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Abstract

Many materials and structures consist of numerous slender struts or fibers. Due to the manufacturing processes of
different types of struts and the growth processes of natural fibers, their mechanical response frequently fluctuates
from strut to strut, as well as locally within each strut. In associated mechanical models each strut is often represented
by a string of beam elements, since the use of conventional 3D finite elements renders the simulations computationally
inefficient. The parameter input fields of each string of beam elements are ideally such that the local fluctuations
and fluctuations between individual strings of beam elements are accurately captured. The goal of this study is
to capture these fluctuations in several intercorrelated bounded random fields. Two formulations to describe the
intercorrelations between each random field, as well as the case without any intercorrelation, are investigated. As
only a few sets of input fields are available (due to time constraints of the supposed experimental techniques), the
identification of the random fields’ parameters is ill-posed. A probabilistic identification approach based on Bayes’
theorem is employed to treat the ill-posedness, as well as the involved uncertainties.

Keywords: Bayesian inference, Intercorrelated random fields, Copula, Intrinsic coregionalization model,
Semiparametric latent factor model, Beams

1. Introduction

Many materials and structures consist of numerous slender struts or fibers. Associated mechanical models fre-
quently employ a string of beam elements to represent each strut [1] or fiber [2]. Often, the geometry of each strut
or fiber is somewhat different (e.g. struts in open-cell metal foams [1] and metal printed lattices [3] due to the
manufacturing processes, and fibers in flora [4] and fauna [5] due to the growth processes). In this study, these5

variations are treated in five intercorrelated random fields that are used as the spatially varying parameter fields of
the beam representation. The aim is to identify the parameters of the intercorrelated random input fields, given that
only a few strut geometries are known, so that not only the reaction forces and reaction moments, varying between
struts, but also the spatially fluctuating center line displacements are properly captured. Because the experimental
characterization of strut geometries is typically time-consuming, only a few geometries are considered. This makes10

the identification problem ill-posed and introduces substantial uncertainties. This is treated in this contribution with
Bayesian inference.

The framework presented in this contribution is an extension of the authors’ former study [6] in which Bayesian
inference was used to identify the parameters of a single random field. Similar as in the present study, the random
field description is bounded, so that bounds of physical quantities are incorporated. The current contribution extends15

the previous one to several random fields with mutual correlations. Consequently, the parameters to be identified
are the parameters of a univariate probability density function for each random field, the parameters governing the
spatial correlations, as well as the parameters that define the correlation between the fields. Once these parameters
are identified, realizations from the random fields can be used as input fields for forward problems (which is not
considered in this contribution).20
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Gaussian processes and copula theory. This study heavily relies on the concept of Gaussian processes/fields (GPs)i.
GPs are well-known and the related theories are covered in classical text books [7–10]. Also in the field of mechanics,
GPs are regularly utilized [11–14].

Simply stated, a GP is a generalization of a multivariate Gaussian distribution over an infinite-dimensional
function space [8]. This implies that any finite-dimensional realization of a GP is a multivariate Gaussian distribution25

with a given mean and covariance matrix. As the univariate marginal probability density functions (PDFs) in GPs
are Gaussian distributions (with the same mean and variance), they are strictly speaking not applicable to many
physical problems, because physical quantities are often bounded (e.g. Young’s modulus is positive). This issue can
be avoided by combining GPs with the copula theory in order to create a random field with bounds [15, 16].

According to the copula theory [17], one can write the dependency between several random variables independent30

of their univariate marginal distributions. A copula function achieves this by combining the marginal univariate
cumulative distribution function (CDF) of each random value and producing a joint multivariate distribution function.
Using the copula theorem a multivariate Gaussian distribution can be written as a combination of univariate Gaussian
distributions linked with each other through a Gaussian copula [18]. The Gaussian copula then only dictates the
dependency/correlation structure. This implies that the marginal univariate Gaussian distribution of a GP can be35

replaced by a non-Gaussian one, yielding a joint distribution with a Gaussian correlation structure and a non-Gaussian
(e.g. bounded) univariate marginal distribution.

This logic is employed by Jaimungal and Ng [15] to create kernel-based copula processes where kernel functions
[7] are employed to describe the covariance between pairs of random variables. The general definition of a copula
process is given by Wilson and Ghahramani [16] who have not limited themselves to the Gaussian copula. Rappel40

et al. [6] used the same concept to bound a random field of effective Young’s moduli in polycrystalline materials.

Multi-output Gaussian processes. In the current contribution, five parameter fields are simultaneously considered.
The first and most simplistic approach would be to consider each parameter field as an independent random pro-
cess/field. However, this may lead to the loss of information, as the fields may be mutually correlated.

Multi-output Gaussian processes (MOGPs) are used to model dependencies between outputs in a wide variety45

of fields: geostatistics [19, 20], machine learning [21–25], emulation of computer codes/models (simulation codes)
[26–29] as well as numerical predictions of physical systems [30, 31]. Ardent et al. [32] have furthermore employed
multiple response (multi-output) systems to improve the identifiability of calibration parameters based on the fact
that multiple responses can provide additional information if the responses depend on the same set of calibration
parameters. They have used the multi-output Gaussian process as a surrogate model that represents the computer50

model. Ardent et al. [32] have demonstrated the capabilities of the framework to describe the deflection of a simply
supported beam [13] where the quantities of interest were the center line displacement and the strain in center of
the beam. MOGPs are also employed by Richardson et al. [33], who have used MOGP regression to forecast the
degradation of batteries. Extensive reviews on MOGPs are given in [34] and [35].

The aforementioned studies generally use MOGPs for nonparametric regression and data prediction. However, in55

the current contribution they are used to describe (bounded) fields of geometrical and mechanical parameters with
spatial correlations as well as correlation between the different fields.

Bayesian parameter identification. The Bayesian paradigm is employed in the current contribution to identify the
parameters of the random fields/PDFs. A probabilistic framework based on Bayesian inference (BI) makes it possible
to quantify the modeling uncertainties of the identified parameters. In this paradigm the user’s a-priori knowledge60

about the parameters, which is represented by a probability distribution, is updated by observations through Bayes’
theorem (formula).

Numerous studies in mechanics have used the concept of Bayesian inference for parameter identification. Some
examples are the works of Isenberg [36], Alvin [37], Beck and Katafygiotis [38], Marwala and Sibusiso [39], Gogu et
al. [40], Lai and Ip [41], Daghia et al. [42], Nichols et al. [43] and Gogu et al. [44] for elasticity, the studies of Most65

[45], Rappel et al. [14, 46], Zhang et al. [47] and Zhang and Needleman [48] for elastoplasticity and plasticity the
studies of Muto and Beck [49], Liu and Au [50], Fitzenz et al. [51], Hernandez et al. [52] and Rappel et al. [53] for
other material descriptions involving dissipation. The paradigm is furthermore employed by Rappel and Beex [54]
to identify material parameter distributions/PDFs with a limited number of observations. Similarly, Mohamedou et
al. [55] have employed BI for the identification of the resin’s Young’s modulus in non-aligned short fiber composites.70

Furthermore, frameworks based on BI and GP are provided by Koutsourelakis to identify spatially varying
parameters for perfect plasticity [56] and elasticity [57]. The framework in [56] is based on a representation of GPs

iNote that in this contribution a random field is a stochastic process in (Euclidean) space and using the term ‘field’ or ‘process’ will
not change our definitions.
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in terms of basis functions [9]. Alternatively, [57] applies BI directly on the finite element (FE) discretization in
which the stiffness tensor (i.e the spatially varying properties) is constant within each finite element. Hence, the
components of the element-wise tensors are the random variables of the posterior (i.e. the number of dimensions of75

the posterior scales with the number of FEs). Another study in which BI is used to identify spatially varying material
properties is the one of Uribe et al. [58] in which BI is employed for the identification of a hydraulic conductivity
field, represented as a GP with a Karhunen-Loève expansion. Vigliotti et al. [59] have furthermore employed BI
to identify spatially fluctuating fields of Young’s moduli and Poisson’s ratios. In their work the parameter fields
are modeled using B-splines. Model selection is employed to select the order of the B-splines. The framework of80

Rappel et al. [6] furthermore employs copula Gaussian process and BI to identify the spatially varying homogenized
Young’s modulus field of a columnar polycrystalline material. Savvas et al. [60] have proposed a Bayesian framework
to identify the parameters fields of apparent material properties of two-phase composites.

Outlook. The remainder of this paper is organized as follows. Section 2 discusses the general concept of this study
in more detail from a mechanics point of view. Section 3 presents the mechanical models employed in this study.85

In Section 4 we briefly discuss the essential theoretical concepts to model the input fields as random fields. Section
5 provides a concise description of Bayesian inference. Section 6 presents the identification of the random fields
employed using the concepts discussed in Section 4. In Section 7 we discuss the result of this study and finally
conclusions are presented in Section 8.

2. The approach in a nutshell90

This short section describes the main workflow in simple words. The starting assumption is that (slightly varying)
geometries of six struts are accurately known (left column in Fig. 1(a)). Accurate material descriptions for these
struts (isotropic linear elasticity), including the associated parameter values, are also assumed to be available. Five
types of virtual experiments are performed on these six struts using (computationally expensive) simulations with
conventional 3D hexahedral finite elements (FEs). Consequently, the center line displacements and rotations, as well95

as the reaction forces and moments of these struts are predicted for five types of applied deformations. Note that
different deformation modes are applied, as each strut is exposed to an unknown combination of axial elongation,
axial torsion and bending around different axes in the forward simulations (not considered in this contribution).

After the results of the FE simulations are computed and processed, the same fluctuating center line displacements
are to be predicted by the beam representation of each strut; a string of perfectly aligned beam elements. This is100

accomplished by deterministically identifying five input fields for the beam representation, independently for each
of these six struts (remainder of Fig. 1(a)). This deterministic identification problem of a least squares type is
tackled with a conjugate gradient framework that minimizes the difference between the locally fluctuating center line
displacements of the accurate simulations and the beam simulations.

After the five input fields of the beam representation for each of the six struts are deterministically identified, the105

probabilistic part of this contribution commences (Fig. 1(b)). Each set of five input fields is considered to be a single
realization of a random field/process (in practice a multivariate PDF) and the (uncertainties of the) parameters of
this random field/process are identified using Bayesian inference. Each field is assumed to be a Gaussian-copula field
so that bounds of the parameters are incorporated. The intercorrelations between these fields are modeled by three
different formulations and the probabilistic identification is performed separately for each formulation (see Sections110

4 and 6).
Finally, the approach is verified (Fig. 1(c)). This is accomplished by first generating another 994 strut geome-

tries and virtually exposing them to the five deformation modes with the FE simulations using hexahedral finite
elements (left in Fig. 1(c)). On the other hand, nr sets of five input fields are generated from the identified ran-
dom fields/processes and used as parameter fields for the beam simulations (right in Fig. 1(c)). This is repeated115

three times; for the three different formulations to describe the intercorrelation between the fields (not shown in
Fig. 1(c)). The center line displacements of the FE simulations are compared with the center line displacements of
the beam simulations in order to compare the abilities and inabilities of the three different methods of describing the
intercorrelation between the fields.

Note that in the current contribution, the geometries are artificially generated so that not only six struts can120

virtually be tested, but many more. This enables a comparison between the beam results (employing the random
field descriptions) and the results of numerous FE simulations using 3D hexahedral finite elements to accurately
describe the strut geometries.
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Step 1: deterministic identification of six sets of input fields
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Step 2: modeling and Bayesian identification of intercorrelated random fields
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Figure 1: Illustration of the general concept of the study. (a) Step 1: deterministic identification of six sets of input fields. 1st column: five
deformation modes are applied to a detailed FE model of each strut. 2nd column: center line displacements and rotations are extracted
from the FE results. 5th column: the input fields of the beam simulations for the same applied deformation modes (4th column) are to
be identified such that the center line results of the beam model (3rd column) are the same as those of the FE simulations (2nd column).
(b) Step 2: the description of the intercorrelated random fields with bounds and the probabilistic identification of their parameters. Left
colum: each of the six combinations of five input fields (identified in Step 1) is considered to be a realization from an intercorrelated random
field with bounds. 2nd column: three random field formulations are investigated (all three come with bounds and spatial correlations, but
the intercorrelation varies). 3rd column: the posterior distribution is formulated for each of these three random field models according to
Bayes’ theorem. 4th column: The Metropolis algorithm with an adaptive proposal distribution is used to numerically sample the posterior
(i.e. to evaluate statistical summaries such as the mean, MAP and correlation of the random fields’ parameters).
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Step 3: verification
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Continued Figure 1: (c) Step 3: verification. 1st column: 994 new struts are generated and each is exposed to the same five deformation
modes using FE simulations. 2nd column: the center line displacements and rotations are extracted from the FE results. 5th column: com-
binations of five input fields for the beam representations are sampled from the identified posterior distributions. 4th column: the input
fields are used in beam simulations in which the beam representations are exposed to the same five deformation modes. 3th column: the
center line displacements and rotations are harvested from the beam simulation results. Comparison: the center line displacements and
rotations predicted by the FE simulations and the beam simulations are probabilistically compared to each other.

3. Mechanical simulations

In this section, the two types of linear elastic mechanical simulations are discussed. The first type of simulations125

(from here onwards referred to as ‘finite element simulations’ or ‘FE simulations’) uses hexahedral (eight-node) finite
elements in order to accurately represent the spatially fluctuating geometries. These simulations are used to assess
the ‘accurate’ mechanical responses of each strut geometry. In the first subsection the finite element approach of
this type of simulation is discussed, whereas the artificial generation of the fluctuating geometries, together with the
mesh generation and the applied deformations, is discussed in the second subsection.130

The second type of mechanical simulations uses a string (i.e. series) of Euler-Bernoulli beam elements to describe
the mechanical responses. These beam simulations are discussed in the third subsection (and also in Appendix A
of [61]). The input parameters of each beam element are to be identified such that the beam responses match the
responses predicted by the FE simulations. To this end, the input parameters of each beam element are considered as
(deterministic) variables in a least-squares problem that is solved using the conjugate gradient method. The fourth135

subsection therefore discusses the adjoint method (see e.g. [62, 63]) to efficiently evaluate the beam simulation’s
gradient with respect to the input parameters.

3.1. Finite element simulations

The accurate FE simulations employ 3D trilinear hexahedral (i.e. eight-node) finite elements with eight Gauss
quadrature points to accurately represent each strut. Because isotropic linear elasticity is considered, the following140

expression for the Cauchy stress, σ(~x) (~x denotes the location of a material point in the undeformed configuration),
is employed:

σ = 4C : ε, (1)

where 4C denotes the constant (i.e. independent of location and deformation) fourth-order stiffness tensor of which
each component is expressed in terms of a single Young’s modulus and a single Poisson’s ratio. For all finite element
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simulations, Young’s modulus is set to 1 and Poisson’s ratio to 0.3. Furthermore, ε(~x) denotes the infinitesimal strain145

tensor, which can be expressed as follows in the discretized setting:

ε =
1

2

(
~∇NT~u+

(
~∇NT~u

)T)
, (2)

where ~∇ = ∂
∂~x denotes the gradient operator, N(~x) the column with shape functions, ~u the column with the nodal

displacement vectors and superscript T the transpose.
Applying the method of weighted residuals to the following strong form without the consideration of body forces:

~∇ · σ = ~0, (3)

and subsequently the divergence theorem, some symmetry and algebra, eventually yields the following system of150

linear vector equations: ∫
V

~∇N · 4C · (~∇N)T dV · ~u =

∫
S

N ~t dS, (4)

where V and S denote the undeformed volume and surface of the discretized domain, respectively, and ~t(~x) denotes
the traction applied at the surface. This system is numerically integrated using eight Gauss quadrature points per
3D trilinear hexahedral element and written as a system of linear scalar equations. After partitioning to account for
Dirichlet boundary conditions, it is solved to determine the unknown nodal displacement components.155

3.2. Introduced randomness

In this short subsection, more details of the finite element simulations are discussed. All struts are hollow and
have a length of 100 and an outer radius of roughly 2 and an inner radius of roughly 1. The mesh contains 400
elements in the axial direction, 52 in angular direction and 4 in radial (i.e. thickness) direction. This element grid
is chosen such that 4 elements are used over the wall thickness, while each element has roughly the shape of a cube160

(with a volume of approximately 0.25× 0.25× 0.25). In total, 83200 elements and 104260 nodes are involved in each
simulation.

The randomness is introduced by randomly selecting 30 to 50 axial locations per strut. For each of these locations,
the strut’s cross section varies: 1) the outer and inner radii are independently selected from uniform distributions
with bounds [1.9, 2.1] and [0.9, 1.1], respectively, and 2) the center of each cross section is not located on top of the165

strut’s axis, but randomly varied with a maximum distance of 0.05 from the strut’s axis. Between these 30 to 50
axial locations, the cross section is linearly interpolated and the nodal locations are slightly adjusted in the axial
direction to accurately represent the strut’s geometry.

Each strut is exposed to five different deformation modes by prescribing all the displacement components of the
end nodes (see the left column in Figs. 1(a) and 1(c)). In the first simulation, the nodes at one end are displaced170

with a distance of 0.1 in the axial direction. Torsion is prescribed in the second simulation by displacing the nodes
at one end with a rotation of 0.5◦ around the axial direction. In the other three simulations, the nodes at one end
are displaced with a distance of 0.1 orthogonal to the axial direction; once along the x2-direction, once along the
x3-direction and once along a direction of 45◦ with respect to the x2-direction and the x3-direction. After each
simulation, the reaction forces and moments are extracted and the displacement results are post-processed such that175

the average center line displacement and rotation is available at 400 equally spaced axial locations. The fact that
the undeformed center line is not perfectly straight is ignored in the post-processing.

3.3. Beam simulations

The adopted beam formulation is based on (linear) Euler-Bernoulli theory for small deformations and rotations.
Axial rotation and axial compression/elongation are incorporated, but all principle deformation modes (i.e. both180

transversal bendings, axial rotation and axial compression/elongation) are fully uncoupled. This is applicable to
beams of isotropic materials with solid (i.e. not hollow), circular cross sections.

Each beam simulation involves a string of 400 beam elements (which is more than sufficient according to the mesh
convergence study in Appendix B). The undeformed center line of each string is a perfectly straight line. The hollow
cross section of each beam is presented in Fig. 2 and hence, involves four input parameters: an outer radius (ro) and185

three distances that govern the internal shape (ra, rb and rc). These four parameters, together with Poisson’s ratio,
are the parameters that are varied from beam element to beam element in order to match the fluctuations predicted
by the ‘accurate’ FE simulations (described in the previous two subsections). Young’s modulus is constant, since it
is (linearly) present in all the governing equations and can therefore not be used to describe relative changes between
the different types of fluctuating center line results.190
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Figure 2: The hollow cross section of each beam element.

Each beam simulation (in the discretized setting) is considered as the following minimization problem:

[ubeam, ωbeam] = argmin
u, ω

− fT
ext
u−MT

extω +

400∑
i=1

Ei(u, ω), (5)

where f
ext

and M ext denote the columns with external force components and moment components, respectively. u
and ω denote the columns with displacement components and rotation components, respectively. The elastic energy
of a beam element is expressed as follows:

Ei =
Y

2

∫
V

(εae1 + εb2 + εb3)
2

+
γ2

12 + γ2
13

2(1 + ν)
dV, (6)

where V , Y and ν denote the beam’s reference volume, Young’s modulus and Poisson’s ratio, respectively. The axial195

strain due to uniform elongation (in the x1-direction) is denoted by εae1, the axial strain due to bending around the
x2-direction by εb2 and the axial strain due to bending around the x3-direction by εb3. γ12 and γ13 denote the shear
strains occurring due to axial torsion. Note that the directions are presented in Figs. 1(a) and 2.

By incorporating the linear interpolation of the axial displacement, the linear interpolation of the rotation around
the axial direction and the axial strains due to bending expressed in terms of the curvatures, Eq. (6) can be expressed200

as follows:

Ei =
Y

2

∫
V

(
u1/b − u1/a

L
− x3

∂2u3

∂(x1)2
− x2

∂2u2

∂(x1)2

)2

+

(
ω1/b − ω1/a

L

)2
x2

2 + x2
3

2(1 + ν)
dV, (7)

where subscripts a and b are used to distinguish the two nodes of a beam element. L denotes the undeformed (axial)
length of the beam element. Again, subscripts 1, 2 and 3 refer to the directions as presented in Figs. 1(a) and 2.

Hermite interpolation is employed to relate transversal center line displacement components u2(x1) and u3(x1) to
the relevant nodal displacements and rotations. A third-order polynomial is employed for u2(x1) and a third-order205

polynomial is used for u3(x1). The coefficients of the polynomial for u2(x1) are determined by solving the following
system of linear equations:

u2(x1 = 0) = u2/a u2(x1 = L) = u2/b
∂u2

∂x1

∣∣∣
x1=0

= ω3/a
∂u2

∂x1

∣∣∣
x1=L

= ω3/b, (8)

and the coefficients of the polynomial for u3(x1) are determined by solving the following system of linear equations:

u3(x1 = 0) = u3/a u3(x1 = L) = u3/b
∂u3

∂x1

∣∣∣
x1=0

= −ω2/a
∂u3

∂x1

∣∣∣
x1=L

= −ω2/b. (9)

Finally, the volume integral in Eq. (7) must be specified for the cross section of interest (Fig. 2). This yields:
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Ei =
Y

2

∫ L

0

∫ ro

−ro

∫ √r2
o−x2

3

−
√
r2
o−x2

3

(
u1/b − u1/a

L
− x3

∂2u3

∂(x1)2
− x2

∂2u2

∂(x1)2

)2

+

(
ω1/b − ω1/a

L

)2
x2

2 + x2
3

2(1 + ν)
dx2 dx3 dx1−

Y

2

∫ L

0

∫ − rb√
2

−ra

∫ xI2(x3)

−xI2(x3)

(
u1/b − u1/a

L
− x3

∂2u3

∂(x1)2
− x2

∂2u2

∂(x1)2

)2

+

(
ω1/b − ω1/a

L

)2
x2

2 + x2
3

2(1 + ν)
dx2 dx3 dx1−

Y

2

∫ L

0

∫ 0

− rb√
2

∫ xII2 (x3)

−xII2 (x3)

(
u1/b − u1/a

L
− x3

∂2u3

∂(x1)2
− x2

∂2u2

∂(x1)2

)2

+

(
ω1/b − ω1/a

L

)2
x2

2 + x2
3

2(1 + ν)
dx2 dx3 dx1−

Y

2

∫ L

0

∫ rb√
2

0

∫ xIII2 (x3)

−xIII2 (x3)

(
u1/b − u1/a

L
− x3

∂2u3

∂(x1)2
− x2

∂2u2

∂(x1)2

)2

+

(
ω1/b − ω1/a

L

)2
x2

2 + x2
3

2(1 + ν)
dx2 dx3 dx1−

Y

2

∫ L

0

∫ ra

rb√
2

∫ xIIII2 (x3)

−xIIII2 (x3)

(
u1/b − u1/a

L
− x3

∂2u3

∂(x1)2
− x2

∂2u2

∂(x1)2

)2

+

(
ω1/b − ω1/a

L

)2
x2

2 + x2
3

2(1 + ν)
dx2 dx3 dx1, (10)

where the second and fifth integral are ignored in case
√

2ra = rb, and xI2(x3) to xIIII2 (x3) are expressed as follows:210

xI2(x3) =
rb(x3 + ra)√

2ra − rb
, xII2 (x3) =

√
2rc − rb
rb

x3 + rc,

xIII2 (x3) =
rb −

√
2rc

rb
x3 + rc, xIIII2 (x3) =

rb(ra − x3)√
2ra − rb

.

(11)

The integrals in Eq. (10) are analytically evaluated in the implementation.
Now the objective function is formulated, the interior extremum theorem is applied in order to solve it, resulting

in the following system of linear equations: [
f

int
(u, ω)

M int(u, ω)

]
=

[
f

ext
M ext

]
, (12)

with:

f
int

=

400∑
i=1

∂Ei
∂u

M int =

400∑
i=1

∂Ei
∂ω

. (13)

This equation can be rewritten to solve for the final displacement and rotation components (i.e. ubeam and ωbeam)215

as follows: [ ∂f
int

∂u

∂f
int

∂ω
∂M int

∂u
∂M int

∂ω

] [
ubeam

ωbeam

]
=

[
f

ext
M ext

]
. (14)

3.4. Adjoint method

The input parameters of each beam element (ro, ra, rb, rc and ν) are deterministically identified such that the
center line displacements and rotations, as well as the reaction forces and moments match those of the finite element
simulations for the six struts of consideration. To this end, a least squares problem is considered for each strut in220

which the objective function, J , quantifies the difference between the center line displacements and rotations during
the five applied deformations:

J(z) =
(
uFE,e

1 − ubeam,e
1 (z)

)T (
uFE,e

1 − ubeam,e
1 (z)

)
+
(
ωFE,t

1 − ωbeam,t
1 (z)

)T (
ωFE,t

1 − ωbeam,t
1 (z)

)
+(

uFE,2
2 − ubeam,2

2 (z)
)T (

uFE,2
2 − ubeam,2

2 (z)
)

+
(
uFE,3

3 − ubeam,3
3 (z)

)T (
uFE,3

3 − ubeam,3
3 (z)

)
+

1

2

(
uFE,23

2 − ubeam,23
2 (z)

)T (
uFE,23

2 − ubeam,23
2 (z)

)
+

1

2

(
uFE,23

3 − ubeam,23
3 (z)

)T (
uFE,23

3 − ubeam,23
3 (z)

)
, (15)

where column z =
[
rTo rTa rTb rTc νT

]T
collects the input parameters of all the beam elements; the variables

in the least squares problem. The superscripts again refer to the different directions. Superscripts ‘FE’ and ‘beam’
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refer to the center line results of the finite element simulations and to those of the beam simulations, respectively.225

Superscript e refers to axial elongation as the applied deformation mode, superscript t to torsion as the applied
deformation mode, superscript 2 to the deformation mode in which the nodes at one end are displaced in the x2-
direction, superscript 3 to the deformation mode in which the nodes at one end are displaced in the x3-direction
and superscript 23 to the deformation mode in which the nodes at one end are simultaneously displaced in the
x2-direction and the x3-direction.230

Note that the differences between the reaction forces and moments predicted by the FE simulations and the beam
simulations are not considered in the objective function, since an initial guess of r0 = 2, ra = 1, rb = 1, rc = 1,
ν = 0.28 is sufficient to guarantee a match of the reaction forces and moments within a couple of percent. It is also
worth to note that the second term on the right hand side of Eq. (15) (i.e. the one depending on rotations) is not
accompanied by a weight factor, even though the magnitude of the rotations is different than the magnitude of the235

displacements. The reason for the lack of a weight factor is that Poisson’s ratio only influences the axial rotations
and nothing else. This can be seen in Eq. (6), as Poisson’s ratio is only present in the term associated with torsional
shear. One may also note that the loading case of transversal loading in the direction with an angle of 45◦ to axes
2 and 3 (i.e. those indicated with superscript 23) would not strictly be necessary to consider in the aforementioned
objective function if the two 2nd moments of area (for bending around axis 2 and 3, respectively), the cross sectional240

area, and the polar 2nd moment of area (for torsion around axis 1) would be used as the parameters of interest.
However, because we consider five parameters (i.e. four to parameterize the cross sectional shape and one for the
torsional resistance), we consider five loading cases modes.

As a conjugate gradient approach is employed to minimize the objective function of Eq. (15), the objective
function’s gradient with respect to the variables (∂J∂z ) must be evaluated. One could apply the method of finite245

differences to this end, but this requires 2000 beam simulations per gradient evaluation (400 beam elements, five
input parameters per beam element). A computationally more efficient alternative is the adjoint (state) method,
which requires two additional matrices (in the current notation):

∂f
int

∂z
,

∂M int

∂z
, (16)

which must be evaluated for the beam solution for each of the five applied deformation modes. In Appendix A,
gradient ∂J

∂z of Eq. (15) is derived in detail according to the adjoint method.250

4. Formulations of the random fields

In this section we discuss the methodologies used to construct the (intercorrelated) random fields with bounds.
Thus, we first briefly discuss GPs, then the copula theorem, then the concept of Gaussian copula process, and finally
the different frameworks to formulate multi-output fields. Note that random fields are stochastic processes with
spatial variables as their index (input) set. To avoid confusion, the term process is used to discuss the main concepts.255

4.1. Gaussian processes

The GP is one of the main components of the frameworks employed in this contribution to formulate multi-output
random fields. This subsection aims to present GPs in a practical way. Readers interested in more details are referred
to [7].

A GP is an extension of a multivariate Gaussian distribution to an infinite-dimensional Gaussian distribution [9].260

Any finite-dimensional marginal distribution of a GP is still Gaussian. A GP is characterized by its mean m(x1) and
covariance function k(x1, x

′
1), where x1 and x′1 denote two axial locations (which may be the same). A realization of

a Gaussian process can be written as follows:

w(x1) ∼ GP(m(x1), k(x1, x
′
1)). (17)

The values of w at any n given points are drawn (realizations) from an n-dimensional Gaussian distribution with mean

m =
[
m(x1

1) · · · m(x1
n)
]T

and covariance matrix K with (K)ij = k(xi1, x
j
1) or w(x1

1), · · · , w(x1
n) ∼ N(m,K).265

Frequent choices for the covariance function can be found in [7] and [10]. Often furthermore (as in this contribution),
m(x1) = 0.
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4.2. Copulas

As mentioned before, conventional Gaussian processes do not incorporate bounds and are therefore (at least
theoretically) not able to incorporate the bounds of physical parameters. The framework given in [6] discusses how270

to separate the correlation structure of a GP from its marginal univariate distributions (i.e. Gaussian distribution)
using the copula theorem [17]. This enables replacing the univariate marginal Gaussian distribution in a GP with
another (e.g. bounded) distribution. This subsection briefly discusses the copula theorem. More details can be found
in [17].

A copula is a function that models the dependency between several random variables regardless of their univariate275

marginal distributions. In practice a copula takes the cumulative distribution function (CDF) of each random variable
and joins them to create the corresponding multivariate joint CDF. Once the joint CDF is formulated, the joint PDF
can be derived.

Let P =
[
P1 · · · Pnp

]T
denote a set of np random variables (np = 2000 here), Π denotes the joint CDF of the

random variables and Πi denotes the marginal univariate CDF of each random variable. Based on Sklar’s theorem280

[64], an np-dimensional copula, C, exists such that:

Π(p1, · · · , pnp) = C(Π1(p1), · · · ,Πnp(pnp)), (18)

with its associated joint PDF reading as:

π(p1, · · · , pnp) = c(Π1(p1), · · · ,Πnp(pnp))

np∏
i=1

πi(pi), (19)

where c(v1, · · · , vnp) =
∂C(v1,··· ,vnp )

∂v1···∂vnp
with vi = Πi(pi) and πi(pi) denotes the ith marginal PDF.

A multivariate Gaussian distribution can be considered a set of univariate Gaussian distributions that are joined
by a Gaussian copula. Let vi = Πi(pi), Γ

C
∈ [−1, 1]np×np denote a Pearson correlation matrix (Pearson’s ρ is a285

measure for the linear relationship between two random variables, see e.g. [65]), Φ(p̃) denote the standard Gaussian

CDF (i.e. p̃ ∼ N(0, 1) = 1√
2π

exp(− p̃
2

2 )), | · | denote the determinant and I the np × np identity matrix. The density

of a Gaussian copula can then be expressed as [18]:

c(v|Γ
C

) =
1√
|Γ
C
|
exp
(
− 1

2

[
Φ−1(v1) · · · Φ−1(vnp)

]
× (Γ−1

C
− I)×

[
Φ−1(v1) · · · Φ−1(vnp)

]T )
. (20)

4.3. Combining Gaussian processes with the copula theorem

As mentioned in Subsection 4.1, a GP is generalization of a multivariate Gaussian distribution. This entails290

that the copula theorem given in Subsection 4.2 can be used to write any finite-dimensional marginal distribution
of a Gaussian process as a multiplication of univariate Gaussian distributions and the Gaussian copula of Eq. (19).
Consequently, the univariate marginal Gaussian distribution of a GP can be changed to any other distribution,
whilst the GP’s correlation structure (here spatial) remains unchanged. The joint PDF for an np-dimensional
marginalization of the desired process will be in the form of Eq. (19) where the univariate Gaussian distribution is295

replaced by another distribution.
A sample of such a process can in practice be generated as follows:

(1) draw a sample from a GP with a given covariance function,

(2) use a univariate Gaussian CDF to transform each scalar of the sample drawn in step (1) to a scalar drawn from
a uniform distribution, and300

(3) transform the scalars through the inverse CDF of the distribution of choice (i.e. the inverse of Πi(pi) in Eq. (19);
note that Πi(pi) can be any distribution).

4.4. Multi-output random process

So far, this section has focused on a single process (including the spatial correlation). However, the main idea of
this contribution is to combine several (five) fields/processes, which come with additional correlations: the correlations305

between the individual processes. In this subsection, formulations are discussed that combine the aforementioned
concepts in order to create multi-output processes/fields with mutual correlations. The formulations presented in this
subsection are special cases of a more general methodology known as the linear model of coregionalization (LMC,
see [34]) where the processes are modeled as a linear combination of independent random functions. The LMC
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guarantees that the covariance function of the final, multi-output process is a valid positive semidefinite function.310

Once the covariance function is expressed (and consequently, the covariance matrix for finite-dimensional case), the
copula theorem is employed to transform the Gaussian process to a random process with the desired univariate
marginal distributions and the Gaussian correlation structure.

4.4.1. Intrinsic coregionalization model (ICM)

As mentioned before, the multi-output process are modeled as a linear combination of single random processes.315

In the intrinsic coregionalization model (ICM) each field is expressed by linearly combining realizations from a single
latent GP. For simplicity, ICM is discussed below for the case of two fields.

Let w1(x1) and w2(x1) denote the two outputs and δ(x1) ∼ GP(0, kδ(x1, x
′
1)). The output of the ICM can then

be written as:

w1(x1) = a11δ1(x1) + a12δ2(x1)

w2(x1) = a21δ1(x1) + a22δ2(x1)
, (21)

where δ1(x1) and δ2(x1) denote two realizations from δ(x1) ∼ GP(0, kδ(x1, x
′
1)). Eq. (21) can be rewritten as:320

w(x1) = Aδ(x1), (22)

with:

A =
[
a1 a2

]
=

[
a11 a12

a21 a22

]
δ(x1) =

[
δ1(x1)
δ2(x1)

]
. (23)

Consequently, the resulting covariance function reads as [34]:

cov(w(x1), w(x′1)) = Bkδ(x1, x
′
1), (24)

with B = AAT . The covariance matrix corresponding to the input column x =
[
x1

1 · · · xni1

]T
equals to:

K = B ⊗K
δ
, (25)

where (K
δ
)ij = kδ(x

i
1, x

j
1) and ⊗ denotes the Kronecker product. Consequently, the distribution for the two process

case reads: [
w1

w2

]
∼ N

([
0
0

]
,

[
(B)11Kδ

(B)12Kδ
(B)21Kδ

(B)22Kδ

])
. (26)

In the general case of an nd-dimensional output system with nr realizations from δ(x1) we have:325

wi(x1) =

nr∑
j=1

aijδj(x1), (27)

where i = 1, · · · , nd, nr denotes the number of samples and δj(x1) denotes a single realization, independently sampled
from δ(x1) ∼ (0, kδ(x1, x

′
1)). Once again, the resulting covariance function is given by Eq. (24), where B = AAT ,

A =
[
a1 · · · anr

]
and aj =

[
a1j · · · andj

]T
. For a finite set of ni inputs the corresponding covariance matrix is given

by Eq. (25). Note that B is a nd × nd symmetric and positive semi-definite matrix.

4.4.2. Semiparametric latent factor model (SLFM)330

Various studies [27, 28, 30, 32, 33] have used the ICM formulation because of its relatively simple parameterization
and reduced complexity compared to the LMC. However, the ICM formulation can be restrictive as it uses only
one latent GP and assumes that all the outputs share the same spatial dependency/correlation structure. In this
subsection we briefly discuss the SLFM formulation, which is (similar to the ICM formulation) a simplified version
of the LMC, but includes more than only one latent GP.335

The SLFM formulation uses nr realizations from nr latent GPs. Similar to the previous subsection, the two-output

scenario is considered (i.e. w =
[
w1(x1) w2(x1)

]T
) with δ1(x1) ∼ GP(0, kδ1(x1, x

′
1)) and δ2(x1) ∼ GP(0, kδ2(x1, x

′
1)).

Similar to the ICM, the output is a linear combination of realizations δ1(x1) and δ2(x1) (see Eqs. (21) and (22)).
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Note that δ1(x1) and δ2(x1) are realizations from different GPs while in the ICM they are realizations from the same
GP. Consequently, the resulting covariance function reads [34]:340

cov(w(x1), w(x′1)) = B1kδ1(x1, x
′
1) +B2kδ2(x1, x

′
1), (28)

where B1 = a1(a1)T and B2 = a2(a2)T . Furthermore, the covariance matrix corresponding to input x1 =[
x1

1 · · · xni1

]T
reads:

K = B1 ⊗K
δ1

+B2 ⊗K
δ2
, (29)

with (K
δ1

)ij = kδ1(xi1, x
j
1) and (K

δ2
)ij = kδ2(xi1, x

j
1). Considering the more general case of nd outputs, the covariance

function can be written as:

cov(w(x1), w(x′1)) =

nr∑
j=1

aj(aj)T kδj (x1, x
′
1) =

nr∑
j=1

Bjkδj (x1, x
′
1) (30)

where aj =
[
a1j · · · andj

]T
. Furthermore, the covariance matrix reads:345

K =

nr∑
j=1

Bj ⊗K
δj
. (31)

Once the covariance structure is created using the methodologies given in this section, the following algorithm can
be employed to construct multi-output intercorrelated, spatially correlated, bounded random fields. The resulting
sample of the algorithm below is vector of all the outputs.

Algorithm 1 Multi-output bounded random field generation

1: select the univariate marginal PDFs to describe the observations, i.e. Eqs. (34) and (36)
2: if ICM then . constructing the covariance structure
3: select covariance function kδ(x1, x

′
1) for the latent GP i.e. Eq. (46)

4: select nr (i.e. number of realizations from the latent GP)
5: construct matrix B = AAT (matrix A is given in Eqs. (22) and (27))
6: K = B ⊗K

δ
. the final covariance matrix

7: else if SLFM then
8: select nr (i.e. number of realizations or latent variables)
9: select covariance functions kδj (x1, x

′
1) (i.e. Eq. (43) and j = 1 · · ·nr)

10: Bj = aj(aj)T , aj is given in Eq. (30)

11: K =
∑nr
j=1B

j ⊗K
12: end if
13: Generate a sample from multivariate normal distribution with K as its covariance matrix. . In practice we

treat a GP as multivariate normal distribution
14: Transform each sample of line 13 through a univariate Gaussian CDF to a uniformly distributed value
15: Transform the samples of line 14 through the inverse CDF of the distribution of choice (i.e. inverse CDF of

Eqs. (34) and (36))
16: if the drawn realization follows the physical constraints (e.g. ro > ra , rb rc in Subsection 6.2.2) then
17: accept the sample field
18: end if

5. Bayesian inference

Let z be the set of no observations and p the set of np parameters to be identified. Bayes’ theorem can then be350

expressed as:

π(p|z) =
π(p)π(z|p)

π(z)
=

1

ζ
π(p)π(z|p), (32)

where π(p) denotes the prior PDF (describing the user’s a-priori knowledge about the parameters; e.g. some param-
eters cannot be negative), π(z|p) denotes the likelihood function (quantifying the plausibility of an observation set,
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for a given set of parameters), π(p|z) denotes the posterior PDF (quantifying the plausibility of a parameter set, for
a given set of observations) and π(z) is called the evidence. The value of the evidence is known after the observations355

are made. For this reason, it equals a constant number (π(z) = ζ ∈ R+). Equivalently, we can omit normalization
constant ζ and write the unnormalized posterior density as:

π(p|z) ∝ π(p)π(z|p). (33)

Often the posterior has a complex shape and as a result calculating the statistical summaries of the posterior,
such as the mean, the MAP (i.e. the ‘maximum-a-posteriori-probability’: the parameter values at which the posterior
is maximal) and the covariance matrix (i.e. the matrix that measures the correlation between the parameters) must360

be obtained using sampling approaches such as Markov chain Monte Carlo (MCMC) techniques [66]. Readers are
referred to [46, 67] for more details. The employed MCMC algorithm is provided in Appendix C.

6. Sequence and details of the identification

The neatest identification framework would consider all the random fields’ parameters in a single framework that
considers the results of the FE simulations as measurements and the beam simulation as forward model (i.e. the365

model that defines likelihood function). The first problem with such an approach is that a substantial number of
random variables is present (i.e. the random fields’ parameters), which makes the approximation of the posterior,
and in particular the tuning of the sampling parameters, computationally inefficient. The second problem is that
the beam simulation must be repeated numerous of times per sampling point, hereby adding even more time to the
posterior sampling. Section 2 has already made clear that the identification is split in a part in which realizations370

of the random fields are deterministically identified per strut and a part in which the random fields’ parameters are
probabilistically identified. On top of that, the probabilistic part of the identification itself is also split in different
steps. This section discusses these steps in chronological order and presents the required details of each step.

In order to reduce the number of the random variables per step as well as avoiding issues with system identifiability,
the parameters of the univariate marginal PDF of each field (i.e. the fields are the fields of ra, rb, rc, ro and ν) are375

identified first. The MAP estimates of the univariate marginal PDFs’ parameters are then considered to be true
values and are kept constant in the subsequent steps. This simplification is reasonable as the number of observations
for the univariate marginal PDFs is considerably large. Furthermore, it is assumed that the field of Poisson’s ratio
is independent of the fields of the geometrical parameters.

6.1. Deterministic identification of six struts380

Sections 2 and 3 have already made clear that a conjugate gradient approach is employed to deterministically

identify the beam elements’ parameters (z =
[
zTra zTrb zTrc zTro zTν

]T
) for each strut. In the subsequent proba-

bilistic identification, these parameters are considered as observations and the parameters to be identified are the
random fields’ parameters.

The objective function to be minimized in the deterministic identification was yet presented in Eq. (15), whilst385

the objective function’s gradient is computationally efficiently evaluated using Eq (A.6). Some details that are not
yet mentioned are that the conjugate gradient direction is taken as proposed by [68], which is reset after every 50
iterations. A backtracking line search is furthermore employed with the Armijo rule and without curvature condition.
The exact conjugate direction is taken as the initial step size, which is reduced with a factor of 50% every time the
step size does not abide the Armijo rule. The slope of the Armijo rule is given by the inner product of the conjugate390

gradient direction and steepest descent direction, multiplied with a factor of 0.5.

6.2. Univariate marginal PDFs

6.2.1. Poisson’s ratio

Although for the beam model, the typical upper bound of Poisson’s ratio is not strictly required, both the
traditional lower bound and upper bound are incorporated (i.e. −1 < ν < 0.5). To this end, a four parameter beta395

distribution is chosen as the univariate marginal PDF:

πν(ν) =
(ν − cν1

)αν−1(cν2
− ν)βν−1

(cν2 − cν1)αν+βν−1B(αν , βν)
, (34)

where cν1 = −1 and cν2 = 0.5 denote the known lower and upper bounds, respectively, and αν and βν denote the
parameters governing the shape of the PDF. B(·, ·) denotes the beta function. Thus, the parameters to be identified
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here are p
ν

=
[
αν βν

]T
. Assuming zν denotes a column with nν = 2400 observations (400 Poisson’s ratios per

strut), the Bayesian formula can be rewritten as:400

π(αν , βν |zν) ∝ π(αν)π(βν)

nν∏
i=1

π((zν)i|αν , βν), (35)

where π(αν) and π(βν) together form the uncorrelated prior and π((zν)i|αν , βν) denotes the likelihood in Eq. (34).
Once the posterior distribution is formulated, the Metropolis algorithm with an adaptive proposal distribution [69]
is used to approximate the posterior and to obtain its MAP estimates.

6.2.2. Geometrical parameters

Since the geometrical parameters (i.e. ra, rb, rc and ro) are distances, their values cannot be negative. This405

is one of the reasons that the Weibull distribution is employed for all of these fields. Another reason is that the
Weibull distribution can model left-skewed observations (empirical skewness of ra and rb in Fig. 5 show that they
are left-skewed). The Weibull distribution reads:

πpi(pi) =
αpi
θpi

( pi
θpi

)αpi−1

exp
(
− pi
θpi

)αpi
pi ≥ 0, (36)

where pi denotes each of the geometrical parameters. Furthermore, αpi > 0 denotes the shape parameter and θpi > 0
denotes the scale parameter of the Weibull distribution. The parameters to be identified for the univariate marginal410

PDF of each geometrical parameter are p
pi

=
[
αpi θpi

]T
. Similar to the case of Poisson’s ratio, for npi = 2400

observations the Bayesian formulation reads:

π(αpi , θpi|zpi) ∝ π(αpi)π(θpi)

npi∏
j=1

π((zpi)j |αpi , θpi), (37)

where π(αpi) and π(θpi) again denote our priors and π((zpi)i|αpi , θpi) denotes the likelihood in Eq. (36). Another
physical constraint that should be considered is ro > ra , rb , rc. We apply this constraint in our posterior predictions.
In other words, any sample field with one or more values for ro smaller than any other radii is rejected (i.e. πpi(pi)415

in Eq. (36) equals zero; see Algorithm 1).

6.3. Random fields’ parameters, given the univariate marginal PDFs

As mentioned before, once the MAP estimates for the univariate marginal PDFs’ parameters are obtained, they
are treated as constants for the identification of the remaining parameters of the random fields.

To model the random fields, three cases are considered:420

(1) all the parameter fields are independent,

(2) the field of Poisson’s ratio is independent and the fields of the geometrical parameters are modeled using the
ICM method of Subsection 4.4.1, and

(3) the Poisson’s ratio field is independent and the fields of the structure parameters are modeled by the SLFM
method of Subsection 4.4.2.425

Since in each case the field of Poisson’s ratio is modeled independently, it is considered first.

6.3.1. Poisson’s ratio

Let nr = 6 denote the number of struts selected for identification and ni = 100ii denote the number of observations
per strut (at ni = 100 different axial locations). Furthermore, let cν1

= −1, cν2
= 0.5, αMAP

ν and βMAP
ν denote the

iiTo avoid numerical instabilities due to the observations that are positioned very close to each other we select 100 observations out
of the 400 observations for each strut. In practice, a multivariate normal distribution is employed to create the corresponding random
field; one needs to compute the inverse and determinant of the multivariate normal distribution’s covariance matrix as given in Eq. (20).
However, increasing the number of observations in a strut places the observations very close to each other, ultimately rendering a
covariance matrix with a very large condition number (e.g. 1013).
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known parameters of the univariate marginal PDF (see Eq. (34)). The frequently employed squared exponential430

covariance function (Eq. (38)) is used to model the spatial correlation between the observations.

kν(x1, x
′
1) = exp

(
− (x1 − x′1)

2

2ψ2
ν

)
, (38)

where ψν denotes the length scale parameter that controls the smoothness of the random field. It is important to note
that a covariance function must be selected so that the identified parameters converge if the number of observations
per strut increases (i.e. as the spatial mesh gets refined in the fixed domain of strut).

The only parameter to be identified here is ψν . Rewriting the Bayesian formula for a single strut (i.e. the rth)435

strut, yields:

π(ψν |zrν) ∝ π(zrν |ψν)π(ψν), (39)

where zrν denotes the column of Poisson’s ratios per strut. The likelihood π(zrν |ψν) reads as:

π(zrν |ψν) = c(vzrν |ΓCν )

ni∏
i=1

πν((zrν)i), (40)

where πν(·) is given in Eq. (34), (vzrν )i denotes the value of the four parameter beta CDF at (zrν)i, c(·|·) is given

in Eq. (20) and (Γ
Cν

)lm = exp
(
− ((x1)l−(x1)m)2

2ψ2
ν

)
. Furthermore, ni = 100 denotes the number of Poisson’s ratios

per strut, identified with the deterministic identification approach per strut. Finally, the likelihood function for all440

nr = 6 struts reads:

π(zν |ψν) =

nr∏
r=1

π(zrν |ψν) =

nr∏
r=1

c(vzrν |ΓCν )

ni∏
i=1

πν((zrν)i), (41)

and the posterior reads:

π(ψν |zν) ∝ π(zν |ψν)π(ψν), (42)

where zν collects the Poisson’s ratios of all six struts identified with the deterministic identification.

6.3.2. Geometrical parameters

(A) Independent fields. Arguably the most straightforward approach is to describe each random field completely445

independently (i.e. without mutual correlation). This will serve as the reference case and only requires the length
scale parameter of each field to be independent (on top of the parameters of the univariate marginal PDF of each
field). The identification of completely independent random fields is thus effectively the same as described for
Poisson’s ratio in the previous subsection 6.3.1, except that the univariate marginal PDF is the Weibull distribution
and that a Matérn class [7] covariance function is employed to describe spatial correlation.450

Let αMAP
pi and θMAP

pi denote the MAP estimates for the parameters of the Weibull distribution of each field that is
not the field of Poisson’s ratio (i.e. pi can be ra, rb, rc or ro). The Matérn covariance function which asymptotically
converges for an increase of the number of locations increases reads:

kpi =
(

1 +

√
3|x1 − x′1|
ψpi

)
exp
(
−
√

3|x1 − x′1|
ψpi

)
(43)

where the length scale parameter to be identified is denoted by ψpi . Note that we model the geometrical parameter
fields using a Matérn class covariance function because the sample fields/observations for these parameters are not as455

smooth as the Poisson’s ratio fields. Similar to the case of Poisson’s ratio for nr = 6 struts, the posterior is expressed
as follows:

π(ψpi |zpi) ∝ π(zpi |ψpi)π(ψpi), (44)

and

π(zpi |ψpi) =

nr∏
r=1

π(zrpi |ψpi) =

nr∏
r=1

c(vzrpi
|Γ
Cpi

)

ni∏
j=1

πpi((z
r
pi

)j), (45)

15



where zpi denotes the column with all geometrical parameters pi identified with the deterministic identification.

Column zrpi collects these geometrical parameters for each rth strut (i.e. zrpi is effectively a subset of zpi), πpi(·) is460

given in Eq. (36) (vzrpi
)j denotes the value of the CDF for the Weibull distribution at (zrpi)j , c(·|·) is given in Eq. (20)

and (Γ
Cpi

)lm =
(

1 +
√

3|(x1)l−(x1)m|
ψpi

)
exp
(
−
√

3|(x1)l−(x1)m|
ψpi

)
.

(B) ICM. Unlike in the case of independent fields, the random fields of each geometrical parameter (pi) are correlated
to each other, using only one (latent) GP. The ICM’s correlation structure is given in product form of a matrix that
defines the correlation between the geometrical parameters and a covariance function which describes the spatial465

correlation (see Eqs. (24) and (25)). Assuming that the field of each geometrical parameter is described by a linear
combination of four realizations from a single latent GP, matrices B, K

δ
and K are given by Eqs. (25) and (46).

The covariance function of the latent GP is chosen as a Matérn covariance function, which reads:

kδ =
(

1 +

√
3|x1 − x′1|
ψδ

)
exp
(
−
√

3|x1 − x′1|
ψδ

)
. (46)

Furthermore, matrix B is a symmetric 4× 4 matrix with ten parameters to be identified. Together with a single
length scale parameter, ψδ, this entails that the number of parameters to be identified is 11. However, an important470

characteristic of the Gaussian copula is that it uses the correlation matrix to model the dependency structure of the
observations. Combining this characteristic with the fact that the Kronecker product of two correlation matrices
(see Eq. (25)) equals the correlation matrix of the Kronecker product of the corresponding covariance matrices [71],
the number of parameters can be reduced to seven. Note that all diagonal components of a correlation matrix equal
one and therefore do not need to be identified. Bayes’ theorem per strut can be expressed as follows:475

π(γ
B
, ψδ|zr) ∝ π(zr|γ

B
, ψδ)π(γ

B
)π(ψδ), (47)

where zr =
[
(zrra)T (zrrb)

T (zrrc)
T (zrro)

T
]T

denotes the column with all the geometrical parameters of the rth

strut, γ
B

denotes the column with the non-diagonal components of the correlation matrix for B (i.e. Γ
B

) and:

π(zr|γ
B
, ψδ) = c(

[
vzrra

vzrrb
vzrrc

vzrro

]T
|Γ
CICM

)

ni∏
i=1

πra((zrra)i)πrb((z
r
rb

)i)πrc((z
r
rc

)i)πro((z
r
ro

)i), (48)

where πra(·), πrb(·), πrc(·) and πro(·) are given in Eq. (36), (vzrra
)i, (vzrrb

)i, (vzrrc
)i and (vzrro

)i denote the values

of the CDF for corresponding Weibull distributions at (zrra)i, (zrrb)i, (zrrc)i and (zrro)i, c(·|·) is given in Eq. (20),

Γ
CICM

= Γ
B
⊗K

δ
with (K

δ
)lm =

(
1 +

√
3|(x1)l−(x1)m|

ψδ

)
exp
(
−
√

3|(x1)l−(x1)m|
ψδ

)
. Finally, the posterior for all nr = 6480

struts can be written as:

π(γ
B
, ψδ|z) ∝

nr∏
r=1

π(zr|γ
B
, ψδ)π(γ

B
)π(ψδ) =

nr∏
r=1

c(
[
vzrra

vzrrb
vzrrc

vzrro

]T
|Γ
CICM

)

ni∏
i=1

πra((zrra)i)πrb((z
r
rb

)i)πrc((z
r
rc

)i)πro((z
r
ro

)i)π(γ
B

)π(ψδ). (49)

(C) SLFM. The parameterization of the ICM formulation is relatively simple which makes its identification rather
traceable. If the multiple outputs depend on the same input set and are of similar type the assumption of similar
spatial correlation structure between the outputs used in the ICM serves well [27]. However, if the correlation between
the outputs is weak they can have different length scales and [27] proposes to model the fields independently.485

Alternatively in this contribution we model the outputs as four independent random fields linearly combined
with a shared latent GP. The shared latent GP models the correlation between the outputs. This is equivalent to

an SFLM formulation with five latent GPs where a1 =
[
1 0 0 0

]T
, a2 =

[
0 1 0 0

]T
, a3 =

[
0 0 1 0

]T
,

a4 =
[
0 0 0 1

]T
and the vector a5 which defines matrix B5 in Eqs. (30) and (31) that is to be identified. Similar

to previous cases we choose the Matérn class covariance function in Eq. (43) for the outputs where pi can be ra, rb,490

rc or ro. We also choose the same form of covariance function for the shared latent GP with ψshared as its defining
parameter. In total we need to identify nine parameters which are a5 =

[
a5

1 a5
2 a5

3 a5
4

]
, ψpis and ψshared. Once
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again rewriting the Bayesian formula for nr realizations of the full model with ni observations for each realization
we have:

π(ψ, a5|z) ∝ π(z|ψ, a5)π(ψ)π(a5), (50)

where π(ψ) denotes the prior for the spatial correlation parameters and π(a5) denotes the prior for the coefficients of495

the shared latent GP. Furthermore, z denotes the vector that includes the observation vector for the all nr realizations

(i.e. zr =
[
zrra zrrb zrrc zrro

]T
). The final form of Eq. (50) reads as:

π(ψ, a5|z) ∝
nr∏
r=1

π(zr|ψ, a5)π(ψ)π(a5) =

nr∏
r=1

c(
[
vzrra

vzrrb
vzrrc

vzrro

]T
|Γ
CSLFM

)

ni∏
i=1

πra((zrra)i)πrb((z
r
rb

)i)πrc((z
r
rc

)i)πro((z
r
ro

)i)π(ψ)π(a5). (51)

Similar to the ICM case πra(·), πrb(·), πrc(·) and πro(·) denote the marginal univariate PDFs given by Eq. (36),
(vzrra

)i, (vzrrb
)i, (vzrrc

)i and (vzrro
)i denote the values of the corresponding CDFs at (zrra)i, (zrrb)i, (zrrc)i and (zrro)i,

c(·|·) is given in Eq. (20), Γ
CSLFM

denotes the correlation matrix corresponding to K =
∑5
i=1B

i ⊗K
δi

as given in500

Eq. (31). Note that (K
δi

)lm =
(

1+
√

3|(x1)l−(x1)m|
ψpi

)
exp
(
−
√

3|(x1)l−(x1)m|
ψpi

)
where pi is ra, rb, rc or ro for i = 1, · · · , 4

respectively and (K
δ5

)lm =
(

1 +
√

3|(x1)l−(x1)m|
ψshared

)
exp
(
−
√

3|(x1)l−(x1)m|
ψshared

)
.

7. Results

This section concentrates on the results of the study. It is subdivided in three subsections. First, the results of
the deterministic identification of the parameter fields for each strut are concisely presented. Second, the identified505

parameters of the univariate marginal PDF of each field are presented, as they are independent of the formulation
to describe the correlation between the fields. Third, the results focusing on the responses of the beam model are
presented. This last part includes a forward study (for a single strut, not for a network of struts) in which realizations
of the final posteriors are used by the beam simulation to predict center line displacements and rotations, as well as
reaction forces and moments. These are compared to those predicted by 994 validation FE simulations.510

7.1. Deterministic identification results of the six struts

In this subsection, the results of the deterministic identification for each of the six struts are presented (obtained
with the deterministic approach discussed in Sections 2, 3 and 6.1). Only the center line results are presented, since
the reaction forces and moments are scalars that match within a couple of percent.

In Fig. 3, the center line displacements and rotations present in the objective function of Eq. (15) are shown for515

each of the six struts. These center line results are presented relative to those of the homogeneous case (without any
randomness). The center line profiles match well. They are especially accurate for uniaxial elongation and torsion
as the applied deformation modes.

The reason for the good match of the torsion results is that regardless of the values of the geometrical parameters,
Poisson’s ratio of each beam element alone is used to match the rotations around the axial direction during torsion520

(i.e. the x1-direction, ∆ωt1). The reason for the excellent match of the uniaxial elongation results is that only the
cross sectional area is relevant and not the true shape. The reason that the remaining results do not perfectly match
is that the true cross sectional shape is important, and the cross sectional parametrization of the beams is not the
same as used in the FE simulations (which was done on purpose, as this is also not known if the FE simulations
would be based on experimentally characterized geometries).525

The identified parameter fields associated with the center line results in Fig. 3 are presented in Fig. 4 and serve
as the ‘observations’ for the probabilistic identification (z). All parameter fields, except the fields of ro, show that
some boundary effect occurs, because the displacement boundary conditions in the FE simulations are applied to
all the nodes at the ends. This boundary effect is included in the inference, which is justified because the boundary
layer is substantially small relative to the entire domain.530
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(a) (b) (c)

(d) (e) (f)

Figure 3: The final differences between the relative center line displacements and rotations of the FE simulations (sold lines) and the
beam simulations (dashed lines with circles) for the six struts and (for comparison purposes) a perfectly homogeneous strut (homogeneous
strut: triangles with dashed lines for the beam simulations, dotted lines for the FE simulations). The results are presented relative to
those of a linear interpolation (top left and top center diagrams) or cubic interpolation (top right and bottom diagrams), so that the
fluctuation are better visible. The colors denote the different struts. The subscripts refer to the three directions and the superscripts
refer to the five applied deformation modes (e: axial elongation, t: torsion, 2: nodes at one end displaced in the x2-direction, 3: nodes at
one end displaced in the x3-direction, and 23: nodes at one end simultaneously displaced in the x2-direction and x3-direction).
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(a) (b) (c)

(d) (e)

Figure 4: Deterministically identified input fields for the beam representations of the six struts and (for comparison purposes) the
homogeneous strut. The colors distinguish the different struts and the triangles are for the homogeneous strut.

7.2. Results for the univariate marginal PDFs

7.2.1. Poisson’s ratio

The univariate marginal PDF for Poisson’s ratio is governed by two bounds and two shape parameters. As the

bounds are set, only the two shape parameters are to be identified: p
ν

=
[
αν βν

]T
. The selected prior for both of

the shape parameters is a modified Gaussian:535

π(pν) ∝

exp
(
− (pν−pprior

ν )2

2sprior
pν

2

)
if pν ≥ 0

0 otherwise
, (52)

where pν denotes either αν or βν and pprior
ν and sprior

pν denote the mean value and the standard deviation of the
Gaussian distribution from which the prior is modified. The selected values for the prior parameters are reported in
Table 1, which are selected based on the mean value and standard deviation of the observations.

The Metropolis algorithm with an adaptive proposal distribution [69] is used to sample the posterior and to
obtain its desired statistical summaries such as the mean values, the MAP estimates and the posterior covariance540

matrix. To this end, 100× 103 samples are drawn from the posterior and the first 30% are burned. Table 2 gives the
values of the MAP estimates for the parameters describing the marginal univariate PDFs.

The 2400 deterministically identified Poisson’s ratios (the six fields in Fig. 4(a)) are presented as a single PDF in
Fig. 5(a) (solid black line). Also presented in the same diagram, are the PDFs associated with 100 sampling points
randomly selected from the 95% credible region (i.e. the region that one believes 95% it contains true value of some545

parameter [72]) and the PDF associated with the MAP estimate. The results show a reasonable match. Only the
MAP estimate is used in the remainder of the identification.

7.2.2. Geometrical parameters

As mentioned in Subsection 6.2.2, the parameters to be identified for the univariate marginal PDF of the ge-
ometrical parameters are p

pi
=
[
αpi θpi

]
with pi being ra, rb, rc or ro. Similar to the case for Poisson’s ratio,550
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Table 1: The selected values for the parameters defining the priors of the univariate marginal PDFs.

αprior
ν 1164.7315 αprior

rc 11.1245
sαν 388.2483 sαrc 5.5623

β
prior

ν 582.4815 θ
prior

rc 1.0427
sβν 194.1605 sθrc 0.5213
αprior
ra 15.3904 αprior

ro 59.7961
sαra 7.6952 sαro 29.8981

θ
prior

ra 1.0376 θ
prior

ro 2.0067
sθra 0.5188 sθro 1.0034
αprior
rb

31.1125
sαrb 15.5563

θ
prior

rb
1.0245

sθrb 0.5123

Table 2: The MAP estimates for the parameters describing the univariate marginal PDFs.

αMAP
ν 1171.9988 αMAP

rc 11.1251
βMAP
ν 586.1201 θMAP

rc 1.0427
αMAP
ra 15.3916 αMAP

ro 59.8016
θMAP
ra 1.0376 θMAP

ro 2.0067
αMAP
rb

31.1122
θMAP
rb

1.0245

the number of observations for each geometrical parameter is 2400. The priors are again selected in the form of
Eq. (52), with the prior parameters reported in Table 1. The posteriors are again evaluated using 100× 103 samples
and the first 30% of the samples are burned. Fig. 5(b)-5(e) shows the PDFs associated with the deterministically
identified parameters, the PDFs associated with 100 samples randomly drawn from the 95% credible region and the
PDF associated with the MAP estimate. It shows a reasonable agreement. The MAP estimates for the parameters555

of the univariate marginal PDFs furthermore, are given in Table 2.

7.3. Results for the random fields

Once the univariate marginal PDFs are identified, the MAP estimates (Table 2) are used as the known (and
constant) inputs for the identification of the random fields. In order to avoid numerical instabilities due to the fact
that the axial locations are substantially close to each, the parameter set of not all 400 axial locations is employed,560

but one parameter set per four axial locations, i.e. ni = 100 and nr = 6 in Eqs. (41), (45), (49) and (51). Similar to
the identification of the univariate marginal PDFs’ parameters, the Metropolis algorithm with an adaptive proposal
distribution is used to approximate the posterior distribution with 100 × 103 samples of which the first 30% are
burned.

In order to study the performance of the discussed models, the samples of the parameter fields are randomly565

selected and propagated in the beam simulations. The center line displacements and rotations and reaction forces
and moments are then compared to those predicted by 994 FE simulations. The same center line results are presented
as are employed in the objective functions of Eq. (15). Also similar to the presentation in Subsection 7.1, is that the
relative center line results are presented, i.e. the results are corrected with those expected from the homogeneous
case. The presented reaction forces and moments are in accordance with the applied deformation modes.570

7.3.1. Poisson’s ratio

The random field of Poisson’s ratio is modeled independently from the other fields in each formulation. This
entails that a single paramet er is required for this field: length scale parameter ψν . The prior for ψν is chosen to
be a uniform distribution with bounds 0.25 and 100. The value of 0.25 for the lower bound is chosen since it is the
distance between two consecutive axial locations. The value of 100 for the upper bound is chosen since it is the total575

length of a strut. The posterior is sampled in the same way as all other posteriors. The posterior for ψν is given in
Fig. 6.
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(a) (b) (c)

(d) (e)

Figure 5: Results for the univariate marginal PDFs. The reference results are the results of the deterministic identifications(based on
2400 observations per parameter). The grey lines are PDFs associated with the 95% credible region (i.e. the region that one believes 95%
it contains true value of some parameter [72]). The dashed line is the PDF associated with the MAP estimate. This graphical test [9]
shows a reasonable agreement between the simulated curves and the ones based on observations.

Figure 6: The posterior for length scale parameter ψν . The posterior distribution is obtained using the histogram of samples simulated
by the Metropolis algorithm with an adaptive proposal distribution from Eq. (42).

7.3.2. Geometrical parameters

(A) Independent fields. The parameters to be identified in case of independent fields are the length scale parameter
of each field: ψpi with pi being ra, rb, rc and ro (see Eq. (43)). Exactly the same priors are selected as for the length580

scale parameter of Poisson’s ratio, with the same bounds. The same sampling approach is applied. The marginal
posteriors for the identified parameters are given in Fig. 7.

In order to compare the results of the independent field model, samples for the five length scale parameters (ψν
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(a) (b)

(c) (d)

Figure 7: Independent fields: marginal posteriors for the identified parameters. The marginal posterior distributions are obtained using
the histogram of samples simulated by the Metropolis algorithm with an adaptive proposal distribution from Eq. (44).

and ψpi) are drawn from the posteriors and together with the MAP estimates for the univariate marginal PDFs’
parameters used in the independent field model, from which realizations for the five input fields are drawn. These585

realizations of input fields are used in the beam simulation to obtain the center line results that are compared to the
center line results of 994 FE simulations.

Figs. 10(a)-(b) to 15(a)-(b) present the same relative center line results as in Eq. (15) predicted by the beam
simulations and by the FE simulations for each of the five applied deformation modes. The diagrams on the left
show the mean, bounds and interval of both the beam simulations and the FE simulations and the diagrams on the590

right show a small number of predicted fields. A visual inspection of these results indicates a reasonable agreement
of the bounds, of the mean and of the length scale present in the single fields. Generally speaking, the interval of
the FE results remains within the interval of the beam results. However, at some axial locations the observations
are outside the prediction bounds. This is mainly the case for the torsion test.

(B) Intrinsic coregionalization model. The parameters to be identified in the ICM model are a single length scale595

parameter, ψδ, and the six parameters in γ
B

of Eq. (49). The following priors are selected:

π(ψδ) ∝

exp
(
− (ψδ−ψ

prior
δ )2

2sprior
ψδ

2

)
if 0.25 ≤ ψδ ≤ 100

0 otherwise
, (53)

π((Γ
B

)ij) ∝

exp
(
−

((Γ
B

)ij−(Γ
B

)prior
ij )2

2sprior
(Γ
B

)ij

2

)
i, j ∈ {1, · · · , 4} if − 1 ≤ (Γ

B
)ij ≤ 1

0 otherwise

, (54)

where ψ
prior

δ = 6, sprior
ψδ

= 3, (Γ
B

)prior
ij = 0, i, j ∈ {1, · · · , 4} and sprior

(Γ
B

)ij
= 0.3333. Note, that ψ

prior

δ is chosen to be

average of the mean estimates for the parameters identified in the independent fields case; furthermore, Γ
B

= ΓT
B

.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 8: Intrinsic coregionalization model: marginal posteriors for length scale ψδ and the six correlation parameters in γ
B

of Eq. (49).

The marginal posterior distributions are obtained using the histogram of samples simulated by the Metropolis algorithm with an adaptive
proposal distribution from Eq. (49).

The marginal posteriors of the identified length scale and the six correlation parameters in γ
B

of Eq. (49) are given

in Fig. 8.600

The prediction intervals for the ICM approach alongside the observations are shown in Figs. 10(c)-(d) to 15(c)-(d).
The results seem at first sight similar to those of the independent fields: similar length scales seem to be present
in the different types of results for the different applied deformation modes and the mean and the interval bounds
are similar. However, the interval associated with the ICM model consistently encompasses the interval of the FE
results, whereas this is not always the case for the formulation employing independent fields.605

(C) Semiparametric latent factor model. As mentioned before, an alternative way to model the representative random
fields of the geometrical parameters is to model each parameter field as an independent random field plus a shared
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random field that correlates these fields to each other. Once this modeling approach is formulated mathematically
(see Subsection 6.3.2) it leads to an SLFM model with ψpis, a single ψshared and a5, where pi can be ra, rb, rc or ro
and a5 denotes the column with the coefficients of the shared random field. We choose the priors in the modified form610

of the Gaussian distribution (see Eq. (53)) with the defining values given in Table 3. Note that we have chosen the

values for ψ
prior

pi based on the result for the independent fields. Furthermore, we choose ψ
prior

shared to be the mean value
of the identified length scale for the ICM approach. Moreover, the marginal posterior distributions of the identified
parameters are presented in Fig. 9.

Table 3: The selected values for the parameters defining the priors for the SLFM approach.

iiiψ
prior

ra 8.1483 iva5
1
prior

0
sψra 4.0742 sa5

1
5

ψ
prior

rb
4.5487 a5

2
prior

0
sψrb 2.2744 sa5

2
5

ψ
prior

rc 10.6418 a5
3
prior

0
sψrc 5.3209 sa5

3
5

ψ
prior

ro 2.2873 a5
4
prior

0
sψro 1.1437 sa5

4
5

ψ
prior

shared 3.5872
sψshared

1.7936

The prediction intervals as well as the observations for the SLFM approach are presented in Fig. 10(e) to Fig. 15(e).615

These figures show that the SLFM approach leads to prediction intervals that are wider than those of the independent
fields but narrower than those of the ICM approach. Similar to the previous cases, samples the responses of the
beam model are presented alongside sample responses of the FE model in Fig. 10(f) to Fig. 15(f).

Moreover, comparing Figs. 12, 13, 14 and 15 one can see that the predicted lateral displacements in both x2

(i.e. u2) and x3 (i.e. u3) are similar for all approaches.620

A general comparison of Figs. 10 to 15 shows that the ICM approach leads to prediction intervals that cover the
FE responses for all the tests. The SLFM approach leads to prediction intervals that are wider than the independent
random fields and fully cover the FE responses for all the tests except the axial torsion case.

The reference PDFs for the reaction forces and moments are shown in Fig. 16 as well as 100 PDFs associated
with the 95% credible region. Generally speaking one can see that the PDFs associated with the ICM approach are625

wider than the two other approaches. Furthermore, for all the three methods the MAP estimate is close to the peaks
of the reference PDFs. However, in general one can say that both the independent fields and the SLFM approaches
perform better than the ICM approach.

iiiLength scales are bounded between 0.25 and 100.
ivi = 1, · · · , 4 in a5i denote ra, rb, rc, ro respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9: Semiparametric latent factor model: marginal posteriors for the identified parameters. The marginal posterior distributions are
obtained using the histogram of samples simulated by the Metropolis algorithm with an adaptive proposal distribution from Eq. (51).
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(a) (b)
Independent fields

(c) (d)
ICM

(e) (f)
SLFM

Figure 10: Elongation: prediction intervals and observation intervals when the parameter fields are modeled as (a) independent random
fields, (c) correlated random fields using the ICM approach and (e) correlated random fields using the SLFM approach. (b), (d) and (f)
show samples of the FE model response and of the beam model response. One can see that in both the ICM and the SLFM approaches
the observations at all locations are inside the prediction intervals. However, in the case of independent fields the observations bounds
around x1 = 15 are outside the predictions intervals. Furthermore, comparing (a), (c) and (e) indicates that the ICM approach has the
widest prediction interval and the independent fields approach has the narrowest prediction interval. Although the difference between
the ICM approach and the SLFM approach for this test is not large. Moreover, the sample curves in (b), (d) and (f) show that the beam
responses are similar to the FE responses. Note that the presented responses are relative to that of the homogeneous case.
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(a) (b)
Independent fields

(c) (d)
ICM

(e) (f)
SLFM

Figure 11: Torsion: prediction intervals and observation intervals when the parameter fields are modeled as (a) independent random fields,
(c) correlated random fields using the ICM approach and (e) correlated random fields using the SLFM approach. A few sample responses
of the FE models and of the beam models are shown in the diagrams on the right. The FE responses only remain the prediction interval of
the ICM approach. Moreover, similar to axial elongation, the ICM approach has the widest prediction interval whereas the independent
fields approach has the narrowest prediction interval. Note that the presented responses are relative to that of the homogeneous case.
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(a) (b)
Independent fields

(c) (d)
ICM

(e) (f)
SLFM

Figure 12: Displacement applied in direction of x2: prediction intervals and observation intervals when the parameter fields are modeled
as (a) independent random fields, (c) correlated random fields using the ICM approach and (e) correlated random fields using the SLFM
approach. A few sample responses of the FE models and of the beam models are shown in the diagrams on the right. The FE results are
within the predictions intervals of both the ICM and SLFM approach. However, the prediction interval of the ICM approach is clearly
wider than that of the SLFM approach. Note that the presented responses are relative to that of the homogeneous case.
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(a) (b)
Independent fields

(c) (d)
ICM

(e) (f)
SLFM

Figure 13: Displacement applied in direction of x3: prediction intervals and observation intervals when the parameter fields are modeled
as (a) independent random fields, (c) correlated random fields using the ICM approach and (e) correlated random fields using the SLFM
approach. A few sample responses of the FE models and of the beam models are shown in the diagrams on the right. The prediction
intervals of all three formulations encompass the FE results. The ICM approach has the widest prediction interval and the independent
fields approach has the narrowest prediction interval which is slightly wider than that of the FE results. Note that the presented responses
are relative to that of the homogeneous case.
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(a) (b)
Independent fields

(c) (d)
ICM

(e) (f)
SLFM

Figure 14: Bending applied in both x2 and x3 simultaneously, lateral displacement in x2: prediction intervals and observation intervals
when the parameter fields are modeled as (a) independent random fields, (c) correlated random fields using the ICM approach and (e)
correlated random fields using the SLFM approach. A few sample responses of the FE models and of the beam models are shown in
the diagrams on the right. The prediction intervals of both the ICM approach and the SLFM approach encompass all the FE results.
However, the ICM approach yields a wider prediction interval than the SLFM approach. Note that the presented responses are relative
to that of the homogeneous case.
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(a) (b)
Independent fields

(c) (d)
ICM

(e) (f)
SLFM

Figure 15: Bending applied in both x2 and x3 simultaneously, lateral displacement in x3: prediction intervals and observation intervals
when the parameter fields are modeled as (a) independent random fields, (c) correlated random fields using the ICM approach and (e)
correlated random fields using the SLFM approach. A few sample responses of the FE models and of the beam models are shown in
the diagrams on the right. The prediction intervals of both the ICM approach and the SLFM approach encompass all the FE results.
However, the ICM approach yeilds a wider prediction interval than the SLFM approach. Note that the presented responses are relative
to that of the homogeneous case.
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Figure 16: The FE PDFs (solid black lines) as well as the PDFs associated with 95% credible region (gray lines) for the reaction forces and
moments of the different applied deformation modes (indicated by the superscript). Left column: independent fields, center column: ICM
and right column: SLFM. The independent fields and the SLFM methods are more accurate than the ICM method. However, the MAP
estimates of all three approaches are sufficiently close to the peaks of the FE PDFs. Furthermore, the PDFs associated with the ICM
method are the widest.
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Continued Figure 16: The FE PDFs (solid black lines) as well as the PDFs associated with 95% credible region (gray lines) for the
reaction forces and moments of the different applied deformation modes (indicated by the superscript). Left column: independent fields,
center column: ICM and right column: SLFM. The independent fields and the SLFM methods are more accurate than the ICM method.
However, the MAP estimates of all three approaches are sufficiently close to the peaks of the FE PDFs. Furthermore, the PDFs associated
with the ICM method are the widest.

Fig. 17 furthermore, presents the PDFs for the reaction forces and moments corresponding to each approach
alongside the means and the bounds of the reference forces and moments. One can see that for all the three630

approaches the reference values are inside the prediction PDFs and except for fe and M t the mean values are
located at the peak of the PDFs. Moreover the case of independent fields yields narrower PDFs for the reaction
forces and moments (i.e. more certainty about the estimated values).

7.3.3. Correlations

The previous subsection has concentrated on responses of single fields. The results in the current subsection focus635

on the correlations between the different fields. Figs. 10(b)-10(f) to 15(b)-15(f) show samples of the responses for both
the FE and beam simulations. Comparing the curves, one can say that the reference curves are similar to the ones of
the beam simulations. A more stringent comparison of the output curves is achieved by numerically calculating the
autocorrelation functions [73] for the 994 FE reference curves and comparing them to those of the beam simulations.
The autocorrelation bounds for the FE simulations as a function of distance between two points (∆L) alongside the640

predictions are presented in Fig. 18 for the independent fields (left), ICM (middle) and SLFM (right). Generally
speaking, all three autocorrelation functions are similar. However, if one considers only the prediction mean and the
reference mean both for ∆ue1 and ∆ωt1, the independent fields and SLFM perform better than the ICM approach.
For the other outputs all three approaches perform similar. However, considering the prediction intervals the ICM
approach leads to a wider interval. Except for ∆ue1 and ∆ωt1 the prediction intervals for the ICM approach contain645

more of the reference observations.
Similarly the cross-correlation function prediction bounds are given in Fig. 19 to assess the correlations between

different outputs of both the FE and beam simulations. Note that only the cross-correlation function bounds
between ∆ue1 and ∆ωt1 are presented in Fig. 19, as only this case shows a difference between the three formulations.
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(a) (b) (c)

(d) (e)

Figure 17: The PDFs for the reaction forces and moments as well as the FE values. For all the cases the reference values as well as their
bounds are inside the prediction PDFs. Except for fe and Mt the corresponding mean values of the reaction forces and moments are
located at the peak of the PDFs. The independent fields yields narrowest PDFs (i.e. more certainty about the estimated values).

Comparing the diagrams in Fig. 19 one can see that the envelopes corresponding to independent fields (left) and650

SLFM (right) include all the interval associated with the FE simulations. However, for the ICM approach (middle)
the FE simulations’ interval is occasionally outside the prediction interval. Nevertheless, the ICM method predicts
the mean the bestv. It is important to note that Fig. 19 does not show the intercorrelation/cross-correlation between
single realizations. This figure shows the collective behavior of different realizations of the cross-correlation function
in terms of the bounds and mean. In other words, we compare the diagrams in Fig. 19 based on their bounds and655

mean, not with respect to the intercorrelation between the single realizations.
Although the prediction bounds for both the independent fields approach and the SLFM approach look similar,

it is clear that the SLFM approach yields wider intervals. Furthermore, the mean of the SLFM approach is closer to
the observation mean than that of the independent fields.

The similar behavior of both the SLFM and the independent fields approaches can be due to the fact that the660

intercorrelation between the parameter fields may not be very strong. Note that in the proposed SLFM model, the
intercorrelations between the parameter fields are modeled by a second latent random field that is linearly combined
with the independent fields by the a5 vector. If the components of this vector (linear combination coefficients) are
small, the result will be similar to the case of the independent fields.

vCross-correlation function is generally not symmetric and ρxy(k) = ρyx(−k) (see [73]).
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∆ue1

∆ωt1

∆u2
2

Figure 18: Prediction and observation intervals for the autocorrelation functions of both the FE and beam simulations alongside the
means. Left column: independent fields, center column: ICM and right column: SLFM. All predictions and observations are similar.
However, based on the means for ∆ue1 and ∆ωt1, it is clear that the independent fields and SLFM are more accurate than the ICM
approach. The ICM method yields wider prediction intervals, so that, with the exception for ∆ue1 and ∆ωt1, a larger portion of the FE
results remains within its prediction intervals. Note that the numerical estimate for the autocorrelation function provides a reasonable
estimate for ∆L ≤ L

4
[73]. Furthermore, a good estimate of the autocorrelation function needs at least 50 sample points of a realization

from a random process/field [73].
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Continued Figure 18: Prediction and observation intervals for the autocorrelation functions of both the FE and beam simulations alongside
the means. Left column: independent fields, center column: ICM and right column: SLFM. All predictions and observations are similar.
However, based on the means for ∆ue1 and ∆ωt1, it is clear that the independent fields and SLFM are more accurate than the ICM
approach. The ICM method yields wider prediction intervals, so that, with the exception for ∆ue1 and ∆ωt1, a larger portion of the FE
results remains within its prediction intervals. Note that the numerical estimate for the autocorrelation function provides a reasonable
estimate for ∆L ≤ L

4
[73]. Furthermore, a good estimate of the autocorrelation function needs at least 50 sample points of a realization

from a random process/field [73].

36



∆ue1

Figure 19: Prediction and observation intervals for the cross-correlation functions of both the FE and beam simulations alongside the
means. Left: independent fields, center: ICM and right: SLFM. Only the cross-correlation function between ∆ue1 and ∆ωt1 is presented as
the other cross-correlations are the same for the three approaches. The envelopes of both the independent fields and the SLFM methods
include the entire FE intervals. On the other hand, the mean cross-correlation of the ICM method is more accurate than those of both
the independent fields and SLFM methods. Although the prediction bounds for both the independent fields approach and the SLFM
approach look similar, it is clear that the SLFM approach predicts wider intervals. Furthermore, the mean of the SLFM approach is
closer to the observation mean than that of the independent fields. The similar behavior of both the SLFM and the independent fields
approaches can be due to the fact that the intercorrelation between the parameter fields may not be very strong. Note that in the
proposed SLFM model, the intercorrelations between the parameter fields are modeled by a second latent random field that is linearly
combined with the independent fields by the a5 vector. If the components of this vector (linear combination coefficients) are small, the
result will be similar to the case of the independent fields. Note that the numerical estimate for the cross-correlation function provides a
reasonable estimate for ∆L ≤ L

4
[73]. Furthermore, a good estimate of the cross-correlation function needs at least 50 sample points of

a realization from a random process/field [73].

8. Conclusions665

In this contribution, two formulations (i.e. the intrinsic coregionalization model and the semiparametric latent
factor model) to describe the correlations between random fields are numerically investigated and compared to the
case of independent fields (i.e. without correlation between the fields). The random fields are bounded so that bounds
of the physical parameters are incorporated.

The identification of the random fields’ parameters is hybrid: first, the spatially fluctuating parameters of each670

specimen are deterministically identified, and subsequently the random fields’ parameters are probabilistically iden-
tified (using Bayesian inference). A probabilistic identification of the random fields’ parameters is required because
a limited number of specimens are available in practice. The results indicate that:

• The intrinsic coregionalization model leads to wider prediction intervals that contain all the finite element
results, whereas the finite element results are occasionally outside the prediction intervals of the independent675

fields model and the semiparametric latent factor model.

• The independent fields model and the semiparametric latent factor model predict the finite elements’ probability
density functions of the reaction forces and moments slightly better.

• The probability density functions of the reaction forces and moments for all three approaches contain the finite
elements’ reaction forces and moments.680

• The autocorrelation functions’ mean estimators of both the independent fields model and the semiparametric
latent factor model are better than those of the intrinsic coregionalization model. However, the intrinsic
coregionalization model yields wider prediction intervals that contain more of the finite elements’ results.

• The mean estimator of the intrinsic coregionalization model is better than the ones of the independent fields
and semiparametric latent factor model. However, the prediction intervals for the independent fields model685

and the semiparametric latent factor model contain all the finite elements’ results.

The formulations and the identification of their parameters are applied to the input fields of linear elastic beam
representations of hollow struts with random geometries. The geometry of six hollow struts are known and several
mechanical tests are virtually applied to each strut geometry. The high accuracy of these simulations is achieved by
representing each strut geometry with a detailed finite element discretization.690
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The results of the detailed tests are locally fluctuating center line displacements and rotations, as well as reaction
forces and moments, which are to be described by an equivalent beam representation (since beam representations
yield significantly more efficient simulations of entire strut networks). The input fields of the beam representations
are the random fields’ realizations of interest.

The linear elastic strut geometries are artificially generated, so that a numerical comparison between the ‘true’695

struts and the beam representations is possible. In the future however, real strut geometries will be considered,
which will be identified using experimental techniques. Thus, in our future work we will not be able to provide a
comparison as easily as here.

In the current contribution, the parameters of interest were four geometrical parameters and one mechanical
parameter. This yielded a maximum number of nine random fields’ parameters that were simultaneously considered700

in the posterior. It may be noted that the full coupling of all four deformation modes may be performed by
considering all 16 resultant beam properties as the parameters of interest (between the four principle deformation
modes and the four principle reaction forces/moments). However, in that case the number of random fields’ parameter
becomes substantially larger (i.e. 33), in which case the framework is exposed to non-identifiability and the curse of
dimensionality [74]. Although neater from a mechanical point of view, considering all resultant beam properties as705

parameters of interest may be unachievable.
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Appendix A. Details of the adjoint method

In this appendix, the expression for gradient ∂J
∂z is derived using the adjoint method. First, the gradient is

expressed using the chain rule as follows:
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where the components of matrices
∂ubeam,∗

j

∂ubeam,∗ (with ∗ denoting e, 2, 3 or 23 and j = 1, 2, 3) and
∂ωbeam,t

1

∂ωbeam,t equal zero or720

one. Matrices
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∂ubeam,t are zero matrices. The question is how to efficiently compute matrices ∂ubeam,∗
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∂z . To this end, the equilibrium equation in Eq. (12) is again considered, but only after it is solved, and
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The equilibrium equation is then differentiated with respect to parameters z (according to the implicit function
theorem):725 [ ∂f
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which gives the following expression:[
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When Eq. (A.4) is incorporated in Eq. (A.1), the following expression is obtained:
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which avoids the need for finite differences, at the (small) expense of the necessity to compute
∂f

int

∂z and
∂M int

∂z .

The last remaining issue with Eq. (A.5) is that the true inverse needs to be computed, because all inverses in
Eq. (A.5) are post-multiplied with a matrix. This makes the computation of Eq. (A.5) relatively slow. To avoid the730

need to compute the true inverses in Eq. (A.5), the adjoint of Eq. (A.5) is taken, which is the same as the transposed
if imaginary numbers do not occur, as is the case here. The result reads:
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where the following symmetry is incorporated:[ ∂f
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In Eq. (A.6) each inverse is post-multiplied with a column (i.e. a column is the result after the matrix-column
multiplication between the large brackets is performed). Consequently, each inverse-column multiplication can be735

considered as the solving of a system of linear solution, so that the inverse does not need to be computed and the
expression is faster to solve.

Appendix B. Mesh convergence

The current appendix indicates that, for the intrinsic coregionalization model and axial elongation as the employed
deformation mode, the use of 50 beam elements is sufficient to have reached mesh convergence in a statistical sense.740

Beam representations with different number of elements are considered and axial elongation is applied to each
discretization, where every time new input fields are sampled from the posterior. Autocorrelation is applied to
the predicted center line displacements (in axial direction) and the mean autocorrelation for each discretization is
presented as a curve in the left diagram of Fig. B.20 (whilst a single field per discretization is presented in the right
diagram of Fig. B.20).745

The left diagram of Fig. B.20 clearly demonstrates that with 2, 5 and 10 elements the beam models are statistically
inaccurate, but if the number of elements is increased further, the autocorrelation clearly converges. It may be argued
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that for 25 elements the results are statistically already converged, but for the use of 50 beam elements convergence
is definitely reached. Thus, the reported analyses are performed with a converged mesh in a statistical sense.

(a) (b)

Figure B.20: Mesh convergence analyses for the intrinsic coregionalization model with axial elongation as the employed deformation mode.
Left: the predicted autocorrelation mean for the predicted relative center line displacements in axial direction (∆ue1), for eight different
discretizations (with 2, 5, 10, 25, 50, 100, 200 and 400 elements). Each curve is the mean of autocorrelation predictions for each particular
discretization. Right: a single field of relative center line displacements in axial direction as predicted by the eight discretizations.

Appendix C. Posterior approximation750

Once we obtain the posteriors (Eqs. (42), (44), (49) and (51)) one needs to approximate these posteriors due
to their complexity. As it is mentioned in Subsection 5, often Markov chain Monte Carlo (MCMC) techniques are
employed to sample the posterior. Once we have enough samples from the posterior, the statistical summaries of the
posterior, such as the mean, the MAP and the covariance matrix, can be approximated and one can make predictions.
In this appendix, we provide the algorithm that we have employed. Readers who are interested in details of this755

algorithm are referred to [69].
The algorithm below samples the posterior by a random walk through parameter space p. We start with sample

p
i

and the evaluation of the posterior at this point. Next, new sample p
n

is proposed by drawing from proposal
distribution q(p

n
|p
i
) of Eq. (C.1). If the posterior value at the proposed sample (i.e. πpost(pn)) is larger than the

posterior value at p
i
, the proposed sample is accepted. However, if πpost(pn) < πpost(pi), the proposed sample may760

be accepted as the new sample. This depends on ratio r in Algorithm 2. If the proposed sample is rejected, the old
sample once again is taken as the new sample. We update the parameters of the proposal distribution based on the
knowledge about the posterior, harvested from the previous samples. In this contribution we update the proposal
distribution once every 1000 samples. The algorithm is repeated for ns samples.

The proposal distribution q(p
n
|p
i
) reads as:765

q(p
n
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i
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i
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AP
), (C.1)

where κ2R
AP

denotes a covariance matrix of size np× np and np denotes the number of dimensions of the posterior.
We select κ initially and matrix R
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is updated based on the previous samples. We use the following initial value

κ = 2.38√
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, proposed by Gelman et al. [76]. Matrix R
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is:770
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and kAP is a row matrix of length np which is determined as follows:
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Algorithm 2 The Metropolis algorithm with the adaptive proposal

1: select initial sample p
0
∈ Rnp and set κ = 2.38√

np

2: for i = 0, 1, 2, ..., ns − 1 do
3: draw p

n
∈ Rnp from the proposal distribution q(p

n
|p
i
) in Eq. (C.1)

4: calculate the ratio r(p
i
, p
n
) = min

(
1,

πpost(p
n

)

πpost(p
i
)

)
5: draw u ∈ [0, 1] from uniform distribution
6: if r(p

i
, p
n
) ≥ u then

7: p
i+1

= p
n

8: else
9: p

i+1
= p

i

10: end if
11: per 1000 samples . nK

AP
= 1000

12: update matrix K̃
AP

13: end for

Once the samples are obtained, the following equations can be used to approximate the posterior’s mean p̂
post

,

MAP point M̂AP and the component of the posterior’s covariance matrix at the kth row and lth column:

p̂
post

=
1

ns

ns∑
j=1

p
j
, (C.5)

M̂AP = argmax
p
j;j=1,...,ns

π(p
i
), (C.6)

and

(ĉov
post

)kl =
1

ns − 1

ns∑
j=1

(
((p)k)j − (p̂

post
)k

)(
((p)l)j − (p̂

post
)l

)
, k = 1, 2, · · · , np, l = 1, 2, · · · , np. (C.7)

Note that hats on top of letters and symbols denote their numerical approximations.775
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