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Summary

When left uncontrolled, complex flow networks are susceptible to negative externalities and

tend not to be used to their full potential. This work focuses more specifically on the specific

instance of transportation networks that are subject to constantly increasing demand. Con-

trol strategies, based on increasingly promising technological advancements, have been de-

veloped with the aim to exploit the full potential of the existing transportation infrastructure.

To improve the current state of transportation networks, control strategies rely on control

technologies to impact road users on networks and redirect them, such as to improve the

situation by avoiding delays, for example. However, the problem of identifying the required

controller numbers, types, and locations has received little attention in the current literature.

Existing research works proposed approaches to the problem but often either do not provide

complete control over the considered network or lack scalability, thus are not applicable on

any type and size of networks.

In this dissertation, we aim at filling this gap by providing a general methodology and propos-

ing various approaches to this problem. The first part of this work focuses specifically on

studying the problem of fully controlling a transportation network and provides various ap-

proaches. Their capacity to actually impact and control transportation networks is assessed

empirically, showing that the proposed approaches can fully control small networks.

The second part studies the problem of scalability and provides a new method that is proved

to be able to provide an efficient set of pricing controllers while being scalable. This approach

is later improved by integrating flow information and demonstrated to be more reliable in the

specific case where the demand is irregularly distributed over the considered network, which

is a common setting in real transportation networks. Additionally, the proposed methods are

applied and tested over the network of Luxembourg, demonstrating the scalability of the ap-

proaches and their capacity to improve the current state of large realistic networks subject

to heavy congestion.

xi



Chapter 1

Introduction

Complex flow networks are structures used for transporting flows of some elements, such

as water, electricity, or vehicles. Such networks are present all around us and are employed

to provide numerous commodities in our daily lives. They represent an essential part of our

technical infrastructures, such as the electrical power grid and transportation networks. To

perform at their full potential, such networks often rely on control to redirect flows, such as to

achieve the desired objective. More specifically, this dissertation focuses on transportation

networks that constantly witness a rise in demand due to a continually growing urbaniza-

tion trend and a concurrent increase of the urban sprawl phenomenon, which contributes to

transforming our cities into large and complex systems. This transformation challenges the

current transport infrastructure capacities, resulting in lost times, reduced service reliability,

and stress for road users. However, before resorting to capacity expansions, which may be

beneficial in the short term but bring in the long term many negative impacts (more car trips

due to the induced demand phenomenon and to mode shifts from more sustainable modes

of transport, increased pollution, more car accidents, increased car ownership rates,...) the

existing infrastructure is not always used to its full potential, which produces additional neg-

ative impacts on road users, such as delays due to, for instance, inefficient handling of the

conflicting flows at intersections or congestion at bottlenecks.

Transportation systems are composed of various modes of transportation; however, in this
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dissertation, we focus solely on road networks used by vehicles (cars, trucks,...) and the

corresponding traffic flows. Table 1.1 shows the extent of the heavy level of congestion in

Germany, for example. It displays the average amount of hours lost in congestion per road

user over a year and the corresponding cost for this lost time. We can observe that these

numbers are very high, indicating that a significant amount of time and money is unneces-

sarily lost in traffic. Congestion will provoke slower traffic and can produce a stop-and-go

effect (Yeo and Skabardonis [50]) that will result in additional negative externalities, such

as increased pollutant emissions or a loss in productivity that could be reduced with better

network management.

In order to mitigate these negative effects and efficiently use the existing network infrastruc-

ture, various control strategies have been developed in the literature with diverse approaches

to control transportation networks. In this dissertation, we focus on control strategies that

aim at controlling the flows of road users as opposed to strategies that aim at controlling

the demand. For instance, some strategies focus on local control policies, such as man-

aging traffic lights over one single intersection to reduce the congestion in the considered

area. In contrast, other research works attempt to coordinate controllers over multiple loca-

tions to achieve a common goal, such as generating green wave effects (Hunt et al. [18];

Lowrie [24]; de Oliveira and Camponogara [29]; Hoogendoorn et al. [16]). Additionally, some

control strategies are developed to control a particular portion of a transportation network

that possesses some specific characteristics that require adapted control actions, such as

for a section of a highway (Papageorgiou et al. [32]) or a traffic bottleneck (Gonzales and

Christofa [12]). However, in this thesis, we are mainly interested in control strategies that

consider the whole network at once instead of a portion. Such network-wide control strate-

gies attempt to achieve a global objective, such as minimizing the total travel time of road

users through the combined actions of every individual controller on a network. Previous

research works explored the possibility of employing controllers to form one or multiple pric-

ing cordons to divide the considered network into multiple smaller areas, easier to control

(Zhang and Yang [52]), thus focusing more on a local strategy. Other control strategies at-
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tempted to coordinate toll gantries and pricing levels over a network to fully control the entire

network (Verhoef [42]).

Various types of controller technologies can be employed, resulting in distinct ways to impact

network traffic, aiming at modifying drivers’ route choices, for example. As such, traffic lights

are a commonly employed type of controller, often used to improve safety for road users on

intersections by adding constraints to the natural behavior of the users. However, they can

also be employed to reduce the congestion in the considered area by managing conflicting

flows through appropriately redistributing the total available capacity over time for the con-

sidered intersection. Pricing controllers are another commonly employed type of controller;

their functioning differs from traffic lights as they impose a monetary cost to the location they

are placed on, thus making any path using this location less attractive. As demonstrated in

previous work (Rinaldi [34]), the capability of control strategies to actually impact a network

is strongly dependent on the chosen set of controllers. More precisely, the number, type,

and location of controllers employed on the considered network affect the maximal reach-

able performance for control strategies.

Therefore, several research works aim to determine critical locations for controllers such

that the resulting controller set can efficiently control the traffic across the entire network.

Some of these approaches rely on flow information to identify such essential locations (Ver-

hoef [42]). In contrast, others are solely based on topological information; that is, they use

only information that is independent of the traffic flow, such as the shape of the network

(Rinaldi et al. [37]; Mazur et al. [25]). However, existing approaches tend to possess heavy

computational complexity. Therefore, these approaches are not easily scalable and applica-

ble to large-scale networks commonly representing real-world transportation networks.

This dissertation aims to provide a methodological basis and multiple approaches capable

of producing the needed set of controllers to efficiently control any size of transportation net-

work while minimizing the installation cost. Before formalizing this aim into multiple research

3



City Average hours lost
in congestion

Cost of congestion
per driver

Cost of congestion
per city

Berlin 154 e 1.340 e 1.7B
München 140 e 1.218 e 618.5M
Hamburg 139 e 1.212 e 758.2M
Leipzig 108 e 941 e 184.6M

Stuttgart 108 e 938 e 204.8M
Nuremberg 107 e 937 e 167.2M
Frankfurt 107 e 935 e 239.7M

Dusseldorf 100 e 874 e 187.3M
Cologne 99 e 867 e 322.0M
Bremen 96 e 839 e 163.7M

Table 1.1: Hours spent in road congestion annually by the average driver in Germany, in
2018. The cost of congestion is calculated based on the average hourly wage per capita.
(Source: INRIX Global Traffic Scorecard, February 2019)

objectives, we first introduce the background of this problem. For this purpose, section 1.1

presents the various characteristics of this problem. Section 1.2 discusses challenges as

well as opportunities associated with this problem. Section 1.3 provides a description of the

research scope and objectives of this dissertation. Section 1.4 details the contributions of

this thesis.

1.1 Problem characteristics

As described previously, transportation networks require control to be used efficiently. How-

ever, network-wide traffic control strategies rely on controllers to actually impact the flow

distribution to reach various objectives. This section first describes the problem of control-

ling transportation networks, followed by a description of the characteristics of the various

types of controllers considered in this dissertation.

1.1.1 Control of transportation networks

To mitigate negative effects, such as delays, transportation networks rely on control sys-

tems. For instance, intersections with high demand are often regulated by traffic lights to
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constrain the natural behavior of road users, with the primary aim to improve safety in the

considered intersection. However, by appropriately distributing the available capacity where

needed, traffic lights can also reduce the emergence and propagation of congestion in the

considered area. Similarly, controllers can be exploited to trigger a specific desired behav-

ior, such as better routing choices, to reach some chosen objective. In this work, we are

mainly interested in using controllers to reduce congestion; therefore, it is important to con-

sider that congestion is often the result of the demand exceeding the existing supply in a

certain portion of a transportation network. The excessive demand in a certain portion of

transportation networks results from user behavior, such as departure time, route choice,

or even mode choice, which controllers’ actions can influence. However, control strategies

that do not consider the whole network and focus only on reducing congestion locally can

produce unexpected and undesired effects, which are usually neglected when setting the

signals. For instance, using ramp metering to reduce the inflow of a highway may produce a

spillback effect causing congestion on the underlying urban network (Rinaldi et al. [35]). To

address this issue, we focus on control strategies that attempt to coordinate multiple individ-

ual controllers with the aim of reducing congestion over the entire network.

While numerous control strategies can be found in the literature, including a few that are

conceived for area-wide or network-wide traffic management, an important design choice

has received little attention over the past years: determining the amount, type, and location

of controllers employed by a control strategy under consideration. This design choice is often

overlooked and simply determined based on local needs instead of considering controller lo-

cations over the entire network. This can be detrimental to control strategies’ performance

as the extent to which they can steer the current flow distribution toward the desired one is

constrained by the existing set of controllers used on the network. Therefore, to guarantee

that maximal performances are reachable, a controller set should be determined such that

the quantity, type, and location of controllers properly chosen to be capable of steering the

flow distribution toward a desired state. Additionally, the economic aspect of choosing a

controller set should also be considered to minimize maintenance and installation costs.

5



1.1.2 Types of controllers

Various types of controller technologies can be considered in a network-wide traffic control

system, and each has its characteristics and differences that need to be considered. This

work will focus mainly on two types of control tools, pricing controllers and traffic lights. Their

influence on transportation networks and flow distribution will be discussed in this chapter.

Pricing controllers have been commonly implemented in real-world networks via toll gantries

which are regularly located on highways. Recently, new forms of control pricing have been

developed, such as using automatic number-plate recognition cameras for automatic pay-

ment, making pricing control over transportation networks more and more technologically

feasible. This type of controller will directly influence the cost of passing through the location

they are placed on by imposing a monetary cost or a subsidy to the road users passing

through the considered location. Thus, by producing an increase or reduction in price to

a location, this controller allows the control strategy to adjust the attractiveness of certain

routes and, by extension, to redirect flows toward other routes. In the situation where a

pricing controller is located on each and every link of a considered transportation network,

we can apply a so-called first-best pricing scheme, which has been proven to be capable of

reaching optimal performance on any transportation network, as demonstrated in previous

research works (Verhoef et al. [43]).

Traffic lights are one of the most commonly used types of traffic control technologies. Usu-

ally, traffic lights are employed to manage the conflicting flows at an intersection by appro-

priately distributing the available green time. They are primarily used to enhance the safety

of the users at an intersection by adding constraints to their natural behavior and reducing

the potentially dangerous turning movements. They can also be employed to decrease con-

gestion in the considered area by distributing green times considering the actual demand

distributed over the intersection, and aiming to limit the queuing effects. Traffic lights can

also be used outside of intersections to add a delay to the cost of passing through a certain

location, and by doing so, reducing the attractiveness of this location for road users. Signals

6



near pedestrian crossings, or soft speed control enforcement systems used in different Eu-

ropean countries (the Netherlands, Sweden, Portugal) are examples of traffic lights placed

within road links.

Other types of controllers exist, like variable speed limits or route advisory and guidance

systems. However, we choose to focus only on pricing controllers and traffic lights for this

work because they are more commonly found in real networks and for their simple function-

ing, which will provide a simple way to represent their impact over a network for experiments.

Additionally, the impact of pricing controllers can be reasonably translated into other, softer

approaches, such as variable speed limits. Nevertheless, the developed approaches can

possibly be extended to consider any controller type.

1.2 Challenges and opportunities

Providing a set of controllers capable of fully controlling a transportation network while min-

imizing the number of controllers employed is not a straightforward task, specifically since

the task’s difficulty will increase with the size of the considered network. This section will

describe the difficulties encountered while working on this problem and the existing oppor-

tunities to improve the approaches reviewed from the current literature.

Locating controllers on transportation networks is a complex problem. The first difficulty

comes from the ability to assess if a proposed set of controllers is actually capable of fully

controlling the underlying network. A transportation network is considered fully controllable

when any feasible flow distribution is reachable through a set of actions from a set of con-

trollers. However, the task of verifying if every feasible flow distribution is reachable based

on a proposed set of controllers will result in a combinatorial explosion with the network

size increase, therefore evaluating the capability of a controller set to actually fully control

any given network is not a straightforward task. However, recent research works provided

opportunities to face this difficulty. The most relevant innovation for this dissertation is the
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adaptation of control theory principles to the instance of transportation networks initiated

by the recent work of Rinaldi [34]. The author adapted the principle of the controllability

gramian matrix, introduced in the work of Kalman et al. [20], to the instance of transporta-

tion networks, providing a method to analytically and systematically compute the level of

controllability of a network with a given set of controllers. However, the process required to

compute the level of controllability exhibits a severe space complexity, bounded by O(N4);

this implies that the amount of data that needs to be stored will increase rapidly with the size

of the network. Thus, this process is hardly scalable and therefore cannot be applied on

large networks.

Similarly, as for computing the level of controllability, the main difficulty in searching for con-

troller locations lies in the network size. As such, searching for the number, locations, and

types of controllers needed to efficiently control the underlying network in real-world urban

networks represents an enormous number of possible combinations. Therefore, it is impos-

sible to simply enumerate all combinations to identify which one performs better. In addition

to the combinatorial complexity of the problem, demand is often not uniformly and regularly

distributed over networks; travel behavior cannot be predicted with certainty and it varies

both in time and space. Finally, demand and travel behaviour respond to control and to

changes in traffic states. These are supplementary difficulties that make the problem of lo-

cating an efficient set of controllers a complex problem. Furthermore, once a suitable set of

controllers is determined, coordinating such a high number of variables is also challenging,

given the large number of correlated parameters to be optimised.

Some approaches have been developed in the past years to locate an efficient set of con-

trollers on transportation networks (Verhoef [42], Rinaldi et al. [37]). However, existing

methods tend to exhibit an important computational complexity, often exponential, which im-

plies that the computation time required to compute a solution will increase exponentially

with the considered network’s size. Therefore, existing approaches are hardly scalable and

cannot be easily applied on large networks, representing a gap in the literature we aim to
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fulfill with this work.

1.3 Research objective and scope

The main research objective of this dissertation is to develop a general methodology and

several approaches to identify controller locations so that we can manage road traffic and

reduce congestion in transportation networks. To work towards this objective, we aim at

improving existing approaches used to control transportation networks. More specifically, we

focus on providing a method capable of identifying the needed number, types, and locations

of controllers to control the considered network, such that, through the action of the proposed

controllers, we are capable of efficiently redirecting flows aiming at reducing congestion.

Additionally, we also consider the scalability of the proposed approaches, such that we are

capable of identifying the minimal set of controllers needed to fully control networks of any

size. Therefore, in this dissertation, our goal is to develop a method capable of identifying

controller locations that fulfill as much as possible the following desirable properties such as

to provide the most suitable set of controllers possible:

A1 : The produced controller set should be capable of fully controlling the entire network;

that is, through opportune actions of this controller set, all feasible flow solutions are

attainable.

A2 : The controller set should contain the minimal number of controllers needed so that

the corresponding installation cost is minimal.

A3 : The developed method should be scalable to be applicable to any type and size of

networks.

Identifying a minimal controller set brings an additional desirable property, which however

we do not fully demonstrate in this dissertation, i.e. by limiting the number of parameters to

optimise, solution algorithms may more likely identify efficient solutions in less computation

times, hence being more applicable in real-time control systems.
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The problem of identifying efficient controller locations on transportation networks possesses

many challenges that need to be addressed. To efficiently design such an approach, we de-

cided to limit the scope of our research to the following elements. Firstly, we chose not to

consider local control strategies, as they might improve only locally the situation based on

myopic decisions that could provoke negative effects in areas of the network that are not

considered. Consequently, we focus on control strategies that consider the entire network at

once; thus, while searching for ideal control locations, we consider potential locations over

the entire network. Additionally, as discussed previously, while various types of controllers

exist, we chose to limit our scope to pricing controllers and traffic lights for this disserta-

tion. As we aim to provide a scalable approach applicable to large networks, we propose

to include in our scope the study of large-scale traffic networks, either corresponding to real

city-sized networks or not.

1.4 Contributions

This dissertation proposes multiple contributions to the scientific literature. In this section,

we will briefly describe each contribution presented in the following chapters.

An analysis of the impact of pricing controllers and traffic lights on transportation networks

and their potential substitutability is provided in chapter 3. Special attention is paid to study-

ing possible ways to represent the actual impact of these types of controllers. Experiments

are carried out to assess the possibility of providing a solution based solely on traffic lights

capable of reaching a similar control capability to a pricing-based solution.

To identify pricing controller locations, we propose to study characteristics and rules that

favor efficient locations for pricing controllers in chapter 4. Based on this study, we devel-

oped a set of heuristics and compared their performances to propose a simple method to

locate pricing controllers, particularly aiming to reach full controllability, thus focusing on the

first aim previously described (A1).
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Based on previous research works made for the similar problem of identifying sensor loca-

tions on transportation networks, we propose to adopt the well-known concept in operations

research of minimum spanning trees to develop a novel approach to the problem of con-

troller locations in chapter 5. Simulations based on static assignment show that the method

is capable of identifying an efficient set of pricing controllers while being easily scalable, thus

fulfilling the third aim (A3).

To further extend the research work of the previous chapter, chapter 6 will detail the intro-

duction and exploitation of flow information into the spanning tree approach. The improved

method, jointly leveraging topological and flow information, is shown to provide an even more

efficient set of pricing controllers especially in the specific but very realistic case where the

demand is irregularly distributed over the considered network.

1.5 Thesis outline

Figure 1.1 presents the outline of this thesis. This dissertation is divided into two parts.

The first one contains approaches developed with the aim of reaching full controllability.

As such, chapter 3 studies the substitutability of controllers while keeping full controllability

and chapter 4 provides various heuristics that guarantee full controllability. The second part

includes methods developed with the aim of providing a scalable approach. For this purpose,

chapter 5 introduces the spanning tree approach, and chapter 6 extends this approach by

adding flow information to the process. Finally, chapter 7 concludes this dissertation and

discusses possible future research directions.
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Figure 1.1: Dissertation outline.
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Chapter 2

Literature review

As transportation networks rely on control strategies to minimize the severity of traffic ex-

ternalities, previous research works aimed at developing approaches capable of locating a

controller set to ensure that the underlying network could be fully controlled to efficiently

reduce delays for road users anywhere they might arise. This section describes existing

approaches used to locate an efficient set of controllers, identifying fundamental gaps in

the current literature that might hinder application to real-life problems. However, the con-

troller location problem has received comparatively little attention in the literature. Hence, we

include approaches developed for sufficiently similar location problems on networks in the

review process. We mainly focus on sensor location literature, as this problem can be seen

as dual to that of controller location from a theoretical perspective. We aim to identify some

approaches developed for the sensor location problem that could be applied or adapted to

the controller location problem. This section provides a literature review of methodological

approaches employed to locate controllers on transportation networks and methods used in

similar location problems.
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2.1 Controllability

2.1.1 Cordon pricing approaches

Existing research works consider the problem of controlling a transportation network from

multiple perspectives. A common approach to locate controllers, more specifically pricing

controllers, is to place them such that they form a pricing cordon that separates the network

in multiple areas, thus controlling the entry of road users in each area. In the past years, di-

verse methods have been developed to solve this specific problem of designing an effective

road pricing cordon. In their work, Mun et al. [27] proposed to focus on a specific instance

of the problem by considering only monocentric cities. In their approach, the optimal cordon

is determined such that the combination of the cordon location and toll values would maxi-

mize the resulting social surplus. The authors rely on numerous assumptions to formulate

this social maximization objective. The most restrictive is that the considered network must

be monocentric, with all trips destined to the central district. This assumption limits the ap-

proach’s applicability to a precise network shape. Other research works aimed at designing

pricing cordons for general networks, as in the work of Zhang and Yang [52], where the au-

thors developed models and algorithms for the cordon-based second-best pricing scheme.

They considered the determination of toll levels and locations simultaneously for various

forms of cordons such as single-layered cordon, multi-layered cordon, or multi-centered cor-

don. Once the type of cordon is determined based on the characteristics of the studied city,

the toll locations are determined using a genetic algorithm that will naturally select efficient

toll locations for a cordon. Through numerical experiments, the authors showed that cordon-

based pricing schemes produced by their approach are capable of achieving a significant

increase in welfare gain. As many types of approaches exist to generate pricing cordons,

Shepherd et al. [41] proposed to identify the most appropriate approach by comparing three

methods, a judgmental approach, an optimization approach based on a genetic algorithm,

and a short-cut approach which lies in between the two. Their research led to a genetic

algorithm that can identify the theoretically best performing cordon for a specifically chosen

objective for a given network. However, this approach suffers from scalability concerns due
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to its computation complexity. The same authors proposed an alternative approach that is a

short-cut method that they showed capable of identifying a pricing cordon that can achieve

a large portion of the benefits of an optimal cordon.

As travel demand tends to be irregularly distributed over time and space, traditional pricing

cordons might not reach their full potential. To address this difficulty, Li et al. [22] presented a

methodology that explicitly considers the propagation of traffic congestion over time, thereby

adapting to changes in the network status. They showed that the proposed flexibly-located

cordon could considerably reduce the amount of congestion over transportation networks

while considering the congestion propagation over time and space. While approaches based

on cordon pricing are very well suited for specific problems such as subdividing a network

into multiple areas, or for some particular network shapes, like monocentric cities, most of

the existing approaches aim at second-best solutions. In contrast, we aim to investigate and

develop methods capable of fully controlling any given road network.

2.1.2 General pricing approaches

Aiming at a general approach, Verhoef [42] proposed to investigate the potential welfare

gain from implementing a second-best pricing scheme over a network. To this purpose, the

author developed an indicator to predict the welfare gain from implementing a second-best

toll on a specific link of the considered network. Based on this indicator, one is capable of

identifying the (single) toll location that has the highest impact over the whole network. In

the case where we are considering the selection of multiple toll points, the author proposes

three possible strategies. The most straightforward strategy to avoid a full combinatorial ex-

ploration is to select the n links that bear the highest predicted scores for implementing a

single toll-point. However, this strategy does not consider interactions between multiple toll

points; therefore, the selected controller set might contain redundant pricing controllers. A

second proposed strategy involves a step-by-step approach, in which the optimal next toll-
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point is selected given the selection of previous toll-points and the corresponding second-

best optimal toll levels previously computed. A drawback of this approach is that toll points

that appear efficient at the beginning of the process may become less attractive when the

total number of tolls increases. To fully account for the interaction between tolls, the last

strategy consists of computing every possible combination of toll points in a network and

selecting the combination that bears the highest predicated efficiency gain. However, this

approach requires a large number of calculations that increase exponentially with the size of

the considered network; thus, this approach is challenging to apply on large networks and

is hardly scalable.

In order to reduce the computational complexity, some research works aimed at using solely

topological information instead of relying on flow-based information. Topology-based ap-

proaches tend to require fewer prior inputs compared to previous methods as they only use

the topology of the network, which generally reduces their computational complexity. As

such, in his recent work, Rinaldi [34] proposed a general approach based on linear algebra

to locate pricing controllers on any type of network. He proposed to adapt the work of Yuan

et al. [51] to the instance of transportation networks resulting in an approach capable of

determining a minimal set of pricing controller locations while ensuring the full controllabil-

ity of the underlying transportation network. However, it was later demonstrated in Rinaldi

et al. [37] that the proposed approach cannot guarantee that the controller set obtained

through this method is actually capable of fully controlling the network under the presence

of bi-directional links, which is a typical setting in realistic transportation networks.

2.2 Observability

As the problem of identifying controller locations has received little attention in the litera-

ture, we also review methodologies stemming from domains sharing similar characteristics,

mainly from the field of observability, as it is a similar location problem over transportation

networks that have been extensively studied. In this section, we focus primarily on the
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problem of sensor location for full traffic flow observability, which is the most similar to our

problem of controller location. It consists in identifying important counting sensor locations

over a transportation network, such as all the flows over the network are directly or indirectly

observable. This problem is often seen as the dual of identifying controller locations. How-

ever, sensors are used to simply observe the network without impacting its current state,

whereas controllers are employed to modify and steer the existing network’s state toward

the desired one. Therefore, the set of locations found for the observability problem is not

guaranteed to be efficient for the problem of controllability. In what follows, we divide the lit-

erature concerning the domain of observability into three broad categories: the first focuses

on approaches based on algebraic properties, the second includes methods that rely on

topological information, such as network structure and connections, and the last consists of

approaches based on optimization algorithms to resolve the location problem.

2.2.1 Linear algebra based approaches

Approaches based on linear algebra mostly rely on appropriate algebraic transformations

to extract the minimum subset of links to be observed such that all the unmonitored flows

can be estimated. Based on a given network structure, represented by a link-path incidence

matrix, and considering static path flows, Hu et al. [17] used the principle of basis vector to

define the set of basis links of a network. By definition, basis links are linearly independent

links, meaning that all link flows can be expressed as a linear combination of the basis link

flows. Therefore, if flows on basis links are observed using sensors, then all unmonitored link

flows can be inferred based on the basis link flows. By computing the reduced row echelon

form of the link-path incidence matrix, the authors are capable of identifying the basis links.

Additionally, the set of basis links obtained is not unique; thus, the set of sensor locations

is not unique either. However, such an approach requires a complete path enumeration to

obtain the link-path matrix, a process that bears an exponential computation complexity and

is therefore only applicable to small networks.
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In order to address this issue, Ng [28] proposed to employ the node-link incidence matrix

instead of relying on link-path information, thus avoiding the complete enumeration of paths.

The node-link incidence matrix only represents which nodes and links are connected to one

another. They demonstrated that the reduced row echelon form of the node-link incidence

matrix could be subdivided into two sub-matrices, with one being invertible and another one

not necessarily invertible. Based on these two sub-matrices, they showed that if links cor-

responding to the non-invertible matrix are observed, then the flows on links corresponding

to the invertible matrix can be inferred. Therefore, the authors can identify a set of links to

observe, such that all the link flows over the network can be observed directly or indirectly.

However, Castillo et al. [6] demonstrated that node-based methods, such as the one of Ng

[28], as opposed to approaches based on path information, only provide an upper bound to

the minimum number of link sensors required for full link flow observability.

Following the same idea of providing a scalable method by addressing the complexity of

approaches, Castillo et al. [7] proposed to focus on reducing the time and space complexity

of the standard algebraic techniques. They proposed a new formulation of the problem by

formulating link, OD, and scanned link flows in terms of route flows rather than OD flows.

This allows to carry out the computation effort using matrices containing only zeroes, ones,

and minus ones in most of the necessary iterations. Thus, allowing the use of ternary arith-

metic, which reproduces the algebraic results exactly, without incurring numerical precision

problems, leading to faster computation and lower memory requirements. However, the

process is not always applicable at every iteration, in which case the slower pure algebraic

method is applied. Additionally, the proposed method is not only valid for full observability but

also for partial observability problems. However, the size of the incidence matrix increases

quickly with the size of the considered network; therefore, the proposed method has a limit

in its applicability.

With the same aim to avoid a complete path enumeration, Castillo et al. [6] proposed a
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new concept for the sensor location problem. They proved that the minimum number of links

required to observe all link flows could not be obtained without path information; however,

to obtain the minimum number of links to be observed, not all paths are required, a subset

of linearly independent paths is sufficient. They provided an algorithm to identify a subset

of linearly independent paths to facilitate the process. Based on which they developed a

second algorithm capable of identifying the minimum subset of links to be observed for com-

plete link flow observability over the considered network. Even if this approach requires less

computation time compared to previous methods, the computational time needed to identify

the set of linearly independent links will still grow exponentially with the network size.

2.2.2 Topology based approaches

In order to provide an approach that is actually scalable and applicable on large networks,

some research works developed topology-based methods for the counting sensor location

problem; the main advantage of these approaches is that they require less prior information

compared to previous methods as they only use the topology of the considered transporta-

tion network. In their work, Morrison et al. [26] studied the problem of sensor location as

described in Bianco et al. [3]. They added a stronger necessary condition by providing a

counterexample to the problem, which stipulates that the set of unmonitored links should

form a tree to validate this new constraint.

Later, a complete topological method was provided by He [15]. Based on a graph trans-

formation allowing to form a spanning tree on the considered network, they demonstrated

that links corresponding to the chosen spanning tree represent the set of links that should

be left unmonitored. Therefore, all links that don’t belong to the spanning tree need to be

equipped with a counting sensor and, based on spanning tree properties and on the law

of flow conservation, the link flows of unobserved links that form a spanning tree can be in-

ferred based on the set of links equipped with sensors. The main advantage of this approach

is that it only requires knowing the topology of the network, in the form of a graph, to be able

to apply it, and as the process of finding a spanning tree has a low computation complexity
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bound by O(NlogL), thus this approach can be considered easily scalable. Additionally, this

approach can easily be adapted for the controller location problem under the assumption

that links forming a spanning tree can be indirectly controlled by the remaining set of links

equipped with controllers.

2.2.3 Optimization based approaches

Other research works focused on developing approaches based on optimization techniques,

such as in Yang et al. [46]. In their work, the authors aimed to observe link flows such as

separating as many origin-destination pairs as possible. An origin-destination pair is said

separated if the current traffic-counting stations entirely intercept trips between this origin-

destination pair. As a first step, the authors proposed a new integer linear programming

formulation for the problem; however, due to the problem being NP-hard, they applied a

relaxation to it. Then, based on this new formulation, the authors developed a shortest

path-based column generation algorithm and a branch-and-bound approach for solving the

traffic-counting location problem.

Liu et al. [23] considered a different version of the problem by including spatiotemporal

correlation, providing the ability to infer flows considering time. The authors first reformu-

lated the sensor location problem by incorporating spatiotemporal correlation. Based on this

new formulation, they developed an ant colony optimization algorithm with a local search

procedure specifically designed for this problem. However, for this dissertation, we are go-

ing to focus on approaches that only consider fixed time.

A recent research paper (Rodriguez-Vega et al. [38]) proposed to consider the identification

of locations for different types of sensors simultaneously. In their work, they considered two

types of sensors, one which allows measurement of turning ratios at an intersection and

the other that directly measures the vehicle flow on a given road. The authors consider

intersections as locations for the turning ratio sensors, under the assumption that the over-

all number of required sensors is known a priori. To identify suitable locations, they use a
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greedy algorithm that prioritizes intersections bearing the highest number of connections.

After locating turning ratio sensing infrastructure, the authors place the remaining road flow

sensors through an algorithm similar to the one introduced by He [15]. The resulting time

complexity of the method is O(nN log(nN ) + nϵ), where nN is the number of network inter-

sections, and nϵ is the number of road links. This approach could be adapted to the problem

of controller location by considering a combination of pricing controllers to control roads and

traffic lights to manage intersections.

Based purely on optimization techniques, the authors of [13] proposed two new approaches

in their work, one based on a branch-and-cut algorithm and a second based on a clustering

search heuristic. They showed that their methods could provide optimal solutions on most

of the tested networks and that in cases where an optimal solution could not be reached,

high-quality solutions were still found. To validate the performance of their approaches, they

proposed a comparison with a classic genetic algorithm from Chen et al. [8]. The proposed

clustering search heuristic was shown to be able to outperform the state-of-the-art genetic

algorithm. Additionally, they applied their approaches to real-life transportation networks in

Brazil in order to help decision-makers.

In a recent work (Rubin et al. [40]), the authors proposed an exact algorithm to solve the

counting sensor location problem. However, to differ from classical approaches that aim to

solve a specific version of the problem, they present an exact algorithm capable of optimally

solving the problem in its general form. Specifically, their method allows using any type of

information, flow, and sensor placement, such as nodes, links, or a combination, overcoming

multiple limitations of other existing methods. For this purpose, they proposed a new formu-

lation of the problem, based on which they developed an implicit hitting set-based algorithm.

They validated the performance of their approach by solving the sensor location problem

over four existing transportation networks from previous works and showed that their ap-

proach is capable of solving the problem on these networks.
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In the work of Ortigosa et al. [30], the authors studied the number and location of measure-

ment points needed for implementing an efficient macroscopic fundamental diagram-based

perimeter control scheme. Their work revealed that a minimum of 25 % of network coverage

is required to ensure the efficiency of the perimeter control scheme. In order to validate these

results, the authors tested and validated their approach using a micro-simulation model of

the inner city of Zurich.

2.2.4 Sensor location approaches for origin destination trip estimation

Aside from flow observability, sensors can also be used for various other measurement ob-

jectives; as such, Jabari et al. [19] developed a method to determine sensor locations which

guarantee that the time needed to detect an incident in congested conditions is kept as short

as possible.

Other research works concentrated on the relationship between sensor locations and the

problem of traffic demand estimation, specifically in terms of the reliability of the estimated

origin-destination matrix, which is shown to be heavily dependent on the sensor types and

locations employed. Yang et al. [45] proposed a theoretical investigation into the reliability

of an estimated OD trip matrix introducing the concept of Maximum Possible Relative Error

(MPRE). The proposed MPRE metric represents the maximum possible relative deviation

of the estimated origin-destination matrix from the true one. They showed that the chosen

number and locations of sensors have an impact on the accuracy of the predicted matrix

and, more specifically, that the number of observed independent links should be maximized.

Based on the concept of MPRE, Yang and Zhou [47] proposed a set of rules to identify

locations for sensors to produce an estimated origin-destination trip matrix as realistic as

possible. This set of rules stipulates that sensor locations should be chosen such that all

origin-destination pairs are covered. Each sensor should intercept as many flows as possi-

ble, and that traffic counting points should be located on the network so that the resulting

traffic counts on all chosen links are not linearly dependent. The set of rules they proposed

points to critical properties when considering the coverage of a transportation network with

22



counting sensors, rules that can also be relevant for locating controllers on transportation

networks.

In this section, we reviewed numerous approaches that have been developed for observ-

ability; however, they tend to lack scalability due to heavy computational complexity and/or

rely on demanding traffic flow data inputs that are difficult to obtain. Some approaches can

potentially be adapted to the controller location problem; however, a substantial difference

exists between sensors and controllers. As illustrated in Figure 2.1, sensors are used to

simply observe the network and do not exert any impact on the flow distribution. Controllers,

as depicted in Figure 2.2, once positioned on a network, are used for steering the flow dis-

tribution toward another state, thus changing the current state of the network. Therefore,

while we can use the set of locations provided by approaches employed for observability as

locations for controllers, there is no guarantee that the resulting controller set will fully control

the underlying network. Additionally, controlled flows and controller locations are on a fixed

point; thus, both need to be determined simultaneously. Therefore, applying observability

methods to controllability is not a straightforward task.

2.3 Framework

In order to develop methods capable of locating an efficient set of controllers, we first need to

define a framework that will provide the basis for the development of such approaches. This

section will describe a few previous seminal works used as a basis for this dissertation. Pri-

marily, they provide us with a representation of the impact of various types of controllers on

a transportation network and a way to evaluate the actual capability of a controller set to fully

control the underlying network. Additionally, we also detail an approach developed for con-

troller locations that will be used as a comparison for methods developed in this dissertation.

Throughout this dissertation, a given transportation network is represented by a directed

graph G(N,L) comprising of a set N of nodes and a set L : l ∈ L = (i, j), i, j ∈ N of di-
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Figure 2.1: Sensor location problem. Observing doesn’t change the nature of the observed
object; thus, road users’ behavior is not impacted.
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Figure 2.2: Controller location problem. Controller actions have an impact on road users’
behavior.
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rected links connecting said nodes. To represent user behavior, specific nodes are included

to define origin centroids, where traffic flows are produced, and destination centroids, where

flows are attracted.

2.3.1 Controller representation

In order to be able to identify efficient controller locations for controlling a transportation

network, we first need to understand and be able to represent the action that each type of

controller would have on the network. For this purpose, we use the work of Rinaldi [34] as

a basis. In this work, the author first proposes to study the dynamics of pricing controllers:

these controllers apply a direct influence on the cost of traversing a considered link in the

network by adding a monetary cost for road users passing through this link. This added cost

has an indirect impact on the number of users passing through this link at a given time since

by considering the added cost of the pricing controller, users might decide to use an alterna-

tive route that is now comparatively less costly. For the second type of controller, the author

details the functioning of traffic lights; a critical characteristic of the author’s representation

of traffic lights is that, contrary to pricing controllers, traffic lights are located on nodes of

the graph, corresponding to intersections in the underlying transportation network. A traffic

light equipped on a node will manage the incoming flows to redistribute the available node

capacity by routinely assigning green time to the possible flow directions. By doing so, the

controller induces indirect costs in the form of delays for road users passing through the

considered intersection, making some routes more or less attractive compared to others.

Additionally, the indirect cost of added delays can be seen as less constraining from the

road user perspective, making traffic lights a more realistic type of controller to employ on

real transportation networks. As described, a critical difference between these two types of

controllers under this representation is that traffic lights are located on nodes, representing

intersections of the network, whereas pricing controllers are located on links of the network.

Therefore, these two types of controllers have a different impact on the considered network

under this representation.
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2.3.2 Level of controllability

To provide an efficient controller set, we need to evaluate the actual capability of a consid-

ered collection of controllers to control the underlying network. For this purpose, we studied

the work of Rinaldi [34], which provided a framework based on which we can assess if a con-

sidered set of controllers is actually capable of fully controlling the underlying network. This

work postulates that locations and number of installed controllers should be chosen such

that the controller set can achieve full controllability of the network. That is, being capable of

steering the system toward any target flow distribution, ensuring the reachability of globally

optimal performances for control policies. For this purpose, the author introduced a frame-

work adapting control theory principles to the instance of transportation networks, in which

they provided an adaptation of the controllability gramian matrix, presented by Kalman et al.

[20]. It allows computing the level of controllability yielded by a set of controllers placed on

a given network, thus providing a method to assess the actual capability of a controller set

to fully control the underlying transportation network.

To compute this level of controllability for a considered controller set, we first need to de-

fine two matrices. The state matrix A ∈ Rn×n, with n being the number of nodes in the

network, represents the influence that a considered node has on adjacent nodes. This ma-

trix is directly based on the network node adjacency matrix, representing which nodes are

connected, by a link, to which other nodes. Additional information related to routes can be

added in the matrix A as described in the work of Rinaldi [34]. The input matrix B ∈ Rn×m,

with m being the number of controllers on the network, expresses which nodes are affected

by the control action of which controllers. For example, if a pricing controller is placed on

a node n, as it will only directly affect the node n itself, B(n,m) = 1. Whereas if a traffic

light is located on a node n then all the predecessor nodes (p1, p2, ...) of n will have an equal

percentage of 1 in the matrix B such that B(p1,m)+B(p2,m)+ ...+B(pk,m) = 1. Based on

control theoretical principles, the network is considered fully controllable if one of its charac-

teristic descriptive matrices, known as controllability gramian, has an algebraic rank equal

to the system’s total number of state variables. The controllability gramian can be derived
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from the two previously described matrices (A,B) as follows:

Wc = [B AB A2B ... An−1B]

As detailed in the work of Kalman, a sufficient condition to guarantee full controllability of the

system is that the rank of the gramian is equal to the size of the state matrix, thus equal to the

number of nodes in the network, such that rk(Wc) = n. Therefore we can define the level of

controllability as LevelOfControllability =
rk(Wc)

n
, such that LevelOfControllability = 1

if full controllability is reached. In this dissertation, the level of controllability is always com-

puted for n as the number of nodes in the entire network unless specified otherwise. Based

on this framework, we can assess if a controller set is capable of fully controlling a con-

sidered network. This concept will be used throughout this dissertation to evaluate the

efficiency of developed methods.

However, as described earlier, to use this concept, controllers need to be considered on

nodes; thus, this process is suitable when considering traffic light locations but not straight-

forward to apply when considering pricing controllers for links. To resolve this incompatibility,

we propose to employ the principle of the dual graph transformation introduced by Añez et

al. [1]. This graph transformation is obtained by following three main rules:

1. Nodes of the dual graph represent links of the primal graph, and they retain all charac-

teristics of the original links.

2. Links of the dual graph represent turning movements.

3. Centroids such as origin and destination nodes are represented by nodes in both pri-

mal and dual networks.

To illustrate the dual graph transformation, we consider a simple network (Fig. 2.3a), and we

apply this process to obtain its dual representation (Fig. 2.3b). Under this representation,

links of the original graph are now represented by nodes; thus, once locations for pricing

controllers are identified on the primal graph, the locations can be transferred on dual graph
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nodes, and the level of controllability held by the set of pricing controllers can be calculated.

This is possible as the dual form of a network still represents the same network but with a

richer representation, specifically regarding the representation of the turning movements.

2.3.3 Exact approach

To evaluate if methods developed in this dissertation are efficient, we propose comparing

them to an existing approach capable of locating controllers on a transportation network. For

this purpose, we chose as a reference the exact method introduced in the work of Rinaldi

[34] which is an adaptation of the approach developed by Yuan et al. [51]. This approach is

based on the state matrix A; the first step consists in computing its corresponding eigenval-

ues. Based on the found eigenvalues, the next step consists of identifying each eigenvalue’s

geometric multiplicity. Once the eigenvalue bearing maximum multiplicity is identified, the

matrix can be reordered to isolate the linearly dependent and independent components,

then the minimal set of pricing controllers can be determined based on the set of linearly

independent links identified.

However, a recent work (Rinaldi and Viti [37]) demonstrated that the exactness of the method

can not be guaranteed under the presence of bi-directed links in the network, which is a com-

mon setting in transportation networks. Bi-directed links in the network will cause a violation

of the algebraic assumptions behind the method due to the self-dependencies introduced

by bi-directed links during the computation of the algorithm. In most networks, these de-

pendencies lead to a collapse of the eigenvalue/eigenvector information content, thereby

misleading the chosen approach towards solutions with no practical significance. Figure 2.4

demonstrates this effect on a simple grid-like network of 20 nodes containing only one origin-

destination pair connected by three routes. We consider that only links belonging to at least

a route are necessary to control; thus, in this example, we only consider the sub-network

comprising the route set. The first instance of this network only contains mono-directional

links (Fig. 2.4a); more specifically, all links in the network are directed from left to right or

top to bottom. The exact method can identify a set of pricing controllers that guarantees full
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(a) Primal network with links numbered in blue.

(b) Dual representation of the network.

Figure 2.3: A simple network with two origin and two destination nodes and its dual repre-
sentation.
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controllability on this network. However, on the second instance of the network where all

links are bi-directional, the method exhibits difficulties in producing a sensible set of pricing

controllers as exemplified in Figure 2.4b where the obtained solution contains only one con-

troller. Therefore, we can observe that the introduction of bi-directionality significantly alters

the capability of the exact method to produce an efficient set of pricing controllers as the

selected set is clearly incapable of effectively influencing the whole network (the measure of

the level of controllability yielded by the produced set is indeed not fully controllable).

However, the authors proposed a variation of the method that does not guarantee full con-

trollability but can guarantee that a high level of controllability is reached. For this purpose,

they remove from the state matrix conflicting information, thus allowing the computation of a

candidate controller set. Unfortunately, by removing information, the method might produce

controller sets of lower quality, and the found solution is not guaranteed to be optimal.
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(a) All links are mono-directional (from NW to SE). The network is fully controlled.

(b) All links are bi-directional. Only 1 out of 20 nodes is controlled.

Figure 2.4: Yuan’s method applied on a 20 nodes graph. Pricing controller locations are
marked in blue. Route set is represented in green
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Chapter 3

Controller substitutability

In this dissertation, we focus on two types of controllers, traffic lights and pricing controllers,

each possessing their characteristics and impacting networks differently. As demonstrated

in Verhoef et al. [43], pricing controllers are capable of reaching optimal performance on

any transportation network while using a first-best pricing scheme. However, traffic lights

represent a more widespread technology and are more realistic to be used in real networks.

Therefore we want to study the possible substitutability of pricing controllers by traffic lights

on transportation networks to obtain a set of traffic lights as efficient as a set of pricing

controllers. Our main objective in this section is to determine whether pricing controllers

can be substituted for traffic lights while maintaining complete controllability over the con-

sidered network. For this purpose, based on simple atomic grid-like networks, we propose

to empirically try to infer through combinatorial search if a topological substitution rule exists.

This section is based on the work done for the following paper: X. Mazur, M. Rinaldi, and F.

Viti, On the substitutability of traffic light and pricing controllers in transportation networks.

That was published in the proceeding of the conference: 2019 6th International Conference

on Models and Technologies for Intelligent Transportation Systems (MT-ITS).
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3.1 Methodology

This subsection discusses the methodology employed to determine whether and how a set

of traffic lights can replace a given set of pricing controllers without loss of controllability

over the considered network. As described previously, every given transportation network is

represented by a directed graph G(N,L). On these graphs, any node i ∈ N is a potential

location for a controller, whether we consider a traffic light or a pricing controller. In this sec-

tion, we consider that pricing controllers can be located on nodes such that they impact the

cost of all outgoing links from the considered node. The differences in functioning between

these two types of controllers imply that the substitution of a kind of controller by the other

one is not a straightforward task. For example, a traffic light might reproduce the impact of

multiple equivalent pricing controllers since it can influence turning flows rather than route

flows.

To assess if a considered set of pricing controllers or traffic lights is capable of control-

ling the underlying network, we used the controllability framework presented in the previous

chapter. Based on this framework, we can compute the associated degree of controllability

of a set of controllers, and thus we can compare the impact of different controller sets. To

provide a complete study, we based our exploratory approach on variously-sized networks.

Thus, we developed a simple method to generate different sized square grid networks to

have simple networks on which we can study possible substitution rules. Every generated

network follows the following set of topological criteria:

1. Every network possesses two origin-destination pairs comprising of two origin nodes

on each of the left corners and two destination nodes on the right corners. The first

origin-destination pair connects the top-left origin node with the bottom-right desti-

nation node. Similarly, the second pair connects the bottom-left origin node to the

top-right destination node.

2. Network flows are directed from the left, where origin nodes are placed, to the right,

where the destination nodes are placed. All horizontal links are monodirectional, from

34



left to right.

3. All vertical links are instead bi-directional, as presented in Fig. 3.1.

This graph generator will be used to produce a set of gradually larger networks. More specifi-

cally, each generated network will be composed of n squares. These square units are added

one by one following an outward spiral pattern, as displayed in Fig. 3.2. Additionally, we con-

sider user behavior on each network in the form of route choice. Each origin-destination pair

is connected by a set of routes, which is determined using the K-shortest path heuristic (Yen

[49]). Following research works on road user perceptions in terms of route choices (Fiorenzo

et al. [9], Bovy et al. [4]), we chose a value of K = 3 routes for each origin-destination pair,

such as to capture route choice behavior appropriately. In this section, when computing the

level of controllability reached by a set of controllers, we only consider nodes belonging to

the sub-network resulting from the generated set of routes.

To obtain a candidate set of pricing controllers that is capable of fully controlling a considered

network, we decided to employ the exact approach introduced by Rinaldi [34], that was

detailed in chapter 2. To investigate if the exact solutions obtained with this approach can be

transformed into equivalent traffic light-based solutions without losing the full controllability

of the network, we propose to carry a combinatorial exploration. Specifically, we developed

an algorithm that explores every possible combinatorial substitution (Algorithm 3.1).

Algorithm 3.1 Given a network description matrix A

compute full controllability with pricing solution Sp

for k = |m| − 1 to k = |m| do
compute every k-combination K of traffic-light
for each k-combination K do

if Level of Controllability (K) = Level of Controllability (Sp) then
add K to Stl

end if
end for

end for

Based on a full controllability set of pricing controllers Sp, composed of |m| controllers, this
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Figure 3.1: Square grid graph example.
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algorithm will compute a set of traffic light based solutions by exploring every combination

of |m − 1| and |m| traffic lights, a set that will contains a total amount of
(
|N/{o ∪ d}|
|m− 1|

)
+(

|N/{o ∪ d}|
|m|

)
solutions. Then, only traffic light solutions that reach the same level of con-

trollability as the one achieved by the considered set of pricing controllers Sp are kept.

Thus, the final set Stl contains only traffic light-based solutions equivalent to the consid-

ered pricing-based solution. By comparing the equivalent traffic light-based solutions to the

pricing solution, we aim to infer whether a topological relationship exists due to similarities

between the original pricing-based solution and one or more traffic light-based alternatives

to identify possible substitution rules.

Figure 3.2: Increasing size of square grid graph generator.
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3.2 Experimental results

Based on the developed square gird network generator, we propose to focus on a set of

three differently sized networks for this experimental setup. The smallest generated graph

has a size of three by three nodes and is composed of a four squares grid (Fig. 3.3a).

The second considered graph has a size of four by five nodes, resulting in a total of twelve

squares (Fig. 3.3c). As for the third network, it is configured as a five by five nodes network,

producing a sixteen-squares network (Fig. 3.3e). Based on this set of graphs, we apply

the algorithm 3.1 to obtain a set of traffic light-based solutions that are equivalent to the

considered pricing solution. By examining the obtained traffic light solution, we searched to

highlight similarities between solutions using different controllers. It is interesting to observe

that, on the set of considered networks, no traffic light-based solution manages to reach

the same level of controllability as the pricing solution while using one less controller (Ta-

ble 3.1). To infer some simple topological rules, all traffic lights solutions were compared

to the pricing solution, seeking to identify topological regularities, such as relationships be-

tween predecessor - successor and node distances between the pricing positions and the

traffic light positions. Such a topological rule was detected on all three considered network

instances: a pricing controller located on a given node i can be replaced by a traffic light

placed on a node j : ∃l, (i, j) ∈ L, if node j is a direct successor of node i through a directed

link l (Fig. 3.3).
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(a) Three by three network with pricing controllers. (b) Three by three network with traffic lights.

(c) Four by five network with pricing controllers. (d) Four by five network with traffic lights.

(e) Five by five network with pricing controllers. (f) Five by five network with traffic lights.

Figure 3.3: Set of three different-sized graphs equipped with pricing controllers and equiva-
lent traffic lights.
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Graph size 3 by 3 4 by 5 5 by 5

Amount of pricing controllers |m|

required to reach full controllability
2 5 3

Total enumerated combinations of

|m| − 1 traffic lights
7 3060 253

Number of |m| − 1 traffic light

combinations that reach full

controllability

0 0 0

Total enumerated combinations of

|m| traffic lights
21 8568 1771

Number of |m| combinations that

reach full controllability

2

(∼10%)

2017

(∼24%)

175

(∼10%)

Table 3.1: Controllers needed to reach full controllability.

Additionally, we propose a second experimental setup to validate the topological substitution

rule previously identified. We decided to employ a larger network for this second experiment,

so we generated a six-by-seven-nodes graph composed of 30 squares. We first applied the

exact method to obtain a set of pricing controllers; the found collection is composed of four

controllers (Fig. 3.4a). Then we applied the previously described substitution rule to obtain

an equivalent set of traffic lights (Fig. 3.4). After computing the level of controllability reached

by the produced set of traffic lights, we observed that the full controllability was indeed main-

tained over the network. This experiment provides a validation that the inferred substitution

rule can produce a set of traffic lights that can fully control the underlying network. It also

shows that this approach is applicable on large transportation networks where computing

every possible combination of traffic lights would have resulted in considerable computation

costs.

To confirm this result, we propose to consider a set of larger networks. For this purpose, we
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successively produced networks of increasing sizes through our square grid graph genera-

tor, starting from a twenty-five-square-sized network up to a one hundred squares network,

for a total of 75 different instances. Out of this set of networks, four were excluded due to un-

adapted shape preventing the computation of a feasible set of pricing controllers. On 94.3%

of the remaining networks, the level of controllability yielded by the substituted set of traffic

lights was found equal to the one produced by the pricing approach. The substitution rule

could not find feasible traffic lights set on only 4 out of 71 scenarios. These results indicate

that the proposed substitution rule can locate an efficient set of traffic lights on square grid

networks while avoiding a complex combinatorial exploration. Additionally, we observed over

every tested instance that the number of controller nodes required to control the considered

network fully is not correlated with the network size in terms of nodes number. Instead, the

required number of controlled nodes exhibits a tight distribution of 7% of the network nodes,

as displayed in Figure 3.5. Future research will be required to evaluate whether this property

depends on the network characteristics, such as the distribution of origin-destination pairs

or the general regularity of the tested networks.

3.3 Conclusion

With this study, we explored the possibility of substituting existing pricing controllers with

traffic lights on the specific instance of grid-like networks. We identified a simple substitution

rule by observing topological similarities between pricing and equivalent traffic light-based

solutions. We demonstrated that by following this simple rule, we could identify a set of

traffic lights with no loss of controllability compared to a pricing solution. Based on a set

of 75 networks, we validated this result, showing that the rule provided valid and lossless

solutions in more than 90% of instances.
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(a) Pricing locations.

(b) Traffic light locations.

Figure 3.4: Six by seven nodes network.
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Figure 3.5: Distribution of the percentage of controllers needed.
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Chapter 4

Rule-based heuristics

Based on the tools provided in the previous chapters, we propose to study topological prop-

erties of transportation networks that would contribute to guide the selection of an efficient

set of controllers, such as guaranteeing that the highest level of performance is reachable on

transportation networks. For this purpose, we developed several methods based on these

properties that can identify essential locations while minimizing the number of controllers

employed. Based on the previously presented framework, we provide an experimental setup

composed of numerous networks bearing various sizes and characteristics to analyze the

performance of the developed heuristics.

This chapter is based on the work done for the following paper: X. Mazur, M. Rinaldi, and

F. Viti, Heuristic methods for minimal controller location set problem in transportation net-

works. This work was presented at the 23rd EURO Working Group on Transportation Meet-

ing, EWGT 2020, 16-18 September 2020, and was published in Transportation Research

Procedia 52, January 2021.

4.1 Introduction

As demonstrated in the previous chapter, pricing controllers are capable of fully control-

ling transportation networks and can be substituted by traffic light controllers under certain
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conditions. Therefore, we chose to focus solely on the usage of pricing controllers for this

and the following chapters. However, their capacity to actually control a network depends

on the number and locations of installed controllers. Thus, we aim to identify locations for

pricing controllers on transportation networks such that the underlying network is fully con-

trollable while minimizing the number of employed controllers. In general, the problem of

controller location lacks a method capable of identifying a set of controllers such that the

considered network is fully controllable. To address this issue, we aim to develop heuristic

approaches that would identify a satisfying solution while also considering the number of

pricing controllers employed to minimize the number of controllers used. Additionally, we

propose using topological information mainly to avoid computational complexity faced by

algebra-based approaches, such as to provide a scalable approach.

4.2 Methodology

As in previous chapters, a given transportation network is represented by a directed graph

G(N,L) comprising of a set N of nodes and a set L : l ∈ L = (i, j), i, j ∈ N of directed links

connecting them. Origin and destination centroids are introduced in the network to represent

route choice behavior, and each resulting origin-destination couple is connected through a

given route set, generated with a K-shortest path algorithm (Yen [49]). For this chapter, when

computing the level of controllability reached by a set of controllers, we only consider nodes

belonging to the sub-network resulting from the generated set of routes. Every node i ∈ N ,

except origin-destination centroids, is considered a potential location for a pricing controller,

as in chapter 3. To solve the minimal controller location set problem, we developed four

simple heuristics based on the topological properties of networks. The proposed heuristics

are a class of greedy algorithms; therefore, to find a suitable set of controllers, they locate

pricing controllers one after the other, trying to identify the most suitable location for the next

controller at each step. At each step, the heuristics will compute the level of controllability

reached by the current set of controllers to assess if full controllability is achieved, in which

case the process will stop. The proposed heuristics are detailed in the following:
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• Algorithm 4.1 - Best controller per route: This approach considers one route r from a

previously determined route set at each step. A pricing controller is located on the node

of r that brings the highest increase in the current level of controllability. A different route

r is considered at each step until full controllability is reached. This approach is purely

based on myopic decisions. (Alg.4.1)

• Algorithm 4.2 - Node degree weighted: This approach first assigns weights on each

node to reflect the network topology characteristics. Each node is weighted by its degree

(total amount of inbound and outbound connections) so that nodes densely connected

are considered more important. Pricing controllers are then located successively on

nodes bearing the highest weight until full controllability is reached. The intuition behind

this approach is that nodes with a higher degree of connectivity are likely to represent

key pivotal points in the network. (Alg.4.2)

• Algorithm 4.3 - Origin distance weighted: Similarly to the precedent heuristic, this ap-

proach first weights each node of the network with their respective topological distance

(number of nodes traversed) to the closest origin, following existing routes. Then, pricing

controllers are placed one at each step on the node bearing the smallest weight over

the network. This approach is inspired by screen line methods following the idea that

placing controllers in the vicinity of origin centroids will allow capturing flows directly at

their origins, thus yielding an important impact on flows. (Alg.4.3)

• Algorithm 4.4 - Splitting or merging routes: This last approach follows this intuition that

positions where routes from the same origin-destination pair are splitting or merging

represent critical positions to control the movement of road users. Therefore, at each

step, this approach will place a pricing controller on the node where the highest amount

of routes are either merging or splitting until full controllability is reached. Suppose if the

number of nodes where routes are merging or splitting is not sufficient to fully control

the entire network, for example, due to a specific network’s shape. In that case, the

set of controllers is completed following the first approach until the desired condition is

achieved. (Alg.4.4)
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Algorithm 4.1 Best controller per route

for each route in the route set do

get node i with max (level of controllability)

place controller on node i

if current level of controllability = full controllability then

stop

end if

end for
Algorithm 4.2 Node degree weighted

for each node do

node’s weight = node degree

end for

while current level of controllability < full controllability do

place one controller on the node with max (weight)

end while
Algorithm 4.3 Origin distance weighted

for each node do

node’s weight = topological distance to closest origin

end for

while current level of controllability < full controllability do

place one controller on the node with min (weight)

end while
Algorithm 4.4 Splitting or merging routes

for each origin-destination pair do

for each i node where routes are merging or splitting do

if current level of controllability < full controllability then

place controller on node i

end if

end for

end for
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4.3 Experimental setup

To provide a complete experimental setup, we propose to employ the graph generator in-

troduced in Mireles de Villafranca et al. [44] to create arbitrarily randomized networks. We

consider randomized networks to be especially suitable for this experimental setup as they

provide a wide range of different networks that bear characteristics close to real urban trans-

portation networks, thus, showcasing that the proposed approaches are applicable to any

type and shape of potentially existing networks. First, this algorithm generates a square

grid network of the desired size; then, node locations are randomly perturbed while generat-

ing bi-directional links between node couples that are sufficiently close, thus reshaping the

original network. (Fig. 4.1) The graph is divided into concentric zones (as exemplified by

the red circles in Fig.4.1), each representing a different kind of transportation network areas

such as the city center, suburban areas, or outside areas with associated characteristics.

For example, speed limits are adapted to the considered type of area. A given amount of

origin-destination centroids are introduced; in this work, we chose to generate two origin

and destination nodes per area. After that, each origin node is connected to all destination

nodes belonging to a different zone by a given collection of routes. For this first experimental

setup, we introduced a number of k = 3 routes per origin-destination couple.

To have a relevant comparison of the efficiency of the proposed methods, based on the

described network generator, we produced a set of variably sized networks, ranging from

sixteen up to one hundred nodes. For each network size, one hundred different instances

are generated based on a different seed, thus producing graphs with similar characteristics

but various shapes (as showed in Fig.4.2). Each heuristic approach is applied on every in-

stance to obtain the corresponding candidate set of pricing controllers. To provide a baseline

comparison, we also apply the previously presented exact approach adapted from the work

of Yuan et al. [51] by Rinaldi [34] on each generated network.
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Figure 4.1: Example of a generated network graph.
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Figure 4.2: Examples of different networks generated.
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4.4 Results

To evaluate whether the proposed heuristic approaches can reach stratifying results on bi-

directional networks, we first observe the percentage of instances where the various meth-

ods managed to achieve full controllability, thus satisfying a fundamental constraint of our

problem. Table 4.1 displays said comparison over one hundred different randomized net-

works of 25, 49, and 100 nodes. We can observe that all the proposed heuristics consistently

fulfilled the full controllability constraint over every considered instance and network size. As

expected, the exact method only managed to provide full controllability over a few instances,

thereby confirming the utility of the proposed heuristics to provide a set of controllers ca-

pable of fully controlling the underlying network. Additionally, we present the computation

time required to produce these results (coded in MATLAB™ on a Dell Latitude-5480, Intel®

Core™ i5-7300U CPU). While some approaches appear relatively faster than others, the

overall execution times remain satisfactorily low for all methods (Table 4.1). It is essential to

consider that execution times obtained with the exact approach are due to erroneous results

as this approach will easily find corner solutions and should not be regarded as relevant.

Moreover, as displayed in Figure 4.3a the computation time required to compute the level of

controllability yielded by a considered set of controllers, which is a process used at each it-

eration by every of the proposed heuristics, will increase extremely rapidly with the growth of

the network size. Similarly, we can observe in Figure 4.3b that the required space, in terms

of memory, to compute the level of controllability follows a similar trend and also increase

extremely rapidly to reach high values that make this process unusable on large networks.

This demonstrates the necessity to further improve the proposed approaches in terms of

scalability.

To further assess the heuristic’s respective efficiency, we propose a study of the number of

controllers employed by each approach to reach full controllability. Figure 4.4 displays the

number of controllers used by each approach over one hundred distinct but equally-sized
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(a) Evolution of the required computation time.

(b) Evolution of the required memory.

Figure 4.3: Evolution of the computation time and space required to compute the level of
controllability over the considered network size.
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Network
size (in
nodes)

Method
Average full

controllability
percentage

Average
computation

time

Computation
time standard

deviation

Average
number of
controllers

25

Yuan 19 % 0.1065 s 0.0622 s 1.43
Alg. 4.1 BCR 100 % 0.0436 s 0.0307 s 10.38
Alg. 4.2 NDW 100 % 0.0153 s 0.0077 s 11.51
Alg. 4.3 ODW 100 % 0.0182 s 0.0080 s 12.55
Alg. 4.4 SMR 100 % 0.0758 s 0.0444 s 10.51

49

Yuan 9 % 0.2698 s 0.1117 s 1.33
Alg. 4.1 BCR 100 % 0.3005 s 0.2107 s 16.24
Alg. 4.2 NDW 100 % 0.0817 s 0.0454 s 19.51
Alg. 4.3 ODW 100 % 0.1075 s 0.0510 s 21.48
Alg. 4.4 SMR 100 % 0.4991 s 0.3478 s 17.12

100

Yuan 17 % 1.3649 s 0.6218 s 2.54
Alg. 4.1 BCR 100 % 4.2679 s 3.9761 s 26.86
Alg. 4.2 NDW 100 % 0.8683 s 0.6186 s 34.44
Alg. 4.3 ODW 100 % 1.2922 s 0.7984 s 35.95
Alg. 4.4 SMR 100 % 6.9741 s 5.6306 s 28.82

Table 4.1: Approaches performances comparison

networks. The obtained results suggest that some heuristics do perform statistically better

than the others for this experimental setup, mainly methods that focus on route informa-

tion, such as the Algorithm 4.1 ”Best controller per route” and the Algorithm 4.4 ”Splitting

or merging routes”. This confirms that additional information brought by route information

is significantly relevant for identifying suitable controller locations. As expected, the exact

method failed to produce a suitable solution, thus producing a very small controller set that

is incapable of fully controlling the underlying network. A similar trend also appears on

larger networks, independently of scale, as presented by the results obtained on 49 nodes

networks and 100 nodes networks (Fig. 4.5 and Fig. 4.6).

Additionally, we propose to study the evolution of the needed number of controllers by each

method with the increase of the number of routes k generated per origin-destination pairs.

For this experiment, we generated one hundred networks of twenty-five nodes, Figure 4.7

displays the evolution of the mean number of controllers employed by each approach with

the increase of the number of routes. We can observe that the needed number of controllers
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for every method initially increases with the number of routes up to a certain threshold where

a plateau effect appears. In general, the performances of the observed methods are in line

with the previous findings. This set of experiments demonstrates that the developed heuris-

tics can produce controller sets that provide full controllability over various shapes and sizes

of transportation networks. Additionally, we highlighted the importance of providing appro-

priate information, such as route information.

Figure 4.4: Number of controllers used to reach full controllability over 100 different networks
of 25 nodes.
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Figure 4.5: Number of controllers used to reach full controllability over 100 different networks
of 49 nodes.

Figure 4.6: Number of controllers used to reach full controllability over 100 different networks
of 100 nodes.
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Figure 4.7: Evolution of the average number of controllers employed to reach full controlla-
bility for an increasing amount of routes k over 100 networks of 25 nodes.

4.5 Conclusion

In this chapter, we developed several greedy heuristics based on topological rules to solve

the problem of identifying the minimal set of pricing controllers needed to control a trans-

portation network fully. To validate the efficiency of the proposed approaches, we com-

pared the respective methods over various network sizes and configurations. They produced

adapted controller sets consistently satisfying the full controllability constraint while employ-

ing a number of controllers satisfactorily low. However, further work is required to refine the

proposed heuristics, most notably to improve their scalability. As for now, it is bound by the

necessity to compute the level of controllability at each iteration, which was shown to exhibit

severe computational time and space complexity that does not allow the application of the

proposed approaches on large networks commonly found in real transportation networks.
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Chapter 5

Spanning tree approach

As demonstrated in the previous chapters, the main difficulty of locating an efficient set of

controllers is to provide a scalable method. Therefore, this chapter proposes a study of

transportation networks’ topological properties and details a scalable method, as well as

several variations, to locate an efficient set of pricing controllers.

This chapter is based on the following paper that is currently under review for the EURO

Journal on Transportation and Logistics: X. Mazur, M. Rinaldi, R. Connors, and F. Viti, A

topological approach for identifying pricing controller locations to ensure controllability of

transportation networks.

5.1 Introduction

As presented previously, the current literature in controllability lacks a general and scalable

method that can locate a set of efficient controllers on any kind and size of a transporta-

tion network. We demonstrated in the previous chapter that, based on the concept of level

of controllability, it is possible to identify a set of pricing controllers that can fully control a

transportation network. However, we also showed that the high computation complexity of

this process makes the proposed methods not applicable on large networks. Therefore, in

this chapter, we propose to study the topological properties of transportation networks and
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develop a scalable approach based on these properties to locate an efficient set of pricing

controllers. For this chapter, we consider that pricing controller can only be located on links,

such that they increase the cost of passing through this link for road users.

To develop such an approach, we first propose analyzing and defining some essential char-

acteristics desirable for a set of controllers. Ideally, such controller set should be located

so that a certain portion of trips between every origin-destination pair is controlled, such

that every pair is at least covered by one controller. The chosen locations to be controlled

should intercept as many flows as possible to maximize the number of flows that controllers

can influence. Finally, controllers should be located such that the resulting set of controlled

links are not linearly dependent, such as to avoid redundant controllers and capture the link

flow dependencies emerging from route choice behavior. This set of intuitive rules are also

guiding methodologies used for identifying sensor locations, such as the one proposed in

Yang and Zhou [47].

This chapter aims to develop a method capable of generating a set of controllers that ad-

heres as much as possible to these rules; however, we also seek to reduce the computation

complexity and improve scalability. Therefore, we propose developing an approach based

solely on the topological properties of transportation networks to reduce the associated com-

putational load. Consequently, we do not consider any route flow information. Hence, we

are unable to assess the exact capability of a controller set to capture flows and fully respect

the flow capturing rule. Nonetheless, this work proposes a method to identify essential links

to control without relying on flow information. Additionally, the experimental results section

validates ex-post whether the produced controller set can capture and redirect flows and to

which extent. This work also provides a solid basis to further develop methods and heuris-

tics efficiently leveraging flow information on the identified topological-based optimal set of

controller locations.

Chapter 2 provided a literature review of existing methods used for locating controllers and
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approaches used to identify sensor locations for observing a transportation network. We

highlighted the lack of a scalable method for the problem of controller locations, but we

also showed the similarities between this problem and the one of identifying counting sen-

sor locations. Therefore we seek inspiration in approaches developed for locating counting

sensors; more specifically, we focus on topological methods as they provide a scalable ap-

proach due to their overall low computational complexity. However, a substantial difference

exists between sensors and controllers; the first ones are used only to observe a network

and don’t influence the current flow distribution. Controllers, however, are used for steering

the flow distribution toward the desired state, thus changing the current state of the network.

Therefore, while locations provided by approaches developed for observability can be used

as locations for controllers, there is no guarantee that the resulting controller set can fully

control the network. Thus applying observability methods for controllability is not a straight-

forward task.

For this purpose, we chose to apply and adapt the spanning tree methodology introduced

by He [15] to the problem of identifying pricing controller locations. This approach meets our

requirements, as it uses only topological information and exhibits significantly reduced com-

putational complexity. In the next section, we begin by detailing the spanning tree method as

originally described for the sensor location problem before developing and discussing which

alterations were carried out to improve its performance at attaining full controllability.

5.2 Methodology

Similarly as in previous chapters, a given transportation network is represented by a di-

rected graph G(N,L) comprising of a set N of nodes and a set L : l ∈ L = (i, j), i, j ∈ N of

directed links connecting said nodes. Specific nodes are included to represent origin cen-

troids, where traffic flows are produced, and destination centroids, where flows are attracted.

Every link l ∈ L, is considered a potential location for a pricing controller. Note that the con-

nector links required to map the centroids on the physical networks are not considered as
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part of L.

5.2.1 Spanning tree approach

To begin, we have to define the degree of a node as the number of links connected to the

considered node. In this work, only origin and destination centroids have a degree of one

on a transportation network. The first step of this approach consists of restructuring the net-

work by replacing all origin and destination nodes with one unique virtual centroid. Thus, we

can apply the flow conservation law on this node for produced and attracted flows the same

way as for any other intermediate node. The resulting restructured network only differs in

terms of origin-destination pairs. As this modified network is only employed for the sake of

building spanning trees, and as we do not consider any flow information, the fundamental

topological properties of the network can be regarded as invariant to this transformation. To

illustrate this process, Figure 5.1a shows a simple network with two origins and two desti-

nation nodes, on which both origin and destination nodes are replaced by the same unique

centroid as displayed in Figure 5.1b. Each outgoing link of the original origin nodes should

change its starting point for the new virtual centroid without changing its direction. Likewise,

each incoming link of the original destination nodes should change its ending point for the

new virtual centroid.

The next step consists in searching for a spanning tree on the resulting transformed graph

Ĝ. First, we need to define what is a spanning tree and a tree on a graph. A tree can be

defined as a connected acyclic undirected sub-graph of Ĝ. A graph is considered acyclic if

it doesn’t contain any path in which a node is traversed multiple times. While considering

a directed graph, we have to also consider a directed tree which is defined as a directed

sub-graph of Ĝ whose underlying undirected graph is a tree. A directed tree T with links

LT and nodes NT is called a spanning tree of graph Ĝ if T ⊂ Ĝ, such that NT = N̂ and

LT ⊂ L̂. Various algorithms have been developed to identify a spanning tree on the network;

we choose to employ the one proposed by Kruskal et al. [21] for this work.
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(a) Network with two origin and two destination nodes.

(b) Network with a unique virtual centroid.

Figure 5.1: Restructuring of a network with a unique centroid.
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Based on the obtained spanning tree T , sensors are placed on every link that does not

belong to the spanning tree T , such that Lobs = L̂ \ {LT }. Therefore, this set of links is

directly observed while the remaining unobserved links form a spanning tree, as presented

in Figure 5.2. With this process, the network links are partitioned into two sets. One is com-

posed of links directly equipped with a sensor, therefore directly observed and independent.

One is composed of dependent links on which flows can be indirectly inferred based on the

first set. The flows on the set on unobserved links can be inferred based on the flow conser-

vation law on nodes, such that if at any node n, flow on all incident links are known except

for one link l∗ ∈ LT , we can infer the flow on this link l∗ based on the flows of the other

observed links incident to this node. As the set of unobserved links form a spanning tree,

we can exploit a fundamental property of spanning trees to identify a situation where link

flows can be inferred. A tree always possesses at least one node that is a leaf of this tree, a

leaf of a tree is defined as a node that has a degree of one; in our case, a leaf would be a

node that has only one incident link that belongs to the considered spanning tree. Therefore,

as the set of unobserved links form a spanning tree, we can always find a node n that is a

leaf of the tree, thus corresponding to the previous situation where only one link l∗ of the

incident links to this node n is unobserved. The unknown flow on this link l∗ can then be

calculated based on the other incident link flows which are observed. Once the flow on link

l∗ is known, this link can be removed from the spanning tree, and we repeat this process on

the newly formed tree. We illustrate this method on the same simple network on which we

computed a spanning tree (Fig. 5.2); sensors are located onto all links that do not belong to

the spanning tree. Therefore their flows are known (displayed by numbers in black in Figure

5.2a). If we consider the tree only, node 5 has a degree of one; thus, it is a leaf of this tree;

consequently, the only incident link which is unobserved is the link (3,5). As shown on (Fig.

5.2a), the flow on link (3,5) can be deduced from the other observed incident links (2,5) and

(5,C) as follows: flow(3,5) = flow(5,C) − flow(2,5) = 11 − 7 = 4. Once the unobserved flow

of a link is calculated, we can remove this link from the tree and start this process again by

searching a new leaf on the new tree (Fig. 5.2b), and we repeat this process until all links

flows are known.
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This method only requires topological information in the form of a graph representing a

transportation network and to compute a spanning tree; thus, it is easily applicable to any

network type and size. Moreover, the computation complexity of determining a spanning

tree is bound by O(NlogL); thus, this approach does not require much computational time

and is easily scalable. As this method can identify two sets of links with one dependent on

the other, we propose applying this approach to the problem of controller locations. Based

on the assumption that the set of not directly controlled links would be indirectly controlled

by the set of links equipped with controllers. Similar to observability, a spanning tree leaf will

provide an intersection where only one link will be uncontrolled. Thus, we assume that it can

be controlled indirectly by the combined action of other controlled links and that this process

can be applied consecutively to control all the spanning tree links that do not possess a

controller. Additionally, as by definition, a spanning tree contains |N | − 1 links, we can infer

that the number of controllers is always |L| − (|N | − 1).

As discussed previously, domains of observability and controllability exhibit differences mainly

due to controllers being used for impacting the flow distribution on the network, whereas

sensors simply observe and do not modify the network state. Thus we need to evaluate

the actual capability of the produced controller set to control the underlying network. For

this purpose, we propose to use the controllability framework described in Chapter 2 and

assess the capability of a pricing controller set to control a network by computing the asso-

ciated level of controllability. However, this controllability framework, including the process

of computing the level of controllability, is node-based, whereas the spanning tree approach

provides link locations for pricing controllers. This implies that the set of controllers used

should be located on nodes to be able to compute the level of controllability reached by the

considered set of controllers. To resolve this incompatibility, we propose to use the princi-

ple of dual graph transformation introduced by Añez et al. [1] that we detailed in Chapter

2. The dual form of a graph still represents the same network but is a richer representa-

tion specifically concerning turning movements. In the dual graph form of a network, the
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(a) Flow on link (3,5) can be inferred based on the observed flows of links (2,5) and (5,C).

(b) Flow on link (1,3) can be inferred based on the observed flows of links (2,3), (3,5) and (3,4).

Figure 5.2: A graph with a spanning tree displayed in red and observed flows.
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dual nodes represent links of the primal graph, allowing us to locate pricing controllers on

links of the primal graph to then transfer the controller locations over the dual graph nodes.

Then we can compute the level of controllability reached by the set of controllers over the

dual form of the network, the obtained level of controllability corresponds to the rank of the

dual gramian matrix rk(Wc(d)) over the number of nodes in the dual network nd, such that

LevelOfControllability =
rk(Wc(d))

nd
. If rk(Wc(d)) = nd then LevelOfControllability = 1

and full controllability is reached, we can also define full controllability as a level of con-

trollability of 100%. According to Rinaldi and Viti [37] the level of controllability reached by

a considered controller set represents the ratio of nodes in the dual network that is either

directly or indirectly controlled by one or more controllers; therefore, the higher the level of

controllability is, the more of the network is controllable. Thus, we should aim to maximize

the level of controllability to guarantee that we can reach the maximum of the possible net-

work states through the actions of the considered controller set.

To compare the efficiency of our approach to an existing one, we propose to use a method

provided by previous work (Rinaldi and Viti, 2020 [37]) that was described in Chapter 2. In

this work, the authors presented a node-based method relying on linear algebra to locate

controllers on a network, which was adapted from the work of Yuan et al. (2013) [51]. They

demonstrated that this approach was efficient but not exact. Based on the level of controlla-

bility principle, we can evaluate the spanning tree approach capability to produce a pricing

controller set capable of fully controlling a transportation network. Additionally, we can com-

pare the spanning tree approach efficiency with the Yuan’s approach. For this purpose, we

propose to apply the spanning tree method, as well as the modified Yuan’s approach on a

simple network (Fig. 6.1). Then we compare the level of controllability reached by each

corresponding pricing controller set. In this network, links that connect origin and destina-

tion nodes are represented as grey dotted lines. These links are not considered potential

locations for controllers since they are modeling artifacts and hence do not represent any

real physical locations. Figure 6.1 displays the resulting controller sets produced by each

approach; the chosen link locations for pricing controllers are displayed in blue in the figure.

65



We can notice that the two approaches both produced a set of seven pricing controllers but

at different locations. However, they reached a different level of controllability; the controller

set produced by the modified Yuan’s approach reached a level of controllability of 75 % while

the spanning tree method was able to reach a higher level of controllability of 83 %. This

demonstrates the importance of controller locations while highlighting that neither approach

could reach full controllability even for a rather simplistic network. This implies that the direct

application of the spanning tree method to the controller location problem does not guar-

antee full controllability over the network. Thus, leading to the necessity of adapting this

approach to the specificities of the controller location problem to improve the resulting level

of controllability.

5.2.2 Weighting schemes

To adapt the spanning tree approach to the controller location problem, we propose to study

if a specific spanning tree would produce a set of controllers capable of reaching higher lev-

els of controllability than another. First, it is essential to notice that on a network that is not

already a spanning tree, a spanning tree is not unique, and multiple different spanning trees

can be found, as we propose to demonstrate in the following proof:

Given a connected graph G(N,L), let T (N,LT ) be a spanning tree in G such that L−LT ̸= ∅.

Let a link l′ ∈ L − LT such that adding l′ to the spanning tree T will form a cycle C. No-

tice how a second spanning tree can be constructed by swapping a link l′′ ∈ LT ∩ C with

l′. Therefore, T is not a unique spanning tree for G and multiple spanning trees can be found.

Additionally, as presented in Pieper (2008) [33], the number of possible spanning trees for

a given network graph can be enumerated, with an upper bound of |N |(|N |−2) in the spe-

cific instance of a complete graph KN . Therefore, we propose investigating the possibility

of steering the selection of a spanning tree such that the selected controller locations fa-

vor desirable characteristics, like origin-destination pairs covering and flow interception. To

steer the selection of a spanning tree, we propose to apply various weighting schemes on
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(a) Controller locations chosen by the spanning tree approach (in blue).

(b) Controller locations chosen by the modified Yuan’s approach (in blue).

Figure 5.3: Comparison of controller locations, blue links represent links equipped with a
pricing controller.
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links, thus seeking the minimum spanning tree of the resulting weighted graph. The pro-

posed weighting schemes will reduce the amount of possible minimum spanning trees, thus

reducing the number of possible controller sets. However, the uniqueness of the minimum

spanning tree found cannot be generally guaranteed, even under weighing assumptions. In

the following, we detail various heuristic approaches for applying weights on a network that

each generates a different minimum spanning tree and thereby a different set of controller

locations.

Alg. 5.1 For comparison, as a first algorithm, we apply the spanning tree approach as it is used

for the sensor location problem, imposing the same unitary weight on every link:

lAlg5.1
(weight) = 1

Alg. 5.2 For this second weighting scheme, we prioritize the direct control of links close to the

origin nodes. As links contained in the minimum spanning tree are the set of indirectly

controlled links, we want links close to origin nodes to have the highest weights to

be more likely to be directly controlled. For this purpose, we employ the topological

distance, defined as the distance, expressed in the number of links traversed, from a

considered link to the closest origin node following the shortest path, then we apply

the opposite of this distance as a weight to this link. Thus links close to origin nodes

will bear the highest weights and will be less likely to be selected by the spanning

tree. The intuition behind this approach is that by favoring the control of links close to

origin nodes, we will cover all origin-destination pairs and capture route flows at their

beginning before they start splitting onto different sub-routes downstream. Therefore,

the resulting control locations are expected to imitate a pricing cordon around the

origins. With nbO as the number of origin nodes and dist(l, O1) the distance between

l and O1 following the shortest path, we can define each link weight as follows:

lAlg5.2
(weight) = −min(dist(l, O1), dist(l, O2), ..., dist(l, OnbO))
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Alg. 5.3 With a similar aim to the previous algorithm, we propose to employ the average dis-

tance between a considered link and every origin node instead of using the distance

from a given link to the closest origin node. With this approach, we expect directly

controlled links to cover all origin nodes and maximize the number of flows captured

due to their positions being close to multiple origin nodes. Using the notation above,

we can define each link weight as follows:

lAlg5.3
(weight) = −dist(l, O1) + dist(l, O2) + ...+ dist(l, OnbO)

nbO

Alg. 5.4 Inspired by work on weighting schemes for resilience in complex networks (Yang et

al., 2009 [48]), we propose to use the sum of the degrees of both starting and ending

nodes of a link as its weight. The degree of a node n ∈ N is the number of links

l ∈ L that have for starting or ending node the node n. With this weighting rule, we

will prioritize the control of links incident to nodes with a high number of connections.

Thus, we expect those links to be often used and capture a more significant amount of

flows than other links. This rule will intuitively lead to high-quality solutions in scale-free

networks. Each link weight can be described as follows, where lstartNode and lendNode

being respectively the starting node and ending node of link l:

lAlg5.4
(weight) = degree(lstartNode) + degree(lendNode)

Alg. 5.5 To exploit the topological properties of transportation networks, we propose to employ

metrics typically used in network topology analysis to derive other weighting schemes.

Specifically, we consider centrality measures such as betweenness centrality, as in-

troduced by Freeman et al. (1977) [10], which is used to identify nodes that have the

most important influence on other nodes in a network. To prioritize such central loca-

tions for links to be controlled in transportation networks, we propose to use the edge

betweenness measure (Girvan et al., 2002 [11]). This measure for one link is defined

as the number of shortest paths connecting each node pair that go through this link.
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Controllers will therefore be preferentially placed on links that are likely to be the most

often used by road users; thus, controllers are more likely to capture a high amount of

flows. To compute edge betweenness we first need to compute the shortest path spi,j

between each node pair (i, j) and to define the variable xli,j such that xli,j = 1 if link

l ∈ spi,j and xli,j = 0 otherwise. Therefore we can define each link weight as follows:

lAlg5.5
(weight) =

|N |∑
i=1

|N |∑
j=1

xli,j

Alg. 5.6 Based on the previous weighting scheme, we propose including additional informa-

tion specific to transportation networks to have more accurate controller locations.

Instead of using the number of shortest paths connecting each node pair that go

through a link as a weight for this link, we use the number of routes connecting each

origin-destination pair that go through the considered link. By following this weight-

ing scheme, controllers will be located in priority on links considered central and that

connect origin-destination pairs, thus being more likely to intercept flows. To be able

to compute a route set on any type and size of networks, we decided to use the k-

shortest paths algorithm (Yen, 1971 [49]) to compute a set of k routes between each

origin-destination pair. For each route r ∈ R we can define xlr such that xlr = 1 if link

l ∈ r and xlr = 0 otherwise. Thus each link weight can be described as follows:

lAlg5.6
(weight) =

|R|∑
r=1

xlr

In order to assess if any of the proposed variations of the spanning tree approach is capable

of providing a more efficient solution, the following section investigates how each approach

influences the search for a spanning tree and the efficiency of the corresponding set of

locations selected for controllers.
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5.3 Experimental setup

To provide a relevant experimental setup, we propose to generate a large set of networks

with various shapes. For this purpose, we employed the graph generator introduced in Mire-

les de Villafranca et al. (2019) [44] that was detailed in chapter 4. With it, we are able

to generate arbitrarily randomized networks bearing sufficient resemblance to urban trans-

portation networks. Each generated network possesses features related to transportation

networks; specifically, each network contains a given amount of origin-destination nodes.

In this work, we decided to introduce six origin and six destination nodes on each network;

each origin node is after that connected to all destinations by a collection of routes. For this

experimentation, the number of routes per origin-destination pair is set to k = 3, and each

route set is computed following a k-shortest path algorithm (Yen [49]).

5.3.1 Topological validation

To compare the efficiency of the respective methods, we apply each proposed approach and

evaluate the efficiency of the resulting controller sets by computing the level of controllability

yielded by these controller sets. While considering the topological approach of the spanning

tree, we compute the corresponding level of controllability while considering the complete

network, such as n is the number of nodes in the entire network. However, the process of

computing the level of controllability exhibits a severe space complexity, bounded by O(N4),

which implies the necessity of storing increasingly large variables during the procedure as

the size of networks increases. Therefore, with our current setup, we cannot compute the

level of controllability yielded by a controller set on a network containing more than 50 nodes.

Thus, we chose to generate networks ranging from 9 to 49 nodes for this first experimental

phase. For each chosen network size, we generated 100 instances, each featuring a differ-

ent random seed, thus producing networks with similar characteristics but different shapes.

In each instance, we apply the different variations of the spanning tree approach and the

modified method of Yuan to obtain the corresponding candidate controller sets. Then the ef-

ficiency of each respective controller set is assessed by computing the level of controllability
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reached by each controller set on the considered network.

To interpret the obtained results, we first propose to inspect the performance of the various

approaches over 100 networks variations of 49 nodes. The obtained results are presented

in the form of a boxplot (Fig. 5.4); each box represents a method, while the y-axis shows the

level of controllability obtained over the 100 instances. As we can observe in the figure, the

various spanning tree-based approaches managed to reach in general a level of controlla-

bility over 90%, which is statistically slightly superior to the average level of controllability ob-

tained by the modified Yuan’s method, that generally reached a level of controllability around

87%. These results indicate that the methods based on the spanning tree can reach a sat-

isfying level of controllability and tend to perform better than the existing approach on small

networks with less than 50 nodes. Additionally, we can observe that minimum spanning tree

approaches based on weighting schemes (Alg. 5.2-5.6) generally reached a slightly higher

level of controllability than the simple spanning tree method (Alg. 5.1). This indicates that all

feasible spanning trees are not equal and that it is possible to identify a spanning tree that

will produce a more efficient set of pricing controllers. Thus, showing the importance and

necessity of adapting the spanning tree approach to the specificity of the controller location

problem and the proposed weighting schemes provides a promising step in this direction.

However, even if we can distinguish some approaches that performed better than others

between the minimum spanning tree-based approaches, mainly the algorithms 5.2, 5.3 and

5.5, the difference in terms of the level of controllability reached is not significant enough to

clearly establish that one weighting scheme should be preferably employed over the others.

This trend can also be identified for other network sizes, as detailed in Table 5.1.

Let’s consider the number of controllers employed by the different methods as an additional

performance indicator. We can observe that the minimum spanning tree-based approaches

used more controllers than the modified Yuan’s approach. This can justify their slightly bet-

ter performances in terms of the level of controllability obtained. We can also remark that

all the spanning tree-based approaches produced the same number of controllers, which is
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Figure 5.4: Level of controllability reached by various approaches on a set of 100 networks
of 49 nodes.

expected as, by definition, the chosen number of locations depends entirely on the size of

the spanning tree, which results in a constant number of controllers of |L| − (|N | − 1). This

value should be regarded as an upper bound for the minimum number of controllers needed

to reach a satisfying controllability level. We can also observe that the experienced memory

requirement is far more significant for the modified Yuan’s approach, as expected, while the

spanning tree approaches exhibit the desired scalability capabilities.

With this set of experiments, we showed the capability of spanning tree-based approaches

to control small transportation networks efficiently. To complete this experimental study, we

want to assess if the previously employed approaches can efficiently impact larger networks.

For this purpose, we propose estimating the actual capability of produced controller sets to

redirect flows such that the network infrastructure is used more efficiently. In what follows, we

employ static assignment-based simulation to investigate whether controller sets produced

are capable of actually reducing the total time spent by road users in the network.
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Network
size (in
nodes)

Methods
Level of
control-
lability

Average
number
of con-
trollers

Average
compu-
tation
time

Average
memory re-
quirement

9

Yuan’s 91.6 % 15.92 0.1727 s 11 MB
Spanning tree (Alg. 5.1) 91.2 % 16.88 0.0021 s 0,0008 MB

MST Origin dist. (Alg. 5.2) 94.6 % 16.88 0.0038 s 0,0008 MB
MST Mean origin dist. (Alg. 5.3) 96.0 % 16.88 0.0063 s 0,0008 MB

MST Degree (Alg. 5.4) 93.6 % 16.88 0.0022 s 0,0008 MB
MST Betweenness (Alg. 5.5) 96.9 % 16.88 0.0106 s 0,0008 MB

MST Route betweenness (Alg. 5.6) 93.6 % 16.88 0.0022 s 0,0008 MB

16

Yuan’s 88.9 % 25.70 0.7882 s 91 MB
Spanning tree (Alg. 5.1) 91.9 % 27.72 0.0026 s 0,0023 MB

MST Origin dist. (Alg. 5.2) 94.5 % 27.72 0.0057 s 0,0023 MB
MST Mean origin dist. (Alg. 5.3) 95.7 % 27.72 0.0091 s 0,0023 MB

MST Degree (Alg. 5.4) 93.5 % 27.72 0.0028 s 0,0023 MB
MST Betweenness (Alg. 5.5) 95.7 % 27.72 0.0189 s 0,0023 MB

MST Route betweenness (Alg. 5.6) 93.3 % 27.72 0.0027 s 0,0023 MB

25

Yuan’s 88.7 % 45.22 3.9528 s 418 MB
Spanning tree (Alg. 5.1) 91.7 % 48.28 0.0044 s 0,0054 MB

MST Origin dist. (Alg. 5.2) 93.6 % 48.28 0.0084 s 0,0054 MB
MST Mean origin dist. (Alg. 5.3) 94.4 % 48.28 0.0154 s 0,0054 MB

MST Degree (Alg. 5.4) 92.7 % 48.28 0.0046 s 0,0054 MB
MST Betweenness (Alg. 5.5) 94.2 % 48.28 0.0441 s 0,0054 MB

MST Route betweenness (Alg. 5.6) 92.5 % 48.28 0.0045 s 0,0054 MB

36

Yuan’s 87.0 % 63.93 12.953 s 1534 MB
Spanning tree (Alg. 5.1) 91.5 % 69.99 0.0061 s 0,0109 MB

MST Origin dist. (Alg. 5.2) 93.3 % 69.99 0.0120 s 0,0109 MB
MST Mean origin dist. (Alg. 5.3) 93.6 % 69.99 0.0219 s 0,0109 MB

MST Degree (Alg. 5.4) 92.6 % 69.99 0.0066 s 0,0109 MB
MST Betweenness (Alg. 5.5) 93.6 % 69.99 0.0801 s 0,0109 MB

MST Route betweenness (Alg. 5.6) 91.8 % 69.99 0.0062 s 0,0109 MB

49

Yuan’s 86.3 % 86.62 44.574 s 4748 MB
Spanning tree (Alg. 5.1) 91.4 % 96.10 0.0110 s 0,02 MB

MST Origin dist. (Alg. 5.2) 93.0 % 96.10 0.0193 s 0,02 MB
MST Mean origin dist. (Alg. 5.3) 93.3 % 96.10 0.0353 s 0,02 MB

MST Degree (Alg. 5.4) 92.2 % 96.10 0.0109 s 0,02 MB
MST Betweenness (Alg. 5.5) 93.2 % 96.10 0.1633 s 0,02 MB

MST Route betweenness (Alg. 5.6) 91.4 % 96.10 0.0105 s 0,02 MB

Table 5.1: Comparison of various approaches performance.
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5.3.2 Static assignment validation

The objective of the experiment carried in this subsection is to assess the capability of the

various controller sets produced by the previously presented approaches to improve the ef-

ficiency of a transportation network by reducing the total time spent by road users on the

network. For this purpose, we employ static assignment-based simulation to generate flows

on transportation networks and estimate the capability of a considered controller set to redi-

rect flows. As in the work of Rinaldi and Viti [37], we employ BPR cost functions for each

link, with link cost parameters dependent on the relative location of the given link. As ev-

ery generated network is subdivided into three concentric zones (as shown in figure 4.1), the

free-flow speeds vf,l and capacities cl of all links are linearly interpolated in the interval rang-

ing from vf,l = 90km/h, cl = 1800 representing the most distant zone and vf,l = 50km/h,

cl = 1500 representing the most central zone, such as to reproduce the transition between

outside areas to the city center. The length of a link li,j is the direct result of the Euclidean

distance between nodes i and j.

To generate flows, we employed the method of successive averages to reproduce the con-

dition of static deterministic user equilibrium, which can be defined as an equilibrium that

optimizes the time spent on the network for each individual road user. We chose this equi-

librium for its simplicity and yet sufficient degree of representation for modeling the network-

wide dynamics we are interested in. Moreover, as an objective to reach for controller sets,

we compute an assignment of flows corresponding to the system optimum, which can be

defined as the state where the total time spent by all road users is minimized. To com-

pute it, we used the method of successive averages with an all-or-nothing assignment over

a fixed set of routes per origin-destination couple determined through the K-Shortest Path

algorithm, with explicit consideration of link marginal costs, under the assumption of cost

function separability. In order to analyze the amount of resource wasted through users’ self-

ish behavior that controller sets will attempt to minimize, we can define the price of anarchy

as presented by Roughgarden [39] as the ratio of user equilibrium to system optimum such

that for a network G, PoA(G) = TTSUE(G)
TTSSO(G) with TTSUE(G) being the total time spent by road
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users on network G under user equilibrium and TTSSO(G) as the total time spent by road

users under system optimum.

Similar to the previous experimental setup, we employed the previously presented graph

generator to produce a set of randomly generated networks. For this experiment, we pro-

pose increasing the size of tested networks; thus, we generate graphs ranging from 64

nodes up to 256 nodes. For each network sizes selected, we produce 100 randomized net-

works. To produce situations in which controllers have the possibility to improve the current

situation, we want to avoid situations where the demand is too low for the network, where

no congestion is produced, but also cases where the complete network is congested and

no control action can potentially modify the current network state. For this purpose, we aim

at generating networks bearing a Price of Anarchy as high as possible. Thus, due to the

inherent hysteresis of the Price of Anarchy with respect to network demand, we explored

several combinations of randomized network demand levels, with the only constraint that

every origin-destination pair in the network has the same demand level, to identify viable

candidates for which a robust control action is required. This preconditioning is especially

necessary under the assumption of steady-state static assignment; recent works have, how-

ever, shown how very large Price of Anarchy might, in fact, be quite common in dynamic

settings (Belov et al. [2]). To assure that a certain Price of anarchy is present on networks,

we selected only candidates that exhibited a Price of Anarchy superior or equal to 1.03, thus

instances where User Equilibrium steady-state condition exhibits a Total Cost value at least

3% higher than that of System Optimum.

We apply the previously presented methods for each randomly generated network to obtain

the corresponding candidate controller sets. Based on the topological validation subsection

results, we chose not to apply minimum spanning tree approaches based on degree and

route betweenness weighting schemes. The main reason is that as presented in Table 5.1,

these two approaches constantly reached lower levels of controllability than other weighting

schemes. The poor results of the minimum spanning tree based on route betweenness can
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be explained by the dependence of this method on the route set employed. In the case of

this experiment, we used the k-shortest paths algorithm to generate routes between origin-

destination pairs which tends to produce route sets lacking information. Therefore, we can

expect that using a route set containing more information will provide a higher level of con-

trollability; however, in this work, we will not focus on route set generation.

Similar to the process of computing the level of controllability, the modified Yuan’s algorithm

also exhibits such considerable space complexity so that we cannot directly apply this algo-

rithm on the considered large networks. To be able to apply the modified Yuan’s algorithm,

we propose to use a network partitioning process to obtain multiple sub-networks, small

enough to apply the method individually on each sub-network, such that we use the combi-

nation of all controller sets found on each sub-network for the complete network. To obtain

such partitioning of the network, we propose to use a graph clustering method based on the

k-means algorithm (Hartigan et al. [14]) to divide each network into a set of sub-networks.

For this experiment, we chose a number of sub-networks defined as K = ⌈|N |/50⌉ such that

each sub-network has a size inferior to 50 nodes, thus allowing the computation of the mod-

ified Yuan’s method. For the sake of comparison, we add a randomly generated controller

set, in which the number and the locations of controllers are randomly determined. Once

controller sets corresponding to each method are computed for a considered network, we

determine the toll level of all pricing controllers for each candidate controller set. For this pur-

pose, we adopted the optimization framework as well as the objective function for total cost

minimization employed in Rinaldi et al. [36], which is based on the Quasi-Newton Broyden-

Fletcher-Goldfarb-Shanno (BFGS) method to perform non-linear optimization. Thus toll lev-

els are determined with the aim of redirecting flows to minimize the total time spent by road

users and steer the network state toward system optimum. However, due to the non-linear

nature of the Total Cost objective function with general BPR cost functions, we cannot guar-

antee that the toll levels provided by the optimizer are optimal.

To evaluate and compare the results obtained, we define the variable ρ for a network G

77



and a controller set cs as follows:

ρ(G, cs) =
(TTS(G, cs)− TTSSO(G))

(TTSUE(G)− TTSSO(G))
(5.1)

With TTS(G, cs) being the total time spent by road users resulting from the action of the

considered controller set cs on network G. Therefore ρ(G, cs) = 1 when the total time spent

by road users on the network G under the action of the controller set cs corresponds to the

user equilibrium TTSUE(G) previously computed for this network. And ρ(G, cs) = 0 when

the total time spent by road users corresponds to the system optimum TTSSO(G); thus, we

aim at minimizing this value to steer the network toward system optimum.

To interpret the obtained results, we propose first to examine the results obtained by the

various methods over 100 networks of 121 nodes. As displayed in Figure 5.5, all the pro-

posed approaches managed to reach better performances than those obtained while using

a randomly generated set of controllers. This result shows that using a guided approach to

locate controllers on a transportation network will indeed produce a more efficient controller

set. Interestingly, all approaches, either based on a minimum spanning tree or the modified

Yuan’s algorithm, reached similar ρ values. Table 5.2 displays the average ρ value reached

by each method for each network size over all the instances generated, as well as the per-

centage of links equipped with a controller to reach these values. We can observe similar

trends as previously reported, specifically for networks of 121 and 256 nodes.

We also propose considering the number of controllers employed as an additional criterion

to compare the efficiency of the proposed approaches. Figure 5.6 displays each controller

set result in terms of ρ value over the percentage of links in the whole network equipped with

a controller to reach this value. Since all minimum spanning tree methods performed simi-

larly and always use the same number of controllers, and to ensure clarity in the graphical

representation, we chose to only display the results obtained by the spanning tree approach

without weighting schemes (Alg. 5.1). Each circle represents a solution obtained using
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the spanning tree approach, whereas each triangle represents a solution obtained with the

modified Yuan’s method. Ideal solutions will attempt to minimize the number of controllers

employed and minimize the resulting ρ value; thus, the most efficient solutions will be lo-

cated on the bottom left corner in the figure. As we can observe in the figure, the average

percentage of links equipped with a controller for the spanning tree approach is around

64 percent, whereas, for the modified Yuan’s method, it is around 70 percent. Thus the

spanning tree approach performs equally in terms of total time spent reduction but gener-

ally employs fewer controllers on the tested set of large networks. We can also observe

that the standard deviation for the modified Yuan’s approach is higher than for the spanning

tree approach in terms of the percentage of links equipped with a controller, thus spanning

tree-based methods are more consistent. This finding might appear in juxtaposition with the

conclusions of the first experimental results; however, it’s important to remark here that the

items being compared are slightly different in this setting. Due to scalability concerns, the

modified approach of Yuan becomes quickly unfeasible with growing network sizes, and we

postulate that decomposition in smaller, tractable sub-networks might be at the root of this

loss of quality.
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Figure 5.5: Reduction of total time spent on an ensemble of 100 networks of 121 nodes.

Network size
(in nodes)

Methods Average ρ

Average
percentage of

links with
controllers

64

Yuan’s 0.068 67.28 %
Random 0.171 44.59 %

Spanning tree (Alg. 5.1) 0.076 66.88 %
MST Origin dist. (Alg. 5.2) 0.089 66.88 %

MST Mean origin dist. (Alg. 5.3) 0.071 66.88 %
MST Betweenness (Alg. 5.5) 0.072 66.88 %

121

Yuan’s 0.097 71.84 %
Random 0.187 48.28 %

Spanning tree (Alg. 5.1) 0.089 66.79 %
MST Origin dist. (Alg. 5.2) 0.090 66.79 %

MST Mean origin dist. (Alg. 5.3) 0.090 66.79 %
MST Betweenness (Alg. 5.5) 0.085 66.79 %

256

Yuan’s 0.109 69.49 %
Random 0.177 45.50 %

Spanning tree (Alg. 5.1) 0.109 66.64 %
MST Origin dist. (Alg. 5.2) 0.119 66.64 %

MST Mean origin dist. (Alg. 5.3) 0.113 66.64 %
MST Betweenness (Alg. 5.5) 0.116 66.64 %

Table 5.2: Comparison of various approaches capability to reduce total time spent.
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Figure 5.6: Reduction of total time spent over percentage of links equipped with a controller
on 100 networks for each approach.

Finally, we assume that the efficiency of the spanning tree approach might effectively depend

on how (dis)similar the considered network is to a spanning tree. Therefore, we propose to

study the impact of node connection sparsity over the number of controllers provided by both

spanning tree-based methods and the modified Yuan’s approach. To modify the connectivity

of networks produced with the previously presented β-skeleton graph generator, we altered

the β parameter, which modifies the likelihood of a node being connected to surrounding

nodes during the computation of the network, directly impacting the average node degree in

the network. We propose investigating the impact of the β parameter and the corresponding

average node degree on the solutions obtained over variably-sized networks, ranging from

100 nodes to 729 nodes. A set of one hundred randomly generated networks is computed

for each network size. As we observe in Figure 5.7, the obtained results are relatively homo-

geneous over the different network sizes, and we can notice that the curves representing the

two approaches intersect around a β value of 1.3, which corresponds to an average node

degree around 6.5. In this experiment, each link direction is counted separately for the node

degree, and only internal nodes are considered, that is, all nodes except origin and des-
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tination centroids. In general, we can deduce that the modified Yuan’s approach requires

fewer controllers than spanning tree-based approaches for a β value under 1.3. In con-

trast, the opposite holds with a β value higher than 1.3, indicating that spanning tree-based

approaches will provide a solution for a lower cost, in terms of the number of controllers

employed, in less densely connected networks. Previous experiments were done with a β

of 1.5, which corresponds to a situation where minimum spanning tree-based approaches

perform naturally better. In Osaragi et al. [31] the authors defined that to bear a maximal

topological resemblance to existing street networks, the β value should be chosen between

1.1 and 1.5, therefore suggesting that the choice of algorithm to design optimal controller

locations might be dependent on the specific network infrastructure.

With this set of experiments, we showcased that spanning tree-based approaches can pro-

vide a set of pricing controllers that can considerably reduce the total time spent by road

users. More efficiently than with a randomly generated set of controllers and to an equal

level than the proposed modified Yuan’s algorithm. Additionally, spanning tree-based ap-

proaches are easier to apply and more scalable than existing approaches. The test cases

also revealed that spanning tree-based approaches are impacted by networks configuration

and will provide solutions at a lower cost, in terms of the number of controllers employed,

on networks containing nodes with a low degree. Thus it provides an overall more efficient

method to locate controllers on sparsely connected transportation networks. This property

leads us to consider this approach as most desirable on larger, regional-scale networks,

whose size and sparsity indeed fit the criteria for higher solution quality.
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Figure 5.7: Change in number of controllers required as network connectivity reduces (i.e.
β increases).

5.4 Conclusion

In this chapter, we aimed to provide a scalable approach capable of locating a set of con-

trollers that can efficiently control the underlying transportation network while minimizing the

number of controllers employed. To achieve this goal, we propose to employ the spanning

tree method, which was originally developed for the sensor location problem. To adapt this

method to the specificity of the controller location problem, we developed various weight-

ing schemes to steer the selection of a controller set toward desirable characteristics such

as origin-destination pair covering or flow capturing. We provided an extensive experimen-

tal analysis of the proposed approaches’ capability to fully control transportation networks

on small instances, as well as their efficiency at redirecting flows on larger networks. We

compared their performance to existing methods and showed that spanning tree-based ap-

proaches are capable of reaching a satisfying level of controllability while using fewer con-
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trollers than existing approaches on networks containing nodes with a low average degree.

Thus, we consider these approaches particularly suitable for sparsely connected networks

such as regional networks. However, we make the assumption that the spanning tree ap-

proach can be further improved and adapted to our problem. For this purpose, the next

chapter will study the possible integration of route information in the process and examine

if it enhances the quality of the produced controller set, such as to still provide a scalable

method but with better control of transportation networks.
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Chapter 6

Spanning tree approach with

additional flow information

The previous chapter introduced the spanning tree method as a scalable approach for the

controller location problem. In this chapter, we propose to improve the efficiency of this

method, in terms of capability to redirect flows over a transportation network, by introducing

flow information in the process, based on the assumption that the additional information will

provide more suitable locations for pricing controllers.

This chapter is based on the following paper that is currently being prepared for submission

to the Transportation Research Record: Journal of the Transportation Research Board: X.

Mazur, M. Rinaldi, R. Connors, and F. Viti, An Approach Associating Topological and Flow-

based Information to Identify Pricing Controller Locations on a Transportation Network.

6.1 Introduction

In this dissertation, we aim to provide a scalable approach that is capable of locating a set of

controllers such as the underlying transportation network is fully controllable. In the previous

chapter, we adapted the spanning tree approach initially developed for the sensor location
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problem (He [15]) to the specificity of the controller location problem. This approach proved

to be an easily scalable method that can be employed while considering large networks.

However, as demonstrated in the previous chapter, the problem of locating sensors on a

transportation network while being similar to the one of locating controllers possesses criti-

cal differences. Therefore, we showed that while the spanning tree approach can provide a

set of pricing controllers that can satisfyingly control a network, it cannot guarantee that full

controllability over the whole network is achieved.

Consequently, in this chapter, we aim at elaborating further on the spanning tree method

by improving the capability of the produced controller set to control the considered network,

aiming to be as close as possible to full controllability. A first step was provided in chapter 5

by developing various weighting schemes based on topological information, aiming at steer-

ing the selection of spanning trees to produce more suitable sets of controller locations. As

we showed, these topology-based approaches could provide a small performance improve-

ment compared to the original method. However, we make the assumption that it is possible

to further improve the performance of the method, in terms of controllability, by combining

the usage of topological information and route-based information. For this purpose, we pro-

pose to employ the concept of link ranking introduced by Verhoef [42], in which the authors

used flow information to determine in which order links are the most critical to control. Our

aim is to integrate the additional flow-based information provided by the link ranking process

of Verhoef to the spanning tree approach such that the produced set of pricing controllers

can more efficiently control the underlying transportation network.

The following section will detail the functioning of Verhoef’s method used to provide a link

ranking and how we combined the provided flow information with the topological spanning

tree approach. Then, we present an experimental setup to evaluate the gain in controllability

provided by the integration of additional flow information compared to the classical spanning

tree approach.
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6.2 Methodology

As presented in the previous chapter, the spanning tree approach only uses topological in-

formation. Consequently, it doesn’t possess any knowledge of the current flow distribution

on the network. We are thereby unable to a priori assess the exact capability of a produced

controller set to capture flows. As presented in Pieper [33], on a given network, a spanning

tree is not unique, and the number of possible spanning trees can be enumerated with an

upper bound of |N |(|N |−2), in the specific instance of a complete graph KN . Therefore, we

desire to investigate the possibility of using flow-based information to influence the selection

of a specific spanning tree, such that the resulting set of pricing controllers is more adapted

to the current state of the network and capable of efficiently capturing and controlling flows.

In order to identify more accurately important link locations and prioritize them for controller

locations, we propose to employ the link ranking system developed by Verhoef [42]. In this

work, the authors introduced an indicator to predict the welfare gain from implementing a

second-best toll on a specific link. Based on this process, they also proposed to rank each

link in their order of priority to control by following the predicted welfare gain of every link,

such that the most important links to control are those that provide the highest increase in

welfare. To predict the potential welfare gain from using a pricing controller on a considered

link, the authors employ exact knowledge regarding the considered link flow resulting from a

no-toll equilibrium to determine the marginal cost of fitting a controller at this location. From

this, each link of the network can be ranked in order of priority to control based on the pre-

dicted welfare gain. Therefore, we propose to compute a flow assignment corresponding to

user equilibrium and to apply Verhoef’s method to obtain the corresponding link ranking. In

a similar way to the previous chapter, we steer the selection of a spanning tree by applying

a weight to each link equal to its assigned rank. Then, we seek the minimum spanning tree

on the resulting weighted graph, that is, the spanning tree that minimizes the sum of its link

weights. The assumption behind this new approach is that the additional information pro-

vided by the vehicular flow, in the form of a link ranking, will allow the proposed method to
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identify which link or route is more important with respect to the equilibrium flow distribution

and locate controllers accordingly.

In addition, for comparison sake, we propose a second approach in which we simply lo-

cate pricing controllers by directly following the link ranking provided by Verhoef’s method.

This comparison will also help us determine the benefit of using both topological and flow

information to assess if the additional computational cost is beneficial. However, this ap-

proach does not specify the required number of toll points to control the network efficiently.

Thus, for the sake of fair comparison, we select a number of pricing controllers equal to that

determined by the spanning tree approach. However, it is essential to notice that the num-

ber of controllers required for controllability is important additional information that enhances

the classical Verhoef’s approach. Thus, based on the spanning tree approach, the chosen

locations will be the |L| − (|N | − 1) first ranked links, with N being the number of nodes and

L being the number of links.

First, we propose to study the difference between controller sets generated by the span-

ning tree approach and the minimum spanning tree approach based on the Verhoef link

ranking. Figure 6.1 displays the obtained controller sets by each approach on a small net-

work. Chosen locations for controllers are displayed in blue, and grey dotted links represent

origin-destination connectors links that are not considered possible locations for controllers.

We can see that while both methods provide the same number of pricing controllers, in this

case, seven controllers, the chosen locations are different for each method. Therefore, we

can deduce that using additional flow information will impact the selection of a controller set.

In this section, we proposed a novel approach that combined the usage of both topologi-

cal and flow-based information. In the following, we will evaluate its efficiency at controlling

transportation networks compared to purely topological or flow-based methods over a di-

verse range of networks.
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(a) Controller locations selected by the spanning tree approach.

(b) Controller locations selected by the minimum spanning tree approach with Verhoef link ranking.

Figure 6.1: Comparison of the chosen locations between two approaches, links in blue
represent locations equipped with a pricing controller.

89



6.3 Experimental setup

To test the proposed approaches, we generate a set of random networks using the graph

generator introduced in Mireles de Villafranca et al. [44]; its functioning was detailed in Chap-

ter 3. With this network generator, we can produce various arbitrarily randomized networks

that resemble urban transportation networks. Each produced network is divided into three

zones, representing the city center, suburban areas, and outside areas with associated char-

acteristics, such as speed limits adapted on the area. On each network, nine origin nodes

and nine destination nodes are integrated; thereafter, every possible origin-destination pair

is connected by a collection of routes. To generate each route set, we employ a k-shortest

path algorithm (Yen [49]) with a number of routes of k = 3.

First, we propose to assess the capability of the newly developed approaches to efficiently

control transportation networks. To do so, we employed the principle of level of controllability

that was detailed in Chapter 2. We propose to evaluate the level of controllability reached

by the various proposed approaches over a set of 100 networks of 49 nodes produced by

the previously mentioned graph generator. Therefore, each produced network will be of the

same size but with a different shape. For every generated instance, we apply the previously

presented approach that combines the spanning tree with the Verhoef link ranking and the

method that solely uses the link ranking. We also apply the original spanning tree approach

and a topology-based variation presented in chapter 5 (respectively Alg. 5.1 and Alg. 5.3)

for comparison. As shown in figure 6.2, the method that combines topological information

provided by the spanning tree with flow information provided by the Verhoef’s ranking sys-

tem (MST Verhoef) managed to provide a higher level of controllability on average than other

approaches. This demonstrates that combining topology-based and flow-based information

produces a more suitable set of controllers that provides better controllability over the con-

sidered network
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Figure 6.2: Level of controllability reached by different variants of the spanning tree approach
over a set of 100 networks of 49 nodes.

To further assess the capability of the proposed approaches to improve the situation on

transportation networks, we present a second experimental setup based on larger networks,

in which we produced a set of 100 networks of 64 nodes based on the previously presented

network generator. In a similar way to the previous experiment, we apply and compare the

same four approaches in every instance. This experiment aims to evaluate the capability of

controller sets produced by the proposed approaches to efficiently redirect flows on a net-

work, such as to reduce the total time spent by road users. More precisely, we aim to assess

if the additional flow-based information provided a controller set more adapted to the current

network state. For this purpose, we follow the same process as in the previous chapter, and

we employ static assignment simulation to generate flows on networks and compare the ca-

pability of the produced controller sets to redirect these flows. To generate a flow distribution

on networks, we use the method of successive averages, intending to reproduce the condi-

tion of static deterministic user equilibrium, which can be defined as an equilibrium in which

each road user minimizes its time spent on the network. Based on the work of Rinaldi and

Viti [37], we use a BPR cost function for each link, in which the link cost parameters depend
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on the location of the given link with respect to the network’s subdivision. As such, links

belonging to a more central subdivision like the city center will possess a lower speed limit

and lower capacity than links belonging to outside areas. We chose to reproduce this equi-

librium for its simplicity and sufficiently realistic flow distribution. Additionally, for controller

sets to have an objective to attain, we compute a flow assignment representing system opti-

mum, that is, a flow assignment in which the total time spent by all road users is minimized.

To generate such flow distribution, we employ the method of successive averages with an

all-or-nothing assignment on a fixed set of routes per OD obtained with a K-Shortest Path

algorithm, with explicit consideration of link marginal costs and under the assumption of cost

function separability.

Like the previous chapter, we want to maximize the Price of Anarchy on each generated net-

work to provide instances yielding a significant potential for improvement via control actions.

For a network G, the Price of Anarchy is defined as PoA(G) = TTSUE(G)
TTSSO(G) with TTSUE(G) as

the total time spent by road users under user equilibrium and TTSSO(G) being the total time

spent by road users under system optimum. For this purpose, the demand level on each

network is configured such that the Price of Anarchy is maximized; for this first experiment,

the demand levels of every origin-destination pair are equal.

Once every candidate controller set for a considered network is computed, we determine

the optimal toll level for each individual control point using the same procedure as the one

employed in Chapter 5. It is essential to notice that due to the non-linearity of the Total

Cost objective function with general BPR link cost functions, we cannot guarantee that the

obtained toll levels are globally optimal. To evaluate the quality of a produced solution for

a network G and a controller set cs, we use the variable ρ as defined in the equation (5.1)

presented in chapter 5. Therefore, we aim at producing a ρ value as close as possible to

zero, such as to steer the network state toward system optimum.

We propose to examine results obtained on various instances of 64 nodes networks. Figure
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Figure 6.3: Reduction of total time spent on an ensemble of 100 networks of 64 nodes.

6.3 presents the results obtained in the form of a box plot; we can observe that the various

proposed approaches reached similar results and that none of them is able to provide a

significantly better solution. However, these results are obtained in the specific case where

the demand levels between all OD pairs are the same. Due to the procedure we employ

to generate random networks, they tend to possess a nearly symmetrical setup; thus, the

resulting flow distribution tends to be rather regularly distributed over the network, a charac-

teristic that can be agreeable for topological approaches.

Consequently, we propose modifying the presented experimental setup by incorporating

some irregularity in the OD demand matrix to assess if some approaches are more capable

of taking into account this irregularity. We randomly select a certain number of OD pairs

for each generated network on which we transfer a certain percentage of demand from the

other OD pairs. With this process, some OD pairs will have a higher demand; thus, they

will be more important to control than previously, and flows are more likely to be irregularly

distributed over the network. As an example, for a considered network, we potentially first

randomly select three OD pairs, then for each of them, we increase their demand level by
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5%. Then we reduce all non-selected OD pairs’ demand levels equally, such that the total

network demand is unchanged. The objective of this experimental setup is to evaluate if the

methods that employ additional flow information can identify those more critical OD pairs and

produce a controller set more adapted to the situation. We generate multiple new instances

for each network, one per new demand configuration. To generate a new demand configu-

ration, we first chose a number of randomly selected OD pairs that will receive an increase

in demand. For this experiment, the number of selectable pairs is either 1 or 3 pairs. Once

a set of OD pairs is selected for a network, we determine the percentage of demand that

will be added to them; for each possible percentage of demand increase, a new instance

is created. For this experiment, the possible percentage of demand increase is either 5%,

10%, 15%, or 20% of the current demand level for each selected OD pair. When multiple OD

are selected, they all receive the same percentage of demand increase. Thus, we create

eight new instances per generated network for this third experimental setup, one for each

possible combination of the two previously presented parameters.

Therefore, we obtain one hundred different networks for each possible configuration of these

parameters; for each of them, we compute the ρ value corresponding to the action of the

controller sets produced by each previously presented method. To interpret the obtained

results, we choose to display the evolution of the average ρ value per method as well as

the 25th and the 75th percentile of ρ values obtained over each possible configuration (Fig.

6.4). In these pictures, the average value is represented by the middle line, the upper shade

represents the 75th percentile, and the lower shade represents the 25th percentile. We can

observe over the diverse setup that methods that rely on flow information, specifically, the

Minimum Spanning Tree approach based on Verhoef link ranking (displayed in blue), tend

to obtain a lower average ρ value. Also, the observed 25th and 75th percentile values for

these approaches appear closer to the average, which indicates a lower variance. This

showcases that, in situations where flows are irregularly distributed over a network, which is

a more common setting in real-life applications, methods that rely on flow information tend

to reach better performances. Additionally, the obtained results show a lower variance for

94



these approaches, which suggests that they also tend to be more reliable.

We conduct a final experiment to provide instances with further irregularity in origin-destination

demand matrices. Rather than increasing the demand of a fixed value, we will add a ran-

dom percentage of demand for each selected origin-destination pair, ranging between 1%

and either 5%, 10%, 15%, or 20% depending on the chosen configuration. This way, if mul-

tiple origin-destination pairs are selected, they will receive a different randomly determined

increase in demand level. For this final case study, we can observe in Figure 6.5 that solu-

tions corresponding to the Minimum Spanning Tree approach combined with the link ranking

of Verhoef, displayed in blue, tend once again to exhibit a lower average ρ value. We can

also observe that 25th and 75th percentile values also appear closer, which confirms that

this approach tends to perform best and to be more resilient to changes in terms of demand

configuration.

With this set of experiments, we first showed that all the compared approaches are indeed

capable of providing a considerable reduction of the total time spent by road users on trans-

portation networks compared to user equilibrium. It also revealed that approaches based

on flow information would tend to perform more efficiently in situations where the demand is

irregularly distributed. In general, the experiments highlighted that the combination of topo-

logical and flow information could provide a more efficient and reliable method, specifically

while considering irregularly distributed demand over the network.

6.4 Case study over the network of Luxembourg

To provide a more complete set of experiments, as well as to demonstrated that the ap-

proaches developed in this dissertation are actually scalable, thus applicable on large-scale

networks found in real networks, we propose to study the impact of these methods over

the network of Luxembourg (Fig. 6.6). As the population of Luxembourg constantly grows,

demand for road network infrastructures also increases and has already reached a critical
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(a) 1 OD pair randomly selected per network.

(b) 3 OD pairs randomly selected per network.

Figure 6.4: Average, 25th and 75th percentiles of ρ value in case of a demand increase on 1
or 3 OD pairs.
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(a) 1 OD pair randomly selected per network.

(b) 3 OD pairs randomly selected per network.

Figure 6.5: Average, 25th and 75th percentiles of ρ value in case of a random demand
increase over 1 or 3 OD pairs.
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level leading to a high amount of congestion over the network, specifically during morn-

ing and evening peak hours. Thus we consider this network to be suitable for this study.

This experiment aims to demonstrate that an adapted set of pricing controllers is capable of

improving the current situation over the network of Luxembourg, and by extention realistic

networks. For this purpose, we employ the approaches presented in this chapter to locate

pricing controllers over the network of Luxembourg while searching for appropriate toll lev-

els, such as to reduce the total time spent by road users on the network.

In order to obtain a representation of the network of Luxembourg, we followed the work

of Cantelmo and Viti [5], in which the authors employed the road network of Luxembourg in

their study. They obtained the network topology through the software OpenStreetMap, from

which connections between nodes and links were extracted but also the link characteristics,

such as length, free-flow speed, and capacity, for example. The resulting graph corresponds

to a satisfying representation of the network of Luxembourg and is composed of 1405 nodes

and 3871 links. Additionally, a realistic demand configuration over the network was gener-

ated using the software Visum by the PTV Group. For this purpose, the network is separated

into multiple zones; for each zone, the flow production is generated based on existing popu-

lation data of the considered zone. Similarly, the flow attraction of each zone is determined

based on data representing the work density of each zone such that the total attraction is

equal to the total production. Then the demand for each zone is distributed between mul-

tiple corresponding origin-destination pairs. Each pair is then connected by a set of routes

generated using a k-shortest path algorithm (Yen [49]), following a similar fashion as in the

previous experimental setup.

In order to provide a more representative experimental setup, we propose to generate a

range of 40 different instances, where each has a different demand configuration over the

network of Luxembourg. Based on the original demand configuration, we simply increase

each origin-destination pair’s demand by a different amount on each instance to generate
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Figure 6.6: Network of Luxembourg. Each node displayed in red is both an origin and a
destination node.

various demand configurations. Once the graph representing the network of Luxembourg

and the corresponding demand distribution is obtained, we follow a similar experimental

setup as in the previous section. We apply on each instance the same four approaches

employed in the previous section. Therefore, we compare the two purely topological ap-

proaches, being the original spanning tree approach (Alg. 5.1) and a topology-based varia-

tion (Alg. 5.3), and two approaches relying on flow information, the approach combining the

spanning tree with the Verhoef link ranking and the method that solely uses the link ranking.

Once each corresponding candidate set of pricing controller locations is obtained, the opti-

mal toll level for each individual controller is determined using the same optimization frame-

work as previously. However, due to the important size of the considered network, the

required time to find toll values is greatly increased. To simplify the problem, we decided to

replace the BPR function used to compute link cost on every link by a simpler linear cost

function.This procedure will significantly reduce the computation time needed while comput-
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ing successively new flow assignments resulting from the action of controllers such as to

efficiently search for optimal toll values.

The figure 6.7 displays the results obtained in terms of reduction of the total time spent

by road users expressed by the variable ρ as defined previously (equation 5.1) over every

generated instance in the form of a box plot. As we can observe, the results obtained with

methods that rely on flow information tend to provide solutions with a lower ρ value, meaning

closer to system optimum than approaches that solely rely on topological information. Ad-

ditionally, we can see that these approaches also possess a lower variance indicating that

they provide a more reliable method. Overall, we can observe that both topology-based and

flow information-based approaches improved the current situation by reducing the total time

spent of road users over the network of Luxembourg. Therefore, this highlights the necessity

to apply control actions over congested networks based on a set of controllers capable of

efficiently controlling the entire network. Moreover, it confirms the additional benefit provided

by flow information while considering the control of realistic networks.

Figure 6.7: Reduction of total time spent on the network of Luxembourg over 40 different
demand configurations.
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6.5 Conclusion

In this chapter, our objective was to propose an approach that combines the advantages

of topology-based methods and methods based on flow information. For this purpose, we

proposed integrating flow information to the spanning tree approach by using the link rank-

ing system provided by Verhoef as a weighting scheme, such as to steer the selection of

the controller set provided by the spanning tree approach toward locations where flows are

more critical to control. Consequently, we carried out an extensive experimental study of the

proposed approach’s capability to efficiently redirect flows to reduce the total time spent by

road users on networks. These experiments showcased that our approach will perform bet-

ter and tend to be more reliable than purely topological methods in the situation where the

demand is irregularly distributed over the network due to the additional knowledge provided

by the added flow information. Additionally, we studied the efficiency of both the classical

spanning tree and the spanning tree with flow information approaches over the network of

Luxembourg. We demonstrated that these approaches are applicable on real large networks

subject to high levels of congestion and that the produce controller set is capable of improv-

ing the current situation on this network, but we also confirmed the advantage of integrating

flow information when considering a realistic network.
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Chapter 7

Conclusion

In this last chapter of the dissertation, we are drawing conclusions. The main research

objectives that were defined at the start of this thesis are answered, and all findings are

summarized. Then recommendations are proposed for future research works.

7.1 Research objectives

This dissertation focused on the controllability of transportation networks, specifically on the

impact of the number, types, and locations of controllers on the capability to control the un-

derlying network. The main research question of this dissertation is to define how to identify

the minimal set of controllers needed to fully control any kind and size of transportation net-

works. The methodology and approaches developed, as well as their performance, were

assessed in previous chapters. Based on the results obtained, the aims of this dissertation

that were defined in the first chapter are addressed in the following:

A1 : The produced controller set should be capable of fully controlling the entire network.

We defined that to efficiently control a transportation network, the number, type, and

locations of controllers should be chosen such that the whole network is fully control-

lable. The main difficulty was to be able to assess the actual capability of a controller

set to control a considered network. For this purpose, we employed the controllability
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framework introduced in Rinaldi [34], based on which we are capable of computing

the level of controllability yielded by a controller set. Based on this process, it was

shown in chapter 3 that a set of pricing controllers could be replaced by traffic lights

without any loss of controllability. Chapter 4 demonstrated that all the proposed heuris-

tics were capable of reaching full controllability over all the tested networks. However,

this process cannot be applied on large networks due to heavy computational com-

plexity. Therefore, chapters 5 and 6 employed static assignment-based simulation to

assess the capability of generated controllers sets to redirect flows on networks, such

as to reduce the total time spent by road users over the network. We expect to obtain

similar results under dynamic settings; however, further research works are neces-

sary to confirm this assumption. It was shown that the developed spanning tree-based

approaches, including those integrating additional flow information, could provide a

satisfying reduction of the total time spent by road users and were more efficient than

a randomly chosen set of pricing controllers. More specifically, the approach combin-

ing topological and flow-based information developed in chapter 6 was shown to be

more efficient in the case where the demand is irregularly distributed over the network.

A2 : The controller set should contain the minimal number of controllers needed.

To minimize the corresponding installation cost, every developed approach aims at

reducing the number of controllers employed. For this purpose, chapter 3 demon-

strated that based on a set of pricing controllers, it is possible to find a set of traffic

lights with an equivalent level of controllability using the same number of controllers.

Chapter 4 presented a comparison of various heuristics in which it was shown that

certain approaches could propose a solution reaching full controllability while reduc-

ing the number of controllers employed. The spanning tree approaches developed in

chapter 5 were shown to use fewer controllers than existing approaches in the specific

instance of sparsely connected networks such as regional networks. More specifically,

the number of controllers used by this approach was shown to be strongly dependent

on the average node degree such that the less connected a network is and the fewer
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controllers are required, thus providing a very suitable method for sparsely connected

networks.

A3 : The developed method should be scalable.

The literature review proposed in chapter 2 showed the lack of a scalable approach

to identify controller locations; therefore, developing a method applicable to networks

of any size has been an essential aim during this dissertation. Chapter 5 specifically

focused on this objective by proposing to apply the spanning tree approach, initially

developed for the dual problem of sensor locations, and adapt it to the specificity of the

controller location problem. As this approach is based solely on topological informa-

tion, it only requires the knowledge of the network topology, such as node connections,

in the form of a graph that is easy to obtain. Then the computational complexity of the

method is bound by the search for a spanning tree that has a computational complex-

ity of O(NlogL), therefore spanning tree-based approaches require a very reasonable

computational time. Additionally, in chapter 6, we applied spanning tree-based ap-

proaches to the real network of Luxembourg, which contains 1405 nodes and 3871

links, showcasing that this approach can be used even on real large networks.

7.2 Future research directions

This dissertation proposed multiple contributions to address the various research objectives

defined in the first chapter. The methodology developed during this work can be the founda-

tion for future research works to address research questions that were out of the scope of

this dissertation.

A possible direction for future work would be to study the possibility of identifying redun-

dant controllers in a previously obtained set of controllers. It would permit the improvement

of existing methods, including those developed in this dissertation, aiming at reducing the

installation cost. Additionally, reducing the number of controllers will reduce the number of

variables to optimize while searching for the optimal control action, thus simplifying the nec-
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essary process to reach the desired network state.

Some transportation networks already employ controllers to reduce congestion; thus, an-

other possible research direction would be to study the possibility of completing an existing

set of controllers to improve the current control capability. This direction would be particu-

larly suitable while considering the usage of traffic lights, as this type of controller is already

commonly present in transportation networks and would allow identifying the missing traffic

lights to reach full controllability of the network.

An important factor is the type of controller employed; in this dissertation, we focused solely

on traffic lights and pricing controllers. Therefore, future research works could examine the

possibility of fully controlling a transportation network based on other controller technologies.

Finally, a similar problem to the one of identifying controller locations would be to develop

approaches to address the problem of partial controllability. That is to find the best set of

controllers over a network while considering a constraint in installation cost, such that the

number of controllers available is limited. One potential approach would be to identify the

best subset of controllers based on a given optimal set.
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