute to onco-
genesis. Cell cycle analysis along the lineage trajectories revealed both
Rgl-lineage and PeriV-lineage tumor cells to be rapidly dividing
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with markedly reduced proliferation of the more differentiated cells
within each lineage. When we identified shared features between the
two progenitor cell populations, nearly all shared genes were cell
cycle-regulating transcriptional activators. This suggests that a major
shared feature in the progenitor cells of the two lineages (PeriV- and
Rgl-lineage) involves cell cycle control. Thus, transcriptional determi-
nants contributing to oncogenesis in the two different lineages unrelated
to cell cycle control are for the most part unique to each lineage and
coincides with those in normal brain lineage trajectories.

RNA-velocity analyses show that the main flow in glioblastoma
is from progenitor cells to differentiated cell types, and hence,
glioblastoma develops along conserved neurodevelopmental gene
programs, in agreement with a recent similar analysis (7). However,
unlike that study, we find lineage reversal of tumor cells in the
astrocyte branch of differentiation as well as of PeriV-lineage tumor
cells carrying similarity to reference vFB cells. This difference may
be a consequence of the fact that we performed a comprehensive
RNA velocity with all assigned glioblastoma cells on the lineage
branching tree plot, instead of on selected individual patients or
selected reference brain cell types, thus overall increasing resolution.
Furthermore, the standard dimensional reduction (such as PCA
and t-distributed stochastic neighbor embedding) in a previous
analysis could be too strict for estimating RNA velocity across
tumor patients, due to the individual variance (5, 10). Instead, a
score-based branch plot may better reflect the roadmap of develop-
mental programs for cancer studies (50). The finding of lineage
reversal of some more differentiated cells is consistent with a high
degree of plasticity observed in glioblastoma cells (5, 8, 10) and
suggests that, within glioblastoma, tumor cells with astrocyte and
vFB features along with the glioblastoma resident progenitor popu-
lations can be originators of the cancer cell hierarchy and, thus,
driving cancer growth. This is also consistent for the PeriV-lineage-
type glioblastoma in experimental data, since recapitulating in
perivascular cells genetic changes of glioblastoma is sufficient to
initiate tumors with perivascular cell expression features in orthotopic
grafted mice, including a derepression of the stemness maintenance
factor SOX2 (51).The profound impact of a limited set of TFs on the
fate of perivascular cells is illustrated by the direct reprogramming
of pericytes to neurons through a neural stem cell intermediate
by forced expression of SOX2 and the proneural ASCL1 TF (52),
suggesting that re-expression of SOX2 alone is sufficient for a de-
differentiation of pericytes to a stem-like cell state from which
ASCL1 induces neurogenesis. Thus, our results are consistent
with the notion that some glioblastoma can originate from neural
crest-derived leptomeningeal and perivascular cells. It appears that,
within these, a few acquired mutations can start a process involving
genetic instability and re-expression of developmental TFs shifting
differentiated perivascular cells into more progenitor-like cells within
the differentiation trajectory of the neural crest.

MATERIALS AND METHODS

The reagents, software, and public datasets are listed in data file S8.
The machine learning models, training datasets, testing datasets, main
lineages, sublineages, and assigned cell types are listed in data file S9.

Human GC cultures
Surgical tissue samples and clinical information for glioma patients
were obtained from Karolinska Hospital in accordance with the
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protocol approved by the regional ethical review board. An informed
written consent was obtained from all patients. We have used
18 human glioblastoma cell lines between passages 1 and 5. Tumors
were classified by a neuropathologist on the basis of the World
Health Organization classification. Human glioblastoma tissues were
cultured as previously described (53) with some modification. The
tissue was minced with a scalpel, digested in Accutase/TrypLE (1:1)
at 37°C for 15 min, and triturated through 18G and 21G needles.
The dissociated cells were resuspended in NeuroCult NS-a basal
medium (STEMCELL Technologies) with the addition of 1% B27
(Invitrogen), 0.5% N2 (Invitrogen), and 10 ng/ml each of EGF and
fibroblast growth factor 2 (PeproTech), plated on laminin-coated
Primaria dishes (Corning), and cultured as adherent cells.

Lentiviral-based genetic modifications of human pericytes
and fibroblasts

Human brain vascular pericytes (HBVPs) and human brain vascular
adventitial fibroblasts (HBV AFs) were purchased from ScienCell
and cultured following the instructions provided by the company.
The lentiviral construct, ssiCDKN2A pGFP-c-shLenti vector, was
purchased from OriGene Technologies, and shNF1/P53 dual shRNA
(CS-LvRU6GP) expressing GFP and pEZ-Lv151 vector expressing
PDGFB were purchased from GeneCopoeia. The viral particles
were produced in 293T cells through cotransfection of pMD2.G
and psPAX2 at a ratio of 4:2:3. Supernatants were harvested 48 and
72 hours after transfection and concentrated using Lenti-X Con-
centrator solution (ClonTech). Viral pellets were resuspended in
phosphate-buffered saline (PBS) and stored at —70°C until further
use. HBVPs or HBVAFs were infected for 48 hours and then selected.

Colony formation assay

A total of 1 x 10* cells were mixed in 1.5 ml of 0.4% agarose as the
top layer with a bottom base of 1.5 ml of 0.6% agarose, cultured in a
six-well plate. The 0.4% and 0.6% agarose are the mixtures of low-
melting point agarose and NeuroCult NS-a basal medium above.
Every culture well is photographed for at least two views randomly;
then, the pictures were counted for colony numbers after 20 days.
The average counts were taken as counts of one sample. Triplicate
wells were included in each analysis and at least three independent
experiments were conducted.

Intracranial transplantation

Animal experiments were performed in accordance with the rules
and regulations of Karolinska Institute and approved by the local
animal ethics committee. Intracranial transplantation of human
germinal center (GC) cultures was performed in neonatal nonobese
diabetic-severe combined immunodeficient (NOD-SCID) mice as
previously described (54). Human GCs were dissociated in TrypLE,
and the number of cells was determined using a Coulter Counter
(Coulter Electronics). Stereotaxic injections of 2 x 10° genetic-modified
HBVP or HBVAF cells in 4 pl of Dulbecco's PBS were performed on
8- to 10-week-old female NOD-SCID mice. The coordinates were
0.5 mm anterior of bregma, 1.1 mm lateral, and 2.5 mm ventral.
Injected mice were monitored every second day and euthanized
upon symptoms of disease. After euthanizing the mice, their brain
was collected and fixed with 4% paraformaldehyde in PBS for over-
night. The tissue was then washed with PBS and incubated with
15% sucrose for 24 hours, and 30% sucrose for another 24 hours.
After that, the tissue was embedded into optimal cutting temperature
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compound (Sakura Biotech) in a Cryomold (Sakura Biotech) and
frozen using liquid nitrogen. The frozen tissue blocks were stored
in —=80°C. Ten- to 12-um-thin cryo-sections of xenograft tumor tissue
were prepared on Superfrost Plus slides and slides were either
stored in —80°C or processed immediately for immunofluorescence,
fluorescence in situ hybridization, or hematoxylin and eosin staining.

Immunofluorescence analysis of mouse brains

Frozen sections were blocked in PBS containing 0.2% Triton X-100
(PBS-T), 3% bovine serum albumin, and 5% normal goat serum and
incubated with primary antibodies for 1 hour at room temperature
or at +4° for 4 hours in a humidified chamber. The sections were
then washed with PBS-T three times and incubated with secondary
antibodies (1:500) at +4° for 4 hours. After finally washing three
times in PBS-T, sections were mounted in Immu-Mount (Thermo
Fisher Scientific) containing 4’,6-diamidino-2-phenylindole. The pic-
tures were taken using an LSM 700 confocal microscope (Carl Zeiss).

Fluorescence in situ hybridization (RNAscope)

Transcripts were detected using the RNAscope assay for fresh-frozen
tissue (Advanced Cell Diagnostics). The probes were designed and
provided commercially by Advanced Cell Diagnostics Inc. For the
complete list of probes and genes, see Resource and Reagent List.
The staining was performed using the RNAscope Fluorescent
Multiplex Reagent Kit (catalog no. 320850), reagents, and probes
according to the manufacturer’s instructions. Imaging was performed
using LSM 700 confocal microscopes (Carl Zeiss).

Single-cell isolation and cDNA synthesis

A Fluidigm C1 Autoprep System microfluidic chip was used to
capture the cells. Immediately after the image acquisition, cell lysis,
reverse transcription, and polymerase chain reaction (PCR) ampli-
fication were performed as previously described (55). The amplified
cDNA was harvested with 13 pl of Harvest Reagent and cDNA
library quality was measured on an Agilent Bioanalyzer.

Preparation of sequencing library and lllumina sequencing

For patient-derived glioblastoma cells, we used 5’ single-cell-tagged
reverse transcription sequencing (STRT-seq). Cell barcoding and
fragmentation were performed in a single step using Tn5 DNA
transposase (“tagmentation”) as described previously. One microliter
of Dynabeads MyOne Streptavidin C1 beads (Invitrogen) was
resuspended in binding and blocking buffer (10 mM tris, 250 mM
NaCl, 5 mM EDTA, and 0.5% SDS) at the ratio of 1:20 and then
added to each well. After incubation at room temperature for 15 min,
all wells were pooled, and the beads were washed once with 100 ul
of washing buffer (10 mM tris-150 mM NaCl and 0.02% Tween 20),
once with 100 ul of QIAGEN Qiaquick PB, and then twice with
100 pl of washing buffer. Restriction was performed to cleave 3’
fragments: The beads were incubated in 100 pl of restriction mix
[1x NEB CutSmart and Pvul-HF enzyme (0.4 U/ul)] for 1 hour at
37°C. Last, the beads were washed three times with the washing
buffer, and then resuspended in 30 pl of ddH,O and incubated for
10 min at 70°C to elute the DNA. AMPure beads XP (Beckman
Coulter) were used at 1.8x volume and eluted in 30 pl to remove
short fragments. The molar concentrations of the libraries were
determined with KAPA Library Quant qPCR (Kapa Biosystems)
and the size distribution was evaluated after PCR (12 cycles) using
an Agilent Bioanalyzer. Sequencing was performed on an Illumina
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HiSeq 2000 with C1-P1-PCR2 as read 1 primer and C1-TN5-U as
index read primer. Reads of 50 base pairs (bp) as well as 8-bp index
reads corresponding to the cell-specific barcodes were generated.
For genetic-modified perivascular cells, the sScRNA-seq was performed
by using Chromium Single Cell 3’ Reagent Kits (10x Genomic,
version 3) according to the manufacturer’s instruction.

Bioinformatics preprocessing, copy number analysis,

and clustering

For STRT-seq, the reads were aligned by STAR using GRCh38.p12
genome assembly and processed as described previously (55). The
cells harboring less than 1000 detected transcripts or less than
450 detected genes were filtered out. After these quality control
procedures, 4073 cells were left with the median detected protein
coding genes of 3531 counts. For 10x scRNA-seq, data preprocessing
was performed via Cell Ranger. The copy number analysis was per-
formed with CONICS following the instruction (56). Briefly, genes
expressed in <5 cells were excluded. After centering the gene ex-
pression in each cell around the mean, the z-score of the centered
gene expression was calculated across all cells. Next, the bimodal
distribution of gene expression in any regions across cells was
determined by a Gaussian mixture model mode, and the regions
containing more than 100 expressed genes were identified for the
next step. Then, the reported mixture models were chosen follow-
ing the criteria of the Bayesian information criterion >5 and the
P value of likelihood ratio test <0.05. To detect the existence of
CNVs, the threshold of posterior probabilities was set as 0.55, and
the gain or loss was determined by comparing the average expression
in the normal cells. The heatmap visualizations of chromosomal
alterations were generated in every single cell across the genome for
all calculated patients.

Before clustering, we removed the cell cycle-related genes and
then computed the coefficient variation (CV) (SD divided by the
mean) versus the predicted CV (estimated by a nonlinear noise
model) and applied the fit of noise distribution to select the most
variable features that are greater than the expected CV. Support
vector regression (SVR) from scikit-learn package was used for this
analysis. The most variable features were used for calculating the
top 20 PCs, and the top 10 nearest neighbors, 0.5 minimum distance,
and Euclidean distance were used for UMAP.

The most variable genes were then used for cell clustering via
different algorithms including the DBSCAN algorithm (Seurat V1.2)
and the Louvain method for community detection with a resolution
value of 1 (Seurat V3.0+) (55, 57). Furthermore, we applied several
rounds of clustering, zoom-in clustering, and cluster recombining
to make sure that all clusters are biologically meaningful and exhibited
significant markers. Eventually, cells were grouped into 20 clusters,
and the marker genes of every cluster were determined via enrich-
ment score as described in (44). The enrichment score E;; for gene
i and cluster j was defined as

O + el Bi,j + €2
Ej=\g el i+ €2
Oij+€ Bij+e
Here, 0 j represents the score of nonzero expression for the cells
in this cluster, and a;; represents the score of nonzero expression
for the cells that are not in this cluster. B; ; represents the mean

expression for the cells in this cluster, and B;; represents the mean
expression for cells that are not in the cluster. A small value of the
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constants €; and &; is added to prevent the divisor from having a
value of zero.

Scoring analysis of cell-type identity

For this analysis, our goal was to score the probabilistic cell identity
of each cell relative to the defined cell types at the transcriptional
level (21). We built an L2-regularized logistic regression model, a
C-support vector classification model, and a vanilla neural network
model (PyTorch framework with Skorch package) for classification
tasks and trained the model to learn the general prototypes of
defined cell types. To train the model, we removed the cell cycle-
related genes, and then computed the CV (SD divided by the mean)
versus the predicted CV (estimated by a nonlinear noise model),
and applied the fit of noise distribution to select the most variable
features that are greater than the expected CV. SVR from the scikit-
learn package was for this analysis. The overdispersed genes were
further ranked by two heuristics for the cell-type specificity of both
fold change and enrichment score change (44). For TCGA subtype
classification, the originally defined TCGA subtypes were used as
reference cell types, and the originally identified marker genes of the
four subtypes were manually added as feature genes for training
the neural network classifier. For the lineage classification based on
the differential methylation sites, the defined lineages at the tran-
scriptional level were used as the reference cell types, and the iden-
tified differential methylation sites were used as the features for
training the neural network classifier. The cross-species alignment
was performed as described in (2I). To compare the data from
UMI-based platforms and the Smart-seq2 platform, data were scaled
by SD owing to the potentially larger gene variation in Smart-seq2
(58). Subsequently, the ranked marker genes of the defined cell types
were log-transformed and scaled by Minmax normalization, and
then used for the different learning models:

1) The L2-regularized logistic regression model was as described
in (59).

2) To test the adequate strength of the regularization in the
C-support vector classification model, the C regularization param-
eter and three kernel types, “linear,” “sigmoid,” and “rbf,” were
inspected via GridSearchCV. The classifier accuracy was estimated
by a k-fold cross-validation, of which the dataset was randomly split
(25% test_size). The value of the C regularization parameter and the
kernel type were chosen corresponding to the maximum point of
the learning curve reaching the accuracy plateaus.

3) The neural network model contains an input layer with the
number of neuron nodes being the same as the number of marker
genes, a hidden layer with the number of neuron nodes being the
same as 20% of marker gene numbers, and an output layer with the
number of neuron nodes being the same as the number of defined
cell types. Linear regression was performed between each layer, and
30% of dropouts were set to reduce the overfitting. Rectified linear
unit (ReLu) was used as the activation function of the hidden layer,
and Softmax was used for the output layer to evaluate the probabili-
ties. Nesterov momentum was used as a stochastic gradient descent
(SGD) optimizer. To choose the adequate regularization strength,
the classifier accuracy and the loss value were inspected against
epoch numbers. The classifier accuracy was estimated by a k-fold
cross-validation, of which the dataset was randomly split (k = 3).
The learning rate, epoch number, and momentum were chosen
corresponding to the maximum point of the learning curve reaching
the accuracy plateaus.
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4) The node-level graph neural network (GNN) model contains
an input layer with the number of node features being the same as
the number of marker genes, two hidden layers with the number of
neuron nodes being the same as 25% of marker gene numbers, and
an output layer with the number of neuron nodes being the same
as the number of defined cell types. The edge indexes were selected
as the top 10 nodes upon K-nearest neighboring (KNN) calcula-
tion of the top 30 principal components.

GCNConv (message passing) was performed between each layer,
and 20% of dropouts were set. ReLu was used as the activation func-
tion of the hidden layer, and Softmax was used for the output layer
to evaluate the probabilities. Momentum y was set to 0.9 in the SGD
optimizer. To choose the adequate regularization strength, the classifier
accuracy and the loss value (CrossEntropyLoss) were inspected
against epoch numbers. The learning rate, epoch number, and
momentum were chosen corresponding to the maximum point of
the learning curve reaching the accuracy plateaus.

We set the same learning steps for all four models and found
that the learning accuracy and running period were 97.62% and
1390.83 s for the L2-regularized logistic regression model; 97.59%
and 3084.81 s for the C-support vector classification model; 99.6%
and 131.14 s for the vanilla neural network model; and 99.13% and
349.81 s for the node-level GNN. Thus, the ready vanilla neural
network model was further used to predict the probabilities of each
cell belonging to each trained reference cell type. The permutation
test of dataset was applied to qualify the significance of the predic-
tion, and the P value was calculated by false discovery rate. The
prototype threshold of a defined cell type was determined as the
larger value of significant probability (P < 0.05) and dominant
probability (>60). If the probability of a predicted cell to one cell
type is over this cell type’s prototype threshold, this predicted cell
was considered as “cell type defined” and was assigned to this
cell type. Data were visualized in the radar plot. The radar plot
consists of a sequence of equiangular polygon spokes with the distal
vertex representing each trained reference cell type. The distance
between the polygon center and each vertex of the polygon represents
the relative probabilities of each trained reference cell assigned to
the defined reference cell types. Thus, the position of each predicting
cell was calculated as a linear combination of the probabilities
against all reference cell types and then visualized as the relative
position to all vertices of the polygon.

Deconvolution of bulk tumor RNA sequencing

A bulk tumor tissue contains both the malignant cells and various
microenvironment cells that disturb the transcriptional profile of the
endogenous tumor cells. In addition, the intratumor heterogeneity
of glioblastoma tissue further blurs the expression matrix. To
enrich/denoise the gene expression of the dominant tumor cells
from glioblastoma bulk tissue, we applied the deconvolution method
via the power-law transformations and the autoencoder of con-
volutional neural network (CNN) (60). The RNA-seq data of TCGA
were obtained from the UCSC Cancer Browser, and our scRNA-seq
data were used as the reference dataset for deconvolution. Genes in
the reference dataset were prefiltered by the count frequency as
described in BACKSPIN (55), and then used for the deconvolution
of bulk tissue. Each gene was scaled by Minmax normalization and
visualized by a curved line plot; the x axis represents the cell/sample
that was sorted by the expression value of the gene. Thus, we ob-
tained the distribution of gene expression of these datasets and
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visualized them in a curve line plot. The mean values of all curves
were calculated for the least squares polynomial approximation via
Numpy, and the square root was used as weights to find the vy value
of the curve. By comparing the v values of both bulk tissue data and
reference glioblastoma single-cell data, the expression matrix of
bulk sequencing was fit to the same distribution of single-cell se-
quencing via power-law transformations (fig. S2B, step 1).

Next, the CNN autoencoder was applied for denoising the trans-
formed datasets. The autoencoder contains two layers of convolution
and four layers of transposed convolution in the PyTorch frame-
work. The hyperbolic tangent activation function (Tanh) was used
as the activation function between each layer, and sigmoid was used
for the output layer. The mean squared error between each element
in the input (MSELoss) was evaluated against the epoch. The learning
rate and epoch number were chosen corresponding to the mini-
mum point of loss_value curve after reaching the loss_value plateaus
(fig. S2B, step 2). After the training of the reference glioblastoma
scRNA-seq data, the model was performed for the deconvolution of
the transformed dataset of glioblastoma bulk tissue. The deconvo-
luted dataset was scaled and visualized in a curve line plot as
described above for evaluation and subsequently used for further
analysis.

Single-cell Weighted Assignment and Projection

on developmental LINEages

The aim of SWAPLINE is to place each test cell into a trajectory
position of normal developmental lineage(s), via combining both
KNN and the scoring of probabilistic cell identity. The workflow is
described in fig. S3D.

To construct the reference lineage trajectory, the endogenous
mouse brain cell types were from developmental brain atlas (16) or
collected from different datasets generated via the Smart-seq2
scRNA-seq platform, including adult Rgl/neural stem cells, neuro-
blasts (35), meningeal cells derived from neural crest (34), neural crest
and neural tube cells captured from the developing embryo (33),
and oligodendrocytes, astrocytes, and perivascular mural cells (17).
These cell types should together represent possible endogenous brain
cell types to which glioblastoma cells display similarities. Meningeal
cells, embryonic neural crest cells, and perivascular mural cells
theoretically belong to neural crest lineage in brain, while other cell
types follow the CNS neural development. UMAP was used to build
the reference plot that reflects the transcriptional relations among
all reference cell types. PAGA analysis (61) further confirmed the
lineage relations among the reference cell types. Subsequently, two
steps of quantification were applied in parallel: First, we used all
these reference cell types to perform the cell scoring of probabilistic
similarity. Next, we divided the prototype probabilities into two
groups according to the developmental lineages of the reference cell
types: a neural crest lineage and a CNS neural lineage as described
above. For each predicted cell type, the mean value of the prototype
probabilities of the two lineage groups was used to estimate the
lineage similarity of this predicted cell type, the higher lineage
probability assigned, and the predicted cell type into this lineage for
further lineage-specific SWAPLINE analysis. Since there are two
major lineages in the reference cells during neural/neural crest
development, we assigned each predicted cell type into its normal
developmental lineage by referring to the top N (N = 3 or 4 here)
closest reference cell type in PAGA. For each lineage, the top
connected reference cell types and predicted cells were used for
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probabilistic scoring. The permutation test was applied as the
negative control and background noise. Second, we used KNN to
evaluate the putative position of each predicted cell corresponding
to every reference cell types in the UMAP. Briefly, we first calculated
the top principal components of all cells following the Elbow method,
and then used these principal components to access the pairwise
distances of Euclidean metric among all cells. For each predicted
cell, we selected the top 25 nearest cells in each reference cell type
and calculated the median UMAP coordinates of these top nearest
cells. Thus, we obtained the KNN putative positions of the predicted
cells in each top N connected reference cell type. Furthermore, the
prototype probabilistic score of each cell was normalized to the
median value of randomized probabilities that were generated from
the permutation test and further rescaled by Minmax. The cells with
global prototype similarity (putatively low-quality cells or extreme-
ly high-plasticity cells) were excluded if one predicted cell’s SD of
probability among prototypes was lower than the permutation test.
Subsequently, a linear combination of both KNN putative positions
and cell probabilities of top N related and connected reference cell
types represents the developmental trajectory position of each
predicted cell: Let N be the total number of prototypes, let p,, be the
probability of a cell belonging to prototype m, let ¢;,j be the coordi-
nate of nearest neighboring cell j of the predicted cell from prototype
m, and let k be the top closest constant; the predicted coordinates of
test cell @ upon the origin of coordinates then was defined

=2 (15 w)

=1 j=1

Disentangling trajectory analysis of the branching tree

The principal branching tree was constructed to elucidate the fun-
damental lineages of glioblastoma cells via a simplified elastic
principal graphs. Elastic principal graphs are a generalization of the
elastic map algorithm for approximating principal manifolds from
the data with a given topology (36). A principal manifold is an
undirected graph (B) composed of nodes (N) and edges (E). The
nodes are embedded into the data space by minimizing both the
approximation error (mean squared distance) to the data points
and the elastic energy [U%(B)], defined as

IN|
U®D,B)= 1 min {ID; - ®(N;) I3 T,A+U®(B
(O.B)= i X 2 min 1D D) I, 171+ U°(B)

k-star in graph G defines a subgraph that contains k + 1 nodes,
1,1,k €N, and k edges {(no, n;)|i = 1, ..., k}. D represents the struc-
tured data points, and Num is the number of data points. ¢ (N)) is
the map @: N — R™, which represents an embedding of each j node
in the data space. The data point partitioning Pn was defined as
Pn(i) = arg min; = . v| (D; - ¢(Vj))2, and it provides an index of a
node that is the closest to the ith data point in the graph. Each
iteration provides the initial guess of ¢, the partitioning Pn(i) is
computed, and U ¢ (D, B) is minimized via exploring new node
positions in the data space. T, represents the trimming radius, a dis-
tance dropout parameter in the limit, of which the data points were
used for graph optimization. For the comprehensive evaluation, we
set T, as infinite here. The edges among the nodes define the elastic
energy, which serves as a penalty for the graph embedding. The
elastic energy is manifested by two main factors: the stretching and
non-equal distance of node-to-node positions [U?(B), weighted by
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the A] and the deviation from harmonic embedding [Ug’(B), weighted
by ], defined as

U®B)= UL(B)+UR(B)

Ug(B):= ;{x + o(max(2, kg o), kg(1)) —2) HI®(E,(0)) —~(E(0)) I

ki 2
Ug(B):= ”; <‘D(Si(0))—%§ ‘D(Si(i))>
i lj:

An elastic principal tree contains selected families of k-stars Si.
Each graph edge E Y has two nodes E(i)(O) and E¥ (1). Sk(j)(O) to
Sk(j)(k) denote the nodes of a star Sk(j) in the graph, and Sk(j)(O) rep-
resents the center node that links to all other nodes. According to
the equation, the elastic energy is regulated by two weighted factors: A,
regularizing the overall length of the edges, and p, the deviation of
the star nodes from harmonic embedding. Thus, we evaluated the
construction of a principal tree upon different combinations of A
and p. Besides these two, the parameter o independently regulates
the appearance of branches via perturbing the edges of higher-order
star nodes. To avoid excessive branching, we use a small value (0.01)
here according to the formal description. As the SWAPLINE coor-
dinates of each glioblastoma cell represent its status within the
developmental trajectory of normal brain cells, we use the SWAPLINE
coordinates to perform the low-dimensional construction of the
principal branching tree. To test the robustness of the principal
graph, we inspected different combinations of the elastic stretching
(A; range, 0.001 to 0.02) and the deviation from harmonicity penalty
(u; range, 0.05 to 0.5). A total of 2565 rounds of the principal graph
were tested and visualized. To obtain the minimum branching and
the maximum elastic stretching, we chose the principal tree pro-
duced with A = 0.01 and p =0.2 for subsequent analyses; alternatively,
the principal tree can be obtained from the PCA of the parameter tests
described above. Each edge of the principal tree was smoothened by
one-dimensional interpolation via the interp1d package from SciPy.
In addition, the small branch with only one single link between two
nodes was merged into the neighboring larger branch. Next, we
used the Shapely package to project all cell dots onto the principal
edge by evaluating the shortest distance at the two dimensions and
adjusted the cell positions to keep the same intercellular distance
along each branch. To identify the branching related genes, we
separated the principal tree to five branches according to the branch
point and the branch lineage. For each branch, the smoothed ex-
pression for each gene along the branch was determined by using a
Gaussian filter or a generalized linear model (SciPy package).
Significant branching genes were determined by three heuristics: (i)
significant distribution based on the cumulative distribution func-
tion comparing the branching position and the smoothed expression,
(ii) significant correlation (Spearman’s) between the branching
position and the smoothed expression before and after peak value,
and (iii) the gene expression should fit the criteria that at least 5% of
the cells express two molecular counts and at least 20% of the cells
express one molecular count. All smoothed expression was normal-
ized to the central branching point for further comparison.

Analysis of cell cycle
A list of genes has been assigned to two major phases (S and G,-M)
of the cell cycle (9). The significant phase activation was evaluated
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by comparing the expression of phase-related genes and the expres-
sion of random genes as described in Seurat, with small modification.
Briefly, the overdispersed genes of a dataset were evaluated by esti-
mating the mean and coefficients of variation. The overdispersed
cell cycle genes were selected for phase scoring, and the rest of the
genes were ranked by the expression and separated into 25 intervals
according to the rank. In each interval, we selected the first 50 genes
for randomization and thus generate the random gene matrix. The
phase scores were generated by estimating the differential mean ex-
pression of the phase genes and the randomized genes. Phase Gy-G;
was decided if the expression of phase genes was lower than ran-
domized values. The activation of other phases was decided by the
larger value of the phase score. Thus, each cell was assigned to different
phases of the cell cycle and subsequently projected to the plot.

Comprehensive RNA velocity of all glioblastoma cells

on STRT-seq/STRT-seq-2i

Spliced and unspliced counts of glioblastoma cells were quantified
as described by La Manno et al. (40) using the RNA velocity package,
with modification for 5 STRT-seq. We extracted the barcode and
UMI with the fault tolerance of 1 base mismatch from the FASTQ
file. Meanwhile, we added the first 4 bases of the transcript sequence
to the original 6 bases of UMI to generate 10 new bases of UMI for
each read. The barcode tag and UMI tag were defined via SAMtools
(pysam). The reads were aligned by STAR using GRCh38.p12 ge-
nome assembly and processed as described previously (55). We
calculated spliced and unspliced counts using the built-in package
of Velocyto (session of “any technique-advanced use”) with masking
expressed repetitive elements. A total of 2451 cells were selected
with the criteria of 200 unspliced molecules and 200 spliced mole-
cules, and most variable genes were filtered with the criteria of four
minimum unspliced molecules detected in a minimum of three cells.
PCAs were selected according to 0.55% ratio of variance explained by
each of the selected components. Data were smoothened via balanced
KNN imputation with K = 500, b_sight = 4*K, b_maxl = 3*K. The
variance normalizing transform was performed in log value. The
time step for extrapolation is 5, and kernel scaling was set as 0.05 in
calculating the transition probability to project the velocity direc-
tion on the embedding. The embedding scatter plot was forked
from the branching tree plot as described above, and the branching
tree plot widened along each axis for better visualization.

Extraction of core/hub glioblastoma cells via

density estimation

To estimate the density of glioblastoma cells in the lineage plot, the
coordinate of each cell in both scatter plot and branching tree plot
was stacked vertically and applied for kernel-density estimation
using Gaussian kernels. Bandwidth vector was generated via the rule
of thumb of Scott. Relative density was calculated by comparing the
overall density in the plot. Cells with the top 50% density were
defined as hub/core cells, and the rest of the cells were defined as
branch cells.

SCENIC analysis

To infer the TFs and their target gene networks, SCENIC analysis
was performed according to the authors’ vignette. Briefly, the
TF-targeted gene sets were identified via the following criteria: first,
coexpression with TFs and, second, enriched in the direct motif of
the TF. Then, the regulon activities were scored and binarized to
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determine whether the gene sets of each regulon were significantly
enriched in cells.

Quantification and statistical analysis

Statistical analysis between groups was performed using two-tailed
Student’s t test. Kaplan-Meier survival was calculated via log-rank
test. Experiments were representative of at least three independent and
biological replicates. Error bars in figures represent means + SEM.
P values were indicated in figures or marked as *P < 0.05 and
**P <0.01.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abm6340

View/request a protocol for this paper from Bio-protocol.
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