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Abstract—CubeSats are being deployed for a number of activ-
ities including Earth observation, telecommunications, scientific
experiments, and due to their low cost and flexibility, more often
than not, they are even being considered for use in On-Orbit
Servicing (OOS) and debris removal missions. This investigation
focuses on using the CubeSat technology to perform autonomous
proximity operations with passive target bodies including satel-
lites or space debris. The nonlinear coupled attitude and orbit
dynamics for the chaser and the target bodies are modelled
and simulated. A nonlinear optimal controller identifies an
appropriate rendezvous path. A vision-based navigation system
on the chaser satellite records the pose of the target body. The
pose observations with stochastic uncertainties are processed
using a Kalman filter, and offer state feedback along the satellite
path. Such observations in conjunction with the postulated linear
control algorithm anchor the chaser to approach the target
by maintaining appropriate relative configuration. The linear
controller delivers regular maneuvers to compensate for any
deviations from the identified reference path. A close-range
rendezvous operation is illustrated in a Mission Design Simulator
(MDS) tool.

Index Terms—satellite rendezvous, coupled orbit attitude dy-
namics, nonlinear optimal control, vision-based navigation, linear
control, on-orbit servicing (OOS), Clohessy-Wiltshire model,
Kalman filter, proximity operations

I. INTRODUCTION

Proximity operations such as rendezvous and dock-
ing/berthing play a crucial role as a sustainable solution for
the use of space. Such operations are crucial in carrying out
a variety of tasks including On-Orbit Servicing to restore or
improve functionality of operational satellites, life extension
through refueling, capturing and de-orbiting of defunct satel-
lites and other space debris. Missions with humans on-board
have facilitated several rendezvous operations but they are
expensive and risky. Moreover, large scale manned missions
are not feasible. Alternately, CubeSats are inexpensive and
adept for large scale operations.

This investigation focuses on autonomous Guidance, Navi-
gation and Control (GNC) technique for orbital rendezvous.
Clohessy-Wiltshire equations of motions describe the non-
linear relative orbital motion between the chaser and the

target. The target object is considered under the influence
of gravity gradient torque without any attitude control. The
chaser satellite, however, consists of active orbit and attitude
controls. Each of the target and chaser satellites are considered
as rigid body and must maintain a fixed distance from each
other during the rendezvous operations. A two-layered control
approach is exercised for the proximity operations; firstly, a
nonlinear control is employed to identify a baseline approach
path, and subsequently, a linear controller overcomes any
deviations from this predetermined baseline path. Vision-
based navigation system determines the relative configuration
between the chaser and the target, and offers feedback to
the control algorithm. Finally, the Mission Design Simulator
(MDS) software is applied in-the-loop with the GNC algorithm
to validate the architecture.

II. RELATIVE SATELLITE DYNAMICS

For close proximity operations between a chaser body and
a target body, as in a rendezvous scenario, the relative orbital
dynamics are suffice to represent the motion of one body
with respect to the other. Such dynamics is valid for bodies
including controllable objects such as satellites as well as
defunct satellites and any debris objects. A significant number
of man-made objects in space orbit in nearly circular Low
Earth Orbits.1 Suitably, Clohessy-Wiltshire model (defined
in the coordinate system R as in Fig. 1) offers simplified
equations to represent the relative nonlinear dynamics of a
chaser body with respect to a target body in a circular orbit,2

and have been employed for several rendezvous and formation
flying applications.2–8 The relative dynamics of the chaser
body with respect to the target is governed by

ẍ = 3Ω2x+ 2Ωẏ + u1 (1)
ÿ = −2Ωẋ+ u2 (2)

z̈ = −Ω2z + u3 (3)

where, ρ̄ = xx̂ + yŷ + zẑ. Here, Ω =
√
µ/a3 is the orbital

angular velocity for the target body in an orbit with radius a,
and, µ, is the Standard gravitational parameter for Earth.



Fig. 1. Rotating coordinate frame, R, centered at the target to represent the
Clohessy-Wiltshire model. Direction x̂ points radially away from the Earth, ŷ
points in the direction of orbit velocity and ẑ completes the dextral coordinate
system pointing in the direction of the positive angular momentum vector.

The attitude dynamics for the chaser are expressed relative
to the target body for simplicity of rendezvous operations.
As a consequence, the quantities for angular velocity and
orientation quaternions are expressed as
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where Cω ≡ ω(Chaser → Target) and Cϵi ≡ ϵi(Chaser →
Target) with a left superscript, C. The dynamics of the target
body are expressed relative to the inertial frame. Notations for
the angular velocity and orientation quaternions are expressed
with a left superscript, T , for example, Tω ≡ ω(Target →
Inertial). The target body is modelled such that the gravity
torque affects its motion and may potentially deliver a non-
cooperative tumbling scenario. The equations for attitude
dynamics for the target are governed by
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where, C is the rotation matrix corresponding to the trans-
formation between target body frame and rotating coordinate
frame, R; and Cij is the element in the i-th row and j-th
column. With specific initial conditions for the target body a
non-tumbling motion balanced by gravity torque is produced.
Each of the chaser and target bodies are considered to be rigid,
and therefore, while rendezvous, the chaser satellite must stay
at a fixed distance from the target body without colliding. Such
a location, labelled as ‘approach site,’ is defined by

T ϱ̄B = d1b̂1 + d2b̂2 + d3b̂3

and is stationary in the target’s body fixed frame B defined
by unit vectors b̂1b̂2b̂3. Here, preceding superscript T in T ϱ̄B

refers to the target body, while superscript B represents the
body frame. The coordinates of the approach site, however,
is not fixed in the inertial frame, or the Clohessy-Wiltshire
rotating coordinate frame. In case of a tumbling target, the ap-
proach site is rather a 3-dimensional path continuous in time,
as illustrated in Fig. 2. In this investigation, the approach site
is the location of the geometric center of the chaser satellite
for rendezvous. With coordinate transformation (C : T → I),
the approach site in the inertial frame is represented as

T ϱ̄I = [D1, D2, D3]
T = C T ϱ̄B = C [d1, d2, d3]

T

however, the Clohessy-Wiltshire rotating frame is the working
frame of view and offers direct understanding of the satellite
approach within the rendezvous process. The path in the
rotating frame is converted from the inertial view as

xϱ = D1cos(Ωt) +D2sin(Ωt) (18)
yϱ = −D1sin(Ωt) +D2cos(Ωt) (19)
zϱ = D3 (20)

where subscript ‘ϱ’ refers to the approach site. Within the
rendezvous process, the chaser satellite advances towards the
approach site.For simplicity, the location of the approach site
in the rotating frame is expressed as ϱ̄R = [xϱ, yϱ, zϱ]

T.

Fig. 2. Approach site, ϱ̄, as a 3D location relative to the center of the target.

III. OPTIMAL TRAJECTORY AND ATTITUDE PLANNING

The equations of motion that governs the trajectory and the
attitude dynamics for the chaser satellite relative to the target is
clearly nonlinear. To initiate an effective rendezvous operation
a suitable path that drives the chaser towards the target is
desired. Moreover, the relative orientation of the chaser and
the target must be consistent alongside. A nonlinear control



algorithm, CasADi, is introduced with the Interior Point Op-
timization (IPOPT) method to deliver an optimal trajectory
and attitude plan adequate for the proximity operations.9 The
controller minimizes the cost function, J , such that

J =

∫ τ

0

(ρ̄− ϱ̄R)TQ1(ρ̄− ϱ̄R) + C ω̄TQ2
C ω̄

+ C ϵ̄TQ3
C ϵ̄+ uTRu dt (21)

where the position deviation from the approach site, i.e.,
ρ̄ − ϱ̄R is weighted by matrix Q1, the angular velocity of
the chaser relative to the target is weighted by matrix Q2, the
relative orientation between the two satellites by matrix Q3,
and finally, the control inputs u by weighting matrix R. The
control input vector uk is defined as,

uk = [u1, u2, u3, T1, T2, T3]
T

includes translational acceleration u1, u2 and u3 along each
of x, y and z directions, respectively, as well as the control
torques T1, T2 and T3 (also referred as u4, u5 and u6) that
the reaction wheels within the chaser satellite are capable
to deliver. An additional collision avoidance constraint is
introduced such as

||ρ̄|| ≥ rcollision

to keep the chaser away from a spherical volume around the
target of radius rcollision. The optimal trajectory and attitude
states obtained serve as the baseline or the predicted reference
path for rendezvous operations. The optimal path, however,
does not account for any uncertainties in state estimation, as a
consequence, state estimation and concurrent control algorithm
is engaged in-sync throughout the entire process.

IV. ESTIMATION AND LINEAR CONTROL

A. State Estimation

For close-range rendezvous operations, the vision-based
sensors on the chaser satellite tracks the pose (position and
orientation vectors) of the target satellite, or any target object
including debris. For far-range rendezvous operations where
the distance between the chaser and the target body is signifi-
cant, pose measurements may not be reliable, instead range
and line-of-sight (LOS) measurements can be recorded. A
measurement matrix is computed for every observation that
contains partials of observed state, i.e., pose or range and
LOS measurements, with respect to the state variables. Prior
observations may be discarded in the case of a sequential
Kalman filter, thus, offering advantage over a batch least
squares filter in terms of computational memory allocation.10

Consequently, a sequential Kalman filter is selected for this
analysis.

1) System Dynamics: Consider the state vector x such that,

x =[x, y, z, ẋ, ẏ, ż,Cω1,
Cω2,

Cω3,
Cϵ1,

Cϵ2,
Cϵ3,

Cϵ4,
Tω1,

Tω2,
Tω3,

T ϵ1,
T ϵ2,

T ϵ3,
T ϵ4, xϱ, yϱ, zϱ]

T

and contains information on the position and the velocity of the
chaser relative to the target, orientation of the chaser relative

to the target, orientation of the target body relative to the
inertial frame, and the location along the approach site at a
given instance. The orientation of the target body relative to
the Inertial frame as well as the instantaneous location of the
approach site evolve independent of the dynamics of the chaser
satellite. As a consequence, pose, range and LOS estimation
are decoupled from these state elements.

The Kalman filter sequentially updates the covariance with
every observed data and thus estimates the states within the
stochastic system. A linearized system of state equations about
the baseline optimal path for the satellite motion is considered
for the Kalman filter to expedite the computational process.
The equations are as formulated

δxj+1 = Ajδxj +Bj∆vj +wj (22)
δyj+1 = Hjδxj + ej (23)

where Hj = ∂y
∂x , while wj and ej are stochastic white noise

with covariance E[wjw
T
j ] = Q and E[eje

T
j ] = R. Control

inputs may not be delivered at all the sampling locations,
therefore, the value for ∆vj may be zero at time tj .

2) Filtering: Individual observations may not deliver accu-
rate estimate of the states. Therefore, filtering techniques are
used to identify the state variables with reasonable precision.
The Kalman filter assumes that the noises, wj and ej , are
Gaussian. Such an assumption is reasonable and delivers
adequate results, as in literature.11 The resulting equations for
state estimation using sequential Kalman filter are

δx̂j|j = δx̂j|j−1 +Kjδyj (24)
Σj|j = Σj|j−1 −K′

jHjΣj|j−1 (25)

K′
j = Σj,j−1H

T
j (HjΣj|j−1H

T
j + R)−1 (26)

Σj+1|j = AjΣj|jA
T
j +Qj (27)

where δx̂j|j−1 is the predicted estimate from the state equa-
tions of measurement j−1, and δx̂j|j is the new estimate using
the filter for measurement j. Kalman gain, K, is dependent on
the output measurement, output variance, and state variance.
The covariance matrix

Σj|j−1 = E[(δxj − δx̂j|j−1)(δxj − δx̂j|j−1)
T] (28)

is the a-priori covariance based upon j − 1-th observation
while the covariance matrix

Σj|j = E[(δxj − δx̂j|j)(δxj − δx̂j|j)
T] (29)

is the a-posteriori covariance computed once the j-th observa-
tion is available. In the beginning, when no observed data are
available, the a-priori covariance Σj|j−1 is set to a very large
value. With additional observations, the covariance matrix is
updated. Pose data are extracted at finite time intervals, and at
a significantly faster rate than the delivery of the maneuvers,
allowing ample time to record enough observations and to get
a reliable estimate.



B. Linear Controller

A nonlinear controller is certainly adept, and superior to a
linear controller, at evaluating the coupled nonlinear and time-
variant orbit and attitude dynamics of the system; subsequently
implemented to identify an efficient path for proximity oper-
ations once the initial conditions for the states of the chaser
and the target are determined. The computational time required
for a nonlinear controller is substantially higher than that of a
linear controller. Controller must compute and deliver outputs
at a pace faster than the actual flight time, so that the satellite
is able to operate in synchronization with any on-board satel-
lite software, mission simulation software, or a vision-based
navigation system. As a consequence, despite the advantages
offered by a nonlinear controller, it is not adopted for the
routine process, instead, a rapid linear controller is blended
with the nonlinear optimal control to deliver maneuvers to
compensate any deviations from the predetermined reference
path.

A two-layered control approach is employed to combine the
benefits offered by the nonlinear and the linear controller. First
and foremost, the nonlinear controller identifies an ideal se-
quence of control outputs and state history for the rendezvous
operations, and serves as the baseline approach path. The
first control output computed by the nonlinear controller is
delivered. Subsequent maneuvers are determined by the linear
controller that overcome any deviations in state measurements
from the baseline. Fig. 3 is a schematic of the nonlinear and
linear controller used in conjunction. The baseline path in red
is computed by the nonlinear solution while the green curve
represents the true path. The state and control history with an
asterisk, ∗, represents the baseline values while the state and
control history without the asterisk is along the true path. At
initial time, t0, the control output is u0; also u0 = u∗

0. Subse-
quently, the linear controller identifies corrective maneuvers,
δuk, at time tk. The net control maneuver (uk) delivered to
the chaser is the sum of control outputs from the nonlinear
(u∗

k) and the linear controller (δuk), i.e., uk = u∗
k + δuk.

The frequency of the control outputs are consistent in the
nonlinear and linear controllers. A summary of the blended
linear and nonlinear controllers for proximity operations, along
with vision based state estimation is presented in Fig. 4.

Fig. 3. Nonlinear control delivers a baseline/reference solution while linear
controller compensates for any deviations from the baseline.

1) System Dynamics: A linear controller is employed to
rapidly deliver control maneuvers to compensate for any
deviations measured from the baseline path, i.e., δxk. The
uncertainties in state measurements are small, and hence, lin-

Fig. 4. Proximity operations: Control and estimation of satellites states.

ear dynamics near the baseline path is sufficient to predict an
appropriate control output. Based on the variational equations
of motion computed near the reference path (one computed in
section III), the linear dynamics are governed by

δxk+1 = Akδxk +Bkδuk (30)

where Ak is the 23× 23 state transition matrix, and Bk is a
23×6 matrix that corresponds to the partials of state vector at
final time, xk+1, to a control vector δuk, evaluated along the
baseline path. The motion of the target and the approach site
are independent from the motion of the chaser, therefore, a
number of partials within the matrix Ak are zeros, Further, it
is assumed that only the chaser satellite is controllable, hence,
the control inputs do not affect the motion of the target body
or the approach site; consequently, a number of partials within
Bk are zeros. The sparse matrices Ak and Bk are computed
numerically through central differencing technique.

2) Linear Quadratic Regulator (LQR): Control outputs are
delivered at discrete intervals using a discrete LQR controller.
Once the system is linearized along the baseline solution,
a feedback controller is formulated that minimizes the cost
functional, J̃ , such that

J̃ = δxT
N P̃NδxN +

N−1∑
k=0

δxT
kQ̃kδxk + δuT

kR̃kδuk (31)

and penalizes on any deviations in state from the baseline
path, as well as on the size of control. The solution to this
LQR problem is given by,12, 13

δuk = −K̃kδxk (32)

where K̃k is the time-dependent gain matrix that satisfies

K̃k = (R̃k +BT
kP̃k+1Bk)

−1BT
kP̃k+1Ak (33)

and P̃k satisfies the discrete algebraic Riccati equation,

P̃k = Q̃k +AT
kP̃k+1Ak −AT

kP̃k+1BkK̃k (34)

for k = 0, . . . , N−1. Each of Q̃k and R̃k are positive definite
weighting matrices or penalty matrices. The quantity N is
the total number of discrete segments of the approach path
considered for proximity operations.



Note that the intervals between state estimation using
Kalman filter is different from that of the delivery of the
control outputs. Kalman filter is applied to process the readings
from the optical sensors, subsequently refines measurements
at a significantly higher frequency than the algorithm that de-
livers control outputs for the chaser satellite. A sufficient time
span is required between two successive control outputs for
estimating the spacecraft’s position, velocity and orientation
states with reasonable precision. A symbolic representation of
the observations, estimation and control timeline is presented
in Fig. 5. High frequency pose observations are indicated
by magenta dots. Larger red dots correspond to intervals of
control maneuverand the red curve serves as the baseline for
the rendezvous operations. Green curve in Fig. 5 is equivalent
to the true path that the satellite traverses once the uncertainties
in state measurements are incorporated.A gray dotted curve
is the continuously estimated path once the observed data is
processed through the Kalman filter. A solid blue curve reflects
the ballistic motion if no control outputs are delivered.

Fig. 5. Time history of natural path, optimal path for rendezvous and true
path. Red and green dots correspond to intervals of control outputs, while
magenta dots corresponds to the intervals for pose/range/LOS observations.

V. PERCEPTION

Vision is chosen for implementation of the navigation part
of the chaser due to a significant portion of the information
being present in the visual spectrum. Using visual data, certain
features of the target body are derived, including relative pose
of the body and distance measurements. Using the vision
sensor data with modern deep learning and computer vision
techniques offers unprecedented robustness for different On-
Orbit Servicing scenarios requiring proximity operations. The
main algorithms developed for the navigation part include,
Region of Interest (ROI) extraction (Fig. 6), pose estimation,
from which line-of-sight and range may also be derived. In the
initial phases of the development, synthetic data is utilized to
train and test the vision-based navigation algorithms in real-
time and in a multitude of different scenarios. The environ-
mental variables such as lighting conditions and distance are
varied to test the robustness of the navigation solution.

VI. RESULTS

A. Controller characteristics

The final approach phase for the satellites are considered in
this investigation where the trajectory and the orientation of
both the chaser and target bodies are relevant. The effective-
ness of the controller is validated with a complex rendezvous
scenario involving a non-cooperative and tumbling target. The

Fig. 6. VBN: Region of Interest (ROI) extraction using Deep Learning.14

approach site is aligned with the face of the tumbling target
satellite, in a 7000 km orbit with rcollision = 1m. The position
history for such complex scenario is demonstrated in Fig. 7
while the rendezvous path and the control history are delivered
in Fig. 8. Further, experiments with synthetic pose with high
errors (3σ: 15 cm in x, y, z and 0.0015 in each ϵi) delivered at
2 seconds interval, including some delayed and missed poses
are tested. The chaser traverses along the states estimated from
prior observations and with the most recent uncertainty levels,
in the neighborhood of the reference path. Such effects are
evident in Fig. 7. Poor observations increase uncertainties in
state estimation increasing any deviations from the baseline
path; consequently, drives the control costs higher.

Fig. 7. Position state history (non-cooperative and tumbling target)

Fig. 8. Control for non-cooperative and tumbling target. (a) Trajectory in 3D
space, (b) Acceleration control history, and (c) Torque control history

B. Software-in-the-loop integration

The MDS tool from Blackswan Space14 is used to perform
validation of the GNC algorithms. MDS allows to create a
multitude of different OOS scenarios with target and chaser
objects and test the performance of GNC algorithms used
for proximity operations in real-time closed loop simulations



through MDS API. A visual representation of a sample ren-
dezvous scenario is presented in Fig. 9 that validates software-
in-the-loop architecture of the controller with the MDS toolkit.
The target satellite (modelled as 8U CubeSat) is in a circular
orbit of radius 7000 km around the Earth. The chaser at
its initial state is 0.001◦ in True Anomaly (TA) behind the
target, and 2 m in higher altitude; approximately corresponding
to 12.2 m of separation. The rendezvous is achieved within
180 seconds during which the chaser arrives at the approach
site 0.6 m behind the target. Consequently, the radius for
the collision avoidance sphere, rcollision, is set to 0.6 m for
the optimal control problem. Compatible with CubeSats, a
maximum of 25 mN thrust level is considered. The MDS tool
simulates an orbital environment and the cameras on the chaser
extracts pose information. Stochastic uncertainties are present
in the extracted target pose due to several factors including
varying lighting conditions and from the algorithm that detects
semantic features on the target body. Observations are filtered
using the Kalman filter as described. Based on the state
feedback received after filtering the pose data, maneuvers are
delivered to compensate for any deviation from the reference
path. Fig. 10 offers the evolution of position states along each
coordinate axis during the rendezvous operation, for each of
the reference path, true path and the estimate. The net control
history in terms of linear acceleration and the control torque
are given in Fig. 11. Control inputs are varied discretely at an
interval of 3 seconds.

(a) Chaser approach (b) Approach site reached

Fig. 9. Proximity operations

Fig. 10. Position state history

(a) Linear acceleration control (b) Torque control

Fig. 11. Control history

VII. CONCLUDING REMARKS

A harmonious blend of nonlinear optimal control algorithm
with a linear state feedback control algorithm is exploited for
their benefits, and is demonstrated for a complex rendezvous
operation. An optimal controller evaluates the nonlinear model
for the coupled attitude and orbit dynamics to deliver a
reference solution. A linear state feedback controller offers
the advantage of delivering maneuvers in real time by com-
pensating any deviations from the predicted reference path.
An application to vision-based navigation system for proxim-
ity operations with pose estimation is validated. Feasibility
of such GNC algorithm will eventually be validated in a
hardware-in-the-loop setup.
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