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Introduction | Constitutive modelling
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Hyperelasticity in principal space | Physical constraints

The constitutive relation should obey physical consistency requirements
(Ogden 1997; Klein et al. 2022), namely:

1 Material frame indifference.
2 Material symmetry transformation.
3 Normalization: s(c = I) = 0.
4 Growth conditions: asymptotic behavior.
5 The relationship of s(c) is monotonically nondecreasing.

6 The derivative ∂s(c)
∂c is positive semi-definite.

The ANN based constitutive relation should fulfill these requirements. It is
a challenge.
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ANN based constitutive laws | Challenges

However, in practise, the "naive" ANN as material law in FEM tasks, could
likely experiences:
• Numerical instability: divergent behaviour of the Newton-Raphson

procedure.
• Local strain extrema: out-of-training range during the

Newton-Raphson iterations.
• Non-zero stress state in the undeformed configuration.

E.g. Fuhg, Marino, and Bouklas (2022) also reported these behaviours
listed above.
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ANN based constitutive laws | schematic diagram
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Fallback predictor for numerical instability
σ = λ tr(ε)I+ 2µε

Principal strain/stress as inputs/outputs: fulfill 1 , 2 conditions.
Asymptotic layer guarantees 3 growth, 4 normalization constraints.
Imposed 5 monotonicity weakly in Loss function.
Employ consistency condition of isotropic hyperelasticity as fallback
predictor.
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ANN based constitutive laws | Remedies I
Logarithmic neuron LOGN(), a new activation function (motivated from
ReLU):

LOGN(x) =

{
α ln[x + 10−6] if x < 1.0,
x − 1.0 otherwise.

(1)

Where α : trainable parameter.

LOGN with various α. α controls the "strength" of the asymptotes
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ANN based constitutive laws | Remedies II

Violation of requirements 5 of s(c), 6 of the ∂s(c)
c may lead to local

strain extrema and numerical instability.
Hence, in the out-of-training regime, any funtion that fulfills 5 , 6
constraints can be used as a fallback predictor. One choice is:

sfallback
i (ci) =

[
λ

2
(c1 + c2 + c3 − 3)− µ

]
+ µci ,

where λ, µ : Lamé constants.
In this work, fallback predictor is only applied on 3 times outside the
training range.
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Results | Neo-Hookean Model vs ANN I

Comparison of displ. lines between ANN vs FEM (spectral forms). Uni-axial
extension at 75% (no stepping).
Relative error norm over all domain: ||uANN−uref ||

||uref || = 7.025e − 03
Line coor.: Diag.: A(0, 0, 0)− B(1, 1, 1); edge: A(1, 1, 0)− B(1, 1, 1)
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Results | Neo-Hookean Model vs ANN II

Comparison of displ. lines between ANN vs FEM (spectral forms). Uni-axial
compression at 5% (no stepping).
Relative error norm over all domain: ||uANN−uref ||

||uref || = 1.96e − 02
Line coor.: Diag.: A(0, 0, 0)− B(1, 1, 1); edge: A(1, 1, 0)− B(1, 1, 1)
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Results | Neo-Hookean Model vs ANN III

Comparison of displ. lines between ANN vs FEM (spectral forms). Uni-axial
extend. 50% and rotation about z-axis 10◦ simultaneously (no stepping).
Relative error norm over all domain: ||uANN−uref ||

||uref || = 3.762e − 03
Line coor.: Diag.: A(0, 0, 0)− B(1, 1, 1); edge: A(1, 1, 0)− B(1, 1, 1)
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Results | Ogden (3 paramters) model vs ANN I

Comparison of displ. lines between ANN vs FEM (spectral forms). Uni-axial
extension at 75% (no stepping).
Relative error norm over all domain: ||uANN−uref ||

||uref || = 4.358e − 03
Line coor.: Diag.: A(0, 0, 0)− B(1, 1, 1); edge: A(1, 1, 0)− B(1, 1, 1)
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Results | Ogden (3 paramters) model vs ANN II

Comparison of displ. lines between ANN vs FEM (spectral forms). Uni-axial
compression at 5% (no stepping).
Relative error norm over all domain: ||uANN−uref ||

||uref || = 5.565e − 03
Line coor.: Diag.: A(0, 0, 0)− B(1, 1, 1); edge: A(1, 1, 0)− B(1, 1, 1)
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Results | Ogden (3 paramters) model vs ANN III

Comparison of displ. lines between ANN vs FEM (spectral forms). Uni-axial
extend. 50% and rotation about z-axis 10◦ simultaneously (no stepping).
Relative error norm over all domain: ||uANN−uref ||

||uref || = 7.157e − 03
Line coor.: Diag.: A(0, 0, 0)− B(1, 1, 1); edge: A(1, 1, 0)− B(1, 1, 1)
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Summary

This research in 30s
• Hyperelastic material laws are learnt from strain-stress datasets in

principal space using ANN.
• New activation function, modified loss are employed to satisfy

normalization, asymptotic, and monotonic behaviours of the material
laws.

• Fallback predictor proved helpful to avoid numerical instability in
certain cases of local strain extrema.

• The ANN expression is then used within the FEniCS framework for
numerical prediction of stresses fields at extreme cases.

15



DTU
DRIVEN

Acknowledgement

The Doctoral Training Unit Data-driven computational modelling and
applications (DRIVEN) is funded by the Luxembourg National Research
Fund under the PRIDE programme (PRIDE17/12252781).

https://driven.uni.lu

DTU
DRIVEN

FNR ANNUAL  
REPORT
The Luxembourg National Research Fund (FNR) is the main funder of research 
activities in Luxembourg. The FNR invests public funds and private donations 
into research projects in various branches of science and the humanities, with 
an emphasis on selected core strategic areas. Furthermore, the FNR supports 
and coordinates activities to strengthen the link between science and society and 
to raise awareness for research. It also advises the Luxembourg government on 
research policy and strategy.

16

https://driven.uni.lu


DTU
DRIVEN

References I

[1] R. W. Ogden. Non-Linear Elastic Deformations. Courier Corporation, Jan. 1, 1997.
562 pp. isbn: 978-0-486-69648-5. Google Books: 2u7wCaojfbEC.

[2] Dominik K Klein et al. “Polyconvex anisotropic hyperelasticity with neural networks”.
In: Journal of the Mechanics and Physics of Solids 159 (2022), p. 104703.

[3] Jan N Fuhg, Michele Marino, and Nikolaos Bouklas. “Local approximate Gaussian
process regression for data-driven constitutive models: development and
comparison with neural networks”. In: Computer Methods in Applied Mechanics and
Engineering 388 (2022), p. 114217.

17

http://books.google.com/books?id=2u7wCaojfbEC

	Introduction
	Hyperelasticity in principal space
	ANN based constitutive laws: challenges and remedies
	Results
	Summary

