
Self-Sovereign Identity for the Financial Sector: A
Case Study of PayString Service

Abstract—PayString is an initiative to make payment iden-
tifiers global and human-readable, facilitating the exchange of
payment information. However, the reference implementation
lacks privacy and security features, making it possible for anyone
to access the payment information as long as the PayString
identifier is known. Also this paper presents the first perfor-
mance evaluation of PayString. Via a large-scale testbed our
experimental results show an overhead which, given the privacy
and security advantages offered, is acceptable in practice, thus
making the proposed solution feasible.

Index Terms—PayString, DID, Verifiable Credentials, Self-
sovereign Identities

I. INTRODUCTION

The latest technological advancements have revolutionized
many aspects of everyday life: from mobility through health-
care and to communications. However, when we take a look at
the banking industry there is still much room for improvement
and innovation, especially when we talk about international
transactions. While for example, the email has slashed the
time necessary to send and receive a letter from days to
seconds, the same is not yet valid for international payments,
which are still processed according to old, traditional ap-
proaches and technologies. International payment systems are
siloed and disconnected; between some systems, payment is
complicated or not even possible. Transfers often take days
to be fulfilled, without direct feedback from the receiver to
the sender, and oftentimes incurring high fees. Moreover,
while the underlying communication technology is complex,
to send an email one only needs the recipient’s email address,
which follows an easy-to-remember and easy-to-share format:
alice@example.com. The same is not (yet) true for financial
transactions, either in fiat or cryptocurrencies, where one needs
to manage and share multiple accounts expressed as long and
complex strings of alphanumeric characters.

Although several Distributed Ledger Technologies (DLT)1

seek to address aspects of inter-connectivity, payment speed,
fees and feedback, to our knowledge the same is not true
concerning the ease and freedom of usage for the end-user,
when dealing with complex payment end-point descriptors,
and especially when the banking systems and the bank account
formats are different, which is often the case for international
payments. PayString aims to close this gap but there is still
room for improvement concerning the security and privacy of
user’s data.

1Like, for example, Ripple, Quorum (JP Morgan), Open Chain (Ant
Financial), Corda, Stellar, Ethereum, Hyperledger Fabric and projects like
Interledger (Ripple), Stella (EU and Japan), Jasper (Canada), Ubin (Singa-
pore) and more

Our contribution is threefold: (1) Enrich PayString with
privacy and security features (2) Evaluate the reference im-
plementation of PayString and the proposed solution via a
comprehensive load testing (3) A working prototype that
demonstrates the practical applicability of our solution.

The rest of the text is organized as follows: Section II
describes the required background information. In Section III
we explain our solution, ”PayString Secure”, followed by a
prototype implementation. Extensive evaluation experiments
are presented and discussed in Section IV. Section V places
our work in the context of literature work. Finally, we draw
our conclusion and discuss the future work in Section VI.

II. BACKGROUND

A. PayString

PayString is a web-based protocol designed to facilitate the
exchange of payment information. PayString addresses look
like an email address but with a dollar symbol ”$” instead
of the ”@” symbol - for instance: alice$example.com. The
aim is to replace complicated bank account numbers and
cryptocurrency wallet addresses with an easy to memorize
identifier. As such, users can use a single address linked to
several bank accounts or wallet addresses. The resolution of a
given PayString address occurs in a dedicated server, similar
to how DNS resolves domain names to infer the corresponding
IP addresses.

The design principles of PayString are simplicity, neutrality,
decentralization, extensibility, sovereignty and composability
with existing standards and namespaces. Fulfilling the first
principle, the PayString protocol is built upon HTTP and
DNS, comprising a request/response application-layer protocol
[1]. Neutrality makes PayString a currency agnostic protocol,
being able to work both with crypto and fiat currencies. The
decentralization allows the protocol to work without a central
authority over the web, dismissing the need to comply with
different standards and jurisdictions. Extensibility is about
making PayString open and upgradable. Sovereignty concerns
PayString’s ability to put the control in the user’s hands,
such that users own and control their identity and data. Being
highly abstract, PayString can wrap existing namespaces and
standards, allowing the protocol to be composable.

1) Use Case: The operation of PayString is quite simple.
Figure 1 shows a use case in which Alice wishes to transfer
money to Bob. Bob already registered his payment information
on the PayString Server, so he only needs to send his easy-to-
remember PayString address (bob$example.com) to Alice, that
will request the payment information to the server. The server

Alice

PayString
Server

Bob

1. send PayString identifier

bob$example.com
bob$example.com

2. request payment information

3. Payment information4. pay

Fig. 1: PayString Use Case. Alice wishes to transfer money to Bob. Bob sends his PayString address to Alice, that requests
Bob’s payment information from the PayString Server

will then send the payment information: a pointer to Bob’s
wallet. Alice will use this pointer to transfer money from her
wallet to Bob’s wallet.

2) Security and Privacy: An important consideration to
make before discussing security and privacy matters is that,
while the PayString protocol works between an entity and
a server, for a payment to occur successfully, we need the
participation of a payer, a payee, and the wallets of both
entities. The entity needs to trust it’s wallet since the PayString
protocol cannot prevent byzantine behavior from the wallet’s
part [2]. Remembering that in this scenario a ”wallet” is not
necessarily a cryptocurrency wallet and can be, as an example,
a bank account.

There is, however, some risk attached to the PayString
Server, being it an always-online system: an attacker could
hijack or impersonate the server, sending different payment
information for a given pointer to deviate the funds to the
attacker’s wallet. The impersonation attack is considered to
be of high risk when the keys used by the PayString Server to
sign the payment information are compromised. There is less
risk if only the keys used for establishing secure channels are
endangered.

Besides the server, an attacker may try to impersonate an
entity, registering different payment information in the name
of an entity that still did not register its true information.
The attacker may also change the information of an already
existing entity’s pointer if the keys got compromised.

As a privacy consideration, PayString allows the entity to
choose to keep its payment information public or private, but
without granularity. Also, there is not yet any implemented
method to verify the requester’s identity. In this context, there
is no strong guarantee of privacy on the PayString protocol.
We discuss the subject in Section III.

B. Self-sovereign Identities

Self-sovereign identities (SSIs) are the last generation of
identity proof methods on the Internet. Different from previous
models, it gives users total control over their identity and data,
while trusting a third-party solely to verify the authenticity of
a given identity [3].

The Internet itself was never designed to provide means
of managing and authenticating the identities of the users.
Very soon the authentication of users became an issue, with
the first straightforward solution being the institution of user

credentials: username and password. Each service provider
then needs a database to authenticate the credentials of the
users and to store all the data necessary at the moment and
possibly necessary in the future.

The disadvantages of this method are easily spotted: for
each service the user needs an identity, being necessary to
remember credentials for different services, and to replicate
the same information across different providers. Besides that,
it is also necessary to trust all these entities, even when they
are susceptible to involuntary data leakages.

The next generation of identity authentication came to
facilitate the managing of multiple credentials for a single
user and is called Federation. A single entity is responsible for
managing the user’s credentials and data; the service providers
then refer to this authority to authenticate and provide the data
when needed. The user has partial control over which data is
shared with whom. Although better than the previous one,
this model has the obvious problem of trusting in a central
authority that may, for any reason, stop providing service for
unique or multiple users. In this way, the user may lose his
identity and all of his data if the authority decides so or if the
authority gets compromised.

Self-sovereign identities turn the identity providers into trust
providers. The user is the sole provider and authenticator
of their identity and the trust providers are the entities that
provide trustfulness for these identities i.e. : they attest to the
veracity of the identity.

This new model requires the support of decentralized in-
frastructure, providing something like a new layer to the
Internet. Decentralized ledgers are the perfect technology for
this matter. With this concept in mind, the Sovrin Foundation
created a permissioned blockchain called Sovrin to act as
infrastructure for the identity layer [3].

C. Distributed Identifiers and Verifiable Credentials

Decentralized Identifiers (DIDs) and Verifiable Credentials
(VCs) are technical concepts that also play huge roles in the
domain of identity management on distributed ledgers. Both
are being developed as standards by the World Wide Web
Consortium (W3C).

DIDs [4] are, in a simple way, unique identifiers for decen-
tralized verifiable identities. Being decentralized, DIDs don’t
need any central authority to store, manage and validate the

identities they represent. These identities can represent real
people, organizations and abstract entities between others.

Each DID is represented by a URI associated with a DID
subject and a DID document, where the DID subject is the
represented entity, i.e. the identity owner. The DID document
describes the subject, holding public keys, biometrics, and any
other mechanism used for authenticating the ownership of the
subject over the DID.

The use of credentials is a way of proving ownership,
permissions, concessions, accordances, and even identities.
Verifiable Credentials [5] are those whose authenticity can
be verified by trustable authorities. As an example, we can
cite university degrees, which are credentials used to assert
the level of education of an individual. It is usually hard to
express these VCs digitally while preserving people’s privacy,
considering that for the validation of a credential, holder,
issuer, subject and verifier must be known. In this context,
the pseudonymity provided by the blockchain is a powerful
asset to be taken advantage of.

DIDs and VCs can be used as building blocks for identity
management systems based on self-sovereign identities [6].
The DIDs present an easy way to have unique identifiers
linked to a real-life identity, while the VCs can benefit from
blockchains to securely and privately express the credentials
needed for authentication.

III. PAYSTRING SECURE

PayString is a solution for simplifying payments in nowa-
days scenarios, where users need to deal with multiple pay-
ment methods, currencies, and identifiers. However, it does
not integrate privacy by design [7]. Privacy by design is the
concept of embedding privacy to the design and operations of
IT systems, networks, infrastructure, and business practices.
With this purpose in mind we enriched the protocol with some
privacy and security features.

The first issue we tackled was the fact that anyone could
access the payment information of a given user by knowing
their PayString. Let us consider a user called Bob that stores
all his payment information on a PayString Server, including
bank account and XRP wallet addresses. It is not of Bob’s
interest to publicly disclose the bank on which he holds an
account and the fact that he owns an XRP wallet.

Bob needs to receive some payment from his friend, Alice.
Bob then sends his PayString to Alice via unencrypted e-mail.
Somehow an anonymous and malicious third party intercepts
this e-mail and gets access to Bob’s payment information.
This third party now knows the bank where Bob holds his
account and sends several phishing e-mails to capture Bob’s
bank account credentials.

The immediate answer to this problem is to implement
an Access Control List (ACL), allowing Bob to grant and
deny access to his payment information. Now, considering
that Bob wishes to receive only payments on fiat currency
from Alice, there is no need to give her access to his XRP
wallet address. Looking through this perspective, this ACL
must permit granular control to the payment information.

With the ACL integration to the PayString Server, we solve
the primary privacy issue encountered on the protocol. But
how do we verify the identities of the users that request access
to another user’s payment information? In other words, how
can we assure that the requester is indeed Alice and not the
third malicious user?

The answer to these questions is pretty straightforward: we
can verify identities using asymmetric cryptography. So Alice
would need to send her public key to Bob, which would
include this key in his ACL. When requesting the payment
information, Alice would need to sign the request using her
private key.

This solution works well but makes us fall again into
the issue we are trying to avoid: the non-human-readable
identifiers. To address this problem we decided to use SSIs in
the form of DIDs and VCs taking advantage of HyperLedger
Indy tools and capabilities.

By using DIDs and VCs, the Blockchain serves as a single
source of truth, enabling transparency, security and trust,
which is the base of any identity system. So Alice is now
able to prove her identity to the PayString Server using a DID
Verifiable Credential instead of a long sequence of random
characters, facilitating the entire process of payment.

A. Hyperledger Indy

Hyperledger Indy is a distributed ledger that provides tools
and libraries for supporting the development and integration
of solutions based on distributed identities. The purpose of
Hyperledger Indy is to provide a platform for the creation of
identity solutions across different domains. The Sovrin Foun-
dation contributed initially to the project by open-sourcing the
code used to build the Sovrin Network [8].

Over the distributed ledger, there are built-in capabilities
that implement Decentralized Identifiers (DID) without the
need for a central authority. Any two entities can have a 1:1
secure relation. Hyperledger Indy also uses zero-knowledge
proofs to authenticate claims without disclosing any additional
information about the identity owner.

Indy makes use of Hyperledger Aries, a toolkit that provides
secure management for creating, transmitting, and storing
verifiable digital credentials. Aries consumes the shared cryp-
tographic library Hyperledger Ursa. In this way, Indy, Aries,
and Ursa work together to provide a secure fabric on which
solutions based on self-sovereign identities can be built.

B. Architecture

Hyperledger Indy serves as the foundation layer on which
PayString Secure is built, as shown in Figure 2. On top of that,
we have an extended PayString Server with two new modules,
the ACL - explained above - and the Credential Manager,
which stores and verifies the credentials.

We also built the PayString Digital Notary, which is the
entity that issues the VCs. When Alice needs to prove her iden-
tity, she must request a credential to the Notary. The Notary
will issue the VC, which will be registered on the Blockchain
and saved into Alice’s wallet. Having this credential, Alice

Digital
Notary

PayString
Server

Alice Bob
ACL

Credential
 Manager

Controller Controller

Agent Agent

HYPERLEDGER INDY
Fig. 2: PayString Secure Architecture. We built a Digital
Notary to issue credentials and extended the PayString server
with two modules: the ACL and the Credential Manager

becomes able to prove to the PayString Server that she is
indeed who she says she is.

To connect to the Server and the Notary, both Alice and Bob
need agents which will manage the connections between them
and the entities, and will keep a record of the credentials is-
sued. On top of these agents, we have the so-called controllers,
that provide the business logic to the agents, facilitating the
entire process from the user’s perspective.

C. Solution Workflow

PayString
 Server

Alice
alice$example.com

GetInformation(bob$example.com)

Error: no valid credential

Sender: alice$example.com

HYPERLEDGER INDY
Fig. 3: Workflow for the case where Alice doesn’t have a
credential

PayString
Secure
Server

Alice

alice$example.com
DID: 89SGH7UI90M612

(4) GetInformation(bob$example.com)

(1) issue VC
(PayString, DID)

Sender: alice$example.com

Digital
Notary

(5) Bob’s payment information

HYPERLEDGER INDY

(2)

(3)

Encrypted using Alice’s DID

Fig. 4: Complete workflow involving the Notary, PayString
server and Alice

Figures 3 and 4 show an example of the interaction be-
tween the modules and entities using PayString Secure, to

safely exchange payment information between two users:
Alice and Bob. Alice knows Bob’s PayString identifier,
(bob$example.com), and wishes to make a payment to Bob
using fiat currency. She sends a request to the PayString
Server, identifying herself using her PayString identifier (al-
ice$example.com) and asking for Bob’s payment information.
The Credential Manager of the Server looks for an existing
credential for Alice’s PayString identifier; if none is found,
the Server will reject the request (Figure 3). To fix this, Alice
needs to ask the Notary for a new credential (Figure 4); for
that, she needs to provide her PayString and DID identifiers.
The Server will issue the credential and send it to Alice’s
wallet, where the credential will be stored.

Possessing the credentials, Alice can now make a valid
request. But first, she needs to present her credentials to the
PayString Server, which will use the Credential Manager to
store them. Afterwards, she will send a new request for Bob’s
payment information, the same way she did before. But this
time the Server will be able to validate the request and will
then check the ACL to see if Alice is authorized to see the
information. If she is, the Server will encrypt Bob’s payment
information using Alice’s DID (provided by the credential)
and send her the encrypted message that she shall be able to
decrypt using her private key.

D. Prototype Implementation

A prototype of PayString Secure was built for the PayString
Block-Sprint Hackathon. The prototype consists of four enti-
ties: Alice, Bob, the PayString Secure server and the Digital
Notary. Even with Bob’s role in the use case, he has no
controller and agent on the prototype. However, his payment
information is already stored on the PayString Server, which
has also a rule in its ACL authorizing Alice to retrieve Bob’s
payment information.

Alice, the PayString Server and the Digital Notary have
agents and controllers, so the user can interact with any of
them. The PayString Server has also the Credential Manager
and the ACL. The Digital Notary issues credentials to Alice;
these credentials need to be sent to the PayString Server for
releasing Bob’s payment information. This way, the proto-
type implements the use case described in Section III, the
only extra step added being that Alice needs to establish a
secure connection with the Digital Notary before asking for
her credential. This step is necessary to guarantee a secure
connection and is implemented by Hyperledger Indy itself.
The same secure connection is also used between Alice and
the PayString server.

IV. PERFORMANCE EVALUATION

PayString is a quite recent technology; based on the best
of our knowledge the performance of the PayString server has
not yet been evaluated. That means we don’t have a baseline to
assess the overhead of the novel added features. This section
first evaluates the reference implementation of PayString2, and
then evaluates the performance of our enhanced version.

2https://github.com/PayString/paystring

PayString
Instance

K6
Workload

Node

Post/G
et Payment

Information

Fig. 5: Grid’5000 Evaluation Testbed

A. Experimental Environment

In this work, we use the Grid’50003(g5k) platform for
testing. The g5k is a large-scale testbed environment for
experiment-driven research. A large number of resources are
scattered over many geographic locations in France and Lux-
embourg. We selected two locations that are geographically
separated but they still well-connected thanks to g5k infras-
tructure. As shown in Figure 5 the first node is located in
Luxembourg and runs an instance of PayString server, while
the second node, located in Nantes (France), runs the workload
generator script. Nodes specifications are described in Table I.

B. Testing Tool and Applied Tests

Load testing is the standard approach for assessing how
software systems behave under load. We aim to discover load-
related problems such as performance (e.g., memory leak)
or functional problems (e.g., buffer overflow) that could be
discovered only when the PayString server is under load [9].

In this work, the k64 API testing tool is used to automate,
scale and reproduce the load tests. The k6 tests are based
on the Virtual Users (VUs) concept to create workloads for
targeted applications. The expected behavior of application
users is encoded in JavaScript script files. During the load
test, VUs execute the test script in parallel. The k6 test script
has two main functions emulating user behavior for registering
and retrieving payment information.

We applied four types of load tests to give different insights
about the PayString server. The selected tests are as follows:

• Smoke Test is configured with one VU to get the payment
information over 60 seconds. This minimal load for the
PayString server is used to assess the readiness of the
server for the next tests.

• Load test evaluates PayString server under typical and
peak load. The test gradually increases the number of

3www.grid5000.fr
4https://k6.io

VU requests to 100 in 5 minutes; this rate will last for
10 minutes and then ramp-down to 0 requests.

• Stress Load is used to evaluate the stability of PayString
server under heavy load, so the workload will be sent over
multiple stages: below normal load, normal load, around
the breaking point, beyond the breaking point and, finally,
scale down.

• Spike Test is a kind of stress test, but it does not gradually
increase the load, instead, it spikes to extreme load over a
very short window of time. Therefore we can determine
how the PayString server will perform under a sudden
surge of VU requests. So, we start the test with a normal
load (i.e 100 VU requests over 1 minute) then we spike
to 1,400 VU requests for 3 minutes.

To account for the problems that may arise due to network
connections, we run the tests 5 times. For comparison between
the two instances, we record the request-response time, which
is defined as time spent waiting for a response from the remote
host. The average, median, maximum, 90th percentile and 95th
percentile are calculated. We take into account that during
the tests the PayString server may respond slowly or very
fast. So if we used only the average or median metrics, these
fast and slow responses may be lost as they were observed
less frequently. To have a closer view of the behavior of the
PayString server response times in different percentiles we
analyze p(90) and p(95). p(95) is the maximum response time
to respond to 95% of all requests [10].

In the next sections, we present the evaluation results of the
basic and the proposed PayString Secure version.

C. Performance of PayString Reference Implementation

For this experiment, a dockerized version of PayString has
been configured in a node and the k6 tests scripts in another
node. Figure 6 shows the results of the smoke test, where 1
VU keeps sending get payment information requests for a one-
minute time window. The results show that over 56 requests
the average response time is 40ms with a maximum of 73ms.
Looking for the p(95) we found that 95% of get payment
information requests stay in the range of 54ms-59ms. Figure
7 presents the load test results. The test increases gradually
the VUs to 100 over 5 minutes, then fix VUs for another 10
minutes. In total, we observed 111,100 requests sent to the
server with a 100% success ratio. The observed response time
results show that, on average, the request takes 39ms and 95%
of the requests need 55ms.

The stress test is presented in Figure 8. In the first 7 minutes,
100 VUs are created then doubled in the next 7 minutes. We
assume that the breaking point of the server is 400 VUs, so
we keep this ratio for another 7 minutes. In total, we send
523,590 requests in a 38 minutes time window. The average
time response is 825ms, while the maximum is 2,959ms. As
95% response times are calculated, it has been noticed that
the response time varies between 1,334ms-2,730ms during the
5 trials. Therefore, we conclude that the PayString server is
stable under heavy load.

Location CPU Cores RAM Network OS Disk
Nantes 2x Intel Xeon ES5-2660 8 cores/CPU 64 GiB 10 Gbps Ubuntu 18.04 2.0 TB HDD
Luxembourg 2x Intel Xeon E5-2630L 6 cores/CPU 32 GiB 2x 10 Gbps Ubuntu 18.04 250 GB HDD

TABLE I: G5k testing nodes specifications

avg med max p(90) p(95)

40

60

80

100

R
es

po
ns

e
Ti

m
e

(m
s)

Test1 41.78 36.91 109.25 52.56 54.71

Test2 40.27 36.89 68.37 51.71 51.90

Test3 40.92 38.27 60.56 51.89 53.86

Test4 40.94 38.54 61.35 52.46 55.69

Test5 40.56 36.96 66.59 51.96 59.62

Average 40 ms 37 ms 73 ms 52 ms 55 ms

Fig. 6: Response time (k6 Smoke Test) for the basic PayString

avg med max p(90) p(95)
0

200

400

600

800

R
es

po
ns

e
Ti

m
e

(m
s)

Test1 40.16 37.06 801.41 51.28 55.76

Test2 39.33 37.03 611.62 50.48 54.77

Test3 39.55 37.16 624.09 50.84 55.09

Test4 39.7 37.31 432.41 51.3 55.67

Test5 41.14 37.82 621.78 53.31 58.53

Average 39 ms 37 ms 618 ms 51 ms 55 ms

Fig. 7: Response time (k6 Load Test) for the basic PayString

The spike test depicted in Figure 9 is the toughest one
since it boosts massively the number of requests in a very
short period. The k6 tool sent 387,220 requests in 7 minutes
(compare to 38 minutes in the stress test). As a result, we have
only a 26.18% success ratio, explaining the zero value of the
median. The successful requests required 207ms on average
and 2,649ms is the maximum observed response time.

D. Performance of PayString Secure

As mentioned before, PayString Secure comes with ACL
and privacy features based on Hyperledger Indy and DID
technology. The k6 tool scripts were extended with a setup
stage where we first establish the secure connections between

avg med max p(90) p(95)
0

2,000

4,000

R
es

po
ns

e
Ti

m
e

(m
s)

Test1 486.13 379.62 2,829.63 1,147.63 1,334.47

Test2 608.7 486.74 3,310 1,360 1,580

Test3 896.78 777.83 3,820 1,940 2,240

Test4 1,004 935.66 4,000 2,210 2,540

Test5 1,130 1,040 4,660 2,360 2,730

Average 825 ms 723 ms 2,959 ms 1,803 ms 2,084 ms

Fig. 8: Response time (k6 Stress Test) for the basic PayString

avg med max p(90) p(95)

0

2,000

4,000

R
es

po
ns

e
Ti

m
e

(m
s)

Test1 148.97 0 1,229.95 721.39 778.79

Test2 187.82 0 1768.76 1175.76 1351.93

Test3 212.38 0 2957.14 1384.60 1714.52

Test4 229.33 0 3420.47 1467.90 2026.78

Test5 257.62 0 3871.72 450.36 2508.02

Average 207 ms 0 ms 2,649 ms 1,040 ms 1,676 ms

Fig. 9: Response time (k6 Spike Test) for the basic PayString

different components, issue the ownership credential and then
present the credential to the PayString server. Thus in these
experiments, we measure the response request time to cross-
check the ACL and validate the claimed digital credential.

Figure 10 shows that for over 54 requests, on average, the
response time is 178ms, while 95% of the requests consumes
188ms. Compared to the basic version of PayString, we
noticed that the new features add an extra delay of 138ms and
133ms, respectively. The result of the load test is presented in
Figure 11. With a total of 24,423 requests, the average time
is 2,990ms, and 95% of the requests need 4,138ms. With a
100% success ratio, PayString Secure passes the stress test,

avg med max p(90) p(95)

0

1,000

2,000

3,000
R

es
po

ns
e

Ti
m

e
(m

s)

Test1 173.8 125.37 3,200 150.32 154.65

Test2 176.96 124.78 3,200 149.18 204.9

Test3 179.7 129.52 3,200 152.09 227.19

Test4 179.66 132.02 3,190 157.37 165.38

Test5 180.89 131.08 3,200 156.22 190.28

Average 178 ms 128 ms 3,198 ms 153 ms 188 ms

Fig. 10: Response time (k6 Smoke Test) for PayStringSecure

avg med max p(90) p(95)

2,500

3,000

3,500

4,000

4,500

R
es

po
ns

e
Ti

m
e

(m
s)

Test1 3,810 4,890 5,940 5,200 5,260

Test2 2,740 3,600 3,960 3,760 3,790

Test3 2,860 3,730 4,150 3,920 3,960

Test4 3,000 3,850 4,390 4,130 4,170

Test5 2,540 3,310 3,700 3,470 3,510

Average 2,990 ms 3,876 ms 4,428 ms 4,096 ms 4,138 ms

Fig. 11: Response time (k6 Load Test) for PayStringSecure

where the average result is 9,566ms and the p(95) is 17,420ms.
This means that under heavy load PayString Secure can still
survive. Figure 13 shows the result of the spike test, where our
solution hits only 11.14% success rate, compared to 26.18%
in the basic version.

In general, the additional features add a few seconds in the
case of the stress load and 100ms in the case of the smoke test
to the get payment information request. However, this overhead
is negligible compared to the privacy and security features
given to the PayString users and service providers.

V. RELATED WORK

Although identity management and authentication have been
an issue since the beginning of the Internet, only recently the
idea of giving the user ownership of its digital identity aired

avg med max p(90) p(95)

1

1.5

2

·104

R
es

po
ns

e
Ti

m
e

(m
s)

Test1 10,090 9,010 18,750 18,160 18,290

Test2 10,590 9,540 19,720 19,060 19,240

Test3 11,060 9,920 20,580 19,880 20,000

Test4 7,820 6930 14,690 14,300 14.400

Test5 8,270 7370 15,670 150,20 15,170

Average 9,566 ms 8,554 ms 17,882 ms 17,284 ms 17,420 ms

Fig. 12: Response time (k6 Stress Test) for PayStringSecure

avg med max p(90) p(95)

0

2

4

·104

R
es

po
ns

e
Ti

m
e

(m
s)

Test1 2,796 0 44,333 3,215 40,605

Test2 2,805 0 47,214 3,359 41,725

Test3 2,759 0 48,523 3,531 40,377

Test4 2,820 0 50,690 3,720 26,720

Test5 2,830 0 53,010 3,930 34,900

Average 2,802 ms 0 ms 48,754 ms 2,843 ms 36,865 ms

Fig. 13: Response time (k6 Spike Test) for PayStringSecure

with strength; the surge of DLTs, such as blockchains, gave
this movement an engine on which to work over. It is important
to note, however, that it is possible to build solutions based on
the SSI paradigm without the use of blockchains, as stated by
[11], that dissects some SSI solutions present on the market
until 2019. This study also points to the primary disadvantage
of blockchain-based solutions: if one does lose its private keys,
one can’t prove its identity anymore and consequently lose
access to the system.

CanDID [12], although not using blockchains, tackles this
problem and tries to solve it by using oracles. The idea is
that the user can prove its identity by showing a previously
successful login to a pre-selected account without revealing the
account information. CanDID also proposes the use of real-
life institutions, such as governments, to de-duplicate, attest

veracity and exclude malicious users.
Another solution that, similarly to CanDID proposes the

use of governments as a source of truth is UniqueID [13].
However, to prove its identity, the entity needs to state some
tokens, similar to the process of adding data to a Token
Curated Registry [14]. If there is consensus between the
validators - here called A-judges - the entity can take its tokens
back; if the validators don’t agree on the authenticity of the
identity, the entity loses the staked tokens.

UniqueID uses biometric data like private keys, much like
the IDToken solution [15], that hashes the biometric data to
create a private key. IDToken is a non-fungible blockchain
token that represents a VC, used to prove ownership over a
given identity. It is native to a public permissioned blockchain
called IDChain, described as an improved version of Hyper-
ledger Indy. The primary goal of the IDChain is to provide an
infrastructure that allows the credentials to be stored on-chain,
differently from what happens on the original implementation
of Hyperledger Indy, which stores the credential off-chain,
on the user’s wallet. The latter is also the approach used by
PayString Secure, although we provide mechanisms to register
the VC on the blockchain.

In a more practical sphere, we can take a look at the
work of [16], an initiative between the Delft University of
Technology and the Dutch Government that aims to create
a system based on SSI and biometric data for the issuance
of paperless passports. The system is reported as not ready
for large scale use yet, but dutch citizens can apply for an
experimental digital passport since 2018 [17].

Also important to mention is uPort [18], a platform that
provides tools, libraries and protocols for developers aiming to
create user-centric solutions based on SSI. uPort also uses the
concepts of DIDs and VCs; but unlikely HyperLedger Indy,
it does not have its blockchain, being built over Ethereum.
In this work, we opted to use Indy, since our goal is not to
develop an Ethereum-based solution but to add a security layer
to PayString, which is blockchain agnostic. In this context,
Indy gives a more open solution.

VI. CONCLUSION AND FUTURE WORK

Being the first to address the performance of PayString,
we also propose a security and privacy extension for it. Our
security and privacy extension concerns the access control
mechanism of PayString, so we propose both a formal model
and a way to integrate it with DID to use VCs.

We evaluate the performance using a real-life testbed de-
ployed on G5k, and our experimental results show an overhead
which, given the privacy and security advantages offered, can
be acceptable in practice, thus making the actual implementa-
tion feasible.

Future work concerns reducing the overhead, investigating
the usage of Distributed Hash Tables (DHT) to improve the
service reliability; integrity of information is also a potential
challenge for those who will run a server because while the
data will be accessible to clients, the service providers will
know nothing about what is happening inside the server.

REFERENCES

[1] A. Malhotra, A. King, D. Schwartz, and M. Zochowski, “Paystring
protocol,” https://paystring.org/whitepaper.pdf accessed on 14/12/2020,
Ripple, Tech. Rep., 2020.

[2] A. Malhotra and D. Schwartz, “Verifiable payid protocol internet
draft,” https://github.com/PayString/rfcs/blob/master/dist/spec/
verifiable-payid-protocol.txt accessed on 14/12/2020, Ripple, Tech.
Rep., 2020.

[3] A. Tobin and D. Reed, “The inevitable rise of self-
sovereign identity,” https://sovrin.org/wp-content/uploads/2018/03/
The-Inevitable-Rise-of-Self-Sovereign-Identity.pdf accessed on
27/10/2020, Sovrin Foundation, Tech. Rep., 2016.

[4] D. Reed, M. Sporny, D. Longley, C. Allen, R. Grant, M. Sabadello,
and J. Holt, “Decentralized identifiers (dids) v1.0,” https://www.w3.org/
TR/2020/WD-did-core-20201108/ accessed on 20/11/2020, W3C, Tech.
Rep., 2020.

[5] M. Sporny, D. Longley, and D. Chadwick, “Verifiable credentials
data model 1.0,” https://www.w3.org/TR/vc-data-model/ accessed on
20/11/2020, W3C, Tech. Rep., 2020.

[6] M. Kubach, C. H. Schunck, R. Sellung, and H. Roßnagel, “Self-
sovereign and decentralized identity as the future of identity manage-
ment?” Open Identity Summit 2020, 2020.

[7] F. Scheidt de Cristo, W. Shbair, L. Trestioreanu, A. Malhotra, and
R. State, “Privacy preserving paystring service,” in 2021 IEEE Interna-
tional Conference on Blockchain and Cryptocurrency (ICBC). IEEE,
2021.

[8] “What is hyperledger indy?” https://sovrin.org/faq/
what-is-hyperledger-indy/ accessed on 17/11/2020, The Sovrin
Foundation, 2018.

[9] T.-H. Chen, M. D. Syer, W. Shang, Z. M. Jiang, A. E. Hassan, M. Nasser,
and P. Flora, “Analytics-driven load testing: An industrial experience
report on load testing of large-scale systems,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering: Software Engineer-
ing in Practice Track (ICSE-SEIP). IEEE, 2017, pp. 243–252.

[10] E. Kemer and R. Samli, “Performance comparison of scalable rest
application programming interfaces in different platforms,” Computer
Standards & Interfaces, vol. 66, p. 103355, 2019.

[11] D. van Bokkem, R. Hageman, G. Koning, L. Nguyen, and N. Zarin,
“Self-sovereign identity solutions: The necessity of blockchain technol-
ogy,” arXiv preprint arXiv:1904.12816, 2019.

[12] D. Maram, H. Malvai, F. Zhang, N. Jean-Louis, A. Frolov, T. Kell,
T. Lobban, C. Moy, A. Juels, and A. Miller, “Candid: Can-do decen-
tralized identity with legacy compatibility, sybil-resistance, and account-
ability,” IACR Cryptol ePrint Arch, 2020.

[13] M. Hajialikhani and M. Jahanara, “Uniqueid: decentralized proof-of-
unique-human,” arXiv preprint arXiv:1806.07583, 2018.

[14] M. Goldin, “Token-curated registries 1.0,” Medium (accessed 2 April
2019) https://medium: com/@ ilovebagels/token-curated-registries-1-0-
61a232f8dac7, 2017.

[15] E. Talamo and A. Pennacchi, “Idtoken: a new decentralized approach to
digital identi-ty,” Open Identity Summit 2020, 2020.

[16] Q. Stokkink and J. Pouwelse, “Deployment of a blockchain-based self-
sovereign identity,” in 2018 IEEE International Conference on Internet
of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CP-
SCom) and IEEE Smart Data (SmartData). IEEE, 2018, pp. 1336–
1342.

[17] “Trustworthy identity on your phone,” https://www.blockchain-lab.
org/trust/#publications accessed on 24/11/2020, Delft University -
Blockchain Lab, 2020.

[18] “Helping you build user centric apps on blockchains,” https://developer.
uport.me/overview/index accessed on 24/11/2020, uPort, 2020.

