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Abstract

The topics of this thesis lie at the interference of probability theory with dimensional
and harmonic analysis, accentuating the geometric properties of random paths of Gaussian
and non-Gaussian stochastic processes. Such line of research has been rapidly growing in
past years, paying off clear local and global properties for random paths associated to
various stochastic processes such as Brownian and fractional Brownian motion. In this
thesis, we start by studying the level sets associated to fractional Brownian motion using the
macroscopic Hausdorff dimension. Then as a preliminary step, we establish some technical
points regarding the distribution of the Rosenblatt process for the purpose of studying
various geometric properties of its random paths. First, we obtain results concerning the
Hausdorff (both classical and macroscopic), packing and intermediate dimensions, and the
logarithmic and pixel densities of the image, level and sojourn time sets associated with
sample paths of the Rosenblatt process. Second, we study the pointwise regularity of
the generalized Rosenblatt and prove the existence of three kinds of local behavior: slow,
ordinary and rapid points.

In the last chapter, we illustrate several methods to estimate the macroscopic Hausdorff
dimension, which played a key role in our results. In particular, we build the potential
theoretical methods. Then, relying on this, we show that the macroscopic Hausdorff di-
mension of the projection of a set £ C R? onto almost all straight lines passing through
the origin in R? depends only on E, that is, they are almost surely independent of the
choice of straight line.

Keywords: Fractional Brownian motion, Rosenblatt process, Image set, Level set, So-
journ times, Wavelet series, Slow/Ordinary/Rapid points, Fractal dimensions, Macroscopic
Hausdorff dimension, Potential theory for dimensions, Projection theorem.
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Chapter I

Introduction

I.1 Preliminaries

In this section, we provide an overview of the main theoretical tools that will be used in
this manuscript. Our exposition is divided into 3 main building blocks:

e In Section we introduce the class of self-similar stochastic processes with sta-
tionary increments (SSSI processes). Section presents the fractional Brownian
motion and its local times, whereas Section is dedicated to define the Gen-
eralized Rosenblatt process which is investigated intensively in our work, and finally
Section introduces the Hermite processes.

e In Section [[.L1.2] we define several fractal dimensions that are key tools in this
manuscript. We mainly divide them onto two groups depending on the properties
they reflect, local or global properties. Section is dedicated to the so-called
macroscopic Hausdorff dimension, which plays a pivotal role in our work.

e In Section |[.1.3] we expose basic wavelet tools and illustrate the so-called wavelet
leaders methods.

The goal behind this expository part is to present the necessary material in a self-
contained way, hopefully allowing the reader to follow it easily without further referencing.

I.1.1 Self-similar processes with stationary increments

Here and throughout the thesis, every random object is defined on an appropriate probabil-
ity space (€2, F,P). The symbols 'E’, 'Var’ and "C'ov’ denote, respectively, the expectation,
the variance and the covariance associated with P.

A stochastic process (X;)i>0 is a R-valued random function on R. Two stochastic pro-

cesses X and Y have the same distribution (noted X @ Y') if they have the same finite-

dimensional distributions.



Self-similar processes are stochastic processes that are invariant in distribution under suit-
able scaling of time and space. Formally speaking, a stochastic process (X;):>o is said to
be self-similar with exponent H > 0 if

(Xct>t20 @ (CHXt)tZO fOI' all ¢ > 0,
and has stationary increments if

(Xt—i—to — Xto)tZO @ (Xt)tZO for all t() € R.

Self-similar processes with stationary increments (SSSI processes) appear as limits in var-
ious normalization procedures [65, 102 [I11]. In applications, they occur in various fields
such as finance, hydrology, biomedicine and image processing. The simplest SSSI processes
are the Brownian motion and, more generally, Lévy stable motions. A broad class of SSSI
processes which belongs to the homogeneous Wiener chaos of an arbitrary order N > 1
are Hermite processes of rank N. They generalize the fractional Brownian motion and
the Rosenblatt process. In the following proposition, we discuss some properties of SSSI
processes.

Proposition 1.1.1. [712] Fiz H € (0,1] and let (X;)i>0 be an H-self-similar stochastic
process with stationary increments. Then the following properties hold:

1. Xy =0 almost surely.

2. If H#1, then E[X,] =0, for allt € R.

3. If H =1, then X; =tX; almost surely fort € R.

4. If E[X?] < oo, then the covariance function of the process X is given by

E[X?
E[Xth] = % (t2H 4 g2H _ |t _ S|2H) '

SSSI processes, in particular the Hermite processes, are defined with the aid of a mul-
tiple stochastic integral called Wiener-1t6 integral. One mentions that two classical books
on Wiener chaoses, multiple Wiener integrals and related topics are [53, [89]. First of all,
let us define the multiple Wiener-1t6 integrals.

Definition I.1.2. The multiple Wiener-Ito integral of order k£ > 1 is defined for any
f € L*(R¥) as
I(f) = f(zq, ..., xp)dB(zy)...dB(xy),
Rk

!
where B is Brownian motion viewed as a random integrator, and ka denotes integration
over R* excluding the diagonals.

Remark 1. The set of random variables I (f) forms the k-th Wiener chaos when f varies
in L?(IR*). Moreover, I,(f) has the following properties:

2



1. I(.) is a linear mapping from L?(R*) to L?(2).

2. If fo(xr,...,xx) == f(To1)s - Tory), Where o is a permutation, then Iy(f,) = Ix(f).
As a result if we denote by f the symmetrization of f, namely

f(&?l,.. SL’k ]{;' Z fU T1y..y X ,

0ESy
then I (f) = Iu(f) for all f € L2(R*).
3. For f € L*(R?) and g € L*(RP), one has

e F@)a(@)de, ifq=p
E[1,(f)1(9)] = {O ¥ if g #p‘

In the next three sections, we define three SSSI process. We start with the fractional
Brownian motion which is the simplest Gaussian Hermite process, then we move to the
Rosenblatt proces which is the simplest non-Gaussian Hermite process, and finally we
introduce the class of Hermite processes. Our aim is to provide definitions and properties
of these processes allowing one to have all the essential tools for the coming chapters.

1.1.1.1 Fractional Brownian Motion

Brownian motion is a random phenomenon, of central theoretical importance. Nevertheless
it often appears as too restrictive for applications. Brownian motion is the unique Gaussian
process, which has stationary increments that are independent and of finite variance with
mean 0. To obtain a less restrictive model, it is necessary to relax one or more of these
conditions.

Fractional Brownian motion is a generalization of Brownian motion, which has sta-
tionary increments that are normally distributed but no longer independent. Fractional
Brownian motion, which was first itroduced by Kolmogorov [62] and further developed by
Mandelbrot and Van Ness [74], is defined as follows.

Definition I.1.3. Let H € (0,1]. A fractional Brownian motion (FBM) of Hurst index H

is a centered continuous Gaussian process BY = (BH ) =0 with covariance function

1
RHuﬁ):ﬂmeny:§(ﬂH4—§H—¢t—sFH). (I.1.1)

Fractional Brownian motion exists for all H € (0,1]. Moreover, it admits a version
with continuous paths, and for every ¢ > 0 and s > 0 the increment Bf, — Bf has normal
distribution with mean zero and variance s, so that

02
P(Bl, - Bl <z)= sH\/ﬁ/ ep<22H)du,x€R.

Figure [[.1|shows sample paths of fractional Brownian motion for various H. The %—indexed
fractional Brownian motion is simply the standard Brownian motion. As we can see in the
figure, the smoothness of the path increases with H.




Proposition 1.1.4. [86] Let B be a fractional Brownian motion of Hurst parameter
H € (0,1]. Then B has the following properties:

(1)

(2)

(3)

(4)

Self-stmilarity:  The processes {Bg, t> O} and {CHBtH, t> 0} have the same
distribution.

Stationary increments: The distribution of the process { B{is — BE t> O} does
not depend on s > 0.

Time inversion: The processes {Bf[, t > O} and {tQHBfft, t > 0} have the same
distribution.
Brownian filtration: The natural filtration associated to a fractional Brownian

motion is Brownian, i.e., there is a Brownian motion (Bi)i>o defined on the same
probability space than BY such that its filtration satisfies

o{BI : s<t}cCo{B,:s<t}, (1.1.2)

for allt > 0.

Conversely, any continuous Gaussian process BY = (BH)yo with BY = 0, and
Var(BE) = 1, and such that (1) and (2) hold, is a fractional Brownian motion of
index H .

H=0.25

Value

T T T T 1
0 250 500 750 1000
Time

H=0.5

Value

T T T T
0 250 500 750 1000
Time

H=0.75

Value
o
o

T T T T T
0 250 500 750 1000
Time

Figure I.1: Simulation of a Fractional Brownian motion of Hurst index H = 0.25,0.5,0.75.

[108]



A fractional Brownian motion with Hurst index H admits Holder continuous paths for
all exponents less than H (see e.g. [86]).

Proposition 1.1.5. Let BY be a fractional Brownian motion of Hurst parameter H €
(0,1]. If0 <6 < H and T > 0 then, with probability 1, there exists a random constant Cr
such that

Bl = B'| < Crls)?

forallt,s € [0,T).

As we will see, the use of the local time will play a key role throughout Chapter [II|
Provided it exists, the local time x — L(z,t) of a process (X):>o is, for each t, the density
of the occupation measure i (A) = A({s € [0,¢] : X, € A}) associated with X, where A
stands for the Lebesgue measure; otherwise stated, one has L(.,t) = %.
The case of Gaussian (and centered, say) processes has been widely studied in the literature.
For instance, one of the main striking results in the Gaussian framework (see e.g. Dozzi
[34]), in particular for fractional Brownian motion, is the following condition ensuring the

existence of (Lf)sefo,r]er in L*(€2).

dsdt
I::// i < +oo, (L1.3)
[0,T]2 \/RH<S7 S)RH(tat) - RH(Sat)Q

where Ry (s, t) = E (BF Bf); moreover, in this case we have the Fourier type representa-
tion:

1 b
L(z,t) = %/Rdy/ du eV B =) (I1.1.4)
0

As B is selfsimilar and satisfies ([.1.3)), then it is immediate from ([.1.4)) that its local
time at level x also has some selfsimilarity properties in time with index 1 — H but with a
different level, as stated below.

Proposition 1.1.6. Let ¢ > 0. Assume B is a fractional Brownian motion of Hurst
index H € (0,1) and consider its local time (L(x,t))i>02er. One has

d
(L(z, t))s0.0er 2 A H (L 2, 1) )is00ex. (1.1.5)

Finally, the local time is Holder continuous in both time and space. In particular

Proposition 1.1.7. [17] For every x € R, almost surely, the local time L(x,t) is 5-Hélder
continuous in t for every f € [0,1 — H].

Proposition 1.1.8. [/, Theorem 26.1] Assume BT is a fractional Brownian motion of

Hurst index H € (0,1) and consider its local time (L(z,t)).cx, where K is a given compact
interval in R. Then, for all B € (0,% (% — 1) ) and for all t > 0,

P ( sup Lz t) = Ly, 1) < oo) =1 (I.1.6)

zyeK |z — y|’8
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I.1.1.2 Generalized Rosenblatt Process

Like the fractional Brownian motion, the Rosenblatt process is a selfsimilar stochastic
process with stationary increments. Both processes belong to the class of Hermite pro-
cesses, fractional Brownian motion being of order 1 while Rosenblatt process is of order 2.
However, unlike the fractional Brownian motion, the Rosenblatt process is not Gaussian.

Before giving a formal definition of the Rosenblatt process, let us recall some important
notions related to the Hermite polynomials which are essential for our coming definitions.
For m > 0, the Hermite polynomial of degree m is given by

2 dm 2

H,, = (=1)"e2 7.
(@) = (1) T

Definition I.1.9. Given a function f € L*(R), we say that f has Hermite rank equal to
EfE[f(§)Hn(§)] =0form <k —1and E[f({)Hr(£)] # 0, where £ ~ N(0,1).

The Rosenblatt process appears in the limit of Non-Central Limit Theorem of [19].
Formally speaking, consider a stationary Gaussian sequence (&,),>o with mean zero and
variance 1 such that, for all n > 0, one has

E(&&,) = n "' L(n),

where H € (%, 1) and L is a slowly varying D function at infinity. Let f be a function such
that E(f(&)) = 0 and E(f(£)?) < oo. Suppose that f has Hermite rank equal to 2. Then
the Non-Central Limit Theorem of [19] asserts that

[nt

1t
72 1&)

converges as n — oo in the sense of finite dimensional distributions to the process

’ ¢ 5 3
R — CH/ / (s — 20) ™ 2 (5 — 2% ds dB(21)dB (), (L.1.7)
R2 JO

where a1
ry = max(x,0) and Hy = —

The above integral is Wiener-I1to stochastic integrals with respect to Brownian motion
(B(t))ser (see Definition [[.1.2), and the constant cy is positive and satisfies E((RI7)?) = 1.
The process (R )¢ is called the Rosenblatt process (it was actually been named in this
way by Taqqu in [I13]) and it is non-Gaussian, H-selfsimilar, with stationary increments.
In addition it has the same second order properties as fractional Brownian motion, namely,

1
H\2 2H H pH 2H 2H 2H
E[(R7)"] =t=", E[R/ R]]= §(t + 577 — |t — s|77). (1.1.8)
LA positive measurable function L is said to be slowly varying if lim;_, 4 o LL((?)) =1 for all x > 0.

6



We call ([.1.7) the time-domain representation. It is known that Rosenblatt process admits
other representations in terms of Wiener-1t6 integrals, among which we note the spectral-
domain representation (see [I13] and [33]):

i(e+y) _ 1
(d) €
R =C —————Zg(dz) Za(dy), 1.1.9
. ( - Z(fl}—f—y) G( ) G( y) ( )
where the double Wiener-Ito integral is taken over z # +y and Z5(dz) is a complex-valued
random white noise with control measure G satisfying G(tA) = t!"#G(A) for all t € R
and G(dz) = |z|"#dz. The constant C'(H) in ([.1.9)) is such that E((RF)?) = 1.

Remark 2. Note that in the notation of [113], Zg(dr) = |z|~#/2dB(z), with (B(t))ser the
Brownian motion and dB(x) is viewed as the complex-valued Fourier transform of dB(x).
For more details, see [I11].

In Chapter [[T]} our main interest consists in studying the geometric properties of the
random paths of the Rosenblatt process. In this analysis, the local time of the Rosen-
blatt process plays a pivotal role. Its existence was shown in [106] together with this L2
representation:

1 L
L(zx,t) = %/R/ @) s dg. (I.1.10)
0

As mentioned before, since R is selfsimilar of index H, its local time at level z also has
some self-similarity properties in time with index 1 — H, but with a different level. More
precisely, one has, for every ¢ > 0:

d _ _
(L(z, ct))isower 2 A (L(c 2, 1)) s0.0er. (L1.11)

In Chapter [[V] we study the generalized Rosenblatt process which is a generalization of
the Rosenblatt process introduced in [71], and is defined as follows:

Definition 1.1.10. Given two parameters Hy, Hy € (%,1) such that Hy + Hy > %, the
generalized Rosenblatt process { Ry, m,(, ) }ter, is defined as a double Wiener-It6 integral
of a kernel function Ky, g, with respect to a given Brownian motion. More precisely,
consider a standard two-sided Brownian motion B, and set

!

RHLHQ(t?') = KH1,H2(t7xl7~T2) dB(‘rl)dB(x2)7 <1112)
R2

where fﬂ/@ denotes integration over R? excluding the diagonal. The kernel function in
(1.1.12) is expressed, for all (t,z1,72) on R, x R? by

1 t
KHl,Hg(t7x17$2): F(Hl—l)F(H2—l> /0 (S—$1)+
2 2

where I" stands for the usual Gamma Euler function, and where for (z, @) € R?

a_{ma ifx>0

2(s —x9)y " %ds,

o ]
+ 0 otherwise.



Note that the (standard) Rosenblatt process defined in is the process { Ry 1 (t, -) her,
for H € (3/4,1). The generalized Rosenblatt process {RHI,H2( .*) }ter, is non-Gaussian,
belongs to the second Wiener chaos, has stationary increments, and is (H; + Hy — 1)-self-
similar.

1.1.1.3 Hermite processes

Hermite processes are SSSI processes that naturally arise as limits of normalized sums
of long-range dependent random variables [33]. Since the seminal works of Taqqu [110,
IT1], the class of Hermite processes has attracted considerable interest in probability and
statistics. A Hermite process can be defined by any of its equivalent representations. Here
by equivalent representations, we mean that the represented processes share the same
finite-dimensional distributions. The most well known representation is the time domain
representation in terms of multiple Wiener-Ito integrals.

Definition I.1.11. Fix an integer N > 1 and a real number H € (1 — 1/(2N),1). The
Hermite process of rank N and parameter H is defined through the multiple Wiener integral
with respect to Brownian motion (B(t))er:

ZN(t) = CNH/RN (/ H s — )] )= 3/2ds> dB(z1),...,dB(zy), (I1.1.13)

where z, = max(z,0), and cy g is some positive constant that makes Var(Z} (1)) = 1.

Remark 3. The Hermite process ZY has stationary increments and is self-similar with
Hurst index H. When the rank N = 1, we recover the classical (Gaussian) fractional
Brownian motion. When N > 2, the law of Z% is non-Gaussian, and if N = 2, the process
is also known as the Rosenblatt process.

Another important representation is the spectral domain representation which is given

by

”

ZN(t) = Crn /
R

eit(zit.+an) _ 1

vz + .+ an

H |2, | V> dB(xy), ..., dB(z ), (1.1.14)

where B is a complex-valued Hermitian Gaussian random measure (see [96, Definition
B.1.3]) with Lebesgue control measure, the double prime ” at the top of the integral sign
indicates the exclusion of the hyperdiagonals x; = £z, , ¢ # j, in the N-tuple stochastic
integral, and Cl y is a constant such that Var(Z§(1)) = 1.

Remark 4. All Hermite processes with Hurst index H, regardless of the order, share the
same covariance structure as a standard fractional Brownian motion, that is,

ELZN () Z(5)] = (27 + 5 — |t = 5.



1.1.2 Fractal Dimensions

From an early age, we learned that straight lines and curves have dimension 1, planes
and surfaces have dimension 2, solids such as a ball have dimension 3, and so on. More
properly, we say that a set is n-dimensional if we need n independent variables to describe
a neighborhood of any point. However, one can map a real line into a plane bijectively
and continuously. In other words, a one-dimensional curve can cover a two-dimensional
plane completely, which is known by space-filling curve. Fractal geometry generalizes this
notion of dimension to a wider class of sets by defining non-integer dimensions. Roughly
speaking, these fractal dimensions measures how much space is occupied near each point
of a set. In this section we give an overall summary of all fractal dimensions used in this
manuscript. We split this section into three subsections:

1. Dimensions reflecting microscopic properties: We introduce Hausdorff, box, packing,
and intermediate dimensions, following [38] [39, 22} [40, 48].

2. Dimensions reflecting macroscopic properties: We introduce another group of di-
mensions which are logarithmic density, pixel density, and macroscopic Hausdorff
dimension, following [59] [61], 12} [1T].

3. Overview of the types of fractal dimensions: We compare all dimensions mentioned
above and give a few relations between them to give the reader an intuition.

Our main bibliographic sources serving as guiding inspiration for this section is the book by
Falconer [38]. In this section, we let (R? ||||,) be the d-dimension Euclidean space equipped
with its usual L:-norm.

1.1.2.1 Dimensions reflecting microscopic properties
1.1.2.1.1 Box dimensions

What is the relation between an object length (area or volume) and its diameter? This
question leads us to think about dimensions from different perspectives. To clarify our
idea, let us consider some examples. When we want to cover a unit square with little
squares of side §, we obviously need 1/§2 little squares. Whereas, if we want to cover
a unit cube, we will need exactly 1/6% of little cubes of diameter 6. We note that the
exponents we got here are the dimensions of the objects that we are covering, which is
not a coincidence. This was the main idea behind the box dimension, also known as
Minkowski-Bouligand dimension, that determines the fractal dimension of a set F© C R¢
using box-counting analysis. Formally speaking, given a non-empty set F' C R?, we call
{U;} an exact d-cover of F' if {U;} is a countable or finite collection of sets with diameter
equal to § covering F, i.e. F C U;U;. Recall that for a set U C R?, the diameter of U is
defined as |U| = sup{|lz — y||, : =,y € U}. Moreover, Ns(F') denotes the smallest number



of exact d-covers of F. The lower and upper box dimension of F' are defined respectively

by:

o log Ns(F)
N log Ns(F
dimp (F') =limsup Og—6<>. (I.1.16)

5§—0 —logd
Obviously, dimy (F) < dimp (F), and if these are equal, their common value refers to the

box dimension and is denoted by

. . log Ns(F
dimp (F) = (ISI_I)I[I) %g(é)'

If s = dimp (F'), then ([.1.17) roughly states that Ns(F') ~ §—° for 6 small enough, or more
precisely one has

(L1.17)

oo if s < dimg (F)

50 0 if s > dimp (F)

Motivated by the above limit, we want to mention another equivalent definition for the
lower and upper box dimensions, which is more convenient to use.

Definition I1.1.12. For a given set F' C R?, the lower box dimension is given by:

: : Ve > 0,3 cover {U;};2, of F, s.t.
= >0 ’ JiEkT 1.
dimpg (F) mf{s_O Ui = U] Vi, j and %, U < ¢ } (I.1.18)
Similarly, we define the upper box dimension:
—— . - Ve>0,30 >0,V cover {U;};2, of F, st.
dimp (F) := inf {S =00 |0 < 6, U] = |U;] Vi, j and 3232, UL < e } (1-1.19)

Releasing the constraints on the covers of F', we get another fractal dimension, called
Hausdorff dimension, that we introduce in the next section.

1.1.2.1.2 Hausdorff dimensions

The Hausdorff dimension is one of the oldest fractal dimensions. It can be defined for
any set, and its definition is based on a measure which gives it some advantages on other
dimensions. For a given non-empty set F' C R?, we call {U;} an d-cover of F if {U;} is a
countable or finite collection of sets with diameter at most ¢ covering F', i.e. F' C U;U;. To
define the Hausdorff dimension we start by defining the Hausdorff measure. For F C RY,
s >0, and 0 > 0, define

H3(F) = inf {Z |U:|* = {U;}:2, is a d-cover of F} ; (I.1.20)
i=1
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where the infimum is taken over all possible covers with diameter at most 6. Moreover, as d
decreases, the set of possible covers decreases too, and so 0 — H3(F') is an non-decreasing
function. On the other hand, for a given § < 1, s — Hj(F') is non-increasing, and for
s < t, one has

HE(F) < 0" *H3(F). (1.1.21)
We define the s-dimensional Hausdorff measure by

H(F) = lim H3(F), (1.1.22)

6—0

where the value of the limit belongs to [0, co]. Moreover, by if #°(F) is finite, then
letting 6 — 0, one can observe that H!(F) = 0. As a result, for a given set F' C R%, there
exists a critical value of s at which H*(F') jumps from oo to 0. This critical value is called
the Hausdorff dimension of F'. Rigorously speaking

dimg (F) =inf{s >0 : H*(F) =0} =sup{s >0 : H*(F) = +oo} (I.1.23)
with sup ) = 0 by convention. Then, one has

oo if 0 <s < dimy (F)

W(E) = {o if s > dimy (F)

As illustrated in Figure[[.2] the Hausdorff measure jumps from oo to zero. If s = dimy (F'),
H*(F) € [0,400]. Moreover, if 0 < H*(F') < +o0, F' is said to be an s-set.

HF)

0 { Y 5
i dimy; F "

Figure 1.2: The Hausdorff measure H*(F') of a set F' as a function of s [3§].

Using the definition of limit together with ([.1.22) [[.1.23]), one can also define the

Hausdorff dimension of F' as follows

Definition 1.1.13. For F' C R%, the Hausdorff dimension of F is given by

dimy (F) == inf {s >0 : Ve > 0,3 cover {U;};°, of F, s.t. Z |U:|* < 5} . (L1.24)

i=1

11



If we compare the Hausdorff dimension with the box dimension (see Definition [[.1.12)),
we see that the box dimension is more restrictive with the covering of the set, i.e. all covers
should have same diameter.

At the end of this section, we introduce two well-known techniques for calculating
the Hausdorff dimension. Firstly we start by the potential theoretical methods which are
mainly based on integral analysis. To this end we define, for s > 0, the s-potential at a
point x € R? resulting from a mass distribution E| p on RY:

_ [ duly)
S
and the s-energy of u:
L) = [ oontuta) = [ AL,

The following theorem states the potential theoretical methods which are usually used to
bound the Hausdorff dimension from below.

Theorem 1.1.14. [/0, Theorem 4.13] Let F be a subset of RY.

1. If there exists a mass distribution p on F' such that I;(p) < oo, then H*(F) = oo
and dimy (F) > s.

2. If F is a Borel set with 0 < H*(F') < oo then, for all 0 < t < s, there exists a mass
distribution p of F with (1) < oo.

The second technique, called the mass distribution principle, is based on a given measure
1, and estimating the pu-mass of small sets in order to bound the Hausdorff dimension from
below too.

Theorem 1.1.15. [0, Section 4] Let i be a mass distribution on F and suppose that for
some s > 0, there is a number ¢ > 0 and € > 0 such that

p(U) < cUup

for all sets |U| < e. Then H*(E) > pu(F)/c and dimg (F) > s.

1.1.2.1.3 Packing dimensions

With the Hausdorff dimension we are able to outpace most dimensions based on the fact
that it is defined in terms of measures. In fact this is not the case for the box dimension
(see definition , though one can construct a measure based dimension, the packing
dimension, which is in some sense "dual” to the Hausdorff dimension. To this end, for
F c R% and s > 0, let us recall the definition of the s—dimensional packing measure of F

2A mass distribution g on R? is a measure such that 0 < pu(R?) < oo.

12



where for F' C R,
P (F) = lim Sup{ g (2r;)* : B(zy, ;) are disjoint ,z; € F,r; < 6} .
e—0 -

Definition 1.1.16. Given F C R? and a Borel measure ;. on R?, the packing dimension
of F'is

dimp (F) =inf{s > 0: P* (F) = 0}, (L.1.25)
and the packing dimension of u is defined by

dimp (p) == inf{dimp (F) : u(F) >0 and F C R?is a Borel set}.

Next, we recall the concept of packing dimension profiles first conceived by Falconer
and Howroyd in [40] and [48]. For finite Borel measures p on R? and for any s > 0, let

Fi(z,7) = /R@bs (m ; y) du(y)

be the potential with respect to the kernel 1, (z) = min {1, ||| ~*}, Vo € R%.

Definition 1.1.17. Let x be a Borel measure on R?. The packing dimension profile of x
is defined as

Fu
dimp, (¢) = sup {ﬁ >0: limiglf# =0for py—aexe Rd} :
r— T

Now for any Borel set F© C RY, we define M} (F) to be the family of finite Borel mea-
sures with compact support in F'. Then an equivalent definition of the packing dimension
can be established.

Proposition 1.1.18. Given F C RY, the packing dimension of F is equal to

dimp (F) = sup {dimp (1) : p € MF(F)}.

Motivated by this, Falconer and Howroyd [40] define s-dimensional packing dimension
profile of F' C R? by

dimp, (F) = sup {dimp, (1) : p € MI(F)}.

It is easy to see that 0 < dimp, (F) < s, and dimp, (F) = dimp (F) for any s > d.

13



1.1.2.1.4 Intermediate dimensions

By comparing the covering restrictions between the box and the Hausdorff dimensions,
Falconer et al [39] introduced a new continuum of dimensions intermediate between the
box and the Hausdorff dimension, named intermediate dimensions. As we will see later in
details, for a bounded and non-empty set £ C R?, 6 € (0,1] and s € [0,d], they defined

1

H;y(F) = inf {Z \U;|* = {U;}, is a cover of F such that r < |U;| < r? for all 2} .
(1.1.26)

In particular, for & = 0, H;;(F) is the s-dimensional Hausdorff measure of f. The following
lemma enables us to define the intermediate dimensions.

Lemma 1.1.19. [22, Lemma 2.1] Let 0 € (0,1) and F C R%. For each 0 < r < 1 and all
0<t<s<d,

10g(H}?,9(F)) B log(H}f’e(F))

—(s—1) < < —0O(s—t
(s—t) < —logr —logr T (s =)
. . . . log(H?H(F))
In particular, there is a unique s € [0,d] such that liminf ———= = 0 and a
r—0 —logr
. . log(H;4(F)) . .
unique s € [0, d| such that limsup T oer 0. As a consequence, the intermediate
r—0 —1logr

dimensions are defined as in [22].

Definition I1.1.20. Let ¥ C R? be bounded. For 0 < @ < 1, the lower #-intermediate
dimension is

. . . log HYy(F)
dim, (F) = | the unique s € [0,d] such that liminf ——————= =0 . (1.1.27)
70 —logr
Similarly, the upper #-intermediate dimension of E is defined by
— . . log H}y(F)
dimg (F') = | the unique s € [0,d] such that limsup —————— =0 . (I.1.28)
r—0 —logr

When dim, (F) = dimg (F), we refer to the f-intermediate dimension dimgy (F) = dim, (F) =
dimg (F).

Thus, the classical Hausdorff (I.1.24)) and box dimensions ([.1.18)), ([.1.19)) can be viewed
as the extremes of a continuum of dimensions with increasing restrictions on the relative
sizes of covering sets. Indeed, for every bounded F' C R,

dimyF = dimoF = dimy (F), dim,F =dimgz(F) and dimF = dimp (F).

14



Moreover, the intermediate dimensions can be defined in terms of capacities with respect
to an appropriate kernel denoted by ¢y (see [22]). For each collection of parameters
e (0,1],me{l,...,d},0<s<mand 0<r<1,let gbi:g” : R? — R be the function

1 0<|z| <,
o= (g) r<ml<r (129
r0(m—s)+s
T rf < ||

Using this kernel we define the capacity of a compact set ' C R as
-1
C>MNF) = inf 2 —y)d d 1.1.30
= (Lt [ [ e na@am) (1.130)

where M(F') is the set of probability measures supported in F. The following lemma,
which is similar to Lemma [[.1.19] allows us to define the intermediate dimension profiles.

Lemma 1.1.21. [22, Lemma 3.2] Let 0 € (0,1) and F C R?. For each 0 < r < 1 and all
0<t<s<d,

_@_wgcmqwmyﬂ)_Cmdwmy%)Sﬁﬁ_w

—logr —logr
. . . . Jog(Chg (F))
In particular, there is a unique s € [0,d]| such that liminf —————— = s and a
i r—0 —logr
o . log(Cy"(F)
unique § € [0,d] such that hmsupl— = 5. Now for m € {1,...,d}, the lower
r—0 —logr

intermediate dimension profiles of F C R? are

. . o og CFF(F)
dimy,, (F) = [ the unique s € [0, m] such that liminf —————=
: r—0 —logr

= s) , (L1.31)

and the upper intermediate dimension profiles are

(1.1.32)

—— . . log C7" (F)
dimg , (F)) = | the unique s € [0,m] such that limsup ——— =s | .
r—0 —logr

The intermediate dimension profiles are increasing in m and for F' C R,

dimy 4 (F) = dim, (F) and  dimgg (F) = dimg (F).

1.1.2.2 Dimensions reflecting macroscopic properties

In this section, we would like to note that all our definitions are independent of the choice
of the norm on R?. But for the coherence of the definitions, we continue to work with
the d-dimension Euclidean space (R?,||||,). For x € R? and r > 0, B(z,r) denotes the
Euclidean ball with center z and radius r. For F' C RY, the diameter of a set F' is denoted
by |E|.
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1.1.2.2.1 Logarithmic and pixel densities

In the scope of measuring macroscopic properties of a given set F', we recall the definitions
of logarithmic and pixel densities. But, first, we have to introduce some notions.
For all # = (x4, ..., 74) € RY, define

Qz) = [z1,21+ 1) X ... X [2g, 24+ 1).
One defines the pizelization of a set FF C R? as
pix(F) = {zx € Z% : FNQ(z) # 0}. (1.1.33)
It is clear that pix(F) = F if F C Z%, and pix(R?) = Z.
Definition 1.1.22. (see [59, 61]) For F' C RY, the pixel density of F is

| ix(F N B(0,2™
Deny;, (F) := limsup 082 #PIX( (0, )),

N—00 n

where # denotes cardinality. The logarithmic density of F'is given by

log, Leb(F#' N B(0, 2"
Deny,g (F) == limsup og, Leb(F 1 B(0, )),

n— o0 n

where ‘Leb’ is the d-dimensional Lebesgue measure.

Note that for any F' C R? both Den,;, (F) and Deny,, (F') range between 0 and d.

1.1.2.2.2 Macroscopic Hausdorff dimensions

The macroscopic Hausdorff dimension Dimy (F) of a set F' C R was introduced by Barlow
and Taylor [12] [11] to define the notion of fractals in a discrete setup. It is a discrete analog
of Hausdorff dimension, and the word macroscopic comes from the fact that this dimension
ignores the local structure of the sets. In this section we aim to define this macroscopic
Hausdorff dimension. To this end, define for all integer n € N, the n-th shell of R¢ by

So = B(0,1) and S, := B(0,2")\ B(0,2"1) for all n > 1. (1.1.34)

Both standard Hausdorff dimension and macroscopic Hausdorff dimension describe how a
set F' can be efficiently covered by balls. Nevertheless, the macroscopic Hausdorff dimension
is concerned only with large scale behaviors, and so Barlow and Taylor proposed to cover
the intersections F'N.S,, by balls with diameters at least 1. In this capacity, let us introduce,
for ' C R?, the set of covers of F restricted to S, defined by

Z,(F) = {{B(xl-,m)};il . meN, z; €8, rn>1, FnsS,cU”, B(:L’i,m)}.
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Finally, for s > 0 and n € N, set

V3 (F) = inf {Z (;—n) (B = B(as,r)}", € In(F)} . (1.1.35)

=1

Observe that v? is sub-additive, i.e. v5(AU B) < v3(A) + v3(B) for every sets A and
B, but is not a measure (because of the constraints on 7;).

Now we define the Barlow-Taylor macroscopic Hausdorff dimension.

Definition I1.1.23. For every s > 0 and F C R¢, define

v(F) =) vi(F).

n>1
The macroscopic Hausdorff dimension of F' C R? is defined by

Dimy (F) =inf{s > 0: v*(F) < +o0}. (1.1.36)

One easily checks that Dimg (F) € [0,d] for all F C RY Dimg (F) = 0 when F is
bounded, and an alternative definition for Dimy (F') is

Dimy (F) =sup{s > 0: v*(F) = +oo},

where sup ) = 0 by convention.

Remark 5. Both Dimp (F') and Den,;, (F) (resp. Deny, (E)) give an intuition about the
macroscopic geometry of F. The main difference is that Dimy (F') not only counts the
number of points of F'N S, as Deny,, (F) (resp. measures F' N S,, as Deny,, (F')) but also
takes into account the geometry of the set F', in particular by considering the most efficient
covering of F'N S,. Thus, as an intuition, the value of v$(F) is larger when the points
F'N S, are scattered all over S,,, while it is smaller when these points are all located in the
same region. For instance, for 0 < o < 1, define the two sets A, and B, by for all n > 1,

n—1

2
A.NS, = {2”_1 +k o k€ {0,...,2" — 1}} :

k
B,NS, = {2"—1 + o R E{0, 20 1}}.

Even though both sets have same cardinality, we have Dimy A, = a whereas Dimy B, = 0.

I.1.2.3 Overview of the types of fractal dimensions

Throughout this thesis, we use various fractal dimensions. In this section we aim to
compare between the dimensions mentioned so far to give the reader some intuition. Table
compares the covering procedure between the mentioned fractal dimensions, while Table
[.2| compares how these dimensions measures different types of sets.
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Dimension Name Cover Size of covers | Values | Limit
dimg () Hausdorff Covering (0, 4] 0,d] | =0
. Upper - Covering
dimp (+) Box Lower - Packing ) 0,d] | 6d—=0
dimp () Packing Packing (0, 6] 0,d] | =0
dimg (-) | Intermediate € (6179)9) 0,d] | d—0
Logarithmic n
Denjog (+) density Balls [1,2"] 0,d] | n— 0
Pixel n
Deny;, (+) density Balls [1,2"] 0,d] | n— o0
) Macroscopic Collections of balls n
Dimny () Hausdorff | in B(0,2")/B(0,2"1) [1,2"] 0,d) | — o0

Table I.1: Overview of the types of fractal dimensions. For the pixel density the cover
consists of the integer points in the ball at distance less than 1 from F'.

Dimension Name Discrete sets | Bounded sets | R? | Z4
) Classical

dimy () Hausdorff 0 0, d] d | 0

dimgp () Box 0 [0, d] d| 0

dimp () Packing 0 [0, d] d |0

dimg (-) | Intermediate 0 0, d] d |0
Logarithmic

Deny, (-) density [0, d] 0 d | d

Pixel

Den,;; () density [0, d] 0 d | d
) Macroscopic

Dimy (-) Hausdorft [0, d] 0 d | d

Table 1.2: A summary of the fractal dimensions of discrete and bounded sets.

Remark 6. We also mention a few relations between the dimensions mentioned so far to
give the reader some intuition:

=

dimy (F) < dimg (F); dimg (F) < dim, (F) < dimg (F) < dimg (F) ;
T )

<
<dimp (F); Denyg (F) < Deny;, (F); Dimpy (F) < Deny,, (F)

o,

I.1.3 Wavelets tools and wavelet leaders method

Another field of study we were interested in is studying precisely the path behavior, and
in particular regularity, of stochastic processes. To this aim, wavelet analysis allowed to
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obtain series expansions for many stochastic processes which made it a key tool in studying
point-wise properties.

There seems to be no agreement in the literature on one unique definition of a wavelet.
Nevertheless, the following conditions are commonly used.

Definition 1.1.24. We say ¢ : R — R is a wavelet if b € L'(R) N L*(R) satisfying the
so-called admissibility condition

[0
e d¢ < oo (1.1.37)

where 1? is the Fourier transform of .

Remark 7. An immediate but important consequence of the admissibility condition is that
¢ has (at least) 1 vanishing moment, i.e. [, (x)dz = 0, which makes ¢ orthogonal to
polynomials of degree 0. In many situations, it is preferable to use wavelets that are
orthogonal to all low-order polynomials. Therefore, it is generally required that ¢ has
M (M € N) vanishing moments, i.e. for each m € N such that m < M, the function
xr — 2™ (z) belongs to L'(R) and

/R 2™ (x)dx =

The regularity properties of a function can be studied by decomposing it in an or-
thonormal wavelet basis of the space L*(R).

Proposition 1.1.25. Under some general assumptions ([27,[79,[73]), it is possible to build
a wavelet 1 such that

{p(2 - —k):j €l kel}
forms an orthogonal basis of L*(R). Therefore, any function f € L*(R) can be decomposed

as
f= Z Z ¢ (2

JEZ keZ

where

cjk—ZJ/f V(2w — k) da.

Remark 8. The coefficients c;;, are called the wavelet coefficients of f. For a given scale j
(7 € N) and position k (k € Z) the wavelet coefficients ¢;; are usually associated with the

dyadic cube A;; of R defined as
E k+1

The notation A; will stand for the set of dyadic intervals A of R with side length 277. The
unique dyadic interval from A; containing the point ¢ € R will be denoted \;(¢). The set of
dyadic intervals is A := UjeyA;. Two dyadic intervals A and A are adjacent if there exist

j € N such that A, ) € A; and dist(A, M) = 0.
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These dyadic cubes allow an easy geometric visualization of the concepts of wavelet
leaders related to a point and to a cube defined in the following.

Definition 1.1.26. The wavelet leader of ¢y € R at the scale j is defined as

d(ty) = 4 1.1.38
i(to) Ae%?ﬁ())fgw’ ( )

where \;(tp) is the unique dyadic cube at the scale j containing ¢,, and 3\;(to) is the set
of dyadic intervals adjacent to \;(to).

The wavelet leaders (d;(to));jen of ¢y are key quantities to study the pointwise regularity
of to, as we will see in Chapter [[IT] when studying the pointwise regularity of the generalized
Rosenblatt process Ry, m,-

1.2 Main contributions and structure of the thesis

In this section, we take a closer look at the contributions of this thesis. We give some of our
results in a simplified and informal way summing-up all our main findings. Nevertheless,
complete formulations and technical details can be find in referred respective chapters.
Chapters[[T{IV] deal with describing the geometric properties of sample paths, which played
a significant role in modern stochastic analysis, and have been investigated using various
methods. Two of the most relevant tools utilized are multifractal analysis and harmonic
analysis. These are the approaches that we are going to develop in the majority of this
thesis. In Chapter [V| we investigate the macroscopic Hausdorff dimension which played a
pivotal role in our research. In particular, we develop a potential theoretical method to
estimate this dimension. Then, we apply this method to obtain projection theorems that
link between the macroscopic Hausdorff dimension of a set in R?, and its projections on
almost every straight line passing through the origin.

This line of research started by studying the regularity and irregularity of the real
valued Brownian motion. Paley, Wiener and Zygmund [93] have shown that its local
Holder regularity cannot be larger than 1/2. Followed by investigating the behavior of
a Brownian motion on a given point, Khinchin [58] introduced a new notion of ordinary
points by proving that the law of iterated logarithm holds almost surely. Later, Oray and
Taylor [92] proved that there exist exceptional points, called rapid points, where the law
of the iterated logarithm fails. Furthermore, Kahane [54] obtained the existence of a third
category of points, presenting a slower oscillation. These points are called slow points.

Another natural question is studying the graph of a Brownian motion using various
fractal dimensions, such as box, packing and Hausdorff dimension, which lead to some
global and local geometric properties (see [84) 114, 115]). A further approach for under-
standing the features of a random path was through assessing the proportion of time spent
by a Brownian motion in a given region, which is known by sojourn times. Many au-
thors studied sojourn times associated to Brownian motion (see [24], 07, 122, 105]). As a
consequence of these remarkable efforts, the Brownian case is well understood, and many
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authors have tried to extend these results to more general stochastic processes such as
fractional Brownian motion and Rosenblatt process.

Fractional Brownian motion is a generalization of the Brownian motion. Mathemati-
cians were motivated to extend the Brownian motion properties mentioned above, and
to understand how much those findings rely on the specific features of Brownian motion,
such as the (strong and weak) Markov properties. In this capacity, the law of iterated
logarithm and the study of the set of fast points has naturally been studied and extended
for more general classes of Gaussian processes, such as the fractional Brownian motion,
see e.g. [75] (9T (18], [76], [83], 60]. In 1999, Meyer, Sellan and Taqqu introduced their famous
decomposition of the fractional Brownian motion using the Lemarié-Meyer wavelet [80],
which can be used to generalize the notion of ordinary, rapid, and slow points for Gaussian
wavelets series [30], in particular for fractional Brownian motion.

One the other hand, fractal analysis played a major role in studying the random path
of the fractional Brownian motion. Various random sets such as graph, level sets and
sojourn times associated to fractional Brownian motion were assessed using packing di-
mension [129], Hausdorff dimension [54) [38], and macroscopic Hausdorff dimension [87].
In Chapter [T, we assess the level sets associated to the fractional Brownian motion using
the macroscopic Hausdorff dimension. Our results recover Seuret-Yang’s results [105] for

Brownian motion and can be considered as an addendum to Nourdin-Peccati-Seuret’s work
87

In this thesis, we mainly focus on generalizing all the results mentioned above to the
Rosenblatt process case. Our investigations are essentially motivated by the fact that,
unlike the fractional Brownian motion, the Rosenblatt process is not Gaussian. A natural
question is how much this property impact random paths? In Chapter [[II, we study the
fractal properties of the random sets and measures determined by the sample paths of a
Rosenblatt process, and in Chapter [[V]we assess its pointwise regularity where the existence
of three types of points is proved: slow, ordinary and rapid.

The last chapter of this thesis develops various methods for estimating the macroscopic
Hausdorff dimension. Recalling the fact that the macroscopic Hausdorff dimension is a
discrete analog of the Hausdorftf dimension, we developed similar estimating methods used
for the Hausdorff dimension. The two usual methods are the mass distribution principle
and the potential theoretic method. The potential theoretic method is based on an integral
analysis, and it is a practical tool with various applications. As an application of the new
potential theoretic method, we obtain a Marstrand-like projection theorem, describing the
dimension of almost all projections on lines of sets in R%.

Here below we give a global outline of each of the chapters.

Chapter [[I; A uniform result for the dimension of fractional Brownian motion
level sets

This chapter is concerned with estimating the size of level sets of the fractional Brownian
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motion (B}?);>0, which are defined for any x € R as
Lp(z)={t>0: B =z}

Due to self-similarity property of B, £z(x) may look like a fractal, so in order to describe
it quantitatively one can use a type of fractal dimension. In this aim, the macroscopic
Hausdorff dimension Dimy has proven to be relevant in the present chapter because it
gives an intuition about the geometry of the set, precisely whether it is scattered or not.
Our work add supplementary results to [87]. In particular, in [87] they proved

Our aim is to extend this result uniformly for all x which is a non-trivial mission. Formally,
we proved:

Theorem 1.2.1 (L. Daw (2021)).
P(Vx € R: DimyLp(x)=1—H) =1. (1.2.1)

We note that Theorem also recovers Seuret-Yang’s result [105, Theorem 2] (Brow-
nian motion), using a more natural approach in our opinion, where the local time of the
fractional Brownian motion plays a crucial role.

Chapter [[TIIT} Fractal dimensions of the Rosenblatt process

In this chapter we focus on the fractal properties of the random sets and measures
determined by the sample paths of the Rosenblatt process Z, i.e., we study the function
Zy = Zy(w), for a fixed w € Q. Some (random) sets of interest are then:

Image set: Z(E) ={Z(t) :t € E}; ( )
Graph set: Grz(E) ={(t,Z(t)) e ExR:t € E}; (1.2.3)
Level set: Lz(z) ={te Ry : Z(t) =z},z € R; (I1.2.4)
Sojourn set: Ez(y) ={t e Ry, : |Z(t)| <t"},vy > 0; ( )
Inverse image: Z '(E') = {t € R, : Z(t) € E'}, (I.2.6)
where F C R, and E’ C R are Borel sets. For instance, by self-similarity of Z, these sets
may look like a fractal. As a result in this chapter, we measure the above sets using the
Hausdorff (both classical and macroscopic), packing and intermediate dimensions, and the
logarithmic and pixel densities (see Section for exact definitions). Our results can be

collected in three theorems. First, we assess the image sets Z(F), for all E C R*, using
intermediate dimension.

Theorem 1.2.2 (L. Daw, G. Kerchev (2021)). Let § € (0,1] and E C Rt be compact.
Then almost surely:

dim, (Z(E)) = 7-dimy ; (E), (12.7)
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and

dimg (Z(E)) = rdima.u (E), (1.2.8)

where dimg 1 (-) and dimy 5 (-) are the lower and upper 0-intermediate dimension pro-
files respectively. For the precise technical definitions of these two objects see (|[.1.31])

and ([.1.32) in Section|.1.2.1.}).

Then, we describe the size of the level sets Lz(x) in terms of intermediate dimensions
and macroscopic Hausdorff dimension. The following holds:

Theorem 1.2.3 (L. Daw, G. Kerchev (2021)). For E C R and 6 € [0, 1], let dimy (E) and
Dimp (E) denote the 0-intermediate and macroscopic Hausdorff dimensions of E. Then,
foranyx € R and 0 < e < 1,

Ve e R, P(dimg (Lz(x)N[e,1])=1—-H)=1 (1.2.9)
Vo e R, P(dimp (Lz(x)Ne,1])=1—-H)=1 (I.2.10)
P(Vz € R: Dimy (Lz(x))=1—H) = 1. (I.2.11)

Finally, we establish a result for the sojourn times Ez(7).

Theorem 1.2.4 (L. Daw, G. Kerchev (2021)). For E C R, let Deny;, (E) and Demog (E)
denote the pizel and logarithmic densities of E. Then, for all v € [0, H],

Denyi (Ez(77)) = Deniog (Ez(7)) =7+ 1—H, a.s. (1.2.12)
Dimy (Ez(v)) =1—H a.s. (I.2.13)

Many of the results listed above rely on Hoélder regularity conditions for the sample
paths, and more precisely, for the local time of the process. The existence of local time
of Z was first established in [I06]. Holder regularity was then recovered in the recent
paper [57]. For our analysis, as a preliminary step we also establish the time inversion
property of the Rosenblatt process:

Proposition 1.2.5 (L. Daw, G. Kerchev (2021)). The inverse time process
tes Z =117, (1.2.14)

15 also a Rosenblatt process.

In addition to that, a few properties of the density for the joint process (Z;,, Z;,) are
needed. Using techniques from [57] we were able to prove the following:

Proposition 1.2.6 (L. Daw, G. Kerchev (2021)). (i) The probability density function f :
R — Ry of Z; is continuous and f(x) >0 for x > 0.

(i1) For every ty,...,t, >0, the vector (Zy,,...,Z;,) has a continuous density.
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Chapter [V} Wavelet methods to study the pointwise regularity of the gener-
alized Rosenblatt process

In this chapter we prove that the generalized Rosenblatt process (Rp, m, (t))t>0 presents
three kinds of local behaviors: slow, ordinary and rapid points. On this purpose, fine
bounds on the increments of this process are needed, both from above and below. For
the upper bounds, we take advantage of the wavelet-type representation of the generalized
Rosenblatt process established in [7] by the means of the Meyer’s wavelet. For the lower
bounds we use the compactly supported Daubechies wavelets basis, and our main tools
are the wavelet leaders. These representations are our key tools to prove the following
Theorem which is the main result of this chapter.

Theorem 1.2.7 (L. Daw, L. Loosveldt (2022)). For all Hy, H, € (3,1) such that Hy+H, >
%, there exists an event Qp, m, of probability 1 satisfying the following assertions for all
w € Qg, m, and every non-empty interval I of R.

e [For almost everyt € I,

0 < lim sup |RH1’H2(t’w) - RH1,H2(87W>‘
oot [t — s[MtH—T]oglog [t — 5|1

< +o0. (1.2.15)

Such points are called ordinary points.

e There exists a dense set of points t € I such that

: | Ry i, (t,w) — Ry i, (8, w)|
0 < lim : :
1 Sjllp [t — s|HHaTlog [f — 5|1

< 4o0. (1.2.16)

Such points are called rapid points.
o There exists a dense set of points t € I such that

|RH1,H2(t7w) B RHl,HQ(Sv OJ)‘
|t _ S|H1+H2—l

lim sup
s—t

< +o00. (1.2.17)

Such points are called slow points.

In [36], Esser and Loosveldt proved the existence of slow, ordinary and rapid points
for Gaussian wavelet series, in particular for the fractional Brownian motion. Theorem
shows in particular that slow, ordinary and rapid points are not specific to Gaussian
processes.

Chapter [V} Potential methods and projection theorems for macroscopic Haus-
dorff dimension

In this chapter we build various methods for estimating the macroscopic Hausdorff

dimension (see Section [[.1.2.2.2] for formal definitions), which is a discrete analog of the
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standard Hausdorff dimension. A natural approach is to extend the estimating methods
used for the standard Hausdorff dimension. In general, when assessing the standard Haus-
dorff dimension of a given set £ C R? the challenging part is finding a lower bound. To
this end, a famous approach is the potential theoretical method, which is based on integral
analysis. Our aim in this chapter is to establish the potential theoretical method for the
macroscopic Hausdorff dimension which requires careful analysis. Let us first introduce
the macroscopic s-energy of a measure.

Definition I.2.8. Let s > 0, and let x1 be a finite mass distribution on R?. The macroscopic
(1, s)-potential at a point z is defined as

o, (x) = /R du—@s)- (1.2.18)

alle=ylyv1

The macroscopic s-energy of p is

._ dp(x)duly)
I(p) = Rd //R“ Hx—y|!2V1 (1.2.19)

This result is quite comparable to the standard Hausdorff dimension (see Section

[.1.2.1.2)), except that in the integrals ([.2.18) and ([.2.19)), the quantity |z —y|5 V 1
is simply ||z — y||5. This modification is justified by the fact that Dimy is not concerned

with local behavior, so we are not interested in small interactions ||z — y||, < 1. The fol-
lowing theorem illustrates the potential theoretical methods for the macroscopic Hasudorff
dimension, and is one of the main results in this chapter.

Theorem 1.2.9 (L. Daw, S. Seuret (2022)). Let E be a subset of R%.

1. If there exists a Radon measure p on RY such that u(E) = +oo and if

> 2L (s,) < +oo,

n>0

then v°(E) = +oo and Dimy (E) > s.

2. If v¥(E) = +o0, then for all 0 < & < s there exists a Radon measure pif on R? such
that p°(E) = 400 and Z 2”(8_8)Is_g(uf5n) < +00.

n>0

Although the potential theoretic methods are very comparable to the ones established
for the standard Hausdorff dimension [38, Theorem 4.13], for the macroscopic Hausdorff
dimension we consider the measure p which is defined on R¢, and we focus on the restriction
of p on every annulus S,. For this reason, we deal with sums over n.

A key ingredient in proving Theorem is the existence of macroscopic s-sets which
can be defined as follows.
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Definition 1.2.10. Let s > 0. A set £ C R? is called a macroscopic s-set when
Dimy (E) = s and v*(F) < +00.

We prove the existence of macroscopic s-sets.

Theorem 1.2.11 (L. Daw, S. Seuret (2022)). Let E C R? be such that v*(E) = +oo.
Then there exists a macroscopic s-set E such that E C E.

This extraction theorem is a key ingredient at various places in our proofs, in particular
for the projection theorems which are an application of the potential theoretic methods we
demonstrate in Theorem [[2.9]

Theorem 1.2.12 (L. Daw, S. Seuret (2022)). Let E C R? be a Borel set. Define Ly as the
straight line passing through 0 with angle 6, and projy I as the orthogonal projection of E
onto Ly.

(a) If Dimy (E) < 1, then Dimg (projyE') = Dimpy (E) for Lebesque almost every 6 €
[0, 7].

(b) If Dimy (E) > 1, then Dimg (proj,E') = 1 for Lebesgue almost every 6 € [0, ).
It is natural to seek projection results for fractal dimensions, hence it is quite satis-
factory to obtain the projection theorems for the macroscopic Hausdorff dimension. We

expect that Theorem can be extended in higher dimensional spaces, and Theorem
[[2.9]is useful in this situation.
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Chapter 11

A Uniform Result for the Dimension
of Fractional Brownian Motion Level
Sets

The content of this chapter is a copy of the paper entitled “A Uniform Result for the
Dimension of Fractional Brownian Motion Level Sets”, and published in “Statistics and
Probability Letters”.

II.1 Introduction

Let B = {B; : t > 0} be a fractional Brownian motion of index H € (0,1), that is, a
centered, real-valued Gaussian process with covariance function

1
R(s,t) = E(B,B;) = 3 (Is)* + [t = |s = t)*™), s,t>0. (IL.1.1)

Since E[ (B, — Bt)Q] = |s — t|*", it is an immediate consequence of the Kolmogorov-Centsov
continuity theorem that B admits a continuous modification. Throughout this note, we

will always assume that B is continuous. It is also immediate (see, e.g., [86]) that B is a
self-similar process of exponent H, that is, for any a > 0,

{By : t>0} £ {a"B, : t >0},

where X £V means that two processes X and Y have the same distribution. Moreover,
B has stationary increments, that is, for every s > 0 ,

{Bis— B, : t >0} £ {B, : t >0}.

This article is concerned with estimating the size of the level sets of B, which are defined
for any x € R as

L,={t>0: B, =x}. (I1.1.2)
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This line of research started with the seminal work of Taylor [I16], who was the first to
study the Hausdorff dimensions of the level sets in the case of a standard Brownian motion.
His results were extended later on by Perkins [94] who showed that, with probability one,
the level sets £, have a Hausdorff dimension % for all z € R. Hence, the local structure of
the level sets in the Brownian case is well understood.

Another method to describe the geometric properties of the sample paths of a given
process is in terms of its sojourn times. Here, the goal is to study the dimension of the
amount of time spent by the stochastic process inside a moving boundary, that is, of the
form

E(@):={t=0:[B| <o(t)},

where ¢ : R, — R is an appropriate function.

Strongly related to our note, we mention the recent work of Nourdin, Peccati and Seuret
[87], in which a specific large scale dimension is computed for the sojourn times

E,={t>0:|B]<t'}, 0<~v<H, (I1.1.3)

of the fractional Brownian motion B. Note that this choice for ¢ is completely natural
here because, on the one hand, the fractional Brownian motion is selfsimilar (hence the
choice of a power function for ¢) and, on the other hand, it satisfies a law of iterated
logarithm as t — oo (hence the range (0, H) for ). Actually, [87] extended to the fractional
Brownian motion the results given by Seuret and Yang [105] in the framework of the
standard Brownian case.

In general, defining a notion of fractal dimension for a subset of R? involves taking into
consideration the microscopic (i.e. local) properties of this set. However, many models in
statistical physics are based on the Euclidean lattice Z¢; in this case, it may look more
natural to rely on the macroscopic (i.e. global) properties of the set to define a notion of
dimension. This is what Barlow and Taylor proposed in [I1], [12]. Their dimension, called
macroscopic Hausdorff dimension, has proven to be relevant in many contexts. This is the
one that was used in [87, [105], and also the one we will use in the present note, because
it can give a good intuition about the geometry of the set into consideration, precisely
whether it is scattered or not. Precise definitions will be given in Section [I.2.1} At this
stage, we only mention that we denote this macroscopic Hausdorff dimension by Dimy.

Our note can be considered as an addendum to [87]. Let £, be the level sets associated
with a fractional Brownian motion. In [87], the following is shown.

Theorem II.1.1. Fix z € R. Then

P(DimyL, =1— H) = 1.

Our aim is to extend Theorem [[L.1.1] from “Vz, P(...) = 1" to “P(Vx :...) =1". To
this end, new and non-trivial arguments are required. We will prove the following.
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Theorem II1.1.2.

P(Vz € R: DimpL, =1— H) = 1. (I.1.4)

We note that our Theorem [II.1.2] also recovers Seuret-Yang’s result [I05, Theorem 2]
(Brownian motion), and provides a proof that we find more natural.

Throughout the note, every random object is defined on a common probability space
(Q, A, P), and E denotes the expectation with respect to P.

I1.2 Preliminaries

This section gathers the different tools that will be needed in order to prove Theorem

12

I11.2.1 Macroscopic Hausdorff Dimension

Following the notations of [59, [61], we consider the intervals S_; = [0,1/2) and S,, =
[27=1 27) for n € N. For E C R", we define the set of proper covers of E restricted to S,
by

T.(E) = {[z};il o L = [,y witha, y, € N,y > @,
" - I, C S, and EﬂSnCU?ilIZ-.

For any set E C R*, p > 0 and n > —1, we define

V(E) = inf{z (dl%n(”) P, € In(E)}, (I1.2.1)

i=1
where diam([a, b]) = b — a.

The key point in the definition of v/J(E) is that the sets I; are non-trivial intervals with
integer boundaries; in particular, the infimum is reached.

Definition I1.2.1. Let F C R". The macroscopic Hausdorff dimension of E' is defined by

DimyFE = inf {p >0: Z v, (E) < +oo} : (I1.2.2)

n>—1
We observe that Dimy E always belongs to [0, 1], whatever £ C R*. Indeed, consider
the family I; = [2"7! +4 — 1,271 4], 1 <i < 2"7! which belongs to Z,(F) and satisfies
diam(I;) \”
o (ﬂ) < %2"(1“)). Thus, v7, (E) < 277 for all ¢ > 0, implying in turn that

on
DimyFE < 1+¢ for all ¢ > 0. As a result, we have that DimyFE € [0, 1].
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In (I1.2.1]), the covers are chosen to have length larger than 1. This shows that the
macroscopic Hausdorff dimension does not rely on the local structure of the underlying
set.

The dimension of a set is unchanged when one removes any bounded subset, since
the series in converges if and only if its tail series converges. Consequently, the
dimension of any bounded set E is zero. But the converse is not true, for example
Dimgy({2", n > 1}) = 0.

The macroscopic Hausdorff dimension not only counts the number of covers of a set
but also it gives an intuition about the geometry of the set. Precisely, the more the points
of the set are spread-out, the larger its dimension. For instance for 0 < a < 1, define the
two sets A, and B, by for all n > 1,

2n71
AN S, = {2"1 ko k€ {0,.,2 — 1}} :

k
BaﬂSn:{Z” 1+2n—a ke{o,...,zm—l}}.

Even though both sets have same cardinality but Dimgy A, = o whereas Dimy B, = 0.

These features make the macroscopic Hausdorff dimension an interesting quantity de-
scribing the large scale geometry of a set; in particular, it appears to be well suited for the
study of the level sets L.

As we will see in our upcoming analysis, it might be sometimes wise to slightly modify
the way DimgFE is defined, to get a definition that is more amenable to analysis. For this
reason, let us introduce, for any £ C R, p > 0, £ > 0, and n > —1, the quantity

7" (E) = inf {Emj (%f”)

=1

diam(7;) |*

|
089 on

LY € In(E)} . (11.2.3)

The difference between v (FE) and v (E) is that we introduce a logarithmic factor in the
latter. This modification has actually no impact on the definition of DimgyFE, as stated by

the following lemma.

Lemma I1.2.2. Let £ > 0. For every set E C RT,

Dimy E = inf {p >0: Z vye(E) < +oo} . (I1.2.4)

n>—1

Proof. Define d¢ = inf {p>0:3,. " (E) < +oo}. Forn > —1, consider {L;}]", €

diam(7;) |*
Z.(E). As I; C S,, one has diam([;) < 2"~ implying in turn that %() > 1.

log,
Thus, v (E) > v (E) and then DimyE < d.
If DimgE = 1, the conclusion is straightforward. So, let us assume that DimgF < 1

and let us fix € > 0 small enough and p < 1 such that p > DimyF + . Since the function
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x — a° |log, x|5 is continuous on (0, 1] and tends to zero as x tends to zero, it follows that
there exists ¢ > 0 such that

log, x| < cx™%, Va € (0,1]
We deduce that, for all {I;};", € Z,,(E),

=1

diam(/;
o

¢ < Ci <dia;(]i)>p_a
i=1

By taking the infimum over all {;};", € Z,(E) and recalling the definitions (II.2.1)) and
(II.2.3), one deduces that v} .(E) < cvy (E), implying in turn d¢ < p —¢. Letting p tend
to Dimy E + ¢ yields the result.

]

11.2.2 Local Time of Fractional Brownian Motion

As we will see, the use of the local time will play a key role throughout the proof of Theorem

ML12l

Provided it exists, the local time x — L*(t) of a given process (X;):>o is, for each t,
the density of the occupation measure p;(A) = A({s € [0,t] : X, € A}) associated with X,
where A stands for the Lebesgue measure; otherwise stated, one has L(t) = d“’ In what
follows, we shall also freely use the notation L*([a, b]) to indicate the quantity Lﬂ’(b) L*(a).

The case where X is Gaussian (and centered, say) has been widely studied in the
literature. For instance, we can refer to the survey by Dozzi [34]. One of the main striking
results in the Gaussian framework is the following easy-to-check condition that ensures
that (L*(t))sepo,r]zer exists in L*() :

I _// ds dt < +o0, (I1.2.5)
.12 v/ R(s, s) — R(s,t)?

where R(s,t) = E (X,X;); morever, in this case we have the Fourier type representation:

1 Lo
= —/dy/ du ¢V B, (I1.2.6)
2 R 0

If X is Gaussian, selfsimilar of index H and satisfies ([1.2.5)), then it is immediate from
(I1.2.6)) that its local time at level x also have some selfsimilarity properties in time with
index 1 — H, but with a different level as stated below. More precisely, one has, for every
c>0:

—H

(L*(ct))momer = (L% (1) )120.0e. (11.2.7)

When X stands for the fractional Brownian motion B of Hurst index H € (0,1), it is
immediate that ([1.2.5) and (I1.2.7]) are satisfied. But we can go further. A consequence
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of Berman’s work [I7] is that the local time associated to B is f—Holder continuous in ¢
for every § < 1 — H and uniformly in z. On their side, German and Horowitz (see [44]
Theorem 26.1]) proved that, for all fixed ¢, the local time (L*(¢)),er admits the Holder
regularity in space stated in the following lemma.

Lemma I1.2.3 (Spatial Holder continuity of local time). Assume X is a fractional Brow-
nian motion of Hurst index H € (0,1) and consider its local time (L*(t))zcx, where K is
a giwen compact interval in R. Then, for all 5 € (O, % (% — 1) ) and for allt >0,

L*(t) — L¥(t
P ( sup U (®) < oo) = 1. (I1.2.8)
zyEK |z —yl?

As we will see, Lemma will be one of our main key tools in order to prove Lemma
11.3.3| (which is one of the steps leading to the proof of Theorem [I1.1.2)).

11.2.3 Filtration of Fractional Brownian Motion

A last crucial property of the fractional Brownian B that we will use in order to to prove
Theorem [[I.1.2] is that the natural filtration associated with B is Brownian. We mean by
this that there exists a standard Brownian motion (W, ),>o defined on the same probability
space than B such that its filtration satisfies, for all ¢t > 0,

o{By, : u<t} Co{W, : u<t}. (I1.2.9)

Property (I1.2.9) is an immediate consequence of the Volterra representation of B (see,
e.g., [15]). It will be exploited together with the Blumenthal’s 0 — 1 law, in the end of the

proof of Proposition [[I.3.1]

11.3 Proof of Theorem [I11.1.2

11.3.1 Upper bound for Dimy/L,

By a theorem in [87], for every v € (0, H), a.s.
DimyE, = 1 — H.

On the other hand, observe that for a fixed v > 0 and = € R, the level set £, is ultimately
included in E,. Indeed,

L. N [|z|V7, +00) C E,.

We have recalled in Section [[I.2.1| that the macroscopic Haussdorff dimension is insensitive
to the suppression of any bounded subset. As a result, a.s. for every z € R,

Dimgy L, = Dimpg (ﬁx N [|x|1/7,+oo)) <DimyE,=1-H.
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11.3.2 Lower bound for Dimy/L,
Recall S,, from Section [[I.2.1], and let us introduce the random variables

L (S, al
7% = ﬁ and Fy =Y 7. (I1.3.1)

n=1

The random variables (Z7), . _, are positive, so (F§;)n>1 is non-decreasing. We denote by
FZ its limit, i.e. FZ =Y 7% € [0, 400

n=-—1
Using ([1.2.7]), we have for all n > 0
7z L g2 (11.3.2)
L . L**(S,) : : :
We note that similar random variables Y," = Sna—m Were introduced in [87, Section

5.3]. However, the fact that we are dealing with other space variables compared to [87]
induce several differences in our proofs. Although its statement is exactly the same than
[87, Lemma 5], the meaning and the context of our proof are different. This is why we
provide all the details, for the convenience of the reader.

Our aim now is to link the random variable Z? to the microscopic Hausdorff dimension.
To this end, let us introduce the random variables

LY ([t,t + h])

A, = su sup su , I1.3.3
ogtgpzn OghSBL*l yeﬂg h'=H(n —logy h)H# ( )

where log, stands for the binary logarithm (base 2). By (I1.2.7 m we have

LY ([2"t,2"(t + h)))
A, = su su su 11.3.4
ogtgl oghg%/Q yeﬂg (27h)1=H (—logy h)H ( )
< sup  sup sup L ([t,t + h])
0<t<1 0<h<1/2 y r h1=H(—logy h)H

First, let us prove that A, is finite almost surely. We start by making use of a result of Xiao
[128, Theorem 1.2] that describes the scaling behavior of local times of Gaussian processes
with stationary increments; in particular, this applies to the fractional Brownian motion
and we have, with probability one:

LY ([t,t + h))
M :=lim su sup su < 0.
{0 O<t£1 0<hI<)r yGIIEg ht= ( log, h)H

By the very definition of a limit, we deduce the existence of a (random) real number
0 < r < 1/2 such that, almost surely,

LY ([t,t+ h))
su sup su
0§t£1 oghgr yeﬂg hl_H(_10g2 h)H

< 2M. (11.3.5)
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Now for r < h < 1/2, we have h'=(—log, h)? > r'=# and L¥ ([t,t + h]) < L¥([0,3/2])

forall 0 <t <1 and y € R. Moreover by [I31, Theorem 4.1], B has a jointly continuous

local time (t,z) — L*(t) on [0,3/2] x R. Then, the (random) function x — L*(t) is

continuous on R and has a compact support (the occupation measure defined in Section

11.2.2 is compactly supported as B ([0,3/2]) is compact). Hence, sup LY([0,3/2]) is finite
yeR

and so one gets, almost surely,

LY ([t,t + h]) H-1
su su su <r su su sup LY ([t,t + h 11.3.6
021E1 reherjz yek W1 (— logy h)F 021 reners pek ( D ({136)

<rf#~1sup L¥([0,3/2]) < oc.
yeR

Finally, by summing up (I1.3.5) and ([1.3.6]), one has

LY ([t,t+h
P(sup sup  sup (.2 + hl) <oo>:1.

0<t<1 0<h<1/2 y€R h1=H(—log, h)H

Now for K > 0 define the event

Y
Ok = { sup  sup sup L ([t,t + b)) < K}. (I1.3.7)

0<t<1l 0<h<1/2 y€R hi=H(—log, h)H

Fix = € R and consider the level set £, defined by (II.1.2]). By recalling Definition [[1.2.3]
we have: if (I; = [si,t]);~, € T,(L,) is a cover minimizing 7" 5 ;(£,) then,

~n (= s It — il |”
i=1
i li — Si -
Using ([I.3.4]) and a scaling argument with ¢ = ;—n, h = 2ns ;and y = 27"z, we deduce
that
ti— s\ " ti—sil|" o 1 L)
( o log, > K on(—m) " Q.
Back to (I1.3.8]), we have
—1 n/ —1 72
A Z n(l H) i = K725, on Qx, (11.3.9)

where the last inequality holds because the local time L* increases only on the set I; (whose
union covers L, () S,). Finally, one gets

Q C{Vz eR,Vn > —1: 0} (L) > K'Z2}.
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Using ([1.3.9) for the first inclusion and Lemma [[1.2.2| for the second one, we can write

QN {vz €R, FZ = oo} C{Vz €R, Y 71"y 4(L,) = +o0} (11.3.10)

n>—1

C{\V/ZE € R, DimgLl, > 1 — H}

But by definition of Qx we have

P(Qg) —— P ( sup  sup sup LY ([t t+ b)) < oo) =1 (I1.3.11)

K—+o0 0<t<1 0<h<1/2 y€R h1=H(—log, h)H

As a consequence, in order to conclude the proof of Theorem |[1.1.2] it remains to check that
P(Vz € R, FZ = +o00) = 1. Then, using [[L.3.10} by letting K 1 oo an a.s. uniform lower
bound of Dimy L, is attained. The object of the next proposition is prove that FZ = 400
almost surely for all x € R.

Proposition I1.3.1. We have

P(Vz € R, F = +00) =1 (I1.3.12)

Note that the following stronger statement of Proposition [II.3.1| was shown in [87]: for
all x € R, P(FZ = +00) = 1. Our main contribution in the present note is precisely to
prove the strongest version stated in Proposition

11.3.3 Proof of Proposition [I1.3.1

For every a > 0, define

Z¢= inf Z' and FL=> Z. (I1.3.13)

z€[—a,a] =

Recalling ([I1.2.7]), we get for all n > 0

Z¢= inf z*< inf 72" = inf z8 =272 (11.3.14)

z€[—a,al z€[—a,a] x€[—2—nHq2-1Hq|
In the three forthcoming lemmas, the following three facts are established:

(i) the existence of € > 0 such that P(Z) > 4¢) > 0 (Lemma [[1.3.2)),

(i) the existence of a > 0 such that P(Z0 > 4¢) < 2P(Z¢ > 0) (Lemma [[.3.3),

(iii) that P (ﬁé’o = oo) > P <Zg > 0) for all b > 0 (Lemma |I1.3.4)).
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Combining the results obtained in (i) to (iii), we deduce that

P (fgo - oo) >0 forallb>0. (I1.3.15)

Set Eu = u*1 B, Ju, W > 0. By the time inversion property of the fractional Brownian
motion, B is a fractional Brownian motion of Hurst index H as well. We can write

1 . 2 - onn
b=k [y [ auone
m R on—1

~

As a result, we get that z +— L* (S,) is o {Bu cu < 2_("_1)}—measurable, implying in turn
that B R
O'{Zz : nZM} CO’{Bu :u§2_(M_1)} (I1.3.16)

for every M > 1. Consequently,
{fé’o = oo} € ﬂ O’{éu cu < 2_(M_1)}.
M>1

Using (I1.2.9), there exists a standard Brownian motion (W,),>o defined on the same
probability space such that

{Fl=ocbe oWy :u2 @}, (I1.3.17)

M>1

By the Blumenthal’s 0-1 law, the probability P (ﬁé’o = oo) is either 0 or 1. But by (I1.3.15
this probability is strictly positive; hence we conclude that

P (ﬁ;’o — oo) —1 forallb>0. (I1.3.18)

For every b > 0, one has

P(Vz € [-b,b] : Fgo:oo):IP’< inf Fgo:oo>:]P’< inf }Zzw :oo>

x€[—b,b]

> P inf 7% — :P(ﬁ’: ):1.
- (erl[llb,b] N oo> S

N>1

We finally conclude that
P(Vx € R, Fy = c0) = blim P (Vx € [=b,b], FY, = c0) =1,
—00

which is the desired conclusion of Proposition [[I.3.1]

To conclude, it remains to state and prove the three lemmas mentioned in points (i) to

(iii).
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Lemma I1.3.2. For all € > 0 small enough such that P(Z) > 4¢) > 0.

1 1 L
Proof. Using that L° ( [=,1] ) = —/dy/ du eP | we have
2 21 Jr 1
1

1 1 22 I
E(L°(|=,1 ——/ quu/e2dz——/ uwH du > 0.
(o)) = o Lot

As aresult, P(Z) >0) =P (LO ([%, 1]) > 0) > 0, and the desired conclusion follows. [J

Lemma 11.3.3. For every € > 0 small enough, there exists a real number a > 0 such that
0 < P(Z3 > 4e) < 2P(Z¢ > 0).
Proof. Let B <1 (4 —1), K=[-1,1] and J = [§,1]. Set

= c(w) == ‘LO(‘])(“’) - Lx(J)(w)‘
c=c(w):= sup 5
zeK\{0} ||

By Lemma [I1.2.3] we have that P(c < c0) = 1.

/8
Set 7. = n-(w) := min { (L) ,1}. As [-7.,7n.] C [-1,1], one has

c(w)

Vx| < ne(w),

(L)) - ) - (20(5) @ -2 (5) @) <o s

- Q|- et~ (0 ) - ()]

By triangle inequality,

o (Y

(I1.3.20)
Using (I1.3.19) and (II.3.20)), we have
1 1
{Zg =L(1) - Lo(g) > 48} C {V\x! < Me(w), |L¥(1) — Lx(g)\ > 35} . (I1.3.21)
1 , 1
But < V|z| < n.(w), [L*(1) = L[ = )| > 3¢) p = inf |L*(1)—L* (= )|>3e;. Re-
N 2 -736[—7757775] 2
calling the definition of ZJ*, we deduce that
P (de > 0) > P (ng > 3g> > P (20 > 4e) > 0. (I1.3.22)
Now for all a > 0, we have
{ng > 0} c {Zg > 0} U{n. <a}. (11.3.23)
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Since ¢ < oo a.s., one has that P(¢ > M) — 0 as M — oo. We can then choose a > 0
small enough such that

P(n.<a)=P (c > W) < 1IP (29 > 4e) . (11.3.24)

Using ([1.3.22)), (1I.3.23) and (II.3.24) we deduce that

P (20 >42) <P(ZF >0) <P(Z5>0) +P(n. <a) <P (Z5 >0) +%IP>(Z(?>45).
Finally, by Lemma
0<P (2> 1) <2P(Z > 0),
which is the desired conclusion. O

Lemma 11.3.4. For any a,b > 0, we have
P(ﬁ;:oo> 2P<Zg>o).

Proof. Fix v > 0 and a,b > 0, consider the event A, = {]:;Obo < 'y}. By Fubini’s theorem,

7>E<]1A be>_ZE< Vbn Z/ 77l,ﬁ{22>u}>du.

n>—

Using P (AN B) > (P(A) — P(B°)), where B denotes the complement of B, and recalling
(I1.3.14])), we deduce that

~o-nH
7>Z/ (Zb<u du-Z/ (Zg b§u>>+du.
There exists M > 1 such that 27"#b < q for all n > M. Then, for all n > M,
P (Zg’“’b < u) <P (Zg < u)
and

v > Z/ (Z“<u>>+du.

Since the summand does not depend on n and the series is bounded by v and thus finite,

one has necessarily
/ (P(Ay0) — P (Zg <u)) du=0.
0 +
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Hence, for almost every u > 0 and every v > 0,
P(FL <9) =P(A) <P(Z5 <u). (11.3.25)
We know that IP’(Z‘)’ < u) is increasing as a function of u. Hence, ([1.3.25]) is actually true

for every u > 0 and v > 0. Hence P (ﬁfo > n) >P (Z‘} > %) for all n € N. One conclude
that

P(ﬁ;’o:oo>zﬂh<ég>o>.
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Chapter I1I

Fractal dimensions of the Rosenblatt
process

The content of this chapter is a copy of the paper entitled “Fractal dimensions of the Rosen-
blatt process”, written with “George Kerchev”, and submitted to “Stochastic Processes
and their Applications”.

III.1 Introduction

The Rosenblatt process Z = (Z;)i>0 is a stochastic process that is a limit of normalized
sums of long-range dependent random variables. It belongs to the class of Hermite pro-
cesses and is the simplest member that is non-Gaussian. It has continuous but nowhere
differentiable paths and is selfsimilar of order H € (1/2,1) with stationary increments.

The process Z, due to its self-similarity, can find applications across a multitude of fields
like internet traffic [23], hydrology, and turbulence [99] [64]. We refer the reader to [35]
and [101] for a detailed review of the properties associated with self-similarity. In particular,
the Rosenblatt process is used in finance [118, 109, 41] and statistical inference [69] 30} [88].

From a mathematical standpoint the process has received a lot of interest since its
inception in [98]. Its distribution is not known in explicit form but was studied first
in [2] and more recently in [72] and [123]. There are three integral representations: in
terms of time, the spectrum and on finite intervals, see [I13]. There is also a wavelet
representation [05] (see also the recent article [7] for the wavelet representation of the
generalized Rosenblatt process and its rate of convergence). From a statistical point of
view, the value of the Hurst index H is important for practical applications and various
estimators exist, see [10, 121].

In the present paper, we focus on the fractal properties of the random sets and measures
determined by the sample paths of Z, i.e., if the underlying probability space is (2, F,P),
we study the function Z(t) = Z;(w), for a fixed w € Q. Some (random) sets of interest are
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then:

(t):te E}; (IT1.1.1)
{(t,Z(t)) e ExR:t e FE}; (I1.1.2)
ER,: Z(t) =z}, x €R; (IIL.1.3)
{teRy:|Z(1)| <t'},v > 0; (II1.1.4)
NVe={teR, : Z(t) € B'}, (IIL.1.5)

Image set: Z(F) =
Graph set: Grz(FE) :
Level set: Lz(x) =
Sojourn set: Ez () :

1

{Z
{t
(B

where £ C R, and E’ C R are Borel sets. These sets , due to self-similarity property of Z,
may look like a fractal, see, e.g., Figure [[II.1] for the sojourn set of the Rosenblatt process.
In order to describe such sets quantitatively one can use a type of fractal dimension.

Inverse image: 2~

Figure III.1: Simulation of a Rosenblatt process of Hurst index H = 0.6. In red - the
sojourn set Ez(v) for v = 0.6.

Fractal dimensions give you an intuition about the geometry of a set. Having identified
some interesting random sets and possible ways to measure them, we note that such studies
can be traced to the pioneering work of Lévy [68] and Taylor [114], 115 117] on the sample
path properties of the Brownian motion. We refer the reader to [I03] and [130] for surveys
of such results for Lévy and Markov processes respectively.

An important class of such dimensions reflects local properties of the set. One important
example is the classical Hausdorff dimension, which can be defined as follows using the
Hausdorff content, see [38, Section 3.2]. For £ C R,

i=1

dimg (E) = inf {s >0 :Ve>0,3cover{U;};2, of E, s.t. Z \U;|* < 5} ,  (II1.1.6)
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where |F'| denotes the diameter of the set F. Moreover by imposing further restrictions on
the sets in the cover {U;} one can recover the definitions of box dimension. In particular,
for F C R, the lower box dimension is given by:

Ve > 0,3 cover {U;};2, of E, s.t.
|Uz| = |U]| \V/Z,j and Z?il |UZ|S S g '
Similarly, we define the upper box dimension:

Ve > 0,30 > 0,V cover {U;};2, of E, s't. (111.1.8)
Uil <0, |Ui| = |U| Vi, j and 3275, Uil <e [~ o

dimg (E) = inf {3 >0: (II1.1.7)

dimp (E) = inf{sZO:

The box dimension dimp (£) is then given by the common value (if it exists) of dimp (F)
and dimp (E). Next for 6 € [0, 1], the 0-intermediate dimensions dimy (E) is a dimension
that interpolate between the Hausdorff and boxr dimensions by increasing restriction on
the relative sizes of covering sets as @ increases (6%/¢ < |U;| < § for all i). In particular,
one defines dim, (F) and dimg (E) similarly to dim (£) and dimp (E). Then dimg (E) is
the common value if it exists of dim, (£) and dimg (E).

One need not consider only covers for the set E. For example, dimp (F) can be defined
alternatively using coverings by small balls of equal radius (corresponding to dimy (F)) or
using packings by disjoint balls of equal radius that are as dense as possible (corresponding
to dimp (E)), see [38, Section 3.4]. If the radii are allowed to differ the covering procedure
corresponds to the classical Hausdorff dimension while the packing one is associated to the
packing dimension dimp (F). In linear programming the packing and covering problems are
dual of each other and thus the packing dimension can be considered as the dual analogue
to the classical Hausdorff dimension. The precise definitions are delayed to Section [[TL.3]

Other definitions of the packing and intermediate dimensions are possible by employing
methods from potential theory. Thus, dimp (E), dim, (E) and dimg (E) can be expressed
via capacities with respect to certain kernels, see [40, 22]. This gives rise to packing and
intermediate dimension profiles - dimp, (E), dimy , (F) and dimg, (E) respectively. See

for the precise definitions.

All the dimensions in the discussion above pertain to local properties of the set. It is
often the case, for instance in statistical physics, that one needs to quantify global prop-
erties of an infinite set. The simplest way of assessing the size of such a set is given by its
(Lebesgue) density at infinity. In particular, we utilize the logarithmic density Denyog (E)
and the pizel density Den,,;, (E) (the latter corresponding to the “pixelated” image). Alter-
natively, one can use the macroscopic Hausdorff dimension Dimg (E) introduced in [11 [12]
for the study of the macroscopic properties of random walks. More recent applications can
be found in the study of high peaks of solutions of the stochastic heat equation [59] 61].
Definitions of these concepts are provided in Section A brief summary of all dimen-
sions discussed can be seen in Table [Tl

We also mention a few relations between the dimensions mentioned so far to give the
reader some intuition:

dimy (F) < dimg (E) < dimg (E); dimg (E) < dim, (F) < dimy (F) < dimp (E);

dimp (E) < dimp (E); Denyy, (E) < Den,;, (E).
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Dimension Name Cover Size Values | Limit
. Classical )
dimg (+) Hausdorff Covering (0, 9] 0,1] | 6 =0
. Upper - Covering
dimp (+) Box Lower - Packing J 0,1] | d—0
dimp () Packing Packing (0, 9] 0,1] | d—0
dimg (-) | Intermediate e (6Y98) ] [0,1] | § =0
Logarithmic n
Denjog (+) density Interval [1,2"] 0,1] | n— o0
Pixel « "
Deny;, (-) density Interval [1,2"] 0,1] | n— o0
. Macroscopic | Collections of sets
Dimy () Hausdorff in [2n71 2m) (0,4] 0.1] | = o0

Table II1.1: Overview of the types of fractal dimensions. For the pixel density the cover
consists of the integer points in the interval at distance less than 1 from F.

Before we list our main results, we outline what is known regarding fractal properties
of sample paths of a Hermite process of rank 1, i.e., the fractional Brownian motion. The
fractional Brownian motion X = (X;):>o, like Z, is a selfsimilar stochastic process with
stationary increments. Both processes, X and Z, share the same covariance structure
and are governed by a parameter H (called Hurst parameter in both cases). Unlike the
Rosenblatt process, the process X is Gaussian and H € (0,1). See Table for an
overview of some fractal properties of sets associated with the sample paths of the fractional
Brownian motion.

X(5) )
dim, () | S, ; (E) 21 i
: min (1, zdimy (E)
dimg (+) ( G4 ) 1—H [3§] 1
Dimy (+) 1—H [2§ 1 — H [&7]
Deng;, (+) v+1—H [87]
Denjog (+) v+1—H [87]

Table II1.2: Table of fractal dimensions and densities of random sets associated with the
fractional Brownian motion with v € [0, H).

For completeness we mention also some results regarding the graph and the inverse sets.
If X : RY s R?is a fractional Brownian sheet, it has been proved in [I] that, almost surely,
dimp (Grx([0,1]Y)) = min {N/H, N + (1 — H)d}. The box dimension of the graph of the
fractional Brownian sheet over a non degenerate cube @ of RY was determined in [55].
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Moreover, with probability 1, dimg (Grx (Q)) = N + 1 — H. Regarding the inverse set,
the following holds: for E a closed subset of RY, dimy (X1 (E)) = N — Hd + dimy (E)
(see [82]). We believe that analogous results can be established for the Rosenblatt process,
but the sets in question are not the subject of the current paper.

Many of the results listed above rely on Holder regularity conditions for the sample
paths, and more precisely, for the local time of the process. Such properties have been
established for stationary Gaussian processes, like the fractional Brownian motion, by
Berman in [I6]. His analytic approach, which is based on properties of the Fourier trans-
form of the underlying process, has been adapted to the Rosenblatt setting in [106] where
existence of the local time of Z was first established. Holder regularity was then recovered
in the recent paper [57]. These new results now allow to generalize some of the results in
Table for the Rosenblatt case. See Table [IL3l

Z(E) Lz(x) Ez(7)
dimp (-) | Zdimpy (E) [107] |1-H 1
dim, () %di_Hw,H (£) 1-H 1

. 1 .

dimy () min (1, ﬁg;r]ﬂH (E)) L ]
Dimy () 1-H 1-H
Deng;, (+) vy+1—-H
Denjog (+) y+1—H

Table II1.3: Table of fractal dimensions and densities of random sets associated with the
Rosenblatt process with v € [0, H).

All results in Table but the ones for the dimensions of the image of the process
Z(F) are new. Our findings are collected in the following three propositions. First, for the
image set we extend the results of [107] to the intermediate dimensions setting, as in [21]:

Theorem III.1.1. Let § € (0,1] and E C R be compact. Then almost surely:
1

dimy (Z(E)) = 5 dimy g (E), (IIL.1.9)
and
dimg (Z(E)) = %Wneﬂ (E), (I11.1.10)

where dimg 5 (-) and dimg g (-) are the lower and upper 0-intermediate dimension pro-
files respectively. For the precise techinical definitions of these two objects see ([I11.3.7))

and ([11.3.8)) in Section |[11.53.2,

Then, we study the proportion of time spent by a stochastic process in a given region.
We describe the size of the level sets L£z(z) in terms of intermediate dimensions and
macroscopic Hausdorff dimension. The following holds:
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Theorem IIL.1.2. For E C R and 0 € [0,1], let dimg (E) and Dimg (E) denote the
f-intermediate and macroscopic Hausdorff dimensions of E. Then, for any x € R and
0<e<l,

Ve € R,P(dimg (Lz(x) N e, 1])=1—H) = 1. (IT1.1.11)
And,
Ve € R,P(dimp (Lz(x) N e, 1])=1—H) = 1. (III.1.12)
Moreover,
P(Vx € R: Dimy (Lz(z))=1—H) = 1. (IT1.1.13)

We believe that the same uniform result holds for classical Hausdorff dimension but we
only prove the pointwise one. Finally, we establish the results for the sojourn times E(7):

Theorem IIL.1.3. For E C R, let Deny, (E) and Denog (E) denote the pizel and loga-
rithmic densities of E. Then, for all v € [0, H],

Denyiy (Ez(7)) = Deniog (Ez(v)) =v+1—H, a.s. (I11.1.14)
Moreover,

Dimyg (Ez(v)) =1—H a.s. (II1.1.15)

To fill the missing entries in Table one needs new techniques. In particular, the
macroscopic Hausdorff dimension and the two densities of the image set Z(E) should
depend on the fractional properties of E (in particular should be 0 if F is bounded).
However, intuition regarding this relation is missing. Regarding, the level set Lz(x), the
approach for the macroscopic Hausdorff dimension does not translate since the key result

(Lemma [[11.4.2)) is an artifact of the definition of Dimy.

The authors believe that many of the results above can be extended to some general-
izations of the Rosenblatt process, for instance, when the time and space sets are N and
d dimensional, or when the Hurst index is a function of time, as in [I06]. To ease the
presentation only the case N = d =1 and H € (1/2,1) - fixed is considered. However,
establishing the results for Hermite processes of rank above 2 requires new techniques and
is beyond the scope of the current paper. In particular, the Berman analytic approach
relies on a “good” representation for the Fourier transform of the process and this is not
known for Hermite processes of higher rank.

The structure of the paper is as follows. The three main results listed above are
established in Sections [[TL.3HITL.5] Some necessary technical properties of the Rosenblatt
process are reviewed and proved in Section [[TI.2]
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II1.2 Properties of the Rosenblatt process

The Rosenblatt process is formally defined, for t > 0 and H € (1/2,1), as

[nt)

ZH = 1im (v - 1), (I11.2.1)
n—oo N,
k=1

where (Y))r>o is a Gaussian sequence of mean zero, unit variance and covariance E[YyYy] =
(14k2)~(=H)/2 The series converges in terms of finite dimensional distributions but also as
weak convergence of probability measures (see [I13] for further details). The parameter o is
an arbitrary constant and is taken such that the limit Z¥ has unit variance. Letting t = 1,
one recovers the example, constructed by Rosenblatt in [08], to highlight the limitations
of a cental limit theorem for stronly mixing sequences also stated in [9§].

The Rosenblatt process can also be defined in terms of Wiener-Ito stochastic integrals.

Following [113], (Z[);>0 is defined as the double Wiener integral with respect to a
standard Brownian motion {B(z)}er:

/

ZH = | Ky(t, o1, 25) dB(z,)dB(x5), (I11.2.2)
R2

where fﬂ;Q denotes integration over R? excluding the diagonal and the kernel function K
given, for all (¢, 21, z5) on R, x R? by

3 3
2(s — xg)f 2 ds,

Ku(t,z1,20) = c(H)/O (s—a1)7

with * = max(z,0). The constant ¢(H) is a positive normalizing constant and it is chosen
such that E((ZH)?) = 1. More precisely,

(H —1/2)(4H — 3)

e(H)" = B(H —1/2,2 — 2H)

This definition is also known as the time representation of the Rosenblatt process. An-
other closely related representation is the spectral representation of Z (see [113] and [33]):

ei(l"i‘y)t —1

ZH = C
t ( R2 Z(.T+y)

Zg(dx)Zg(dy), (HIQB)

where the double Wiener-Ito integral is taken over z # +y and Z5(dz) is a complex-valued
random white noise with control measure G satisfying G(tA) = t!"#G(A) for all t € R
and G(dx) = |z|"#dx. The constant C(H) in ([I1.2.3)) is such that
1
E[ZE] _ tQH and E[ZtZS] — 5 (tQH + 52H . |t o S‘2H) :

for all s,t > 0.
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Remark 9. Note that in the notation of [I13], Zg(dx) = |z|"7/2dB(x), with (B(t))er the
Brownian motion and dB(x) is viewed as the complex-valued Fourier transform of dB(x).
For more details, see [I111].

It is known (see [119]) that the Rosenblatt process has the following properties:

(1) self-similarity: Z is H-self-similar; that is, the processes { Z., t > 0} and {cHZt, t> O}
have the same distribution.

(2) stationary increments: Z has stationary increments; that is, the distribution of
the process {Z;1s — Zs, t > 0} does not depend on s > 0.

(3) continuity: the trajectories of the Rosenblatt process Z are §-Holder continuous for
every 0 < H.

We will mention one more property that will be needed in our proofs, and is a consequence
of the finite time interval representation [113, Section 7.3] of the Rosenblatt process. The
natural filtration associated to a Rosenblatt process is Brownian, i.e., there is a Brownian
motion (B;):>o defined on the same probability space than Z such that its filtration satisfies

0{Zs; : s<t}yCo{Bs:s<t}, (I11.2.4)

for all t > 0.
Moreover, by [72, Theorem 1.1], for any d > 1 and #,...,t; > 0,

(Zsys oo Zry) @ (i Aa(t)(e2 = 1), ... i An(ta)(e2 — 1)) , (I11.2.5)

where (¢,,),>1 are i.i.d N(0,1) random variables and (A\,(t)),>1 are the (real) eigenvalues
of a self-adjoint Hilbert-Schmidt operator associated with the process Z (see [33]).

For our analysis a few properties of the density for the joint process (7, Z;,) are
needed. Using techniques from [57] we can establish the following:

Proposition 111.2.1.

(i) The probability density function f : R — Ry of Z; is continuous and f(x) > 0 for
x> 0.

(i1) For every ti,...,t, >0, the vector (Zy,,...,Z,) has a continuous density.

Proof of Proposition[III.2.1. (i) The density f of Z; is continuous (see [123, Corollary 4.3])
and unimodal (see [72]). Therefore f(0) > 0 since E[Z;] = 0. To see that f(y) > 0 for all
y > 0, recall [123, Corrolary 4.5]: for o > 0,

lim P(Z) > u+ «)
U—00 P(Zl > u)

= CH,
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for a deterministic constant cy > 0. In particular, this shows that for every y € R, there
is x > y, such that f(z) > 0. Combined with the fact that f is continuous and unimodal,
this implies that f(z) > 0 for every x € R,.

(i) If the characteristic function fi(z) of a probability measure p in R? is integrable,
then p has a continuous density g(z) that tends to 0 as |z| — oo (see [103, Proposition
2.5(xii)]). Therefore, it is enough to show that for all ¢ € R’;:

/ E exp ( Zgjzt )

At this point we recall [57, Lemma 2.1, 2.2].

Lemma II1.2.2. Let L%4(R) be a weighted space with norm ||f||ié = [plf(@)]*G(z)dz.
Fort e R%, £ € R, let Aye - LE(R) — LE(R) be the operator given by

zt jlz—y) _ 1 H/2
(Avef)(x Z FW)lyl™""dy.

Let (Ai(t,€))k>1 be the set of ezgenvalues of Aie. Then,

o (Zgz) ‘ g erworres

Moreover, ifto=0<t; <---<t, <1, for every k > 1,
Ai(t, §) = C(H)(max & — &-alt; — tia ™)AL, (111.2.6)

d¢ < oo.

where A\, ~ k=12 (independent of t and €), & =0 and C(H) > 0 is a constant that only
depends on H.

Now, we follow a similar procedure to the one employed for the proof of [57, Proposition
1.3]. Let fo : R} x R™ — Ry be given by

folt,y) =t 1ol V85 [yal V -V 8 [yl (I1.2.7)

Further, let fl = (51 — 50752 — 51, Ce 7£n — £n71) and t/ = (tl — to,tg — tl, e ,tn — tnfl).

Then
/ Eexp< Zgjzt)
/H1+4/\k§t )~V/4dg
R

$ k>t
N\l
< [ TT 1+ acmn i b6 — el — 25 ) g
R k>t
1/4
/H 1+4C fo(tg)X*) de'. (II1.2.8)
R k>t
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Let

G(s) = H(l + 452N,

k>1
We can now switch to polar coordinates in (II1.2.8) via |{'| =/, {'/r" = w":
1/4

LI (1 acange.ont) " a

k>1

SC/ =1 /ooo(r,)n_lG(\/mr/fo(t',w’))dr’”l—["—l(dw')

o ([T rmamar) ([ @),

where H"!(dw') is the (n — 1)-dimensional Hausdorff measure on the unit sphere, C' > 0
is a constant that depends on H and the last equality follows with the change of variables

R = /CH)"f(t', ).

Next, recall [57, Lemma 2.3 that G(s) is finite and positive for any s > 0 and moreover
there are constants ¢y, co > 0 such that for all 5 > 1,

/ s"71G(s)ds < e;He; PPT(BH),
0

where I is the Gamma function.

Finally, since t1,...,t, > 0 are fixed, by the definition ([II.2.7)) of fo(t',w’),

/I /ﬂ(fo(t’)w'))_n?-[”—l(dw’) SC(t’)/ (lwr] V- - V Jwn|)"H Y (dw)

fw!|=1

<) / ()1 () < oo,
|w’|=1

where C'(t') == inf{¢/f", ..., #/H"} is a positive constant.

Therefore, the characteristic function of (Z;,, ..., Z;, ) is integrable and thus the joint
distribution has a continuous density.

m
Next we establish a time inversion property for the Rosenblatt process:
Proposition I11.2.3. The inverse time process
te Zy =117, (111.2.9)

15 also a Rosenblatt process.
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Proof. First, using the spectral representation of a Rosenblatt process ([11.2.3]),

2z, @ o) / -1, (dz) Ze(dy)

C<H)t2H/ ei(z”ry’)t _ 1Z (th /)Z (th /)

- - T

w i g gy A Zelr)

with the change of variables x = 2/t?> and y = y/t?>. Now recall the change of variables
formula for the 1t6 integral [32, Proposition 4.2]:

Proposition I11.2.4. Let G and G’ be two non-atomic spectral measures such that G is
absolutely continuous with respect to G', and let g(x) be a complex valued function such
that

(G(
(G (@)

Let f : R? — C be a measurable function such that:

3/

1. f(—x1,—x2) = f(x1,22), and
2. 117 = [ 1f (1, 22)*G(dar) G(dan) < oo

Then, for f'(z1,x9) = f(x1,22)g(x1)g(x2),

/ Flar, 22) Zo(der) Z(das) 2 / (w1, 22) Zer (dary) Ze (doxs).

Let Gp(A) = G(At?) = t?0-H)G(A) for every measurable A. We apply Proposi-
tion [I11.2.4| with G and Gz, i.e., with |g(z)|> = 20=#) a constant depending on ¢. Then,

et@'+y )t _
OHt2H/— 2dx’) Zo(t2dy'
(R | e Zoda) Za(tdy)
— tZH €Z(x +y) (dl‘/)Z (d /)
B v i(1 ) G\
(d) 2H el +y 2(1—H)
= t - ’L p +y t Zg(dl’ )Zg(dy)
C(H e Zea(dx ) Za(dy
( R2W al l‘) a(dy'),

and we recover the spectral representation of Z; as desired.
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Remark 10. For the fractional Brownian motion BF of Hurst index H € (1/2,1), the
same fact is established using that the process is Gaussian and by comparing covariance
functions. However, this property can also be recovered using the approach above. Indeed,
we have the following spectral representation:

it
(d) et —1 1 A
BY = C(H dB()).

The same change of variables yields the desired conclusion.
We also recall a result [57, Proposition 4.2] regarding oscillations:

Proposition II1.2.5. Let (Z;);>o be the Rosenblatt process. Then for any s > 0 and
h € (0,s),

P sup  |Zy — Zs| > u SCeXp(— UH),
t€[s—h,s+h| c1h

where ¢y and C' are constants that depend only on H.

We need the following properties of the local time of the Rosenblatt process. Its exis-
tence was shown in [106] and one has the representation:

1 oy
L(x,t):% /R / (@29 dsde . (I11.2.10)
0

As we mentioned in the beginning of this section, Z is selfsimilar of index H, then its local
time at level x also has some selfsimilarity properties in time with index 1 — H, but with
a different level as stated below. More precisely, one has, for every ¢ > 0:

(L(z, t))s0.0er 2L A~ H(L(c 2, 1)) is00ez. (I11.2.11)

Indeed, for every ¢ > 0, t > 0 and = € R, one has

1 ct ) 1 t )
L(z,ct) = — @2 dgde = ¢ — eC@=Zes) dsdg
2 Jr Jo 2 Jr Jo

1 b 1 b
@~ / / @ 2s) ggde = T / / el =2 gsde = L(e M, t).
2 R Jo 27 RJO

Moreover, a recent result [57, Theorem 1.4] describes the scaling behavior of the local time
of Z:

Proposition II1.2.6. The local time L(x,[0,t]) is jointly continuous with respect to (x,t)
and has finite moments. For a finite closed interval I C (0,00), let L*(I) = sup,ep L(z, I).
There exist positive constants Cy and Cy such that, almost surely, for any s € I,

) L*([s —r s+ 1))
| <C I11.2.12
50 P (loglog r1)2H = | )

and

: L*([s —r,s+7])
hr::s(glp sslg) 1= (log r—1Y2H < Cs. (I11.2.13)
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Furthermore, we can establish the following property which is key in the study of the
classical Hausdorftf dimension of the level sets.

Proposition II1.2.7. For € (0,3 (% — 1)),

P( - [%,u)—L(x,[%,u)\m):L

ze[-1,1\{0} |z|?

Proof. The result relies on a celebrated lemma due to Garsia, Rodemich and Rumsey [43],
as well as on the moment estimates for the local time in [57]. First, let us recall the lemma
from [43]:

Lemma II1.2.8. Let ¥(u) be a non-negative even function on (—oo,00) and p(u) be a
non-negative even function on [—1,1]. Assume both p(u) and ¥(u) are non decreasing for
u>0. Let f be continuous on [0,1] and suppose that

/I/I\I/(M>dudv§3<oo.
o Jo p(u—v)
Then, for all z,y € [0,1],

) -l <s [ g () o

where W1 denotes the generalized inverse of V.

Let U(u) = |ul? and p(u) = |u|***/? where & > 1/p and p > 1. Then for any continuous
fand z € [0, 1],

1f(z) — fF(W)]P < Coplz —y|*P! /m N 1F(r) — f(0)P|r — o]~ drdu.

Here the constant C,, is given by C,, = 4 -8 (a +p’1)p(a — p’l)fp. Thus, for fixed «
and large enough p, we have C,, < C(«)?, where C'(a) > 0 is a constant that depends on
the chosen .. We apply this to f(z) = L (2z — 1, [3,1]):

L (2[5 1) = L0, [5: 1)

)ap—l

sup
z€[-1,1]\{0} (%

o f o) )

Using the moment bounds for the occupation density established in [57, Theorem 3.1], one
has

P
lr — v| " tdrdv.

N \Lmau)—L<o,[%,u>v’]
we[-1,1]\{0} (27
c(y, H)Ppr2H 4299 |p — y|7P o
< ov [ R e i,
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where v € [0, %) and ¢(y, H) > 0 is a constant depending only on v and H. Let oo = /2

and p > 4/~. Then,

L (= [5:1]) = L0, [3. 1)["

)ap—l

E

sup

. < C(v,H,p),
ve[~1,1\{0} (%

where C(~, H,p) > 0 is a constant that depends on 7, H and p.

Fatou’s lemma implies that

P( - [%JD—L(L[%JD\@O):L

z€[—1,1]/{0} |z|P

as desired.

]

Finally, the local time is Holder continuous in both time and space [57, Corollary 3.2].
In particular:

Proposition II1.2.9. For every x € R,almost surely, the local time L(x,t) is Hélder
continuous in t of order « for every o € [0,1 — H).

I11.3 Image sets

The present section is dedicated to the study of intermediate dimensions and profiles. To
make a comparison, we recall the more popular packing dimensions and profiles.

II1.3.1 Packing dimensions

First, recall the definition of the packing dimension. For any a > 0, the a—dimensional
packing measure of £ C R" is

P (E) = inf{ng (E,): EC UEn}7

where for £ C R,

7

PS(E) = li_I}I(l)Sllp {Z(Zri)s : B(zy,7;) are disjoint ,2; € B, r; < 8} .

The packing dimension of E is

dimp (F) =inf{s > 0: P*(E) =0} (II1.3.1)
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and the packing dimension of a Borel measure p on RY is defined by
dimp (1) := inf{dimp (F) : u(E) >0 and E C RY is a Borel set}.

Next, we recall the concept of packing dimension profiles first conceived by Falconer and
Howroyd in [40] and [48]. For finite Borel measures p on RY and for any s > 0, let

P = [ o (S50 duto)

be the potential with respect to the kernal ¢, () = min {1, ||z|~*},vo € RY.
The packing dimension profile of p is defined as follows

FH
dimpg (1) = sup {6 >0: limiglf# =0for y—aexe ]RN}.
r— T

Now for any Borel set E C RY, we define M (E) to be the family of finite Borel measures
on E with compact support in E. Then

dimp (E) = sup {dimp (u) : p € MI(E)}.

Motivated by this, Falconer and Howroyd [40] define s-dimensional packing dimension
profile of E C RY by

dimp, (E) = sup {dimp, (1) : p € M} (E)}.
It is easy to see that 0 < dimp, (E) < s and for any s > N, dimp, (E) = dimp (E).

I11.3.2 Intermediate dimensions

For a bounded and non-empty set £ C RN, 6 € (0,1] and s € [0, N], define

H;,(E) = inf {Z Ui = {U;}, is a cover of E such that r < |U;| <17 for all @} .

(I11.3.2)

In particular, for § = 0, H;,(E) is the s-dimensional Hausdorff measure of E. Now, the
intermediate dimensions are defined as in [38]:

Definition III.3.1. Let E C RY be bounded. For 0 < § < 1, the lower f-intermediate
dimension 1is

. . . og Hy(E)
dim, (F) = the unique s € [0, N] such that liminf ————— = 0. (II1.3.3)
r—0 —logr
Similarly, the upper #-intermediate dimension of F is defined by
S ) . log H; y(E)
dimy (E) = the unique s € [0, N| such that limsup —————— = 0. (II1.3.4)
r—0 —logr

When dim,, (E) = dimy (E), we refer to the f-intermediate dimension dimy (F) = dim, (F) =
dimg (E).
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Thus, the classical Hausdorff (II1.1.6) and box dimensions (III.1.7), (IIL.1.8)) can be
viewed as the extremes of a continuum of dimensions with increasing restrictions on the
relative sizes of covering sets. Indeed, for every bounded F C R,

dimyE = dimoE = dimy (E), dim,F =dimg(E) and dimFE =dimg(E).

Moreover, the intermediate dimensions can be defined in terms of capacities with respect
to an appropriate kernel denoted by ¢7)" (see [22]). For each collection of parameters
0€(0,1,0<m<1,0<s<mand 0<r<1,let ¢ : RY — R be the function

1 0<|z| <,
o) =4 (&) r<lel<r (I11.3.5)
rf(m—s)+s
T r? < |z

Using this kernel we define the capacity of a compact set £ C RV as

where M(F) is the set of probability measures supported in F.

(I11.3.6)

Now for 0 < m < N, the lower intermediate dimension profiles of E C RY are

. . . log O (E)
dimy,, (£) = | the unique s € [0, m] such that liminf ———— =s ),  (IIL.3.7)
’ r—0 —logr
and the upper intermediate dimension profiles are
—— . . log Cy"(E)
dimg,, (E) = | the unique s € [0, m] such that limsup ——— =s ). (II1.3.8)
r—0 —logr

The intermediate dimension profiles are increasing in m and for £ C RY,

dimy v (E) =dimy (E) and dimgy (E) = dimy (E) .

We note that originally the definitions of capacities and profiles above were established
for £ C RY and integers m € (0, N]. However, the recent result [21, Lemma 2.1], allows
one to work with the version stated above. In fact, our first main result Theorem is
an extension of a similar result in [21] obtained for the index-« fractional Brownian motion.
We proceed with the proof of Theorem [[T1.1.]

I111.3.3 Proof of Theorem [I11.1.1

Let 6 € (0,1]. We first state two results due to Burrell [2I]. The first one establishes an
upper bound for the intermediate dimensions of Hoélder images using dimension profiles:
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Lemma I11.3.2. [2], Theorem 3.1] Let E C R be a compact, 0 € (0,1}, m € {1,...,n}
and f: E — R. If there exist c >0 and 0 < a < 1 such that

|f(x) = f(y)| < clz —y|*,

forall z,y € E, then

dimy (f(E)) < ~dim, . (E) and iy ((E)) < ~dimg,0 (E).

0% (0%

The second result gives a lower bound for the intermediate dimensions of image of a
compact set F under measurable functions satisfying certain properties:

Lemma II1.3.3. [21, Theorem 3.3] Let E C R be a compact, § € (0,1], v > 1 and
€[0,1). If f: Qx E — R is a random function such that for each w € Q, f(w,.) is a
continuous measurable function and there exists ¢ > 0 satisfying

P(fweQ: [f(w2) = floy)l <7} < ety (@ =),
forall z,y € E and r > 0, then
dimy (f(w, E)) > vdimy o, (E)  and  dimg (f(w, E)) > ydimg o (E)

for almost all w € €.

Now let 0 < ¢ < H < 1. The Rosenblatt process Z has Holder continuous paths in
time of order H — ¢, see [120, Propostion 3.5, and so there exists, almost surely, M > 0
such that

| Zy — Zy| < M|s —t|F =,

for all s,t € E. In addition by Proposition |[III.2.1}(i), the density function f of Z; is
continuous and f(0) > 0. Then for all s,¢ € E and r > 0, one has

r

Now since the profiles are monotonically increasing, by Lemmas [[T1.3.2] and [[TI.3.3], one has
almost surely

Ldim, ; (E) < dim, (2(F)) <

1
di—mGHfs(E)S dl—mGH(E)a
} — € )

— £

and

1 —— — 1 —
—dimng (E) < dimy (2(B)) < —dimg,-. (E) <

dimg 7 (E).
Letting ¢ — 0 establishes the result.
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II1.4 Level sets

The present section is devoted to the proof of Theorem . First, we establish
and - the result regarding the f-intermediate dimensions and the packing dimen-
sion. Recall that the definition of dimgy (E) and dimp (E) for E C R are given in defini-
tion [[T1.3.7] and [[T1.3.7] respectively.

Note that the techniques employed in this section apply for the fractional Brownian mo-
tion case. As mentioned earlier, [9, Theorem 5] establishes dimp (Lx(z) N[e,1]) <1 —-H
and dimy (Lx(x)N[e,1]) = 1 — H was shown in [38]. Thus from the defintion of the
f-intermediate dimensions (see dimg (Lx(z) N e, 1)) = 1 — H, as well. Rele-
vant results about the local time can be found in [128], which allows us to establish

dimp (Lx(z)) = 1 — H.

Proof of (I11.1.11)) and (I11.1.12)). Let 6 € [0, 1]. Recall that for any set £ C R, one has
dimpy (E) < dimg (E) < dim, (E) < dimg (E), and

It is enough to show that dimp (Lz(7)N[e,1]) < 1 — H and dimy (Lz(x) N[, 1]) >
1 — H with probability one. Starting with the upper bound, we follow the technique used
for [9, Theorem 5] - an upper bound result for the classical Hausdorff dimension of level
sets associated to fractional Brownian sheet. But in fact, the covers used are of equal
length and so this technique gives an upper bound for the Box dimension.

For n > 1 we cover [¢,1] by [n'/#] subintervals R, , of length n=Y/# with ¢ €
{1,2,...,[n/H]}. Let 0 < 6 < 1 be fixed and 7, be the left endpoint of the interval
R, ;. We first bound the probability P(z € Z(R,z)):

P(z € Z(Roy)) < P(sup |Zy— Z,, | <n 70 2 € Z(Ryy))

tGRn}g
+P( sup |Z; — ZTM| > n*(lf‘s))

tGRnl
< IP’(|ZTM —z| < n_(l_‘s)) + 4 exp(—cln_(l_‘s)/n_l)
< Oy 179 4 0 exp(—cn’) = O(n_(l_‘s)), (II1.4.1)

where we have used Proposition [[T[.2.5 and the fact that the density of Z; is continuous.

We can cover the set Lz(x) N [e, 1] by a sequence of intervals R, , with R , = R, ¢ if
r € Z(Ryy) and R, , = 0, otherwise, for £ € {1,2,..., [n'/H]}. We need to show that

[n!/H1]

E| >[R[ < oo, (I11.4.2)
/=1

form=1-H(1- ) and arbitrary § > 0. In turn this would imply by Fatou’s lemma that
dimp (Lz(z) N e, 1]) < n almost surely. Then, letting § — 0 yields the upper bound on
the upper Box dimension.
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We establish ([11.4.2)):

|‘n1/H‘| |‘n1/H‘|
E| > (R <E| D> (07 ez,

=1 =1
< enl/H-1/H(1-H(1-6))-(1-0) _ ,

where the last inequality follows from the bound ([IL.4.1)) on P(x € Z(R,z)).

For the lower bound we first recall a relation between the Holder regularity and the
Hausdorff dimension.

Proposition II1.4.1 (Theorem 27 in [34]). Let [u,v] C R be a finite interval and f :
[u,v] = R be a continuous function with occupation density denoted by L. Suppose that L
satisfies a Holder condition of order~y € (0,1) (in the set variable). Then dimy (f[glv}(x)) >
v for all x € R such that L(z,[u,v]) # 0.

A Holder regularity condition for the local time of the Rosenblatt process was recently
obtained in [57]. In particular, see Proposition|l11.2.6} for a finite closed interval I C (0, o),
there exists a constant C' > 0 such that almost surely,

sup L(z,[s — 7, s +7])

. €R
lim sup sup = T Vi <.
r—0  sel r1=H|log |

Therefore, the occupation density of the Rosenblatt process satisfies a Hélder condition
in the set variable of order v for all v < 1— H, and thus dimy (Lz(z) N[, 1]) > 1-H. O

Before we establish the second part (III.1.13|) of Theorem [I1I.1.2] we recall some defini-
tions and properties regarding the macroscopic Hausdorff dimension. Of special interest is a
relation between Dimy (Ez(7)) and Dimy (Lz(x)) which eases the proofs of both (I11.1.13)

and ([11.1.15)).

II1.4.1 Macroscopic Hausdorff dimension

To set up the notation as in [61, 9], consider the intervals S_; = [0,1/2) and S, =
[27=1 2™) for n > 0. For E C R, we define the set of proper covers of E restricted to S,
by

7.(E) = {LY", L =[x,y witha,y; €N, y; > a,
n - IS, and ENS, cU™, L. |-

For any set E C R*, p > 0 and n > —1, define

J2(E) = inf {i (T5) s e zn<E>} ,

i=1
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where diam[a, b] = b — a.
The macroscopic Hausdorff dimension of £ C R, is defined as:

Dimy (E) = inf{p >0: ZUZ(E) < oo}

n>0

Next we establish a relation between ([II.1.13)) of Theorem [[11.1.2] and ([I1.1.15]) of
Theorem [IT.1.3] .

Recalling Definitions [[T1.1.3] and [[T.T.4] for a fixed v > 0 and any = € R, the level set
Lz(x) is ultimately included in Ez(7):

L(z)N {t > yx\%} C Ez(7).

The macroscopic Hausdorff dimension is left unchanged after the removal of any bounded
subset. Then, almost surely, for every = € R,

Dimy (£4(x)) = Dimy <£Z(x) N {t > |x|%}> < Dimy (Ez(7)). (I11.4.3)

Therefore, to prove ([I1.1.13) and (III.1.15)) it suffices to show that the following two
statements hold almost surely:

For any x € R, Dimy (Lz(z)) > 1 — H, (I11.4.4)
Dimg (Ez(y)) <1-— H. (I1.4.5)

The proof of ([11.4.4) follows in the next subsection while ([I1.4.5)) is established in Sec-
tion [IL5.3l

I11.4.2 Lower bound for Dimy (L(z))

In this section we aim to find a lower bound for Dimpy (L£z(x)). We first establish a result
regarding macroscopic Hausdorff dimension in general.

Lemma II1.4.2. Let E C R, and suppose that there exist M > 0 and s € [0,1] such
that there exists a family of finite measures {jn},~_, on S, such that for all intervals
I C S,, we have u,(I) < M(diaml)*. If Dimg (E) = t for some 0 < t < s, then

i (ENS,)
Yol T o

< .
2715 +OO

Proof. As t < s and using the definition of macroscopic Hausdorff dimension we have
V¥ (A) < +o0.
Let {I;};", € Z,(E), then

m m " /diaml \ °
RS WECEDS Z( " )

A
<My,(ENS,)andso Y o w < +o0. O

E
Then w
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By Proposition the local time is Holder continuous in ¢ of order a for every
a € [0,1 — H). Now we will be using this property and the preceding lemma in order to
get a lower bound for Dimpy (L£z(z)). To this end, fix @ € [0,1 — H) and introduce the
following random variables

ym:: L(x75%)

n ono

N
and Fj=> Y7 (I11.4.6)
n=1
The random variables (Y,7) . _, are positive, so (Fjy)n>1 is non-decreasing. We denote by
FZ its limit, i.e. FZ =35>  Y* € [0, +00].

n=—1"n

As a direct consequence of Lemma [[11.4.2) there is a connection between Dimpy (L)
and the r.v. Y. Indeed, for n > —1 consider the sequence of measures

pn(I) := L(x,I), for all I C S,
By Proposition [[I.2.9] there exists M > 0 such that for all n > —1 a.s.
pn, (I) < MdiamI®, for all I C S,,.
Now by Lemma [[I1.4.2] a.s. for every z € R, Dimy (£,) > o if
Z w = F = +o0.
n>-1

As a consequence, we see that Dimgy (£,) > « for all x € R such that FZ = +oo.
Moreover in order to conclude the proof of Theorem [[II.1.2] it is enough to prove that for
all v € [0,1—H), a.s. for all z € R, Dimy (£,) > « . Letting a T 1 — H gives that a.s. for
all z € R, Dimy (£,) > 1— H. Finally it remains to check that P(Vax € R, FZ = +o0) = 1,
for all @ € [0,1 — H). This is the object of the next proposition.

Proposition I11.4.3. Let a € [0,1 — H) and

L(z, S5,
yw:M’ forn> -1, and F = Z Yr.

n gno
n>—1
Then,
P(Vz € R, FZ = +00) = 1. (IIL.4.7)
Proof. We follow the technique in [28]. For every a > 0, let

Yo = inf Y¥ forn>1, and ﬁgo:Zf/;

z€[—a,a) w1
Using the self-similarity property of the local time ([I1.2.11)), for all n > 0,
Vo= inf v*@ inf y2 "= inf  yg=y2 e

z€[—a,a] z€[—a,a) z€[—2—nHq2-nHg

The proof now relies on the following technical result:
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Lemma 111.4.4. For any b > 0, one has

P(F? = o0) > 0.

oo

Proof of Lemma[ITT.7.7]. We first show that there exists € > 0 such that P(Yy > ¢) > 0.
Recall that Y = L(0,[1/2,1]) and is non-negative. Thus, it is enough to show that
E[L(0,[1/2,1])] > 0. Using the following representation of the local time, see [I00, Chapter
10], one gets

(0, [1/2, 1]) = lim — /1 1..(Z)dt.

e—0 2 /2

Then using self-similarity of Z and then Proposition [[11.2.1(i)| with some constant ¢; > 0,
one gets

E[L(0,[1/2,1))] = lim % /1 /12 P(Z, € [—¢, ] )dt

1
=lim —/ P(Z, € [—et™ et™"])dt

1 !
zlim—/ 2ciet 1 dt
(1- /2",

" 1—-H

Therefore, E[L(0, [1/2,1])] > 0 and thus P(Z) > &) > 0 for some € > 0.

The rest of the proof is based on the following two facts:
1. For every € > 0 small enough, there exists a € R, such that:
0 <P(Y? >¢e) < 2P(Ye > 0).
2. For any a,b > 0, we have
P(FL, = o0) > P(Yy).

The statements above correspond to Lemmas [[1.3.3] and [[T.3.4] in Chapter [[] and the proofs
are identical as long as the following holds:

P( - [5,1}>—L<x,[5,1}>\<w>:17

e[1,1]/{0} |z|?

where § € (O, % (% — 1)) In [2§], this property corresponds to Lemma 5 which is originally
due to Geman in Horowitz 45, Theorem 26.1]. For the Rosenblatt case, the above is
established in Proposition [[I1.2.7] O
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Using the result of Lemma [[11.4.4] we can establish that P(ﬁé’o = o0) = 1 if we can
apply Blumental’s 0-1 law. This is possible since

{Fh=oof e (o {Wuiu<2 ™0}, (IT1.4.8)

M>1

where (W;)i>o is the standard Brownian motion. Indeed, the time inverted process Z =
t*1 7,4, t > 0 s distributed as the Rosenblatt process (see Proposition|[I1.2.3). Then, using

the representation (I11.2.10)), the local time L*(S,) is o {Zu cu < 2_(”_1)}—measurable.
Moreover,

0{}775’:n2M} Ca{Zu:u§2_(M_1)},
for M > 1 and thus

{ﬁé’o = oo} € ﬂ o {Zu Tu < 2_(M_1)} : (II1.4.9)

M>1

At this point by (I11.2.4) (with Z instead of Z ), there exists standard Brownian motion
(Wi)i>0 such that o Z,u< t} C o{W, :u<t}. This fact combined with (I11.4.9)

establishes ([11.4.8)). Then using ([11.4.8) and the fact that ]P’(ﬁé’o =o00) >0 for all b > 0,
one can apply Blumental’s 0-1 law and thus gets that P(F%, = oo) = 1, for all b > 0.

Finally, for every b > 0,

P(Vmé[—b,b]:Fcfo:oo):P< inf Ffo:oo):]P’( inf Yfzoo)

> P inf Y* = —P(F’ =c0) =1.
> (;an<% (FY = o0)

Therefore,

PVz e R: FL =0o0) = blim P(Vz € [-b,b], Fy = o0) = 1,
— 00

and ([11.4.7)) is established.
m

Next, we establish ([II.1.12))- the result regarding Packing dimension. Recall that
dimp (Lz(x)) < dimpg (Lz(x)) =1 — H. It is enough to show that dimp (Lz(x)) > 1— H,
which is the aim of the next section.
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III.5 Sojourn times

This section is dedicated to the proof of Theorem [[II.1.3l We first establish (III.1.14)).
Recall the definitions of logarithmic and pixel densities. For £ C R*, the logarithmic
density of E is given by

log, Leb(£ N |1,2"
Denlog (E> = limsup Og2 N ( m[ ) ])7

n—00 n

where ‘Leb’ is the one-dimensional Lebesgue measure.
Let pix(E) == {n € N : dist(n, E) < 1}. Then, the pixel density of F is

1 ix(ENJ1,2"
Deny;, (E) := limsup 083 #PIX( L, ])

n—00 n

The two quantities are closely related, see [61]:

Denyog (E) < Deny,, (E) . (II1.5.1)
We want to show that for v € [0, H), Deng;, (Ez(7)) = Denyg (Ez(7)) = v+ 1 — H,
almost surely. Our strategy is then to establish that Deny, (Ez(v)) < v+ 1 — H and

Denyjog (Ez(77)) > v+ 1 — H, almost surely.

II1.5.1 Upper bound for Den,;, (Ez(7))

Our goal is to obtain an upper bound for #pix(Ez()) N[1,2"] that holds with probability
1 for all large n. We first study the expectation
E[pix(Ez(y) N [1,2"]) Z]P (3s € [m—1,m+1],|Z,| < s7)

on

1 1
:Z]P’ (EIS € [1 -—,1+ —] | Zs| < s”mV_H)
m=1 m m
27l 1
:Z]P’ <E|s € [1 — —,1] | Zs| < 57m7H>
m

m=1

1
+P <E|S € [1, 1+ —} | Zs| < s7m7_H)

< Z Um AT, (111.5.2)

where

AZ =P(3s € [1 —¢,1],|Z,| <),

€

AT =P(3s € [1,1+¢],|Zs| <2eM77).
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Lemma IT1.5.1. There is a universal constant ¢ > 0, such that, for every ¢ small enough,

max(A_, A}) < e, (II1.5.3)

Proof. Consider A_ first. We have

AZ < P(Bsel—¢g,1),|Z,| <77, |Zy] < 26777
+P(3s € [l —¢,1),|Z,| <7721 > 2e777)
< P(|Zy] <26+ PEs €1 —¢,1],|Z, — Zy| > 7). (I11.5.4)

To bound the first term on the right-hand side above, we use Proposition [[I11.2.1f(1)] i.e,
the density function f of Z; is continuous and f(0) > 0. Then one can show, for instance,
that for € > 0 small enough,

P(|Zy| < 2e577) < 4f(0)e . (I11.5.5)

We are left to study the term P(3s € [1 — ¢, 1], |Z, — Z1| > e77). Write

P(3s € [1 —¢,1],|Z, — Zy| > 77)

< P( sup |Z,— Zi| > )
s€[l—e,14¢]

< Cexp(—ce™), (I11.5.6)

where the last inequality follows from Proposition and C,c; > 0 are constants
depending only on H. Note that exp(—c,e™7) = O(&°), for any § > 0 if any ¢ is small
enough.

Finally, for e small enough, combining ([11.5.6]) and (II1.5.5]) in (III.5.4)) yields the bound
of (IL.5.3) for AZ.

Same arguments as above can be applied to AF to get an equivalent bound and estab-

lish (II1.5.3). 0

Next, applying Lemma [[11.5.1} in ([I11.5.2)) yields, for some absolute constant C' > 0,

2”1

E[#pix(Ez(y) N[1,2")] <20 ) ~m’ " = 0 (20011

m=1
Choose p > v+ 1 — H. Then,
' . . 2n(1+7—h)
> P (#pix(Ez(y)N([L2") >27) < C Y g < 0.
n>1 n>1

By the Borel-Cantelli lemma, with probability one,
#pix(Ez(y) N[1,2"]) < 2",

for every large enough n. Hence, Deny, (Ez(y)) < p. Letting p | v+ 1 — H yields
Denyiz (Ez(7)) <v+1—H.
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II1.5.2 Lower bound for Deny,, (Ez(7))

Introduce
S,y([tl,tz]) = Leb({t1 S S S t2 : ‘ZS| S S’Y}), for all 0 S tl S tg.
We will prove that for infinitely many integers n, S,([0,2"]) > £2"0F1=H) for any

¢ € (0,1). This implies that Denjg (Ez(7)) > 7+1—H almost surely. Then using ([11.5.1]),
we also obtain Den,;, (Ez(v)) <7+ 1— H and the proof of (II.1.14)) is completed.

First we show that for any ¢ € (0, 1), there is a constant ¢’ > 0 such that

P(S,([0,2"]) > 2"y > ¢ (I11.5.7)

By Paley-Zygmund inequality, for any ¢ € (0, 1), we have

E[S,([0,2"])]*

S (0 27 (I1L5.8)

P(S,([0,27) > 2" 1) > (1 —¢)

The numerator can be rewritten as:

IS, (0.0)] = [ PUZI < )ds = [ P(z| <9 is

Now, we establish a lower bound for P(|Z;| < s7~#). Apply Proposition [[I1.2.1j(i)| there
is a constant a > 0 such that for s large enough, the density function of Z; is bounded
below by « in [—s7~H# s7H]. Therefore,

P(|Zy| <87 > 207" and thus  E[S,([0,1])] > 2at' 7. (I11.5.9)
We bound the second moment from above:
B(S,(0.07) = [ [ B2 <012 < o)dude
[0,t]2

:t2// P(|Z,) <wt™,|Z,| <o) dudv.
[0,1)2

By Proposition [II1.2.1)(ii)| the density function g, of (Z,, Z,) is continuous and tends
to 0 as |x| — oo. Therefore,

E[S,([0,1])%] < tQ/AuP dudv//RQ gu,,,(;c,y)n(,x‘ SWV_nydy (I11.5.10)

yl < v
< ot (I11.5.11)
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Applying (I11.5.9) and (I11.5.10)) in (II1.5.8]) yields (II1.5.7]). Now, define the event
Con — n Cin _
A, = {S7 ([52 (1+y H)72 ]) > 52 (14~ H)}.

By ([IL5.7), it is easy to see that P (A, ,) > ¢ > 0. Moreover, by the definition of A, .,
one has A, , C {5, ([0,2"]) > £2"(*+7=)1 Then it is enough to prove that A, happens
infinitely often which give us that S, ([0,2"]) > £2"0#7=1) for infinitly many n. To this
end, let A, be the event that A, , happens infinitely often. Recall that for any sequence
of events (A;);>1, one has lim,, o P(U;>,A4;) = P(A4; i. 0 ). In other words, one has

A=) U Anr (I11.5.12)

M>1n>M

We know that P (A,) (> ¢/) is strictly positive. It remains to prove that it is in fact equal
to 1. As in Section [[IT.4.2] such a conclusion will follow by using that the time inverted
process Zt =*H 7, st 1s distributed as the Rosenblatt process (see Proposition. Now
let 5'7 (resp. flnm /NLY) be the event analogous to S, (resp. A, ., A,), but associated to Z

instead of Z. So for any fixed integer n > 0, we have
s, ([gﬂlﬂ*f), 2”]) = Leb ({gﬂlﬂﬁ) <s< 7] < 37}) ,

which implies in return that flnﬁ €o {Zu cu< 2_"(1+7_H)}. As a consequence, for all
M > 0, one has

{zzlm7 tn > M} €Eo {Zu tu < 2*M(1+7*H)}.
Recalling definition of A,, we obtain that

12176 (]a{n,7 :n>M}.

M>1

Using ([I1.2.4)), we deduce that

A, e ﬂ o(B, :u < 2~ MU+y=H))
M>1

where (By):>o is the Brownian motion. Therefore, fl%is a tail event and P(A,) = 0 or 1
by the Blumenthal 0 — 1 law. Obviously, as Z and Z have the same distribution, then

P(A,) =P(A,) > ¢ > 0 and then P(A,) =P(A,) =1 as desired.

I11.5.3 Upper bound for Dimy (Ez(7))

We now turn to the proof of ([11.1.15]). Following our discussion in Section [[I1.4.1} and in
particular the relation (III.4.3]) between Dimpy (Ez(7)) and Dimy (L£z(z)), it is enough to

show ({[I1.4.5)), i.e., for every 0 <~ < H,
Dimy (Ez(v)) <1—H, as.
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We follow the technique in [87]. Let us fix 0 < v < H, as well as > 0 (as small as
necessary). We are going to prove that Dimy (Ez(v)) < 1— H +n. Letting n tend to zero
will then give the result. Fix p > 1 — H + 7, our aim is to prove that Dimy (Ez(vy)) < p.

n—1

= J } the intervals

H

To this end, consider for every integer n > 1 and ¢ € {O, ey L

on
Ini = [tnirtnir1) With £, ; = 2" 432"
And the associated event
Cni={3tel,,  |Z]<t}.

Denote ¢,,; = 2”%/15”71» , so that I,,; = [tni, tni(14€ns)), and observe that the ratio between

o A
any two of the quantities 2"(%_1), Enyi, and ¢, ! are bounded uniformly with respect to n
and ¢. By self-similarity, we have that, when n becomes large,

P(&.)=P3tel,, : |Z] <t
(s el 1+eni] | Zos, | < (sitni)?)
(Els €1, 14¢e,,4]:Zs] < tg;H.sv)

(38 €[, 1+en]:|Zs] < Cgf,i)

—P
—P
—P

—P
P(Hse 1,1+ e |ZS|§gf;{;">.

[1,
Is €1, 1+en] 12 < ztg;H)
[1,

The last estimate holds because 7 is a small positive real number and ¢, ; tends to zero
when n becomes large. By Lemma [[I1.5.1] we deduce that P (&,;) < 055;’7 and so

IP) (gn,z) S CQn( N

Now observe that &, ; is realized if and only if Ez(v) NI, ; # (. So, using the intervals I,, ,
as a covering of Ez(y) N S,, we obtain that

n—l—n%J P
Leb(/,
Z on ]lg"’i
0
L2n717n J

12
E [v,(Ez(v))] <E nii)
<) 3 B,

TR

<02" 7 (1=H+n—p)

Thus, the Fubini Theorem entails E [Y°> v7(Ez(v))] < 400 as soon as p > 1 — H +1.
This implies that for such p’s, the sum ) ° | v7'(Ez(7)) is finite almost surely. In particular,
Dimpy (Ez(v)) < p, for every p > 1 — H + 7. Since such a relation holds for an arbitrary

(small) p > 0, we deduce (I11.4.5)) as desired.
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Chapter 1V

Wavelet methods to study the
pointwise regularity of the
generalized Rosenblatt process

The content of this chapter is a copy of the paper entitled “Wavelet methods to study
the pointwise regularity of the generalized Rosenblatt process”, written with ”Laurent
Looseveldt”, and to be submitted soon.

IV.1 Introduction

Precise study of path behaviour, and in particular regularity, of stochastic processes is
a classical research field, initiated in the 1920s by the works of Wiener [126]. It lies in
between probability and (harmonic) analysis and a common strategy is to mix probabilistic
arguments with analytical tools. Pioneer works concerned Brownian motion. Among them,
one can cite Paley and Wiener’s expansion [127] using Fourier series, Lévy’s representation
[67] obtained with some techniques of interpolation theory or, more recently, Kahane’s
expansion [54] in the Schauder basis.

In the last decades, the emergence of wavelet analysis allowed to obtain series expansions
for many stochastic processes. Let ¢v : R — R be a smooth function satisfying the
admissibility condition [79]

WO e < oo, (Iv.1.1)
® €]
where zz is the Fourier transform of . As such it generates an orthonormal basis of L?(RR).
More precisely, any function f € L?(R) can be decomposed as

F=Y cub(@ - —k), (IV.1.2)

JEL kez
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where

cjp=2 / f(2)Y(2'x — k) da.
R

It is noteworthy that the expansion holds true in many function spaces. We refer
to the seminal books [27, [79, [73] for more details and proofs of these facts. Multifractal
analysis has demonstrated the efficiency of wavelet methods to study uniform and pointwise
Holder regularity of functions both from a theoretical [13| [14], 25, 49, 50}, 52] and a practical
points of view [4, [3] 20, 3], 42| [51], R5] [124] [125].

Now, let us consider a probability space (£2,.4,P) and a real-valued stochastic process
X defined on it. If X is smooth enough, for all w € €, one can apply expansion
to the simple path ¢ — X(¢,w). This way, one defines a sequence of random wavelet
coeflicients (c;jx(w));kez. For instance, if X = By is the fractional Brownian motion of
Hurst index H € (0,1) and if ¢ is a sufficiently regular wavelet, one has [81], [51]

By => Y 27" by (2 - —k) + R, (IV.1.3)

jeN keZ

where (R(t,-))ier+ is a process with almost surely C*° sample paths, (§;x)jenkez 1S a
sequence of independent N(0, 1) random variables and 112 is a fractional antiderivative
of 1, see Section for a precise definition.

In [36], Esser and Loosveldt undertook a systematic study of Gaussian wavelet series.
Thanks to ([V.1.3)), it applies in particular to the fractional Brownian motion and leads to
the following theorem.

Theorem IV.1.1. For all H € (0, 1), there exists an event Qg of probability 1 satisfying
the following assertions for all w € Qg and every non-empty interval I of R.

e For almost everyt € I,

By(t — B
0 < lim sup |Bu(t, ) 15 w)|

< +00
sot |t — s|\/loglog |t — 5|~

Such points are called ordinary points.
o There exists a dense set of points t € I such that

B - B
0 < limsup [Bu(t,w) (s )| < +00

st |t — s|Hy/log |t — s|7t

Such points are called rapid points.

o There exists a dense set of points t € I such that

Byt - B
0 < limsup | Bu(t,w) HH(S’W)‘
s—t ’t - S|

< +00.

Such points are called slow points.
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Note that Theorem extends some well-known results of Kahane concerning the
Brownian motion [54]. The “ordinary”, “rapid” and “slow” terminology is inspired by
them. Let us justify it. In a measure-theoretical point of view, the modulus of continuity
x > |z|7y/loglog|z|~! is the most frequent among the points of singles paths. Thus, it
is natural to refer it as ordinary. Now, |z|"/loglog |z|~! = o(|x|+/log |z|1) if x — OF
and thus points for which z — |z|#\/log|z|~! is the pointwise modulus of continuity are

refereed as rapid. On the other side, points for which x — |z|f is the pointwise modulus
of continuity are referred as slow because |z|¥ = o(|z|" \/loglog |z|~1) if z — 0.

Now, let us turn to the stochastic process we will deal with in this paper. The Rosen-
blatt process appears naturally as a limit of normalized sums of long-range dependent
random variables [33]. Like the fractional Brownian motion, it belongs to the class of
Hermite processes, fractional Brownian motion being of order 1 while Rosenblatt process
is of order 2. Both are selfsimilar stochastic processes with stationary increments and are
characterized by a parameter H, called the Hurst exponent. However, unlike the fractional
Brownian motion, the Rosenblatt process is not Gaussian. Does it make a big difference re-
garding ordinary, rapid and slow points? In other words, can Theorem be extended
to cover the non Gaussian Rosenblatt process?

For the last fifteen years the Rosenblatt process has received a significantly increasing
interest in both theoretical and practical lines of research. Due to its self-similarity, its
applications are numerous across a multitude of fields, including internet traffic [23] and
turbulence [99,64]. From a statistical point of view, estimating the value of the Hurst index
H is important for practical applications and various estimators exist, see [10, 121]. Also,
from a mathematical point of view the Rosenblatt process has received a lot of interest
since its inception in [98]. Its distribution, still not known in explicit form, was studied
first in [2] and more recently in [72] and [123].

In this paper, we even consider a generalization of the Rosenblatt process, as defined
and studied in [71]. It depends on two parameters Hi, H, € (3,1) which are such that
Hi + Hs > 2. The generalized Rosenblatt process { Ry, m, (t, ) }er, is defined as a double
Wiener-1to integral of a kernel function Ky, g, with respect to a given Brownian motion.
More precisely, consider a standard two-sided Brownian motion B, and set

’

Ry, my(t,) = | Kuym,(t, 21, 22) dB(x1)dB(22), (IV.1.4)

R2

where fﬂéz denotes integration over R? excluding the diagonal. The kernel function in
(TV.1.4) is expressed, for all (¢, z1,z2) on R, x R? by

1 ¢ - 2
F g o et

where T' stands for the usual Gamma Euler function, and where for (x, ) € R?

Ky, m,(t, x1,22) =

o {xa ifx>0

 — .
+ 0 otherwise.
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Note that the (standard) Rosenblatt process is the process {Rpy u(t, )} er, for H €
(3/4,1). The generalized Rosenblatt process { Ry, m,(t, ) }1er, is non-Gaussian, belongs to
the second Wiener chaos, and has the following basic properties:

(1) Continuity: the trajectories of the Rosenblatt process Ry, g, are continuous.

(2) Stationary increments: Ry, g, has stationary increments; that is, the distribu-
tion of the process { Ry, m,(t + 5,") = Rpy,m,(8, )}, does not depend on s > 0.

(3) Self-similarity: Ry, g, is self-similar with exponent H; + Hy — 1; that is, the pro-
cesses { Ry, m,(ct, ) er, and {M 27 1Ry 4 (2, ')}teﬂh have the same distribution
for all ¢ > 0.

In [7], Ayache and Esmili presented a wavelet-type representation of the generalized
Rosenblatt process, very similar to the one given in [81] for fractional Brownian motion,
excepted for the use of integrals of two-dimensional wavelet bases. This representation is
the starting point of this paper. It is one of our key tools to prove the following Theorem
which is the main result of this paper.

Theorem 1V.1.2. For all H,, Hy € (%, 1) such that Hy + Hy > %, there exists an event
Qpu, m, of probability 1 satisfying the following assertions for all w € Qpy, g, and every
non-empty interval I of R.

e [For almost everyt € I,

0 < lim sup |RH1’H2(t’w) - RH1,H2(87W>‘
s—t |t— S|H1+H2—1 10g10g|t—8|_1

< +00. (IV.1.5)

Such points are called ordinary points.

e There exists a dense set of points t € I such that

. |RH1 Hz(t7w) _RHl H2(S,LU)|
0<l1 : : < . IV.1.6
m;lj}p |t — s|HitHa=1]og |t — s|~1 oo ( )

Such points are called rapid points.

o There exists a dense set of points t € I such that

|RH1,H2(t7w) - RHLHz(Saw)‘
’t _ 8‘H1+H271

lim sup
s—t

< +o00. (IV.1.7)
Such points are called slow points.

Theorem shows in particular that slow, ordinary and rapid points are not specific
to Gaussian processes.
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Remark 11. Let us compare Theorems and [[V.1.2] Each type of points is defined in
the same way when considering their pointwise moduli of continuity. Indeed, if X denotes
both the fractional Brownian motion or the generalized Rosenblatt process, we see that the
asymptotic behaviour of
| X (t,w)—X(s,w)]| is always compared to a modulus of continuity of the form [t—s|*0(|t—s]|),
with a corresponding to the self-similarity exponent of X and € a potential logarithmic
correction. For the ordinary points, 6 is an iterated logarithm. More precisely, for the frac-
tional Brownian motion, we have
0(]t — s|) = y/loglog |t — s|~! while, for the generalized Rosenblatt process, 0(|t — s|) =
loglog |t —s|~!. The same feature appears for the rapid points: in the case of the fractional
Brownian motion we have (]t — s|) = y/log |t — s|~! and for the generalized Rosenblatt
process we have (|t — s|) = log |t — s|~'. Therefore, the only difference between the corre-
sponding logarithmic corrections is the square root that is used for the fractional Brownian
motion and not for the generalized Rosenblatt process. It comes from the estimates that
can be done on the tails of the distribution of random variables in the first order Wiener
chaos, for the fractional Brownian motion, or the second order, for the generalized Rosen-
blatt process, see Theorems and below. Concerning the slow points, there
is no logarithmic correction, § = 1 in both case. Unfortunately, contrary to the fractional
Brownian motion, we did not manage to show the positiveness of the limit in . In
fact, for that, we would need to find an almost-sure uniform lower modulus of continuity
for the generalized Rosenblatt process and to be able to judge its optimality, which seems
to be a difficult task. This is discussed in details in Remark [20] below, where we give an
almost-sure uniform lower modulus of continuity using the techniques we use to prove the

positiveness of the limits in (IV.1.5) and (IV.1.6)).

Our strategy to prove Theorem is as follows. First, in Section we derive
upper-bounds for the oscillations |Rpy, m,(t,w) — Ry, m,(s,w)| that are sharp enough to
imply the finiteness of the limits (TV.1.5)), (TV.1.6) and ([V.1.7). This is done by means of
the wavelet-type expansion given in [7], see Theorem [[V.3.2] below. Then, in Section [[V.4]
we give lower bounds for the so-called wavelet-leaders, see Section of the generalized
Rosenblatt process on a given compactly supported wavelet basis. This will prove the
positiveness of the limits ([V.1.5)), (IV.1.6)). In particular, we use different bases depending
on whether we deal with the finiteness of the limits in Theorem [V.1.2] or with their strict
positiveness. This is very different from [36] where the authors always work with the same
wavelet. The reason is that the expression in Theorem below is not a
wavelet series: it involves additional quantities. Therefore, standard arguments linking
wavelet coefficients and regularity of the associated functions can no longer be used.

There are a priori no obstacles to extend our results in Section to any Hermite
process. On the contrary, extending the results of Section does not seem obvious at
all. This is because a wavelet-type expansion of arbitrary Hermite process is still missing
but also because our strategy relies on arguments which are specific to the two-dimensional
feature of the Rosenblatt process, see Lemma for instance.

Notations used through this paper are rather standard except, maybe, that if s,¢ are
two real numbers, f[s . stands for fst if s <tand — fst = fts otherwise.
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IV.2 Some important facts involving wavelets

In this section, we gather all the facts concerning wavelets that we will strongly use all
along this article. First, an immediate but important consequence of the admissibility
condition ([V.1.1) is that, if the wavelet ¢ € L}(R), its first moment always vanishes, i.e.

/R b(x)dz = 0.

This condition is met for all the wavelets we consider in this paper.

First, while dealing with the upper bounds for the limits in Theorem [[V.1.2] we will
use a wavelet-type expansion of the generalized Rosenblatt process. It is given in [7] by
the mean of the Meyer’s wavelet: ¢ belongs to the Schwartz class S(R), and its Fourier
transform is compactly supported, see [66]. In particular, for all H € (1/2,1), ¥y, the
fractional antiderivative QZ;; of order H — 1/2 of 1) is well-defined by means of its Fourier
transform as

Un(0) =0 and (¢) = (&)~ TP(), VE £ 0. (IV.2.1)

It also belongs to the Schwartz class S(R), see [5, [7, [104] for instance. Moreover, some
standard facts from distribution theory [104], 5] give us the explicit formula

Vp(t) = = /R(t - a:)f %w(:v) dx.

From (IV.2.1)), we see that supp(@) = supp(zz;) which is the key fact to establish the
following lemma, gathering facts already proved in [7].

Lemma IV.2.1. Let H,, H, € (%, 1). If (j1, jo, k1, ko) € Z* are such that |j; — jo| > 1,
then the integral

1 = [ (@ = k) (2~ ko)
R

€ 73, we have

~—

vanishes. Moreover, for all (j, k1, ko

Ly =27 / e 2k (€) b, (2€) dE, (IV.2.2)
Ly =27 /R e~ Ry ()0, (€) de, (IV.2.3)
Ly =27 /R ¢TIk (2 ) i), (€) dE. (IV.2.4)

In addition, for all L > 0, there exists a constant Cy, > 0 such that for all (j, k1, ks) €
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Z3

2-J

'k < ¢

sl < (3 [k — 2ko|)2
2-J

"k < ¢ :

L B3+ |k — ko)L
9-J

e <c .

Ll < B3+ |2k — ko)L

When dealing with the the lower bounds for the limits in Theorem we use
Daubechies compactly supported wavelets [26]. Note that, if supp(¥) C [—N, N], for a
positive integer N, then, using the first vanishing moment, for all (j, k) € NxZ and t € R,

one can write
N z+k
Cik = /_N (f ( 5 > - f(t)) U(z)dx (IV.2.5)

Since ¥ is compactly supported, ¥ (2’ - —k) is localized around the dyadic interval

E k+1

and it is therefore common to index wavelets these intervals. For simplicity, we sometimes
omit any references to the indices j and k for such intervals by writing A = A;;, and
k = s(A). Similarly, ¢, refers to the quantity c;,. The notation A; stands for the set of
dyadic intervals A of R with side length 277. The unique dyadic interval from A; containing
the point ¢t € R is denoted A;(t). The set of dyadic intervals is A := UjenA;. Two dyadic
intervals A and A are adjacent if there exist j € N such that A, \" € A; and dist(A, \') = 0.
The set of dyadic intervals adjacent to A is denoted by 3A. In this setting, one defines the
wavelet leader [50] of f at t and of scale j by

d;(to) = A IV.2.6
i(to) =, max  sup [c)| (IV.2.6)

Then, if supp(¥) C [—-N, N|, from ([V.2.5)), one can write

d;(t) < 2N sup £(8) = FOIT| . (1v.2.7)

$€(to—2—9 (N+2),to+2-7(N+2))

When we study stochastic processes, the wavelet leaders are random variables d;(¢,w).
Inequality with some easy computations implies that in order to obtain the pos-
itiveness of the limit ([V.1.5), it suffices to show that for all w € Qp, #, and all open
intervals I C R*, for almost every t € I,

0 < lim sup d;(t,w)

. . IV.2.8
SN S ) Tog ) (v28)

74



Similarly, to prove the positiveness of the limit ([V.1.6)), we just have to show that for all
w € Qp, g, and all open intervals I C RT, there exists a dense set of points ¢ € I such that

. dj (t, LU)
0< hjrgilolop S T (IV.2.9)

Remark 12. Let us mention that wavelet leaders can not be used to prove the finiteness
of the limits in Theorem because they do not precisely characterize the pointwise
regularity, see for instance [63], [70] for more details.

IV.3 Upper bounds for oscillations

Starting from now and until the end of the paper, we fix Hy, Hy € ( 1) such that Hy+Hy >
3. In this section, we show the finiteness of the limits (IV.1. 5|) (V1.6) and ([IV.1.7).
Concerning the rapid points, we will in fact show a stronger result, obtaining an almost

sure uniform modulus of continuity for the generalized Rosenblatt process.

We use a wavelet-type expansion of the generalized Rosenblatt process. It relies on the
following random variables.

Definition IV.3.1. For all (jy, jo, k1, ko) € Z4, let £ Jk; be the second order Wiener chaos
random variable defined by

9% @z)(zhg;l k) (272205 — ko) dB(21)dB(x).

RQ

Remark 13. For all (jy, j2, k1, ko) € Z*, we have ([T, Proposition 2.3])

g = (22 /q/) 2z — ky)dB(x ) ( /¢ (220 — ky)dB(x )) (IV.3.1)

for ji # jo or ky # ko, and

) 2
ghih — (2 / V(2 — kl)dB(x)) —1 (Iv.3.2)
R

for ji = jo and ky = ky. Using the fact that (2//2¢)(2 - —k))jx)ez2 forms an orthonormal

basis of L*(R), and elementary properties of Wiener integral, we know that (20/% [} ¢(27z—
K1,k
J1,32

k) dB( ) kyezz is a family of iid A/(0,1) random variables. So the random variables ¢’

Kk
and o ki j,2 are independent as soon as

{(]1, kl)a (]27 k2)} N {(]17 kll)v (]é? ké)} = @

The following theorem, proved in [7], gives the wavelet-type expansion we use in this
section.
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Theorem IV.3.2. Let ¢ be the Meyer wavelet and I be any compact interval of R, .
Almost surely, the random series

DI / Y (200 — k), (0 — k) de (IV.3.3)

(J1.52,k1,k2) €24
converges uniformly to Ry, u, on the interval I.

Remark 14. Any open interval in R can be written as a countable union of dyadic intervals
(Ajk)jenkez. Then, to prove Theorem it is sufficient to show that, for all j € N, k €
Z, there exist an event €); ; of probability 1 such that, for all w € €2;, almost every t € \;
is ordinary and there exist ¢, € A; which is rapid and ¢, € A;;, which is slow. For the sake
of simpleness in notation, we will only do the proofs in full details for Aoy = [0, 1). In fact,
after dilatation and translation, our proofs hold true for any arbitrary dyadic interval.

IV.3.1 Rapid points

Let us first focus on rapid points. We prove that z +— |z|f1+271 og |2|~! is almost surely
a uniform modulus of continuity for Ry, m,.

Proposition IV.3.3. There exists an event (., of probability 1 such that for all w € 4,
there exists Cr(w) > 0 such that, for all t,s € (0,1), we have

\Ru, 1, (t,w) — Ry, (s,w)] < Cr(w)|t — s\HlJrHQ’l log |t — 3\’1. (IV.3.4)

Let us set, for all s,¢ € (0,1) and (jy, j2, k1, ko) € Z*

Y

[Jkll,’J]ZQ [t,s] = . Vi, (27w — k)Y, (2720 — ky) da.

All along this section, if s,¢ € (0,1) are given, n always refers to the unique positive
integer such that
27l <t —s| <27 (IV.3.5)

Our proof consists in writing

’RHLHz(t? )) - RHl,H2(37 )l = Z 2]1(1 H1)2]2(1 H2)5k1’k21k17k2[t S] (IV36)

J1,J2 7 J1,J2
(41,52,k1,k2)€Z4

and to split the sum in the right-hand side in subsums determined according to the position
of 71 and 7, with respect to n. To bound from above some of these subsums the following
lemma is key.

Lemma 1V.3.4. [7, Lemma 2.4.] There exist an event Q* of probability 1 and a positive
random variable Cy with finite moment of any order, such that, for all w € Q* and for each
(g1, J2, k1, ko) € 72,

5252 ()] < Cr(w)V/1og(3 + Lja] + [k1])v/1og (3 + L] + [Ka]). (IV.3.7)

J17]2
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In view of Lemma [[V.3.4] we set
Livis = V10g(3 + [j1] + [ka])v/log(3 + [ja] + [ka]).

Ji.j2

As a first step, Lemmata [[V.3.5] to [[V.3.9] are devoted to bound some deterministic series
whose general term is

Qir(1=H1) gia(1=Ha) ke phkafy )

This first lemma will be useful to bound the subsums in the right-hand side of (IV.3.6|)
for j1 <n and j, < n.

Lemma IV.3.5. There exists a deterministic constant C' > 0 such that, for allt,s € (0,1),
we have

Z Z Z 2j1(1—H1)2j2(1—H2)L§11:]]?22

J1<n ja<n (ky,ko)€Z2

IFk21g )

i < Ct — s og |t — 5|7t

Proof. Let us start by considering, for all (jy,j2) € Z?, the series

t
Rjjp it Y Lf;f;/o W, (20 — Ky )om, (2722 — ky)| dx and

(k1, k‘g €72

.71 g2 Pt Z Lff f; 2]1t - k1)¢H2 (2] t— k2)|

(k1 k2)€Z2

The fast decay of the fractional antiderivatives of ¢ allows us to write, for all H € {Hy, Hy}
and for all z € R
[r(z)] < C1+|2)~" (IV.3.8)

Moreover, according to [7, Lemma 4.2] for all L > 1 there exists C' > 0 such that, for all
j€Zand xr € R

Z V0og(3 + 5] + k)

G 2z — k) = CV/1og(3 + || + 27x]). (IV.3.9)

keZ

Therefore, if K is any compact set of R, , if s = supy, for all ¢ € K, we have

t
| Rj1.j> (0] < C/ Viog(3 + [ji] + 29t |2])\/1og (3 + [ 2] + 272]a]) dew
0

< C’s\/log(S + [1] + 2j18)\/10g(3 + |ja| + 2725).

The same arguments can be applied to R'j j,, which means that both series converge
uniformly on any compact set of R,. From this, we can use mean value theorem: for all
(j1,72) € Z* there is £(j1,J2) € [s, ] such that

1 1)9Jj2 2) 1 k1,k ki,k
o 0RO L | her, o
(k1,k2) €72
<lt—s| Y LEE (€ — k)w, (2726 — ky)|. (IV.3.10)

(k1,k2)€Z2
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Now, we use the fast decay of the fractional antiderivatives of ¢ ({IV.3.8)) and inequality
(IV.3.9)) to bound (IV.3.10) from above: for all jq, jo < n,

S LR, (2916 — k), (2726 — k)|

(k1,k2)€Z2
V1ogB+ [j1] + k1)) V108 (3 + [ja] + [k2])
<o (S T (S e

ki1€Z ko€Z

< C/log(3 + 1| + 271[€]) v/1og(3 + || + 272[¢])
< C/1og(3 + [ju] +27)y/log(3 + [ja| + 272),

as £ € (0,1). Let us then remark that

> 20071 /log (8 + [j1] +27)

ji<n
n—1
=Y 207 Jlog(3+ [r| +201) + Y 20\ flog (3 + 1| + 21)
J1<0 Jj1=0
n—1
<C+ Z 211 (=11 Nlog (3 + | 1] + 201)
J1=0
< o= /. (IV.3.11)

as 1 — H; > 0. The same can be applied to the sum over j, and we finally get

Z Z Z 91 (1=H1)gj2(1— HZ)LZI;;

Jji<n ja<n (k’l kz €72

< Clt—s| S 2090t Aog (37 [ji] 1 201)y/log(3 1 [ja] + 272)

Jji<n ja<n
< C|t — s|2r@-Hi-H)y
< Ot — s|M 2" og |t — 5|7t

J1,J2

Ak g ‘

O

Lemmata [TV.3.7] and [[V.3.8] will help finding an upper bound for the subsums in the
right-hand side of with 71 < n < jyor jo < n < j; as well as the ones where
n <71 < jsand n < jy < 7. Let us define the following partition of Z, which determines
the relative positions of [k92772, (kg + 1)2772) and [s, t].

Definition IV.3.6. For all j, € N, we set

Z5 (t,s) = {ky € Z : k277> < min{t, s}},
77 (t,s) = {ky € Z : ky27% > max{t,s}},
and Zj, [t, 5] = Z\ (Zj,(t, s) U Zj, (L, 5))-
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Remark 15. Note that we have #Z;,[t, s] < 227" 4 1.
Let us also observe that for all a,b > 0,
log(3 +a+b) <log(3+ a)log(3+1b). (IV.3.12)

Lemma IV.3.7. There exists a deterministic constant C' > 0 such that, for allt,s € (0, 1)
and j1 < ja, the quantities

> > Lyl (IV.3.13)
k1E€Z k€L, (t,5)
. > Lyt (IV.3.14)

k1€Z k2€Z> (t,9)

are bounded from above by

CV/log(3 + [ja] + 271)/log(3 + |ja] + 272)277.

Proof. Let us bound ([V.3.13)), the proof for ([V.3.14]) being similar. From the fast decay of
the fractional antiderivatives of ¢ ([V.3.8]), inequalities ([V.3.9) and ([V.3.12) for j; < js,

we have

log(3 + |71 + |ki1) log(3 + |72 + |k2])
gc[sﬂ<z¢ AARAL 5 ViogB+ Tl Tk |

Y Y
e, BH12w—hl) k2€L7, (t,9) (8 +[222 = k)

< C/log(3 + |j1] + 271)\/log(3 + |ja| + 272)

/ Z V/log( 3+|2j2x_k2|)dw.

o) k22 (1) (3 + [2722 — Kyo|)*

For all z € [s,t] the mapping y — (2 + 22z — 22 min{s, ¢} + y) ™2 is decreasing and thus

/ \/log(3+|2j2x—k2|)dx
(34 [2722 — ky|)*

dx
< -
a /[S,ﬂ . 2 (3+ 2722 — ky)?

<[> &
= Jin 2=, (3+ 220 — 22 min{s, t} + m)?

< / /+°° dzdy
" JgJo (24227 — 22 min{s, t} +y)3

<0277, (IV.3.15)
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This bound leads to
(IV313) < C/log(3 + |71] + 201)\/log(3 + |ja| + 272)2772. (IV.3.16)

]

Lemma IV.3.8. There exists a deterministic constant C' > 0 such that, for all t,s € (0, 1)
and j1 < ja, the quantities

> > L
J1,J2

k1€Z ky€Z;, [t,s]

> > Ly

K1E€EZ ko EZJQ [t 8]

min{s,t} ‘ '
/ le (2‘711' — kl)ng (2‘721} — kg) dx

[e.o]

/ 77Z)H1 (lel‘ — kl)@bHQ(szl' — k?g) dx
max{s,t}

are bounded from above by

C\/10g(3 + [j1] + 272)\/log(3 + [jo| + 272)27%.

Proof. Let us assume that s < ¢, the argument for t < s being similar. As j, > 71, we
have, by inequality ([V.3.9)),

/ 5 V1og(3+ 1] + [k1]) 3 V90g(3 + 5] + [ko]) |
i
3+|2J1$—k1|) (3+|2]21'—]€2|>

k1€Z ko€, [ts]

s : , log(3 + [ja + [k2])
<o [ Ve | 3 Vet ) o,
—o0 k€2, [t,5] 2

° . - log(3 + |ja| + [k2])
< CL/ ViegB+ il +22) [ ) \/<3+ e — ko)t |
> ko€Zj, [t,s]

For all ky € Zj,[t, 5], |k2| < 272, we have, using ([V.3.12)),
log(3 + [71] + 272[x]) < log(3 + [51] + 22) log(3 + |2z — k) and
1og(3 + |ja| + [k2]) <log(3 + ja + 272)log(3 + |22 — k).

Thus, it only remains us to deal with

/ dz
3+ (2020 — ko)3

OOkQGZ [tS (

But, for all x < s and ke € Zj,[t,s], |2”22 — ko] = ks — 2”22 and then, using the same
method as in ([V.3.15)), we get

dx -
/ R (IV.3.17)
— 9J2)3 —
S S] 3+ ky — 2021)
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which finally leads to

> > Ly

k1€Z kQGZm [t S]

< Cy/log(3 + |71] + 272)1/log(3 + ja + 22)2772. (IV.3.18)

/S Vi, (27 s — k) Ym, (2722 — ko) dx

We get in the same way,

> > Ly

k1€Z ko GZ]-2 [t,s]

< C/log(3 + [51] + 272)y/log(3 + jo +272)277.

+o0
/ o (20 — ke Yop (20 — hy) da
t

O]
Next Lemma will be used to bound the subsums of (IV.3.6) with j; < n < jy or
j2 <n S jl-

Lemma IV.3.9. There exists a deterministic constant C' > 0 such that, for allt,s € (0, 1),
the quantities

k1,k k1.,k
R<>nt S — Z Z Z 2]1 (1—Hy) 232 (1— H2 ]11j22|1]11]22 [t S]|

Ji<n j2>n (ki,ko)€Z2

n k1,k k1,k
REtos] =y )y 20 Mgn(nt i relt o]

Jj12n jo<n (k1,ks)€Z2

are bounded from above by

C|t — s/ 2" og |t — 5|7t

Proof. As R<2"[t,s] and R=<"[t, s] can clearly be treated symmetrically, we restrict our
attention to R<="[t, s|. One sees that

SN X
J1 ]2 Ji.j2

Jji<n j2>n (ki ,ko)€Z?

— Z Z Z Z 2]1(1—H1)2j2(1—H2)Lj1131922]]1911]122 [t S] (IV319)

J1<n G22n k€L ky€ LS (1,5)

+ Z Z Z Z o (1=H)gia(=Hz) phitz phikzly ) (IV.3.20)

Ji<n j22n k1 €Z k2€Z>2 (t,9)

+33TN N it phuk ke ) (IV.3.21)

J1<n j2>n k1€Z ko EZ]'2 [t,S}

For (IV.3.19), we use Lemma [[V.3.7 to get
(EV3I)| < C Y 20 log(3+ [jr] +201) Y 27272 /log (3 + [ja] + 272).

ji<n Ja2n
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The sum over over j; is bounded just as in ([V.3.11)) while, for the sum over j,, we have

> 27 flog (3 + o] + 27) < Y 277412 /log(3 + 2277)

J22n J22n

< 27/, (IV.3.22)
We bound ([V.3.20) in exactly the same way.
For (IV.3.21]), let us again assume s < t, then we write

TRk o) = / iy (2 — k)i, (2P — k) da
R

— /s le(le.CL’ — kl)l/}H2<2j2£If — kg) dx

+oo
— le (leﬂf — k’l)@ZJHQ(QjQZL‘ — k‘z) dx. (IV323)

t

Since j; < n and jy > n, recalling Lemma [IV.2.1] the sum
> 2 Lfffzz/%UHl(QjW — k1) Ym, (222 — k) dx,
k1€Z kacZj, [t,8]

vanishes except maybe when (j1, j2) = (n —1,n). In this case, note that #Z,]t, s] < 2 and,
for all ko € Zy[t, s], |k2| < 2".Then, by Lemma [IV.2.1| and inequality ([V.3.9), we get

§ : z : k1,ko
Ln 1n
k1€Z kJQEZn[t S]

n V9og(3 +n — 1+ [ki[)y/log(3 +n + [ka])
<
<)y, ), B+ 12k — ko)

k1k2
n 1,n

k1€Z ko€Zy, [t,s]

k
<C2™" Z \/log(3 +n—1+ |?2|)\/10g(3 +n + |ka))

ko €Znt,s]
< (C2™™n

Now, using Lemma [TV.3.8] we also get

Z Z Z Z 9i1(1=H1)9ja(1—Ha) 511]122/ le 2J1x _ k1)¢H2(2] x — ko) dx

J1<n jo>n ki1 €7 ka€Zj, [t,s]

< 30D 2T flog (34 i + 27)/og (3 + 2] + 27)

Jji<n j2>n

<303 2n g Rty flog (34 [j1]) log(3 + 2+

J1<0 j2=>n

n—1
+ )0y " on(=Hgth, flog(3+ 27211)  /log(3 + 202 1)

J1=0j22>n

< ¢n-th=Hz)y (IV.3.24)
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The series

+oo
3D I D S e A L
t

Ji<n jo>n ki €Z ko EZj2 t,s]

is bounded in exactly the same way and the conclusion follows.

]

It remains us to bound the subsums of (IV.3.6) with j; > n and j, > n. For this, let

us define some random variables associated with dyadic intervals.

Definition IV.3.10. If ) is a dyadic interval of scale n, we define, for all j > n, the

indexation sets

RO ORI )

SO = {(kY, KW (@ K®) ezt .

J

207 20 7 207 2
LY g 2 @)

ST = {(kW, KW k) K@) ez .

23+’ 17 95 7 9j
D KO L@ K@

S2(N\) = {(kW, KW (@ K@) ezt .

and consider the random variables, for (k) K k?) K®2) ¢ S?()\),
0 k(z),K(Q) Ky Ky 7k o
jzkﬂ),[{(l) = Z Z i [J)J’
kD <k <K@ k2) <y <K (2)
, for (KW, KW k@ K@) e SH()),
1 k(2 Kg(2)
’ — kika phik
jzku) K1 Z Z gjjrlfj[j}rl,.zi
’ D <k <KD k() <ky<K(2)
and, for (kM, KW @ K@) e 52(N),

2 2
2§ k2, K@ - E § 61?1-’]@ I]f?l'7k2
j kD K@) JJ+175,5+1"

kD <k1 <K@ k2) <y <K(2)

27 7 93 79+l 95+l €

€ N},

€ N},

A}

(IV.3.25)

(IV.3.26)

(IV.3.27)

The idea behind the definition of these random variables is, as [t —s| < 27" s € 3\, (?)

and thus any sum of the form

k1,k2 7k1,k2
Z Z i Ly

k1€Z; [t,s] ko €Zy[t,s]

(IV.3.28)

for £ € {j,7 4+ 1} can be written as the sum of random variables (IV.3.25), (IV.3.26) or

(IV.3.27) for some (KM, KM k3 K@) belonging to at most two S4(A) (¢ € {0,1,2}) with

A € A\, (t). Indeed,
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e if ¢ and s both belong to A,(t) then we only need to rewrite (IV.3.28]) in the form
(Iv.3.25), ([[V.3.26) or (IV.3.27) for (k" KW k@ K@) e SE\,(t));

e if s € A with A € 3\,(¢) \ \u(f) then we need to consider a first sum indexed by a
quadruple of S§(A,(t)) and a second indexed by a quadruple of S5(X).

The reason why we decide to put A instead of 3\ in the definition of the sets Sf()\) is
that if, for all n € N and for all A € A,, and j > n, we define the random variable

¢ E2) K(©2)

jZk(l),K(l)
Y E@ K2
jZk(l)J{(l)
we want =;(A) to be independent of Z;(\') as soon as A N X' = (. Moreover, from the
definitions of the random variables ([V.3.26)), (IV.3.25) and (IV.3.27)), the remarks below

Theorem [IV.3.2] and the explicit expressions (IV.2.2), (IV.2.3) and ([V.2.4)), the law of

Z;(A) does not depend on A € A,but only on j — n.

, (IV.3.29)

Z;(A\) = max sup
£€{0,1,2} (kW KW k@) K@)est()))

L2(Q)

The key results to estimate the random variables Z; are [53, Theorem 6.7 and Theorem
6.12] that we recall here.

*
Theorem IV.3.11. There exists a strictly positive universal deterministic constant C' such
that, for every random variable X belonging to the second order Wiener chaos and for each
real number y > 2, one has

P(|X| > yl| X|lz2()) < exp(=Cy).

Theorem 1V.3.12. If X s a random variable belonging to the second order Wiener chaos,
there exist a,b,yo > 0 such that, for all y > yo,

exp(—ay) < P(|X| > y) < exp(—by).

Remark 16. As stated in [53], the constants a,b in Theorem [IV.3.12] are not universal and
depend on the law of X. Note that b can be recovered from Theorem and thus is
universal on the unit sphere in L?(Q).

Lemma IV.3.13. There exists a deterministic constant C' > 0 such that, for all n € N,
A€M, j>n, €{0,1,2} and (K, KW E® K@) e SYN), we have

¢ E2) K (2)

—Jj—n

<0272 .
L2(Q)

j EL) K@)
Proof. Following an idea from [7, Lemma 2.21], we write

¢ k@) K(2)
< > X
- j kD K@)

LX) Re{<>=}||" =

¢ £ K

jZkU),K(I)

L2(Q)
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where
RON<C)

z ’
jzk(l),[((l)

R
is the subsum of (IV.3.26)), (IV.3. 25|) or (]IV 3. 27|) in which k;Rky. By doing so, we make

24
sure that two random variables £~ i and £, ,1 ,2 appearing in this subsum are uncorrelated
J2

except when (ky, ko) = (K1, k5). Then from Lemma [V.2.1] we have for ¢ = 0 (the argument
being the same for £ =1 or £ = 2), for all R € {<,>,=},

2
L2 K(2)

¢ ’ k1,k2\2 k1,k2\2
jzku),mn - Z Z El(e557)71(L5™)

R LQ(Q) k(1)<k1<K(1) k(2)<k2<K(2) k1Rka

= Z Z 3+|k1 k?)

ED <k <K@) ko€Z

Since #{k, € Z : EOD <k < KO } < 277" we conclude that

K2 K

<Cc27T, (1V.3.30)
12(9)

ED) K@)

]

Lemma IV.3.14. There ezist an event Q of probability 1 and a positive random variable
Cs with finite moment of any order such that, on )

VneN, YAC[0,1], A€ A, Vji>n, 55N <Co(j—n+1)n. (IV.3.31)

Proof. Let us take # > 0 and consider, for all n € N the event
A, ={VAXC[0,1],A € A,,Vj>n, Z;(N) <0 —n+1)n}.
If A¢ stands for the complementary set of 4,, in 2, we have, of course,
P(AY) =PEAC 0,1, € A, : Fj >ns. t. Z;(N) >0 —n+1)n).

But, for all A C [0,1],A € A,, j > n, £ € {0,1,2} and (K, KO k@ K@) € SYN) we
have, by Theorem [[V.3.11] if 6 > 2,

¢ E2) K(©2)
jzk(l),}((l)

Y k(2 g2

2o
RO KD |0

As, for all j > n, #S5(N) <207 and #{A C [0,1] : A € A} =27, we get

*

P >0(j—n+1n| <exp(—CO(j —n+ 1)n).

P(AS) < C2" 3" 2°07 exp(=CO(j —n + 1)n)

ji>n

< C2" exp( C’Qn 22“ ") exp(— C’Q(j—n))

ji>n
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for a deterministic constant C' > 0. Therefore, if we take 8 > 4log(2)/C, the conclusion
follows from Borel-Cantelli Lemma. []

Lemma IV.3.15. Let Q* and Q be the events of probability 1 given by Lemmata

and[IV.3.1]] respectively. There exists a positive random variable Cs with finite moment of
any order such that, on Q* N, for allt,s € (0,1) the random variable

DN Y gl bt v ] (1v.3.32)

J12n jo2>n (kq,ke)€Z2

s bounded from above by
Ca|t — s|H1HH2"tog |t — 5|71,

Proof. We start by splitting the sums in ([V.3.32) in two parts:

> Y Y s

Jizn j22g1 (ki,k2)EZ?

DD, D Rt R, (IV.3.33)

J22n j1>732 (ki,ke)€Z2

We only focus on the first sums, as the argument is symmetric in j; and j5. As in Lemma

IV.3.9 we write

19D WD MIERIEEEt Y T

Jj1zn jo>j1 (k1,ke)€Z2

30 35 3 i BN L

J12n j22>j1 K1€Z ky eZ< (t,s)

+3°3 N N onttigR(-i) ik phkyy (IV.3.35)

Jizn j22j1 k1€Z k2€Z> (t,s)

+3NTNT N onCotighl-t) ke iy ) (IV.3.36)

J12>n 322751 k1€Z kQEZ [t S]

To bound (IV.3.34]), we use inequality (IV.3.7)) and Lemma [[V.3.7to get
(V33D < CCr Yy Yo 2ol og(3 4[] +27) v/log(3 + L] + 27)

Jjiznj22g

<0, Z 9i1(1=Hi— Hz)\/—

ji>n
S Ccl2n (1-H1— H2)7’L,

by applying twice inequality ([V.3.22)). The sum ([V.3.35) is bounded in exactly the same
way.
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To bound (IV.3.36]), we use once again the equality ([V.3.23). First we have, by in-
equality (IV.3.7) and Lemma [IV.3.8

Z Z Z Z 971 (1=H1)9j2(1—Hz) 511]1922/ ¢H1 2J1x— k1)¢H2(2J T — kg)d

J12n j2271 k1€Z ko €Z;, [t,5]

<CCy Y Y Mgty flog(3 4 [ji] + 272)y/1og (3 + o] + 272)

Jjiznj2>mn

< CCy2ri-Hhi—Ha)y (IV.3.37)

We bound

+o0

Z Z Z Z i1 (1=H1) 9> (1=Hz) flljk; Vi, (27w — ki )b, (2720 — ko) da
t

J12n jo>j1 k1€Z ko €74, [t,s]

in the same way.
It only remains us to find an estimate for

ST Y s

J12n jo>j1 k1 €Z ko €Z;, [t,s]

and thus, recalling Lemma [[V.2.1], we reduce the problem to first bound, for j > n and

¢ € {j,j+ 1}, the sums
SN et (IV.3.38)

I<:1€Z<(t s) ka€Zg[t,s]

Z Z k1 k2]k1 /’€27 (IV.3.39)

k1€Z3 (t,5) k2 €Lat,s]

Z Z ’fl ’“21’“ k2 (IV.3.40)

k1 GZ [t S] kQEZ@[t S]

on QN €. Let us consider (IV.3.38) with ¢ = j, the argument for / = 7 + 1 and ( m
being similar. Using again Lemmata |IV 2. 1| and |IV 3. 4| we have on Q* N Q since for all
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k2 € Zj[t78]a |k2| < 2j7 fOI'j >n,

—Jj
(V338 <ccy > >, 3+|k1 4¢log<3+j+Ikl\)¢log<3+j+|k2\)

k1 EZ<(t s) ko€Z; t,s]

<coy Y > T\/logii—l—j—l—]kl])

k1 €Z<(t 5) k‘QEZ t S]

<00y Z Z . ,Q_j\/j 4\/log(?ﬁ—ij|k:1|)

j _
eES (1) = ¢ (34 2/ min{s, t} +m — ki)

dy .
<CC, 23\/—/ — 2V/108(3 + j + [k )

j _
erT ) (24 29 min{s,t} +y — k1)

o V1og(3 + 7 + |ki|)
< j
<CC2 \/3 Z (2 + 29 min{s,t} — k)3

<
k1€Z5 (t,s)

< CC12794/j/log(3 + j + 2/ min{s, t})

< 002773 (IV.3.41)
It follows that
1
22]'(271{171{2) Z Z Z gfkkzljliz,k‘g < O, 0-Hh=12),
jzn (=] k1€Z5 (t,5) ka€Le[t,s]
and, similarly,
j+1
2212 Hi— HQ)Z Z Z gklkgjklkg < 0,2 0-H=12),
jzn =3 kleZ>(t s) k2€Z¢lt,s]
The bound for is obtained using and which lead to
j(2—Hy— Ha) - k k k k
J 1—Hz) ke ki ks
<CCyY 2ﬂ<**H1 H2)2’%(j —n+1)n
j>n

< CCy2ra—Hi—H)o—5
— 0022n(1_H1_H2)n,

as % < Hi + H,.
Putting all of these together we get that (IV.3.32) is bounded from above by
C max{Cy, Cy}|t — | T2 og |t — s|7*

on QN Q. O
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We now prove the main result of this subsection.

Proof of Proposition IV.3.3. Let us consider w in the event Q* N Q of probability 1, where
Q* and Q are given by Lemmata |IV 3. 4| and |IV 3. 14| respectively.

If t,s € (0,1), we write

|RH17H2 <t7 w) - RH17H2<57 w)|

i (1— i (1—Hy) _k1,k ki,k
< Z Z Z 2]1(1 Hl)2]2(1 H2)€j11,j22( )1311,122[t S]

J1<n jo<n (k1,ks)€Z2

k1.,k K1,k
oD D TR ) R o

Jj1<n ja2>n (ky,ko)€Z2

1 (1— j2(1—Hz) k1 k1 k
TS S e mg s

Jji2zn jo<n (k1,ke)€Z2

(1 j2(1—Hz) kb k1k
HE S S s )

Jjizn j22n (ki,ke)€Z?

The first sum is bounded from above by Lemmata [[V.3.4 and [[V.3.5] the second and the
third one are bounded from above by Lemmata [[V.3.4] and [[V.3.9] and the last one is

bounded from above by Lemma [[V.3.15] O

Remark 17. Starting from now and until the end of this section, one can reduce our
attention to the process

+o0o +oo

J1(1—H1)9j2(1—Hz) k1,k2 thikan
H17H2 Z Z Z 2 2 S [0, ]

71=0 j2=0 (kl,k2)€Z2

because almost surely, it is the most irregular part of Ry, g,. Indeed, using different
estimates obtained in this subsection, one can see that, almost surely, there exists a constant

C' > 0 such that, for all s,¢ € (0,1),

DY D PRI sl < Clt - sl

71<0 j2<0 (k1, k‘g €72

DY D PRIt )| < Clt — |~ logt — 5|

J1<052>0 (k1 ,ko) €22

DD Do R 8] < Clt — s log |t — |

J1>03j2<0 (kq1,k2) €72

and we conclude because Hy + Hy — 1 < min{Hy, Hy} < 1.
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IV.3.2 Ordinary points

Let us now go to the almost sure finiteness of the limit for almost every point. The
main idea behind our method is that wavelets which contribute the most in |Rpy, m,(t,-) —
Ry, m,(s,-)| are the ones with associated dyadic intervals “close” to the interval [¢, s]. Thus,
we aim at proving the following Proposition.

Proposition IV.3.16. There exists an event (2,4 of probability 1 such that for allw € €44,
for almost every t € (0,1),

: |RH1 HQ(t7w) _RHl HQ(S’W)‘
1 : : < :
TSP T s Togloglt — 5|1~ T oC
Asin [36], for all j € N, we denote by k;(¢) the unique integer such that ¢ € [k;(¢)277, (k;(t)+
1)277). In other words, k;(t) = s(\;(t)). If t € (0,1) is fixed, applying Lemma [[V.3.4] to
Kk

the sequence of random variables (&'

J )(jl,j2,k/1,k/2)€Z4 defined by

ik _ Ky +hjy (1) ko thiy (1)
71,92 J1,32

we deduce the existence of €2}, an event of probability 1, and C 1, a positive random variable
with finite moment of any order, such that, for all w € Qf and for each (jy, jo, k1, ko) € Z2,
one has

€652 ()] < Cua(w)y/log(3 + s + [y — ki (1)) 103 + |l + [z — ki (1)]). (IV.3.42)

In view of this fact, let us set, for ¢t € (0,1) and (jy, j2, k1, ko) € N? x Z2

L%$@>:V@%@+jr+ml—@ﬂww¢bg3+jr+W2—%ﬂﬂU

In what follows, we show how to modify Lemmata [IV.3.5 to |[[V.3.15]| from the previous

subsection, using Lflljkj (t) instead of Lfll’]k; Before all, we need the following Lemma
which is inspired by results from [36] that can be extended in our case.

Lemma IV.3.17. For all L > 2 there exists a constant C, > 0 such that, for alln € N
and t,s € (0,1) such that 27" ' < |t — s| < 27", for all x € [s, 1]

1. Forall0<j<n

Z \/log((?) +J + [k —k;(t)]) < CL\/m'

3+ |29z — k|)E

2. Forallj>n

5 Viog(3 + 7 + [k — k;(1)]) < Ci/i—nt1/IlogB+ 7).
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Proof. For all j € N, k € Z and x € [s,t], observe that
|k — ki) < |k — 22| + |22 — 27¢| + |27t — k; ()| < |k — 22| + 277" + 1. (IV.3.43)

If 0 < j < n, then it follows from ([V.3.43)) that |k — k;(¢)| < |27z — k| + 2 which allow
us to write, thanks to inequality ([V.3.12)),

(3+|23x—k| |27 — k| + 3
< Cy/log(3 + 7).
where C' := sup,~ (%) and we conclude using the boundedness of the function
= ! - (IV.3.44)
2=

for all M > 1.
Now, if j > n, from ([V.3.43)) we get |k — k;(t)| < |27z — k| + 277"*! and thus, again
by inequality ([V.3.12)),
VIog(3 +j + [k — k;(8)])
(3+ |27z — k)

V0og(3 + 27z — k)
|27z — k| +3

< V/log(3 4 29-7+1)/log(3 + 7)

< C'\/j—n+1y/log(3 + ).

log(3+4x)
where C' := \/gsquzo 713

of the function in (IV.3.44)) for all M > 1 ]
Lemma IV.3.18. There exists a deterministic constant C' > 0 such that, for allt,s € (0, 1)

we have
DD DD DI S e SR

0<71<n 0<j2<n (k)1 k‘Q €72
< Ot — s|M T2 oglog |t — 5|7t

and the conclusion comes again from the boundedness

Tk [t, s]

J1,J2

Proof. 1t £ € [s,t], we get from the fast decay of the fractional antiderivatives of ¢ (IV.3.8))
and inequality (IV.3.42), for 0 < j1,j2 < n,

Z L;?]k;( Nbr, (2706 — ki)Y, (2726 — ky)|

(k1,k2)€Z2
V9og(3 + g1 + [k — kj, (8)])
< CC .
(Z :

_ 4
= (34 [271€ — ky
Z V91og(3 + jo + ko — Ky, (1)])
= B RE Rl
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These last two sums are bounded by the first point of Lemma [[V.3.17} Using

n—1
> 2101 Jlog(3 4 i) < €2\ /log(n) (IV.3.45)
j1=0
instead of (IV.3.11]), we conclude, just as in Lemma [IV.3.5 that the desired inequality
holds. O

Lemma IV.3.19. There exists a deterministic constant C' > 0 such that, for allt,s € (0, 1)
and 0 < j; <n < ja, the quantities

k1, k2 k1,ko
Z Z LJl J2 []1 J2 [t 3]‘ (IV.3.46)
k1€Z k2€Z< (t,s)
SO>Ik gEis) (IV.3.47)

k1€Z ko€l (t.5)

are bounded from above by

C+/ja — n + 13/log(3 + j1)\/log(3 + j2)272.

Proof. Let us prove the bound for (IV.3.46)), the argument for (IV.3.47)) being similar. We
have, by the first part of Lemma [[V.3.17] for 0 < j; <n < js,

10g(3 + Jo + [ks — k(¢
(IV-3.46) <C\/10g3+]1/ > ViogB+ o + ke — k(D

k€Z<(ts) (3+|212x—k:2|)4

and, as for all ky € Z5,(t,s) and = € [s,t] we have
by = (0] S |25 — kol + ks (6) — 2] < 250 — ol + 2277 41

and, by inequality ([V.3.12]),

V1083 + o + ke — ki, (8)]) < O/ — 1+ 1y/10g(3 + j2)v/log(3 + 272 — al)

it just remains us to use the bound ([V.3.15) to write

(IV.3.46) < C+/jo — n + 13/log(3 + j1)v/log(3 + j2)2772. (IV.3.48)
O

Lemma IV.3.20. There exists a deterministic constant C' > 0 such that, for allt,s € (0, 1)
and 0 < j; < n < jo, the quantities

YooY Ly

k1E€EZ ko GZD [t S}

min{s,t} A '
¢H1 (2]1[)’2 — k1)¢H2 (2”1‘ - k?g) dx (IV349)

—00
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Yoo Ly

k1€Z ko EZJZ [t S]

/+°0 Ui, (27 = k) hm, (22 — ky) d (IV.3.50)

ax{s,t}

are bounded from above by

C'/1og(3 + j1)\/10g(3 + jo)\/ja — n + 12772,

Proof. Again we assume s < t. First, using the fast decay of the fractional antiderivatives
of ¢ (IV.3.8]), (IV.3.49)) is bounded from above by

(IV.3.51)

/ V1083 + 1 + [ky = i (D)) V10g(3 + o + [k2 — ki (1)]) |
(3+ |20 — ky ) (3 + [2022 — ky|)*

O L€z kQEZm [t S]
Observe that, for all ki € Z, ko € Zj,[t, s] and z € (—o0, 5], we have, as j; <n < jo,

1202 — Ky, ()] < |20 — 27072 ky| + |27 2 kg — 2008] + |27t — Ky, (2)]
<2722 — ko| + 2
and therefore . '
|]{?1 — kjl(t)| S |2j11’ - k?1| + |2J2ZE — l{?2| + 2
while
[y — ki (8] < [k — 2728] + (2728 — ki, ()] < 27277 + 1.
It allows to write, thanks to inequality (IV.3.12]), the boundedness of the function ([V.3.44])

and inequality ([V.3.17)

d
(V351 < Clog(3 + 1)/ 083 1 Ja) \/jz—n+1/ L
% (3 + |22z — kyl)
k‘gEZJQ t 5]
< O/log(3 + j1)\/10g(3 + jo)\/ja — n + 12772,
We bound the second sums in the same way. O]

Lemma 1V.3.21. There exists a deterministic constant C > 0 such that, for all t,s €
(0,1), the quantities

)IDIED DL UL

0<j1<n jo>n (ky,ka)€Z2

Z Z Z 2j1(1—H1)2j2(1—H2)L;€11]k22< )|]]k11]1;:2 [t SH

J12n 0<j2<n (ky,ko)€Z?

are bounded from above by

C|t — s|"1tH2"1oglog |t — 5|7t
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Proof. The proof is exactly the same as the one of Lemma excepted that we use
Lemmata and instead of Lemmata [[V.3.7 and [[V.3.§ respectively and that
we conclude using again ([V.3.45)) instead of ([V.3.11)) and

+oo
> 272y —n+ 1y/log(3 + j2) < 0272 /log(n). (IV.3.52)
Ja2=n

instead of ([V.3.22)). [

Lemma IV.3.22. There exists a deterministic constant C > 0 such that, for allt,s € (0,1)

and n < j1 < jag, the quantities (IV.3.46|) and ([V.3.47)) are bounded from above by

Cv/ja —n+ 13/j1 — n+ 13/1og(3 + j1)v/10g(3 + j2)2 7.

Proof. The proof is exactly the same as for Lemma except that, here, we use the
second part of Lemma instead of the first one. O

Lemma IV.3.23. There exists a deterministic constant C' > 0 such that, for allt,s € (0, 1)
and n < j1 < jo the quantities (IV.3.49) and (IV.3.50) are bounded from above by

Cvjr—n+1yja —n+ 1y/1og(3 + 71)v/1log(3 + j2)27%2.

Proof. The proof is exactly the same as for Lemma except that, here, we use the
second part of Lemma instead of the first one. O

Just as we did for the rapid points, it remains us to bound the random variables =;(\)
(IV.3.29). Here, we don’t want anymore to show the existence of an uniform modulus but
only a pointwise modulus of continuity at a fixed point of interest ¢. Therefore, we just
have to bound, for all n € N the random variables =;(\) for j > n and A € 3\, (t). We
thus have the following result.

Lemma IV.3.24. For allt € (0,1), there exist an event ﬁ; of probability 1 and a positive
random variable Cy o with finite moment of any order such that, on €,

Vn e N, YA € 3\, (t), Vi >n, Z;(N) < Cia(j —n+1)log(n). (IV.3.53)
Proof. If t € (0,1) is fixed and 6 > 0, let us define the event
An(t) ={VA €3N, (t) Vi > n, Z;(N) <0(j —n+1)log(n)}.
Similarly to Lemma [[V.3.14] we get

P(A,(1)) < 03 207 exp(—CO(j — n + 1) log(n))

j>n

< Cexp(~Chlog(n) Y 29 exp(~Co(j - n)),

jzn
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for a determistic constant C' > 0. Therefore, if we take again 6 > 4log(2)/C then Borel-
Cantelli Lemma implies the existence of an event (2, of probability 1 and C; 5 a positive

random variable of finite moment of any order such that, on Qvt, assertion (IV.3.53) holds.
]

Lemma IV.3.25. If t € (0,1), let QF be the event of probability 1 where inequality
(IV.3.42) holds and §2; be the event of probability 1 given by Lemma |[IV.3.24] Thereﬁgxz’sts

a positive random variable Cy s with finite moment of any order such that, on 2} N Y, for
all s € (0,1) the random variable

)IDDED DI G (IV.3.54)

Jj12n jo>n (kq,ks)€Z2
is bounded from above by

Cyalt — s/ T2 og [t — 5|7t

Proof. Again, we use the split ([V.3.33) and we only do the details for the first sum.

We deal with the series ([V.3.34)) and (I[V.3.35) in the same way that in Lemma [[V.3.15
but using inequality ([V.3.42) and Lemmata [IV.3.22] and [[V.3.23| and finally inequality
(IV.3.52)).

For (IV.3.30)), first, by Lemma [IV.3.23| and inequality (I[V.3.42), we have, on €} N ?2;
SX S S we et [ @ ke - )i

J12n jo>j1 k€L ka€Zj, [t,s]

<SCCy Y Y 20t Ji—n o 1y/jo — n 4 14/1og(3 + j1) v/1og(3 + J2)

Jiznj22i

< CCy2n-HiH2) 16g(p). (IV.3.55)
We bound

Z Z Z Z 9d1(1=H1)9j2(1—Hz) 2611]’22/ Vi, 2]1x_k1)¢H (232x—k2)d

J12n ja22j1 k1€Z ko €74, [,

on 2y N Q exactly in the same way.

To finish the proof, again, we have to bound (IV.3.38), (IV.3.39) and for
e {j,j+ 1} (with j > n) on Q; N <. For ([V.3.38)), in the case ¢ = j, one can note
that, for all ky € Zj[t, s, [ky — k;(t)| < 277" + 1 and, for all ky € Z5(t,s), |k — k;(t)] <
|27 min{¢, s} — k1| + 297" + 1. Using the same tricks as in ([V.3.41)), we get, on 2} N @;

. 1
(V338 < CCua(j —n+ 1)log(3+ )27 > —

7 _ 3
eZs (9 (2 + |27 min{s,t} — kq|)

<O(j—n+1)log(3+j)277
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The bounds for (IV.3.39) and in the case ¢ = j + 1 are obtained in the same way. Finally

to bound (IV.3.40)), we use ([V.3.53)) and (IV.3.30)) and get on €2} N ﬁt

Jj+1
B S N
jzn (=] k1€Z;[t,s] ka€Z,[t,s]
< CCyo ZQj §’H1’H2)2’5(j —n+ 1)log(n)

jzn

< OOy 2" Hi=H2) 16g(p).
We conclude that ([V.3.54)) is bounded from above by
Cmax{Cy1,Cio}|t — s/ 2" og |t — 5|7

on Q2 N Q. O
We can now prove Proposition [[V.3.16]

Proof of Proposition[IV-3.16, Let us fix ¢ € (0,1) and consider w € € N Q. For all
s € (0,1), we writd]]

|R}’I1,H2 (t7 w) - Rllfl,HQ (57 CL))’

Do S S L

0<j1<n 0<ja2<n (k,k2)€Z2

k1,k k1,k
DD DL e e LA

0<j1<n jo>n (ky,ko)€Z2

1k K1,k
Y S S et s

Jj12n 0<ja<n (ki,ko)€Z?

k1,k k1,k
Do Y 2RI R W) R 5])

Jizn ja>n (ki ,ke)€Z?

We bound from above the first sum by inequality ([V.3.42)) and Lemma|[V.3.18] the second
and the third sums by inequality (IV.3.42)) and Lemma[[V.3.21|and the last sum by Lemma
[V.3.25

Using inequalities ([V.3.52) and ([V.3.55) and Remark one can finally write that

for all t € (0,1), for all w in the event of probability 1 Q; N2

lim sup |RH1,H2 (t7w) - RH17H2<57W)|
sot |t — s|fitH2=loglog |t — s|~!

< 400

and we conclude by Fubini Theorem. O
"We recall that Rl 5, is defined in Remark
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IV.3.3 Slow points

In this section, we aim at showing that the generalized Rosenblatt process admits slow
points: we prove the following Proposition.

Proposition IV.3.26. There exists an event g, of probability 1 such that for allw € g,
there ezist t € (0,1) such that

|RH1,H2(t7 w) — RH1,H2(37W)‘
|t _ S‘H1+H271

lim sup < 4o00. (IV.3.56)

s—1

In [54], Kahane described a procedure to insure the existence of slow points for the
Brownian motion. This procedure was then generalized in [36] to fit for any arbitrary
fractional Brownian motion. It consists in showing that for any m > 0, almost surely,
there exist © > 0 and t € (0,1) such that, if one sets

A?(t) ={A e |s(A(t) —s(N)| <1} (IV.3.57)
and, for all 1 <
Aé.(t) ={AeA,,: om=1) Is(A(t)) — s(N)| < 2ml}, (IV.3.58)

then, for all A € A%(t) we have
lex| < 2, (IV.3.59)

where ¢, is the random variable
2 [ 0n(@)dB).
R
In this procedure, if p € N for all j,1 € Ny and A € A;; A C [0, 1], we define
AN ={N € Ay, o [s(N) = s(V)] <2}

and the random set
Sh={N €, : 2l < |ew] < 2l

Finally we consider the random set
[jﬂ = {)\ € Aj,)\ g [0, 1} 2 Vi € No, Aj,l()\) N S}u’l - @},

and show that almost surely, there exists u € N such that

Ste=1[1 U r#0

J€Np AEI;.‘

which is equivalent to the fact that, for any J

S{:)W,J:ﬂ UX%Q

J<J Nelf
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as (S}, ;) is a decreasing sequence of compact sets. To do so, let us denote by 25}, ; the

sets of dyadic intervals of scale J + 1 obtained by cutting in two the remaining intervalsﬂ in
Slow,s and remark that Si ;. is obtained from 25 ; by removing the dyadic intervals

A such that Ayy(A) N ST, # 0 for al € No. But now, if & ~ N(0,1), we set, for all
such a [

pi(p) =P2'p < €] <27 p).

and note that, if N is the number of intervals of S}. ;, counting the number of intervals in

2807 N S% 1, is a binomial random variable of parameter 2N and p; () and this number

is thus bounded by

2N (pi(p) + (L+ D)Vpu(p) (1 = pi()

on an event of probability 1 — (14 1)"2N~!. Therefore, to pass from S{., to S' .| we
remove at most

2N Z(leﬂ + D) + (1 + 1)/ pi(p) (1 = pu(p))

intervals with probability greater than 1 — N~!. But if yu is large enough, as p;(u) is of
_ (ol V2
order %, one can make sure that this last term is bounded by % So, if N is the

“w

random variable counting the number of subintervals of 5] we have

ow,J?
© 3 By ATH -1
P(Nj,, > SNGING = N) 21— N

which leads to the recursive formula

P(VY, > (5)7) 2 (1- C)YJRONE > (3)), Ve,

see [36, Lemma 3.6 and Theorem 3.7.]. Finally, we deduce

PV >1) =1 (IV.3.60)

n JeNy

Moreover, we can show that, in this case, SL. N (0,1) # 0. If o > 0, applying this
procedure with % < « gives us that any point ¢ € Sf. N (0,1) is a slow point of the
fractional Brownian motion of exponent a.

From formulas and , we see that this procedure is also useful to bound
the random variables appearing in the expansion ([V.3.3)) of the generalized Rosenblatt
process. But, from the proofs of Propositions and we know that this is
not sufficient and we also need to give a bound for the random variables Z;(\), for A €
3An(t),n € N and j > n. Such dyadic intervals are precisely the ones in the set A, o(A,(t))
and this fact forces us to consider the following modification of the procedure. For all

2The interval [k277, (k + 1)277] is cut into [(2k)2~UH+D (2% +1)2-U*D] and [(2k + 1)2-0+D (2k +
2)2-U+D)],
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j €N, if [ # 0, the sets S]’f , remain untouched as well as its associated probability p;(u)
while for [ = 0 we set

Sy ={N € AN C[0,1] 1 3f > 5Z(N) > (' — j+ D),
with associated probability (which only depends on )
po(p) =PEj 2 jE4(N) > (7' —j + n).

As =;/(\1) is independent of =/ (A2) as soon as Ay N Ag = 0, for all J € N, if N is again the
number of dyadic intervals of S{ ;, the number of such intervals in 2S5}’ ;N .S%,,  is still
a binomial random variable of parameter 2N and po(p). Therefore if u is large enough,

using Theorems [[V.3.11] and [[V.3.12] one can still affirm

“+o00

2N @™+ D) () + (L4 1)) (1= pilp)) <

=0

and the end of the procedure is saved: equality ([V.3.60) still holds. Now, if
te S N(0,1) we know that

low

N
2

Vne N, VAe3\(t),Vj>n,Z,\) < (—n+1)p. (IV.3.61)

Let us remark that, as for all A € A,,, |€3| < 2=,(\)+1, we still have, in this case, for all A €
3Aa(t), lea] < Cp, for a deterministic constant C' > 0. Starting from now we take m such
that 1/m < min{Hy, Hy} and
2/m < 1— Hy — H.

In order to use notations and , here after A; (resp. Ag) will always
stand for the dyadic interval [k12771, (k;+1)2771) (resp. [ko2772, (ky+1)2772)) and 1y, (resp.
y,) will be the associated antiderivative of wavelet g, (271 - —k;) (resp. Vg, (272 - —ky))
and Iy, 5, [t, s] will stand for 17" [t, s]. Finally, ey, , will stand for €2, If t € (0,1), let

(ya(t))an be the sequence defined by
ya(t) = 2" if X e Al(t).

Note that, if we apply the preceding procedure, we find €2, an event of probability 1
such that, for all w € ., there exists p for which S: N (0,1) # 0. Then, if ¢ belong to

this set, we have, thanks to inequality ([V.3.59) and equalities ([V.3.1]) and ([V.3.2)
[Exie (@) < CrPyn, (Hyn, (1), (IV.3.62)

for a deterministic constant C' > 0. Again, we need to adapt the Lemmata from previous
sections with this alternative upper bound.

Lemma IV.3.27. There exists a deterministic constant C > 0 such that, for allt,s € (0, 1)
we have

DD DD D e O |

0<j1<n 0<ja<n A1€A;, ,Aa€A,

< Ot — 5|+t
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Proof. Tf € € [s,t] and X € )\é»(t), for0<j<mnandl>1,
[27€ = s(N)] > [s(A() — s(A)| —2 > 270D 2

and so, using the fast decay of the fractional antiderivatives of ¢/ ([V.3.8) and the definition
of (Ya)aea , we get for 0 < ji, jo <n

Z y)\l( )y/\z( )Wm( W/\g(f)’

)\1€Aj1 ,)\2€Aj2

S Y OO (O]

2 l l
(12)ENG M AL (1) A2A 2 (8)

2l1 +l2

<C Z Z Z (34 [271& — ky|)4(3 + |272€ — ko)4

(11,12)€N0 3, ATL () A2 A2 (1)

oli+i29—m(li+l2)

SC 2D ) GrpE-mPGT R

(F1l2)€No x ATL (£) Ao A2 (1)

1 1
<C
2 G h) 32 (B + [272€ — kal)?

k1€Z

<C. (IV.3.63)

It leads, just as in Lemmata [[V.3.5] and [[V.3.18], to the desired estimate. O]

In what follows, we use these notations instead of the one given in Definition
A;(t, 8) = {)\2 S A]2 : S()\Q) (- Z;(t’ 3)},
A (ts) ={ A €Ay, = s(N\2) € Z5(t,5)},
Ajz [t,S] = {)‘2 S Ajz : S(AQ) € Zj, [tv S]}

Lemma IV.3.28. There exists a deterministic constant C' > 0 such that, for allt,s € (0, 1)
and 0 < j1 <n < ja, the quantities

Z Z Yn, (D)o () [In, 2, [t 8] (IV.3.64)

MEAG A€A, (1,5)

Z Z y>\1 y>\2 ‘IM A2 [t 5” (IV365>

)\1€A31 >\2€A> (t S)
are bounded by
CQ%(JQ—”)Q—JQ‘

Proof. Again, we prove the bound for ([V.3.64)), the reasoning for (IV.3.65)) being similar.
Let us remark that, if jo > n x € [s,t] and Aj,(x) € AL (t) then, the construction and the
definition of (yx(%))rea gives that
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e [ < Lt(jo—mn) as|s—t] <27,
o if \ e Aﬁ (z) then |y,| < 222! while, by definition, if I, > 1

3+ 222 — s(N\)| > 24 2m=D),

Therefore, if we set

U A

l
AeAL ()
we have

WID< Y 3 wOonl®) [ o, @l ds

AleAjl )\26/\ (t S)

< Z ST0Y gt /D | )|¢,\1($)¢,\2(17)|dx.

0<I< - (j2—n) MEAG) Ma€AT (t,5) jia (

(IV.3.66)

But, for all z € D§-2, using the same method as in ([V.3.63)), but splitting the sums according
to the set Al (z) and A2 (z) on which yy, (t)ya, () < 2012+ we get

YooY lewnlltn @ @)

MEA ] Ay €A, (t,s)

1 1
< 09l : :
<02 ) B[22 — ki|)® 2 (31 222 — ko|)? (IV.3.67)

A€A A2 GA].<2 (t,s)

1
+1
<O ) Gimm

<
A2 EA]—2 (t,s)

Finally, using the techniques in (IV.3.15)), we get

(V.3.6d) < C2mlizm)o—i2,

O

Lemma IV.3.29. There exists a deterministic constant C' > 0 such that, for allt,s € (0, 1)
and 0 < j; <n < ja, the quantities

min{s,t} ) .
Z Z Y (t>y)\2 (t) 1/}H1 (2J1$ - k1)¢H2 (QJZ‘T - k2) dx (IV368)
)\1€Aj1 >\2€Aj2 [t,S] o
+o0 , :
S> m ) / Ui (20— k), (2P0 — k) de| - (IV.3.60)
max{s,t}

)\1€Aj1 /\2€Aj2 [t,s]

are bounded by
02% (J2—n)9—j2
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Proof. Again, we assume s < t. If 2 € (—oo0, 5] is such that \j, (x) € A} (s), we have, for
all \; € Aéll () and Ay € Aj,[t, ] N Aéz;(s) (with j; <n < ja),

y/\l<t)y)\2 (t) <c 2%(j2—n)+l+l1+lz+1u2
(34 |21z — k)4 (3 4 2722 — ko|)* — (3 + |2'x — Ky )43 + |2722 — ko|)®
95 (J2—n)++1
- 0(3 + 2712 — k1])3(3 + |22 — ko )?
o 95 (j2—n)
=B+ 22 — k)33 + [227 — ky))?

(IV.3.70)

because . ' '
34220 — ky| = 3+ ky — 222 > 24 29 (s — ) > 2™,

Thus we get, using the fast decay of the fractional antiderivatives of the wavelet before split-
ting  the integral over (—oo,s] into  the integral over the  sets

(=00, s] N D} (s), in the same way as in ([V.3.66)), using ([V.3.70) and finally the bound-
edness of the function ([IV.3.44) for M = 3 and inequality (IV.3.17))

DS / [, (2o ()] d

ALEA ; Aa€A, [t,8]

dz
< CZm ]2 n / : .
% Aichy, AzeA (3—|—|2J1m—k1\)3(3+\2]2;5_/{;2|>3

dx
< Cohtn / .
_ 3
OO)\QEA t,s] <3+ ’2321‘ kQD

< CQE (J2—n)9—j2

In the same way we get

Z Z Yx (t)yM (t)

ALEA | Aa€Aj,[t,s]

+oo
/ Y, (212 — k)Y, (2722 — ky) dz| < C2772. (IV.3.71)

max{t,s}

]

Lemma 1V.3.30. There exists a deterministic constant C > 0 such that, for all t,s €
(0,1), the quantities

S Mgy gy (0|1, 6]

0<j1<n ja>n )\16/\]'1 ,)\2€Aj2
SN 2ROy 1y (6] I st |
j1 Z?’L OSJQ <n )\1 EAjl ,)\2 GAJ'Q

are bounded by

C|t — s|frrH2—1,
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Proof. The proof is exactly the same as the one of Lemma excepted that we use
Lemmata [[V.3.28 and [TV.3.29] instead of Lemmata [[V.3.7] and [[V.3.8 respectively. It leads

on one side us to consider the sums

((Z 9i1(1=H) Z O L (jo—n) 2= j2H2> + 2n(1—H1—H2)>

Jj1=0 Ja=n

which are bounded by
C2n(1_H1—H2) < C|t _ S|H1+H2—1

because % < Hj. On the other side, if we write I, , for IF%2 i Lemma [[V.2.1] we have,

Ji,J2
from it,

Z Z Yx (t)yM (t)IA1,>\2

MEAL—1 AaEARL,S]

sc2 Z Z Z (3+ |2k;1 ko) (IV.3.72)

L= 0)\ EAll ())\QEAn[tS

< 02" Z Z 3+|2k1 I

A EAR_1 A2€AL[t,s]

<C27".
[l

Lemma IV.3.31. There exists a deterministic constant C' > 0 such that, for allt,s € (0, 1)

and n < j; < jo the quantities ({IV.3.64) and (IV.3.65)) are bounded by

CQ% (j1—n) 2%(3‘2—71)2—3‘2 '

Proof. The proof is essentially the same as for Lemma excepted that, now, as
n < <j2,weremarkthat1fm€Dl (t) fora 0 << 2 (jg—n) thenmEDl (t) for a
0<V<L(j—n). O

Lemma IV.3.32. There exists a deterministic constant C' > 0 such that, for allt,s € (0, 1)
and n < j; < jo the quantities ({IV.3.68)) and (IV.3.69)) are bounded by

CQ%(J’l*n)Qi(jrn)Q*jz )

Proof. The proof is essentially the same as for Lemma and the only modification
is the same as in the proof of Lemma O

This time, the bound for the random variables Z;(\) is already considered in the con-
struction and we can directly go to the proof of the main Proposition of this subsection.

103



Proof of Proposition[IV.53.26. 1f we apply the procedure with m such that 1/m < min{Hy, Hy}
and 2/m < 1 — H; — Hs, we find an event ), of probability 1 such that, for all w € Qg,,
there is p1 € N for which S{! N (0,1) # 0. Then, if w € Qqy, and t € S{(‘)W( )N (0,1) and

s € (0,1), we write

|R;’11,H2 (t7 CL}) - Rl}]l,HQ (S’ CU)|

S Y Y Bemsm,

0<j1<n 0<ja<n A1€Aj Ma€Aj,

HS T § wemsem,

0<j1<n ja>n A1 €A, Aa€A;, (IV.3.73)

DD DD DLl b L D E AW

jl Zn OSj2<TL )\1 EAjl ,)\2€Aj2

12 X O @)l )]

J12n jo2n A €A A2€EAN;,

As inequality ([V.3.62)) holds, we use Lemma [[V.3.27] to bound the first sum, and
Lemma to bound the second and the third one. For the last sum, from inequality
(IV.3.62)) and Lemmata|lV.3.31jand [IV.3.32] it just remains us to find bound for the random

variables (IV.3.38)), (IV.3.39) and (IV.3.40)with ¢ € {j,j + 1} on €,. For (IV.3.38) with
¢ =j , we have, as in ([V.3.72) and then ([V.3.41)

g E Exi e (W), 2y

ALEAT (t,5) Ad2€A[ts]

< C2792mU—m) 2
< DI 3+|2k1 e

A1 6A< (t,8) AM2EA[t,8]

< 02—3‘2%(3'—”)”2.

The same bound holds when we consider the sums over A\; € A7 (t,5) or Ay € Ajplt, 5],

i.e. for(IV.3.38) and ([V.3.39). Finally the construction and espec1ally (IV.3.61)) insures

us that

Z Z 6)\1>\2 I)\1>\2 <O(]—TL+1)2 [L.

)\161\ [t 8] )\QEA [t 5]
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Therefore, the last term in (IV.3.73]) is bounded from above by

(Z 2]11 H1 w(di—n) Z 2= J2H22m J2—n) +22J n+1)2 )

1>n J2>71 ji>n

< CM2 (Z 2j1(1—H1—H2)2%(j1—n) + 2”(3—H1—H2)2—g>

jizn
S C“Q2n(1—H1—H2)
S C[I/2|t _ S|H1+H2—1

and thus inequality (I[V.3.56)) holds. O

IV.4 Lower bounds for wavelet leaders

In this section, we show that the limits and are strictly positive. In []], the
authors used the independence of the increments of the Brownian motion to bound from
below its wavelet leaders. But, for the (generalized) Rosenblatt process this nice feature
is not met anymore. Nevertheless, following an idea by Ayache in a close but different
contextﬂ [6], we decompose the wavelet coefficients of the generalized Rosenblatt process
in two parts. We gain some independence properties in the first part while the second is,
in some sense, negligible compared to the first, see Proposition below. All along
this section, in order to ease notations we set

1
U (H=5) T (Hz = 5)

Cuy 1y =

and for s, x1, 29 € R

Sty 115 (8,20, 02) = (s — jr71)51_3/2 (s — m)fQ_S/Q

Let ¥ be a wavelet with compact support included in [— N, N]. Using formula (IV.2.5))
at t = k/27, the wavelet coefficient ¢;, of the generalized Rosenblatt process is given by

N r+k k
o (5 ()

x+k
ZCH1,H2/ / /2 fry .1, (S, 21, x3) ds dB(xq) dB(z2) dx
R2

x+k

CHl,HQ/Q/ /2J [y m, (8,21, 22) ds de dB(xy) dB(x2)
R ,

=cp,, H2/ / /k2 fr .1, (S, 1, 2) ds dx dB(xy) dB(xs)

3In 6], Ayache does not consider wavelets at all but directly work on Wiener-Ito integrals
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where A = |—o0, k;er}Q, because, as soon as x € [-N,N] and s € [k277/, (k + N)277],

f(s,x1,x9) vanishes for all 21, z9 outside of A.

Definition IV.4.1. Given an integer M > 0, ¢;; can be written as following
—~ M g
cik = Gr +Cep

where

ar = cn, HQ/ / /2] fry (8,21, 2) ds doe dB(xy) dB(x2) (IV.4.1)
)\I\/] k.

with )
M. k—NM k+ N
Ik 2 7 9

and

z+k

2.7

chk =cH HQ/ / fry o, (8,21, x9) ds dx dB(xy) dB(z2).
A\)\]w k

Remark 18. Let us highlight the fact that using time change of variable for Wiener-Ito
integrals [90, Theorem 8.5.7], for all j, k, we have Eﬁ;M is equal in law to the random
variable

/ N x
cHl,HQQJ(H”HZl)/ / 1/1(:{:)/ fry (8, 1, ) dsdx dB(z1)dB(xs)
Iy J—N 0

with Iy = (=M N, N]?, while 5cj7kM is equal in law to the random variable

CH, ,Hy 2” J(H+Hz—1) / / )/ fH17H2(S,ZE17fL’2) del'dB(I’l)dB(fL‘z)
I, 0

with I}, = (=00, N]*\ (=M N, NJ?

Definition IV.4.2. For all (j,k) € N x Z and M € N we define the random variables

o.M
—~ M e C.j7k A M . Cc]7k
o (h+H—1)"

Remark 19. Note that efj}M and ﬂ/M are independent when

Indeed, if (f;); is a sequence of real-valued step functlons on R*\{(z,z) : x € R} which con-
verge to the integrand with respect to dB(z1)dB(z2) in (IV.4.1)) then [y, f;(21, v2) dB(z1)dB(x2)
is a polynomial function of a finite number of increments B(ts) — B(t;) of the Brownian
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motion for some ty,t; € )\%c Thus %M is measurable with respect to the o-algebra
generated by these increments

or =0 ({B(t2) — B(t) : t1,t2 € A)3}) .

Using the independence of the increments of the Brownian motion, one concludes that

M M . o . .
o;), and oy, are independent as soon as condition (IV.4.2) is met and so the same holds

for &M and %™, Moreover, &0 .. & are independent when the following
condition is satisfied
A A =0foralll <i<l<n. (IV.4.3)

Jiyki

This leads to defining the following condition.

Definition IV.4.3. Let n > 2. We say Aj, &y, - - - » Aj, &, Satisfy condition (C)y) if (IV.4.3)
is satisfied.

From Remark , we know that (5JV;CM) aen 1s a family of identically distributed second
order Wiener chaos random variables. Moreover, &, 1, M, s Eg o M are independent as
SOON 88 Aj, kys - - - » Ajuk, Satisfies (Chr). The following proposition provides a lower bound

(independent of M) for the tail behavior of the random variable &

Proposition IV.4.4. Let M € N and y € R*. If M and y are large enough, then the
exists a deterministic constant c; > 0 (independent of M) such that

P <]5]V;CM| > y> > exp (—coy) (IV.4.4)
for all (j,k) e NxX Z

Proof. Fix y € RT (large enough). Our aim is to prove the existence of lower bound for
P (|8~,\M | > y) which is independent of M. To this end, we start by proving the following
lemma

Lemma IV.4.5. There exist three strictly positive deterministic constants Cy g, m,, Cy g1, m,

and Cy, g, g, such that for all (j,k) € N x Z and M > 2 one has

C\II i H22—j(H1+H2—1) <

—~ M ! —j(H1+H2—1)
Cjk HQ < C\P,Hl,H22

Hccj,kMH < C&k, - H227](H1+H271)Mmax{Hl,Hz}fl
2 2 2

Proof. Let us assume, w.l.o.g. that H; > H,. We define the functions

N T
Py (21, 22) '—>/ q’(x)/ fr, m,(8, 71, 29)ds d,
-N 0

N T
Dy ¢ (21, 22) '—>/ \If(x)/ fry.m,(8, T2, 71)ds dr,
-N 0
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and the symmetric function(]
1

By Remark |18/ we have, using the “Wiener isometry” E| [113, Section 5],

C/jjcMH2 = \/§CH1,H22_j(H1+H2_1) HCI)HL?(]M)
and thus it suffices to take
Cty, 1> = V2¢h, 11, 1Pl 2 -y vp2)
<IJ,H1,H2 = \/§CH1,H2 ||‘I>||L2((—OO,N]2)
Now, still using Remark |18 and “Wiener isometry” we have
Hévcj,kMHQ = V2cy, g, 27D 1]l L2,y
< V2ey, g, 277 Y 11l g2z, -
Also as
Ity = (=00, NJ*\ (=MN,NJ* C R x (—o00, ~MN]|_J (=00, ~MN] xR,
we write

2
22 s

= [ ][ v [t e -t s

=N

N . s 2
S/ (/ | W () (s —x1)y 2*(s—m2) 2dsdw) dzy dxy
I}\/f -N [O,ZL']
—MN N H -3 Hy—3 2
S// (/ |\I/(x)|/ (s =)L (s —mxa), 2dsdx) dzq dxsy
RJ—o0 -N [Orx]
—MN N _ - 2
+// (/ ]\I/(x)\/ (s—x1)y 2(s—x2)}" stdx) dxo dxy.
RJ—co -N 0.2]

Let us deal with the first term in the last sum, the second one can be treated similarly by
permuting the roles of H; and H, as well as x; and x5. As the function y — yHl*B‘/Q is
decreasing, one gets

~MN N o o 2
// (/ |\If(x)|/ (s—z1)y 2(s—x)} stdx) dxy dxy
R J—o0 -N [0,2]
—MN N
< (/ (—N . x1)2H1*3 dml) X / (/ ‘@(l‘)’ / (S — x2>f2—3/2 ds
—o0 R -N [0,x]

4The function ® is in the fact the symmetrization of ®;.
SFor f a symmetric function in L?(R?) , and I5(f) the second order Wiener-Itd integral of f. One has
E(In(£))? = 21IfllL2(re)-

2
dl’l dilfg

2
dx) dzxsy.
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Concerning the first integral, we have, as M > 2

—NM 2H, -3 1 2H, -2
/_m (=N = ) oy = o (VM = N
1

_ N2H1=2( 7 _ 1)2H1-2
2—2H, ( )

<c- M2

while, using again the “Wiener isometry”,

/]R (/_szv ¥ (@) /M (5 — )% d:c>2 ds

<ON W sup // (5 — @)% dg
R [J]0,z]

z€[—N,N]

=2N |V, sup E[|Buy, (z) = B, (0)]
z€[—N,N]

2
dl’g

<ON [ sup Oy (2™ <
z€[—N,N]

where By, denotes the fractional Brownian motion with parameter Hy. As a result, there
exists a positive constant C§, j, y, such that, as we suppose H; > Hs, one has

ch,kMH < Oy, g, 27 D L
2 b b
O

By Lemma [[V.4.5, one can remark that as M — +o0, (4" )a converges in L*(Q) to

the random variable
Cj k
Eip 1= —
Js 9—j(Hi+Ho—1)

with, for all M € N,

—~ M = M
gik — €k = Cejk

By Theorem [IV.3.12] there exists a constant ¢; > 0 such that, for all A\ € A and y sufficiently
large

P (lejel = y) = exp (—cry).
Then, for all M € N, we have, for all such A and y
P (151 2 v) 2 P ({51 = v} n {ICes™| < v})
> P ({lej4l — 1Cei0| = y} 0 {ICess™| < })
> P ({lejl = 20} 0 {ICes| < v})

> P (|einl = 29) — P ((ICei0™| > v)
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Using Lemma and Theorem one has

P(ICeis] > y) <P ((Cein™] >y |[Cess™ || (Ciy o) H—mestinitah)

*

< eXP(—C(OE:,Hl,HQ)_lMl_maX{Hl’HQ}y)'

Thus, if M is large enough, one has, as 1 — max{H;, Ho} > 0,
* 1
exp(—C(Cly )™ MUYy < L oy (~201y)

which gives that, for all large enough y, one gets

P (151 > y) > exp (—eay) (IV.4.5)
with ¢y := 2¢;. In the sequel, we will implicitly always consider such large enough M. [

In the following two subsections, Lemmata [[V.4.7] and [[V.4.10] follow the lines of Lem-
mata 3.6 and 3.8 in [8] respectively, with some subtle modifications as the authors in [§]
deal with A/(0, 1) random variables while, here, we focus on random variables in the second
order Wiener chaos that depend on the parameter M. For the sake of completeness and
clarity, we write the proofs in full details.

IV.4.1 Ordinary Points

In this section our aim is to prove the following proposition.

Proposition IV.4.6. There exists 27 C 2 with probability 1 such that for all w € 2} and
Lebesgue almost every t € (0,1) one has

dj (t, LU)
2-i(Hi+H>=1) Jog 5

lim sup
Jj——+oo

> 0. (IV.4.6)

To this end, as a first step, let us state the following lemma concerning the random
variable £,™. If A = \;;, is a dyadic interval and m € N, Sy, = S; . stands for the finite
set of cardinality 2™ whose elements are the dyadic intervals of scale j + m included in
Ajk, formally speaking

Sj,k,m = {)\ c Aj+m A C )\ng}

Lemma IV.4.7. There is a deterministic constant C' > 0 such that the following holds:
for all M € N and for allt € (0,1), there exists Q1 C Q with probability 1 such that for
all w € Q1 there are infinitely many j € N such that

max ’aM(w)’ > C'log j.
X' € S [logy (VM) |42
A€ 3)(t)
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Proof. Let us fix t € (0,1) and j € N. For any A € Sj;1)m, there exists a unique
decreasing finite sequence (I,,)o<n<m Of decreasing dyadic intervals in the sense of inclusion
such that Io = Ajx;), Im = A and I, € Sjg,1)n- Then, define the sequence (7,)1<n<m of
unique dyadic intervals such that I, ; = I,, UT,,. Note that for all 1 <n <m, T,, € 31,.
Moreover, as (I,,)o<n<m is decreasing, (1},)1<n<m are pairwisely disjoint. Furthermore, for
every n € {1,...,m}, there exist T}, = \j, x. € 51, |log, NM|+2 Such that

(kn—NM k’n—i-N)
b C T,
i i

As a consequence, the associated random variables <5TT’L ) are independent as the
1<n<m

dyadic intervals (7),)1<n<m satisfies condition (C)s) in Definition [IV.4.3] Next, for a con-
stant C' > 0 to be chosen later, we set

Eim(t) = {w € Q) : max ‘@M‘ > Clog(2m)}.

1<n<m

Note that, as the random variables (5}2 M) are independent,
1<n<m

P(Em(t) =1— f[xp ()g;M‘ < 01og(2m))

Recalling (IV.4.4]), and the fact that log(1 —z) < —z if z € (0,1), one gets, for m is large
enough,

P(&m(t) 21 — (1 — exp(—Cezlog(2m))™
Cea\ ™
i (1 (L) )
2m
>1 o
>1—exp m)oe
m1—002
:1—6Xp( 50 )
Finally, choosing C such that 0 < C'cy < 1, one obtain that

Y P (Ewan(t)) = +oo.

peN

Knowing that the events & o0 (t) are independent for all p € N, one concludes using
Borel-Cantelli Lemma that

P (hm sup 527n72m (t)) =1

m—-+00
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It follows that for a fixed t € R, almost surely, there are infinitely many j € N such that

max ‘&M(w)’ > Clogj.
'€ S\, logy NM|+2
A€ 3)\(t)

]

Concerning the “non-independent part” of the wavelet coefficients, one can state the
following Lemma.

Lemma IV.4.8. There is a deterministic constant C' > 0 such that, for all M € N and
for all't € (0,1), there exists Qo C Q with probability 1 such that for all w € €5 there
exists J € N such that, for all j > J,

max 55)\/M((,U)‘ < C/MmaX{H17H2}_1 logj
'€ S\, logy (NM) | +2
A€ 3)\;(t)

Proof. Let us fix t € (0,1). For any C’" > 0, for all j sufficiently large and A € 3);(t), we
have, by Theorem [[V.3.11}
P (3N € Sy jtog, margsz ¢ |Coxl| = CrMmesin Bt og 5)

< Z P (‘5&,\/]\4)‘ > O Mt o=l logj)

A'ES),|logg NM]+2

S Z P (‘56)‘,]\4‘ 2 C/(C‘szlaHz)_l||5€/\'M”L2(Q) 10gj>

NESK llogy NM|+2
<4NM eXp<_CC/(O\>£I,H1,H2)_1 log 5)
Thus, for ¢" > Cf, , g,/C, the conclusion follows by Borel-Cantelli Lemma. O

Proof of Proposition[IV.4.6 The constant C' and C’ of Lemmata [[V.4.7] and [[V.4.8| being
deterministic and independent of M, on can choose M large enough such that

O . C/MmaX{Hl,H2}*1 > 0.

Let us fix t € (0,1) and consider w € €1 N Q; 2, where the events, of probability 1,
and €2, are given by the same Lemmata. For all J € N, by Lemma [[V.4.7] there exist
g > Jand N(j) C 3X;(t) of scale j' = j + [log NM | + 2 such that

—~M

If J is large enough, we also have, for all such j > .J, by Lemma [[V.4.8]

ECA/(]‘)M(Q})) < O/Mmax{Hl,Hg}—lz—j/(HH-Hg—l) logj
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From this we deduce that

dj(t,w >|C)\/ j) )|
>

CC)\/ (W)’
>9- J'(H1+Hz—1) logj (C’ — C”MmaX{Hl,H2}_1)
ZQ—J'(H1+H2—1)(4NM)1—H1—H2 logj (C N C/Mmax{Hl,Hg}—l)

C)\/ ]) ‘ —

Therefore, (IV.4.6) holds true for all ¢ € (0,1) and w € Q;; N Q2. The conclusion follows
then from Fubini Theorem. O]

IV.4.2 Rapid Points

In this section our aim is to prove the following proposition.

Proposition IV.4.9. There exists 25 C Q with probability 1 such that, for all w € 3,
there exist t € (0,1) such that

dj (t, W)

M sup & =5+, 1)

Jj—+o0

> 0. (IV.4.7)

As in the previous subsection, we start by working with the random variables £,

Lemma IV.4.10. There exists a deterministic constant C' > 0 such that for all M there
is Qo C Q with probability 1 such that for all w € Qy there exist t € (0,1) such that

—~~—M

Ex (1) (w)‘
lim sup : > C. (IV.4.8)
j—+oo J

Proof Let us fix a € (0,1) and C' > 0 to be chosen later on. For every (j,I) € N x
{0,..., (27079 — 1}, we set

Si = {1129 /@NM)), . (1 + 1)[29/(2NM)] ~ 1}

and consider the event

Sl—{weQ max

J
kesM

oo (@) 2 Oj}

Let jo be the smallest integer such that [2%/(2NM)| > 1. If we assume that

=UN N e (IV.4.9)

J2jo j=J le{O ,,,,, [29(1=a) | _1}
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is an event of probability 1 and we consider w € €2;. For every 7 > jo, denote by

G (w) = (k c{0,...,27 1} g;jkM(w)\ > Cj) . (IV.4.10)
Moreover, for every n > jg, one considers
kE k+1
OM(w) := U UJM(w), where UJM(w) = U (E, 5 ) . (IV.4.11)
i>n kEGéw(w)

If one proves that O (w) is dense in (0, 1), then by Baire’s theorem the set N,,>;, 0 (w) is
non-empty and let t be an element of this set. Then for every n > jo, there is j > n such

that ’%M(w)‘ > (', and so desired statement ([V.4.8]) is true.
We still have to prove two points:

1. OM(w) is dense in (0,1).

n

2. )} is an event of probability 1.

Indeed, starting with statement 1, consider ¢ € (0,1), j > jo and k such that A\;(t) = ;.
Then, we have two cases:

Case 1 : There is [ € {0,...,|2/1=®| — 1} such that
ke{l[2Y],...,0+1)[2Y] -1}

Using (IV.4.9) and (TV.4.10), there is &’ € {1[2%9 /(2N M), ... (1+1)|29 /(2N M)| —
1} such that 2K’ NM € G;(w). Then, by (IV.4.11]),

INME 2NMK +1 u

which is at is at most 277 (|29 | + 2NM[2% /(2N M)]) from ¢t. Finally, we get that
t is at a distance at most 2271 of UJM(w).

Case 2 : k € {|270=2]|27¢] ... 2/ —1}. Again by ([V.4.9) and (IV.4.10), there is

k' € S}] such that 2k’ NM € G}'(w), and similarly, we get that ¢ is at a distance at
most ¢2/(¢=1) of UjM (w), for some constant ¢ > 0 depending only on N, M and a.

Finally, in both cases ¢ is at a distance at most ¢2/(*~Y and so the density follows.
Now for statement 2, in order to prove that €25 has a probability 1, it is enough to prove
that

P|c N EM (IV.4.12)
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is the general term of a convergent series, then the result follows by Borel-Cantelli Lemma.

Note that the variables smkM, ke S andle{0,...,[2/07] — 1}, are independent
because for every k # k', 2NMk — 2NMEK'| > 2NM and so Ay v N A v = 0.
Consequently, one has

P|C N &N
1{0,..., |20~ -1}

ARG

1fo,..., |20~ -1}

== H 1= H P (‘8j,2NMk ‘ < Cj)
1€{0,..., |27~ |-1} kesM
1209 enan ) 20T
=1 - (1= (1-P( > C)) )
<1 —exp (2]'(1%) log(1 — pj)) (IV.4.13)

where ¢ is a random variable belonging to the Wiener chaos of order 2 distributed according
to the (€x)xea and p; = (1 =P (le] > C))27/CNMI Remark that p; is a positive term
that tends to 0 as j — 4o00. Indeed, using the fact that log(l — x) < —zx if x € (0,1)
together with , there exists J € N such that for all j > J,

0<p;<(1—exp(—Cec2j)) (22 /exan)

20
<exp (— LQNMJ exp (—C ¢z j))
<exp (—C"exp (log2¥) exp (—C 3 j))
<exp (—C"expj(alog2 — C ¢3)) (IV.4.14)
where C” depends only on N, M and a and ¢y is the constant given in (IV.4.4]). It is

enough to choose C' such that alog2 — C ¢y > 0 to deduce that and so p; — 0 as j — +oo.
Similarly, one can get for all j > J

0 < 20079y, < exp (—C"expj(log2 — C cy))

which indeed shows that 2/(=%p, tends to 0 as j — +oo. Now, using the fact that
log(1 —x) = —x + o(z) and exp (z) = 1 + z + o(z) as x — 0, together with (IV.4.13) we
obtain that for all § > 0

PlcC N EN || <27 (6(p; + py) + ps + Opy)
1fo,...,[200-2) -1}

for 7 large enough. Using the upper bound in ([V.4.14)), one can finally conclude that
(IV.4.12)) is indeed the general term of a convergent series. O
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Concerning the random variable Cey, one can give an almost sure upper bound.

Lemma IV.4.11. There exists a deterministic constant C' > 0 such that for all M there
is Q2 C Q with probability 1 such that for all w € Q) there exist J € N such that, for all
g >J, forall\e Aj, A C[0,1],

‘5€AM(W)‘ < O/ L2}

Proof. 1f C" > 0, for all j sufficiently large, we have, by Theorem [[V.3.11

P (3)\ (- A )\ C 0 1 )Cg)\ ‘ > C«/Mmax{Hl Hy}— 1])
< 2 (‘C& \ > O i e} 1])
XeA; AC[0,1]

< exp(—C’C”(C’Cf,,Hh%)_lj)
and thus, if C" > log(2)Cy, y, ,/C, the conclusion follows by Borel-Cantelli Lemma. [

Proof of Proposition[IV.4.9. Again, one can choose M large enough such that

C — Oleax{Hl,Hg}—l > 07

where C' and C’ are the constant given by Lemmata |[[V.4.10| and [IV.4.11| respectively. Let
us consider w € QF := Qs N Q) where the evnets, of probability 1, Q5 and €, are giving
by the same Lemmata. We use the same notations as in them. First there exist ¢t € (0,1)
such that for all J € N there exist j > n such that

’mM(w)( > ¢ joiHitHa-1) (IV.4.15)
Moreover, if J is large enough, for all such j we also have
Con ™ (w)| < € sttt -ty it (IV.4.16)
In this case, as in we have that for all J great enough, there is 7 > J such that
d;(t,w) > 2" Jj(H1+Hy—1) (C O Nmax{Hi Ha}— 1)

and so one can conclude that (IV.4.7) holds true for all w € 3. n

IV.5 Proof of the main Theorem

Theorem is then a straightforward consequence of Propositions [[V.3.3] [V.3.16]
[V.3.26], [TV.4.6) and TV.4.9]
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Proof of Theorem[IV.1.7 Let us denote by Qg the event obtained by taking the intersec-
tion of all the events of probability 1 induced by Propositions [[V.3.3], [V.3.16], TV.3.26],
[V.4.6l and [V.4.9

If we consider w belonging to this event of probability 1, first, from Proposition [IV.3.3
there exists Cg > 0 such that, for all ¢, s € (0, 1)

|Ru, i, (t, w) — Ry, (s,w)| < Crlt — $|H1+H2’1 log |t — $|’1 (IV.5.1)

while, for almost every ¢, € (0,1), from Propositions [IV.3.16| and [[V.4.6|

R tO; - R 5
0 < limsup |y (fo, @) Hy Hy (8, W)|

< .
sty |to — s|itH2=1]oglog |t, — s| 71 oo

Nevertheless, from Proposition [[V.4.9 we also know that there exists ¢, € (0,1) such that

. |RH1 Hg(tr7w> _RHI Hz(svw”
0<l1 : :
lr;;stlrlp t, — s|HitH=1]og|t, — 5|71

which, combined with ([V.5.1)), gives that, for all such a t,,

R t’r‘a - R s
0 < limsup | HI’H2( w) H1,H2(5 w)|

< .
sot,  |tr — s|THH=1]og|t, — s|~1 oo

Moreover, from Proposition [IV.3.26] we also know that one can find ¢, € (0,1) such that

‘RHLHZ (tm w) — RH17H2<57 w)|

\to — 3|H1+H271 < +00.

lim sup
s—ts

The conclusion follows by Remark O

Remark 20. Unfortunately, our method does not allow us to affirm the positiveness of the

limit ([V.1.7)), at the opposite of limits (IV.1.5) and ([V.1.6). Indeed, as for almost every
w e
|RH1,H2 (tvw) — RH17H2 (S7w)|

‘t — 5’H1+H2—1

lim sup
s—t

is finite for some t, we would need to show its positiveness for all t and thus the positiveness

of the limit
dj (t, (JJ)

e (IV.5.2)

lim sup
Jj—+oo

for all ¢.

Concerning the random variables (é}\M )a, One can obtain a positive resultﬁ. Indeed, from
[53, Theorem 6.9 and Remark 6.10] we know that there exists an universal deterministic
constant v € [0,1) such that, for each random variable X in the Wiener chaos of order 2

1
P (11 < 511, ) <7

5This result is again a generalization of [8, Lemma 3.3.] where most of the modifications comes from
the fact that we are working in the Wiener chaos of order 2
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As 0 <~ < 1, of course, one can find ¢, € N such that
ylo <27t (IV.5.3)

Let us go back to the construction starting the proof of Lemma [[V.4.7 If the dyadic
interval A, and m € N are fixed and S € §; i, we define the sequences of dyadic intervals
(In)o<n<m and (T},)1<p<m in the same way: Iy = A, I, = S and, for all 1 < n < m,
I, 1= 1,UT,. Now, for any 1 < n < m, there are ¢, dyadic intervals ( =\ o k<e>)1<e<z0
in 57, |log,(toN ) +2 Such that, for all 1 < £ < 4

O NyM kO 4+ N o
9i) T 9l ="

and, if ¢ # ¢/, T*NTY = (. Therefore, the dyadic intervals (T* Vi<n<m.1<e<r, Satisfy
condition (CM) in Deﬁmtlon IV.4.3] From this, for all S € S;,, we define the Bernouilli

random variable
Bj,k,m(s) = H 1{|a’igM|<2_1C\p,H1,H2}

1<n<m,1<0<¢g

for which, by Proposition [[V.4.5] we have, using the independence of the random variables
(%{M)lgngm,lgegzm E[B;xm(S)] <™. Therefore, if we define the random variable

gj,k,m = Z Bj,k,m(s)

SESj7k,m

then E[G; 1] < (29%)™ and it follows from inequality (IV.5.3) and Fatou Lemma that

E [hmmfg]km} =0.

m——+00

As a consequence,

Q= ﬂ {w hmmfgjkm( ) =0}

JEN,0<k<2

is an event of probability 1.

Now if w € Q; and t € (0,1), we take j € N and k = k;(t) and since, for all m, G;x;)m
has values in {0,...,2™} we conclude that there are infinitely many m for which, for every
S € 8jk;t)ym» Bjkm(S) = 0. Considering such a m and S = ;i ,,(t) then we first remark
that, for all 1 <n <m, I, = A\j1,(t) and thus T, € 34, (t). Now, as B; jm(Aj+m(t)) =0,
one can find 1 <n <m and 1 < /¢ < /¢, such that

le7e ™ (w)| > 27 Cy pry a1,

Thus we have showed that, for all w € ; and ¢t € (0, 1) there exist infinitely many j" € N
such that
max ’é_;M(W)‘ 2 2710\1/’].[1’].[2.
'€ S 1og, (loN M) |+2
A€ 3Ni(t)

118



To pass to the wavelet leaders, in the spirit of Propositions [V.4.6] and TV.4.9] we would
need to get from Borel-Cantelli Lemma an upper bound of

max )55,\/M(w))
N € S\, [logy (0N M) | +2
A€ 3N (1)
for all j sufficiently large on an event of probability 1 which does not depend on ¢. Then,
as

Pl3xeA;, AC[0,1] : max ’CNg/\,M(w)’ > ¢/ pmax{H a1
N e S),[log, (o N M) | +2
N e 3\

< 2146,N M exp(—CC'(CY 1, 1) ),

if C' > log(2)Cy y, m,/C this probability is the general term of some convergent series and
in this case one can affirm the existence of an event (2] of probability 1 such that, for all
w € Q) there exist J € N such that, for all j > J, for all A € A;, A C [0,1],

max ‘CN€A1M((A}>‘ < C/MmaX{Hl’HQ}_lj.
N € S [log, (loN M) | +2
N e 3\
It seems to be the sharper upper bound that we can hope to find with our constraints and
the fact that we don’t have any independence property to take advantage of when dealing
with the random variables Cey™. This is insufficient to consider properly limit (I[V.5.2)).
Nevertheless, if, instead of working with an uniform constant M we make it depends on
1 *

the scale j by setting M; = (4C’C\Ij}Hthj)1—max{H1’H2}, where C" > 1og(2)Cy, g, 5, /C is the
same constant as in Lemma [[V.4.11}

AMJ__}/<—JVJ\4’J~k;+Nr

wk 21 7 2
/ N ztk
CAJ,;CM;‘ = cyym, /M_ / U(x) . fr, w0, (8,1, ) ds dx dB(xy) dB(x2)
i /=N 2%
and
Cojr™ = i — 3"

then Proposition stills holds if we replace M by M; with j sufficiently large and, by
directly adapting what precedes one can find on event €2} of probability 1 such that, for
all w € Qf and ¢ € (0,1) there exist infinitely many j € N such thatf]

/ max ’é}Mﬂ' (w)‘ > 27'Cy 1y 1,
A€ 53 logy (loN M;) | +2
A€ 3)(t)

. —~ M; 5 . . .
"The random variables £x,"7 and Cey i are defined in an obvious way.
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while there exist J € N such that, for all j > J, for all A € A;; A C [0, 1],

max ‘56,\/Mj <W)‘ < C/(Mj)maX{HLHQ}_lj
Ne S)\’,Llog2(€0NMj)J+2
N oe 3\

<4 'Cyy n,

As a consequence, as in Proposition [[V.4.6] for all J € N there exist j > J with

1-Hy—H

dj (t, w) > Q—j(HH-Hz—l)(40/0‘1771[{17H2j) 1—max{1H1,1212*} <4€ON)1_H1_H24_1C\1/,H1,H2
which allows to state that, for all ¢ € (0,1) and w € Qy,

) di(t,w
lim sup G )lerHQ > 0
j=+o0 9=j(HitHa—1) j Tomax{ 1, 137

, and thus, for all w € ) and for all ¢t € (0,1),

|RH17H2 <t7w) — RH17H2<S7W)| <> 0.

lim sup e
s—t |t — 8|H1+H2—1(10g |t _ S|_1) l1—max{H{,Ho}

In particular, we find an almost sure uniform lower modulus of continuity for the general-
ized Rosenblatt process, similar to the one established in [57] for the Rosenblatt process.
However, we are not able to judge the optimality of this modulus, which seems to be a
difficult problem, as already stated in [0, Remark 1.2].

An interesting corollary of Remark 20 and Proposition is the fact that, almost
surely, the pointwise Holder exponent of the generalized Rosenblatt process is everywhere
H, + Hs — 1 and, in particular, it is nowhere differentiable.

Similarly, one can also take (M; = (40/0\5,11{1,1{2 log(j)m)j, where C” is this
time the same constant that in Lemma and show, precisely like in this Lemma,
that there exists a deterministic constant C’ > 0 such that, for all ¢ € (0,1) there exists
;2 C Q with probability 1 such that for all w € €, 5 there exist J € N such that, for all
=,

/ max Cey i (w)‘ <4'Cy . 1,
A€ S, logy (loN M;) | +2
A€ 3)(t)

and conclude in the same way that there exists an event of probability 1 such that, for all
w in this event and for almost every ¢t € (0, 1)

R t — R
lim sup LTNAGED) Hl’H2<S’Ci),|H1,H2 > 0.

st |t — g|HitHa=1(log log |t — s|~1) Tomext7r 2T
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Chapter V

Potential methods and projection
theorems for macroscopic Hausdorff
dimension

The content of this chapter is a copy of the paper entitled “Potential methods and pro-
jection theorems for macroscopic Hausdorff dimension”, written with ”Stéphane Seuret”,
and to be submitted soon.

V.1 Introduction

Fractal geometry provides a general framework for studying sets possessing either irregular
or self-reproducing (deterministic or random, self-similar or self-affine) properties. Most
definitions of fractal dimensions of sets included in R? are based on the local properties
(also known as microscopic) of the set. Taking into consideration that many statistical
physics models are built on discrete spaces, Barlow and Taylor [12], [I1] introduced a new
notion of dimension to study unbounded ” fractal-like” sets on discrete space. This so-called
macroscopic Hausdorff dimension (see Definition below) has proved to be useful in
quantifying the behavior at infinity of several objects, beyond the transient range of random
walks in Z? which was the original motivation of Barlow and Taylor in [12].

Macroscopic Hausdorff dimension is actually defined for every set (not only discrete) in
R? [12]. Tt is a discrete analog of Hausdorff dimension, and the word macroscopic comes
from the fact that this dimension ignores the local structure of the sets. At the same
time, the macroscopic Hausdorff dimension assesses the asymptotic behavior at infinity of
the sets, so it is very relevant when one is interested in the description of infinite objects,
how they fill the space "at large scale”. The macroscopic Hausdorff dimension was a
key tool used by Xiao et Zheng [132] in studying the range of a random walk in random
environment. It is related to [61] where Khoshnevisan and Xiao are concerned with the
macroscopic geometry of other random sets. In [59], Khoshnevisan, Kim and Xiao found
out a multifractal behavior for the macroscopic dimension of tall peaks of solutions to
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stochastic PDEs. Georgiou et el [46] solved Barlow and Taylor question [12, Problem,
p. 145] by qualifying the range of an arbitrary transient random walk. The macroscopic
Hausdorff dimension was also useful for studying the large scale structure of sojourn sets
associated to the Brownian motion [105], the fractional Brownian motion [87, 28], and the
Rosenblatt process [29].

In this paper we are interested in building various methods for estimating the macro-
scopic Hausdorff dimension. Recalling the fact that macroscopic Hausdorff dimension is
a discrete analog of the Hausdorff dimension, we start by stating the estimating methods
used for the Hausdorff dimension. In most cases, when estimating the Hausdorff dimension
of a set F, the difficult part consists in finding a suitable lower bound for dimg (F"). Vari-
ous methods exist to find lower bounds for the standard Hausdorff dimension, and it is a
natural question to ask whether these methods have their counterparts for the macroscopic
Hausdorff dimension. The two usual techniques are the mass distribution principle and
the potential theoretic method.

The mass distribution principle, see for instance [38, page 67], states that if a set
F C R? and a Borel finite measure u are such that pu(F) = 1 and u(B(x,7)) < Cr® for
every * € R% and r > 0, then the s-dimensional Hausdorff measure H*(F) is larger than
u(F)/C, and so F has at least Hausdorff dimension s.

The potential theoretic method is based on an integral analysis: if for some probability

measure p, u(F) = 1 and the integral // dplx)dnly)
R9)2 ||$ - y||2

least Hausdorff dimension s. In addition to boundlng the Hausdorff dimension from below,
the potential theoretic method plays a key role in proving the projection theorem.

is finite, then again F' has at

The first aim of this paper is to establish similar results for the macroscopic Hausdorff
dimension. This happens to be very easy for the mass distribution principle, and follows
essentially from previous works. It is much more challenging for the potential theoretic
method, and a careful analysis is needed.

As an application of the new potential theoretic method, we obtain a Marstrand-like
projection theorem, describing the dimension of almost all projections on lines of sets
F € R2. Dealing with the dimensions of projections of Borel sets is a line of research that
has a long history. It started with the investigation by Marstrand [77] of the projection
theorem associated to the Hausdorff dimension. He dealt with orthogonal projections on
linear subspaces and proved that

for every Borel set £ C R?, dimg(proj, F) = min{dimgF, 1}

for almost every 1-dimensional subspaces V', where proj,, denotes the orthogonal projection
onto V and dimy E denotes the Hausdorff dimension of E. Afterwards Marstrand’s results
was proved by Kaufman but using potential theoretic methods [56]. Subsequently in 1975
Mattila extended these results to Borel sets £ C R™ and almost all V' in the Grassmannian
G(n,m)[78]. We prove analog results for the macroscopic Hausdorff dimension, using the
potential theory method we developed above.
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V.2 Definitions and statements of the results

Here and in the reset of the paper, let (R%|.||,) be the d-dimensional Euclidean space
equipped with the L2- norm.

V.2.1 The macroscopic Hausdorff dimension

For # € R? and r > 0, B(x,r) denotes the Euclidean ball with center z and radius r. For
E C R% the diameter of a set E is denoted by |E]|.

Let us recall the definition of the Barlow-Taylor macroscopic Hausdorff dimension
Dimy (E) of a set E C R? developed in [11], 12].

Define, for all integer n € N, the n-th shell of R¢ by

So = B(0,1) and S, := B(0,2")\ B(0,2"1) for all n > 1. (V.2.1)

Like the standard Hausdorff dimension, the macroscopic Hausdorff dimension Dimy (E)
aims at describing how a set F can be efficiently covered by balls. Since Dimy is concerned
only with large scale behaviors, Barlow and Taylor proposed to study the covers of the
intersections E' N .S, by balls, for every n € N, and the balls used to cover the sets £ N .S,
will all be of diameter at least 1. Again this is justified by the fact that this dimension is
supposed to describe discrete sets (so small balls are not relevant).

To this end, let us introduce, for £ C R%, the set of covers of E restricted to S, defined
by

Co(E) = {{B(zi,r)}l, - meN, 2, € S,, 73> 1, ENS, C Ur, Bla,mi)} .

Finally, for s > 0 and n € N, set

7 (E) = inf {Z (;—n> . {B; = B(as,r)}", € CNn(E)} . (V.2.2)

=1

Observe that v is sub-additive, i.e. 75(AU B) < v3(A) 4+ v:5(B) for every sets A and
B, but is not a measure (because of the constraints on 7;).

=1

Definition V.2.1. When 73 (E) = Y " (;—2) and EN S, c U, B(z;,1;), the finite
family of balls {B; = B(x;,r;)},~, is called an s-optimal cover of E N S,,.

The existence of optimal covers is not guaranteed. We will deal with this issue in

Section [V.3]

We are now ready to define the Barlow-Taylor macroscopic Hausdorff dimension.
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Definition V.2.2. For every s > 0 and £ C R?, define

7(E) =Y 7i(E).

n>1
The macroscopic Hausdorff dimension of £ C R? is defined by

Dimg (E) =inf {s > 0: v*(E) < +o0}. (V.2.3)

One easily checks that Dimg (E) € [0, d] for all E C RY, that Dimg (F) = 0 when E is
bounded, and that an alternative definition for Dimy (E) is

Dimpy (F) =sup{s > 0: v*(E) = +o0},

where sup) = 0 by convention. It is also standard that Dimgy (f(E)) < Dimyg (E) for
every Lipschitz mapping f : RY — R

A key ingredient when working with the standard Hausdorff dimension is the existence
of s-sets, i.e. sets £ C R? with Hausdorff dimension dimy(F) = s and such that its

s-Hausdorff measure H*(E) is finite. We introduce a similar notion for the macroscopic
Hausdorft dimension.

Definition V.2.3. Let s > 0. A set E C R%is called a macroscopic s-set when Dimy (E) =
s and V¥ (F) < 400.

We prove the existence of macroscopic s-sets.

Theorem V.2.4. Let E C R? be such that 7*(E) = +oc. Then there exists a macroscopic
s-set B such that £ C E.

This extraction theorem is a key ingredient at various places in our proofs.

V.2.2 Methods to find lower bounds for Dimy (F)

For every set B and every measure j, i3 stands for the restriction of o on B, i.e. pyp(A) =

w(ANB).

As recalled above, the mass distribution principle is a powerful, albeit simple, tool
allowing to find a lower bound of the Hausdorff dimension by considering measures sup-
ported on the set, see [38], page 67]. We prove a similar result for the macroscopic Hausdorff
dimension Dimy.

Proposition V.2.5 (Macroscopic mass distribution principle). Let E be a Borel subset of
R? and s > 0. Suppose that there exists a Radon measure p on R? such that p(E) = +oo

and a constant ¢ > 0 such that for alln e N , x € S, and 1 <r < 2",
r\S
s, (Bla,m) < e (5:)

E
> s, (E)
C

Then, for alln € N, V3(E) and Dimyg (E) > s.
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The proof of the macroscopic mass distribution principle is not complicated. Although
it was not exactly stated before as we write it, it essentially follows directly from previous
results, and so it is not so innovative.

This is not the case for the potential method below. Let us first introduce the macro-
scopic s-energy of a measure.

Definition V.2.6. Let s > 0, and let x be a finite mass distribution on R?. The macro-
scopic (i, s)-potential at a point z is defined as

¢ﬂ@?=é;—i%gL—- (V.2.4)

a e =ylyv1

The macroscopic s-energy of u is

W= [ epinte //R“Hx—yuwy)l (v:25)

In the case of standard Hausdorff dimension, in the integrals (V.2.4)) and (V.2.5)), the
quantity ||z —y||; V 1 is simply |z — y||5. This modification is justified by the fact that
Dimy is not concerned with local behavior, so we are not interested in small interactions
[z —ylly <1.

Theorem V.2.7. Let E be a subset of RY.

1. If there exists a Radon measure p on R? such that u(E) = +oo and if

22n813<u|5n) < 400,

n>0

then v°(E) = +oo and Dimy (E) > s.

2. If v*(E) = +oo0, then for all 0 < & < s there exists a Radon measure pif on R? such
that p°(E) = 400 and Z 2”(S’E)Is,g(uf5n) < 400.

n>0

The potential theoretic methods we demonstrated in Theorem are very compa-
rable to the ones established for the standard Hausdorff dimension [38, Theorem 4.13].
Unlike the standard Hausdorff dimension case, for the macroscopic Hausdorff dimension,
we consider the measure y is define on RY, and we focus on the restriction of x on every
annulus .S,,. For this reason, we deal with sums over n.

V.2.3 Application to projections

Projection theorems for Hausdorff dimensions have recently regained a lot of attention
after some breakthroughs by M. Hochman and P. Shmerkin [47] and others, who used
these theorems to tackle many longstanding questions in geometric measure theory and
dynamical systems. It is quite satisfactory that they have natural counterparts in terms of
macroscopic Hausdorff dimensions, as stated in the following theorem.
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Theorem V.2.8. Let E C R? be a Borel set. Define Ly as the straight line passing through
0 with angle 6, and projyE as the orthogonal projection of E onto Ly.

(a) If Dimy (E) < 1, then Dimy (proj,E) = Dimg (E) for Lebesgue almost every 0 €
[0, 7].

(b) If Dimy (E) > 1, then Dimy (proj,E') = 1 for Lebesgue almost every 0 € [0, ).

As in the standard Hausdorff dimension case, the proof is based on a subtle use of the
potential method and Theorem

It can be expected that Theorem can be extended in higher dimensional spaces,
and that both Theorem [V.2.7] and Theorem [V.2.8] are useful in other situations that the

one we describe here.

The structure of the paper is as follows. The main three results, Theorems [V.2.4]
V.2.7 and [V.2.§ are established in Sections [V.4] [V.5] and [V.6| respectively. Some necessary
technical properties of the macroscopic Hausdorff dimension are proved in Section [V.3]

V.3 First properties of Macroscopic Hausdorff Dimen-
sion

V.3.1 An alternative definition for the macroscopic Hausdorff
dimension

We will use an alternative, easier to handle with, definition for the macroscopic Hausdorff
dimension, based on a simple modification of the v} quantities. We restrict ourselves to
covers centered on integer points, with integer radii. We show that, up to a constants, this
does not modify the values of the quantities involved in the computations, and the value
of the macroscopic Hausdorff dimension is left unchanged.

We introduce for £ C R% and n > 0, the set of proper covers of E restricted to S, by
Co(E) = {{B(zi,r)}, : meN, z; €Z°NS,, r; e N, ENS,, Cc UL, Blwi, )}
Definition V.3.1. For every s > 0, n > 0 and £ C R, define

V3 (E) = inf {Z (;—n> (B = Bl r)}", € Cn(E)} (V.3.1)

=1

and

VI(E)=> vi(E). (V.3.2)
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Due to the fact that the x; are (multi)-integers, as well as the r;, the above infimum

(V.3.1) in v2(E) is reached for some cover {B; = B(x;,r;)} i, € Co(E).

Observe that v} is still sub-additive, i.e. (AU B) < v3(A) + v;(B) for every sets A
and B.

Lemma V.3.2. For every n > 0, every set E C R?, one has

7(E) < vi(E) < (24 Vd)*'U3(E). (V.3.3)

n

In particular, one still has

Dimpy (E) =inf{s > 0: v*(F) < 400} =sup{s > 0: v*(F) = +o0}. (V.3.4)

Proof. The fact that C,(E) C C,(E) implies directly that Us(E) <vi(E).

Now, let { B(Z;, 7))}~ € 5n(E) Each ball B(Z;, ;) is included in a ball B(x;, fi—{—\/a),
where z; € Z*N E,. So {B (:L‘Z', T + \/ﬂ)}ni € Cn(F), and using that [ﬂ + \/ﬂ <
7 +vVd+1 < (24 Vd)7; (since 7 > 1), one h;:

(45 sy (5)-

i=1 =1

This holds for any cover {B(&;, 7))}, € Co(E), so vi(E) < (2 + Vd)*7:(E). O
Lemma shows in particular that the convergence/divergence properties of v*(E)

and v°(F) are identical.

The main advantage of dealing with v*(FE) is the existence of optimal proper s-covers,
ie. covers {B; = B(z;,r;)}~, € C,(E) such that v3(E) = Y ", <£> . These optimal

2n
covers exists because x; and r; are positive integers.

In our further analysis, the size of the balls of optimal covers will matter, justifying the
following definition.

Definition V.3.3. For F C Z%, n € N and 0 < s < d, define

T
B2(E) := max {1n<1a<x 2—; . (B(zi,r;))t_, is an s-optimal proper cover of E N Sn} :
ISP

The quantity 52 (FE) will be important, in particular for Theorem about potential
methods and for the projection Theorem [V.2.8]
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V.3.2 Some preliminary results

We first prove two propositions that will be needed later.
Proposition V.3.4. Let u, be a Borel measure on S,, E C R? be a Borel set and 0 <

¢ < +oo be a constant.

B
a) If Iv%%}f% <c forallz € ENS,, then v,(E) > o

n (B(z,
b) U%ﬁ{f% > ¢ forallz € ENS,, then v, (E) < .

Proof. a) Let {B(z;,7;)}~, € C,(E). Foreach 1 <i < m, there exists y; € B(x;,;)NENS,
such that B(z;,7;) C B(y;,2r;), so

tin(B(zi, 7)) < pin(Blys, 212)) < ¢ (22—:) _ 28 (L)

Then,
m m T’Z s
(BN S <3 i(Blasrs)) <2 Y (55
=1 =1

which is true for all covers {B(z;,7;)};~, € C,(E). Finally, taking the infimum over all
elements of C,(FE), one gets

pin(E) = pn(E 0 S,) < 2’0 (E).
b) Consider the family of balls

B, = {B(x,r) cxeEnS,, re{l,2,..,2"} and p,(B(z,r)) > ¢ (2%>3}

Then
ENS, C U B(z,r).

B(z,r)eB,

Now, we invoke the following 5r-covering Lemma [37, Lemma 4.8].

Lemma V.3.5. Let B be a family of balls in RN and suppose that supgczd(B) < .
Then there exists a countable sub-family of disjoint balls By of B such that

U BclsB.

BeB i€By
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Using the previous lemma, there exists a finite family (B; = B(z;,7;))i=1,..m of disjoint
balls, all elements of B,,, such that (Jgz.z B C U;~; 5B;. The finiteness of the family comes
from the boundedness of S,, and the fact that the balls all have a diameter greater than 1.
Up to a small translation of each z; by a vector of length at most \/C_Z/ 2, one can assume
that x; € Z% and that

U Bc U5B (a: {rﬁf/ﬂ)

BeBn

With the translations that we added, some balls B € B,, may intersect, but this does not
affect our argument.

Using the definition of v} (F), one finally gets
m (5 Fri + \/c_Z/Q-‘ ’ m
s < rr ' s
HIHESY T < (Ge+VA2)' Y (5)

((2+f/2 i (2+\/_/2))

=1

n(STL)J

where the last equality comes from the disjointness of the B;’s. O]

The following proposition guarantees that given a measure p on a set F/, there exists a
smaller set F' C E such that the measure p has a controlled local scaling behavior on F'.

Proposition V.3.6. Let E C R? be a Borel set. Then, for every 0 < s < d there exists a
constant ¢s > 0 (depending only on s) and a set ) # F C E such that for everyn > 1,

(a) zvp(E) < v (F) < vy (E)

(b) v:(FNB(z,r)) <cs (L

sforallerdﬂSn andr > 1.
2n

Proof. Let E C R? and set for every n > 1

_ 1, iy (BN Bz, 7)) .
F, = { €ENS, : ma > 5(5(2 + Vd/2)) }

Using Proposition (b) applied to the set F,, and the measure pu,(A) = vi(E N A),
one gets

pa(Fn) < (5(2+ Vd/2))°571 (2 + Vd/2) " pn(S,) = %M(E)-

Then p,(E\ F,) > 2 (E), i.e. as soon as ENS, is not empty, (E'\ F,,) NS, # 0. Finally,

the set ' = U E \ F, satisfies the two conditions mentioned above, with the constant
n>0

=5(5(2+Vd/2))’. O
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V.3.3 Proof of the mass distribution principle : Proposition
V.2.5

For n € N, let {B(x;,r;)}", € Co(E), then
m m rl s
ps, (BN Sn) < s, (UB i, 1) > < Z;MSH(B(%H)) <c). (27> .

i=1

Taking infimum over all proper covers {B(x;,r;)}i-, € Cp(E), one gets

/’I’|Sn (E m Sn)

. <V (E).

S
— n

E E
Then 7°(FE) > Lnzo s, (E) = HE) = 400 and so Dimy (E) > s.
c c

Observe that the same proof works if 5n(E) and V2(FE) are replaced respectively by
Cn(E) and vi(E).

V.4 Subsets of finite macroscopic measure

In this section, we prove a stronger version than Theorem [V.2.4] more precisely:

Theorem V.4.1. Let E C R? such that v*(E) = +00. Then there exists a macroscopic
s-set E such that E C E and lim,_, SUPseo,q B (E E)=0.

Observe that we can either work with 7® or v*, since (V*(E) < +0) < (V*(E) < +0).
We choose to work with v*, and in this case 83 (F) is defined without ambiguity.

We start with three technical lemmas, that will later help us extract a macroscopic
s-set and prove the projection theorem.

Lemma V.4.2. Let (an)n>1 be a bounded sequence of positive real numbers, such that

+oo +oo a +00 a
. n n
nEIfoo A, = g 1 ap = +oo. For every e > 0, g 1 Aire < 400 and E A_n = +00.
= n= =

This is a standard exercise, we prove it for completness.

Andy An g
Proof. Let € > 0. For n > 2 and € > 0, one has /A e > / Aie A1+e Then,

11 _1/1 1 /A”dx>z": Y% th Z o
P — - = O ¢ sums are unirorm
SAi = ¢\ A A% A, rlte — A1+a Al—}—a Yy

A
dx
bounded and the series converges. Similarly, In(A4,) — In(4;) = / ’ E A
k1
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Since A,, — +00 as n — 400, the series Z
k=2

A, ~ A,_; and the series Z % diverges. O
— Ay

A diverges. Also, since (a,) is bounded,
k—1

Lemma V.4.3. Let (a,),>1 be a positive sequence converging to zero, (by)n>1 be a bounded
sequence of positive real numbers, such that ) ., a,b, = +0o. Then, there exists a se-
quence (¢y)n>1 such that:

1. either ¢, =b,, orc, =0,

2. Y n>1 OnCn = +00,

8. D pmy Uy < +00.

Proof. We assume without loss of generality that 0 < a,,b, < 1 for every n, and that
(an)nen 1s a non-increasing sequence.

For j > 0,letuscall D; = {n >0:27"1 <q, <277} and B; = ZneDj b,. We call
d; = max(D;), which is finite since a,, = 0. Observe that the integer sets D; are arranged
in increasing order: d; + 1 = min(D;4,). Also, one has

—ZQJB <Zann:ZZanb <22

n>0 Jj=0 neD;
so that Z;;Og 277B; = +o0.
We put n; =0, j1 =1, and ¢, = 0 for every n € Dy U D;.

Remark that 3 -, anby, > 1/23 7, 277 Bj = +o0.

Let us call ny the first integer n such that >3, a,b, > 1/2. Observing that for
n>d; + 1, ab, <271 one necessarily has 1/2 < Zn dy 41 Anbn < 1.

We call j, the unique integer such that n, € D;,, and we put ¢, = b, for every
n € {d+1,...,n2}, and ¢, = 0 for every n € {ny + 1, ...,d;,}. By construction,

1/2 < i Zancn<1.

Jj=j1+1nebD;

We iterate the construction. Assume that we have built two finite sequences of integers
(ng)k=1,...p and (jr)g=1,. p such that:

1. fork=1,...,p—1, jgt1 > jr, and for k =1,...,p, ni, € D;,

2. fork=1,...,p,c, =b,iftne{d;, ,+1,...,n},and ¢, =0if n € {n, +1,....d;,},
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3. for k =1,...,p, one has

J(k+1) Z > anc, <2/ (V.4.1)

Jj=jk—1t1neD;

Let us call n,; the first integer such that ZZ”; +1 @by > 1/(p +2). Observing that
forn > d, + 1, a,b, <2797 < 1/(p+1) (since j, > p), one necessarily has 1/(p + 2) <
S 1 anby < 1/(p+2) +1/(p+1) < 2/(p+1).

We call j,i1 the unique integer such that n,.; € D; .., and we put ¢, = b, for every
n € {d,+1,...n41}, and ¢, = 0 for every n € {n,41 +1,...,d;,., }. Clearly, these n,,
and Jp41 satisfy the recurrence properties.

Now, gathering the information, we deduce by (V.4.1)) that

Zancn Z Z Zancn>21//{+1

n>0 k=1 j=jr-1+1neD;

and, using that a, < 2~ 9when n > Dj, and that j,_; > k —1,

+oo Jk +0oo Jk
S =Y S Yaacy ¥ 2T e

n>0 k=1 j=Jr—1+1 nEDj k=1 j=jg—1+1 nGDj
+00
<> 2 (k+1) < +oo.
k=1
This concludes the proof. O

The same lines of computations can certainly be adapted to impose ano Ay Cp = 400
and ) o h(an)c, < +oo for any map h: RT — R™ such that h(z) = o(z) when z — 0*.

As a first step toward Theorem[V.4.1] we reduce the problem to sets that can be covered
by small sets only.

Proposition V.4.4. Let E C R? such that I/S(E) = +oo Then, there exists a set E C E
such that v*(E) = 400 and 1imy,_, o SUp,cpo q B4 (E) =

Proof. 1t is an application of Lemma [V.4.2]
Call A, =>}_, vi(F) and «a,, = A;'. By assumption, o, — 0 when n — +o0.

For every n > 1, S,, can be covered by at most 2, balls of diameter ma/?. Call A,
such a family of sets. One obviously has

vi(E) < ) wi(ENA)



Thus there must exist A, € A, such that v3(F N A,) > a,v;(EF). Then one defines the
set F/ as B
E=|JEnA,

By Lemma [V.4.2]
Z Vi (E) > Z vi(ENA,) > Z vy (E) = +o0.

n>0 n>0 n>0
Now, it is clear that for every n, |E NS, < 2y 4 s0 by Definition , for every t > 0
BL(E) < ay/".

Actually, this implies more: necessarily V;i(E') <o In particular, BZ(E) — 0asn —

+00 uniformly in ¢.

]

Finally, we prove Theorem [V.4.1]

Proof. Let E be such that v*(E) = +oc. By Proposition [V.4.4 one also assumes that
limy, 4 o0 SUP,e(o g B (F) = 0. This fact will not be used in this proof only, but will be key
in the next section.
Observe that since for every n v (FE) < 1, then A, := Z vi(E) < n.
k=0

The idea consists in replacing E by a set E such that VS(E') ~ byvi(E), such that

n

> ns1 Vn(E) < 400 but by, is "as large as possible”. Lemma [V.4.2| helps to build such a
sequence.

First, for every € > 0, denote by

: vi(E)
B =y A
k>n k

By Lemma [V.4.2] one knows that BS — 0 as n — oo, for every ¢ > 0.

We build iteratively a non-increasing sequence (€,,),>0 C RT, and a sequence of integers
(nk)kzl-

1
Consider n; as the smallest positive integer such that B, < 1 and set ¢, = % for all
0<n<n,.

Next we proceed by induction to build (&,),>0 and (ng)k>1.

Assume that n; < ng < ... <n, are defined.
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Define ny;1 as the smallest integer such that

1

1
+2
2P <

n, < npyq and Byl < > (V.4.2)
1 .
Put g, = ) for all n, < n < ny,yq. Finally, let
b, = min {1/2, (4,)"+=)} (V.4.3)

Then by construction of €,, one has:
(i) €, — 0 as n — +o0,

1
(i) By (V.4.2), and the fact that B2~ <

any )< Z A1+En - Z vl

1
n=0 n>0 """ n=>0 A:L+2 k>1 n=ng+1 A711+ 2kt
ni VS E 1 ni ]/5 E 1
< n(é ) ZBT%:-H < n( §) + Z 5 < 400 (V 4 5)
n=0 An k>1 o (An)? =1

Next, we construct a set E C E such that for all n € N , one has
Vs (E) = buvs(E)| <27,

To achieve this, observe that by (V.2.1)), S, contains a finite number of lattice points, and
denote by M,, 4 their cardinality. These points are denote by x; for i € {1,..., M, 4}.

Consider the following function:

gn:{0,1,..., M, 4} — RF
m— v, (UEO B(z;, 1)) :
i=1

where g,(0) = 0 by convention. It is clear that g, is non-decreasing, and ranges from 0
to v, (E). Moreover, for all m € {1,..., M, 4 — 1}, if {B(y;,r;)}]_, is an s-optimal cover

m m+1
of U E N B(x;,1), then {(B(y], i))i—y s B(Tmt1, 1)} is a proper cover of U EnNB(x;,1)
i=1 i=1

(not necessarily optimal). Using these two covers, one gets

gn(m +1) = gn(m) < (Ep: (;—])+ 21> —zp: (;—J) <2,

Jj= Jj=1

Hence, g, has only small increments.
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Recalling (V.4.3), 0 = ¢,(0) < b,v3(E) < vi(E) = gn(My4), so there must exist an
integer m,, € {1,..., M, 4} such that

buvy(E) < gn(my) < byvp(E) + 277
Put

E,=|JEnB(;,1) and E = | J E,. (V.4.6)
i=1 n>0
Then by construction, ECE , and for all n € N one has

bovs(E) < vi(E) < by (E)+ 27",
And so, by (V.4.5),
VI(E) =Y Vi(E) <) (bavs(E) +27™) < +o0.

n>0 n>0

To complete the proof, it is enough to show that for all ¢ > 0, v»*"°(F) = +oo. To this
end, fix ¢ > 0, and let (B(x;,7;));~, be an optimal (s — ¢)-cover of ENS,, and assume
that for this specific cover, 857¢(E) is reached, i.e. there exists i € {1,...,m} such that
r; = 2"357¢(E). In particular, v3¢(E) > (85°(E))*.

One sees that

m

i (B =Y (5) =

=1 7

NE

(52)" - BB = (B E) = wa(B). (VAT

Il
—

Two cases are separated.

v (E)
Ap

On the one hand, if 575(E) < ¢ , then (V.4.7) yields

v (B) > (“(‘E))/ V(E) > (Q‘E))/ b 2(B) (V.48)

a(E)'* _ vi(E)

n n

14+en— - 1+en— :
An+8 e/s An-i-a e/s

v

where the fact that v (E) < 1 has been used in the last step.

~ S E
On the other hand, if 857¢(F) > ¢ Vf;(l )

, one has

(A(EN _ vi(E)
A,}L—&‘/S A%L_S/S :
Finally, using the fact that ¢, — 0 together with the lower bounds (V.4.8)) and (V.4.9)),

~ s(E s(E
one gets that for every large n, v37¢(FE) > % By Lemma [V.4.2] Z % = +00,
n n>0 n

vy (E) > (B °(E) < >

(V.4.9)

hence v*~5(E) =3, o, VTSL*E(E) = +o00.
This holds for every € > 0, so Dimy (E) = s. O



V.5 Potential Methods

V.5.1 First part of Theorem [V.2.7

Consider E C R?, and assume that there exists a Radon measure p on R? such that
u(E) = +oo and ZZ”SIS(M‘Sn) < 4o00. We prove that v*(E) = +oo, which implies that

n>0

v*(E) = +o0 and Dimy (F) > s.
For n € N, we write j,, = fs,, and define

Zn = / —dun<€) and E, =<x € ENS, : max Bn APAL,T)) (Br(x; r) <1
re [T —yll3 V1 =t (5)

M > 1. One has

(55)
Zn(m):/ dpn(y) >/B ditn(y)  _ fin (B2, 72)) . 1

re |t —yloV1I ™ Jpee lz—yllav1 = rs ons’

T

For every x € E¢, there exists an integer r, such that

1
Then I(pn,) > or, (w)dpn () > s tn(Ey), which implies that
Eg

ZM”(EZ> < Z2nsls(ﬂn) < +0o0.

n>0 n>0

But as EN S, = £, U ES and Zun(E N S,) = +oo, then Zun(En) = +00. Moreover,
n>0 n>0

by Proposition |V.3.4] a), one has v:(E,) > % Finally, v*(E) = 3, oo vn(En) = 400

which gives that Dimy (E) > s.

V.5.2 Second part of Theorem [V.2.7

This is the most delicate part. Assume now that 7°(F) = 400, and fix 0 < & < s.

Our goal is to build a Radon measure u¢ on R? such that u(E) = +oo and Z 2”(5’5)IS,E(M|ES") <
n>0
+00. We are going to build each measure p;, = I, -

For this, we use the results we previously proved.

By Theorem[V.4.1], there exists a macroscopic s-set F; C E such that lim,,_, SUPseo,q B (E1) =
0, Dimg (E;) = s and v*(E) = +o0.
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Consider an optimal (s — §)-cover {B(z;,7;)}i, of E1 N S,. One sees that

£

~rE) s (3) ()

=1
T T 5% s—%
>3 (5) =i,
=1

where we used that 85 7/*(Ey) > ;—; Recalling that Dimg (E;) = s, it follows that
D (B E) T () = oo

n>

£

(B:(Ev)) v 2 (By) = (B/(Ey))

NE

3

Setting a, = ( 7‘(;_5/2(El)>Z and b, = I/Z_%(El), one then sees that the sequences

(@n)n>1 and (b,),>1 satisfies the assumptions of Lemma [V.4.3] Consider the sequence
(¢n)n>1 given by this Lemma, and define the set Ey C E; as follows: for every n > 1,

e if ¢, =0, then E,NS, =0,
e if ¢, =b,, then EsNS, = E;NS,.

It is immediate from the construction and Lemma that ¢, = Vi 2(EQ) and

S (AR ) v E ) = oo
and 37 (3735 iE () < o0 (V.5.1)

Finally, by Proposition [V.3.6], there exists () # E3 C Fy C E such that for all n € N,

4 ¢ s_E %
gl/n 2(E12) < vn 2(E3) <, Q(EQ) (V52)
and vy 2(EyN B(,r)) < o s (2%)_ (V.5.3)

for all z € S,, N Z% and r > 1.

£

Define the measures u5(A) := (ﬂzf%(El)> ! I/TS;%(E;), N A). Then by our construction
and (V.5.2)), one has

S E(ENS) =) (ﬁff% (El)) : ve % (E)

4

25 Z <BZ_;(E1)>Z VZ_%(E2) = +00.

n>0
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We are left to prove that

2271(5—6)[8_6(#;) — ZZn(s—E) /Rd e = (x)dps () < 400

n>0 n>0

c dus
i) = [ )
s llz=ylly = V1
Every y € S, belongs to the ball B(z,2"™'). For 1 < r < 2" denote by m:(r) =

15 (B(z,r)). By (V.5.3), one has
mS(r) = (W(El))f‘ vn ® (B3N B(z,7)) < ¢, (623(E1))i (1)55 (V54

2n+1

Using the fact that B(z,2"t!) = U B(x,r)\ B(x,r — 1), one has

r=1

For x € S, one can write

2n+1

= JB@\Ba— lr—ylly V1

B+ Y A

= J B \B@r-1) |7 =yl

One the one hand, by (V5.2), 15 (B(z, 1)) < ¢ <Bn 3(E ))Z 9-7(>=%). On the other hand,

2n+1

Z/ dus, (y)
S—€&
= JB@m\BE—1) |7 =yl
2n+1

_Z/ = dme (1)

1
ant r

— > ([t“m;(t)}:l + (s —¢) / _1t551m2(t)dt>

<eos (BR(E ) ““”Z( 2+ (s—e) / T t%-ldt)
r—1

gcs_;( 5) </Bfl_%( ) 9 nls= )Ti:l (rz —(r—1)2)

<O (B (m)) " 2,

for some constant C. So

€ €

o) S e (A7) 2 0 (7)) 2 < 6 () 2
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Moving to the integral, one gets

4

ecli) = [ ot o) < € (3177 (B) 277 ().

Finally, recalling (V.5.1), (V.5.2), (V.5.3) and the definition of yuZ, one has

ZQnS oo (15) <CZ</671 1) 1 (E3)

n>0 n>0

< O (B7HE)) W (B < oo

n>0

as desired.

V.6 Projection of a Set

In this section we are considering the orthogonal projection of sets in R? and we aim at
proving the projection Theorem for the macroscopic Hausdorff dimension.

Let us introduce some notations.

For every 6 € [0, 27], call ey = (cos 8, sin ) the vector with angle 6, and Ly the straight
line in R? with angle  passing through the origin.

Then, recall that projs : R? — Ly is the orthogonal projection onto Lg.

V.6.1 Case where Dimy (F) > 1

Let us start by proving item b) of Theorem [V.2.8, assuming that item a) is proved.
Consider E C R? with Dimy (E) > 1.

By Theorem , for every p > 2, there exists E,, C E such that Dimy (E,) = 1—1/p.
For each set E,, by item a), there exists a set ©, C [0, 7] of full Lebesgue measure such
that for every 6 € ©,, Dimy (projo(E,)) = 1 — 1/p. In particular, this implies that
Dimy (proje(E)) > 1 —1/p.

Consider now the set © = [ 5, ©,. The above arguments show that © is still of full
Lebesgue measure in [0, 7], and that for every 0 € ©, Dimy (projg(F)) > 1. Since obviously
Dimy (projg(E)) is always less than 1 (since it is included in Lgy), the result follows.

V.6.2 First extractions when Dimy (F) < 1

Fix a set £ C R? with 0 < Dimg (F) = s < 1. The rest of the section is devoted to prove
that Dimpy (proj,E) = Dimy (E) for almost every 6 € [0, 7].
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Writing Ly = {\ep : A € R}, we can define the n-th shells inside Ly as S¢ = {v =
(z,y) € Ly : ||v]|2 € [2771,2"]}. Identifying Ly with R, the results we obtained before in
dimension 1 apply to Ly and S?.

We are going to project 2-dimensional measures onto the lines Ly. For this, let us define
for every n > 0 the cylinders

C? .= proj, ' S?. (V.6.1)
We are going to prove that for every 0 < ¢ < s, the set
Os_. ={0 € [0, 7] : Dimpy (projs(E)) > s —¢} (V.6.2)

has full Lebesgue measure. The conclusion then follows using the same argument as the
one used to prove item b). More precisely, from the properties above, © := ﬂp>1 Os—1/p
has full Lebesgue measure, and for every § € ©, Dimy (projs(£)) > s. But since projy is a
Lipschitz mapping, Dimy (projg(F)) < s = Dimy (F). Finally one gets Dimy (proj,F) =
Dimpy (E) for almost all 6 € [0, 7).

Fix 0 <e <s.
Applying Theorem |V.2.7(2), there exists a Borel measure p supported by E such that

Y i (ENS,) = +oo, (V.6.3)
n>0
and 22"(3’5)15,5(%) < 400, (V.6.4)
n>0

where 4 is a simplified notation for Wis,, - Observe that in fact, via the finer Theorem
and Proposition |V.4.4) we can impose that lim, . x5 (ENS,) =0

We need to impose an additional condition on p°, namely that

> 2 (ENS,) (ZQ’“ EﬂSk><+oo. (V.6.5)

n>0

This is achieved thanks to the following lemma.

Lemma V.6.1. Let (ay)n>1 and (by)n>1 be two positive sequences converging to zero, such
that anl a, = 400 and ZnZl anb, = +00. There ezists a sequence (c,)n>1 such that:

1. either ¢, = a,, or c, =0,
2' ZnZl Cn = +OO,

3. Zn21 Cnby < +00.
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Proof. Again, without loss of generality, we assume that 0 < a,,b, < 1. Let us call
Dj={n>0:27"1<b, <279} for j > 0.

Put ¢, = 0 for every n € Dy U Dl, and ng =0, jo = 1.

We know that .-, ZneD = 4o00. We go through each D, in increasing or-
der. Consider the first couple (nl,jl) such that n; € D, and Zﬂ 1Zn€Dj anb, +
ZneDme anb, > 1/2. Put ¢, = a, for all n € UJ1 S D;U{n € D, : n < ni}, and

¢, =0forallne{ne D, :n>ni}. By our choice,

1
1/2<Zchb —JIZ:Zanb+ Z anb, < 1.
Jj=0 neD; Jj=2 neD; neD;, ,n<ny

We then iterate the process: assume that we have built two finite sequences of integers
(ng)k=1,..p and (jg)g=1,. p such that
1. fork=1,...,p—1, jyp1 > ji, and for k =1,...,p, ni, € D;,
2. fork=1,...,p,c, =a, ifn € U?'“:Ei,l D;U{n € D, :n <ng}, and ¢, = 0 for all
n € {n € Dj :n>n}.

3. for k =1,...,p, one has

i > enby < 278 (V.6.6)

Jj=Jjk—1n€D;

We know that >°.-. 1>, cp, @by = +00. Consider the first couple (np11, jpi1) such
ipi1—1 _

that n,., € D; ., and Z;”fj; 2 nep; nbn + 2 nep, - anb, > 2-®t) . Put ¢, = a,

for all n € UJ”+1 'D;u{ne D . :n<ny,},and ¢, =0forallne{neD;,  :n>

npt+1}. Then, since for all the selected integers n, a,b, < 2~ It < 27 p+1), m ) holds
true.

n<ngpy1

Collecting the information, on one hand one has by (V.6.6)
Jk
YSUTIED S S SRTAED SERPREe
n>0 k>1 j=Jr—1 nGDj k>1

On the other hand, since jy > k + 1, one sees that for each n € D; for j € {jy_1,...Jx},

b, < 27% so again by ,
U DB S SIS SEUD BID SPTIED SEEEES

n>0 k>1 j=jr—1 neD; k>1 J=Jjk—1 n€D; k>1

hence the result. O
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Setting a,, = us (F), then (a,),>o tends to zero when n tends to infinity. Define then

b, =2"" i 2k ay.
k=0

Since Y ;2% ~ 2" (b,)ns0 is a generalized Caesaro mean associated with the sequence
(@n)n>0, and converges to zero when n tends to infinity.

So either }_ -, anb, < +o0, and ( is true, or » - anb, = +00 and we are
exactly in the situation of Lemma [V.6.1] m there exists a sequence (¢, ),>1 such that:

1. either ¢, = a,, or ¢, =0,
2. 2@1 Cp = +00,
3. anl cnb, < 400.

Setting E = Uns0:a,—c, £ N Sn, by construction one has pE(E) = Y n>1Cn = +00, and
since p2(E N Sg) = e < ag, = pE(E N Sy), one has

> 2 (ENS,) (sz EﬂSk>§chbn<+oo,

n>0 n>1

hence ([V.6.5)) is obtained for E. This property will be used at the very end of the proof of
Proposition only. It is obvious that if Theorem [V.2.8|is proved for this smaller set
E, it is also true for the original set.

Finally, observe that, replacing E by U, >0 EN Son o1 U, >0 EN Sont1, ONE can assume
in addition to (V.6.3), (|V 6.4) and (V.6.5) that

if Sn 7é (Z), then Sn—l = Sn—i—l = @ (V67)

To resume this section, we have proved that the original set E contains a subset, still
denoted by E for simplification, and a measure p° supported by E such that (V.6.3)),
(v.6.4), (V.6.5) and (V.6.7) simultaneously hold.

V.6.3 Final proof of item a) of Theorem [V.2.8

Consider the set E obtained after extraction above. For all 8 € [0, 7], k > n and A C Ly,
we focus on the restriction of uf on CY

(15) 100 (A) := p5,({x € EN Sy« projyz € ANSLY),

Equivalently for each non-negative function f, one has

S 0 () = / f(co)dii ().

NSy

+o0

where z.eyp denotes the scalar product. Since ey is unitary, we identify x.ey with projyz,
the orthogonal projection of x onto Ly.
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Definition V.6.2. The projected measure ;5 is defined as p*? = Zn21 psf where

= (1) e (V.6.8)

k>n

Note that each p&? is a measure supported on proj,E N S?.

We are going to prove that for almost all 8 € [0, 7],

Zu (projyE) = +o00 and 22”(3’5)13,5(/12’9) < 0. (V.6.9)

n>0 n>0

for almost all # € [0, 7]. Then item a) of Theorem will allow us to conclude that the
set O4_. defined by ([V.6.2) has full Lebesgue measure, as announced.

This is the purpose of the next two propositions.

Proposition V.6.3. For every 0 € [0, 7],
1= (projy E) = +o0. (V.6.10)

Proof. This simply follows from the observation that

p (projgB) = > ui (projeB) = Y Y (ui)ics(B) = > pin(E) = +00,

n>0 n>0 k>n n>0

since the union of the (CY),>; cover R? (there are small overlaps (their borders) between
the C?). Hence the result. O

So the first part of (V.6.9) is proved.

Let us move to the second part. Observe that even if = (proj,E) = +00, it is likely that
projyE has dimension less than Dimpy (E). A trivial example is when the s-dimensional
set F is included in a straight line of angle ¢ passing through 0, and 6 = ¢ + 7/2.

Proposition V.6.4. One has

]E0 227135 . s s@)

n>0

< fo0. (V.6.11)

Proof. Remark that if (V.6.11)) is proved, then ) -, 2= [ (us?) < +oo for Lebesgue
almost every 6 € [0, 7], so ([V.6.9) and item a) of Theorem are proved.
We start with the following lemma.

Lemma V.6.5. There exists a constant Cy > 0 such that the following holds. Let x € Sk
for some k > 0. For all 0 < n < k, the set J,, = {0 € [0,7] : © € Cl} is an interval
modulo 7, and |Jy | < Co2" ",
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Proof. The fact that J, j is an interval is obvious.

Let © = (u,v) € Sk. We study the case where x; > 0, the case z; < 0 being symmetric.
Using polar coordinates, one has x = (rcosfp,rsinfy) for some 2k=1 < y < 2% and
b € -5 Then the projection of x on Ly is given by:

27 5]
projgx = (rcos(f — ) cos 8, r cos(f — by) sin ).

Recall , one sees that for 0 < n <k,

e C? = 2" <rcos(f —f) < 2"

n—1 on
< cos(f — y) < min {1, —}
r r

2n—1 2n
~— 0 ¢ {90 + arccos ( " ) , 0o + arccos (min{l,?})} mod 7.

The Taylor development arccos(y) = 5 —y+o(y) together with the fact that 2F~1 < < 2%
yields that |.J, .| = 2"7%(1 + o(1)). O

—

From the proof, it also follows that |.J,,| ~ C2"~* when n/k is quite small.

Let us study (V.6.11)). One has

Eo | 2n(5_5)fs—a(ﬂf;9)]
n>0
/ Z 2n(s—a)[85<ui,9)] o
Ln>0
- [[gree [ [ wt s,
[n>0 s !u—vls 6v1
dus(z) dut
/ Z 271(5 €) Z / / ,uk(x) 1 (%) »
Ln=>0 4,k>n ENS;NCY J ENS,NCY |$ ceg— Y- €9|s cv 1
1 + 2_[2

where

]1:/; ZQ”Z// d“’“%?jﬁf%J df

| n>0 k>n ENS;NCY)?
I = /W ZQ” Y / dpr(x) dpsly) |
2 - .
0 >0 k>g>n Y ENS;NCY J ENS,nCY ’(93 - y) : €9|576 V1
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Starting with I;, one has

L [ B e ]

| >0 k>n ENSyNCY)?

= / e p3 // - ]109 )fji(f)vldum)dui(y)] a0

L n>0

1 G(QZ ]lce (y)
=3 one) / / / < dodyis,(z) d
Z (BS,)? y) €9|8 EVE /’Lk( ) /’l’k(y)

n>0

<ZQ"S 5 Z// |:/7r ]lxng(g)]lyECfL(e) d9:| d,ui:(l') Cj/j}(y) ’
ENSi)? LJo Ty - €0]*™¢ |z —yll; " V1

n>0 k>n

where 7,_, is the unit vector in the direction of 2 —y. By Lemma [V.6.5, when z € Sy one
has ]leCZ (9) = ]L]nw (0) Then

[ AaOl®),, | i
0 |Tx—y - eg|* e JneNJn.y ‘COS(Tx/fya\ee)lsfe

By Lemma the interval J,, , N J,, has length smaller than Cyp2"~"*. So the integral

above is taken over an interval of length at most Cy2"~*. Moreover, as s < 1, the integral

reaches its largest value when 6 close to g Thus

T g—l—Co?"_k Co2n—F
/ ]1mecz(9)]1yecg(9)d0§/ do </ do _ (o(nk)(1-ste)
O a

| Ty - €a]** = _gpan—r |CoS(0)[*7° T _cpons |07 B

(V.6.12)
where C' > 0 is some positive constant. Then going back to I; and using [V.6.12] one gets

dpsj, () dpi (y)
[1 < C 2n s—e 2 n—k)(l—s+e) // E\T k\Y
2.7 i T 9T V1

n>0 k>n

=YY ket / / dpi(z) dpg (y)

n>0 k>n Bnsy? ||z —yll5 V1

dps, () dp;, (y)
=C 2n(s+€ 1) 2k // n n
2 Z ns2 e —ylla " V1

n>0

< QC’Z on(s—e IS,E(MZ) < +00,

n>0

which is finite by ([V.6.4)).

145



Moving to I, the same manipulations as above for [; yield

T dug () dps(y)
I — / 2n s—€) / / J d@
? 0 Z Z ENS;nCY J ENS,nC? [(z —y)-egls=V1

L n>0 k>j>n

_ /0 i ZQM 9% /OS [mk 11xce_ 1C€9Tf_)6dM2(x)duj(y)] do

Ln>0 k>j>n
n>0 k>j>n Y ENS; JENS, L0 [Ty - €0]*~ |z —ylly

As before, by Lemma | Tzl < 2% and |J;,| < 2777 for all z € Sp N CY and
y € S;NCY). Then, as k > j + 1, the same argument as in (V.6.12) yields

/7r ]lmeCz (Q)Hyec;‘{ (0)
0

|Te—y - €o]*™=

dh < C2n=P=ste), (V.6.13)

for some C' > 0.

Next, we make use of equation (V.6.7)) : indeed, it is not possible that x5 and p5,, are
simultaneously non-zero. Hence, for € Sy, and y € S; such that j < k and x5 and pg, not
both equal to zero, then necessarly |k — j| > 2 and 272 < ||z — y||, < 2¥"'. This implies
in particular that

dyi,(x) d
/ / pi(@ MJ( ) < ok W(E N Sy) 1(EN S;), (V.6.14)
ens; Jens, [lz =yl

the inequality being in fact close to be sharp.
Finally, combining ([V.6.14) and (V.6.13))), one gets that for some C’ > 0,

I, < ' 2n(s—€) 2(n—k)(1—s+5)2—k(s—6) S(EN Sk SENS.:
K /’Lj J

n>0 k>j>n

=C'y 2" Y 2R (E N S ps(E N Sk)

n>0 k>j>n

:dZ(iT)ui(EmS > 27Fu(ENSy)

Jj20 \n=0 k>n+1
<O 2 (ENSy) Y 27 (BN Sy)
n>0 k>n+1
<Oy 2 EﬂS)(ZQkuk(EﬂSk)>.
n>0 k=0

This last double sum is finite, because the set E was chosen so that (V.6.5) holds true.
This concludes the proof. O
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