

Data-driven constitutive laws for hyperelasticity in principal space: mechanical challenges and remedies

Vu M. Chau, Andreas Zilian

Department of Engineering, Université du Luxembourg

18th European Mechanics of Materials Conference 4-6 April 2022, Oxford, UK

Contents

Introduction

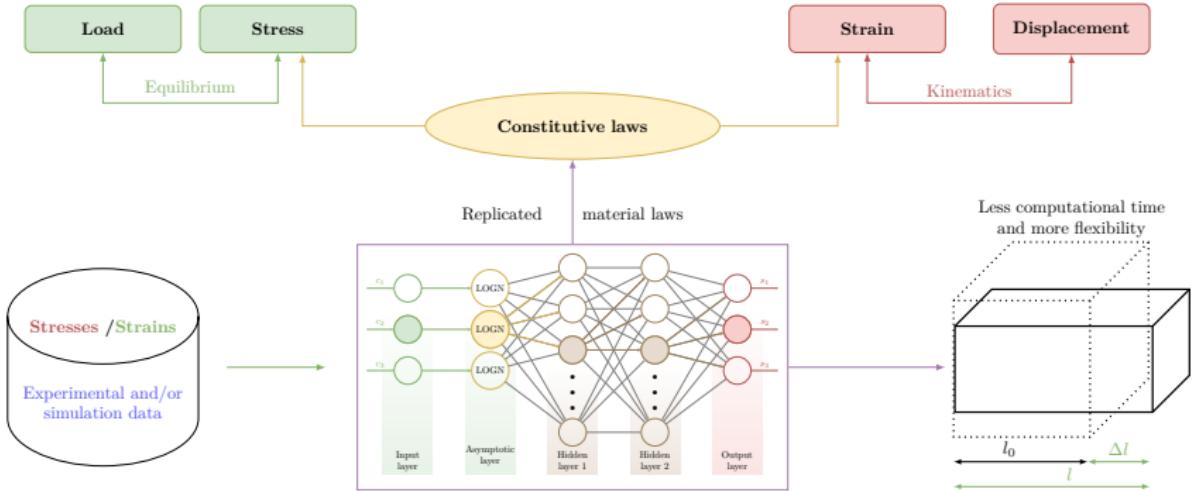
Hyperelasticity in principal space

ANN based constitutive laws: challenges and remedies

Results

Summary

Introduction | Constitutive modelling



Hyperelasticity in principal space | Physical constraints

The constitutive relation should obey physical consistency requirements (Ogden 1997; Klein et al. 2022), namely:

- 1 Material frame indifference.
- 2 Material symmetry transformation.
- 3 Normalization: $\mathbf{s}(\mathbf{c} = \mathbf{I}) = 0$.
- 4 Growth conditions: asymptotic behavior.
- 5 The relationship of $\mathbf{s}(\mathbf{c})$ is monotonically nondecreasing.
- 6 The derivative $\frac{\partial \mathbf{s}(\mathbf{c})}{\partial \mathbf{c}}$ is positive semi-definite.

The ANN based constitutive relation should fulfill these requirements. It is a challenge.

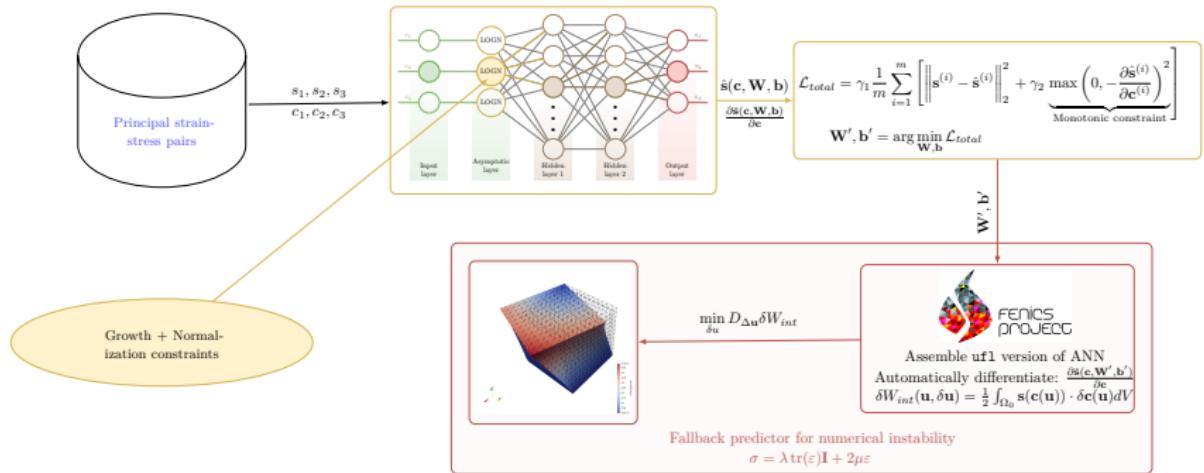
ANN based constitutive laws | Challenges

However, in practise, the "naive" ANN as material law in FEM tasks, could likely experiences:

- Numerical instability: **divergent behaviour** of the Newton-Raphson procedure.
- Local strain extrema: **out-of-training range** during the Newton-Raphson iterations.
- **Non-zero stress state** in the undeformed configuration.

E.g. Fuhg, Marino, and Bouklas (2022) also reported these behaviours listed above.

ANN based constitutive laws | schematic diagram



Principal strain/stress as inputs/outputs: fulfill 1, 2 conditions.

Asymptotic layer guarantees 3 growth, 4 normalization constraints.

Imposed 5 monotonicity weakly in Loss function.

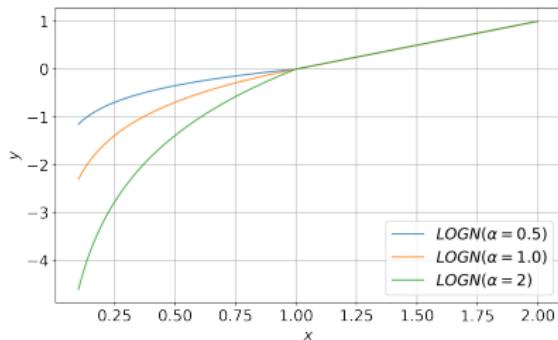
Employ consistency condition of isotropic hyperelasticity as fallback predictor.

ANN based constitutive laws | Remedies I

Logarithmic neuron $\text{LOGN}()$, a new activation function (motivated from ReLU):

$$\text{LOGN}(x) = \begin{cases} \alpha \ln[x + 10^{-6}] & \text{if } x < 1.0, \\ x - 1.0 & \text{otherwise.} \end{cases} \quad (1)$$

Where α : trainable parameter.



LOGN with various α . α controls the "strength" of the asymptotes

Violation of requirements 5 of $\mathbf{s}(\mathbf{c})$, 6 of the $\frac{\partial \mathbf{s}(\mathbf{c})}{\mathbf{c}}$ may lead to local strain extrema and numerical instability.

Hence, in the out-of-training regime, any function that fulfills 5, 6 constraints can be used as a fallback predictor. One choice is:

$$s_i^{fallback}(c_i) = \left[\frac{\lambda}{2}(c_1 + c_2 + c_3 - 3) - \mu \right] + \mu c_i,$$

where λ, μ : Lamé constants.

In this work, fallback predictor is only applied on 3 times outside the training range.

Results | Neo-Hookean Model vs ANN I

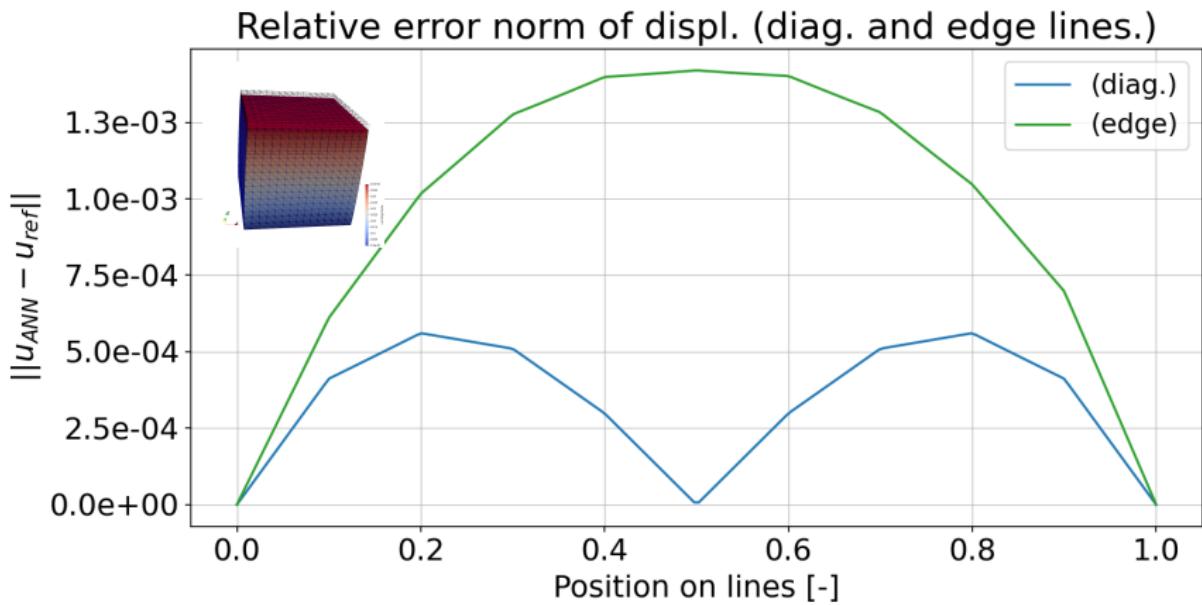


Comparison of displ. lines between ANN vs FEM (spectral forms). **Uni-axial extension at 75% (no stepping).**

Relative error norm over all domain: $\frac{\|u_{ANN} - u_{ref}\|}{\|u_{ref}\|} = 7.025e - 03$

Line coor.: Diag.: $A(0, 0, 0) - B(1, 1, 1)$; edge: $A(1, 1, 0) - B(1, 1, 1)$

Results | Neo-Hookean Model vs ANN II

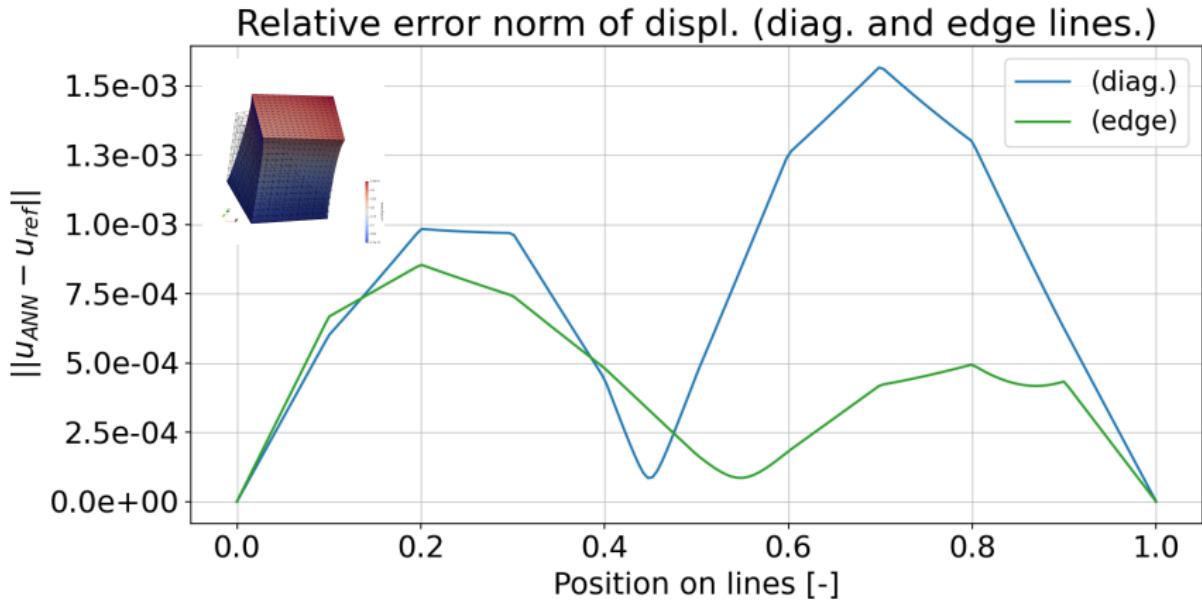


Comparison of displ. lines between ANN vs FEM (spectral forms). **Uni-axial compression at 5% (no stepping).**

Relative error norm over all domain: $\frac{\|u_{ANN} - u_{ref}\|}{\|u_{ref}\|} = 1.96e - 02$

Line coor.: Diag.: $A(0, 0, 0) - B(1, 1, 1)$; edge: $A(1, 1, 0) - B(1, 1, 1)$

Results | Neo-Hookean Model vs ANN III

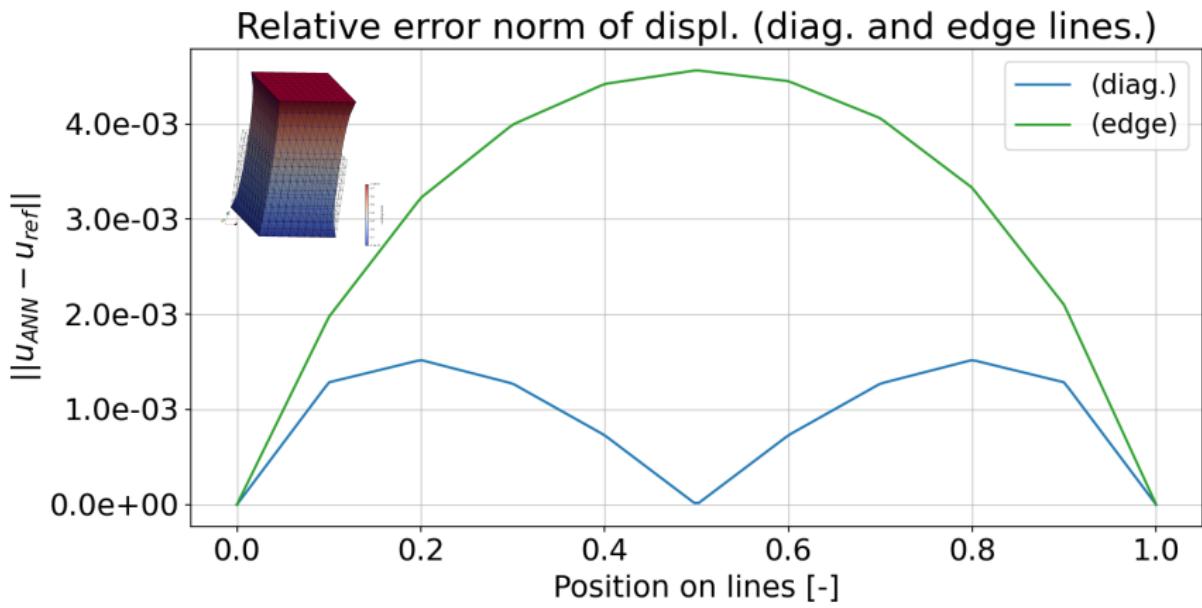


Comparison of displ. lines between ANN vs FEM (spectral forms). Uni-axial extend. 50% and rotation about z-axis 10° simultaneously (no stepping).

Relative error norm over all domain: $\frac{\|u_{ANN} - u_{ref}\|}{\|u_{ref}\|} = 3.762e - 03$

Line coor.: Diag.: $A(0, 0, 0) - B(1, 1, 1)$; edge: $A(1, 1, 0) - B(1, 1, 1)$

Results | Ogden (3 parameters) model vs ANN |

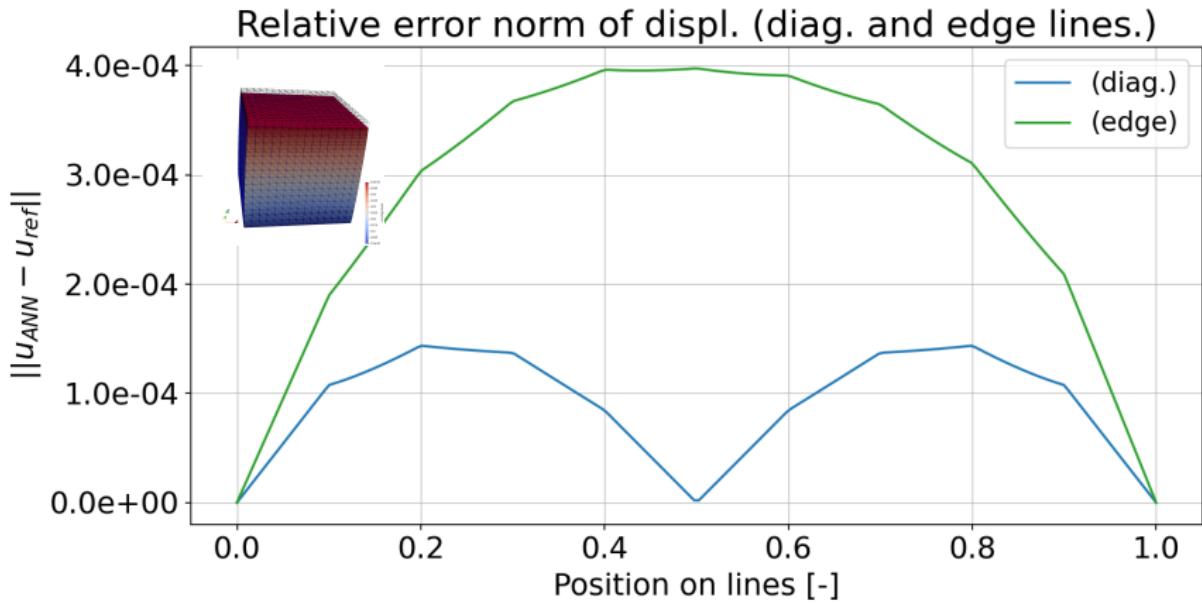


Comparison of displ. lines between ANN vs FEM (spectral forms). **Uni-axial extension at 75% (no stepping).**

Relative error norm over all domain: $\frac{\|u_{ANN} - u_{ref}\|}{\|u_{ref}\|} = 4.358e - 03$

Line coor.: Diag.: $A(0, 0, 0) - B(1, 1, 1)$; edge: $A(1, 1, 0) - B(1, 1, 1)$

Results | Ogden (3 parameters) model vs ANN II

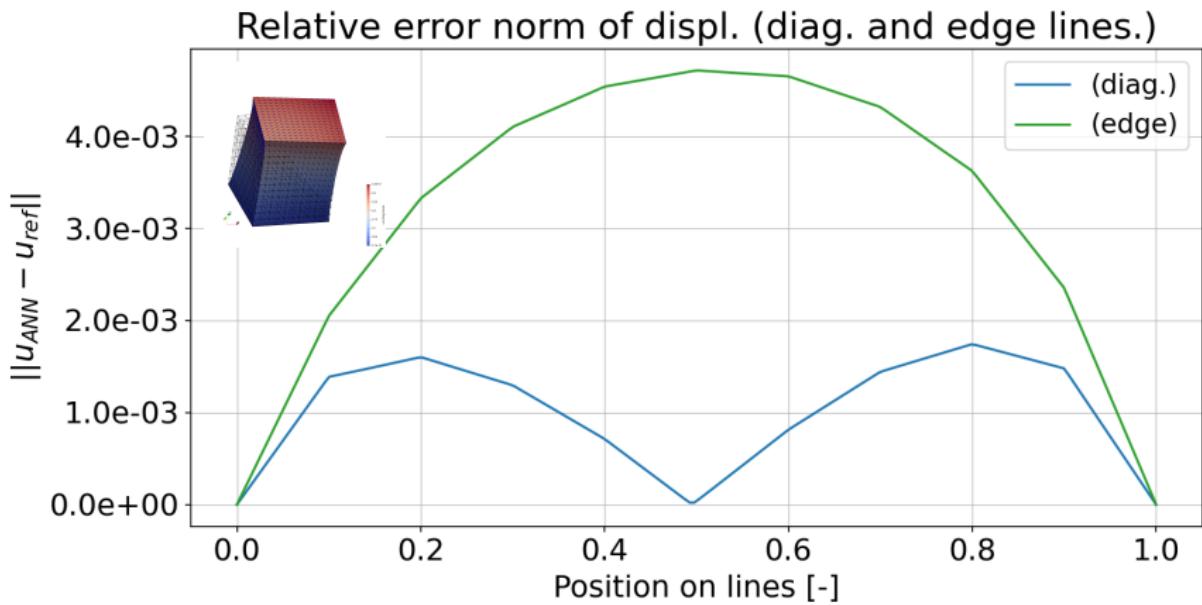


Comparison of displ. lines between ANN vs FEM (spectral forms). **Uni-axial compression at 5% (no stepping).**

Relative error norm over all domain: $\frac{\|u_{ANN} - u_{ref}\|}{\|u_{ref}\|} = 5.565e - 03$

Line coor.: Diag.: $A(0, 0, 0) - B(1, 1, 1)$; edge: $A(1, 1, 0) - B(1, 1, 1)$

Results | Ogden (3 parameters) model vs ANN III



Comparison of displ. lines between ANN vs FEM (spectral forms). Uni-axial extend. 50% and rotation about z-axis 10° simultaneously (no stepping).

Relative error norm over all domain: $\frac{\|u_{ANN} - u_{ref}\|}{\|u_{ref}\|} = 7.157e - 03$

Line coor.: Diag.: A(0, 0, 0) – B(1, 1, 1); edge: A(1, 1, 0) – B(1, 1, 1)

This research in 30s

- Hyperelastic material laws are learnt from strain-stress datasets in principal space using ANN.
- New activation function, modified loss are employed to satisfy normalization, asymptotic, and monotonic behaviours of the material laws.
- Fallback predictor proved helpful to avoid numerical instability in certain cases of local strain extrema.
- The ANN expression is then used within the FEniCS framework for numerical prediction of stresses fields at extreme cases.

Acknowledgement

The Doctoral Training Unit **Data-driven computational modelling and applications** (DRIVEN) is funded by the Luxembourg National Research Fund under the PRIDE programme (PRIDE17/12252781).

<https://driven.uni.lu>

Fonds National de la
Recherche Luxembourg

References I

- [1] R. W. Ogden. *Non-Linear Elastic Deformations*. Courier Corporation, Jan. 1, 1997. 562 pp. ISBN: 978-0-486-69648-5. Google Books: 2u7wCaojfbEC.
- [2] Dominik K Klein et al. "Polyconvex anisotropic hyperelasticity with neural networks". In: *Journal of the Mechanics and Physics of Solids* 159 (2022), p. 104703.
- [3] Jan N Fuhg, Michele Marino, and Nikolaos Bouklas. "Local approximate Gaussian process regression for data-driven constitutive models: development and comparison with neural networks". In: *Computer Methods in Applied Mechanics and Engineering* 388 (2022), p. 114217.