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Introduction | Constitutive modelling
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Hyperelasticity in principal space | Physical constraints

The constitutive relation should obey physical consistency requirements
(Ogden 1997; Klein et al. 2022), namely:

Material frame indifference.

Material symmetry transformation.

Normalization: s(¢ =1) = 0.

Growth conditions: asymptotic behavior.

The relationship of s(¢) is monotonically nondecreasing.

B The derivative ag—(‘f) is positive semi-definite.

The ANN based constitutive relation should fulfill these requirements. It is
a challenge.
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ANN based constitutive laws | Challenges

However, in practise, the "naive” ANN as material law in FEM tasks, could
likely experiences:

® Numerical instability: divergent behaviour of the Newton-Raphson
procedure.

® |ocal strain extrema: out-of-training range during the
Newton-Raphson iterations.

® Non-zero stress state in the undeformed configuration.

E.g. Fuhg, Marino, and Bouklas (2022) also reported these behaviours
listed above.
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ANN based constitutive laws | schematic diagram
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SWine(w,0m) = & [y s(e(w) - de(u)dv

Fallback predictor for numerical instability
0 = Atr(e) + 2pe

Principal strain/stress as inputs/outputs: fulfill [, B conditions.
Asymptotic layer guarantees g} growth, g§ normalization constraints.
Imposed [ monotonicity weakly in Loss function.

Employ consistency condition of isotropic hyperelasticity as fallback
predictor.
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ANN based constitutive laws | Remedies |

Logarithmic neuron LOGN(), a new activation function (motivated from
ReLU):

76 .
LOGN(X):{aIn[X—i—m ] ifx < 1.0, 0

x—1.0 otherwise.

Where « : trainable parameter.

/ —— LOGN(a=0.5)
—4f / LOGN(a=1.0)
/ —— LOGN(a=2)
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x

LOGN with various «. « controls the "strength" of the asymptotes
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ANN based constitutive laws | Remedies I

Violation of requirements B of s(¢), B of the 25°) may lead to local

[
strain extrema and numerical instability.
Hence, in the out-of-training regime, any funtion that fulfills [&, B
constraints can be used as a fallback predictor. One choice is:

A
sfaback ¢,y = 5(01 +co+c3 —3) — pu| + pcy,

where A, i1 : Lamé constants.
In this work, fallback predictor is only applied on 3 times outside the
training range.
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Results | Neo-Hookean Model vs ANN |
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Results | Neo-Hookean Model vs ANN I
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Results | Neo-Hookean Model vs ANN Il
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Results | Ogden (3 paramters) model vs ANN |
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Results | Ogden (3 paramters) model vs ANN Il
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Results | Ogden (3 paramters) model vs ANN Il
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Summary

This research in 30s
® Hyperelastic material laws are learnt from strain-stress datasets in
principal space using ANN.

® New activation function, modified loss are employed to satisfy
normalization, asymptotic, and monotonic behaviours of the material
laws.

® Fallback predictor proved helpful to avoid numerical instability in
certain cases of local strain extrema.

® The ANN expression is then used within the FEniCS framework for
numerical prediction of stresses fields at extreme cases.
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