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Abstract

Software has been an essential part of human life, and it substantially improves production and
enriches our life. However, flaws in software can lead to tragedies, e.g. the failure of the Mariner 1
Spacecraft in 1962. At the moment, modern software systems are much different from what before.
The issue gets even more severe since the complexity of software systems grows larger than before
and Artificial Intelligence(AI) models are integrated into software (e.g., Tesla Deaths Report1).

Testing such modern artificial software systems is challenging. Due to new requirements, software
systems evolve and frequently change, and artificial intelligence(AI) models have non-determination
issues. The non-determination of AI models is related to many factors, e.g., optimization algorithms,
numerical problems, the labelling threshold, data of the same object but under different collecting
conditions or changing the backend libraries. We have witnessed many new testing techniques emerge
to guarantee the trustworthiness of modern software systems. Coverage-based Testing is one early
technique to test Deep Learning(DL) systems by analyzing the neuron values statistically, e.g., Neuron
Coverage(NC) [203].

In recent years, Mutation Testing has drawn much attention. Coverage-based testing metrics can
be misleading and easily be fooled by generating tests to satisfy test coverage requirements just by
executing the code line. The test suite with one hundred percent coverage may detect no flaw in
software. On the contrary, Mutation Testing is a robust approach to approximating the quality of a
test suite. Mutation Testing is a technique based on detecting artificial defects from many crafted
code perturbations (i.e., mutant) to assess and improve the quality of a test suite. The behaviour
of a mutant is likely to be located on the border between correctness and non-correctness since the
code perturbation is usually tiny. Through mutation testing, the border behaviour of the subject
under test can be explored well, which leads to a high quality of software. It has been generalized to
test software systems integrated with DL systems, e.g., image classification systems and autonomous
driving systems.

However, the application of Mutation Testing encounters some obstacles. One main challenge is that
Mutation Testing is resource-intensive. Large resource consumption makes it unskilled in modern
software development because the code frequently evolves every day. This dissertation studies how
to apply Mutation Testing for modern software systems, exploring and exploiting the usages and
innovations of Mutation Testing encountering AI algorithms, i.e., how to employ Mutation Testing
for modern software systems under test. AI algorithms can improve Mutation Testing for
modern software systems, and at the same time, Mutation Testing can test modern software integrated
with DL models well.

First, this dissertation adapts Mutation Testing to modern software development, Continuous
Integration. Most software development teams currently employ Continuous Integration(CI) as
the pipeline where the changes happen frequently. It is problematic to adopt Mutation Testing in
Continuous Integration because of its expensive cost. At the same time, traditional Mutation Testing
is not a good test metric for code changes as it is designed for the whole software. We adapt Mutation
Testing to test these program changes by proposing commit-relevant mutants. This type of mutant
affects the changed program behaviours and represents the commit-relevant test requirements. We

1https://www.tesladeaths.com/

i



use the benchmarks from C and Java to validate our proposal. The experiment results indicate that
commit-relevant mutants can effectively enhance code change testing.

Second, based on the aforementioned work, we introduce MuDelta, an AI approach that identifies
commit-relevant mutants, i.e., some mutants that interact with the code change. MuDelta uses
manually-designed features that require expert knowledge. MuDelta leverages a combined scheme of
static code characteristics as the data feature. Our evaluation results indicate that commit-based
mutation testing is suitable and promising for evolving software systems.

Third, this dissertation proposes a new approach GraphCode2Vec to learn the general software
code representation. Recent works utilize natural language models to embed the code into the
vector representation. Code embedding is a keystone in the application of machine learning on
several Software Engineering (SE) tasks. Its target is to extract universal features automatically.
GraphCode2Vec considers program syntax and semantics simultaneously by combining code analysis
and Graph Neural Networks(GNN). We evaluate our approach in the mutation testing task and
three other tasks (method name prediction, solution classification, and overfitted patch classification).
GraphCode2Vec is better or comparable to the state-of-the-art code embedding models. We also
perform an ablation study and probing analysis to give insights into GraphCode2Vec.

Finally, this dissertation studies Mutation Testing to select test data for deep learning systems.
Since deep learning systems play an essential role in different fields, the safety of DL systems takes
centre stage. Such DL systems are much different from traditional software systems, and the existed
testing techniques are not supportive of guaranteeing the reliability of the deep learning systems.
It is well-known that DL systems usually require extensive data for learning. It is significant to
select data for training and testing DL systems. A good dataset can help DL models have a good
performance. There are several metrics to guide choosing data to test DL systems. We compare a
set of test selection metrics for DL systems. Our results show that uncertainty-based metrics are
competent in identifying misclassified data. These metrics also improve classification accuracy faster
when retraining DL systems.

In summary, this dissertation shows the usage of Mutation Testing in the artificial intelligence era.
The first, second and third contributions are on Mutation Testing helping modern software test
in CI. The fourth contribution is a study on selecting training and testing data for DL systems.
Mutation Testing is an excellent technique for testing modern software systems. At the same time, AI
algorithms can alleviate the main challenges of Mutation Testing in practice by reducing the resource
cost.
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1 Introduction

In this chapter, we first introduce the concept and application of Mutation Testing for software testing
and artificial intelligence testing. Then, we review the challenges of Mutation Testing. In the end, we
summarize the contributions and organization of the dissertation.
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CHAPTER 1. INTRODUCTION

1.1 Context

Over the past decades, the complexity of software systems has been increasing a lot, e.g., code size
and interactions among the software modules. Software systems frequently evolve and have changes in
their life cycle. Especially since Artificial Intelligence(AI) algorithms participate in modern software
systems as one module [142], software systems have been much different from the traditional ones
due to the added uncertainty and complexity. For example, autonomous driving systems may behave
unexpectedly and inconsistently for the data from the same object but with different collection
conditions. Another example is that the AI models which depend on the threshold may make
the contradictory decision if changing the threshold configuration. Some researchers have named
such software systems as intelligent software systems. It is questionable how to test them because
the behaviours of intelligent software systems are not deterministic. Recent works have modified
the exiting testing techniques or invented new ones to test intelligent software systems. Mutation
Testing [166] draws intensive attention in the research field because of its non-deterministic property
which Mutation Testing introduces the changes to software and affect the behavior of software.
Mutation Testing is a robust methodology, simply saying, observing the behaviour-change of the
program after introducing changes into the software.

1.1.1 Classical Mutation Testing

Test criteria are a group of metrics measuring the degree to which software systems have been tested
[7]. They rely on the notion of test requirements, i.e., defining the test content. Depending on what
test requirements a test suite covers, a test criterion defines a measurement that reflects the extent
to which it tests the system w.r.t. to the intended behaviour. Test criteria have been used to drive
different activities of the testing process, such as test generation [60] or test selection [233]. Test
requirements are then utilized to determine which new tests are required or which tests are redundant.
Test criteria can also be used to assess the thoroughness of a test suite, e.g. to decide if more effort
should be devoted to testing or if sufficient confidence in the proper behaviour of the system has been
gained. Test criteria are also used to assess other criteria [163], e.g., Mutation Testing.

Mutation analysis is a test criterion [119] that measures the capability of a test suite to detect artificial
defects. Multiple versions of the program under test, called mutants, contain the artificial defects used
as test requirements. The ability of the test suite to differentiate the program under test and these
mutants is then evaluated. Mutants are systematically generated, following a set of replacement rules
called mutation operators. Different mutation operators can be used in order to tailor the mutants
created and thus the test requirements. This allows the tester to focus on different aspects of the test
suite. Similarly, these operators can be applied only to specific parts of the program, should the tester
only want to focus on those. Once mutants, i.e., test requirements, are created, the test suite is run
against the program under test and the mutants in order to compare their behaviour. This behaviour
is usually represented by the output of the program, captured by test or program assertions.

Mutation Testing lies on two principles [91], Competent Programmer Hypothesis (CPH) and Coupling
Effect [46, 49]. CPH states that the developers are competent so that the program is close to the
correct version. Coupling Effect assumes that the complex bugs are coupled with the simple bugs in
the programs. Table 1.1 lists a set of mutant operators [153] defined in some mutation frameworks.
Five operators in Table 1.1, ABS, AOR , LCR , ROR and UOI , are efficient enough to achieve
almost all mutation coverage [153]. If some test fails for one specific mutant but passes for the original
program, the mutant is killed. Otherwise, the mutant is a live mutant. The critical principle of
Mutation Testing is trying to kill more mutants by augmenting the test suite. These mutants are
regarded as the seeded defects, and killing more mutants means the test suite has the stronger ability
to find the real bugs. Figure 1.1 shows one mutant example that uses the operator AOR, replacing
− with + in the framed expression.
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Table 1.1: Mothra Mutant Operators [153]
Operator Description
AAR Array Reference for Array Reference Replacement
ABS Absolute Value Insertion
ACR Array Reference for Constant Replacement
AOR Arithmetic Operator Replacement
ASR Array Reference for Scalar Variable Replacement
CAR Constant for Array Reference Replacement
CNR Comparable Array Name Replacement
CRP Constant Replacement
CSR Constant for Scalar Variable Replacement
DER DO statement End Replacement
DSA DATA Statement Alterations
GLR GOTO Label Replacement
LCR Logical Connector Replacement
ROR Relational Operator Replacement
RSR RETURN Statement Replacement
SAN Statement Analysis
SAR Scalar variable for Array reference Replacement
SCR Scalar for Constant Replacement
SDL Statement Deletion
SRC Source Constant Replacement
SVR Scalar Variable Replacement
UOI Unary Operator Insertion

public int removeDuplicates(int[] nums) {

int i = nums.length > 0 ? 1 : 0;

for (int n : nums)

if (n > nums[i-1])                                            

nums[i++] = n;

return i;

}

public int removeDuplicates(int[] nums) {

int i = nums.length > 0 ? 1 : 0;

for (int n : nums)

if (n > nums[i+1])

nums[i++] = n;

return i;

}

“+” replaces “-”

Figure 1.1: One Example of Mutation Testing, applying AOR operator

Figure 1.2 demonstrates the sketch of Mutation Testing. There is one preliminary condition that
the original program should pass all the test cases before starting Mutation Testing. We apply a
set of mutant operators defined in Table 1.1 or custom-defined mutant operators to Software under
Test(SUT) in the beginning step 1 . This results in a group of mutants, namely different faulty
versions of the programs, denoted as M = {m0,m1, ...,mn}, where mi represents one mutant. We
also need to detect and remove the equivalent mutants to reduce resource cost before executing
the test suites denoted as the 2 . Next, we run the test suite for the mutants and the original
program at step 3 in Figure 1.2. If one test fails for some mutant, we mark the mutant killed.
Otherwise, we label the mutant live. After executing all mutants, we compute Mutation Score(MS)
according to the execution matrix, defined by MS = Number of Killed Mutants

Total Number of Mutants−Number of Equivalent Mutants .
We compare MS with the pre-defined threshold a at the step 4 . Suppose MS is less than a. In
that case, we try to generate new test cases to kill the remaining mutants, as illustrated by steps 5
and 6 . Otherwise, we run the whole test suite for the original program after fixed. If the latest
original program passes the test suite, we stop mutation testing as described 10 . Otherwise, we fix
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the programs and continue the mutation testing loop denoted as 8 and 9 .

Software under Test

Mutant

Test Set

Test 
Generation

Equivalence 
Mutant Analysis

MS > a

Stop

Pass
All tests

Fix

Figure 1.2: Workflow of Mutation Testing

Equivalent mutants analysis is necessary for Mutation Testing in Figure 1.2. Although they are
syntactically different, equivalent mutants have the same semantic behaviours as the original program.
When using mutation analysis to measure the thoroughness of a test suite, we should not take
equivalent mutants into account, as even a perfect test suite will not kill them. Equivalent mutants
have proven to be a significant challenge in Mutation Testing [166], as identifying them is an
undecidable problem [25]. Ideally, we should only consider killable mutants for which there exists an
input for which their behaviours are different from the original program’s. Interestingly, many killable
mutants are equivalent to others, introducing another problem, skew in the Mutation Score. A high
mutation score does not necessarily mean the high quality of the test suite due to the issue. Kintis et
al. [100] have shown this to be problematic and suggest getting rid of these “duplicated” mutants
(mutants equivalent to others). Subsuming Mutation Score(sMS) is one alternative of Mutation Score
based on the subsuming mutants. One subsuming mutant represents one set of mutants in which
killing the subsuming mutant results in killing all mutants.

In the workflow of Mutation Testing in Figure 1.2, we have a stopping criterion MS > a to judge if
we quit Mutation Testing. Theoretically, the mutation score should be 100%, implying two conditions
1) we exclude all equivalent mutants and 2) kill all the remaining mutants. However, it is hard to
satisfy the two conditions. In practice, the developers use one threshold to decide if stop the mutation
testing. However, the correlation between the mutation score and the ability of test suites to find the
bugs is questionable. For instance, achieving a mutation score of 80% does not mean that the test
suite is necessary to reveal the faults in the program.

The mutation working flow is optimized based on Figure 1.2 in the different Mutation Testing
frameworks. For instance, the mutation tools usually prefer executing tests early that kill more
mutants , and mutate the bytecode to avoid compiling the code for each mutant. Pitest [40] is a
popular mutation tool for Java programs and works at Java bytecode level. Mart [36] is a mutation
tool for C programs like Pitest. The repository1 introduces state of the art tools for Mutation
Testing.

1.1.2 Continuous Integration

Continuous Integration(CI)[24] is one methodology of the software development process, i.e., a process
to produce a software product. CI defines a set of development principles to merge all local working
repositories to a central shared repository a few times a day. Although the terminology, Continuous

1https://github.com/theofidry/awesome-mutation-testing
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Integration(CI), has existed since the 1990s, CI is still one of the best practices during the software
evolution and is widely used by many developing teams. As shown in Figure 1.3, the CI loop consists
of four(4) steps. In the beginning, the developers clone the base code locally. When the developers
make the code changes, they can build and test the code locally before submitting these changes to
the central code repository. After the developers submit the changes to the shared repository, the CI
server builds the project and runs the tests. The developers can release their software after passing
all tests. Next, the developing plan updates with the new issues or requirements of the software. CI
can boost software development with many benefits. The key benefit is that CI can detect the code
errors early before the release date. The process of CI is transparent and visualized, which is good
for the team communication. Since CI includes multiple changes a day, keeping a high-quality test
suite is crucial.

Build

TestPlan

Code

Release

Continuous 
Integration

Figure 1.3: Continuous Integration

1.1.3 Artificial Intelligence Software Testing

As Artificial Intelligence(AI) succeeds in many fields, e.g., Computer Vision and Natural Language
Processing, more and more software systems contain AI components such as the autonomous vehicles.
Testing these AI-based systems is vital and has become a hot research topic. There are three(3) levels
of AI testing, data testing, model testing and code testing. Data testing improves the data quality
to help the AI model learning. False data labels in the training data will confuse the model and
the incorrect test data will bias the test results. Curtis G. Northcutt et al. [152] have found many
label errors in the public datasets, e.g., ImageNet and Amazon Reviews. Model testing focus on
checking if the models work well. Jie M. Zhang et al. [238] comprehensively study Machine Learning
Testing. The testers should focus on seven(7) properties of AI models, Correctness, Model Relevance,
Robustness & Security, Efficiency, Fairness, Interpretability and Privacy. Code testing is utilized to
check for bugs in the program code and machine learning libraries, e.g., dividing zero and wrong
tensor shape.

1.2 Challenges of Mutation Testing and Artificial Intelligence
Testing

In Mutation Testing, we create a large number of mutants, but not all of them are valuable to
reveal the errors of the program and it is costly if we use all mutants. Significantly, modern software
development requires frequently code change, which means the test activity is also frequent, as shown
in Figure 1.3. Continuous Integration(CI) is a development pipeline where the developers often
contribute code into a shared project repository. The developers change the code according to the plan,
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e.g., fixing the bugs in the bug list. Usually, the developers need to give new test cases for the changes.
The changes should pass the tests locally before merging into the shared repository. Then, CI builds
and tests the program automatically on the side of the shared central repository. High cost makes
Mutation Testing difficult in the current software development because the CI loop in Figure 1.3 can
happen several times a day. The researchers have proposed selective mutation testing [149] to improve
the efficiency of Mutation Testing by reducing the number of mutants. However, these reduction
techniques do not consider the behaviour difference caused by the code change. This dissertation
studies the issue and proposes a machine learning approach to select mutants as the test requirements
for the code change, as demonstrated in Chapter 3 and Chapter 4. When applying machine learning
algorithms in Software Engineering, we often need to design the data feature manually depending
on the domain knowledge. This way is not general because we need to carefully design the feature
for each task. In Chapter 5, this dissertation demonstrates a general approach to extracting the
code feature and validating it in multiple software engineering tasks, including the mutant prediction
task.

Artificial Intelligence algorithms usually require a large number of data for training and testing,
especially Deep Learning(DL) models. Selecting informative data to train and test DL models is vital
and meaningful to estimate the performance of the DL models reliably. Mutation Testing creates
different variants of the models to select the data based on the uncertainty. This dissertation shows a
study about data selection in Chapter 6 to test and retrain the DL models.

1.3 Contribution

We gather up the contributions of the dissertation. Overall, the contributions are about Mutation
Testing in Continuous Integration, Code Representation for Software Engineering tasks, and Mutation
Testing for AI systems

Commit Aware Mutation Testing adapted to Continuous Integration [135] (accepted
by ICSME 2020) In Continuous Integration, developers want to know how well they have tested
their changes. Unfortunately, in these cases, the use of mutation testing is suboptimal since mutants
affect the entire set of program behaviours and not the changed ones. Thus, the extent to which
mutation testing can be used to test committed changes is questionable. To deal with this issue, we
define commit-relevant mutants; a set of mutants that affect the changed program behaviours and
represent the commit-relevant test requirements. We identify such mutants in a controlled way, and
check their relationship with traditional mutation score (score based on the entire set of mutants
or on the mutants located on the commits). We conduct experiments in both C and Java, using 83
commits, 2,253,610 mutants from 25 projects. Our findings reveal that there is a relatively weak
correlation (Kendall/Pearson 0.15-0.4) between the sought (commit-relevant) and traditional mutation
scores, indicating the need for a commit-aware test assessment metric. Our analysis also shows
that traditional mutation is far from the envisioned case as it loses approximately 50%-60% of the
commit-relevant mutants when analysing 5-25 mutants. More importantly, our results demonstrate
that traditional mutation has approximately 30% lower chances of revealing commit-introducing
faults than commit-aware mutation testing.

A machine learning approach of Mutation Testing for the commit change [134] (accepted
by ICSE 2021) To effectively test program changes using mutation testing, one needs to use mutants
that are relevant to the altered program behaviours. We introduce MuDelta, an approach that
identifies commit-relevant mutants; mutants that affect and are affected by the changed program
behaviours. Our approach uses machine learning applied on a combined scheme of graph and vector-
based representations of static code features. Our results, from 50 commits in 21 Coreutils programs,
demonstrate a strong prediction ability of our approach; yielding 0.80 (ROC) and 0.50 (PR-Curve)
AUC values with 0.63 and 0.32 precision and recall values. These predictions are significantly higher
than random guesses, 0.20 (PR-Curve) AUC, 0.21 and 0.21 precision and recall, and subsequently lead
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to strong relevant tests that kill 45% more relevant mutants than randomly sampled mutants (either
sampled from those residing on the changed component(s) or from the changed lines). Our results
also show that MuDelta selects mutants with 27% higher fault revealing ability in fault introducing
commits. Taken together, our results corroborate the conclusion that commit-based mutation testing
is suitable and promising for evolving software.

A novel approach to learn the universal code representation [138] (accepted by MSR
2022) Code embedding is a keystone in the application of machine learning on several Software
Engineering (SE) tasks. To effectively support a plethora of SE tasks, the embedding needs to capture
program syntax and semantics in a generic way. To this end, we propose the first self-supervised
pre-training approach (called GraphCode2Vec) which produces task-agnostic embedding of lexical
and program dependence features. GraphCode2Vec achieves this via a synergistic combination of
code analysis and Graph Neural Networks. GraphCode2Vec is generic, it allows pre-training, and it
is applicable to several SE downstream tasks. We evaluate the effectiveness of GraphCode2Vec on
four (4) tasks (method name prediction, solution classification, mutation testing and overfitted patch
classification), and compare it with four (4) similarly generic code embedding baselines (Code2Seq,
Code2Vec, CodeBERT, GraphCodeBERT) and 7 task-specific, learning-based methods. In particular,
GraphCode2Vec is more effective than both generic and task-specific learning-based baselines. It
is also complementary and comparable to GraphCodeBERT (a larger and more complex model). We
also demonstrate through a probing and ablation study that GraphCode2Vec learns lexical and
program dependence features and that self-supervised pre-training improves effectiveness.

An empirical study on test selection of Deep Learning systems based on model uncertainty
metrics [137] (accepted by TOSEM) Testing of deep learning models is challenging due to the
excessive number and complexity of the computations involved. As a result, test data selection is
performed manually and in an ad hoc way. This raises the question of how we can automatically
select candidate data to test deep learning models. Recent research has focused on defining metrics
to measure the thoroughness of a test suite and to rely on such metrics to guide the generation of
new tests. However, the problem of selecting/prioritising test inputs (e.g. to be labelled manually
by humans) remains open. In this work, we perform an in-depth empirical comparison of a set of
test selection metrics based on the notion of model uncertainty (model confidence on specific inputs).
It is achieved by creating different versions of the model to measure uncertainty. Intuitively, the
more uncertain we are about a candidate sample, the more likely it is that this sample triggers a
misclassification. Similarly, we hypothesise that the samples for which we are the most uncertain,
are the most informative and should be used in priority to improve the model by retraining. We
evaluate these metrics on 5 models and 3 widely-used image classification problems involving real and
artificial (adversarial) data produced by 5 generation algorithms. We show that uncertainty-based
metrics have a strong ability to identify misclassified inputs, being 3 times stronger than surprise
adequacy and outperforming coverage related metrics. We also show that these metrics lead to faster
improvement in classification accuracy during retraining: up to 2 times faster than random selection
and other state-of-the-art metrics, on all models we considered.

1.4 Organization of the Dissertation

In the remaining of dissertation is organized, Chapter 2 introduces the background and the related
work of this dissertation. Chapter 3 presents the adaptation of Mutation Testing for the code change
in the evolving software systems. Chapter 4 presents an AI approach for the relevant mutant, MuDelta,
and shows how it is useful for Mutation Testing in Continuous Integration to test the code behavior
change. Chapter 5 states our code embedding approach GraphCode2Vec for the general Software
Engineering tasks, including the mutant prediction task. Chapter 6 presents our work on how to
select the test data for DL systems.The finial Chapter 7 summarizes this dissertation and future work.
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CHAPTER 2. BACKGROUND

2.1 State-of-the-art Mutation Testing

Mutation Testing Cost Reduction. Historically, different techniques have been proposed to reduce
the mutation testing cost. C. Ferrari et al. [44] and Pizzoleto et al. [178] empirically study the cost
reduction techniques for Mutation Testing. Offutt et al. [155] categorize these techniques into three
groups, do fewer, do smarter, and do faster. The do fewer group targets fewer mutant programs
within the tolerance loss. Mutant selection is one primary technique in the group. A straightforward
way is to select random mutants. J. Zhang et al. [237] study the scalability of selective mutation
testing, and later they predicted mutant testing results without execution [235]. Another method is
to combine different mutants to reduce the execution time, called Higher order mutation. The do
smarter group seeks to distribute the computational cost over a few machines or factor the cost over
several executions by keeping state information between runs or avoiding complete execution. Both
techniques of weak mutation and parallel executions are representative approaches of do smarter.
Weak mutation checks the internal state instead of the final state of the program. Parallel execution
launches multiple processors to execute Mutation Testing by reducing the total time. The do faster
group focuses on ways of generation and execution of each mutant program as quickly as possible. One
from the do faster category is mutant schemata which includes all mutants in one meta program.

C. Fabiano et al. [44] indicate that do fewer and do smarter approaches draw more attention than do
faster at the moment. It should be noted that Mutation Testing has been employed more and more
in the industry, e.g., Goolge [175]. Recently, AI has been applied in Mutation Testing to generate
more mutants like the bugs [207]. A. Garg et al. [64] uses the natural language model to predict the
subsuming mutants. T.C. Thierry et al. [205] presents a new machine learning approach to select
fault revealing mutants.

Regression Mutation Testing. Applying mutation during regression testing has long been proposed.
In particular, Cachia et al. [28] proposed applying change-based mutation testing by considering only
the mutants located on the altered code. Zhang et al. [240] proposed Regression Mutation Testing,
a technique that speeds up mutant execution on evolving systems by incrementally calculating the
mutation score (and mutant status, killed/live). As such, they assume that testers should use the
entire set of mutants when testing evolving software systems.

Existing mutation testing tools, such as Pitest [41], include some form of incremental analysis in
order to calculate the mutation score (and mutant status, killed/live) of the entire systems or class
under test. Petrovic and Ivankovic [174] use mutation within the code review phase, by randomly
picking some mutants located on the altered code areas.

Test Generation and Prioritization for Mutation Testing. One main challenge in Mutation
Testing is to generate test cases to kill the mutants. The popular test generation tool cannot efficiently
create tests to kill the mutants because they are guided by coverage test metrics, e.g., EvoSuite1.
And manual test generation needs much effort. Symbolic execution has been used to solve the
problem[35, 79, 161, 241]. Symbolic execution symbolizes the inputs of the program and executes the
program abstractly. Symbolic execution can target a specific mutant by instrument, and thus it can
effectively generate test cases for the mutants. However, symbolic execution has some limitations to
impede its application, e.g., execution path explosion and the symbolization of arrays. It is still far
away to automatically generate test cases to kill the mutants. Mutation Testing usually results in
the growth of the number of test cases. We need to run all test cases until one test kills the mutant.
Therefore, the text execution order plays an important role in the mutation testing cost. Faster
Mutation Testing (FaMT) [239] prioritizes and reduce tests to quickly kill the mutants.

1https://www.evosuite.org/
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2.2 Deep Learning Testing

Testing of learning systems is typically performed by selecting a dedicated test set randomly from
available labelled data [224]. When an explicit test dataset is not available, one can rely on cross-
validation [105] to use part of the training set to anticipate how well the learning model will generalize
to new data. These established procedures, however, often fail to cover many errors. For instance,
research work in adversarial learning has shown that applying minor perturbations to data can make
models give a wrong answer [71]. Nowadays, those adversarial samples remain hard to detect and
bypass many state-of-the-art detection methods [31]. In order to achieve better testing, multiple
approaches have been proposed in the recent years. We distinguish four categories of contributions:
(i) metrics for measuring the coverage/thoroughness of a test set; (ii) generation of artificial inputs;
(iii) metrics for selecting test data; (iv) detection of adversarial samples.

DeepXplore, proposed by Pei et al. [169], comprises both a coverage metric and a new input generation
method. It introduces neuron coverage as the first white-box metric to assess how well a test set
covers the decision logic of DL models. Leaning on this criterion, DeepXplore generates artificial
inputs by solving a joint optimization problem with two objectives: maximizing the behavioural
differences between multiple models and maximizing the number of activated neurons. Pei et al.
report that DeepXplore is effective at revealing errors (misclassifications) that were undetected by
conventional ML evaluation methods. Also, retraining with additional data generated by DeepXplore
increases the accuracy of the models. In some models, the increase is superior (1 to 3%) to an increase
obtained by retraining with data generated by some adversarial technique [71]. Pei et al. also show
that randomly-selected test data and adversarial data achieve smaller neuron coverage than data
generated by DeepXplore. While they assume that more neuron coverage leads to better testing,
future research showed that this metric is inadequate [97, 131].

In a follow-up paper, Tian et al. [204] propose DeepTest as another method to generate new inputs
for autonomous driving DL models. They leverage metamorphic relations that hold in this specific
context. Like DeepXplore, DeepTest utilizes the assumption that maximising neuron coverage leads
to more challenging test data. The authors show that different image transformations lead to different
neuron coverage values and infer that neuron coverage is an adequate metric to drive the generation
of challenging test data. However, this claim was not supported by empirical evidence.

A related method was proposed by [133]. It works under the assumption that there is a recurring defect
in the DNN model, such that inputs from one particular class are often misclassified. The method is
based on differential analysis to identify features/neurons responsible for this defect, so as to fix the
model. On the contrary, the uncertainty metrics we propose to use are independent of the particular
class of the inputs and are lightweight (they do not require more expensive computations/analyses).

DeepGauge [131] and DeepMutation [132] are two test coverage metrics proposed by Ma et al. With
DeepGauge, they push further the idea that higher coverage of the structure of DL models is a
good indicator of the effectiveness of test data. They show, however, that the basic neuron coverage
proposed previously is unable to differentiate adversarial attacks from legit test data, which tends to
indicate the inadequacy of this metric. As a result, they propose alternative criteria with different
granularities, i.e. at the neuron level and the layer level. Their experiments reveal that replacing
original test inputs by adversarial ones increases the coverage of the model wrt. DeepGauge’s criteria.
However, they did not assess the capability of their criteria to prioritize test samples likely to trigger
misclassifications.

Similarly, DeepMutation leverages the mutation score used in traditional mutation testing to DL
models. From a given model, it generates multiple mutant models by applying different operators
such as, e.g., neuron switch or layer removal. Then, they define the mutation score of a test input as
the number of mutants that it killed (i.e. those that yield a different classification output for the
test input than the original model). Thus, the mutation score assesses how sensitive the model is
wrt. the test inputs rather than how these cover the neurons of the network. DeepMutation++ [86]
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extends DeepMutation to Recurrent Neural Network(RNN) with more mutation operators as a public
tool2. DeepCrime [88] as the state-of-the-art work leverages the mutant operators to investigate the
probability to mimic the effects of actual DL errors. The work defines 35 mutation operators and
find these mutant operators effectively are killable and vital. DeepGini [56] prioritizes the test data
based on the statistical properties of the deep learning models. Uncertainty-wizard [221] is a tool
that supports quantify such uncertainty and confidence in artificial neural networks.

Nevertheless, both DeepGauge and DeepMutation measure the coverage/thoroughness of a test set
but do not aim at selecting individual inputs to undergo labelling. Moreover, a recent study [98] has
shown that neuron coverage criteria do not necessarily increase when more misclassified/surprising
inputs are added.

Later on, Ma et al. [130] proposed DeepCT, a test coverage metric suggesting that within a given layer,
all tuples of neurons should be covered by at least one test input. They also propose an algorithm
to generate artificial inputs to cover as many t-wise interactions as possible. They show, first, that
random test selection cannot cover a large part (> 65%) of the 2-wise neuron interactions. Second,
they show that retraining on the inputs generated by their algorithm allows the detection of up to
10% of adversarial samples that could not be detected by retraining on randomly selected inputs.
An alternative proposed by Xiaofei Xie et al. [227] is DeepHunter, a fuzzing-based test generation
algorithm to hunt defects in DL models. The fuzzing is guided by the coverage metrics defined in
DeepXplore [169] and DeepGauge [131]. Their evaluation shows that the fuzzing algorithm manages
to increase the intended coverage metrics. Both DeepCT and DeepHunter focus on generating
artificial inputs and are not directed towards the selection of available challenging data for testing
and retraining.

Most recently, Kim et al. [98] proposed metrics for test coverage and test selection. They highlight
the fact that coverage criteria fail to discriminate the added value of individual test inputs and are
therefore impractical for test selection. They argued that test criteria should guide the selection of
individual inputs and eventually help improving the DL models’ performance. As a consequence, they
propose surprise adequacy as a metric that measures how surprised the model is when confronted with
a new input. More precisely, the degree of surprise measures the dissimilarity of the neurons’ activation
values when confronted to this new input wrt. the neurons’ activation values when confronted to
the training data. They hypothesise that a set of test inputs is preferable for both testing and
retraining when it covers a diverse range of surprise values. In other words, a good test set should
range from very similar to very different inputs to those observed during training. Kim et al. show
experimentally that (a) surprise coverage is sensitive to adversarial samples and (b) retraining on
such samples yields better improvements in accuracy. In Chapter 6, we show that model uncertainty
is more effective at triggering misclassifications and improving the accuracy of the models than input
diversity. Nevertheless, surprise adequacy is complementary to our work since it aims for a diversity
of surprise degrees and thus better applies to models that are not yet well-trained, while uncertainty
metrics aim at reinforcing well-trained models against inputs that remain challenging.

Uncertainty of DL systems was theoretically studied by a number of authors. Gal and Ghahramani
[62] proved that the variance of the softmax function resulting from neuron dropout is a good estimate
for model uncertainty. Kendall and Gal [96] propose a model to capture jointly aleatoric uncertainty
(originating from noise inherent to the observations) and epistemic uncertainty (induced by the fact
that the model is not trained on all possible data). The latter type is what is commonly referred to
as model uncertainty, which can be captured by dropout variance [96].

In [74], Smith and Gal provide evidence that uncertainty metrics can be used to detect adversarial
samples, although this does not hold for data that are far away from the training set. Compared with
this line of work, the contribution of the dissertation is to study uncertainty from a new perspective
and how well it can achieve the purpose of selecting inputs that trigger misclassifications. Akin
notions were used by Feinman et al. [55] to detect adversarial samples. This method uses kernel

2https://sites.google.com/view/deepmutationpp/home
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density estimation of neuron activation (similar to likelihood-based surprise adequacy [98]) and
Bayesian uncertainty based on dropout variance (similar to what we use here). Wang et al. [216]
proposed computing how much the labels predicted by a model change when (after training) this
model is slightly altered. They showed that adversarial inputs are more likely to increase the
label change rate. A purely Bayesian generative adversarial method is proposed in [186], where
the adversarial sample generator and the discriminator are Bayesian neural networks trained with
stochastic gradient Hamiltonian Monte Carlo sampling. Specifically, the discriminator network is
capable of efficiently detecting adversarial samples because of the competition-based structure, which
forces learning to be a repeated contest between the generator and the discriminator. Another
detection method based on uncertainty is that of Sheikholeslami and Giannakis [194], which promotes
scalability by measuring uncertainty on sampled hidden layers. Pinder’s master thesis [176] reports
other experiments demonstrating that adversarial images yield a significantly greater uncertainty
than original images. In other settings, though, Grosse et al. [74] show that there exist adversarial
examples which do not affect the uncertainty of the model.

Overall, the aforementioned studies aim at detecting adversarial examples. Compared to them,
our goal is to select examples that are most likely to be misclassified, be these real or adversarial
(studied separately and together). Another key difference is that we consider both well-classified and
misclassified adversarial examples. Doing so, Chapter 6 demonstrates that the metrics are even more
sensitive to the noise introduced by adversarial algorithms than they are to the classification results,
which is in line with the results of [74, 176, 194, 216]. Also, we consider a broad range of metrics,
including (but not limited to) multiple metrics that approximate uncertainty. Specifically, compared
to [216], the dropout variance we use is more fine-grained than the label change rate as it is computed
over classification probabilities.

2.3 Natural Language Processing

Natural Language Processing(NLP) is a research field that allows the computer program to understand
human language. It has many applications, e.g., language translation and search engines. Recently,
NLP techniques are used in Software Engineering tasks, e.g., code clone detection and automatic
program repair.

Word Embedding Word embedding is one elementary technique that encodes the word text into a
real-value vector semantic representation in Natural Language Process(NLP). The words that have
similar meanings should be close in the latent space. A straightforward word-embedding technique
is one-hot-encoding. However, this method will break the similarity between two similar meaning
words, and the vector dimension is huge due to the many words. Baroni et al. [13], Pennington
et al. [171] and Li et al. [120] categorize word embeddings into two types, i.e., prediction-based
approaches and count-based approaches. Prediction-based approaches utilize the neural language
models (NNLMs [16]) to learn an embedding layer. Word2Vec [146] is one prevalent method from
this group, including two different learning models, CBOW( continuous bags of words ) model and
continuous Skip-Gram Model. Count-based approaches use the statistical information from the corpus
to encode the word into a vector, e.g., using word frequency. GloVe [171] is one famous count-based
method .

Pretraining in NLP Pretraining is one of the central topics in current Natural Language Pro-
cess(NLP) research: A deep neural network like LSTM [84] or Transformer [211] is trained on a large
text corpus using self-supervised learning without any human supervision (e.g., human-annotated
datasets). The representative pretrained models like ELMo [173] and BERT [47] provide high-quality
generic representations containing rich syntactic [70] and semantic [243] information about languages.
These representations are highly transferable, significantly benefiting NLP systems in a wide range
of downstream tasks such as sentiment analysis [199] and natural language inference [223] using
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straightforward transfer learning [47, 85, 122, 244]. Transferability is also an essential requirement in
our approach as we aim to build code models that can perform various tasks.

Interpretability in Language Processing The impressive performance of BERT stimulates
loads of work trying to interpret and understand these newly invented large-scale blackbox models.
Probing [42, 183, 243] is one of the most prominent techniques that has been widely leveraged for
interpretability. Probing aims at diagnosing which types of regularities are encoded in an input vector
representation extracted from data. The hypothesis of probing is that if a simple classifier built
upon the representations can solve a task sufficiently well, then the representations should contain
informative features about the task already. For example, Goldberg [70] probes syntactic information
encoded in BERT; Zhao et al. [243] demonstrate how BERT contextualizes words; Vulić et al. [215]
assess lexical semantics in BERT using probing; Lin et al. [124] probe the numerical commonsense of
BERT; Goodwin et al. [72] probe for linguistic systematicity.

NLP in Big Code Researchers notice that code data have common properties with the text, e.g.,
function name and API documents. M. Allamanis et al. [2] propose the naturalness hypothesis,

Software is a form of human communication; software corpora have similar statistical properties to
natural language corpora; and these properties can be exploited to build better software engineering
tools.

The hypothesis stands as coding is an activity of communication, and code corpora have rich patterns
like natural language. NLP techniques are widely used in code analysis, e.g., code search [30], code
generation and completion [220]. However, J. Mosel et al. [214] indicate that the models trained with
human natural language have trouble understanding Software Engineering(SE) domain terminology.
Models trained with SE domain data are good at understanding SE context. One advanced topic is
code embedding, like word embedding. The target of code representation is to learn the distribution
of code properties in the latent space. Lots of methods on code embedding have been proposed
recently, e.g., Code2Vec [5], Code2Seq [4] and CodeBert [57]. These code representations are applied
in a wide range of software engineering downstream tasks, e.g., flaky test detection [54].
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3 Commit-Aware Mutation Testing

In Continuous Integration, developers want to know how well they have tested their changes. Unfortu-
nately, in these cases, the use of mutation testing is suboptimal since mutants affect the entire set of
program behaviours and not the changed ones. Thus, the extent to which mutation testing can be used
to test committed changes is questionable. To deal with this issue, we define commit-relevant mutants;
a set of mutants that affect the changed program behaviours and represent the commit-relevant
test requirements. We identify such mutants in a controlled way, and check their relationship with
traditional mutation score (score based on the entire set of mutants or on the mutants located on
the commits). We conduct experiments in both C and Java, using 83 commits, 2,253,610 mutants
from 25 projects. Our findings reveal that there is a relatively weak correlation (Kendall/Pearson
0.15-0.4) between the sought (commit-relevant) and traditional mutation scores, indicating the need
for a commit-aware test assessment metric. Our analysis also shows that traditional mutation is far
from the envisioned case as it loses approximately 50%-60% of the commit-relevant mutants when
analysing 5-25 mutants. More importantly, our results demonstrate that traditional mutation has
approximately 30% lower chances of revealing commit-introducing faults than commit-aware mutation
testing.
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CHAPTER 3. COMMIT-AWARE MUTATION TESTING

3.1 Introduction

Modern software development involves the continuous submission and integration of code modifications
from many developers into a common codebase [59]. This continuous development is performed
by automatic procedures that build and test the software products. Automated testing is used to
establish confidence that the committed code behaves correctly, while at the same time it does not
break any of the previously developed program functionalities.

When developers commit their code, they are interested in testing the delta of behaviours between
their pre- and post-commit versions in order to discover issues and side effects caused by their changes.
Thus, developers are interested in knowing how well they have tested the program behaviours affected
by their changes. To this end, many studies suggest using mutation testing (or other test adequacy
criteria) to drive test generation, or to assess test thoroughness on the evolving software [174, 240].

Mutation testing has long been established as one of the strongest test criteria [166]. It operates
by measuring the extent to which test suites can distinguish the behaviour of the original program
from that of some slightly altered (syntactically altered) program versions, which are called mutants.
Testers can use mutants to design test cases [46] or to measure test suites’ thoroughness [9].

Previous research has shown that mutation testing leads to fault revelation [7, 38] and can be used
for test assessment as it effectively quantifies the test suites’ strengths [9]. Unfortunately, traditional
mutation testing aim at testing the entire codebase, rather than specific program changes/commits
as would naturally be requested by developers.

There are many studies aiming at making the mutation score metric accurate either by using specific
mutant types [154], or by detecting equivalent mutants [100, 140], i.e., mutants that cannot be killed
by any test case because they are semantically equivalent to the original program, or by eliminating
redundant mutants [112, 163], i.e., mutants that are killed “collaterally” whenever other mutants
are killed (subsumed by the subsuming mutants). Yet, little research has focused on measuring the
effectiveness of test suites with respect to particular program changes or commits.

To form a commit-aware mutation criterion, it is necessary to identify mutants capturing the altered
program behaviours, i.e., mutants interacting with the changed program behaviours, representing the
sought commit-relevant test requirements. These mutants can then be used to judge whether test
suites are adequate and, if not, to provide guidance in improving test suites (by creating tests that
kill commit-relevant mutants).

One may assume that, since mutation score reflects test thoroughness (of the whole system, component
or class under test), it also reflects, or at least the score delta between versions reflects, the extent
to which changes are tested. Someone else may consider that the changed program parts can be
tested by mutating only the modified code, assuming that mutant locations reflect their utility and
relevance.

These assumptions may appear intuitive but unfortunately they do not hold. This is because of the
large numbers of irrelevant (to the committed changes) mutants and the many relevant ones that are
spread on the entire codebase. Since these mutants are unknown to mutation testers, they hinder
their ability to distinguish between relevant and irrelevant mutant kills. Mutating only the modified
code parts yields better results, but still, it is insufficient to cover all possible interactions between
the unmodified and changed code.

We argue that covering all interactions between unmodified and modified code is particularly important
because problematic regression issues arise from such unforeseen interactions [22, 188]. This is
demonstrated by our results that show the majority of the altered program behaviours to be captured
by mutants located on unmodified code parts.

In our analysis, we also considered the potential gains and losses of either using the entire set of
mutants or those mutants that are located on the committed code. Obviously, by killing all the
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mutants, one achieves killing all the commit-relevant ones. However, this comes with the cost of
analysing more mutants, and generating more test cases than needed. Perhaps more importantly, the
killing of mutants irrelevant to the commit inflates the mutation score, hindering its ability to reflect
test thoroughness w.r.t. to committed code. Similarly, by killing all the mutants located on the
committed code, one fails to kill a significant number of commit-relevant mutants, loosing significant
test effectiveness.

Interestingly, our results reveal that there is a relatively weak correlation between the sought commit-
aware and traditional mutation scores, indicating the need for a commit-relevant test assessment
metric. Our analysis also shows that when using mutants for test suite improvement [167] (by adding
tests that kill mutants), traditional mutant selection is very far from the envisioned case, as it loses
approximately 50%-60% of the commit-relevant mutants (when analysing 5-25 mutants). Perhaps
more importantly, our results demonstrate that commit-relevant mutants have 30% more chances
to reveal faults (real faults) than traditional mutation when analysing the same number of mutants
(putting approximately the same amount of effort).

Overall, our contribution is the definition of the commit-relevant mutants and the envisioned commit-
relevant mutation-based test assessment. We motivate this by providing evidence that mutation
testing performed with the entire set of mutants or with the mutants located on the committed code
is insufficient to assess test thoroughness or to provide cost-effective guidance to adequately test
particular program changes.

Taken together, our key contributions can be summarised by the following points:

• We define the commit-relevant mutation testing, which is based on the notion of commit-relevant
mutants, i.e., mutants capturing the interactions between modified and unmodified code.

• We investigate the extent to which mutation-based test assessment metrics such as a) the
mutation score (score that includes the entire set of mutants), b) the delta of mutation scores
between pre- and post-commit, c) the mutation score of mutants located on the committed code,
correlate with the sought commit-relevant mutation score. Our results show that all three metrics
have relatively weak correlations (less than 0.4), indicating the need for a commit-relevant test
assessment metric.

• We further examine the potential guidance given by commit-relevant mutation testing by
comparing the gains and losses of strategies that use the entire set of mutants, the mutants
located on the committed code and the commit-relevant mutants. Our findings suggest that
commit-relevant mutants have 30% higher fault revelation ability (wrt real commit-introduced
faults) than the other strategies when analysing the same number of mutants.

3.2 Commit-Relevant Mutants

Informally, a commit-aware test criterion should reflect the extent to which test suites have tested
the altered program behaviours. This means that test suites should be capable of testing and making
observable any interaction between the altered code and the rest of the program. We argue that
mutants can capture such interactions by considering both the behavioural effects of the altered code
on mutants’ behaviour and visa versa. This means that mutants are relevant to a commit when their
behaviour is changed by the regression changes. Indeed, changed behaviour indicates a coupling
between mutants and regressions, suggesting relevance.

Precisely, the regression changes interact with a mutant when the program version that includes both
the regression changes and the mutant behaves differently from:

1. the version that includes only the mutant (mutant in the pre-commit version).
2. the version that includes only the regression changes (post-commit version).
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This situation is depicted in Figure 3.1.

Figure 3.1: A mutant is relevant if it impacts the behaviour of the committed code and the committed
code impacts the behaviour of the mutant.

3.2.1 Demonstrating Example

Mutant M1 (Relevant)

int func (int x[3], int y[3]) {
1.    int L, R, vL = 0, vR = 0;
2.    sort(x); sort(y);
3.    R = 2;  // R = 0;
4.    if (x[R] > y[R]) {
5.        vR = 1; 
6.    } else if (x[R] == y[R]) {
7. - L = 1;
7. + L = 0;
8.        if (x[L] > y[L])
9.            vL = 1; 
10.   }
11.
12.   if (x[0] > y[2])
13.       return -1; 
14.
15.   return vL + vR;
}

Mutant M2 (Non-relevant)

int func (int x[3], int y[3]) {
1.    int L, R, vL = 0, vR = 0;
2.    sort(x); sort(y);
3.    R = 2; 
4.    if (x[R] > y[R]) {
5.        vR = 1; // vR = 0;
6.    } else if (x[R] == y[R]) {
7. - L = 1;
7. + L = 0;
8.        if (x[L] > y[L])
9.            vL = 1; 
10.   }
11.
12.   if (x[0] > y[2])
13.       return -1; 
14.
15.   return vL + vR;
}

Mutant M3 (Non-relevant)

int func (int x[3], int y[3]) {
1.    int L, R, vL = 0, vR = 0;
2.    sort(x); sort(y);
3.    R = 2; 
4.    if (x[R] > y[R]) {
5.        vR = 1; 
6.    } else if (x[R] == y[R]) {
7. - L = 1;
7. + L = 0;
8.        if (x[L] > y[L])
9.            vL = 1; 
10.   }
11.
12.   if (x[0] > y[2]) // if (x[0] >= y[2])
13.       return -1; 
14.
15.   return vL + vR;
}

No test can execute both the 
mutated statement (line 5) and the 
modification (line 7) in both pre and 

post commit versions

Any test that kills the mutant post-commit must fulfil 
the condition 𝑥𝑥 0 == 𝑦𝑦[2]. Any test that fulfil the 
above condition will make the mutant output -1 for 

pre and post commit versions. Thus no test can make 
the mutation interact with the modification.

For test input:  x = {0, 3 ,4} and y = {0, 2, 3},
the return codes are following:

• Mutant post-commit: 0
• Mutant pre-commit: 1
• Original post-commit: 1

≠
≠

Figure 3.2: Example of relevant and non-relevant mutants. Mutant 1 is relevant to the committed
changes. Mutants 2 and 3 are not relevant.

Figure 3.2 illustrates the concept of relevant mutants. The example function takes 2 arguments
(integer arrays x and y of size 3), sorts them, makes some computations, and outputs an integer. The
commit modification alters the statement at line 7 by changing the value assigned to the variable L
from 1 to 0, denoted with the pink-highlighted line (starting with ‘-’) for the pre-commit version and
green-highlighted line (starting with ‘+’) for the post-commit version.

The sub-figure on the left side shows mutant M1. M1 is characterized by the mutation that changes
the statement R = 2 into R = 0 in line 3 (the C language style comment represents the mutant’s
statement). We observe that, with an input t such that t : x = {0, 3, 4}, y = {0, 2, 3}, the original
program post-commit has an output value of 1, the mutant M1 pre-commit outputs 1 and the mutant
M1 post-commit outputs 0. Based on the definition of relevant mutants, M1 is relevant to the commit
modification.

The sub-figure in the center shows mutant M2 (mutation changes the statement vR = 1 into vR = 0
in line 5). We observe that the mutated statement (in line 5) and the modification (in line 7) are
located in two mutually unreachable nodes of the control-flow graph. Thus, no test can execute both
the changed statement and M2. M2 is not relevant to the commit modification.

The sub-figure on the right side shows mutant M3 (mutation changes the expression x[0] > y[2]
into x[0] >= y[2] in line 12). We observe that some tests execute both the commit modification
and the mutated statement. However, no test can kill M3 in the post-commit version and at the
same time differentiate between the outputs of the pre-commit and post-commit versions of mutant
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M3. The reason is that any test that kills M3 in the post-commit version must fulfil the condition
x[0] == y[2]. Any such test makes both the pre- and post-commit versions of M3 to output −1, thus,
not fulfilling the condition to be relevant. Since, there exists no such test M3 is not relevant to the
commit modification.

Note that in case a modification inserts statements, all killable mutants (in the post-commit version)
located on these statements (new statements) are relevant to the modification. In case of deletion
(modifications remove statements), the mutations located on these statement do not exist in the
post-commit version, and thus, are not considered.

3.3 Experimental Setup

3.3.1 Research Questions

We start our analysis by recording the prevalence of commit-relevant mutants in code commits. Thus,
we ask:

RQ1: (Mutant distributions) What ratio of mutants is relevant, is located on changed code, and is
located on non-changed code?

Answering this question will help us understand the extent of “noise” included in the mutation
score and will provide a theoretical upper bound on the application cost of commit-aware mutation
testing.

As we shall show, the majority of the mutants are irrelevant to the committed code, indicating that
using all mutants is sub-optimal in terms of application cost. Perhaps more interestingly, using such
an unbalanced set could result in a score metric with low precision. Therefore, we need to check the
extent to which mutation score is adversely influenced by irrelevant mutants. Thus, we investigate:

RQ2: (Metrics relation) Does the mutation score (MS), computed based on all mutants, on mutants
located on the committed/modified code, and the delta of the pre- and post- commit MS
correlate with the relevant mutation score (rMS)?

Knowing the level of these correlations can provide evidence in support (or not) of the commit-aware
assessment (i.e., the extent to which mutation score reflects the level at which the altered code has
been tested). In particular, in case there is a strong correlation, we can infer that the influence of the
irrelevant mutants is minor. Otherwise, the effects of the irrelevant mutants may be distorting.

While the correlations reflect the influence of the irrelevant mutants on the assessment metric, they do
not say much about the extent to which irrelevant mutants can lead to tests that are relevant to the
changed behaviours (in case mutants are used as test objectives). In other words, it is possible that by
killing random mutants (the majority of which is irrelevant), one can also kill relevant mutants. Such
a situation happens when considering the relation between mutants and faults, where mutant killing
ratios have weak correlation with fault detection rates but killing mutants significantly improves fault
revelation [167]. Hence we ask:

RQ3: (Test selection) To what extent does the killing of random mutants result in killing commit-
relevant mutants?

We answer this question by simulating a scenario where a tester analyses mutants and kills them. Thus,
we are interested in the relative differences between the relevant mutation scores when testers aim at
killing relevant and random mutants. We use the random mutant selection baseline as it achieves
the current best results [34, 112]. We compare here on a best effort basis, i.e., the commit-relevant
mutation score achieved by putting the same level of effort, measured by the number of mutants that
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require analysis. Such a simulation is typical in mutation testing literature [38, 112] and aims at
quantifying the benefit of one mutant selection approach over another.

Answering the above question provides evidence that killing relevant mutants yields significant
advantages over the killing of random mutants. While this is important and demonstrates the
potential of killing commit-relevant mutants in terms of relevance, still the question of actual test
effectiveness (actual fault revelation) remains. This means that it remains unclear what the fault
revelation potential of killing commit-relevant mutants is when the commit is fault-introducing.
Therefore we seek to investigate:

RQ4: (Fault Revelation) How does killing commit-relevant mutants compares with the killing of
random mutants w.r.t. to (commit-introduced) fault revelation?

To answer this question we investigate the fault revelation potential of killing commit-relevant mutants
based on a set of real fault-introducing commits. We follow the same procedure as in the previous
research question (RQ3) in order to perform a best effort evaluation.

Overall, answering the above questions will improve the understanding of the potential of the
cost-effectiveness application of commit-aware mutation testing.

3.3.2 Analysis Procedure

We performed mutation testing on the selected subjects using all the mutation operators supported by
Mart [36] and Pitest [41] (the mutation testing tools we use). For the C programs, we then discarded
all the trivially equivalent mutants (including the duplicated ones), using the TCE method [100] and
applied our analysis on the resulting sets of mutants.

Identifying relevant mutants requires excessive manual analysis, thus we approximate them based on
test suites (this is a typical experimental procedure [6, 112, 166]). To do so we composed large test
pools, which approximate the input domain. The pools are composed of the post-commit version
developer tests (mined from the related repository). For C programs we augment the pools with
automatically generated tests, similarly to the process followed by Kurtz et al and Papadakis et al.
[112, 166].

Using the test pools, we execute all the mutants (on both pre- and post-commit versions) and
construct the mutation matrix that records the mutants killed by each test case of the pool. We
also record the test execution output of each test on each mutants. For C programs, this output is
the standard output produced when running the test, while for the Java programs it is the status
(pass/fail) of the test run.

By using the test execution outputs and the mutant matrices, we approximate the relevant mutant
set, from the post-commit mutants, based on Algorithm 1. In the algorithm, the function calls
postCommitOrigOutput, postCommitMutOutput and preCommitMutOutput compute the output of
the execution of test case ‘test’ on the post-commit original program, post-commit version of mutant
‘mut’ and pre-commit version of mutant ‘mut’, respectively.

Besides the relevant mutant set, we also extract the modification mutant set, made of mutants that
are located on a statements modified or added by the commits. This set is computed by extracting
the modified or added statements from the commit diff and collecting the mutants that mutate those
statements. Note that, by definition, the killable modification mutants are also relevant mutants, as
their pre-commit output is not defined, and thus different from their post-commit output.

We have three mutant sets: the post-commit, relevant and modification mutant sets. In RQ2, we
want to know the correlations between the mutation scores of the aforementioned mutant sets. To do
so, we select arbitrary test sets of various sizes and record the mutation scores on each mutant set
and compute their correlations.
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Algorithm 1: Approximate Relevant Mutants Set
Data: TestSuite, Mutants
Result: Relevant Mutants
RelevantMuts← ∅;
for mut ∈Mutants do

for test ∈ TestSuite do
origV 2← postCommitOrigOutput(test);
mutV 2← postCommitMutOutput(test,mut);
mutV 1← preCommitMutOutput(test,mut);
if origV 2 6= mutV 2 ∧mutV 2 6= mutV 1 then

RelevantMuts← RelevantMuts ∪ {mut};
break;

end
end

end
return RelevantMuts ;

In RQ2 we arbitrary pick sets of tests representing 10%, 20%, ..., 90% of the test pool. As these sets
are randomly sampled we selected multiple sets (500 for C and 100 for Java) per size considered and
per program commit (each subset of test can be seen as a testing scenario). For every test set, we
computed the mutation score for each of the three mutant sets. We name as MS, rMS and mMS
the mutation scores for the whole mutant set, relevant mutant set and modification mutant set,
respectively. The mutation scores are computed on the post-commit versions and using the mutation
matrix. Thus, for each commit and each test size, we have three statistical variables (MS, rMS and
mMS), which instances are the corresponding mutation scores for each test set.

Having collected the data for the statistical variables MS, rMS and mMS, we compute the correlations
between rMS and MS as well as the correlation between rMS and mMS. If the correlation between
rMS and MS (mMS) is high, it means that MS (mMS) can be used as a proxy fo rMS. Otherwise,
MS (mMS) is not a good proxy for rMS and thus, rMS should be targeted directly.

We also computed, for each test set, the mutation score in the pre-commit version. Then we compute
the absolute change of mutation score (named deltaMS), on the analyzed mutant set, incurred
by a commit modification (delatMS = |MSpost−commit −MSpre−commit|), and we compute the
correlation between rMS and deltaMS. A strong correlation would mean that the absolute change of
mutation score between versions is a proxy for rMS. Weak correlation would mean that rMS cannot
be represented by delatMS.

In RQ3, we simulate a scenario where a tester selects mutants and designs tests to kill them. This is
a typical evaluation procedure [112, 166] where a test that kills a randomly selected mutant (from
the studied mutant set) is selected from the test pool. This test is then used to determine the killed
mutants, which are discarded from the studied mutant set. The process continues (by picking the next
live mutant) until all mutants have been killed. If a mutant is not killed by any of the tests, we treat
it as equivalent. This means that our effort measure is the number of mutants picked (either killable
or not) and effectiveness measure is the relevant mutation score. Since we perform a best-effort
evaluation we focus on the initial few mutants (up to 50) that the tester should analyse in order to
test the commits under test. We repeat this process (killing all mutants) 100 times and compute the
relevant mutation score.

For RQ4, we repeat the same procedure as in RQ3. However, instead of computing the relevant
mutation score, we compute the fault revelation probability.
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3.3.3 Statistical Analysis

We perform a correlation analysis to evaluate whether the mutation score, when considering all
mutants, correlates with the relevant mutation score. To this end, we use two correlation metrics:
Kendall rank coefficient (τ) (Tau-a) and Pearson product-moment correlation coefficient (r). In all
cases, we considered the 0.05 significance level.

The Kendall rank coefficient τ , measures the similarity in the ordering of the studied scores. We
measure the mutation score MS and the relevant mutation score rMS when using test suites of size
10%, ..., 90% of the test pools. The Pearson product-moment correlation coefficient (r) measures the
covariance(linear correlation) between the MS and rMS values. These two coefficients take values
from -1 to 1. A coefficient of 1, or -1, indicates a perfect correlation while a zero coefficient denotes
the total absence of correlation.

To evaluate whether the achieved mutation scores MS and relevant mutation scores rMS are
significantly different (i.e., different data distribution), we use a Mann-Whitney U Test performed at
the 1% significance level. This statistical test yields a probability called p-value which represents the
probability that the MSs and rMS are equal. Thus, a p-value lower than 1% indicates that the two
metrics are statistically different. We use paired and two-tailed U test, to account for the different
commits and programs.

3.3.4 Program Versions Used

To answer RQs 1-3 we used the C programs of GNU Coreutils1, used in many existing studies [29,
35, 107]. GNU Coreutils is a collection of text, file, and shell utility programs widely used in Unix
systems. The whole code-base of Coreutils is made of approximately 60,000 lines of C code2. In order
to obtain a commit benchmark of Coreutils programs we used to following procedure to mine recent
commits from the Coreutils github repository. (1) We set the commit date interval from year 2012
to 2019. This resulted in 5,000 commits considered. (2) Next, we filtered out the commits that do
not alter source code files. This resulted in 1,869 commit remaining. (3) Then, we only kept the
commits that affect only the main source file of a single program (This enable better control of test
execution, because other programs of Coreutils are often used to setup the test execution of a tested
program). (4) After that, we filtered out commits that are very large (commits whose modification
has an edit actions of more than 5 according to GumTree [53]). This resulted in 218 commits. (5)
Due to the large execution time of the experiments, approx. 2 weeks of CPU time per commit, we
randomly sampled 34 commits among the remaining commits for the experiments. This constitutes
our Benchmark-1.

In order to further strengthen our experiment and answer RQ4, we also use 13 commits from the
CoREBench [23] that introduce faults. We selected these commits to validate the fault revelation
ability of relevant mutants. Since we approximate relevant mutants, we needed commits where
automated tests generation frameworks could run. Thus, we limit ourselves to the 18 fault introducing
commits of Coreutils that we can run with Shadow symbolic execution [107]. Among these faults,
two were discarded due to technical difficulties in compiling the code (the build system uses very
old versions of the build tools). Three faults were discarded due to the excessively high required
execution time to run the mutants (we stopped after 45 days).

Table 4.1 summarizes the informations about the C language benchmarks used in the experiments.

To answer RQs 1-3, we also consider a set of commits from well-known and well-tested Java programs.
We extract these commits from projects in the Apache Commons Proper repository3, a set of

1https://www.gnu.org/software/coreutils/
2Measured with cloc (http://cloc.sourceforge.net/)
3https://commons.apache.org/
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Table 3.1: C Test Subjects
Benchmark #Programs #Commits # Mutants #Test cases

CoREBench [23] 6 13 154,396 8,828

Benchmark-1 13 34 338,390 11,866

Table 3.2: Java Test Subjects
Project # Commits # Mutants # Test cases

commons-cli 9 61,419 3,247

commons-collections 5 323,584 55,076

commons-io 3 105,181 3,972

commons-net 6 345,130 1,478

joda-time 5 561,782 20,962

jsoup 8 330,125 4,985

reusable Java component projects, from Joda Time4, a time and date library, and Jsoup5, an HTML
manipulation library. For each of the projects, we manually gathered the most recent commits meeting
the following conditions from the project’s history: (1) only source code is modified, no modification
to configuration files, (2) the commit introduces a significant change, not a trivial one such as a
typo fix, (3) test contracts are not modified, in order to meaningfully compare pre- and post-commit
outputs and (4) both pre- and post-commit versions of the project build successfully. Overall, we
gathered 36 commits, table 3.2 summarises information about the commits used from each project.

3.3.5 Mutation Mapping Across Versions

As mutation testing tools generate mutants for a given program version instead of regression pairs,
we need to identify the common mutants between the two versions. In other words, we need to map
each mutant from its pre- to post-commit version of the program.

To establish such a mapping in the case of C programs, we unify the commit modifications into a
single program, as done in the literature [107], and apply any standard (unmodified) mutation tool to
generate the mutants. The code unification of the commit modification is done through annotation
that has no side-effect. The annotations are made through a special function called “change" that
takes 2 arguments/values (the arguments are the value of the pre-commit and post-commit versions,
respectively) and return one of the two values.

The annotations are manually inserted in the program, according the semantics presented in previous
studies [107].

Note that the statement insertion can be annotated by wrapping the inserted statement with
if(change(false, true)); and a statement deletion can be annotated by wrapping the deleted statement
with if(change(true, false)).

The choice of the version to use, for each mutant, is decided at runtime (by specifying the version to
use through an environment variable recognizable by the change function).

For the Java programs, we perform the mapping of mutants from both sets of mutants and the
commit diff. We first generate the mutants for both pre- and post-commit versions of the program

4https://github.com/JodaOrg/joda-time/
5https://github.com/jhy/jsoup
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using the mutation tool. We then map pre- and post- commit line numbers by parsing the commit
diff, and use this mapping to map pre- and post-commit mutants, using the line number, bytecode
instruction number and mutation operator of the mutants to match both sets. We adopt this way for
the Java programs in order to avoid making drastic changes on Pitest (the mutation testing tool we
use).

3.3.6 Mutation Testing Tools and Operators

As test suites are needed in our experiment, we use the developer tests suites for all the projects that
we studied. These were approximately 4,194 tests in total for C programs.

To strengthen the test suites used in our study, we augment them in two phases. First, we use
KLEE [29], with a robust timeout of 2 hours, to perform a form of differential testing [51] called
shadow symbolic execution [107], which generates 234 test cases. Shadow symbolic execution generates
tests that exercise the behavioural differences between two different versions of a program, in our
case the pre-commit and the post-commit program versions.

In order to also expose behavioural difference between the original program and the mutants, we
used SEMu [35], with a robust timeout of 2 hours, to perform test generation to kill mutants in the
post-commit program versions. SEMu generates 17,915 test cases.

These procedures resulted in large test suites of 22,343 test cases for C programs in total. Since
we compare program versions, we use the programs output as an oracle. Thus, we consider as
distinguished or killed, every mutant that results in different observable output than the original
program.

We use Mart [36], a mutation testing tool that operates on LLVM bitcode, to generate mutants. Mart
implements 18 operators (including those supported by modern mutation testing tools), composed of
816 transformation rules.

To reduce the influence of redundant and equivalent mutants, we enabled Trivial Compiler Equivalence
(TCE) [78, 100] in Mart to detect and remove TCE equivalent and duplicate mutants. TCE detected
13,322 and 460,072 equivalent and redundant mutants.

For the Java programs, we use the developper test suites available. We perform mutation analysis
using Pitest[41], a state of the the art mutation testing tool that mutates JVM bytecode. We use all
mutation operators available in Pitest, which are described in [114] and [40].

3.4 Results

3.4.1 RQ1: Relevant mutant distribution

We start our analysis by examining the prevalence of commit-relevant mutants, i.e., mutants that affect
the altered program behaviours. Figure 3.3 records the distribution of the relevant and non-relevant
mutants among the studied commits. Based on these results we see that only a small portion of the
mutant population produced by the selected mutation operators is actually relevant. This portion
ranges from 0.5% to 47%, among which 3.6% is located on the changed program lines, while the rest
is located on the rest of the code. For the large portion, it is possible to happen when the source
code is not large, and the change is located in the crucial position.

Interestingly, the presence of so many “irrelevant” mutants, can have major consequences when
performing mutation testing. Such consequences are a distorting effect on the accuracy of the mutation
score, and a waste of resources when executing and trying to kill non-relevant to the commit mutants.
We further investigate these two points in the following sections.
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Figure 3.3: The distribution of killable, non-relevant, relevant outside the modification and relevant
on the modification mutants among the studied commits.

3.4.2 RQ2: Relevant mutants and mutation score

Figure 3.4 visualizes our data; each data point represents the mutation score and relevant mutation
score of a selected test suite. As can be seen from the scatter plots, there is no visible pattern or trend
among the data. We can also see that there is a large variation between mutation scores and relevant
mutants scores in almost all the cases. These observations indicate that the examined variables differ
significantly. In other words, one cannot predict/infer one variable using the other one. To further
explore the relationship between mutation score and relevant mutation score within our data we
perform statistical correlation analysis.
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Figure 3.4: The relationship between Mutation Score and Relevant Mutation Score.
Finding a strong correlation would suggest that the two metrics have similar behaviours (an increase
or decrease of one implies a relatively similar increase or decrease of the other). Figure 3.5 displays
the results for the two correlation coefficients that have statistically significant values for randomly
selected test suites (from our test suite pool) of different sizes. The first row shows the Kendall
correlation. Interestingly, we observe that most of the correlations are relatively weak with their
majority ranging from 0.15 to 0.35. Additionally, we see that both coefficients we examine are aligned,
indicating a weak relationship when either ordering test suites or considering their score differences.
We observe similar trends with Pearson correlation as show in the second row in Figure 3.5.

One may assume that the relevant mutation score may be well approximated by the mutants that are
located on the modified code, assuming that mutants’ location reflects their utility and relevance.
Similarly, one may assume that the commit-relevant score could be approximated by the delta of
the pre- and post-commit mutation scores. We investigate these cases and find that most of the
correlations are relatively weak with their majority ranging from -0.1 to 0.1.
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Overall, our results indicate that irrelevant mutants have a major influence on the mutation score
calculation, and that using the overall mutation score does not reflect the actual value of interest,
i.e., how well the altered behaviours are tested, which is represented by relevant mutation score
(rMS). Approximating the rMS using either the deltaMS or the mutants of the altered lines is also
not sufficient. Hence, our results suggest that MS and other direct metrics are not good indicators of
commit-related test effectiveness. We envision that future research should develop techniques capable
of identifying relevant mutants at testing time, i.e., prior to any test generation and mutant analysis,
in order to support testers.
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Figure 3.5: Correlation between Mutation Score and Relevant Mutation Score for different test suite
sizes on different languages.

3.4.3 RQ3: Test Selection

Recent research has shown that mutation testing is particularly effective at improving test suites
and revealing faults (guiding testers to design test cases that reveal faults), while at the same time
mutation score is weakly correlated with fault detection [167]. In view of this, it is possible that
despite the weak correlations we observe in our case, traditional mutation could successfully guide
testers towards designing tests that collaterally kill relevant mutants.

Results are recorded in Figure 3.6 for the first 1-50 mutants to be analysed by the tester. We observe a
large divergence (approximately 50%-60%) between the random, commit-based and relevant mutants.
This difference is statistically significant and with large effect size (Effect Size values are recorded on
Table 3.3). Taking together the weak correlations we found in the previous section with these results,
we conclude that traditional mutation testing is suboptimal and cannot be used to assess or guide (in
a best-effort basis) the testing of committed code. Therefore, to support practitioners, future research
should aim at identifying and using commit-relevant mutants. Similarly, controlled experiments
should be based on relevant mutants when aiming at assessing change-aware test effectiveness.
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Figure 3.6: Test suite improvement of mutation-based testing with random (traditional mutation)
and relevant mutants.

Table 3.3: Â12. rMS when aiming at Relevant, Random and Modification related mutants.
#Mutants 5 10 20 30 40 50

Relevant-Random 0.90 0.95 0.98 0.98 0.98 0.97

Relevant-Modification 0.89 0.96 0.99 0.99 0.99 0.99

Table 3.4: Â12. Fault revelation when aiming at Relevant, Random and Modification related
mutants.

% Relevant mutants analysed 10% 20% 50% 75% 100%

Relevant-Random 0.55 0.59 0.64 0.66 0.64

Relevant-Modification 0.57 0.59 0.69 0.73 0.70

3.4.4 RQ4: Fault Revelation

To demonstrate the importance of commit-aware mutation testing, we further compare the ability
of the traditional mutants and commit-relevant mutants to reveal commit-introduced faults (real
faults). We follow the same procedure as in the previous section but evaluate w.r.t. to the rate of
faults revealed by the selected test suites.

The fault revelation results are depicted in Figure 3.7. From this data, we can see that a significant
fault revelation difference (approximately 30-40%) between the compared approaches can be recorded.
This difference is statistically significant with large effect size (Effect Size values are recorded on Table
3.4). Here it must be noted that these results can be achieved by an effort equivalent to analysing
0.4% of the mutants, which is 27 mutants per commit (on average).

Overall, our results demonstrate that by aiming at relevant mutants one can achieve significant fault
revelation benefits (approximately 30%) over the traditional way of using mutation testing.

3.5 Threats to validity

External validity: We selected commits that do not modify test contracts. Such commits are common
in industrial CI pipelines [117] but rare in open source projects. To mitigate this threat, we performed
our analysis on a relatively large set of commits given the computational limits posed by mutation
analysis. In C, our experiment required on average approximately 2 weeks of CPU time to complete,
per commit studied (executions performed using Muteria [37]). In addition, we used an established
research benchmark (CoREBench [23]) where we found similar results. Unfortunately, we consider
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Figure 3.7: Fault revelation of mutation-based testing with random (traditional mutation) and
relevant mutants.

fault introducing commits only in C as the Java datasets do not adhere to our non-changed test
contract requirement.

Another threat may relate to the mutants we use. To reduce this concern we used a variety of
operators covering the most frequently used language features including the operators adopted by the
modern tools [114], in both C and Java.

Internal validity: Such threats lie in the use of automated tools, the way we treated live mutants
and non-adequate test suites. To diminish these concerns, we used KLEE, a state of the art test
generation tool and strong mature developer test suites. Nevertheless, the current state of practice
[174] relies on non-adequate test suites, so our results should be relevant to at least a similar level of
practice. To ensure our results, we carefully checked our implementation and performed a manual
evaluation on a sample of our results. Moreover, we use established tools also employed by numerous
studies.

To deal with randomness and minimize stochastic effects, we repeated our experiments 100 times and
used standard statistical tests and correlations.

Construct validity: Our effort related measurement, number of analysed mutants, essentially captures
the manual effort involved in test generation. Automated tools may reduce this effort and change
our best-effort results. Still, we used the current standards, i.e., TCE [100] to remove all trivially
equivalent mutants before conducting any experiment and KLEE (including a mutation-based test
generation approach [35]). In test generation, we acknowledge that automated tools may generate test
inputs that kill mutants, but we note that they fail to generate test oracles. Therefore, even if such
tools are used, the test oracles will still require human intervention, i.e., introduce some effort. Here
it should be noted that we consider the mutant execution cost as negligible since it is machine time
and our focus is on the human time involved when performing mutant analysis. Moreover, existing
advances [236] promises to reduce this cost to a practically negligible level.

Overall, we believe that our effort measurements approximate well (in relative terms) the human
effort involved. All in all, we aimed at minimizing potential threats by using various metrics,
well-known tools and benchmarks, real and artificial faults and following methodological guidelines
[166]. Additionally, to enable reproducibility and replication we make our tools and data publicly
available6.

6Our data and results are openly accessible on the following Github link: https://github.com/
relevantMutationTesting
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3.6 Related Work

There are various methods aiming at identifying relevant coverage-based test requirements in the
literature. For instance, it has been proposed to consider as relevant every test element that can be
affected by the changes (by doing some form of slicing, i.e., following all control and data dependencies
from the changed code) [17, 184]. As such, these methods aim at considering conservatively every test
requirement affected by the change, resulting in sets with a large number of irrelevant requirements.
Nevertheless, applying such an approach to mutation testing is equivalent to mutating the sliced
program. This of course inherits all the limitations of program slicing such as scalability and precision
[19], it is conservative (results in large number of false positives) and does not account for equivalent
mutants located on potentially infected code.

To circumvent the problems of coverage, researchers have proposed the propagation-based techniques
[10, 187, 188, 189], which aim at identifying the program paths that are affected by the program
changes. They rely on dependence analysis and symbolic execution to form propagation conditions and
decide whether changes propagate to a user-defined distance. Although promising, these techniques
are complex and inherit the limitations from symbolic execution.

Researchers have also investigated techniques to automatically augment test suites by generating
tests that trigger program output differences [180], increase coverage [230] and increase mutation
score [196, 197]. Along the same lines differential symbolic execution [172], KATCH [141] and Shadow
symbolic execution [107] aim at generating tests that exercise the semantic differences between
program versions by incrementally searching the program path space from the changed locations and
onwards. These methods are somehow complementary to ours as they can be used to create tests
that satisfy the commit-relevant test requirements.

Interestingly, the problem of commit-relevant test requirements has not been investigated by the
mutation testing literature [166]. Perhaps the closest work to ours is the regression mutation testing
by Zhang et al. [240] and the predictive mutation testing by Zhang et al. and Mao et al. [139, 236].
Regression mutation testing aims at identifying affected mutants in order to incrementally calculate
mutation score, while predictive mutation testing aims at estimating the mutation score without
mutant execution. Apart from the different focus (we focus on commit-relevant mutants and refined
score, while they focus on speeding up test execution and mutation score) and approach details,
our fundamental difference is that we statically target killable mutants (both killed and live by the
employed test suites) that are relevant to the changed code (we ignore irrelevant code parts and
mutants).

3.7 Conclusion

We proposed commit-aware mutation testing, a mutation-based assessment metric capable of measuring
the extent to which the program behaviours affected by some committed changes have been tested.
We showed that commit-aware mutation testing has a weak correlation with the traditional mutation
score and other regression testing approximations (such as the delta on mutation score between
the pre- and post- commit versions and mutants located on modified code) indicating that it is a
distinct metric. Our results also showed that traditional mutant selection is non-optimal as it loses
approximately 50%-60% of the commit-relevant mutants when analysing 5-25 mutants and has 30%
less chances of revealing commit-introducing faults.
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4 MuDelta: Delta-Oriented Mutation Testing
at Commit Time

To effectively test program changes using mutation testing, one needs to use mutants that are relevant
to the altered program behaviours as shown in Chapter 3. We introduce MuDelta, an approach that
identifies commit-relevant mutants; mutants that affect and are affected by the changed program
behaviours. Our approach uses machine learning applied on a combined scheme of graph and vector-
based representations of static code features. Our results, from 50 commits in 21 Coreutils programs,
demonstrate a strong prediction ability of our approach; yielding 0.80 (ROC) and 0.50 (PR-Curve)
AUC values with 0.63 and 0.32 precision and recall values. These predictions are significantly higher
than random guesses, 0.20 (PR-Curve) AUC, 0.21 and 0.21 precision and recall, and subsequently lead
to strong relevant tests that kill 45% more relevant mutants than randomly sampled mutants (either
sampled from those residing on the changed component(s) or from the changed lines). Our results
also show that MuDelta selects mutants with 27% higher fault revealing ability in fault introducing
commits. Taken together, our results corroborate the conclusion that commit-based mutation testing
is suitable and promising for evolving software.
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CHAPTER 4. MUDELTA: DELTA-ORIENTED MUTATION TESTING AT COMMIT TIME

4.1 Introduction

Mutation testing has been shown to be one of the strongest fault-revealing software test adequacy
criteria available to software testers [38]. Nevertheless, although mutation testing has been widely
studied for over four decades in the scientific literature, the formulation that underpins it has remained
largely unchanged since its inception in the 1970s [25, 46]. In this unchanged formulation as described
in Chapter 1, a program p is tested by a test suite, T , the adequacy of which is measured in terms of
its ability to distinguish executions of p and a set of mutants M . Each mutant in M is a version of p
into which a fault has been deliberately inserted, in order to simulate potential real faults, thereby
assessing the ability of the test suite T to detect such faults.

The problem with this formulation is that it has not kept pace with recent software engineering
practices. Most notably, the assumption of a fixed program p, set of mutants M , and test suite T ,
is unrealistic; modern software systems undergo regular change, typically in continuous integration
environments [59, 80, 117]. In order to render mutation testing applicable to practising software
engineers, a fundamentally new approach to finding suitable mutants is required in which p, T , and
M are each continually evolving. Chapter 3 studies the commit-relevant mutants in Continuous
Integration for the evolving systems. Specifically, we need a mutation testing formulation in which
mutants can be found, on the fly, based on their relevance to specific changes to the system under
consideration. In this ‘evolving mutation testing’ approach, both the set of mutants M and the
tests that distinguished their behaviours T , are each able to change with each new commit. Such
a mutation testing formulation is better suited to industrial practice, e.g., at Google [174], since
mutation testing can be applied at commit time, to each code change as it is submitted, thereby
keeping pace with the changes to p. More importantly, such an approach will focus the test effort
deployed at commit time specifically to the changes in the commit, rather than wasting test effort
on re-testing old code. In order to apply mutation testing on the fly in this manner, we need a fast
lightweight approach to determine a priority ordering on a given set of mutants, where priority is
determined by the relevance of a mutant to the change in hand.

This chapter introduces a machine learning-based approach to tackle this problem using a combined
scheme of graph and vector-based representations of simple code features that aim at capturing the
information (control and data) flow and interactions between mutants and committed code changes.
We train the learner on a set of mutants from historical code changes that are labeled with respect to
given test suites. The machine learner is subsequently used to predict the priority ordering of the set
of mutants to identify those most likely to be relevant to a given change.

This way, once the learner has been trained, it can be used to quickly predict the priority order for
the set of mutants in terms of their relevance to unseen changes, as they are submitted into the
continuous integration system for review. This allows the tester (and/or some automated test design
technology) to focus on those mutants that are most likely to yield tests that are fault revealing for
the change in hand.

We implemented our approach in a system called MuDelta, and evaluated it on a set of 50 commits
from Coreutils wrt a) prediction ability, b) ability to lead to relevant tests (tests killing commit-
relevant mutants) and c) ability to reveal faults in fault introducing commits. Our results indicate s
strong prediction ability; MuDelta yields 0.80 ROC-AUC value, 0.42 F1-score, 0.63 precision and 0.32
recall, while random guesses yield 0.20 F1-score, 0.21 precision and 0.21 recall. Killing the predicted
mutants results in killing 45% more relevant mutants than random mutant sampling baselines.

Perhaps more importantly, our results show that our approach leads to mutants with 27% higher fault
revealing ability in fault introducing commits. Taken together, our results corroborate the findings
that MuDelta enables effective delta-relevant mutation testing, i.e., mutation testing targeting the
specific code changes of the software system under test.
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4.2. CONTEXT

Figure 4.1: Overview of MuDelta. The learner is trained on a set of mutants from historical code
changes that are labeled with respect to given test suites. The machine learner is subsequently used
to predict the priority ordering of the set of mutants to identify those most likely to be relevant to a
given change.

Chapter 3 has shown that mutants that resides in the changed code are not adequate in testing the
change. This finding highlights the importance of locating mutants in the unchanged part of the
program. This unchanged code that forms a contextual environment into which changes deployed.
Such δ-relevant mutants in the context C, for some change, δ, tend to focus on (and reveal issues
with) interactions between the change, δ, and the context C into which it is deployed. Developers
are less likely to notice these since they are more likely to be familiar with their changes than the
existing unchanged code. Such bugs may also be more subtle as they involve unforeseen interactions
between parts of the system.

In summary, our primary contributions are:

• The empirical evidence that mutant relevance (to particular program changes) can be captured
by simple static source code metrics.

• A machine learning approach, called MuDelta, that learns to rank mutants wrt to their utility
and relevance to specific code changes.

• Empirical evidence suggesting that MuDelta outperforms the traditionally random mutant
selection/prioritization method by revealing 45% more relevant mutants, and achieving 27%
higher probability to reveal faults in these changes.

4.2 Context

4.2.1 Change-aware regression testing

Testing program regressions require test suites to exercise the adequacy of testing wrt to the program
changes. In case the used test suites are insufficient, guidance should be given in order to help
developers create test cases that specifically target the behaviour deviations introduced by the
regressions.

One potential solution to this problem may be based on coverage; one can aim at testing the altered
parts of the programs using coverage information. However, the strengths of coverage are known to
be limited [10, 38]. Moreover, the most severe regression issues are due to unforeseen interactions
between the changed code and the rest of the program [10, 188]. Therefore, we aim at using mutation
testing using the commit-relevant mutants described in Chapter 3.
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CHAPTER 4. MUDELTA: DELTA-ORIENTED MUTATION TESTING AT COMMIT TIME

4.2.2 Motivation

Chapter 3 proposes commit-relevant mutants for the code change. Commit-relevant mutants are those
that make observable any interaction between the altered code and the rest of the program under
test. These mutants alter the program semantics that are relevant to the committed changes, i.e.,
they have behavioural effects on the altered code behaviour. This means that mutants are relevant to
a commit when their behaviour is changed by the regression changes. Indeed, changed behaviour
indicates a coupling between mutants and regressions, suggesting relevance. In essence, one can use
relevant mutants to capture the ‘observable’ dependencies between changed and unchanged code
[18, 101], which reflect the extent to which test suites are testing the altered program behaviours.

The virtue of commit-relevant mutation testing, as described in the study of Chapter 3 is the best-
effort application of mutation testing. This gives the potential for improved fault revelation under
the same (relatively low) user effort than using randomly sampled mutants, i.e., traditional mutation
testing. However, in order to be useful, these mutants need to be identified in advance, prior to any
mutant analysis performed. This is because relevant mutants form the objectives that developers will
analyse. To achieve this, we develop a machine learning approach, which we describe in the following
section.

Figure 4.2 presents a commit-relevant mutant on a fault-introducing commit of GNU Coreutils1. This
is the commit with ID 8 from CoREBench [23]. The commit affects two functions of the program seq
(main and seq_fast). The entry-point is the function main, which, calls the functions print_numbers
and seq_fast to compute and print the results. The function seq_fast is an optimized implementation
of the function print_numbers, used only when the inputs meet specific conditions. In Figure 4.2,
the line 543 checks the condition to call seq_fast. If the condition is satisfied, seq_fast is called.
Otherwise, print_numbers is called. Note that print_numbers may be called after seq_fast if the
later fails (the condition at line 405 is not satisfied, i.e. a > b). In that case, the execution of seq_fast
does not alter the program state or output.

The commit aims at relaxing the condition that guards the call to function seq_fast. In the pre-commit
version, seq_fast is not called when the user specifies a separator. However, in the post-commit
version, seq_fast is called whenever a) the user specifies a separator, and b) the separator string has
a single character.

In the function seq_fast, the commit only replaces the hard coded separator (‘\n’) with separator’s
global string variable. In the function main, the commit relaxes the “if" condition at line 543, in a
way that seq_fast is also called when the user specifies a separator, which can be any single "8-bits"
character (it is not limited to ‘\n’).

The program seq calls seq_fast to print all the integers from the first parameter a to the second
parameter b, and using a given character (first character of separator in post-commit and ‘\n’ in
pre-commit) to separate the printed numbers.

Let four mutants such that: mutant M1 deletes the statement at line 414, which prints the first
number using puts. Mutant M2 deletes the modified statement at line 420, which add the separator
to the buffer to print. Mutant M3 swaps the operands of the last "&&" operation at the modified line
543. Mutant M4 replaces the exit value at line 595 by −1.

We observe that M4 is not relevant to the commit. In fact, there is no test that can kill M4 in the
post-commit version, and create an output difference between pre- and post-commit versions of M4.
If a test kills post-commit M4, it must avoid executing line 547, thus, seq_fast is either not called or
its call does not succeed (does not print anything). Thus, the output of the execution of the pre- and
post-commit versions of M4 with such test will be same (both computed with print_numbers, which
is not altered by the commit). Mutant M3 is equivalent, because no clause has side effect that is
controlled by another clause in the if condition.

1https://www.gnu.org/software/coreutils
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static bool seq_fast (char const *a, char const *b) {
…
bool ok = cmp (p, p_len, q, q_len) <= 0;
if (ok) {

…
puts (p); // Mutant M1: delete Statement
…

incr (&p, &p_len);
z = mempcpy (z, p, p_len);

- *z++ = ‘\n’;
+         *z++ = *separator; 

if (buf_end - n - 1 < z) {
fwrite (buf, z - buf, 1, stdout);
z = buf;

}
… 

}
…
return ok;

}

int main (int argc, char **argv) {
…
- if (… && all_digits_p (argv[1]) & …) {
+  if (all_digits_p (argv[optind]) && …  && strlen (separator) == 1) {

…
if (seq_fast (s1, s2))

exit (EXIT_SUCCESS);
}
…
print_numbers (format_str, layout, first.value, …);
exit (EXIT_SUCCESS);  // Mutant M4: EXIT_SUCCESS  -1

}
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 Mutants M1 and M2 are relevant. Moreover,  they are 99% fault 
revealing (99% of the tests killing them find the introduced fault).

 Mutants M3  and M4 are not relevant (M3 is equivalent).

Mutant M2: delete 
statement

Mutant M3:  
Swap operands of “&&”.  

Figure 4.2: Mutation testing in a fault introducing commit. The fault is triggered by the call to
‘puts(p)’, which automatically uses ‘\n’ as the first separator, resulting in not using the user specified
separator when this is a single character other than ‘\n’. This makes every test executing seq_fast
with a separator other than ‘\n’ to reveal the fault. Killing M1 or M2 can result in such tests, while
killing M4 does not (to kill M4 a test must avoid executing line 547, which means that seq_fast is
either not called or its call does not print anything, hence not making any observable difference). M3
is equivalent.

However, M1 is relevant to the commit. An execution of the test “seq -s, 1 2", which sets the separator
to the comma (‘,’), outputs “1,2\n" in pre-commit M1 (print_numbers is called), “2," in post-commit
M1 (‘puts(p)’ is deleted and seq_fast is called), and “1\n2,” in the post-commit original version
(the first number is printed using ‘puts(p)’, which appends an ‘\n’). Similarly, M2 is relevant to the
commit. The execution of same test “seq -s, 1 2" outputs “1,2\n" in pre-commit M2 (print_numbers
is called), “1\n2" in post-commit M1 (no comma separator printed and seq_fast is called).

Moreover, a fault introduced by the commit makes the program use ‘\n’ instead of the user specified
separator, after printing the first number, when the user separator is a single character other than
‘\n’. This happens because in such scenario, the program calls seq_fast, which calls ‘puts(p)’ (line
414) to print the first number. This automatically add an extra ‘\n’ and do not use the specified
separator.

Every test that executes seq_fast, with a separator other than ‘\n’ reveal the fault. These are
(1− 2

257 ) ≈ 99.2% of all the tests that successfully execute seq_fast. The reason is that the separator
is either not set in the test (defaults to ‘\n’), or set to one of the 256 ‘8-bits’ characters (including
‘\n’). We observe that all tests that successfully execute seq_fast kill M1 and M2. Therefore, 99.2%
of the tests that kill M1 and M2 reveal the fault.

4.3 Approach

We aim at testing commits using commit-relevant mutants; the subset of mutants on the post-commit
program version that has a behaviour relevance to the committed changes.
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We develop MuDelta, a technique that learns to rank mutants according to their commit-relevance
potential (likelihood to be commit-relevant). Initially, MuDelta applies supervised learning on a
mutant corpus from past data, and builds a prediction model. This model is then applied to predict
the mutants that should be used to test the future commits of the program under test. This means
that at commit time, testers can use and focus only on the most relevant mutants. This process is
depicted in Figure 4.1.

4.3.1 MuDelta Feature Engineering

The mutant selection process inMuDelta is based on training of a predictor that is capable of identifying
whether a mutant is commit-relevant with a certain confidence (probability). Consequently, we design
a set of features to reflect specific code properties which may discriminate a commit-relevant mutant
from another.

The study of Chekam et al. [34] found that fault revealing and killability mutant characteristics
can be captured by simple code features. Therefore, we consider the features that they proposed in
our machine learning model. Unfortunately, these features do not capture the interaction between
mutants and the altered code. Hence, we design additional features capable of capturing the link
between the mutant and the altered code (by the commit). These features also aim at capturing the
characteristics of the altered code.

In the following subsections we describe the features we use in order to train a classifier. We
consider a commit modification C associated with code statements SC = {SC1 , SC2 , ..., SCn

}, and let
BC = {BC1 , BC2 , ..., BCk

} the control-flow graph (CFG) basic blocks associated to the statements
SC. Let us also consider a mutant M associated to a code statement SM on which the mutation
was applied. Let BM be the CFG basic block associated to a mutated statement SM containing the
mutated expression EM .

4.3.2 Contextual Features

In order to capture contextual information for each program statement, within a program version,
we design features that leverage graph analysis technologies. We construct graph representations of
the program, where the nodes are the statements of the program, and the edges are various types of
relationships between statements. We consider the following four relationships (edge types): data
dependency (direct data dependency, indirect data dependency) [33], control dependency, and control
flow. Direct data dependency refers to variable value dependency, while indirect data dependency
refers to pointer dereference value dependency (the data is accessed through dereferencing a pointer).
In total we use the following 6 different graph representations, i.e., 1) Utility Graph (UG) that includes
all four edge types we discussed, 2) Dependency Graph (DG) that includes all three dependency edges
types, 3) Direct Data Dependency Graph (DDDG) that includes only the direct data dependency edge
type, 4) Indirect Data Dependency Graph (IDDG) that includes only the indirect data dependency
edge type, 5) Control Dependency Graph (CDG) that includes only the control dependency edge
type, and 6) Control Flow Graph (CFG) which includes only the control flow edge type.

For each graph, we leverage graph analysis algorithms to compute a score for each node. We consider
the following graph analysis algorithms: Rich-Club coefficient (RCC) [143, 147], Clustering coefficient
(CC) [52, 157, 190], Square Clustering coefficient (SCC) [126], PageRank (PR) [160], and Hits Analysis
(HA) [104].

Overall, we get a set of features FS , for each statement S and for each graph G, by computing the
score of the node corresponding to S, using all graph analysis algorithms on G. This gives us 6 * 5
(graphs * Metrics) features per program statement.
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Complexity: Complexity of SM , approximated by the number of mutants on SM .
CfgDepth: Depth of BM according to CFG.
CfgPredNum: Number of predecessor basic blocks, in CFG, of BM .
CfgSuccNum: Number of successors basic blocks, in CFG, of BM .
AstNumParents: Number of AST parents of EM .
NumOutDataDeps: Number of mutants on expressions data-dependent on EM .
NumInDataDeps: Number of mutants on expressions that EM is data-dependent.
NumOutCtrlDeps: Number of mutants on statements control-dependents on EM .
NumInCtrlDeps: Number of mutants on expressions that EM is control-dependent
NumTieDeps: Number of mutants on EM .
AstParentsNumOutDataDeps: Number of mutants on expressions data-dependent on EM ’s AST parent statement.
AstParentsNumInDataDeps: Number of mutants on expressions that EM ’s AST parent expression is data-dependent.
AstParentsNumOutCtrlDeps: Number of mutants on statements control-dependent on EM ’s AST parent expression.
AstParentsNumInCtrlDeps: Number of mutants on expressions that EM ’s AST parent expression is control-
dependent.
AstParentsNumTieDeps: Number of mutants on EM ’s AST parent expression.
TypeAstParent: Expression type of AST parent expressions of EM .
TypeMutant: Mutant type of M, transformation rule. E.g., a + b→ a− b.
AstChildHasIdentifier: AST child of expression EM has an identifier.
AstChildHasLiteral: AST child of expression EM has a literal.
AstChildHasOperator: AST child of expression EM has an operator.
OutDataDepNumStmtBB: Number of CFG basic blocks containing an expression data-dependent on SM .
InDataDepNumStmtBB: Number of CFG basic blocks containing an expression on which SM is data-dependent.
OutCtrlDepNumStmtBB: Number of CFG basic blocks containing an expression control-dependent on SM .
InCtrlDepNumStmtBB: Number of CFG basic blocks containing an expression on which SM is control-dependent.
AstParentMutantTypeNum: Number of each mutant type of EM ’s AST parents.
OutDataDepMutantTypeNum: Number of each mutant type on expressions data-dependents on EM .
InDataDepMutantTypeNum: Number of each mutant type on expressions on which EM is data-dependent.
OutCtrlDepMutantTypeNum: Number of each mutant type on statements control-dependents on EM .
InCtrlDepMutantTypeNum: Number of each mutant type on expressions on which EM is control-dependent.

Figure 4.3: Mutant utility features
.

4.3.3 Mutant utility features

We used the features proposed by Chekam et al. [34]. These features relate to the complexity of
the mutated statement SM , the position of SM in the control-flow graph, the dependencies with
other mutants, and the nature of the code block BM where SM is located. The selected features
are recorded in Figure 4.3. Note that for this study, we added the last 9 features (marked in the
figure with italic), and the contextual features of SM (Section 4.3.2). The first 4 features (with italic)
are similar to the features NumOutDataDeps, NumInDataDeps, NumOutCtrlDeps, NumInCtrlDeps
used by Chekam et al. [34], but, instead of the number of mutants, they count the number of basic
blocks.

4.3.4 Mutant-Modification Interaction Features

To capture the interaction between mutant and altered code, we use features related to the information
flow that the altered code C incur to the execution of mutant M . In this regard, we propose features
that characterize the altered code and features that capture the information flow between C and
M .

4.3.4.1 Modification Characteristics Features

We have features extracted from the commit diff and features extracted from the changed or added
statements in the post-commit version of the program. Figure 4.4 describes the features extracted
from the commit diff. The features extracted from the changed or added statements are: (a) The mean
of the depth, according to CFG, of the basic blocks in BC (modificationCfgDepth). (b) The mean of
the complexity of the statements in SC (modificationComplexity). (c) The contextual features (see
Section 4.3.2) of the added or changed statements in the program. When the modification involves
multiple statements, the mean of each feature value for all statements is computed.
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NumConditional: Number of conditional statements in the modification.
NumHunks: Number of hunks (blocks) in the commit diff.
HasExit: The modification involves program termination commands.
ChangesCondition: The modification involves the condition of an if or a loop.
InvolesOutput: The modification involves a function call to printf or error.
IsRefactoring: The modification only does code refactoring.
NumUPDATE: Number of UPDATE operations from GumTree tool [53].
NumINSERT: Number of INERT operations from GumTree tool [53].
NumMOVE: Number of MOVE operations from GumTree tool [53].
NumDELETE: Number of DELETE operations from GumTree tool [53].
NumActionClusters: Number of action clusters from GumTree tool [53].
NumActions: Number of actions from GumTree tool [53].
ModificationCfgDepth:The mean of the depth according to CFG
ModificationComplexity: The mean of the complexity of the statements
Delta contextual features: The contextual features (see Section 4.3.2) of the added or changed statements in the
program

Figure 4.4: Mutant-Modification Interaction Features

4.3.4.2 Information-flow Features

The first feature that we use, in this category, is a Boolean variable (MutantOnModification) that
represents whether the mutant M mutates an altered code (SM ∈ SC). Additionally, we consider the
6 graphs presented in section 4.3.2, and compute, for each graph, the set of shortest paths between
SM and SC.

For every set of paths, we compute the size (NumPaths), the maximum path length (MaxPathLen),
minimum path length (MinPathLen) and mean path length (MeanPathLen). Our features are thus,
the combination of each one of these metrics on every shortest path set.

4.3.5 Implementation

We implemented MuDelta in Python. For learning, we used stochastic gradient boosting [61] (decision
trees), which has been found to work well in the context of mutation [34]. We used the XGBoost [39]
framework and set the number of trees to 3,000 with a maximum trees depth to 10. We adopt early
stopping during training to avoid over-fitting.

MuDelta uses both numerical or categorical features. The categorical features are: TypeAstParent,
TypeMutant. In order to use the feature values with XGBoost, we pre-process them using a normaliza-
tion of numerical and an encoding of categorical features. We normalize numerical features, between
0 and 1 using Rescaling (also known as min-max normalization).

We use binary encoding (binary encoding helps to keep a reasonably low feature dimension, when
comparing to one-hot-encoding) for the categorical features. We also use NetworkX2 in the graph
representation in order to extract the contextual features that were described in section 4.3.2.

4.4 Research Questions

We start our analysis by investigating the prediction ability of our machine learning method. Thus,
our first research question can be stated as:

RQ1 (Prediction performance): How well does MuDelta predict commit relevant mutants?

To answer this question we collect a set of commits from the subject programs where we apply
mutation testing and identify relevant mutants. Then, we split the commits into training/validation
(80% of the commits) and test sets (20% of the commits) based on the timeline of the project(older
commits are used for training and newer for commits are used for evaluation), and perform our
experiment.

2https://networkx.github.io/
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After checking the performance of the predictions, we turn our attention to the primary problem of
interest; mutant ranking. We investigate the extent to which our predictions can lead to strong and
relevant tests (by using the predictive mutants as test objectives) in contrast to baseline mutants, i.e.,
randomly sampled mutants among those residing in the changed components (Random) or among
those residing on the altered lines (Modification). Hence we ask:

RQ2 (Test assessment): How MuDelta compare with the baseline mutant sets with respect to killing
commit-relevant mutants?

We answer this question following a simulation of a testing scenario where a tester analyse mutants in
order to generate tests [9, 112]. We are interested in the relative differences between the subsumming
relevant mutation score, denoted as rMS∗, when test generation is guided by the predicted or the
baseline mutants. We use the subsumming relevant mutation score to avoid bias from trivial/redundant
mutants [163]. We also use the random mutant selection baseline since it performs comparably to the
state-of-the-art [34, 73, 112]. We compare with random on a best effort basis, i.e., the rMS∗ achieved
by putting the same level of effort, measured by the number of mutants that require analysis. Such a
simulation is typical in mutation testing literature [100, 112] and aims at quantifying the benefit of
one method over the other. To further show the need for mutant selection out of the changed code,
we also compute the extend to which mutants on modification are sufficient in killing commit-relevant
mutants.

Answering the above question provides evidence that using our approach yields significant advantages
over the baselines. While this is important and demonstrates the potential of our approach, still the
question of actual test effectiveness (actual fault revelation) remains. This means that it remains
unclear what the fault revelation potential of our approach when the commit is fault-introducing.
Therefore, we seek to investigate:

RQ3 (Fault Revelation): How MuDelta compare with the baseline mutant sets with respect to
(commit-introduced) fault revelation?

To answer this question, we investigate the fault revelation potential of the mutant selection techniques
based on a set of real fault-introducing commits. We follow the same procedure as in the previous
research questions.

4.5 Experimental Setup

4.5.1 Benchmarks Used

We selected C programs from the GNU Coreutils3, a collection of text, file and shell utility programs
widely used in software testing research [23, 29, 107]. The whole code-base of Coreutils comprises
approximately 60,000 lines of C code4. To perform our study on commits we used the benchmark5
introduced by Chapter 3 that is composed of two parts and includes Benchmark-1, a set of commits
mined from the Coreutils’ Github repository from year 2012 to 2019 and CoREBench [23] that has
fault introducing commits.

The benchmark contains a) mutants generated by Mart [36], a state-of-the-art tool that supports a
comprehensive set of mutation operators and TCE6 [100, 164] on both pre- and post-commit program
versions of each commit, b) the mutant labels (whether they are commit-relevant), and c) large test
pools created using a combination of test generation tools [29, 35, 107]. It is noted that the mutant
test executions involved require excessive computational resources, i.e., require roughly 100 weeks

3https://www.gnu.org/software/coreutils/
4Measured with cloc (http://cloc.sourceforge.net/)
5https://github.com/relevantMutationTesting
6Compiler-based equivalent and duplicate mutant detection technique
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Table 4.1: Test Subjects
Benchmark #Programs #Commits #Mutants #Relevant #Tests

CoREBench 6 13 154,396 21,597 8,828
Benchmark-1 17 37 412,060 65,982 14,785

of computation. Details about the data we used are recorded in Table 4.1. The column #Relevant
records the number of commit-relevant mutants.

4.5.2 Experimental Procedure

To account for our working scenario, we always train according to time, i.e, we use the older commits
for training and the newer for evaluation. This ensured that we follow the historical order of the
commits.

Following the stated RQs, our experiment is composed of three parts. The first part evaluates the
prediction ability (performance) of MuDelta, answering RQ1. The second at evaluating the ability of
MuDelta to rank commit-relevant mutants, answering RQ2, and the third part at evaluating the fault
revealing potential, answering RQ3.

First experimental part: We evaluate the trained classifiers using five typically adopted metrics,
namely, the Area Under the Receiver Operating Characteristic Curve (ROC-AUC), the Area Under
the Precision-Recall Curve (PR-AUC), the precision, the recall and the F1-score.

The Receiver Operating Characteristic (ROC) curve records the relationship between true and
false positive rates [246]. The Precision-Recall (PR) Curve records the decrease in true positive
classifications when the predicted positive values increase. In essence, the PR curve shows the trade-off
between precision and recall [246].

Precision is defined as the number of items that are truly relevant among the items that predicted to
be relevant. Recall is defined as the number of items that are predicted to be relevant among all the
truly relevant ones. The F1-score or F-measure of a classifier is defined as the weighted harmonic
mean of the precision and recall. These assessment metrics measure the general classification accuracy
of the classifier. Higher values denote a better classification.

To reduce the risk of over-fitting, we split our commit data into three mutually exclusive sets (training,
validation and test data). We also use early stopping during training to overwhelm over-fitting. We
use the following procedure:

1. Chronologically order the commit (from older to newer).
2. Select the newest 20% of commits as test data.
3. Randomly shuffle all the mutants from the remaining 80% of commits (oldest commit), then,

select 20% of them as validation data and the rest as training data.

Thus, the training, validation and test data represent 64%, 16% and 20% of the data-set, respectively.
The model evaluation is performed on the test data. This experiment part was performed on both
CoREBench and Benchmark-1.

Second experimental part: We simulate a scenario where a tester selects mutants and designs tests to
kill them. This typical procedure [34, 38, 112, 151] consists of randomly selecting test cases, from the
test pools of the benchmark, that kill the selected mutants. Specifically, we rank the mutants and
then we follow the mutant order by picking test cases, from the test pool, that kill them. We then
remove all the killed mutants and pick the next mutant from the list. If the mutant is not killed by
any of the tests, we discard it without selecting any test. We repeat this process 100 times for all the
approaches. MuDelta ranks all the mutants by the predicted commit-relevance probability, Random
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randomly ranks all the mutants in the changed components, and Modification randomly ranks the
mutants located on the altered code.

Our effectiveness metrics are the relevant subsuming mutation score (rMS∗) achieved by the test
suites when analysing up to a certain number of mutants. Subsuming score metrics allows reducing
the influence of redundant mutants [111, 162, 163]. We also compute the Average Percentage of
Faults Detected (APFD) [82] that represents the average relevant subsuming mutation score when
analysing any number of mutants within a given range.

Our effort metric is the number of mutants picked (analysed by the tester). This includes the mutants,
killable or not, that should be presented to testers for analysis (either design a test to kill them or
judge them as equivalent) when applying mutation testing [100, 112]. In the spirit of the best-effort
evaluation, we focus on few mutants (up to 100) that testers need to analyse. This evaluation aims at
showing the benefits of MuDelta over Random under the same relative testing effort. The contrast
with the Modification shows whether there is a need for mutant selection outside of the modified code,
i.e., whether mutants on modification are sufficient leading to tests that kill commit-relevant mutants.
This part of the experiment was performed on both CoREBench and Benchmark-1.

Third experimental part: To evaluate the fault revealing ability of MuDelta, we used the CoREBench
commits. We adopted a chronological ordering for training, validation and testing when splitting
the commits similar to what we did in previous experimental parts. We use the same process and
effort metric as in the the second part of the experiment and report results related to fault revelation
and the average percentage of commit-introduced faults revealed (APFD) within the range, 1-100, of
analysed mutants.

To account for the stochastic selection of test cases and mutant ranking, we used the Wilcoxon test
to determine whether there is a statistically significant difference between the studied methods. To
check the size of the differences we used the Vargha Delaney effect size Â12 [210], which quantifies
the differences between the approaches. A value Â12 = 0.5 suggests that the data of the two samples
tend to be the same. Values Â12 > 0.5 indicate that the first data-set has higher values, while values
Â12 < 0.5 indicate the opposite.

4.6 Results

4.6.1 Assessment of the Prediction Performance (RQ1)

To evaluate the performance of MuDelta, we check the model’s convergence. During training and
after each iteration of the training process, we check the model performance on both the training
and validation data we used for training. Figure 4.5 shows the ROC-AUC and PR-AUC values wrt
the number of training iterations. We observe that the model performance on both the training and
validation data increase with the number of iteration and stabilizes at specific values, suggesting that
our model is able to learn the characteristics of commit-relevant mutants.

We then evaluate the performance of our model to predict commit-relevant mutants on the future
commits that appear in the test set. To compute the precision, recall and F1-score, we set the
prediction threshold probability to 0.1, which we obtained by applying the geometric mean [12, 106]
on the validation dataset. The precision, recall and F1-score of our classifier are 0.63, 0.32 and 0.42,
respectively. These values are higher than those that one can get with a random classifier (0.21, 0.21
and 0.20, respectively). Figure 4.6 shows the ROC and PR curves of our classifier (strong lines) and a
random classifier (dashed lines). We observe that the ROC-AUC of our classifier is 0.80 indicating a
strong prediction ability. Similarly, we see that the PR-AUC of our classifier is 0.50 while the random
classifier PR-AUC is 0.20.

41



CHAPTER 4. MUDELTA: DELTA-ORIENTED MUTATION TESTING AT COMMIT TIME

0 500 1000 1500 2000 2500
Training Round

0.6

0.7

0.8

0.9

1.0

Pe
rfo

rm
an

ce

Training PR-AUC
Training ROC-AUC
Val PR-AUC
Val ROC-AUC

Figure 4.5: Training and Validation Curves from the Training phase.
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Figure 4.6: Precision-Recall and ROC Curves on test data.

In this context [174] it is important to give few mutants to developers for analysis. To evaluate
the performance of MuDelta with lower thresholds, we also study the performance of MuDelta with
thresholds ranging from the 10 to 100 mutants. We observe that the median precision of MuDelta
ranges from 0.76 to 0.90 when the threshold goes from 10 to 30 mutants. These values are significantly
higher than the random classifier, which has a precision of 0.15.

These results provide evidence that MuDelta provides a good discriminative ability for assessing the
utility of mutants to test particular code changes.

4.6.2 Mutant Ranking for Tests Assessment (RQ2)

Figure 4.7 shows the median rMS∗ achieved by the mutant ranking strategies, when the number
of analysed mutant budget range from 1 to 100 mutants. In other words, the figure shows test
effectiveness (measured with rMS∗, y-axis) that is achieved by a developer when analysing a number
of mutants, representing the cost factor (recorded in x-axis). Each sub-figure is a commit taken from
the test data. We observe that the curve for MuDelta is always higher than the curves of Random
and Modification, and Random is above Modification.

To further visualize the differences, Figure 4.8 shows the distribution of the rMS∗ of the mutant
ranking strategies for budget thresholds 10, 30, 50 and 100 mutants. As can be seen from the
plots, MuDelta outperforms both Random and Modification. Interestingly, Random outperforms
Modification. With threshold 10 mutants, the difference of the median values is 22% and 26% for
Random and Modification, respectively. This difference is markedly increased when analysing more
mutants, i.e., it becomes 45% and 50% for the thresholds of 30 and 50 mutants, for Random.

To check whether the differences are statistically significant we performed a Wilcoxon rank-sum test
and computed the Vargha Delaney Â12 effect size and found that MuDelta outperforms both Random
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Figure 4.8: rMS∗ values when analysing up to 10, 30, 50 and 100 mutants.

and Modification with statistically significant difference (at 0.01 significant level). Random has also
statistically significant differences with Modification.

Figure 4.9 shows the Vargha Delaney Â12 values between MuDelta and both Random and Modification.
We observe that the median value is between 77% and 83% for threshold between 10 and 100 mutants,
for Random. Suggesting that MuDelta is better than Random in 77% to 83% of the cases for these
thresholds. The differences are larger for Modification.

We further validate our approach by considering the distributions of APFD (Average Percentage of
Faults Detected) values for all possible thresholds (for 1-100 mutants). Figure 4.10 depicts these
results and shows that MuDelta yields an APFD median of 71%, Random and Modification reach
median APFD values of 26% and 11% respectively, confirm the superiority of our approach.

To account for the stochastic nature of the compared approaches and increase the confidence on our
results, we further perform a statistical test on the APFD values. The Wilcoxon test results yielded
p-values much lower than our significance level for the compared data, i.e., samples of MuDelta and
Random, MuDelta and Modification, Random and Modification, respectively. Therefore, we conclude
that MuDelta outperforms Random with statistically significance, while Modification is not sufficient
for testing the deltas.

4.6.3 Mutant Ranking and Fault Revelation (RQ3)

Figure 4.11 shows the distributions of APFD (Average Percentage of Faults Detected) values for the
CoREBench fault introducing test commits, using the three approaches under evaluation. While
MuDelta yields an APFD median of 52%, Random and Modification reach median APFD values
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Figure 4.10: APFD rMS∗ (up to 100 mutants).

of 25% and 0% respectively. The improvement over Random and Modification are 27% and 52%,
respectively. These results confirm the superiority of our approach wrt to fault revelation.

The Wilcoxon test yielded p-values much lower than our significance level for the compared data, i.e.,
samples of MuDelta and Random, MuDelta and Modification, Random and Modification. Therefore,
we conclude that MuDelta outperforms Random and Modification with statistically significance while
Random outperforms Modification.

Figure 4.12 shows the distribution of fault revelation for the ranking strategies and for mutant set
size thresholds up to 100 mutants. We observe that the curve for MuDelta is above the curves of
random and Modification, and Random is above Modification. Specifically, we observe that MuDelta
reaches a fault revelation of 60% and 100% when analysing the top 30 and 61 mutants, while Random
7% and 12%, respectively.

4.7 Discussion

4.7.1 Comparison with other models

To further assess the effectiveness of our model, we contrast it with the prediction ability of five other
models (on the same training, validation and test data-sets) that are typically used in prediction
modelling studies. In particular, we used three families of models (Ensemble model classifiers, Logistic
classifiers and Neural Networks) and built five models; namely Adaboost, Random Forest, Logistic
Regression, Multilayer Perceptron (MLP) and Mixed MLP. MLP and Mixed MLP were inspired by
the work of Li et al. [121], their architecture is shown in Figure 4.13 and 4.14. To train and evaluate
the models we used the Sklearn library7. Since our data are imbalanced we also used class weighting
strategies that are commonly used to tackle this issue. To avoid bias from improper setting of the
learners, in all the cases we used Grid Search & Cross Validation on the validation set to tune our
hyperparameters.

Table 4.2 reports the ROC-AUC, PR-AUC, MCC, and precision on top 100 ranked mutants of the
prediction results of all different learners we built. The results show that the XGBoost model, that

7https://scikit-learn.org/stable/
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Table 4.2: Model Comparison
AdaBoost 0.6 0.35 0.26 0.55
Random Forest 0.66 0.31 0.24 0.57
Logistic 0.58 0.26 0.13 0.21
MLP 0.51 0.19 0.1 0.2
Mixed MLP 0.68 0.45 0.31 0.2
XGBoost 0.80 0.50 0.36 0.61

we use, perform best in all cases. The general prediction metrics (ROC-AUC,PR-AUC, MCC) show
that Mixed MLP model is the second best case though it falls behind the Ensemble models wrt to
the top-100 mutants. Nevertheless, the results provide clear indications that the XGBoost model we
use is indeed the best choice.

4.7.2 Feature Importance

To evaluate the importance of our features we used the SHapley Additive exPlanations (SHAP)8
method [129], i.e., a game theory method that explains individual predictions based on the game
theoretically optimal Shapley Values. In particular, we aim at explaining our predictions by assuming
that each feature value we use is a “player” in a game where the prediction is the payout. Shapley

8https://github.com/slundberg/shap
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Figure 4.15: Feature Importance, SHAP Score of top-10 feature sets. The 10 most important features
are “Mutant Type”, “Utility Graph”, “Incoming Control Dependencies”, “Mutant-modification
features”, “Control Dependency Graph”, “Information-flow”, “Outgoing Control Dependencies”,
“Outgoing Data Dependencies”,“AST parents” and “Directed Data Dependency Graph”.

values – a method from coalitional game theory – tells us how to fairly distribute the “payout” among
the features. We thus measure and report the feature importance (Shapley values) of the feature
categories we use. Results are depicted on Figures 4.15 and show that “Mutant Type”, “Utility
Graph”, “Incoming Control Dependencies”, “Mutant-modification features”, “Control Dependency
Graph” and the “Information-flow” are the top 6 feature sets and that all three types of features we
use are important. Additional results related to the feature importance of the individual features we
used can be found on the accompanied website.

4.8 Threats to Validity

A possible threat to external validity could be due to our test subjects. Our target was commits that
do not alter test contracts and make small modifications, similar to those observed in industrial CI
pipelines. Such commits are usually hard to test and typically result in subtle faults. Large commits
that add new features, should be anyway tested by using a mutation testing approach that involves
(almost) all the relevant mutants residing on the added code. To reduce this threat, we sampled
a commit set where we could reasonably perform our experiments. At the same time, to diminish
potential selection bias, we also used the Coreutils commits of CoREBench [23], which are frequently
used in testing studies.

We are confident on our results since the relevance properties of the mutants reside on the context
of the committed code, which includes the area around the dependencies to the committed code
(where we draw our feature values), that is small and its characteristics should be as representative
as our subjects. Moreover, our predictions converge well, do not have significant variance wrt to the
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baselines and consistently outperform the baselines in all test subjects we used. Additionally, the
statistical significance we observe indicates the sufficiency of our data analysis [11]. Future work
should validate our findings and analysis to larger programs.

Another threat may relate to the mutants we use. To mitigate this threat, we selected data from a
mutation testing tool [36] that has been used in several studies [34, 35, 136] that supports the most
commonly used operators [114] and covers the most frequent features of the C language.

Threats to internal validity may be due our features. We use a large number of features, selected
either based on previous studies [34] or by using our intuition, which are automatically filtered by
gradient boosting. To further reduce this concern, we split our data in three parts, training, validation
and test data. During training (using training data) we measure the model convergence on training
and validation data. As demonstrated in Figure 4.5, our model converges both on the training and
validation data, showing that there are low chances for over- or under-fitting because in these cases,
the model would not converge on the validation data.

The test-based approximation of relevant and killable mutants may introduce additional threats. To
reduce it, we used test suites generated by KLEE [107] and SeMu [35], together with developer test
suites.

A possible threat to construct validity could be due to the effort metric, i.e., the number of analysed
mutants, we use. This is a typical metric for this kind of studies [112] aiming at capturing the manual
effort involved when analysing mutants or asserting automatically generated tests. Since, our data
have been filtered by TCE [100, 164], a state-of-the-art equivalent mutant detection technique, this
threat should be limited.

Overall, we tried to reduce threats by using various evaluation metrics, i.e., prediction performance,
relevant mutation score and fault revelation, and established procedures. Furthermore, to enable
replication and future research we will make our tools and data publicly available.

4.9 Related Work

The problem of determining the set of mutants that are most relevant to particular code changes
might resemble a dependence analysis problem. One natural solution involves forming a program slice
on the set of changed statements. Any mutant that lies in the slice should be considered relevant.
Unfortunately, this approach does not scale well for several reasons. Firstly, as have been previously
observed [20, 21], even a single static slice of a program tends to occupy between one and two thirds
of the program from which it is constructed. Therefore, the union of a set of such slices, will be
large, and thereby fail to exclude many mutants. Secondly, the dependence analysis would need to
be incremental, which raises further challenges. Although there have been incremental dependence
analyses in the literature [158], many well-developed slicing systems are not incremental. In general,
the problem of incremental program analysis at scale remains challenging [80]. Thirdly, it is hard to
use dependence analysis to provide the priority ordering we need, where priority is based on degree
of relevance. Potentially, unions of dynamic slices or some form of observation-based slicing [18]
could achieve this, but such approaches have a prohibitive computational cost in comparison to our
method.

Change impact analysis [118] aims at determining the effects of changes on the other parts of the
software. Similar to program slicing, such approaches are conservative, therefore they result in large
number of false positives, does not account for equivalent mutants located on potentially infected
code and is hard to provide the mutant ranking (prioritizes mutant types and location) we need.
Other attempts aim at testing the potential propagation flows of the changes [10, 187, 188, 189].
Similarly to change impact analysis their purpose is to identify the program paths (flows) that may
be impacted by the changes. They rely on symbolic execution to check for the feasibility of the
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flows, form test requirements (conditions to be fulfilled) and decide on relevance. Unfortunately, such
techniques inherit most of the issues of symbolic execution, are complex to implement and test the
propagation of the changes. In contrast our technique scales since it relies on static code features,
does not require any complex analysis techniques and applies mutation testing that is known for
capturing the fault-revealing properties of test suites [34, 38].

Automatic test case generation aims at producing test inputs that a) make observable the code
differences of two program versions [180], b) increase and optimize coverage [230] and kill mutants
[35, 60, 196]. Among these techniques, the most relevant to our study are the are the ones related to
patch testing, i.e., differential symbolic execution [172], KATCH [141] and Shadow symbolic execution
[107]. These techniques generate tests exercising the semantic differences between program versions
guided by coverage. All these techniques do not propose any test requirements as done by MuDelta
and thus, they are complementary to our goal. This means that they can be used to generate tests to
kill the commit-relevant mutants proposed by MuDelta.

Related to continuous integration, Google [174] is using a mutation testing tool that is integrated
with the code review process (reviewers select mutants). This tool proposes mutants to developers in
order to design test cases. The key basis of this approach is to choose some mutants from the lines of
the altered code. We share a similar intent, though we aim at making an informative selection of
mutants among all project mutants. According to our results mutants residing on non-altered code
tend to be powerful at capturing the interactions between the altered and non-altered code.

Regression mutation testing [240] and the predictive mutation testing [139, 236] also focus on regression
testing. Similarly, Pitest [41], a popular mutation testing tool, implements an incremental analysis
that computes which mutants are killed or not by a regression test suite. This means that the goal of
the above techniques is to estimate the mutation score achieved by regression test suites thereby not
making any distinction between commit-relevant and non-relevant mutants, not making any mutant
ranking and not proposing any live mutant to be used for test generation.

Fault revealing mutant selection [34] aims at selecting mutants that are likely to expose faults. While
powerful, that technique targets the entire program functionality and not the changed/delta one.
Since it is unaware of the deltas it selects many irrelevant mutants, while missing many delta-relevant
mutants related to the delta-context interactions.

Perhaps the closest work to ours is the commit-aware mutation testing study [136] that defines
the notion of mutant relevance and demonstrates its potential. In essence that work describes the
fundamental aspects of relevant mutants but does not define any way to identify them at the testing
time. We therefore built on top of this notion by providing a static technique that identifies relevant
mutants.

Overall, there is a fundamental difference on the aims of our approach and previous research since we
statically produce relevant, to code changes, mutants and rank them to provide a best effort testing
application.

4.10 Conclusion

We presented MuDelta a delta-oriented mutation testing approach that selects delta-relevant mutants;
mutants capturing the program behaviours affected by specific program changes. Experiments with
MuDelta demonstrated that it identifies delta-relevant mutants with 0.63 and 0.32 precision and recall.
Interestingly, killing these mutants leads to strong tests that kill 45% more relevant mutants than
killing randomly selected mutants. Our results also show that MuDelta selects mutants with a 27%
higher fault revealing ability than randomly selected mutants.
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5 GraphCode2Vec: Generic Code Embedding
via Lexical and Program Dependence
Analyses

Code embedding is a keystone in the application of machine learning on several Software Engineering
(SE) tasks. To effectively support a plethora of SE tasks, the embedding needs to capture program
syntax and semantics in a way that is generic. To this end, we propose the first self-supervised
pre-training approach (called GraphCode2Vec) which produces task-agnostic embedding of lexical
and program dependence features. GraphCode2Vec achieves this via a synergistic combination of
code analysis and Graph Neural Networks. GraphCode2Vec is generic, it allows pre-training, and it
is applicable to several SE downstream tasks. We evaluate the effectiveness of GraphCode2Vec on
four (4) tasks (method name prediction, solution classification, mutation testing and overfitted patch
classification), and compare it with four (4) similarly generic code embedding baselines (Code2Seq,
Code2Vec, CodeBERT, GraphCodeBERT) and 7 task-specific, learning-based methods. In particular,
GraphCode2Vec is more effective than both generic and task-specific learning-based baselines. It
is also complementary and comparable to GraphCodeBERT (a larger and more complex model). We
also demonstrate through a probing and ablation study that GraphCode2Vec learns lexical and
program dependence features and that self-supervised pre-training improves effectiveness.
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Figure 5.1: Motivating example showing (a) an original method (LowerBound), and two behaviorally
equivalent clones of the original method, namely (b) a renamed method (findLowerBound), and (c)
a refactored method (getLowerBound).

public static int lowerBound(int[] array, 
int length, int value) {

int low = 0;
int high = length;
while (low < high) {

final int mid = (low + high) / 2;
if (value <= array[mid]) {

high = mid;
} else {

low = mid + 1;
}

}
return low;

}

public static int findLowerBound(int[] inputs, 
int size, int v) {

int bounder = 0;
int l = size;
int mindex = 0;
while (bounder < l) {

mindex = (bounder + l) / 2;
if (v <= inputs[mindex]) {

l = mindex;
} else {

bounder = mindex + 1;
}

}
return bounder;

}

public static int getLowerBound(int v, 
int size, int[] inputs) {

int h = size;
int mindex = 0;
int check = 0;
while (check < h) {

mindex = (check + h) / 2;
if (v > inputs[mindex]) {

check = mindex + 1;
} else {

h = mindex;
}

}
return check;

}

(a) Original Method (b) Renamed Method (c) Refactored Method

5.1 Introduction

Applying machine learning to address software engineering (SE) problems often requires a vector
representation of the program code, especially for deep learning systems. A naïve representation,
used in many SE applications, is one-hot encoding that represents every feature with a dedicated
binary variable (a vector including binary values) [192]. However, this type of embedding is usually a
high-dimensional sparse vector because the size of vocabulary is very large in practice, which results in
the notorious curse of dimensionality problem [14]. Besides, one-hot encoding has out-of-vocabulary
(OOV) problem, which decreases model generalization capability such that it cannot handle new type
of data [208].

To deal with these issues, researchers use dense and reasonably concise vectors to encode program
features for specific SE tasks, since they generalise better [92, 218, 222, 242]. More recently, researchers
apply natural language processing (NLP) techniques to learn the universal code embedding vector
for general SE tasks [3, 4, 5, 15, 26, 27, 43, 57, 76, 83, 95, 170, 179, 213, 219]. The resulting code
embedding represents a mapping from the “program space” to the “latent space” that captures the
different code-used semantics, i.e., the semantic similarities between program snippets. The aim is
that similar programs should have similar representations in the latent space.

State-of-the-art code embedding approaches focus either on syntactic features (i.e., tokens/AST),
or on semantic features (i.e., program dependencies) ignoring the importance of combining both
features together. For example, Code2Vec [5] and CodeBERT [57]) focus on syntactic features, while
PROGRAML [43] and NCC [15]) focus on program semantics. There are few studies using both
program semantics and syntax, e.g., GraphCodeBERT [76]. However, these approaches are not
precise, they do not obtain or embed the entire program dependence graph. Instead, they estimate
program dependence via string matching (instead of static program analysis), then augment AST
trees with sequential data flow edges.

To address these challenges, we propose the first approach (called GraphCode2Vec) to synergistically
capture syntactic and semantic program features with Graph Neural Network (GNN) via self-supervised
pretraining.

The key idea of our approach is to use static program analysis and graph neural networks to effectively
represent programs in the latent space. This is achieved by combining lexical and program dependence
analysis embeddings. During lexical embedding, GraphCode2Vec embeds the syntactic features
in the latent space via tokenization. In addition, it performs dependence embedding to capture
program semantics via static program analysis, it derives the program dependence graph (PDG)
and represents it in the latent space using Graph Neural Networks (GNN). It then concatenates
both lexical embedding and dependence embedding in the program’s vector space. This allows
GraphCode2Vec to be effective and applicable on several downstream tasks.
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Table 5.1: Cosine Similarity of three behaviorally/semantically similar program pairs from our
motivating example, using GraphCodeBERT, CodeBERT and GraphCode2Vec

Program Pairs Graph- CodeBERT GraphCode2VecCodeBERT
searchLowerBound & lowerBound 1 0.99 1
findLowerBound & lowerBound 0.70 0.61 0.99
getLowerBound & lowerBound 0.70 0.51 0.99
Average of 91 pairs -0.05 -0.06 -0.03

To demonstrate the importance of semantic embedding, we compare the similarity of three pairs of
programs using our approach, in comparison to a syntax-only embedding approach – CodeBERT,
and GraphCodeBERT, which embeds both syntax and semantic, albeit without program dependence
analysis. Consider the example of three program clones in Figure 5.1. This example includes three
behaviorally or semantically equivalent programs, that have low syntactic similarity (i.e., different
tokens), but with similar semantic features, i.e., program dependence graphs (PDGs). To measure
the similarity distance in the latent space, in addition to the example code clones (Figure 5.1), we
randomly select 10 other different code methods (from GitHub) without any change to establish a
baseline for comparing all approaches. To this end, we compute the average cosine similarity distance
for all 91 program pairs ( 14×13

2 ) for reference to show that all approaches report similar scores for all
randomly selected 91 pairs (Table 5.1).1 For all three approaches, the similarity between the “original
program” and a direct copy of the program with only method name renaming to “searchLowerBound”,
is well captured with an almost perfect cosine similarity score for all approaches (1 or 0.99). Likewise,
the cosine similarity of the original program and the “renamed” program (findLowerBound) is mostly
well captured by all approaches, since they all embed program syntax, albeit with lower cosine
similarity scores for CodeBERT (0.61) and GraphCodeBERT (0.70), in comparison to our approach
(0.99).

Meanwhile, CodeBERT fails to capture the semantic similarity between the “original program” and
the “refactored program” (getLowerBound), even though they are behaviorally similar and share
similar program dependence. This is evidenced by the low cosine similarity score (0.51), because it
does not account for semantic information in its embedding, especially the similar program dependence
graph shared by both programs. Lastly, GraphCodeBERT performs slightly better than CodeBERT
(0.70 vs. 0.51), but lower than our approach (0.99). This is due to lack of actual static program
analysis in the embedding of GraphCodeBERT, since it only applies a heuristic (string matching)
to estimate program dependence, it is imprecise. This example demonstrates the importance and
necessity of embedding precise dependence information.

A key ingredient of GraphCode2Vec is self-supervised pretraining. Even though task-specific learning
based approaches (e.g., CNNSentence [156]) learn the vector representation of code without pre-training,
they are non-generic and less effective. Applying their learned vector representation to other (SE)
tasks requires re-tuning model parameters, and the lack of pretraining reflects in their performance.
As an example, our evaluation (in RQ1 section 5.5) showed that our self-supervised pretraining
approach improves effectiveness when compared to 7 task-specific approaches (i.e., without pretraining)
addressing two (SE) tasks (solution classification and patch classification). To further demonstrate
the importance of self-supervised pretraining, we compare the effectiveness of GraphCode2Vec with
and without pretraining using two downstream tasks. Overall, we demonstrate that our self-supervised
pretraining improves effectiveness by 28% (see RQ3).

To evaluate GraphCode2Vec, we compare it to four generic code embedding approaches, and 7
task-specific learning-based applications. We also investigate the stability and learning ability of

1The purpose of computing the average cosine similarity of all 91 code pairs is to establish a meaningful reference
for comparing embeddings and to serve as a sanity check. We expect the mean of the cosine similarity of a set of
randomly selected pairs of code clones and non-clones to lie around zero for all approaches (range -1 to 1).
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our approach through sensitivity, ablation and probing analyses. Overall, we make the following
contributions:

Task-specific learning-based applications. We introduce the automatic application of Graph-
Code2Vec to solve specific downstream SE tasks, without extensive human intervention to adapt
model architecture. In comparison to the state-of-the-art task-specific learning-based approaches
(e.g., ODS [232] ), our approach does not require any effort to tune the hyper-parameters to be
applicable to a downstream task (Section 5.3). Our evaluation on two downstream tasks, solution
classification and patch classification, showed that GraphCode2Vec outperforms the state-of-the-art
task-specific learning-based applications: For all tasks it outperforms all task-specific applications
(RQ1 in Section 5.5).
Generic Code embedding. We propose a novel and generic code embedding learning approach
(i.e., GraphCode2Vec) that captures the lexical, control flow and data flow features of programs
through a novel combination of tokenization, static code analysis and graph neural networks (GNNs).
To the best of our knowledge, GraphCode2Vec is the first code embedding approach to precisely
capture syntactic and semantic program features with GNNs via self-supervised pretraining. We
demonstrate that GraphCode2Vec is effective (RQ2 in Section 5.5): It outperforms all syntax-only
generic code embedding baselines. We provide our pre-trained models and generic embedding for
public use and scrutiny.2
Further Analyses. We extensively evaluate the stability and interpretability of our approach by
conducting sensitivity, probing and ablation analyses. We also investigate the impact of configuration
choices (i.e., pre-training strategies and GNN architectures) on the effectiveness of our approach on
downstream tasks. Our evaluation results show that GraphCode2Vec effectively learns lexical
and program dependence features, it is stable and insensitive to the choice of GNN architecture or
pre-training strategy (RQ3 in Section 5.5).3

5.2 Related Work

5.2.1 Generic code embedding

We introduce methods that learn general-purpose code representations to support several downstream
tasks. These approaches are not designed for a specific task. There are three major types of
generic code embedding approaches, namely syntax-based, semantic-based and combined semantic
and syntactic approaches (see Table 5.2).

Syntax-based Generic Approaches: These approaches encode program snippets, either by
dividing the program into strings, lexicalizing them into tokens or parsing the program into a parse
tree or abstract syntax tree (AST). Syntax-only generic embedding approaches include Code2Vec [5],
Code2Seq [4], CodeBERT [57], C-BERT [27], InferCode[26], CC2Vec [83], AST-based NN [234] and
ProgHeteroGraph [219] (see Table 5.2). Notably, these approaches use neural models for representing
code (snippets), e.g., via code vector (e.g., Code2Vec [5]), machine translation (e.g., Code2Seq [4])
or transformers (e.g., CodeBERT [57]). Code2Vec [5] is an AST-based code representation learning
model that represents code snippets as single fixed-length code vector. It decomposes a program
into a collection of paths using an AST and learns the atomic representation of each path while
simultaneously learning how to aggregate the set of paths. Code2Seq [4] is an alternative code
embedding approach that uses Sequence-to-sequence (seq2seq) models, adopted from neural machine
translation (NMT), to encode code snippets. CodeBERT [57] is a bimodal pre-trained model for
programming language (PL) and natural language (NL) tasks, which uses transformer-based neural

2https://github.com/graphcode2vec/graphcode2vec
3In the rest of this work, we interchangeably use the terms “lexical” and ”syntactic” interchangeably, as well as
“(program) dependence” and “semantic”. Such that the terms “lexical embedding” and “syntactic embedding” refer
to the embedding of program syntax, and the terms “dependency embedding” and “semantic embedding” refer to
the embedding of program dependence information.
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architecture to encode code snippets. Besides, CodeBERT [57], C-BERT [27] and Cu-BERT [95] are
BERT-inspired approaches, these methods adopt similar methodologies to learn code representations
as BERT [47].

GraphCode2Vec in Chapter 5 is similar to the aforementioned generic code embedding methods, it
is also a general-purpose code embedding approach that captures syntax by lexicalizing the program
into tokens (see Table 5.2). However, all of the aforementioned generic approaches are syntax-based,
none of these approaches account for program semantics (i.e., data and control flow). Unlike these
approaches, GraphCode2Vec additionally captures program semantics via static analysis. In this
work, we compare our approach (GraphCode2Vec) to the three (3) most popular and recent syntax-
based generic code embedding approaches, namely Code2Vec [5], Code2Seq [4] and CodeBERT [57]
(see section 5.5).

Semantic-based Generic Approaches: This refers to code embedding methods that capture only
semantic information such as control and data flow dependencies in the program. Semantic-only
generic approaches include NCC [15] and PROGRAML [43]. On one hand, NCC [15] extracts
the contextual flow graph of a program by building an LLVM intermediate representation (IR) of
the program. It then applies word2vec [145] to learn code representations. On the other hand,
PROGRAML [43] is a language-independent, portable representation of whole-program semantics
for deep learning, which is designed for data flow analysis in compiler optimization. It adopts
message passing neural networks (MPNN) [68] to learn LLVM IR representations. In contrast to
these approaches, GraphCode2Vec captures both semantics and syntax.

Combined Semantic and Syntactic -based Approaches: There are generic approaches that
capture both syntactic and semantic features such as IR2Vec [15], OSCAR [170], ProgramGraph [3],
ProjectCodeNet [179] and GraphCodeBERT [76]. IR2Vec [15] and OSCAR [170] use LLVM IR
representation of a program to capture program semantics. Meanwhile, ProgramGraph [3] uses GNN
to learn syntactic and semantic representations of code from ASTs augmented with data and control
edges. ProgHeteroGraph leverages abstract syntax description language (ASDL) grammar to learn
code representations via heterogeneous graphs [219]. Finally, GraphCodeBERT [76] is built upon
CodeBERT [57], but in addition to capturing syntactic features it also accounts for semantics by
employing data flow information in the pre-training stage.

Similar to these approaches, our approach (GraphCode2Vec) learns both syntactic and semantic
features. In Chapter 5, we compare GraphCode2Vec to GraphCodeBERT because it is the
most recent state-of-the-art and closely related approach to ours, since it captures both syntax and
semantics (see RQ2 section 5.5).

5.2.2 Task-specific learning-based applications

Researchers have proposed specialised learning-based techniques to tackle specific (SE) downstream
tasks, e.g.. patch classification [128, 232] and solution classification [67, 156, 177]. In the experiments
of Chapter 5 , we consider specialised learning approaches for both tasks. This is because these
tasks have several software engineering applications, especially during software maintenance and
evolution [128, 156, 232].

Table 5.2 highlights details of our task-specific learning methods.

Solution classification: Let us describe the state-of-the-art learning-based approaches for solution
classification. Most of these approaches are syntax-based and adopt convolution neural networks
(CNNs) to classify programming tasks. SequentialCNN [67] applies a CNN to predict the lan-
guage/tasks from code snippets using lexicalized tokens represented as a matrix of word embeddings.
CNNSentence [156] is similar to SequentialCNN since it also uses CNNs, except that it classifies
source code without relying on keywords, e.g., variable and function names. It instead considers
the structural features of the program in terms of tokens that characterize the process of arithmetic
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Table 5.2: Details of the state-of-the-art Code Embedding approaches. “Semantic” or “Sem” means
program dependence, and “Syntactic” or “Syntax” refers to strings, tokens, parse tree or AST-tree.
Symbol “X” means the approach supports a feature, and “×” means it does not support the feature.

Type Approaches Syntactic Semantic Granularity
Method Class

T
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k-

sp
ec
ifi
c

Sy
nt
ax CNNSentence [156] X × × X

OneCNNLayer [177] X × × X
SequentialCNN [67] X × × X

Bo
th

SimFeatures [217] X X × X
Prophet [128] X X × X
PatchSim [228] X X × X
ODS [232] X X × X

G
en

er
ic

Sy
nt
ax
-o
nl
y

CodeBERT [57] X × X ×
Code2Vec [5] X × X ×
Code2Seq [4] X × X ×
C-BERT [27] X × X X
InferCode [26] X × X X
CC2Vec [83] X × X X
AST-based NN [234] X × × X
ProgHeteroGraph [219] X × X ×

Se
m
. NCC [15] × X X X

PROGRAML [43] × X X X

Bo
th

IR2Vec [15] X X X X
OSCAR [170] X X X X
ProgramGraph [3] X X X X
ProjectCodeNet [179] X X × X
GraphCodeBERT [76] X X X ×
GraphCode2Vec X X X X

processing, loop processing, and conditional branch processing. Finally, OneCNNLayer [177] also uses
CNN for solution classification. It firstly pre-processes the program to remove unwanted entities (e.g.,
comments, spaces, tabs and new lines), then tokenizes the program to generate the code embedding
using word2vec. The resulting embedding includes the token connections and their underlying
meaning in the vector space.

Patch Classification: These are techniques designed to determine the correctness of patches (i.e.,
identify correct, wrong or over-fitting patches). These learning-based techniques can be static (e.g.,
ODS [232]), dynamic (e.g., Prophet [128]), heuristic-based (e.g., PatchSim [228]) or hybrid (e.g.,
SimFeatures [217]). Table 5.2 provides details of these approaches. Notably, they all capture both
syntactic information (e.g. via AST) and program dependence information (e.g., via execution paths
or control flow information). For instance, PatchSim [228] is a heuristic approach that leverages
the behavioral similarity of test case executions to determine patch correctness by leveraging the
complete path spectrum of test executions. Meanwhile, Wang et al. [217] proposed (SimFeatures
–) a hybrid strategy that identifies correct patches by integrating static code features with dynamic
features or (test) heuristics. SimFeatures combines a learned static code model with dynamic or
heuristic-based information (such as the dependency similarity between a buggy program and a patch)
using majority voting. More recently, Y.He et al. [232] proposed a supervised learning approach
(called ODS) that employs static code features of patched and buggy programs to determine patch
correctness, specifically to classify over-fitting patches. It uses supervised learning on extracted static
code at the AST level to learn a probabilistic model for determining patch correctness. ODS also
tracks program dependencies by tracking control flow statements.

In Chapter 5, we compare GraphCode2Vec to the aforementioned seven (7) learning-based methods
for solution classification and patch classification(see Section 5.5 in Chapter 5).
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Figure 5.2: Overview of GraphCode2Vec
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5.2.3 Graph Neural Networks

Graph Neural Network (GNN) [191] can process structural data consisting of nodes, edges and
their attributes. During training, a node representation is updated iteratively by aggregating the
features of its neighbors [229, 247]. The process is defined by two important functions, i.e., the
aggregation function and the combining function. The aggregation function defines how to aggregate
the features from the node neighbors. The combining function specifies how to update the node
representation. Different aggregation and combining functions lead to different GNN variants. there
are several popular GNN types: Graph Convolutional Network (GCN; [102]), GraphSAGE [77], Graph
Attention Network (GAN; [212]), Graph Isomorphism Network (GIN; [229]), and Variational Graph
Auto-Encoder (VGAE; [103]). GCN defines a graph convolutional operator on the Laplacian matrix
as the aggregation function, similar to the convolutional operator in Convolutional Neurnal Network
(CNN; [116]). GraphSAGE [77] directly aggregates the neighbor features instead of using Laplacian
matrix. GIN uses the sum operation as aggregation function that makes GNN can well distinguish
different graphs. GAN utilizes the self-attention mechanism to assign different weight values to the
neighbors during updating a node representation. VGAE uses the encoder-decoder architecture to
get the node representation. It assumes that the node representation follows a Gaussian distribution
so that the encoder learns parameters of the distribution. Then, the decoder reconstruct the graph
from the output of the encoder.

5.3 Approach

5.3.1 Overview

Figure 5.2 illustrates the steps and components of our approach. First, GraphCode2Vec takes as
input a Java program (i.e. a set of class files) that is converted to a Jimple intermediate representation.
Secondly, GraphCode2Vec employs Soot [209] to obtain the program dependence graph (PDG) by
feeding the class files as input. From the resulting Jimple representation and PDG, GraphCode2Vec
learns two program embeddings, namely a lexical embedding and a dependence embedding. These
two embeddings are ultimately concatenated to form the final code embedding.

To achieve lexical embedding, our approach first tokenizes the Jimple instructions obtained from
our pre-processing step into sub-words. Next, given the sub-words, our approach learns sub-word
embedding using word2vec [144]. Then, it learns the instruction embedding by representing every
Jimple instruction as a sequence of subwords embeddings using a bi-directional LSTM (BiLSTM,

57



CHAPTER 5. GRAPHCODE2VEC: GENERIC CODE EMBEDDING VIA LEXICAL AND PROGRAMDEPENDENCE ANALYSES

Section 5.3.2). The forward and backward hidden states of this BiLSTM allows to build the instruction
embeddings. GraphCode2Vec employs a BiLSTM since it learns context better: BiLSTM can learn
both past and future information while LSTM only learns past information. Finally, it aggregates
multiple instruction embeddings using element-wise addition, in order to obtain the overall lexical
program embedding.

To learn the dependence embedding, GraphCode2Vec applies a Graph Neural Network (GNN)
[191] to embed Jimple instructions and their dependencies. Each node in the graph corresponds to a
Jimple instruction and contains the (dependence) embedding of this instruction. Node attributes are
from lexical embeddings. The edges of the graph represent the dependencies between instructions.
Our approach considers the following program dependencies: data flow, control flow and method call
graphs. GraphCode2Vec uses intra-procedural analysis [58] to extract data-flow and control-flow
dependencies by invoking Soot [209]. Then, it builds method call graphs via class hierarchy analysis
[45].

The training of GNNs is an iterative process where, at each iteration, the embedding of each node n
is updated based on the embedding of the neighboring nodes (i.e., nodes connected to n) and the
type of n’s edges [229, 247]. The message passing function determines how to combine the embedding
of the neighbors – also based on the edge types – and how to update the embedding n based on
its current embedding and the combined neighbors’ embedding. The dependence embedding of an
instruction is the embedding of the corresponding node at the end of the training process.

Finally, after obtaining lexical embedding and dependence embedding, our approach concatenates
both embeddings to obtain the overall program representation.

5.3.2 Lexical embedding

Step 1 - Jimple code tokenization: The first crucial step of GraphCode2Vec is to properly
tokenize Jimple code into meaningful “tokens”, to learn the vector representations. The traditional
way to tokenize code is to split it on whitespaces. However, this manner is inappropriate for two
reasons. First, whitespace-based tokenization often results in long tokens such as long method names
(e.g., “getFunctionalInterfaceMethodSignature”). Long sequences often have a low frequency in a
given corpus, which subsequently leads to an embedding of inferior quality. Second, whitespace-
based tokenization is not able to process new words that do not occur in the training data – these
out-of-vocabulary words are typically replaced by a dedicated “unknown” token. This is an obvious
disadvantage for our approach, whose goal is to support practitioners to analyze diverse programs –
which may then include words that did not occur in the programs used to learn the embedding.

To address this challenge, we tokenize the Jimple code into subwords [108, 193, 225], which are
units shorter than words, e.g., morphemes. Subwords have been widely adopted in representation
learning systems for texts [47, 81, 181, 245] as they solve the problem of overly long tokens and out-
of-vocabulary words. New code programs can be smoothly handled using short tokens representation,
by limiting the amount of long, but different tokens. Subwords get rid of the almost-infinite character
combinations that are common in many program codes. For example, this is the reason why
BERT uses wordpiece subwords [225], and XLNet [231] and T5 [181] use sentence-piece subwords.
Similarly, GraphCode2Vec uses sentence-piece subwords. When using subwords, the long token
“getFunctionalInterfaceMethodSignature” is split into “get”, “Functional”, “Interface”, “Method” and
“Signature”. It is worth noting that most of the subwords are in fact words, e.g., “get” [93].

Step 2 - Subword embedding with word2vec: Given a subword-tokenized Jimple code corpus C
with vocabulary size |C|, our approach learns a subword embedding matrix E ∈ R|C|×d where d is a
hyperparameter referring to the embedding dimension (d is usually set to 100). It uses the popular
Skip-gram with negative sampling (SGNS) method in word2vec [144] to produce E. And E is utilized
as the subword embedding matrix [144].
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Step 3 - Instruction embedding: After forming the subword embeddings, GraphCode2Vec
represents every Jimple instruction as a sequence of subword embeddings (w0,w1, ...,wn), by using a
bidirectional LSTM (BiLSTM). The role of BiLSTM is to learn the embedding of the instruction from
the subword sequence of the instruction. Let −→ht and ←−ht be the forward hidden state and backward
hidden state of LSTM after feeding the final subword. Then, it forms the instruction embedding by
concatenating −→ht and ←−ht, denoted as x = (−→ht,

←−ht).

Step 4 - Instruction embedding aggregation: The last step in the process of forming lexical
embedding is the aggregation of the instruction embeddings in order to form the overall program
lexical embedding. The reason why we aggregate instruction-level embedding as opposed to learning
an embedding for the whole program is that LSTMs work with sequences of limited length and thus,
truncate the instructions into small sequences (not exceeding the maximal length). After tokenization,
a program can have many subwords and if one directly consider all subwords in the program, one
needs to cut these subwords into the limited sequence length for LSTM and result in information
loss.

Our approach uses element-wise addition as the token aggregation function. This operation allows
the aggregation of multiple instruction embeddings while keeping a limited vector length.

5.3.3 Dependence embedding

Step 1 - Building method graphs: A method graph is a tuple G = (V,E,X,K), where V is
the set of nodes (i.e. Jimple instructions), E is the set of edges (dependence relations between the
instructions), X is the node embedding matrix (which contains the embedding of the instructions) and
K is the edge attribute matrix (which encodes the dependencies that exist between instructions). For
each node n there is a column vector xn in X such that xn = (−→h t,

←−h t) (instruction embedding).

To define E and K, our approach extracts data-flow and control-flow dependencies by invoking Soot
[58, 209]. Then, GraphCode2Vec introduces an edge between two nodes if and only if the two
corresponding instructions share some dependence.

Step 2 - Building program graphs: A program graph consists of a pair P = (G,R) where
G = {G0, G1, ..., Gm} is a set of method graphs and where R ⊆ G2 is the call relation between the
methods, that is, (Gi, Gj) ∈ R if and only if the method that Gi represents calls the method that Gj

represents. To represent this relation in the GNN, GraphCode2Vec introduces an entry node and
an exit node for each method and edges linking those nodes with caller instructions.

Step 3 - Message passing function: The exact definition of the message passing function
depends on the used GNN architecture. We choose the widely-used GNN architectures with linear
complexity [226] that has been successfully applied in various application domains. GraphCode2Vec
employs four GNN architectures, namely Graph Convolutional Network (GCN [102]), GraphSAGE
[77], Graph Attention Network (GAN [212]), Graph Isomorphism Network (GIN [229]).

Step 4 - Learning the dependence embedding: The dependence embedding of each instruction
is obtained by running the message passing function on all nodes for a pre-defined number of
iterations, i.e., the number of GNN layers. Once these instruction embeddings have been produced,
GraphCode2Vec aggregates them using the global attention pool operation [123] in order to
produce the program-level dependence embedding. Attention mechanism can make program-level
dependence embedding consider more important nodes (instructions).

The dependence embeddings that GNN produces depend on the learnable parameters of (a) the
message passing function and (b) bidirectional LSTM. These parameters can be automatically set to
optimize the effectiveness of GraphCode2Vec either directly on the downstream task or on some
pre-training objectives, as described hereafter.
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In the end, our approach uses a concatenation operator to get the program embedding vector.
Concatenation has been shown to be an effective method to fuse features without information loss
when using DNN [66, 89, 113, 159, 201, 202]. Although the dependence embedding inherently encodes
the lexical embedding, the importance of lexical inherently fades away as the semantic representation
is learnt. Our ablation study (see RQ3 in Section 5.5) later reveals the benefits of concatenating an
explicit lexical embedding with the dependence embedding.

5.3.4 Pre-training

Self-supervised learning has been applied with success for pre-training deep learning models [50,
127, 183]. It allows a model to learn how to perform tasks without human supervision [150, 248]
by learning a universal embedding that can be fine-tuned to solve multiple downstream tasks. In
this work, we employed three (3) self-supervised learning strategies to pre-train the BiLSTM and
GNN in GraphCode2Vec, namely node classification, context prediction [87], and variational graph
encoding (VGAE) [103]. Node (or Instruction) classification trains the model to infer the type of an
instruction, given its embedding. Context prediction requires the model to predict a masked node
representation, given its surrounding context. Variational graph encoding (VGAE) learns to encode
and decode the code dependence graph structure. Note that these pretraining procedures do not
require any human-labeled datasets. The model learns from the raw datasets without any human
supervision.

5.4 Experimental Setup

Research Questions: Our research questions (RQs) are designed to evaluate the effectiveness
of GraphCode2Vec. In particular, we compare the effectiveness of GraphCode2Vec to the
state-of-the-art in task-specific and generic code embedding methods (see RQ1 and RQ2). This
is to demonstrate the utility of GraphCode2Vec in solving downstream tasks, in comparison to
specialised learning-based approaches tailored towards solving specific SE tasks (RQ1) and other
general-purpose code embedding approaches (RQ1). We also examine if GraphCode2Vec effectively
embeds lexical and program dependence features in the latent space, and how this impacts its
effectiveness on downstream tasks (see RQ3). The first goal of RQ3 is to demonstrate the validity
of our approach, i.e., analyse that it indeed embeds lexical and dependence features as intended
via probing analysis. In addition, we analyse the contribution of lexical embedding and dependence
embedding to its effectiveness on downstream tasks by conducting an ablation study. We also
investigate the sensitivity of our approach to the choices in GraphCode2Vec’s framework, e.g.,
model pre-training (strategy) and GNN configuration. These experiments allow to evaluate the
influence of these choices on the effectiveness of GraphCode2Vec.

Specifically, we ask the following research questions (RQs):

RQ1 Task-specific learning-based applications: Is our approach (GraphCode2Vec) effective
in comparison to the state-of-the-art task-specific learning-based applications? What is the benefit of
capturing semantic features in our code embedding?

RQ2 Generic Code embedding: How effective is our approach (GraphCode2Vec), in comparison
to the state-of-the-art syntax-only generic code embedding approaches? What is the impact of
capturing both syntactic and semantic features (i.e., program dependencies) in code embedding? How
does GraphCode2Vec compare to GraphCodeBERT, a larger and more complex model?

RQ3 Further Analyses: What is the impact of model pre-training on the effectiveness of Graph-
Code2Vec? Does our approach effectively capture lexical and program dependence features? What
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is the contribution of lexical embedding or dependence embedding to the effectiveness of our approach
on downstream tasks? Is our approach sensitive to the choice of GNN?

Baselines: We compare the effectiveness of GraphCode2Vec to several state-of-the-art code
embedding approaches (aka generic baselines), and specialised or task-specific learning-based applica-
tions. On one hand, generic baselines refers to code embedding approaches that are designed to be
general-purpose, i.e., they provide a code embedding that is amenable to address several downstream
tasks. On the other hand, task-specific baselines refers to learning-based approaches that address a
specific downstream SE task, e.g., patch classification.

Table 5.2 provides details about these baselines for solution classification and patch classification.
Specifically, we evaluated GraphCode2Vec in comparison to four (4) generic code embedding
approaches, namely Code2Seq [4], Code2Vec [5], CodeBERT [57] and GraphCodeBERT [76] (see
RQ2 in section 5.5). We have selected these generic baselines because they have been evaluated
against several well-known state-of-the-art code embedding methods and demonstrated considerable
improvement over them. Besides, these approaches are recent, popularly used and have been applied
on many downstream (SE) tasks.

For task-specific learning-based approaches, we consider solution classification, and patch classification.
These are popular SE downstream tasks that have been studied using learning-based approaches.

We utilised three (3) specialised learning-based baseline for the solution classification task, namely
CNNSentence [156], OneCNNLayer [177] and SequentialCNN [67]. We also used all four patch
classifiers (Prophet [128], PatchSim [228], SimFeatures [217] and ODS [232]). These task-specific
baselines have been selected because they have been shown to outperform other proposed learning-
based approaches for these tasks. For instance, SequentialCNN [67] has been evaluated against five
other learning-based approaches and demonstrated to be more effective. ODS [232] has also been
shown to be more effective and efficient than the three other patch classifiers.

Subject Programs: In our experiments, we employed eight (8) subject programs written in Java.
Table 5.3 provides details about each of our subject programs and their experimental usage. Notably,
we employ four (4) publicly available programs for the downstream tasks, namely Defects4J [94],
Java-Small [5], and Java250 [179]. These datasets were employed for our comparative evaluation
(see RQ1 and RQ2). We chose these datasets because they are popular and have been employed in
the evaluation of our downstream tasks in previous studies [4, 179, 232, 242]. Besides, we employed
Java-Small and Java250 in our ablation study where we evaluate the contribution of lexical and
dependence embedding to the effectiveness of GraphCode2Vec (RQ3). We chose these two datasets
for this task because they correspond to tasks that require lexical and semantic information to be
effectively addressed. To further analyze GraphCode2Vec (see RQ3), we employed the Concurrency
dataset [48, 63] and collected two (2) subject programs (named LeetCode-10 and M-LeetCode)
from LeetCode4. We use these programs to investigate the difference between capturing lexical and
dependence information. In particular, the Concurrency dataset contains different concurrent code
types, which have similar syntactic/lexical features but different structure information. We mutated
LeetCode-10 to create M-LeetCode dataset. Our mutation preserves lexical features, but modifies
semantic or program dependence features such that LeetCode-10 and M-LeetCode have the same
lexical features, but different semantics. For example, a simple dependence mutant involves switching
outer and inner loops. We utilize LeetCode-10, M-LeetCode and Concurrency for the probing analysis
of our approach (GraphCode2Vec).

Downstream Tasks: In our evaluation, we considered four (4) major software engineering tasks,
namely, mutant prediction, patch classification, method name prediction, and solution classification.
These are popular downstream SE tasks that have been investigated in the community for decades.
For these four tasks, we evaluated GraphCode2Vec in comparison to four generic baselines, namely

4https://leetcode.com/
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Table 5.3: Details of Subject Programs
Subject #Progs. Tasks/AnalysesProgram
Java-Small 11 Method Name Prediction and Ablation Studies
Java250 75000 Solution Classification and Ablation Studies
Defects4J 15 & 5 Mutant Prediction and Patch Classification
LeetCode-10 100 Probing Analysis
M-LeetCode 100 Probing Analysis
Concurrency 46 Probing Analysis
Jimple-Graph 1976 Model Pre-training

Code2Seq [4], Code2Vec [5], CodeBERT [57] and GraphCodeBERT [76]. Table 5.3 provides details
on the subject programs employed for each downstream tasks. In the following, we provide further
details about the experimental setup for each task evaluated in this work.

Method Name Prediction: This refers to the task of predicting the method name of a function in
a program, given a set of method names and the body of the function as inputs [26]. This task
is useful for automatic code completion during programming. In our experiment, all four generic
baselines were evaluated for this task. We evaluated this task using the Java-Small dataset, since it
was designed for this task in previous studies [5] (see Table 5.3).

Solution Classification: This refers to the classification of source code into a predefined number
of classes, e.g., based on the task it solves [177], or programming languages [67]. It has 250
problems(labels) and each problem has 300 solutions5. This is useful to assist or assess programming
tasks and manage code warehouse. We evaluated all four generic baselines on this task, as well as three
specialised learning-based approaches for this task, namely CNNSentence [156], OneCNNLayer [177],
SequentialCNN [67] (Table 5.2). We evaluated this task using the Java250 dataset, which was designed
for this task in previous studies [179] (see Table 5.3).

Patch Classification: For this task, the aim is to identify the correctness of patches, i.e., if a patch
is (in)correct, wrong or over-fitting [228, 232]. In our experiment, we compare the performance of
GraphCode2Vec to the four generic baselines, as well as the current state-of-the-art learning-based
approach for patch classification, i.e, ODS [232]. We employed the Defects4J [94] dataset (see
Table 5.3) which has also been used by previous studies for this task [228, 232]. The goal of this task
is to identify over-fitting APR patches. We used five (5) programs and 890 APR patches6 containing
643 over-fitting patches and 247 correct patches.

Mutant Prediction: The goal of this task is to predict different types of mutants employed during
mutation testing. Mutation testing is an important SE task that is typically deployed to determine
the adequacy of a test suite to expose injected faults in a program [165]. In this work, we predict if a
mutant is killable or live. To this end, we employ the Defects4J [94] dataset (see Table 5.3) which has
been popularly employed for several SE tasks, including mutation testing [165]. We curated a mutant
prediction dataset containing 15 Java programs, and 16,216 mutants.

Pre-training Setup: For model pre-training, we curated the Jimple-Graph dataset from the
Maven repository7, it contains 1,976 Java libraries with about 3.5 millions methods in total. We
randomly sample around 10% data for the pre-traning purpose. These Java libraries are from 42
application domains, this ensures a reasonable program diversity, these domains include math and
image processing libraries. For the BiLSTM component (Section 5.3.2), we use one layer with hidden

5The dataset description can be found in the link, https://dax-cdn.cdn.appdomain.cloud/dax-project-codenet/1.
0.0/readme.html?_ga=2.202687321.954561633.1651654500-214066389.1651654500

6We exempted 12 patches out of the 902 patched programs used by ODS, since they deleted complete functions, and
there is no code representation for deleted functions.

7https://mvnrepository.com/
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Table 5.4: Effectiveness of GraphCode2Vec vs. Syntax-only Generic Code Embedding approaches.
The best results are in bold text, the results for the best-performing baseline are in italics. We report
the improvement in effectiveness between GraphCode2Vec and the best-performing baseline in “%
Improvement”, improvements above five percent (>5%) are in bold text.

Generic Code Method Name Prediction Solution Classification Mutant Prediction Patch Classification
Embedding F1 Preci Recall F1 Preci Recall F1 Preci Recall F1 Preci Recall
Code2Seq 0.4920 0.5963 0.4187 0.7542 0.7678 0.7536 0.5911 0.6423 0.5881 0.8901 0.8355 0.9541
Code2Vec 0.3309 0.3779 0.2943 0.8034 0.8081 0.8028 0.6398 0.6632 0.6320 0.8787 0.8806 0.8782
CodeBERT 0.3963 0.3295 0.4969 0.8783 0.8747 0.8878 0.7106 0.7305 0.6995 0.9275 0.9099 0.9473
GraphCode2Vec 0.5807 0.6150 0.5502 0.9746 0.9753 0.9746 0.7542 0.7569 0.7524 0.9359 0.9145 0.9602
% Improvement 18.03% 3.14% 10.73% 10.96% 11.50% 9.78% 6.14% 3.61% 7.56% 0.91% 0.51% 0.64%

dimension size 150. We pre-train sub-tokens using the Jimple text for each program, the sub-token
embedding dimension is set to 100 (see Section 5.3). We fine-tune the downstream tasks using the
obtained pre-trained weights after one epoch. All GNNs use five (5) layers with dropout ratio 0.2.
We use Adam [99] optimizer with 0.001 learning rate. In our experiment, we evaluated all three (3)
pre-training strategies (Section 5.3.4).

Metrics and Measures: For all tasks, we report F1-score, precision and recall. We discuss most of
our results using F1-score since it is the harmonic mean of precision and recall. Besides, it is a better
measurement metric than accuracy, especially when the dataset is imbalanced (e.g., Java-Small).
Hence, we do not report the accuracy for imbalanced datasets, e.g., mutant data is imbalanced
with about 30% live mutants and 70% killable mutants. We provide the code details in the Github
repository8.

Probing Analysis: The goal of our probing analysis is to ensure that lexical and dependence features
are indeed learned by GraphCode2Vec’s code embedding. Probing is a widely used technique
to examine an embedding for desired properties [42, 183, 243]. To this end, we trained diagnostic
classifiers to probe GraphCode2Vec’s code embedding for our desired properties (i.e., lexical and/or
program dependence features). Concretely, we train a simple classifier with one MLP layer fed with
the learned code embedding (e.g. lexical) to examine if our code embedding encodes the desired
property. To achieve this, we curated a dedicated dataset for training and evaluating our probing
classifiers. Specifically, we employ three probing datasets, namely LeetCode-10, M-LeetCode and
Concurrency (Table 5.3). We have employed these datasets because they require lexical or dependence
embedding to address their corresponding tasks.

Probing Task Design: We design four probing tasks. The first three (Task-1, Task-2 and Task-3)
use LeetCode-10 and M-LeetCode, and the last one (Task-4) uses Concurrency. Task-1 classifies what
problem the solution code solves on LeetCode-10. LeetCode-10 shares lexical token similarities within
one problem group, and some solutions from the different problem groups may have the same semantic
structure, e.g., using one for-loop. Therefore, we hypothesize that the lexical embedding is more
informative than the semantic embedding for Task-1. Task-2 mixes LeetCode-10 and M-LeetCode,
and then judges which dataset the input code is from (binary classification). LeetCode-10 and
M-LeetCode share lots of similar lexical tokens but the code semantic structures are different. Hence,
the semantic embedding should be more informative than the code lexical syntactic embedding.
Task-3 also mixes the two datasets but uses all the 20 labels instead of a binary classification. Task-3
integrates Task-1 and Task-2, requiring both lexical and semantic information. Task-4 is a concurrency
bug classification task. The code with same label can have the high lexical similarity but the code
semantic structure should be different.

GraphCode2Vec’s Configuration: We employ three (3) pre-training strategies, namely node
classification, context prediction and VGAE. Our approach supports four (4) GNN architectures
for dependence embedding (see Section 5.3), namely GCN [102], GraphSAGE [77], GAN [212] and
GIN [229]. In total, we have 12 possible configurations. However, the default configuration is context

8https://github.com/graphcode2vec/graphcode2vec
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Table 5.5: Effectiveness of GraphCode2Vec (aka “Graph.”) vs. Task-Specific learning-based
approaches for two SE tasks. The best results are in bold text, the results for the second best-
performing approach are in italics. The improvement in effectiveness between GraphCode2Vec
and the best-performing baseline is reported in “Graph. (% Improv.)”.

Solution Classification Patch Classification
CNN One Seq.- Graph. SimFea- Prop- Patch- ODS Graph.
Sen. CNN. CNN (% Improv.) tures het Sim (% Improv.)

F1-Score 0.690 0.540 0.470 0.970 (40.6%) 0.881 0.892 0.881 0.900 0.915 (1.7%)
Recall 0.690 0.540 0.470 0.970 (40.6%) 0.895 0.891 0.389 0.950 0.960 (2.1%)
Precision 0.700 0.550 0.480 0.970 (38.6%) 0.870 0.889 0.830 0.924 0.936 (1.3%)

Table 5.6: Effectiveness of GraphCode2Vec vs. GraphCodeBERT. Lower complexity, the best
results and higher improvements (above five percent (>5%)) are in bold text.) are in bold text.
Generic Code Model Pretrain Method Name Prediction Solution Classification Mutant Prediction Patch Classification
Embedding Size Data F1 Preci Recall F1 Preci Recall F1 Preci Recall F1 Preci Recall
GraphCodeBERT 124M 2.3M 0.5761 0.7261 0.4775 0.9850 0.9868 0.9843 0.7649 0.768 0.7623 0.9317 0.9108 0.9557
GraphCode2Vec 2.8M 314K 0.5807 0.6150 0.5502 0.9746 0.9753 0.9746 0.7542 0.7569 0.7524 0.9359 0.9145 0.9602
% Improvement 50X 7X 7.99% -15.30% 15.23% -1.07% -1.17% -0.18% -1.40% -1.45% -1.30% 0.45% 0.41% 0.47%

prediction for pre-training and dependence embedding with GAT architecture. In our experiments, we
evaluate the effect of each configuration on the effectiveness of our approach (see Section 5.5).

Implementation Details and Platform: GraphCode2Vec was implemented in about 4.8 KLOC
of Python code, using the Pytorch ML framework. Our data processing and evaluation code is about
3 KLOC of Java code. We use Soot [209] to extract the program dependence graph (PDG). We reuse
the code from the public repository of each baseline in our experiments.9 However, we adapt each
baseline to our downstream tasks, e.g., by replacing the classifier but using the same performance
metrics. All experiments were conducted on a Tesla V100 GPU server, with 40 CPUs (2.20 GHz)
and 256G of main memory. The implementation of GraphCode2Vec is available online10.

5.5 Experimental Results

RQ1 Task-specific learning-based applications: This experiment examines how Graph-
Code2Vec compares to seven (7) state-of-the-art task-specific learning-based techniques for solution
classification and patch classification. We selected these two tasks for this experiment due to their
popularity, availability of ML-based baselines and their application to vital SE tasks, e.g., automated
program repair, patch validation, code evolution, and software warehousing. We evaluated against
three solution classifiers, namely CNNSentence [156], OneCNNLayer [177], SequentialCNN [67]. We
also compare GraphCode2Vec to four patch classifiers – Prophet [128], PatchSim [228], SimFea-
tures [217] and ODS [232].

Our evaluation results show that GraphCode2Vec outperforms the state-of-the-art task-specific
learning based approaches for the tested tasks, i.e., patch classification, and solution classification.
Table 5.5 highlights the effectiveness of GraphCode2Vec in comparison to learning-based approaches
for patch classification and solution classification, respectively. In particular, GraphCode2Vec
outperforms all seven task-specific baselines in our evaluation. GraphCode2Vec outperforms
all three baselines for solution classification, it is almost twice as effective as SequentialCNN and
OneCNNLayer, and 40% more effective than the best baseline – CNNSentence (see Table 5.5). In
addition, GraphCode2Vec outperforms all four state of the art patch classifiers, i.e., ODS [232],
Prophet [128]), PatchSim [228] and SimFeatures [217]. It is at least twice as effective as PatchSim
(in terms of recall) and slightly (up to 2%) more effective than the best baseline, i.e., ODS (see

9https://github.com/tech-srl/code2vec,https://github.com/tech-srl/code2seq, https://github.com/microsoft/CodeBERT,
https://github.com/hukuda222/code2seq

10https://github.com/graphcode2vec/graphcode2vec
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Table 5.5). This result demonstrates the utility of our approach in addressing both downstream
tasks. Furthermore, it highlights the effectiveness of generic code embedding in comparison to
specialised learning-based approaches. This superior performance can be attributed to the fact that
GraphCode2Vec is generic, and it employs self-supervised model pre-training.

GraphCode2Vec is up to two times (2x) more effective than the seven (7) state-of-the-art
task-specific approaches, for both tasks.

RQ2 Generic Code embedding: In this experiment, we demonstrate how GraphCode2Vec
compares to the state-of-the-art generic code embedding approaches. We thus, compare the effec-
tiveness of GraphCode2Vec with three (3) syntax-only generic baselines, namely CodeBERT,
Code2Seq and Code2Vec. Additionally, we compare the effectiveness of our approach to a a larger and
more complex state-of-the-art generic approach that captures both syntax and semantics, specifically,
GraphCodeBERT. We used four (4) downstream SE tasks – method name prediction, solution
classification, mutant prediction and patch classification.

Syntax-only Generic Embedding: In our evaluation, we found that our approach (Graph-
Code2Vec) outperforms all syntax-based generic baselines for all tasks. Table 5.4 highlights the
effectiveness of GraphCode2Vec in comparison to the baselines (i.e., Code2seq, Code2Vec and
CodeBERT). As an example, consider method name prediction, GraphCode2Vec is twice as effec-
tive as some baselines, e.g., Code2Vec. For all (four) tasks, GraphCode2Vec clearly outperforms
all baselines across all metrics. It is up to 12% and 18% more effective than the best baselines,
CodeBERT and Code2Seq, respectively. We observed CodeBERT is the best baseline on three tasks.
We attribute the performance of CodeBERT on these tasks to its much higher complexity (i.e.,
huge number of trainable parameters, more than 124M) and the size of the pre-training dataset
(8.5M) [90]. Overall, our results demonstrate that including semantic program features improves the
performance of code representation across these downstream tasks. Thus, emphasizing the importance
of semantic features in addressing SE tasks, especially the need to capture program dependencies in
code representation.

For all (four) tasks, GraphCode2Vec is (up to 18%) more effective than (the best) syntax-only
baselines.

Complementarity with GraphCodeBERT: We also observe that despite the lower complexity of
our approach (GraphCode2Vec), it is comparable and complementary to GraphCodeBERT across
tested tasks. GraphCodeBERT captures both syntactic and semantic program features but, it is
significantly larger and complex than GraphCode2Vec. Table 5.6 highlights the complexity and ef-
fectiveness of GraphCodeBERT in comparison to GraphCode2Vec. For instance, GraphCodeBERT
has at least 50 times (50x) as many trainable parameters as GraphCode2Vec (124 million versus
2.8 million parameters), and seven times (7x) as much pre-training data (2.3M versus 314K methods).
Despite the difference in size and complexity, GraphCodeBERT has a comparable performance to
GraphCode2Vec. Specifically, GraphCode2Vec outperforms GraphCodeBERT on two tasks
(method name prediction and patch classification) and it is comparable on the other two tasks (solution
classification, and mutant prediction). Notably, GraphCodeBERT has a negligible improvement over
GraphCode2Vec for these two tasks (about 1%). These results demonstrate that although simpler
and trained on 7 times less data, GraphCode2Vec is complementary to GraphCodeBERT. This
disparity in size and complexity implies that precise program dependence information is important.
Nevertheless, our results show that both GraphCode2Vec and GraphCodeBERT are more effective
than syntax-only approaches, e.g., CodeBERT (cf. Table 5.5 and Table 5.6).

GraphCode2Vec is complementary to GraphCodeBERT despite being simpler and trained on
seven times (7x) less data. It is more effective on two tasks, and comparable on the other two tasks.
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Table 5.7: Probing Analysis results showing the accuracy for all pre-training strategies and GNN
configurations. Best results for each sub-category are in bold, and the better results between syntactic
(lexical) embedding and semantic embedding is in italics. “syn+sem” refers to GraphCode2Vec’s
models capturing both syntactic and semantic features.

Pre-training Captured Task-1 (syntax-only) Task-2 (semantic-only) Task-3 (syntax and semantic) Task-4 (semantic-only)
Strategy Feature GCN GIN GSAGE GAT GCN GIN GSAGE GAT GCN GIN GSAGE GAT GCN GIN GSAGE GAT

Context
semantic 0.822 0.674 0.842 0.886 0.684 0.614 0.704 0.741 0.513 0.381 0.543 0.612 0.654 0.666 0.657 0.594
syntactic 0.934 0.938 0.942 0.928 0.615 0.602 0.617 0.602 0.529 0.527 0.528 0.527 0.580 0.525 0.524 0.449
syn+sem 0.918 0.928 0.95 0.942 0.641 0.641 0.688 0.797 0.559 0.546 0.587 0.6 0.605 0.592 0.608 0.592

Node
semantic 0.758 0.820 0.802 0.840 0.651 0.667 0.741 0.686 0.426 0.514 0.625 0.563 0.647 0.664 0.659 0.670
syntactic 0.904 0.884 0.876 0.916 0.584 0.587 0.606 0.593 0.516 0.504 0.490 0.513 0.484 0.476 0.420 0.550
syn+sem 0.872 0.9 0.876 0.902 0.624 0.618 0.691 0.67 0.522 0.508 0.572 0.545 0.519 0.522 0.451 0.57

VGAE
semantic 0.856 0.812 0.868 0.866 0.594 0.653 0.583 0.617 0.403 0.532 0.407 0.477 0.673 0.680 0.674 0.656
syntactic 0.916 0.932 0.928 0.950 0.591 0.572 0.594 0.599 0.485 0.494 0.492 0.495 0.523 0.617 0.584 0.591
syn+sem 0.92 0.926 0.928 0.938 0.59 0.63 0.591 0.596 0.498 0.548 0.508 0.492 0.627 0.658 0.531 0.586

Best Config. Syntactic = 8/12 Semantic = 9/12 Syntactic + Semantic = 7/12 Semantic = 12/12

Table 5.8: Effectiveness (F1-Score) of GraphCode2Vec on all GNN configurations and Pre-training
Strategies, for all downstream tasks. For each subcategory, the best results for each category are in
bold text.

Method Name Prediction Solution Classification
GNN No Pre- Pre-training Strategies No Pre- Pre-training Strategies

training Context Node VGAE Average training Context Node VGAE Average
GCN 0.4494 0.5018 0.4859 0.5337 0.4930 0.9679 0.9710 0.9710 0.9751 0.9712
GIN 0.4347 0.4684 0.4037 0.5266 0.4584 0.9645 0.9711 0.9700 0.9710 0.9692
GraphSage 0.3998 0.5006 0.4531 0.5412 0.4736 0.9675 0.9712 0.9721 0.9727 0.9709
GAT 0.4246 0.5807 0.6194 0.5890 0.5534 0.9647 0.9746 0.9703 0.9735 0.9708
Average 0.4271 0.5129 0.4905 0.5476 0.9662 0.9720 0.9718 0.9731
Variance 0.0003 0.0017 0.0064 0.0006 2.2e-6 2.2e-6 7.1e-7 2.3e-6
SD 0.0180 0.0413 0.0800 0.0244 0.0015 0.0015 0.0008 0.0015

Table 5.9: Ablation Study results showing the F1-Score of GraphCode2Vec. Best results are
bold.

Pre-training Captured Method Name Prediction Solution Classification
Strategy Feature GCN GIN GSAGE GAT GCN GIN GSAGE GAT

Context semantic 0.5454 0.4674 0.5038 0.6082 0.9698 0.9649 0.9682 0.9740
syntactic 0.4575 0.4500 0.4644 0.4381 0.9614 0.9560 0.9588 0.9610

Node semantic 0.4843 0.4136 0.4404 0.5888 0.9738 0.9711 0.9696 0.9704
syntactic 0.3800 0.3845 0.3660 0.3560 0.9563 0.9562 0.9572 0.9595

VGAE semantic 0.5988 0.4786 0.3675 0.5464 0.9725 0.9663 0.9671 0.9711
syntactic 0.3922 0.4053 0.3936 0.4058 0.9711 0.9659 0.9626 0.9705

Best config. Semantic = 11/12 Semantic = 12/12

RQ3 Further Analyses: The goal of this research question is to examine the impact of model
pre-training on improving GraphCode2Vec’s effectiveness on downstream tasks. We also investigate
if GraphCode2Vec effectively captures lexical and/or semantic program feature(s). We employ
probing analysis to analyze if pre-trained GraphCode2Vec models learn the lexical and semantic
features required for feature-specific tasks, i.e, that require capturing either or both features to be
well-addressed. For instance, Task-4 is the concurrency classification task requiring semantic features.
In addition, we conduct an ablation study to investigate how the syntactic and semantic information
captured by GraphCode2Vec influence its effectiveness on downstream tasks. Finally, we evaluate
the sensitivity of our approach to the selected GNN.

Model Pre-training: We examine if the three pre-training strategies improve the effectiveness
of GraphCode2Vec on downstream tasks, using two downstream tasks and all three pre-training
strategies (node, context and VGAE) (see Table 5.8).

We found that model pre-training improves the effectiveness of GraphCode2Vec across all tasks.
Pre-training improves its effectiveness by up to 28%, on average. For instance, consider model
pre-training with VGAE strategy for method name prediction (see Table 5.8). This result implies
that model pre-training improves the effectiveness of GraphCode2Vec on downstream SE tasks.

Model pre-training improves the effectiveness of
GraphCode2Vec (by up to 28%, on average) across all tasks.
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Probing Analysis: Let us examine if our pre-trained code embedding indeed encodes the desired
lexical and semantic program features. To achieve this, we use the lexical embedding and semantic
embedding from GraphCode2Vec’s pre-training as inputs for probing. In this probing analysis, only
the classifier is trainable and GraphCode2Vec is frozen and non-trainable. We use one MLP-layer
classifier to evaluate these models on four tasks, Task-1 requires only lexical/syntactic information.
However, Task-2 and Task-4 require only semantic information (program dependence). Finally, Task-3
subsumes tasks one and two, such that it requires both syntactic and semantic information.

Our evaluation results show that GraphCode2Vec’s pre-trained code embedding mostly captures the
desired lexical and semantic program features for all tested tasks, regardless of the pre-training strategy
or GNN configuration. Table 5.7 highlights the effectiveness of each frozen pre-trained model for each
task, configuration and pre-training strategy. Notably, the frozen pre-trained model performed best
for the desired embedding for each task in three-quarters (36/48=75%) of all tested configurations.
As an example, for tasks requiring semantic information (Task-2 and Task-4), our pre-trained model
encoding only semantic information performed best for 88% of all configurations (21/24 cases). This
result demonstrates that GraphCode2Vec effectively encodes either or both syntactic and semantic
features, this is evidenced by the effectiveness of models encoding desired feature(s) for feature-specific
tasks.

GraphCode2Vec effectively encodes the syntactic and/or semantic features, feature-specific
models performed best in 75% of cases.

Ablation Study: We investigate the impact of syntactic/lexical embedding and semantic/dependence
embedding on addressing downstream tasks. Using method name prediction and solution classification,
we examine how removing lexical embedding or dependence embedding during the fine-tuning of
GraphCode2Vec’s pre-trained model impacts the effectiveness of the approach.

Our results show that GraphCode2Vec’s dependence embedding is important to effectively address
our downstream SE tasks. Table 5.9 presents the ablation study results. In particular, results show
that models fine-tuned with only semantic information outperformed those fine-tuned with syntactic
features in almost all (23/24 = 96% of) cases. This result demonstrates the effectiveness of dependence
embedding in addressing downstream SE tasks.

Results show that dependence/semantic embedding is vital to the effectiveness of
GraphCode2Vec on downstream SE tasks.

GNN Sensitivity: This experiment evaluates the sensitivity of our approach to the choice of GNN.
Table 5.8 provides details of the GNN sensitivity analysis, tasks and GNN configurations. To evaluate
this, we compute the variance and standard deviation (SD) of the effectiveness of GraphCode2Vec
when employing different GNNs.

Our evaluation results show that GraphCode2Vec is stable, it is not highly sensitive to the choice of
GNN. Table 5.8 shows the details of the SD and variance of our approach for each GNN configuration.
Across all tasks, the variance and SD of the GraphCode2Vec is mostly low, it is maximum 0.0064
and 0.0413, respectively.

GraphCode2Vec is stable across GNN configurations, the variance and SD of its effectiveness are
very low for all configurations.

5.6 Threats to Validity

External Validity: This refers to the generalizability of our approach and results, especially beyond
our data sets, tasks and models. For instance, there is a threat that GraphCode2Vec does not
generalize to other (SE) tasks and other Java programs. To mitigate this threat, we have evaluated
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GraphCode2Vec using mature Java programs with varying sizes and complexity (see Table 5.3), as
well as downstream tasks with varying complexities and requirements.

Internal Validity: This threat refers to the correctness of our implementation, if we have correctly
represented lexical and semantic features in our code embedding. We mitigate this threat by evaluating
the validity of our implementation with probing analysis and ablation studies (see Section 5.5). We
have also compared GraphCode2Vec to 7 baselines using four (4) major downstream tasks. In
addition, we have conducted further analysis to test our implementation using different pre-training
strategies and GNN configurations. We also provide our implementation, (pre-trained) models and
experimental data for scrutiny, replication and reuse.

Construct Validity: This is the threat posed by our design/implementation choices and their implica-
tions on our findings. Notably, our choice of intermediate code representation (i.e., Jimple) instead
of source code implies that our approach lacks natural language text (such as code comments) in
the (pre-)training dataset. Indeed, GraphCode2Vec would not capture this information as it is.
However, it is possible to extend GraphCode2Vec to also capture natural language text. This can
be achieved by performing lexical and program dependence analysis at the source code level.

5.7 Conclusion

In this work, we have proposed GraphCode2Vec, a novel and generic code embedding approach
that captures both syntactic and semantic program features. We have evaluated it in comparison to
the state-of-the-art generic code embedding approaches, as well as specialised, task-specific learning
based applications. Using seven (7) baselines and four (4) major downstream SE tasks, we show that
GraphCode2Vec is stable and effectively applicable to several downstream SE tasks, e.g., patch
classification and solution classification. Moreover, we show that it indeed captures both lexical and
dependency features, and we demonstrate the importance of generically embedding both features to
solve downstream SE tasks. We also provide our experimental code for replication and reuse:

https://github.com/graphcode2vec/graphcode2vec
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6 Test Selection for Deep Learning Systems

Testing of deep learning models is challenging due to the excessive number and complexity of the
computations involved. As a result, test data selection is performed manually and in an ad hoc way.
This raises the question of how we can automatically select candidate data to test deep learning
models. Recent research has focused on defining metrics to measure the thoroughness of a test
suite and to rely on such metrics to guide the generation of new tests. However, the problem of
selecting/prioritising test inputs (e.g. to be labelled manually by humans) remains open. In this work,
we perform an in-depth empirical comparison of a set of test selection metrics based on the notion
of model uncertainty (model confidence on specific inputs). Intuitively, the more uncertain we are
about a candidate sample, the more likely it is that this sample triggers a misclassification. Similarly,
we hypothesise that the samples for which we are the most uncertain, are the most informative
and should be used in priority to improve the model by retraining. We evaluate these metrics on 5
models and 3 widely-used image classification problems involving real and artificial (adversarial) data
produced by 5 generation algorithms. We show that uncertainty-based metrics have a strong ability
to identify misclassified inputs, being 3 times stronger than surprise adequacy and outperforming
coverage related metrics. We also show that these metrics lead to faster improvement in classification
accuracy during retraining: up to 2 times faster than random selection and other state-of-the-art
metrics, on all models we considered.
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6.1 Introduction

Deep Learning (DL) systems [115] are capable of solving complex tasks, in many cases equally well or
even better than humans. Such systems are attractive because they learn features by themselves and
thus require only minimum human knowledge. This property makes DL flexible and powerful. As a
result, it is increasingly used and integrated with larger software systems and applications.

Naturally, the adoption of this technology introduces the need for its reliable assessment. In classical,
code-based software engineering, this assessment is realised by means of testing. However, the testing
of DL systems is challenging due to the complexity of the tasks they solve. In order to effectively test
the DL system, we need to identify corner cases that challenge the learned properties. In essence, DL
system testing should focus on identifying the incorrectly learned properties and lead to data that
can make the systems deviate from their expected behaviour.

To this end, recent research [98, 131, 169, 203] focuses on designing test coverage metrics to measure
how thoroughly a set of inputs tests the model. Most of them (e.g. those inspired by neuron
coverage [131, 169, 203]) focus on activating various combinations of neurons and on generating new
test inputs to increase the proportion of those combinations. Others (e.g. [98]) argue that DL models
reflect particular properties of the training data and their behaviour is determined based on the
knowledge they acquired during the training phase. As such, they promote coverage metrics that
measure the differences across the inputs rather than within the model.

In this work, we focus on the problem of selecting test inputs. In DL, test input selection adresses a
practical concern: which subset of unlabelled data one should label to discover faults in DL models.
This goal differs from previous methods that either measure test thoroughness or generate (artificial)
test inputs. Our aim is to help with the manual effort involved when labelling test data (deciding
the class of an input). Evidently, data labelling involves extensive manual analysis (due to the large
amounts of data required by DL systems), which could be reduced by using only the most likely fault
revealing test data. Therefore, to reduce this burden, we aim to identify metrics that help selecting
the most interesting (likely to trigger misclassifications) test data.

In the recent years, the scientific community has come up with metrics to support the testing of deep
learning models (read more in Section Section 2.2). However, these metrics were studied in different
contexts (e.g. adversarial example generation and detection) or testing scenarios (e.g. measuring test
thoroughness). All in all, the capability of existing metrics to pinpoint misclassified inputs remains
unclear. Thus, our contribution is the evaluation of these metrics from a new perspective; the test
input selection. That is serving the purpose of selecting inputs that maximise the chances to trigger
misclassifications. To our knowledge, our work is the only one to study this test selection goal.

We postulate that effective metrics should select inputs that are more likely to trigger misclassifications
by the model. Experience has shown that classification mistakes are incorrectly learned properties
that happen due to overlapping and closely located regions of the feature space. Therefore, the cases
residing between the learned categories and their boundaries are the most likely to be the incorrectly
learned ones. In view of this, rather than aiming at the coverage of specific neurons [169] or test data
diversity [98], we aim at the data with properties that are close to the model boundaries. In other
words, we argue that test selection should be directed towards the boundaries of the learned classes.

Accordingly, we consider test selection metrics based on the notion of model uncertainty (low confidence
on specific inputs). Intuitively, the more uncertain a model is about a candidate sample, the more
likely the sample will trigger misclassification. Similarly, the samples for which the model is the most
uncertain are also the most informative ones for learning (should be used to improve the models by
retraining). As suggested by Gal and Ghahramani [62], we approximate uncertainty by the variance
in prediction probabilities observed by randomly dropping neurons in the network multiple times
[200]. We also use the actual model’s output probabilities as a certainty measure, which we also
combine with dropout variance.

70



6.2. MOTIVATION AND PROBLEM DEFINITION

We evaluate these metrics using image classifiers on three datasets, i.e., MNIST, Fashion-MNIST and
CIFAR-10, and compare them with respect to previously proposed metrics, i.e., the surprise adequacy
metrics [98] and several metrics based on neuron coverage [131, 169]. In particular, we investigate
the correlation between the metrics and misclassification on both real and artificial (adversarial) data.
We show that uncertainty-based metrics have medium to strong correlations with misclassification
when considering real data, and strong correlations when considering a mix of real and adversarial
data. In contrast, metrics based on coverage have weak or no correlation, while surprise adequacy
has weak correlation.

Interestingly, our results reveal that when considering misclassifications, the prediction probabilities (a
simple certainty metric overlooked by previous work) is among the most effective metrics, significantly
outperforming surprise adequacy and coverage metrics. However, in the case of retraining, a
combination of the dropout variance with prediction probabilities outruns the other metrics in terms
of faster improvements in classification accuracy.

Our contributions can be summarised by the following points:

• We propose to perform test input selection based on a set of metrics measuring model uncertainty,
i.e., the confidence in classifying unseen inputs correctly. We consider the variance caused by
multiple dropouts (i.e. the distribution of the model’s output under dropouts), the model’s
prediction probabilities, and metrics combining the two.

• We perform the first study on the fault revealing ability (misclassification triggering ability)
of test selection metrics. We demonstrate that the uncertainty-based metrics challenge the
DL models and have medium to strong correlations with misclassification (correlations of
approximately 0.3 on real data and 0.6 on real plus adversarial ones). Furthermore, we show
that these metrics are significantly stronger than the surprise adequacy and coverage related
metrics.

• We also show that model uncertainty can guide the selection of informative input data, i.e.,
data that are capable of increasing classification accuracy. In particular, when retraining the
DL model based on the selected data, the best performing uncertainty metrics achieve up to 2
times faster improvement over random selection and coverage metrics.

6.2 Motivation and Problem Definition

DL systems are known for their capability to solve problems with large input space, by learning
statistical patterns from the available data. This is typically the case in computer vision applications
(the use case we consider in our experiments), where the goal is to classify images correctly between
two classes or more. An interesting characteristics of such problems is that data (i.e. images) usually
proliferate. However, to be useful these data also need to be labelled (associated with their correct
class). They can then be used either to test the model (check that the DL model predicts the correct
label of the image) to (re-)train it (feed new labelled data into the model to improve its predictions).
Data labelling is typically performed by manual or non-systematic procedures. This means that DL
system developers have to put a lot of effort to produce a DL model of acceptable quality. Our key
motivation is to support them in this task by optimizing the effort-reward ratio.

We formulate this problem as follows. Let us assume that developers have access to an arbitrarily
large number of inputs (i.e. data without label) and that they can afford to label only an arbitrary
number of k inputs. We name test input selection the problem of selecting the k most effective inputs
to label. Here, effectiveness is measured differently depending on the considered DL development
phase:
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• When testing the trained DL model, effectiveness is measured in terms of fault-revealing ability.
Misclassifications being the most obvious defects that occur in DL models, selection methods
should maximize the number of inputs misclassified by the model.

• When re-training the model, the inputs to label should be selected in order to maximize the
performance gain (e.g. maximize accuracy).

Our goal is to address the test input selection problem by providing objective and measurable ways
of identifying effective test inputs. Thus, We thus aim at answering the following two questions:

- How can we select test inputs to challenge (trigger misclassifications in) a Deep Learning model?

- How can we select additional training inputs to improve the performance (increase classification
accuracy) of a Deep Learning model?

We answer these questions by conducting an empirical study evaluating the adequacy of different
selection metrics. Based on our results, practitioners can identify which metrics they should use
given their goal (testing or retraining their model) and their context (e.g. with or without adversarial
data).

6.3 Test Selection Metrics

Our overall goal is to consider a range of metrics related to misclassification and study how effective
they are in selecting misclassified inputs. Particularly, we hypothesize that model uncertainty is
strongly correlated to misclassification, that is, the more uncertain a model is towards a certain input,
the more it is likely to misclassify this input. Dropout variance is the most concrete and simple way
to estimate the prediction uncertainty [62], instead of dealing with Bayesian models whose training
can often be quite demanding. Other metrics we consider come from the machine learning testing
literature (e.g. neuron coverage [169], surprise adequacy [98] and etc.) – please refer to Section 6.3.1
for details. Although they were not meant for test input selection (as we define in this work), they
relate to the general concept of test adequacy and remain commonly used to drive test generation.
As such, they appear as natural baselines worth of consideration. Since we aim at experimenting with
the test input selection problem (our new perspective), we should use the most relevant metrics. The
remaining metrics represent complementary properties: neuron boundary coverage is a generalization
of neuron coverage; silhouette coefficient is an alternative to surprise adequacy; Kullback-Leiber
divergence is another way of measuring dropout variance that estimates the uncertainty of the model,
therefore we consider them as well.

6.3.1 Metrics Derived from the Machine Learning Testing Literature

The metrics we retain from the literature were initially directed to measuring test thoroughness
(“coverage”) rather than test input selection. Still, they can be used for the latter purpose by selecting
the test inputs that reach the highest coverage.

6.3.1.1 Neuron Coverage

Neuron coverage was first proposed in [169] to drive the generation of artificial inputs. It is simply
defined as the percentage of neurons that were activated by at least one input of the test set.
Accordingly, we define the coverage of a single input as follows.
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Definition 1 Let D be a trained DL model composed of a set N of neurons. The Neuron Coverage
(NC) of the input x wrt. D is given by

NC(x) = |{n ∈ N | activate(n, x)}|
|N |

where activate(n, x) holds true if and only if n is activated when passing x into D.

The above definition determines the coverage of an input independently of the other inputs. One can
instead define the additional neurons covered by x that were not covered during training.

Definition 2 Let D be a DL model composed of a set N of neurons and trained on a set T of inputs
. The Additional Neuron Coverage (ANC) of the input x wrt. D is given by

ANC(x) = |{n ∈ N | activate(n, x) ∧ ∀x′ ∈ T : ¬activate(n, x′)}|
|N |

.

We also consider the other test thoroughness metrics that extend the concept of NC: K-Multisection
Neuron Coverage (KMNC), Neuron Boundary Coverage (NBC) and Strong Neuron Acti-
vation Coverage (SNAC). A detailed description of those metrics can be found in their original
paper [131].

6.3.1.2 Surprise Metrics

The next two test selection methods are based on surprise adequacy [98]. In their recent paper, Kim
et al. [98] proposed two metrics to measure the surprise of a DL model D when confronted to a
new input x. The first one is based on kernel density estimation and aims at estimating the relative
likelihood of x wrt. the training set in terms of the activation values of D’s neurons. To reduce
computational cost, only the neurons of a specified layer are considered [98].

Definition 3 Let D be a DL model trained on a set T of inputs. The Likelihood-based Surprise
Adequacy (LSA) of the input x wrt. D is given by

LSA(x) = 1
|ANL

(TD(x))|
∑

xi∈TD(x)

KH(αNL
(x)− αNL

(xi))

where αNL
(x) is the vector recording the activation values of the neurons in layer L of D when

confronted to x, TD(x) is the subset of T composed of all inputs of the same class as x, ANL
(TD(x)) =

{αNL
(xi) | xi ∈ TD(x)}, and KH is the Gaussian kernel function with bandwidth matrix H.

As an alternative, Kim et al. proposed a second metric that relies on Euclidean distance instead
of kernel density estimation. The idea is that inputs that are closer to inputs of other classes and
farther from inputs of their own class are considered as more surprising. This degree of surprise is
measured as the quotient between the distance of the closest input xa of the same class as x and the
distance of the closest input xb from any other class. Like the LSA metric, all these distances are
considered in the activation value space of the inputs.

Definition 4 Let D be a DL model trained on a set T of inputs. The Distance-based Surprise
Adequacy (DSA) of the input x wrt. D is given by

DSA(x) = ||αN (x)− αN (xa)||
||αN (xa)− αN (xb)||
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where

xa = argmin
{xi∈TD(x)}

||αN (x)− αN (xi)||

xb = argmin
{xj∈T\TD(x)}

||αN (xa)− αN (xj)||

and where D(x) is the predicted class of x by D and αN (x) is the activation value vector of all neurons
of D when confronted to x.

LSA and DSA rely on measuring the density or distance of the clusters formed by the different classes.
In essence, any metrics that can discriminate the consistency of clusters might be also candidate
metrics for test selection. For instance, we propose to use Silhouette Coefficient [185] as another
metric. Its advantages are its stability and a limited range of output, i.e. [−1, 1] (whereas LSA and
DSA have a priori no upper bound).

Definition 5 Let D be a DL model trained on a set T of inputs. Silhouette Coefficient (Si) of
the input x wrt. D is given by

Si(x) =


1− ax

bx
, ax < bx

0, ax = bx

bx

ax
− 1, ax > bx

where
ax = 1

|TD(x) \ {x}|
∑

xi∈TD(x)\{x}

||αN (x)− αN (xi)||,

bx = min
D(x)6=D(xi)

1
|TD(xi)|

∑
xi∈TD(xi)

||αN (x)− αN (xi)||.

6.3.2 Model Uncertainty Metrics

The starting point for suggesting the use of other selection metrics lies in the hypothesis that test
inputs are more challenging (i.e. more likely to be misclassified) as they engender more uncertainty
(as opposed to surprise) in the considered DL model.

The prediction probabilities of the classes returned by the model are immediate metrics that can
indicate how challenging a particular input is. Indeed, one can intuitively state that more challenging
inputs are classified with lower probability, that is, the highest prediction probability output by the
model is low. Using prediction probabilities as metrics is mostly overlooked by the literature but
remains efficient, as our experiments show.

Definition 6 Let D be a trained DL model. The maximum probability score of the input x wrt.
D is given by

MaxP (x) = max
i=1:C

pi(x)

where C is the number of classes and pi(x) is the prediction probability of x to class i according to D.

Recently, it has been mathematically proven that neuron dropout [200] can be used to model
uncertainty [62, 96]. Dropout was initially proposed as a technique to avoid overfitting in neural
networks by randomly dropping (i.e. deactivating) neurons during training [200]. This is achieved by
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incorporating so-called dropout layers into the network, which dynamically simulate the deactivation
of neurons during a forward pass.

Dropout can be used to estimate the uncertainty of a trained model wrt. a new input x [62]. More
precisely, the uncertainty is estimated by passing k times the input x into the model (wherein
dropout layers were added) and computing the variance of the resulting prediction probabilities
over x. Intuitively, while prediction probabilities can be visualized as the distances of x from the
class boundaries estimated by the model, dropout variance represents the variance of these distances
induced by the uncertainty of our knowledge about the exact locations of the class boundaries. The
motivation towards using dropout variance rather than classification probabilities stems from the
observation that some modern deep neural networks are poorly calibrated [75], i.e. their prediction
probabilities do not correlate with their likelihood of correct classification.

In addition to being a good estimate of model uncertainty [62, 198], dropouts are cheap to compute
thanks to their implementation as dropout layers (as opposed to really generating k altered models
from the original one, which would be more expensive given the high number of neurons that models
include). Formally, let D be an original, well-trained model equipped with dropout layers to simulate
random dropping, such that each neuron is dropped out with probability (i.e. dropout rate) r. Given
an input x, we pass x into the network k times and denote by pj

i (x) the prediction probability of
x to class i output on the j-th pass. We also denote by Pi(x) = {pj

i (x)|1 ≤ j ≤ k} the multiset of
prediction probabilities of x assigned to class i resulting from the k passes. Then, the variance of
Pi(x) is a good estimate of the uncertainty of D when classifying x in class i [62].

Following our hypothesis that uncertain inputs are more likely to be misclassified, we define a metric
derived from dropout variance to assess how much an input x is challenging to D. This variance
score is a macroscopic view of dropout variance in that it averages the uncertainty of D wrt. x over
all classes.

Definition 7 The variance score of the input x is given by

V ar(x) = 1
C

C∑
i=1

var(Pi(x))

where C is the number of classes and var denotes the variance function.

A drawback of this metric is that it does not consider the prediction probabilities (thus, the actual
distance to class boundaries). To overcome this, we propose a relative metric that normalizes the
variance score with the highest probability output by D.

Definition 8 The weighted variance score of the input x is

V arw(x) =
(
MaxP (x)

)−1 ·V ar(x)

While variance and weighted variance scores of x can be regarded as quantitative measures of the
uncertainty of the model wrt. x, we also propose a nominal alternative. Instead of the variance of
prediction probabilities, we focus on the actual class predictions produced by the different mutant
models, that is, the classes with the highest probability scores. We construct a normalized histogram
of these k class predictions and we compare their distribution with that of a theoretical, worst-case,
completely uncertain model, where the class predictions are uniformly distributed over all classes.
Thus, in this worst case, the number of mutants predicting that an input x belongs to class i is
approximately given by k

C .

To compare the actual class prediction distribution with the worst-case distribution, we rely on the
discrete version of Kullback-Leibler (KL) divergence. When the uncertainty of D is high (i.e. the
mutants often disagree), the KL divergence is low.
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Table 6.1: Datasets and DNN models used in our experiments.
Dataset Model Optim. method # layers (convolution, dense) # neurons (kernels) Accuracy (%)

MNIST / Fashion-MNIST
MLP RMSprop 3 1034 98.51 / 89.33
LeNet SGD + Nesterov 5 236 99.05 / 89.99

WLeNet Adam 5 310 99.57 / 92.88

CIFAR-10 NetInNet SGD + Nesterov 9 1418 90.77
VGG10 SGD + Momentum 10 1674 91.99

Definition 9 The Kullback-Leibler score of the input x is

KL(x) =
C∑

i=1
Hi ln Hi

Qi

where i is the class label, H is the normalized histogram, or frequencies, of the class predictions for x
resulting from the k dropouts and Q is the uniform distribution (i.e. Qi = 1

C ).

6.4 Experimental Setup

6.4.1 Datasets and Models

We consider three image recognition datasets. MNIST [116] contains handwriting number data of 10
classes and is composed of 70,000 images (60,000 for training and 10,000 for testing). Fashion-MNIST1

has clothing images classified into 10 classes and is also composed of 70,000 images, 60,000 and 10,000
for training and testing. CIFAR-10 [1] has 10 categories of images (cats, dogs, trucks etc.). The
dataset has 50,000 images for training and 10,000 for testing.

The three datasets are widely used in research and considered as a good baseline to observe key
trends, in addition to requiring affordable computation cost. Furthermore, the diversity of these
datasets (in terms of classes and domain concepts) and the used models provides confidence about
the generality of our results.

Thanks to the efforts of the research community, these classification problems can today be solved
with high accuracy. This characteristic makes these datasets challenging and relevant for us; triggering
misclassifications in accurate models is much harder than in inaccurate ones. Indeed, test selection is
more beneficial as interesting tests (i.e. misclassified inputs) are rarer within the set of test candidates
(thus, when the model has high accuracy). Considering models with low accuracy is not relevant, as
in this case it is more likely to select misclassified examples.

Table 6.1 shows the characteristics of the models we use in our experiment. For MNIST and
Fashion-MNIST, we use three simple networks, Multi-Layer Perceptron (MLP), LeNet [116] and a
modified version LeNet with more kernels (WLeNet). For CIFAR-10, we use tow complex networks,
NetInNet[125] and 10-layer VGG16 [195] – named VGG10 – obtained by removing the top layers
and inserting a batch normalization layer after each convolutional layer. The models were trained for
50 epochs (MNIST), 150 epochs (Fashion-MNIST) and 300 epochs (CIFAR-10). The last column in
Table 6.1 shows the best accuracy of the models (over the epochs) when trained on the whole training
set.

1https://github.com/zalandoresearch/fashion-mnist
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6.4.2 Objectives and Methodology

6.4.2.1 Test Selection with Real Data

Our first step is to assess the abilities of the studied metrics to select test inputs that can challenge
a given DL model D. To achieve this, we determine the correlation between the metrics and
misclassification. We encode the ‘correctness’ of the prediction of D for one particular input x as a
binary variable bx (well- or miss-classified). For each metric, we compute the Kendall correlation
between the score given by the metric to all test inputs and their corresponding binary variables.
We used Kendall correlation because, being an ordinal association metric, it focuses on how well
the metrics rank the misclassified inputs first (irrespective of the actual score values). Thus, if one
has to select a limited number of inputs to label and test, one should select the inputs of higher
ranking (irrespective of their score). This is important for the test input selection problem, as the
metrics should allow an effective selection regardless of the actual budget of inputs to label. Given
that we study the correlation between the numeric values returned by the selection metrics and
misclassification, random selection is not a relevant baseline in this experiment, as it is not a metric.
Actually, since we consider high-accuracy models which yield few misclassifications, random selection
is inherently ineffective for test input selection.

6.4.2.2 Test Selection with Adversarial Data

To investigate the fault revealing ability with a larger number of data, we augment our test data with
adversarial samples. Adversarial data result from the successive application of minor perturbations
to original data with the aim of deceiving a classifier. Adversarial samples have been of major
concern [110] and test selection metrics should be robust against them. Moreover, previous research
[98, 131] also used adversarial data. To craft adversarial data, we use five established adversarial
data generation algorithms: Fast Gradient Sign Method (FGSM) [71], Jacobian-based Saliency Map
Attack (JSMA) [168], DeepFool (DF) [148], Basic Iterative Method(BIM) [109] and Carlini-Wagner
(CW) [32]. We apply each algorithm separately and add its generated images to the original test
set. Thus, we obtain five new datasets. All algorithms except CW generated 10,000 images and thus
doubled the size of the test set. Regarding CW, we made it generate 1,000 adversarial images as
it is much slower, which necessitated more than one day of computing on our HPC infrastructure.
Still, CW remains interesting to study as it is known to apply less perturbation to the original image.
Nevertheless, we use the procedure mentioned previously to compute the Kendall correlation between
test selection metrics and misclassification, in the five datasets using both original and adversarial
images generated by five algorithms.

To further investigate the sensitivity of the metrics on adversarial data, we apply FGSM and CW on 600
images randomly picked from the datasets. As these algorithms iteratively generate adversarial images
(by altering them, introducing noise), until they succeed, most (66% to 100%) of the intermediate
images are well-classified. Thus, we store 3,603 intermediate images generated by FGSM and 18,148
generated by CW over the iterations and compute their score according to the studied metrics. Since
we start from well-classified images and the adversarial generation algorithms work incrementally (at
each iteration they generate images that are closer to misclassification) the number of the iteration
at which an input was generated reflects its distance from the starting point (a later iteration step
signifies a higher chance for misclassification). Therefore, a monotonic relation between the metrics
and the iterations signifies a good capability to quantify the likelihood of misclassification (caused
by the adversarial images ultimately produced at the end of the process). Hence, we compute the
Spearman correlation (statistical test measuring the monotonicity between the studied variables)
between the score of the metrics, of these intermediate images, and the iteration number that they
were produced.
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Figure 6.1: Flow process of Data Selection for Retraining

We also study the correlation between the metrics and misclassification when using only adversarial
inputs. We pick the intermediate images and the final adversarial images and associate them with a
binary variable (well- or miss-classified) and compute the Kendall correlations between the binary
variables and the metrics.

6.4.2.3 Data Selection for Retraining

Having studied the adequacy of the metrics to select challenging test inputs, we focus next on how
much the metrics can help selecting additional training data effectively. That is, we study whether
augmenting the training set with data selected based on the metrics can lead to faster improvement.
To do this, we set up an iterative retraining process as shown in Figure 6.1.

At first, we randomly split the original training set into an initial training set of 10,000 images and a
candidate set that contains the remaining images. The test set remains untouched. In the first round,
we train the model using only the initial training set and compute its accuracy on the test set. After
finishing training, we use the best model that we get (over the training epochs) to compute the test
selection metrics on the remaining candidate data.

Then, we add (without replacement) a batch of 5, 000 new images (selected by the metrics) from
the candidate set to the current training set. The selected images are those that have the highest
uncertainty (i.e. lowest score for Si, KL and MaxP, highest score for Var and V arw) or surprise
(LSA or DSA) or coverage (i.e. higher NC, ANC, KBNC, NBC and SNAC). We retrain the models
from scratch using the whole augmented training set for a sufficient number of epochs to guarantee
convergence (150 epochs for MNIST and Fashion-MNIST, 300 epochs for CIFAR-10) so that we can
fairly analyze the different methods. Although incremental training (which re-applies the training
algorithms on the current model using the new data) is more efficient computation-wise, current
implementations (e.g. within scikit-learn2) have shown that incremental training creates biases
towards the oldest data, as training algorithms (like stochastic gradient descent) give less importance
to new examples over time (due to a decreasing learning rate). This difference can be significant if the
new data follow a different distribution than the old data. Thus, incremental training is used when
assuming minor concept drift, while training from scratch is used in cases where such assumption
cannot be made (or may not hold). This is actually the reason why many companies retrain from
scratch [65]. Nevertheless, the purpose of our experiments is not to find the computationally optimal
way to incorporate additional training samples, but to make sure that by incorporating additional
training samples in the most exhaustive way (to make sure that the model has been trained well
enough) yields the best possible (even by a small difference) results. Thus, to avoid making such
assumptions, we followed the conservative approach of retraining from scratch to make sure that the
old and new training data are treated equally.

We repeat the process for multiple rounds, until the candidate set is empty. We ensure that test data
are never used during training or retraining. To account for random variations in the training process,

2https://scikit-learn.org/0.15/modules/scaling_strategies.html#id2
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we repeat the experiments three times and report, for each obtained model, the average (over the
three repetitions) of the best accuracy obtained (over all epochs).

To assess the effectiveness of each metric, we observe the evolution of the validation loss and accuracy
wrt. the independent test data over the retraining process. Effective metrics should yield fast increases
in validation accuracy and fast decreases in validation loss. Although validation loss has usually a
strong negative correlation with validation accuracy, it is still important to study both, e.g. to detect
overfitting models.

Previous studies have shown that increasing the accuracy of models that already have a high accuracy
(> 90%) may result in decreasing their robustness to adversarial attacks [206]. Thus, it is possible
that some test selection metrics increase the accuracy during retraining but reduce robustness. To
assess this, we also compute the empirical robustness [148] (based on FGSM and 100 randomly
picked images) of all models at all retraining rounds. This allows us to check whether there exists a
compromise between the metrics (i.e. privileging accuracy or robustness).

6.4.3 Implementation

We tooled our approach on top of Keras and Tensorflow, and used the library Foolbox [182] to
generate adversarial images. Our tool, together with our replication package, is available online.3
The Model training phase was performed on GPU K80 and GPU Volta V100.

When the considered DL model (e.g. VGG16) does not use standard dropout for training, we
implement it as Lambda layers. When the DL model includes Dropout layers for training (e.g.
WLeNet), we simply keep those Dropout layers working during testing. Thus, we do not alter the
model computations per se but rather alternating the model behaviour through the dropout layers.

In every case, the hyperparameters of our method are the dropout rate r (probability of dropping-out
neurons) and the number k of forward passes of any input into the network (while randomly dropping
neurons on the fly). If r is too large, the original model competence will be significantly degraded,
which will result in poor quality. On the contrary, a small r results in too small variations for our
method to perform well. For VGG10, we experimentally set the drop rate to 0.25. On the other
models, we keep the drop rate as 0.35. We also set k = 50 as it appeared as a good trade-off between
the estimation of the variance and computation cost.

For Surprise Adequacy and Neuron Coverage, we use the source code available on Github4. We
re-implemented NC and Neuron-Level Coverage (NLC) based on the source code in an efficient
batch-computing way. Finally, we use the IBM robustness framework5 to compute the empirical
robustness of the retrained models.

6.5 Results

6.5.1 Test Selection with Real Data

Table 6.2 shows the Kendall correlation between the metrics and misclassification. We observe that
KL, Var, V arw, MaxP and DSA have a medium degree of correlation, meaning that they can lead to
valuable test data, i.e., those causing misclassification. Conversely, we observe that both LSA and Si
have a weak correlation to misclassification. All these correlations are statistically significant with a
p-value lower than 10−05. Metrics based on neuron coverage have weak to very weak correlations. In

3https://github.com/TestSelection/TestSelection
4https://github.com/coinse/sadl, https://github.com/ARiSE-Lab/deepTest
5https://github.com/IBM/adversarial-robustness-toolbox/
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Table 6.2: Kendall correlation between misclassification and the metrics on the original (real) test
data. Overall, KL and MaxP achieve the strongest correlations.
Model (Dataset) KL Var Varw MaxP DSA LSA Si NC ANC KMNC SANC BNC

MLP (MNIST) 0.3556 0.1626 0.1627 0.2804 0.1606 0.1396 0.1326 0.0454 N/A -0.0181 0.0006 0.0006
LeNet (MNIST) 0.1253 0.1263 0.1282 0.2076 0.1273 0.1157 0.1143 -0.0430 0.0017 -0.0464 0.0144 0.0105

WLeNet (MNIST) 0.2774 0.0903 0.0905 0.0990 0.0900 0.0766 0.0872 0.0722 N/A 0.0308 0.0047 0.0068
MLP (Fashion) 0.4107 0.3222 0.3339 0.3519 0.322 0.0414 0.1639 0.2112 0.0113 0.1876 0.0171 0.0177
LeNet (Fashion) 0.3048 0.2784 0.3103 0.3369 0.3059 0.1542 0.2601 -0.0234 0.0058 0.0598 0.0057 0.0067

WLeNet (Fashion) 0.4156 0.2896 0.2962 0.3133 0.2941 0.0949 0.2551 0.2429 -0.0139 0.1760 0.0205 0.0188
VGG10 (CIFAR) 0.3404 0.2818 0.2911 0.3647 0.2661 0.1964 0.2560 -0.0101 -0.0087 -0.1092 0.0404 0.0329

NetInNet (CIFAR) 0.4366 0.3337 0.3371 0.339 0.3208 0.2076 0.3302 -0.0236 N/A -0.0228 0.0132 0.0228

particular, we could not compute the correlation of ANC for three models because, in these models,
the test set does not cover new neurons that the training set did not cover already.

Overall, these results indicate that KL, V ar, V arw, MaxP and DSA correlate better with
misclassifications. More precisely, KL and MaxP appear as the best metrics for test selection, being
up to 3 times more correlated to misclassification than all the other metrics. In the particular case of
the MNIST dataset models, these two metrics are the only ones to achieve a medium correlation,
while the other metrics reach only weak or very weak correlations. Nevertheless, the best correlations
we found are only moderate, meaning that none of the metrics can perfectly distinguish between
well-classified and misclassified inputs.

KL and MaxP are the best metrics to discriminate misclassified real data from well-classified
ones. They correlate with misclassification up to 3 times more than the others.

6.5.2 Test Selection with Adversarial Data

6.5.2.1 Mix of Real and Adversarial Data

Figure 6.2 records the Kendall correlation between the metrics and misclassification when the original
test data set is augmented with each adversarial dataset (separately). Interestingly, the correlations
of all metrics are stronger than they were with real data only. KL, Var, V arw, MaxP, Si and DSA
now have a strong degree of correlation with misclassifications in most cases, while the correlations
of LSA reach only moderate levels. Overall, MaxP achieves the stronger correlations regardless of
the algorithm used, except for the WLeNet-MNIST where KL gets even stronger correlations. As
for metrics based on neuron coverage, their correlations remain weak overall and can be positive or
negative. Even on a model-by-model basis, no general tendency tends to appear. Quite surprisingly,
NC performs better than KMNC, NBC and SNAC, and even achieves moderate/strong correlations
on the two WLeNet models.

Nonetheless, the overall strengthening of the correlations can be explained by the fact that adversarial
images have some form of artificial noise that the classifier never experienced during training. This
noise makes the classifier less confident on how to deal with them, a fact reflected by the metrics. We
also infer that adversarial data do not form a challenging scenario to evaluate test selection methods
(as performed by related work [98, 131, 169]). Given that the adversarial images are misclassified, it
is possible that the metrics are even more appropriate to distinguish adversarial and real data than
they are to differentiate well- and miss-classified data.

Uncertainty- and surprise-based metrics can discriminate well-classified real inputs from all (real
and adversarial) misclassified inputs. They can achieve this with more ease as misclassified
adversarial inputs are added. Overall, MaxP reaches the strongest correlations (between 0.64
and 0.78).
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Figure 6.2: Heatmap showing the Kendall correlation between misclassification and the metrics on a
mix of real and adversarial (misclassified) data, obtained using five different algorithms. The lighter
the color the better. Grey parts in ANC correspond to no increase in neuron coverage. Overall, MaxP
achieves the strongest correlations.
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Figure 6.3: Spearman rank-order correlation between the metrics and the iteration number of the
images generated by the adversarial algorithms. The iteration number reflects the distance from a
misclassification and, thus, high correlation suggests that the metrics reflect well the likelihood of
misclassification.

Table 6.3: Kendall Correlation between misclassification and the metrics on adversarial data generated
by CW (mix of well-classified (intermediate) and misclassified (final) adversarial images).
Model (Dataset) KL Var V arw MaxP DSA LSA Si NC ANC KMNC NBC SNAC
MLP(MNIST) 0.5070 0.5282 0.6261 0.6589 0.5265 0.4419 0.2983 -0.0458 N/A -0.1617 -0.0013 -0.0013
LeNet (MNIST) 0.1011 0.132 0.4474 0.5784 0.5917 0.5465 0.5925 -0.0958 N/A -0.0631 -0.0559 -0.0284
WLeNet (MNIST) 0.4417 0.474 0.5255 0.538 0.4600 0.3041 0.3018 0.0568 N/A -0.1545 -0.0837 N/A
MLP(Fashion) 0.2505 0.2428 0.3631 0.4628 0.3213 0.1394 0.1059 -0.0553 0.0103 -0.0336 -0.0547 -0.0715
LeNet (Fashion) 0.0994 0.1233 0.3126 0.4370 0.4425 0.2777 0.4381 0.0191 0.0201 0.0199 0.0545 0.0545
WLeNet (Fashion) 0.2818 0.2908 0.3855 0.5244 0.2618 0.2109 -0.0528 0.0597 N/A -0.0324 -0.0059 -0.0145
VGG10 (CIFAR) 0.0606 0.0599 0.153 0.5031 0.2643 0.2106 0.2720 0.0434 0.0585 0.0640 -0.0093 0.0117
NetInNet (CIFAR) 0.1380 0.1094 0.2027 0.4560 0.1751 0.0453 0.2968 0.0055 N/A -0.0150 0.0150 -0.001

6.5.2.2 Well- and Miss-Classified Adversarial Data

Figure 6.3 shows, for each metric, boxplots representing the statistical distribution (over all models
and images) of the Spearman correlation between the number of the iteration at which the image was
produced and the metric value for this image. Metrics based on uncertainty and surprise achieve strong
correlations (Varw being the best in this regard), meaning that they are close to being monotonous
over the iterations and thus capture well the adversarial generation process. On the contrary, the
metrics based on neuron coverage reach very weak or irregular correlations.

Table 6.3 and Table 6.4 demonstrates the Kendall correlations between misclassification and the
metrics computed on the intermediate (mostly well-classified) and final (misclassified) images
generated by CW and FGSM, respectively. When considering FGSM, the correlations are similar
to what they were when mixing real data with adversarial (misclassified) data. In the case of
CW, however, they get weaker, although they remain medium to strong for some metrics (Varw,
MaxP, LSA and DSA). In particular, the correlations of KL are disappointing although this metric
performed well in the previous experiments. These regressions can be explained by the fact that CW
is known to generate smaller perturbations than the other adversarial algorithms. Thus, the difference
between the intermediate images and the final images are smaller than what they are in the FGSM case.

When confronted with adversarial inputs only, the test selection metrics lose part of their
capability. This is due to the inherent noise introduced by the adversarial generation algorithms.
MaxP still achieves the strongest correlations overall, outperforming the other metrics in 13/16
cases.
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Table 6.4: Kendall Correlation between misclassification and the metrics on adversarial data generated
by FGSM (mix of well-classified (intermediate) and misclassified (final) adversarial images).
Model (Dataset) KL Var V arw MaxP DSA LSA Si NC ANC KMNC NBC SNAC
MLP(MNIST) 0.6984 0.6459 0.6989 0.7125 0.5902 0.3736 0.3242 0.1828 N/A 0.1301 0.0237 0.0237
LeNet (MNIST) 0.3009 0.4176 0.7078 0.7081 0.6327 0.5779 0.6326 -0.1206 N/A -0.0361 -0.2202 -0.1007
WLeNet (MNIST) 0.6951 0.5840 0.6927 0.6905 0.5802 0.3364 0.5418 0.2901 N/A 0.3282 -0.3831 -0.1956
MLP(Fashion) 0.576 0.2429 0.5541 0.6645 0.4527 0.0595 0.1444 0.1051 N/A 0.2732 N/A N/A
LeNet (Fashion) 0.2848 0.3315 0.6410 0.6848 0.5292 0.3563 0.4802 -0.0458 -0.0002 0.0112 -0.0514 -0.0514
WLeNet (Fashion) 0.6178 0.4869 0.6064 0.6817 0.4469 0.2845 0.0651 0.1059 N/A 0.0568 -0.1779 -0.1703
VGG10 (CIFAR) 0.2325 0.2480 0.4526 0.7014 0.4346 0.3610 0.3969 -0.0346 -0.0273 0.0364 -0.1121 -0.1138
NetInNet (CIFAR) 0.538 0.5332 0.6236 0.6732 0.4989 0.3411 0.6047 -0.0168 N/A 0.0108 -0.0108 0.0069

6.5.3 Data Selection for Retraining

Figure 6.4 shows the best accuracy achieved of each retraining round by augmenting, iteratively, the
training data with 5,000 data selected according to the different metrics. Here it must be noted that,
while the raw accuracy values may seem to have small differences, they are due to the high initial
accuracy of the model. Improving beyond this level is challenging.

Overall, we see that uncertainty and surprise metrics outperform those based on neuron coverage,
which are comparable to random selection. For example, at the 3rd training augmentation round
and for model WLeNet applied on Fashion-MNIST, V ar achieves a gain in accuracy (compared to
the accuracy of the initial training set) more than 45% higher than the best coverage-based metric
– ANC – (+2.2% vs +1.5%) on WLeNet (Fashion), while the accuracy increases by +3% from the
initial training set to the final (whole) training set.

On NetInNet applied to CIFAR-10 and at the 3rd round, V ar achieves a gain in accuracy more than
20% than ANC does (+8.4% vs +6.9%), while the accuracy increases by +10.4% from the initial
training set to the final training set. We observe similar conclusions when validation loss is considered.
Indeed, metrics based on neuron coverage lead to slower decreases (similar to random selection),
which reveals the inappropriateness of these metrics to select data for retraining.

In addition to the metrics considered so far, we augment V ar and KL with a tie-breaking method:
when two inputs have the same V ar or KL scores, we select the input that has the lowest MaxP

score. Interestingly, those two new metrics (denoted by V arp and KLp) further improve the increase
in accuracy of five models out of eight, and the decrease in validation loss in four models. Overall,
those new metrics increase the accuracy up to two times faster than coverage metrics and random
selection. Compared with the other uncertainty metrics, the additional gain is not significant, though
it keeps the merit to exist. Thus, should one require the use of a single metric, KLp and V arp would
appear as effective choices.

For each model and metric, we computed the evolution of the empirical robustness over the retraining
rounds. Overall, we observed that the robustness score barely varies over the rounds, regardless of the
considered model and metric. Indeed, the largest gap across all models and metrics is 0.022, which is
insignificant. Moreover, we cannot infer that any of the metric is comparatively best or worst than
the others in this regard, as the variations are not monotonous. Thus, uncertainty and surprise-based
metrics can increase accuracy faster than coverage-based metrics without compromising robustness.

Uncertainty-based and surprise-based metrics, in particular the tie-breaking metrics KLp and
V arp, are the best at selecting retraining inputs and lead to improvements up to 2 times faster
than random selection. They achieve this without significant variations of the robustness (<
0.022).
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Figure 6.4: Validation accuracy over a fixed set of 10,000 original test data and achieved by
successively augmenting the training data with 5,000 data (at each retraining round) selected by the
different metrics. X-axis denotes the size of the training set at each round, while Y-axis shows the
average accuracy over three repetitions (variance is less than 10−5).
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6.5.4 Threats to Validity

Threats to internal validity concern the implementation of the software constituents of our study. Some
are addressed by the fact that we reuse existing model architectures with typical parameterizations.
The resulting models obtain a high accuracy on state-of-the-art datasets used as is (including their
splitting into training and test sets), which indicates that our setup was appropriate.

We implemented dropout “from scratch” (i.e. as Lambda layers) in one case and, in the other cases,
we reused the implementation natively embedded in the training process. The use of these two
alternatives increases our confidence in the validity of our results. Finally, the implementation of
the different metrics was tested manually and through various experiments. Moreover, we reused
available implementations of the surprise-based and coverage-based metrics. Regarding LSA, it has
been shown that the choice of the layers has an impact on the adequacy of the metric [98]. However,
Kim et al. could find no correlation with the depth of the layer. As such, we make the same choice
as Kim et al. and compute LSA on the deepest hidden layer.

The threats to external validity originate from the number of datasets, models and adversarial
generation algorithms we considered. The settings we used are established in the scientific literature
and allow the comparison of our approach with the related work. Performing well on such established
and generic datasets is a prerequisite for real-world applications, which generally exhibit biases
inherent to their application domain. The replication and the complementation of our study are
further facilitated by the black-box nature of uncertainty metrics: all of them necessitate only the
prediction probabilities to be computed.

Construct validity threats originate from the measurements we consider. We consider the correlation
between the studied metrics and misclassification, which is a natural metric to use (and is in some
sense equivalent to the fault detection and test criteria relations studied by software engineering
literature [8, 69]).We also compare with surprise adequacy [98] and coverage metrics [131, 169], which
are the current state-of-the-art methods.

6.5.5 Discussion and Lessons Learned

Our experimental results shed some light on the ability of existing metrics (coverage- and uncertainty-
based) to drive the selection of test inputs.

Starting with DeepXplore [169], previous research advocates that increasing neuron coverage is a
good way to perform “better” testing and has been using this criterion for test input generation.
Additionally, in traditional (code-based) software engineering, coverage metrics (like statement and
branch coverage) are commonly used to guide test generation/selection. It is therefore natural for
software engineers to consider neuron coverage for test selection in DL systems as well. Another
advantage of neuron coverage is that it provides a natural end-point when testing DL systems, viz.
reaching 100% coverage. Yet, as in traditional (code-based) software, finding an adequate stopping
criterion for testing DL systems remains an open problem. Our results confirm that achieving 100% of
neuron coverage does not guarantee the absence of bugs, just like achieving 100% of statement coverage
in traditional software does not. Even worse, coverage-based metrics exhibit weak correlations to
misclassification, sometimes weaker than random selection. This brings an important message to the
community: the misclassified inputs are not necessarily those that cover new neurons. Overall, while
coverage-based metrics are convenient driving criteria for test input generation, different metrics
should be used for test selection.

Regarding the remaining metrics (i.e. those based on uncertainty and surprise adequacy), our results
provide new significant findings. When selecting test inputs to trigger misclassifications, the highest
class probability – a simple metric often overlooked in the literature – performs the best regardless of
the nature of the inputs (real or adversarial). Thus, we show that this simple metric forms a strong
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baseline for future research and that developers can rely on it as all-rounder test selection metrics.
Another lesson is that dropout variance, the state-of-the-art metric to estimate model uncertainty,
can be improved by normalizing the variance score with the highest class probability (yielding the
weighted variance score). This is revealed by the fact that weighted variance has a stronger correlation
than dropout variance in all our experiments.

When selecting inputs to retrain the model, we observe that combining KL divergence or weighted
variance with the highest class probability yields consistently better results than the other metrics,
although by a small margin. Thus, the difference between the uncertainty (and surprise adequacy)
metrics is rather observed when selecting inputs for testing.

Another important finding is that some metrics (like KL divergence) are particularly sensitive to
the noise introduced by adversarial data and significantly lose their capability (to distinguish well-
classified and misclassified data) when confronted to adversarial data only. Indeed, the results of
Section 6.5.2 indicate that introducing misclassified adversarial data into the test set yields a stronger
correlation between the uncertainty metrics and misclassification. This means that the adversarial
examples engender more uncertainty than real ones. This is because most adversarial algorithms aim
at achieving misclassification while minimizing input perturbation. Making the model misclassify
those examples with high confidence (low uncertainty) model is not part of the objective function of
those algorithms, although some studies (e.g. [71]) have shown that this may happen incidentally.
Our results in Section 6.5.2.1 confirm that the uncertainty of the model increases over the iteration
of the adversarial algorithm, due to the increasing noise it introduces over the iterations.

6.6 Conclusion

We considered test selection metrics for deep learning systems based on the concept of model
uncertainty. We experimented with these metrics and compared them with surprise adequacy and
coverage related metrics wrt to their fault revealing ability, i.e., ability to trigger missclassifications.

Overall, our findings can be summarised by the following points:

• When dealing with original data, uncertainty metrics (in particular, KL and MaxP) perform best,
significantly better than previously proposed metrics (coverage based and surprise adequacy).

• When dealing with a mix of original and adversarial data, MaxP – a simple certainty metric
often overlooked by the literature – is the most effective. Additionally, uncertainty-based
metrics are also effective at test selection, independent from the training set (coverage based
and surprise adequacy metrics fall behind).

• Our results also revealed that the use of adversarial data in testing-related experiments should be
performed with caution. All the studied metrics experience significant performance differences
when considering original, adversarial or a mix of them.

• We also demonstrated that the metrics and particularly KLp and V arp, lead to major classifi-
cation accuracy improvement (when selecting data for retraining), achieving a gain in accuracy
of up to 80% higher than the previously proposed metrics and random selection.

Our work forms an essential step towards a long-term goal of equipping researchers and practitioners
with test assessment metrics for DL systems. These automatic data selection metrics pave the way for
the systematic and objective selection of test data, which may lead to standardised ways of measuring
test effectiveness.
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7 Conclusions and Future Work

This chapter revisits the main contributions of this dissertation and points to future research work.

7.1 Conclusions

The dissertation demonstrated the usefulness of Mutation Testing in the era of computational Artificial
Intelligence: the traditional software systems and the intelligence software systems. This dissertation
comes up with a novel approach to code representation to support a wide range of Software Engineering
tasks.

More precisely, we have the four(4) following contributions:

1) Adapting Mutation Testing for the evolving systems. Mutation Testing is quite expensive and is
difficult for evolving systems in Continuous Integration. We adapt Mutation Testing and focus on
the mutants (commit-aware/relevant mutants) related to the code change to test program behavior
change and reduce the mutation testing cost. We evaluate the commit-aware mutants using C and
Java programs. As a finding, most mutants are useless to test the code change. Commit-aware
mutants can effectively test code change and reduce the computing resource cost.

2) A novel machine learning approach, MuDelta, to select the mutants related to code change for the
evolving system. Since we find that relevant-change mutants are a small portion of the mutants and
can speed up the mutation testing, we develop a machine learning approach to label the relevant
mutants to test the program. Our experiments show our technique can improve Mutation Testing a
lot.

3) A novel code embedding approach integrating code syntax and semantics, GraphCode2Vec,
to support the SE downstream tasks. The researchers usually use domain knowledge to design the
features for the code data, which is not general. The work proposes a code embedding approach
via leveraging code syntax and semantic information. Our experiments show the advantages of
GraphCode2Vec, achieving better or comparable results than the state-of-the-art methods.

4) An in-depth empirical study on test data selection for DL systems based on uncertainty-
based/mutation metrics. Deep Learning (DL) systems play an essential role as one component
of software systems in practice. The existed testing techniques are not supportive enough to test
the program. The work studies how to select good test data or training data for DL systems. We
evaluate the different testing uncertainty-based metrics and find that the uncertainty-based metrics
can effectively choose the informative data for DL systems.

7.2 Future Work

We now summarize potential future directions that are in line with this dissertation.



CHAPTER 7. CONCLUSIONS AND FUTURE WORK

1. Mutation Testing Automation in Continuous Integration. Mutation Testing automation
is still challenging because the current tools are not designed well for the evolving systems,
which still requires manual effort. We also have noticed that few Mutation Testing frameworks
can fully support the state-of-the-art mutation testing techniques, e.g., automatically reporting
valuable mutants. Another problem is that some data science programming language lacks
Mutation Testing tool support automatically. For example, Python does not have a mature
tool like Pitest for Java. Therefore, we need to integrate SOTA techniques to develop a
multiple-language-support tool to automate mutation testing.

2. Leveraging Mutation Testing to explore AI robustness. Though Mutation Testing has
contributed to deep learning testing, little attention focuses on the relationship of the robustness
between the behaviours of the mutants and the original models. Current DL Mutation Testing
mainly evaluates the model performance, e.g., accuracy. Mutation testing score for DL systems is
also defined based on the performance metrics. Robustness is lacking, and it may be meaningful
to explore such a direction.

3. Encoding Dynamic Features of Program. SOTA code representation approaches learn
code embedding via big models and massive code static data. However, the dynamic features of
the program are ignored by these approaches. It is questionable for these static code embedding
models to contain how much dynamic information. Many software engineering tasks depend
on the program dynamic behaviours, e.g., flaky tests and running-time crashes. Therefore, it
should benefit these dynamic tasks if we can encode the program dynamic behaviours into the
vectors.
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