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Abstract—Beampattern synthesis is a key problem in many
wireless applications. With the increasing scale of MIMO antenna
array, it is highly desired to conduct beampattern synthesis on
a sparse array to reduce the power and hardware cost. In this
paper, we consider conducting beampattern synthesis and sparse
array construction jointly. In the formulated problem, the beam-
pattern synthesis is designed by minimizing the matching error
to the beampattern template, and the Shannon entropy function
is first introduced to impose the sparsity of the array. Then,
for this nonconvex problem, an iterative method is proposed
by leveraging on the alternating direction multiplier method
(ADMM) and the majorization minimization (MM). Simulation
results demonstrate that, compared with the benchmark, our
approach achieves a good trade-off between array sparsity and
beampattern matching error with less runtime.

Index Terms—Sparse array, Shannon entropy function, beam-
pattern synthesis, majorization-minimization, ADMM.

I. INTRODUCTION

Beampattern synthesis aims to design the appropriate weight
vector to achieve a desired radiation pattern. It has been and
continues to be a widely researched topic in radar and wireless
communication systems [1]-[3]. Especially for the latter, the
beamforming technique expresses several advantages, includ-
ing improved signal to interference and noise ratio (SINR),
reduced interference and enhanced security [4].

Recently, sparse array structures have attracted the signifi-
cant research interest due to their inherent capability in source
localization, simplified feeding networks and the reduced
hardware cost and power consumption [5]-[7]. With regards
to beampattern synthesis, the sparse array configuration with
the minimum number of elements is also required to achieve a
specified performance [8], [9]. Specifically, we aim to design
a desired beampattern by selecting only a few elements from
a predefined array. On the one hand, all the antenna resources
need to be exploited to flexibly achieve different beampat-
terns; on the other hand, the sparse configuration is expected
to reduce the overall system cost and power consumption.
Hence, beampattern synthesis and antenna selection should be
considered simultaneously in order to achieve an appropriate
trade-off between these two requirements.

In general, the problem of sparse array beampattern design
usually formulated as fp-norm minimization problem with a
predefined pattern shape constraint [8], [10]-[12]. The cen-
tral problem in these works is the formulation of different
methodologies to solve the ¢p-norm optimization problem. In
[8], the weighted /;-norm is first utilized to approximate the
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nonconvex fp-norm. Then, an iterative method is introduced
to solve the second-order cone programming (SOCP) problem.
To further improve the sparsity of the solution, the £,-norm
regularization, where 0 < p < 1, is used in [10], and then the
alternating direction multiplier method (ADMM) framework
is directly utilized to deal with the nonconvex optimization
problem. Recently, the optimal selection vector (or matrix)
is introduced in beampattern design when the prior informa-
tion (i.e. sparsity level) is provided [13]-[15]. However, all
the aforementioned methods cannot balance the beampattern
design and the sparsity of array configuration simultaneously.

In this paper, we consider the problem of sparse array
beampattern synthesis. Compared with the existing weighted
f1-norm algorithms [7], [8], the Shannon entropy regular-
ization, which can simultaneously improve the sparsity level
and increase the value of nonzero weight, is first utilized to
better prompt the sparsity of array configuration. Meanwhile,
different from [13]-[15], the proposed method does not require
to predefine the sparsity level. The resulting nonconvex prob-
lem is effectively solved by the majorization-based ADMM,
which combines the majorization minimization (MM) and
the ADMM. Numerical results demonstrate the effectiveness
of the proposed method, both in terms of convergence and
balance between sparsity and beamshaping.

Notations: ()T, (-)* and (-)" denote transpose, conjugate,
and Hermitian transpose, respectively. *(-) denotes the real
part of a complex value. 1 and I denote all one vector and the
identity matrix, respectively. | - ||, denotes £,-norm.

II. PROBLEM FORMULATION

Let us consider a transmit array with /N isotropic antennas
uniformly placed with the inter-element spacings d. Then, the
corresponding transmit steering vector is

a(a) _ [1763'27"dsin(49)7 . )ejQT"(N—l)dsin(H)}T c (CNXl, (1)

where 6 belongs to the whole angle space © = [—90°, +90°]
and v denotes the wavelength. The transmit beampattern is
given by

P) =wlA@B)W, 2)

where A(0) = a(f)a’’(0) and w = [wy,wq, - ,wn]|T €
CN*1 denotes the weight vector. Without loss of generality,
we set ||[wl||3 = 1, which means that the array operates in the
maximal power model.

Authorized licensed use limited to: University of Luxembourg. Downloaded on February 28,2022 at 15:31:30 UTC from IEEE Xplore. Restrictions apply.



In practice, especially for a large-scale array, it is desired
to reduce the hardware cost and power consumption, which
can be achieved by deploying a sparse array. Mathematically,
sparsity regularization will be imposed into the beampattern
design formulation, in which the array sparsity and the beam-
pattern should be well balanced. In light of this trade-off, the
problem of interested is formulated as

K
min - AY w7 AW — ad(@)]3 + f(w)
™ k=1
st ||wl3 =1,

3)

where ) is the trade-off parameter, f(w) denotes the sparsity-
promoting regularization function, 6 denotes the k-th angle
within the angle space © and « is used to scale the desired
beampattern d(6y).

Fig. 1. Comparison of different sparsity-promoting regularization functions.

It is noted that there exist various choices to promote the
sparse solution of problem (3). For example, the well-known
¢1-norm is utilized to achieve the sparsity solution [7], [8].
Recently, the Shannon entropy function (SEF) is being widely
used in compressed sensing [16], [17], due to its ability
to measure the concentration and diversity of a vector. Its
definition in terms of w is given by

f(W)—iv: [1n * lo [1n
~ L\ wlz) B wlE

n=1 2

“4)

Fig.1 compares the commonly used ¢;-norm with the SEF. It is
seen that both of them can prompt sparsity. However, the SEF
can simultaneously improve the sparsity level and increase
the value of nonzero entries of w. Especially on unit sphere,
i.e., |[w|2 = 1, the SEF has better sparsity-promoting ability
compared with ¢1-norm. Due to the superior properties of the
SEF, in this paper, we consider it as the sparsity-promoting
regularizer in problem (3).

III. MAJORIZATION-BASED ADMM OPTIMIZATION
ALGORITHM

Note that problem (3) is still nonconvex due to both the
objective function and the constraint. Hence, we will derive
an iterative algorithm based on the powerful MM and ADMM
frameworks. To tackle the nonconvex quartic objective, we

introduce an auxiliary variable v.€ CV*! to convert problem
(3) into

min  Ap(a,v,w) + f(w)
st. w—v=20 ®)
w3 =1,

where o(a, v,w) = Yr | [|[wH A(6;)v — ad(6})]|3. Then,
the augmented Lagrangian of problem (5) is

K
Lla,v,w,u) =AY [w'A@G)v — ad(6))]I3 + f(w)
k=1

p
oyt (w = v) + v

K
=AY W A(Ok)v — ad(6x)]I5 + f(w)

k=1
+ gHw — v +ul|3 + const.

(6)

where u = %7 denotes the dual variable [18] and p is a

positive penalty parameter. Within the framework of ADMM,
the update rules at the (¢ + 1)-th iteration are given by

a(t+1) = argmin ,C(O[,V(t)yw(t)a u(t))7 (721)

vt .= argmin E(a(t+1),V,W(t)7u(t))v (7b)

w1 = argmin £(aD, v w, u®), (7¢)
lwli3=1

at D) =y ® o (W(t+1) _ v(t“)). (7d)

A. Update of a

At the (t 4 1)-th iteration, given v(¥) and w(*), the opti-
mization problem (7a) can be written as

min
«

K

H
D WO AV — ad(6)]13, ®)
k=1

which has the closed-form solution

=(t)
=1

Yoy d2(6)
with 29 = S5 24(6,)R (w(t)HA(Gk)v(t)).

Qlt+D)

€))

B. Update of v
At the (¢ + 1)-th iteration, given o™, w(®) and u®, we
can update v by solving the following problem

min (o) v wt)) 4 gHW(t) —v+u®Z 10

Noticed that problem (10) is an unconstrained quadratic pro-
gramming problem and hence convex. By setting the derivative
of objective function of (10) with respect to v* to be zero, we
have

=v - xftw 4 2 (v—w®+u)) =0 an
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where
as H
2y =2 AT (0w wO T A6), (12a)
k=1
K
I =23 ol 0d(0,) AT (6)). (12b)

k=1
The solution to (11) is

v+ — (Egt)JrgI)ﬂ(,rgH)w(t)+g(w(t)+u(t)))7 (13)
which is also the optimal solution to problem (10).

C. Update of w

At the (t + 1)-th iteration, given o**1), v(t+1)  w(®) and
u®, we can update w into solving the following problem

min Ap(@l D, v w) 4 f(w)

+ gnw—v(f“) a2 a4

st. |w|3=1.

Due to the concave nature of f(w), it is difficult to directly
solve problem (14). Thus, we resort to the majorization-
minimization (MM) framework [19], [20], and solving the
problem (14) is then transformed to solving a series of
subproblems until convergence.

To begin with, let us introduce an important majorizing
function of f(w) via the following Lemma.

Lemma 1. For any complex set w € CN*! with |w|3 = 1,
we always have

f(w) = g(w) < wiDyw + const. (15)

where w = w © w*, g(w) = — 25:1 Wy, log w,, const. =
g(W") — Vg(w) w0, D, = diag(Vg(w®)) and
Vg(w®) is the gradient vector with the n-th element
Vg(@g)):—log&'h(f) —1,n=1,---,N.

Proof: Recalling the constraint |[w||3 =1, we have

N
flw)=— Z wpw, log w,w).

n=1

(16)

Hence, it is easily derived that f(w)=g(w). Then, the upper
bound function of g(W) at current point w(*) is
g(w) < g(w®) + Vg(w) T (w —w")
= Vg(wT(w ® w*) + const. (17)
= wiD,w + const.
where const. = g(W®)~Vg(w®) W) and Vg(w®) stands
for the derivative of g(w(®)) with respect w(*), whose n-th
entry is
Vo) = —loga® —1,n=1,---,N. (18)

Based on above, we conclude that (15) is satisfied, thereby
completing the proof. |

Algorithm 1 Majorization-based ADMM for Problem (3)
Input: Na )‘7 Ps s A(ek)7 d(ek)a k= 17 T K
Initalize: (), v(® w(® u(® and counter t=0

1: repeat

2. Update o**1) using (9)

3. Update v(**t1) using (13)

4 Calculate gradient vector Vg(w(®) via (18)

5:  Reconstruct the diagonal matrix D; using Vg(w(®)
6:  Update w(**1) using (23)

7. Update u'**? using (24)

8:  Counter Increase: t<t+1

o: until |[wHD —w® |, <n

Output: w* = w(®)

Hence, replacing the function f(w) by its majorizer from
(15) and ignoring the constants, problem (14) can be simplified
as follows

min  Ap(aY v w) + wiD,w

2w v g (9)

st w2 = 1.

Noted that problem (19) is difficult to obtain the global opti-
mal solution due to the nonconvex unit sphere constraint. Even
though this kind of problem can be solved by semidefinite
relaxation (SDR) [21], the corresponding problem size will
greatly grow which leads to higher computational complexity.
Herein, we utilize a more effective method, which named
projected gradient descent (PGD) [22], to tackle problem (19).
Specifically, we can first remove the unit sphere constraint and
solve the unconstrained problem. Then, the projection operator
is utilized to project the solution onto unit sphere.

Setting the derivative of objective function of (19) with
respect to w* as zero, we have

Eét+1)w_rgt+1)v(t+l)_’_th_’_g(w_(v(t-i-l)_u(t)))zo

(20)
where
K H
2y =AY AWV T AR (g,) (21a)
k=1
K
TE =23 ol 0d(0,) A (0). (21b)

e
Il
-

According to (20), it is concluded that

& = @D D+ ED T (Y O 1 L —a)),
(22)

The solution to (19) is
wtth) — p(w D) (23)

where P(-) = (-)/|| - || denotes the spherical projection.
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Fig. 2. Convergence of the objective and beampattern matching; selected
number of elements, N = 18.

D. Update of u

At the (t + 1)-th iteration, given v(**D, w(t+1) and u(®,
the dual variable can be directly updated as

wtH) = g 4 (WD) _ (4D, (24)

According to above discussions, the proposed majorization-
based ADMM based algorithm for solving problem (3) is
summarized in Algorithm 1.

IV. SIMULATION RESULTS

In this section, some representative numerical examples are
provided to evaluate the performance of proposed method for
sparse array transmit beampattern synthesis. Herein, the spatial
domain © £ [—90°, +90°] is uniformly sampled with step-size
1°. Further, the initial value of v(® and w(® are randomly
generated from zero-mean complex Gaussian distribution and
normalized to ||[v(?[|3 = 1 and |[w(?)||2 = 1. Meanwhile, we
set a(® =1 and u(®) = 0. Throughout the simulations, other
parameters are set as N = 30, A = 0.1, p = 30 and = 1075,
Finally N denotes the number of selected antennas.

A. Beampattern with a single mainlobe

In this example, we consider a mainlobe spanning ©,, =
[22°,28°] and let the desired pattern as d(6,,) = 1000, 6,, €
O,,. Fig.2 demonstrates the convergence performance of pro-
posed method. It is seen that the proposed method expresses
good convergence performance for both objective value and
beampattern matching within 100 iterations. Fig.3 compares
the synthesized beampatterns. The benchmark method, named
SAPA-TBF [15], needs to predefine the sparsity level first and
then minimize the maximal difference between the designed
beamapttern and the desired one. For comparison, we set
N = 18 for SAPA-TBF, which is the number of selected
elements of our proposed method. It is seen from Fig.3
that the proposed method has relatively lower sidelobes than
SAPA-TBF. And the normalized beampattern matching error
of proposed method is —1.651 dB compared with 2.628 dB

Beampattern (dB)

25 —-—--SAPA-TEF [15]
Proposed method
30 . . . I i I I . .
-80 -60 -40 -20 0 20 40 60 80
Angle (deg)
Fig. 3. Beampattern comparison, N = 18.
70
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0 . . . . . . . . .
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Iteration number

Fig. 4. Convergence of the objective and beampattern matching; selected
number of elements, N = 20.

for SAPA-TBF method. Meanwhile, in [15], it is proved that
SAPA-TBF has better beampattern synthesis performance than
the ¢,-norm based method [10].

B. Beampattern with two mainlobes

In this example, we consider the two mainlobes which are
located in ©,, = [-15°, —11°] U [11°,15°]. Meanwhile, the
desired beampattern is set as d(6,,) = 1000, 6,, € O,,. We
set N = 20 for SAPA-TBF. Fig.4 expresses the convergence
performance of proposed method. Again, the proposed method
still has good convergence performance within 100 iterations.
Fig.5 compares the synthesized beampatterns. It is observed
that our method has a lower peak side level than SAPA-TBF.
The corresponding normalized beampattern matching error for
our method is 0.869 dB, while 3.838 dB in [15], indicating
improved performance of our method in beampattern match-
ing.

Table 1. compares the cardinality, required runtime and
normalized beampattern matching error of these two methods.
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TABLE I
THE PERFORMANCE COMPARISON OF DIFFERENT METHODS.
Method Single mainlobe Two mainlobes
Proposed | SAPA-TBF | Proposed | SAPA-TBF
Cardinality 18 18 20 20
Runtime (s) 2.75 46.272 2.97 52.955
Matching error (dB) -1.651 2.628 0.869 3.838

It is seen that, with the same selected antennas, the proposed
method has the smaller beampattern matching error compared
with SAPA-TBF. Meanwhile, our method is more efficiency
than SAPA-TBF in terms of runtime.

V. CONCLUSION

In this paper, a new sparse array beampattern design method
is proposed. To prompt the sparsity of array configuration, the
Shannon entropy function is imposed. However, the resulting
optimization problem, which has the summation of quadratic
and concave objective function, is highly nonconvex. Hence,
the majorization-based ADMM algorithm is developed to
solve this problem. Compared to the existing method, the pro-
posed algorithm shows improvements in terms of beampattern
matching and computational efficiency, rendering it attractive
for use in radar and wireless communication systems.
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