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Abstract

Nowadays, industrial companies are engaging their global transformation to-
ward the fourth industrial revolution, often called Industry 4.0. The main ob-
jective is to increase the Overall Equipment Effectiveness (OEE), by collecting,
storing and analyzing production data. At its heart, the industry 4.0 is a data-5

driven paradigm: it relies on the production data / data measurements produced
by heterogeneous industrial machines to maximize the OEEs. However, the hetero-
geneity of industrial equipment requires a common approach to collect and treat
data. Several challenges have to be tackled to propose a unified data-driven ap-
proach to rely on, from the low-layers data collection on the machine production10

lines using Operational Technologies (OT), to the processing and more importantly
the analysis of the data using Information Technologies (IT). This is all the more
important for companies having decades of existence – as Cebi Luxembourg S.A.,
our partner in a Research, Development and Innovation project subsidised by the
ministry of the Economy in Luxembourg – to upgrade their on-site technologies15

and move towards data-driven and more efficient business models. For the past
decade, Artificial Intelligence (AI) has become a prominent technology for decision
making industrial data analysis, thanks to the huge amount of (sensors-based) uni-
variate time-series generated by factory equipments in production plants. However,
a high data volume alone is not sufficient for AI to work properly and to make20

optimal decisions. This also requires a good data quality. Indeed, good theoret-
ical performance and high accuracy can be obtained when trained and tested in
isolation, but AI models may still provide degraded performance in real/industrial
conditions where data is subject to measurement noises and errors in the collection
process.25

As such, defining a data-driven solution for industrial plants faces two signifi-
cant challenges:

• Industrial production systems are vertically-oriented closed systems that
make difficult their communication and their cooperation with each other,



and intrinsically the data collection.
• Industrial actors used to rely on deterministic processes for their predictabil-

ity. Introducing AI - that can be classified as stochastic - in the industry
requires a full understanding of the potential deviation of the models in
order to be aware of their domain of validity.5

This dissertation proposes a unified strategy for digitizing industrial systems
and introduces methods for evaluating the performance and the robustness of AI
models that can be used in such data-driven production plants.

In the first part of the dissertation, we propose a three-steps strategy to digitize
industrial systems, called TRIDENT, that enables industrial actors to implement10

data collection on production lines, and in fine to monitor in real-time the pro-
duction plant. Such strategy has been implemented and evaluated on a pilot
case-study at Cebi Luxembourg S.A. production plants. Three protocols, Open
Platform Communications - Unified Architecture (OPC-UA), Message Queuing
Telemetry Transport (MQTT) and Open Messaging Interface (O-MI)/Open-Data15

Format (O-DF), are used for investigating their impact on the real-time perfor-
mance. The results show that, even if these protocols have some disparity in
terms of performance, they are suitable for an industrial deployment. This strat-
egy has now been extended and implemented by our partner - Cebi Luxembourg
S.A - in its production environment.20

In the second part of the dissertation, we aim at investigating the robustness
of AI models in industrial settings. We then propose a systematic approach to
evaluate the robustness under perturbations. Assuming that i) real perturbations
- in particular on the data collection - cannot be recorded or generated in real
industrial environment (that could lead to production stops) and ii) a model would25

not be implemented before evaluating its potential deviations, limits or weaknesses,
our approach is based on artificial injections of perturbations into the data sets,
and is evaluated on state-of-the-art classifiers (both Machine Learning and Deep
Learning) and data sets (in particular, public sensors-based univariate time series).
First, we propose a coarse-grained study, with two artificial perturbations - called30

swapping effect and dropping effect - in which simple random algorithms are used.
This already highlights a great disparity of the models’ robustness under such
perturbations that industrial actors need to be aware of. Second, we propose a
fine-grained study where instead of testing randomly some parameters’ values, we
used Genetic Algorithms to look for the models’ limits. To do so, we define our35

multi-objectives optimisation problem with a fitness function as: maximising the
impact of the perturbations (i.e. decreasing the most the model’s accuracy), while
minimising the changes in the time-series (with regards to our two parameters).
This can be seen as an adversarial case, where the goal is not to exploit these
weaknesses in a malicious way but to showcase their effects and notify future40



practitioners of their consequences for production systems. Based on such a study,
methods for making more robust the model and/or for observing such behaviour
on the infrastructure could be investigated and implemented if needed. The tool
developed in this latter study is therefore ready for being used in a real industrial
cases, where data sets and perturbations can now be fitted to the scenario.5
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Introduction
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The industry is the part of an economy that transforms raw materials in finished
or semi-finished products. In 2020, it represented about 26 % (including 15 % in
manufacturing) of the worldwide Gross Domestic Product (GDP) according to
the World Bank national accounts and OECD National Accounts data. Since
its inception, the industry has evolved a lot, and the main changes have been5

conceptualized in four industrial revolutions, as depicted in Figure 1.1.

Figure 1.1: The four Industrial Revolutions - Christoph Roser at AllAboutLean.com

The first industrial revolution, that happened in the late 18th century, is the
transition from hand production methods to machines, thanks to the increasing
use of steam and water powers. The result was productivity improvements, adding
a new dimension to the industrial output. The second industrial revolution10

followed a hundred years later, around the turn of the 20th century and was a
period of rapid industrial development. This era introduced electrically-powered
assembly lines enabling mass production. The third industrial revolution has
started around 1970. It is characterised by the use of electronics in industries.
Computers and Programmable Logic Controller (PLC) have been developed and15

deployed on assembly lines in order to automate the manufacturing processes. This
automation helped increasing the efficiency of the production floors. Nowadays,
we are in the fourth industrial revolution, the so-called Industry 4.0. This term
was introduced by the German Federal Ministry of Education and Research which
involves the technical integration of CPS into logistics and manufacturing and the20

usage of Internet of Things (IoT) technologies in industrial processes. From its
origin, Industry 4.0 - derived from the German term Industrie 4.0 – is used as a
synonym for Cyber Physical Production Systems (CPPS), i.e. CPS applied to the
manufacturing sector [VHH16].

Industry 4.0 is a concept that encompasses different objectives in order to sat-25

isfy the new customers’ needs, as a strong product customisation and, therefore,
the necessity for companies to have a highly flexible and traceable production
[SKK+15, LFK+14, MSS18] while increasing its efficiency - commonly evaluated in
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the industry by a Key Performance Indicator (KPI) called Overall Equipment Ef-
fectiveness (OEE) -. To reach such objectives, industrial and academic researchers
define requirements and principles characterizing the Industry 4.0 that can be
summarized from a high-level viewpoint - based on [VHH16] and [KWLJ17] - as
follows:5

i. Reliability: production systems have to run even if any perturbations are
encountered;

ii. Communication: information systems of the industry (business applica-
tions, machines, humans) have to be connected and be able to communicate
with each other by providing a high-level of interoperability;10

iii. Security: information systems have to offer data confidentiality, integrity
and availability, while identifying assets (machines or humans) in an unique
manner;

iv. Data analysis: data coming from production floors have to be deeply
analysed to make smarter decisions at production or factory level by using15

Machine-Learning (ML) or Deep-Learning (DL) algorithms that are able to
deal with a huge amount of data in real-time;

v. Asset Administration Shell (AAS): the different industrial assets have
to be modelled by using a standardised and interoperable semantic (i.e. pro-
viding cross disciplines data integration) in the virtual/digital worlds, so as20

to build powerful and relevant Digital Twins.
vi. Self-Configuration: production systems have to be able to automati-

cally discover and/or configure themselves (e.g. when devices are added or
replaced).

However, even if researchers and engineers have already proposed methods and25

solutions to meet such requirements, it remains difficult for industrial companies
to step into Industry 4.0. In fact, some manufacturing companies - especially
companies having decades of existence - do not have the maturity and/or the ex-
pertise, neither in terms of interoperability nor in data analysis, to take benefits
of these technologies. Industrial actors tends therefore to create partnerships with30

academic research centers in order to be helped/advised in their digital transfor-
mation. As an example, Cebi Luxembourg S.A. - a manufacturer of electrome-
chanical components for automotive equipments and household appliances sector
- contacted, in 2017, the Interdisciplinary Centre for Security, Reliability
and Trust (SnT) to start a partnership about their biggest generational shift in35

its history. A Research, Development and Innovation (RDI) project1 was officially
signed in April 2018, in which DataThings - a Luxembourgish start-up company
which is specialized in data analysis and artificial intelligence - is also involved.

1www.cebi.com/en/signature-ceremony-industry-40-project
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I. Connection/Interoperability Level

II. Data-to-Information Conversion 
Level

III. Cyber & Cognitive 
Level

IV. Self-
Configuration 

Level

Figure 1.2: Functional Levels of Industry 4.0

The ultimate objective of this project is to lay down the foundations of potential
(self-)configuration of manufacturing production units by Artificial Intelligence
to handle changing demands, failures or non-optimal aspects of the production
process. To do so, different functional levels - depicted in Figure 1.2 - have been
defined and need to be reached in order to be Industry 4.0-ready:5

• Level I - Connection/Interoperability: refers to the production unit itself,
with proprietary PLC using fieldbus networks and the different control/com-
mands specification of the machine.

• Level II - Data-to-Information conversion: refers to creation of interoperabil-
ity and unified interface between the different machines of level I and the10

industrial application at the level III.
• Level III - Cyber & Cognitive: refers to the evaluation of the predictive

models (learning algorithms) and the modelisation of expert knowledge.
• Level IV - Self-Configuration: refers to the definition of an AI-based system

that make autonomous decisions.15

In order to deal with each layer complexity, six work-packages (WP) have been
defined. The SnT - in particular with two PhD candidates - is strongly involved in
three of them. One PhD student is focused on ”Cybersecurity in Industry 4.0” as

4



part of the WP3 and I am focused on the topics ”Connected Manufacturing” and
”Cognitive Manufacturing” as part of WP2 and 4.

These topics are of the utmost import since the production units of Cebi are
(- at the beginning of the project -) neither connected to each other nor to the
entreprise network. Indeed, such production units rely on proprietary PLC that5

do not enable communications between the Operational Technologies (OT) and
Information Technologies (IT). In fact, legacy controllers do not have open/stan-
dardized interfaces to communicate with different business applications (e.g. mon-
itoring or more advanced data-driven applications). So far, production monitoring
was done manually (which is error prone and not in real-time), and the decision-10

making was based only on such - potentially inaccurate - data. This scenario is not
only encountered by our partner, but by many industrial actors that have legacy
production units.

In addition, industrial companies historically used to implement deterministic
processes. Introducing stochastic approaches like AI - either in the production pro-15

cesses or at business level - demands a full understanding and trust on the ability
of the underlying technology to be robust. AI models can reach excellent per-
formance on state-of-the-art scenario regarding Time Series Classification (TSC)
tasks [SL17, DBK+19, FFW+19]. Nonetheless, some of regrettable events had
happened in the past, e.g., when a pedestrian was killed by a self-driving car in20

Arizona [ped18], that may impact the willingness and trust to use such technologies
in industrial settings. Indeed, it is not so difficult to imagine similar unexpected
events that could happen in the factory if perturbations occur. With regards to
the ”communication” aspect, network perturbations such as delays or losses can
appear when connecting more and more agents collecting and/or analysing data.25

Such perturbations can tamper the data and lead to an inaccurate analysis, result-
ing in inappropriate actions from the different actors [LDSP18, GAD17, SLS+18].
As a consequence, it is important to study the robustness of AI models before
deploying them in industrial data-driven production floors.

To sum up, the problem, addressed in this thesis, is then twofold: 1) Industrial30

production systems are vertically-oriented closed systems that make difficult their
communication and their cooperation with each other, and intrinsically the data
collection. 2) Industrial companies used to implement deterministic processes.
Introducing AI - that can be classified as stochastic - in the industry requires a
full understanding of the potential deviation of the models in order to be aware of35

their domain of validity.

In order to tackle these challenges, this dissertation proposes a unified strategy
for digitizing an industrial system and methods for evaluating the performance

5



and the robustness of AI models that can be used in such data-driven production
plants.

This dissertation is a compilation thesis, i.e. each chapter is an article published
or to be submitted, linked to each others by a foreword. The thesis consists of two
parts related to I. Unified approach for data-collection and II. The study of the5

ML models robustness in industrial settings. In the first part, chapter II is refering
to an analytical performance evaluation of O-MI/O-DF and MQTT protocols to
provide interoperability in the case of a remote industrial monitoring application.
Chapter III refers to the design and the evaluation of TRIDENT, a three-steps
strategy to provide interoperability between heterogeneous vertically-closed sys-10

tems. In the second part, chapter IV presents a systematic approach to evaluate
the robustness of Machine Learning models in industrial settings, with a coarse-
grained experimental study. Chapter V extends this approach to a fine-grained
evaluation of the models’ robustness, and proposes elements for the robustification
of intelligent data analysis tools such as Machine Learning.15
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Part I

Towards a unified data-driven
methodology to digitise an
industrial production plant
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2
O-MI/O-DF vs. MQTT: a
performance analysis

10



Foreword

With the advent of the Industry 4.0 and in order to meet the new needs
in terms of production flexibility while willing to increase the OEE, some
of legacy industrial companies, and especially the ones that have decades
of existence, want to upgrade their production tools. The first step of this
transition is to enable the data collection with a unified (data-driven) ap-
proach in order to monitor the whole production floor in an interoperable
and standardised manner. In the meantime, researchers and public actors
(e.g., Europe H2020) are working on these industrial digitisation topics, and
have developed protocols to provide connectivity and interoperability be-
tween vertically-closed silos.
However, industrial actors have to fully trust these technologies before im-
plementing them and benefiting from them. They have to be sure that it
will fulfill their requirements in terms of performance, while having a deep
understanding of how it will be scalable in a real production floor (in order
to design the future architecture). In order to investigate the perks and the
potential trustworthiness of these technologies, collaborations between indus-
trial and academic worlds are rising to help define the different requirements
of the companies and to share the knowledge of the researchers. It has been
the case between the SnT and Cebi Luxembourg S.A., our industrial
partner, established in 1976, in the midst of the third industrial revolution.
The company started manufacturing temperature switches for the house-
hold appliance market and designing electromechanical components for the
automotive market. In order to propose new products to the customers and
to enrich their catalog, Cebi Luxembourg S.A. - as other manufacturers-
extended and upgraded their production plant with time, leading to a het-
erogeneous production floor composed of neither connected nor interoperable
PLC from different ages and technologies. Today, they expect to step into
the fourth industrial revolution, not by replacing and redesigning its actual
production system, but by upgrading it to be Industry 4.0-ready. The first
step towards this digital readiness is considered as the ability to monitor in
a unified manner the production tools, by collecting the different data avail-
able on the machines (and more precisely on the PLC) and understanding
the impact of the monitoring process on the network.
To do so, we designed proof-of-concepts in order to test and evaluate the
different existing approaches in real-life scenario (and then trusting such
data-driven approaches). This proof-of-concept aims at raising awareness
and providing performance indicators to our partner, so that he can decide
to rely on it or not (e.g., regarding performance and scalability aspects). In
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that sense, the first task was to study the ability of two well-established
protocols in the research community (i.e. O-MI/O-DF and MQTT) to pro-
vide connectivity and interoperability in the production floor of our partner.
Therefore we propose an analytical model that describes the traffic-load gen-
erated on the network of these two protocols (i.e., O-MI/O-DF and MQTT)
for different communication modes. This analytical model provides a de-
tailed description of the payload generated by the different network layers
of data exchange using those two protocols. It has also been applied to a
real industrial case study for which we computed the traffic-load generated
for monitoring pilot production tools of our partner.
This chapter presents our study and has been published as a peer-reviewed
conference paper titled ”O-MI/O-DF vs. MQTT: a performance analysis”
[BRLTK18] at IEEE Industrial Cyber-Physical Systems (ICPS) conference
in 2018.

Contents
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 135

2.3 Traffic-Load Analysis . . . . . . . . . . . . . . . . . . . . . 15
2.4 Industrial case study: O-MI/O-DF vs. MQTT . . . . . 20
2.5 Conclusion: Towards Performance-driven network de-

signs in Industrial CPS . . . . . . . . . . . . . . . . . . . . 24
10
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2.1 Abstract

Over the past decade, a flourishing number of concepts and architectural shifts
appeared such as Industrial Internet of Things (IIoT), Industrial CPS or even
Industry 4.0. Unfortunately, today’s IoT as well as Industry 4.0 environments, look
more like a collection of isolated “Intranets of Things”, also referred to as “vertical5

silos”, rather than a federated infrastructure. Breaking down these silos is a key
challenge in both the IoT and Industry 4.0 communities. This paper is intended to
present and discuss two open and standardised messaging protocols designed for
IoT applications, namely: MQTT and O-MI/O-DF. First, a traffic load’s analytical
model derived from the MQTT standard specifications is presented. Second, a10

comparison study between MQTT and O-MI/O-DF standards is carried out based
on a real-life industrial implementation. This study brings a deep understanding of
the extent to which these protocols are performant (from a traffic load perspective)
and how they can impact on future architectural designs.

2.2 Introduction15

Over the past decade, a flourishing number of concepts and architectural shifts
appeared such as IoT, Cyber-Physical Systems (CPS) or Internet of Everything
(IoE). Applying these concepts to the industrial application scenarios leads to the
definition of the following terms: IIoT, Industrial CPS or even Industry 4.0.

Currently, the Industrial Internet consortium is essentially driven by US en-20

terprises, meanwhile in Europe similar initiatives have different names: ’Industrie
4.0’ in Germany, ’Smart Factory’ in the Netherlands, ’Usine du Futur’ in France,
etc. Those disciplines have become a technological focus area for academia, in-
dustry, and governmental organisations, as stated by the number of papers found
on Google Scholar: 287 papers – from 2013 – using ’Industrial Internet of Things’25

as title keywords, and 1160 papers using “Industry 4.0”. Strictly speaking, differ-
ences between the aforementioned terms could be elicited. Nevertheless, the term
Industry 4.0 is used throughout this document for consistency purposes.

One of the important aspects of the Industry 4.0 is to increase connectivity be-
tween the technologies, systems and processes [KWLJ17]. Indeed, most of the com-30

panies that have been created decades ago, have heterogenous, non-interoperable
and proprietary systems that are expensive to train on and maintain. Adding
to that, future production systems have to be developed considering the need
for strong product individualisation/customisation and, therefore, the necessity
for high flexible production processed [SKK+15]. It includes the industrial com-35

munications networking and IT infrastructures. Those infrastructures are still
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based on the building automation pyramid [Sau10], which are still too rigid for
meeting flexibility and adaptability requirements. From a long-term perspective,
networked Things and IO modules (at the field level) will be identifiable and acces-
sible through the Internet, constituting a dynamic global network infrastructure
with self-configuring capabilities. Even if a first level of interoperability is achieved5

at the field level by relying on open technology standards such as Ethernet-based
solutions, it still remains to manage one of the most critical obstacles, namely
the vertical silos’ model that shapes today’s IoT [KRH+16]. Data is not anymore
dedicated to a particular use but expected to be connected to many other organi-
zational information systems to support various types of activities, spanning from10

production, to business, and to services. One solution to solve this problem is to
rely, as much as possible, on open communication standards at the Application
layer, where both technical and semantic interoperability are tackled [Tur07].

While many manufacturing companies are willing to move towards the Indus-
try 4.0 paradigm, their IT infrastructure, often dating back from the early 70’s or15

80’s, prevent them from taking full advantage of that paradigm. As a result, it is
of the utmost importance to help them to efficiently step into the Industry 4.0 by
proposing efficient network infrastructure frameworks to connect all the existing
vertically-oriented closed systems (production units, metrology station, …). To do
so, it is important for system designers to be aware, beforehand, about the traffic20

load that a system (through its gateway) will generate depending on the adopted
communication protocol. The contribution of this research is twofold: i) propose
an analytical model of the traffic load (and efficiency ratio) based on the MQTT
standard specifications ii) carry out a comparison analysis with an other well-know
IoT communication protocol, and particularly the O-MI/O-DF standards (a first25

analytical model being proposed in [RKLTF16]). These two protocols have been
selected for this study not only because they can be used for Machine-to-Machine
communications, but also due to their intrinsic capabilities. The first one im-
plements an aggregation-like mechanism, meaning that all the data are bundled
in the same message, whereas the second is not fully compliant with this model30

(using one response message per data item/topic). This study will allow us to
draw conclusions about the efficiency of each protocol and their underlying mech-
anisms. The originality of this research, compared with the existing literature
where several experimental analysis have been conducted with regard to MQTT
[NSP17, DCJ15], lies in the fact that no comparison study between MQTT and35

O-MI/O-DF has been proposed and quantified yet.

The rest of the chapter is organized as follows. Section II presents the mathe-
matical models of the traffic load for both protocols. In Section III, a real industrial
case-study is described and analysed. Section IV discusses on how to use these
study results in an industrial CPS. Finally, Section V concludes this chapter.40
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2.3 Traffic-Load Analysis

2.3.1 Introduction of O-MI/O-DF & MQTT

O-MI [Gro17b] and O-DF [Gro17a] standards, which have been specified and
published by The Open-Group standardization fora, are independent entities that
reside in the Open Systems Interconnection (OSI) Application layer, respectively5

specified at the ‘communication’ and ‘format’ levels [FKB14]. O-MI provides a
generic Open API (specifying different interfaces such as Read, Write… as summa-
rized in Figure 2.3) for any REpresentational State Transfer (REST)ful IoT infor-
mation system. IoT gateways that implement O-MI can act both as a “server” and
“client”, meaning that communications are established in a peer-to-peer manner.10

O-DF standard can be combined on top of O-MI - although not mandatory - for
describing ‘Things’ in a generic manner. Note that more specific vocabularies can
also be added to the O-DF structure, as discussed in [RKK+17].

MQTT is a connectivity protocol for IoT and Machine-to-Machine communi-
cations. Standardised by the OASIS body, it also resides in the OSI Application15

layer, relying on the Publish/Subscribe model (i.e., clients communicate with a
broker in a peer-to-peer manner). The data are described according to a string-
based (hierarchical) topic (e.g., “smartHouse/temperature”). MQTT distinguishes
between three Quality of Service (QoS) levels at the application layer, since it re-
lies on Transmission Control Protocol (TCP)/Internet Protocol (IP) for the lower20

ones. In addition and contrary to O-MI, MQTT is a connection-oriented protocol,
meaning that clients need to setup a connection with the broker before publishing
or subscribing any data/topic.

2.3.2 MQTT: a traffic load analytical model

MQTT is independent of the lower layers (Medium access, Link layer, Network25

and Transport). Thus, the size of the request, or response, or acknowledgement,
respectively denoted by Sreq, Sresp, Sack can be formalized as in Eq. 2.1.

Sreq = ℓlow-layer + ℓapp-layer (2.1)

Application layer
According to the OASIS standard specifications [Sta14], the MQTT header is

composed of both a fixed and variable part as emphasized in Figure 2.1. The fixed
part corresponds to the first byte and enables to specify the message type and
QoS level. The variable part defines data-related information such as the header’s
length, topic’s name, or data payload. The application layer size can therefore
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Figure 2.1: MQTT message size

be written as in Eq. 2.2, where the remaining length is defined as the sum of the
data and topic sizes. This value (in decimal) needs to be coded over 1 to 4 bytes
according to the standard. As a consequence, the number of bytes needed for
coding this decimal value can be expressed as in equation 2.3). Let us note that
only 7 bits out of 8 are used to code the remaining length, as the first bit (called
”Continuous bit”) enables to specify whether or not there is a subsequent byte for
this field.

ℓapp-layer = 1 + ℓlength + ℓtopic + ℓdata (2.2)

ℓlength =


⌈

ln(ℓtopic+ℓdata)
ln(2)

⌉
7

 (2.3)

Lower layers
As previously mentioned, MQTT takes place over TCP/IP connections. The

length of the (network) IP header depends on whether IPv4 or IPv6 is in use, as
emphasized in Figure 2.1. In our model, we consider Ethernet as the underlying
network access protocol, but other protocols could be considered as well (e.g.,5

IEEE 802.15.4). As a result, llow−layer is either equal to 66 bytes (26 + 20 + 20) or
86 bytes (26 + 40 + 20).
Traffic Load & Efficiency Ratio

As outlined in red in the Figure 2.2, only the data exchanges phase (i.e. Pub-
lish/Subscribe messages) are considered in this study, which corresponds to a QoS10
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Figure 2.2: MQTT sequence diagram (considering a QoS level=0)

Table 2.1: Variables used for O-MI/O-DF formulas

Protocol Variable description

HTTP ℓurl URL length
ℓreason HTTP reason-phrase length

O-MI

ℓttl O-MI TTL field length
ℓrc O-MI Return code length

ℓreqID Request ID length
ℓint Subscription Interval length
ℓcall Callback address length

O-DF
ℓobjID Number of digits of Object’s ID
ℓname Number of digits of InfoItems’ name
ℓvalue Number of digits of Value

level equal to zero. This is the best case for minimising the number of exchanges,
and accordingly the traffic load. Connection and disconnection phases are not
taken into account, but could easily be added since MQTT messages use the same
header. Given this, let T be the number of topics that can be subscribed to (i.e.,
number of ‘subscription’ messages); ’Suback’ be the message (of a size Ssuback -5

as defined in Eq. 2.1 - with ℓdata = 0 bytes in Eq. 2.2) used by the broker to
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acknowledge each subscription; and P be the number of ’Publish’ messages sent
by the MQTT broker to all clients having subscribed to a given topic. It can be
noted that T ≤ P since MQTT can use an aggregation mechanism in the subscrip-
tion process. It means that the subscriber can directly subscribe to all the data
hierarchy available at the broker level using the # character (e.g., /smartHouse/#/5

means that the request subscribes to all topics under the smartHouse topic) or
using the wildcard + (e.g., /smartHouse/+/temperature/ means that + will be
replaced by any available Object). However, it cannot be used in the Publish mes-
sages, and it is therefore necessary to send as many messages as topics. Given all
these parameters, the traffic load can be expressed as in the equation 2.4.10

TL(T, P ) =
T∑

t=1

(
Sreq(t) + Ssuback(t)

)
+

P∑
p=1

Sresp(p) (2.4)

Let us note that equation 2.4 (or Eq. 2.1 to be exact) does not take into
account the lower layer constraints, and particularly the network access method
in terms of Maximum Transmission Unit (Maximum Transmission Unit (MTU) -
1500 bytes in Ethernet). Indeed, if ℓapp-layer > MSS (Maximum Segment Size -
1460 bytes with IPv4/TCP), the number of frames is expressed as n =

⌈
ℓapp-layer

MSS

⌉
.15

Eq. 2.1 can therefore be refined as in Eq. 2.5 to express the total length of data
transmitted by the network (either for the request Lreq, response Lresp or the
application acknowledgement Lsuback).

Lreq = (n− 1) · (MTU + ℓnet) + Sreq − (n− 1) ·MSS (2.5)

As MQTT relies on TCP as transport protocol, it is also important to take
into account the exchanges added by TCP such as the opening and closing TCP20

connections and segment acknowledgments. However, the transient states of TCP
opening and closing operations are not considered in this study as one or more
MQTT messages can be transmitted over a same TCP connection. The overall
traffic load can therefore be defined as in Eq. 2.6, with Lack defined as in Eq. 2.7

TL(T, P ) = Lack(T, P ) +
T∑

t=1
Lreq(t) + Lsuback(t)

+
P∑

p=1
Lresp(P ) (2.6)
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Lack(T, P ) =

 T∑
t=1

⌈
nreq(t)

m

⌉
+

⌈
nsuback(t)

m

⌉

+
P∑

p=1

⌈
nresp(p)

m

⌉
 · ℓlow-layer (2.7)

Eq. 2.7 takes into account the TCP acknowledgments, which can be sent either
immediately a segment is received, or after several segments are received, or inside
a new data transmission (piggybacking). This is taken into consideration in our
study by defining the m variable as the number of received segments after which
an acknowledgement is sent. Indeed, the real value of m depends on the TCP5

behaviour that changes, in practice according to the operating system and the
TCP configuration. Let us note that Lack considers the acknowledgements for all
messages used in the data exchanges .

Let us note that based on the traffic load, it is straightforward to define the
efficiency ratio of the protocol. As this parameter is computed in the industrial10

case-study, Eq. 2.8 provides the generic expression of the efficiency ratio.

ER = ℓpayload

TL
(2.8)

2.3.3 O-MI/O-DF: a reminder of the traffic load analytical
model

A specific methodology has been introduced in [RKLTF16] to build the ana-
lytical model of the O-MI/O-DF standards. The same methodology is followed15

in this study to build the analytical model of the MQTT standard. As explained
before, O-MI relies on the Hypertext Transfer Protocol (HTTP) protocols. The
application layer size can thus be expressed as in Eq. 2.9.

ℓapp-layer = ℓHTTP + ℓO-MI + ℓpayload (2.9)

Figure 2.3, associated with Table 2.1, remind the formulas needed for comput-
ing the size of (i) the HTTP header (i.e., ℓHTTP); (ii) the O-MI requests/responses20

(i.e. ℓO-MI), (iii) the O-DF payload (i.e. ℓpayload). Let us note that the traffic load is
computed thanks to the expression TL = Lreq +Lrep +Lack (since O-MI/O-DF will
use only one message for the request and one for the response from an application
perspective), where Lack is defined as follows: Lack =

(⌈
nreq
m

⌉
+

⌈
nresp

m

⌉)
· ℓlow-layer,

since there is no application acknowledgments.25
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Figure 2.3: O-MI/O-DF request/response message size [RKLTF16]

2.4 Industrial case study: O-MI/O-DF vs. MQTT

The overall use case is depicted in Figure 2.4, which involves a company expect-
ing to publish industrial plant-related information through an O-MI server or a
MQTT broker in order to create a basic application for monitoring the production
environment. Let us assume that only two vertically-oriented closed and propri-5

etary systems exist: one for the plant metrology (based on the technology Saveris)
and the second one for the production itself (information can be accessed directly
from each production unit through a PLC). An agent (or wrapper) has been devel-
oped and implemented on the O-MI server and the MQTT broker for translating
the information coming from these two systems and making them compliant with10

the O-MI or MQTT standards. The performance evaluation and comparison take
place between the O-MI server/MQTT broker and the application. As the appli-
cation is intended to be used for monitoring these two systems, all the data needs
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Figure 2.4: Industrial Use Case Scenario

to be collected on this application.
Even though the software agents between the proprietary systems and the

server/broker are not presented in this study, it is necessary to define the data
structure that needs to be communicated in the application. Figure 2.4 shows
also the generic O-DF Objects hierarchy built for this scenario. This hierarchy5

highlights that Saveris and Production are defined as O-DF ’Object’, inside
the main Object CebiLuxembourg (corresponding to the name of the company).
In the Saveris Object, the Object properties (called InfoItems) have been de-
fined so as to correspond to the sensor information. In the Production Object,
different O-DF ’Object’ are nested; for instance, 69369 corresponds to the num-10

ber assigned to the considered production unit, which is divided into many sta-
tions. And finally, InfoItems named ’Blockagenumber’, ’WasteNumber’, …, pro-
vide information about the status of each station. To be consistent with this
structure as well as for comparison purposes, the MQTT topics are based on
the O-DF paths defined by this hierarchical structure, as MQTT does not spec-15

ify, impose, nor recommend any data structure. For example, the topics are:
’Objects/CebiLuxembourg/Saveris/CtrlBslTemperature’, …, ’Objects/Cebi-
Luxembourg/Saveris/LaboEssaisHumidity’, ’Objects/CebiLuxembourg/Produ-
ction/Station 1/Blockagenumber, and so on. Overall, it corresponds to 21 Ob-
jects and 78 InfoItems in the O-DF structure, and to 78 topics in MQTT, which20
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Table 2.2: Overall Traffic Load (in bytes) on the Industrial setting: O-MI/O-DF
vs. MQTT

Layers O-MI/O-DF MQTT

Payload (value) 503  503
Data presentation (i.e. O-DF structure or
MQTT Topics)

5341 2954

Messaging protocol (i.e. O-MI or fixed
part & length of MQTT)

315 160

HTTP - if needed 48 0
TCP 240 3200
IP (v4) 240 3200
Network access methods (Ethernet) 312 4160

Overall Traffic Load (Efficiency Ra-
tio):

6999 (83.5%) 14177 (24.4%)

makes it easy to compare both standards. The first analysis is based on the indus-
trial setting above-introduced, and the second one evaluates the impact of using
aggregation-like mechanisms.

2.4.1 Industrial setting analysis

In this scenario, we assume that the application – for plant monitoring – pe-5

riodically requests all the data hierarchy/topics. The application sends O-MI
Immediate Read requests (one of the operations defined in Figure 2.3) to the
O-MI server, by specifying either the whole O-DF structure or only part of it as
payload. In order to minimise the request size, the O-DF root ’Object’ is only
embedded as payload in the O-DF read request. Following this request, response10

messages containing the “Values” of the requested InfoItems are pushed to the
application. On the other hand, the application subscribes to all MQTT top-
ics by sending a Subscribe request by containing the following aggregated topic
Objects/xx...xx/# in order to minimise this request as well (otherwise, as many
requests as topics should be sent). Following this request, the MQTT broker15

pushes a Publish response containing the “Values” of each topic (each time it
receives a notification from the system).

Based on this scenario, the analytical model of the traffic load detailed in the
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section II are applied and the associated results are shown in the Table 2.2. The
following conclusions can be drawn:

• The overall traffic load is much less important (around twice less) when using
O-MI/O-DF rather than MQTT. Indeed, the O-DF structure (especially in
the response) is based on an aggregation-like mechanism that plays a major5

role in minimising the overall traffic load (compared with MQTT, which does
not implement such kind of mechanism). Even though the overall length of
the MQTT data presentation (considered only as the topics) is also much less
important than in O-MI/O-DF, the transport of these data needs to use as
many TCP segments as topics (i.e., 80 by counting the subscription request10

and the application acknowledgement of this subscription without taking into
account the TCP acknowledgements) instead of using only 6 TCP segments
when using O-MI/O-DF. In addition, we considered that for each received
TCP segment, a TCP acknowledgment is sent (i.e. m = 1). As a result, the
total number of TCP segments is equal to 12 for O-MI/O-DF and 160 for15

MQTT, and then the length of the low layers is computed accordingly (see
rows ’TCP’, ’IP’,’Network access method’ in Table 2.2).

• From an efficiency ratio perspective, it can be noted that this ratio is more
than three times more important for O-MI/O-DF than for MQTT. Let us
note that the data presentation part (in addition of the values themselves)20

is also considered as payload for computing this ratio (i.e. for O-MI/O-DF:
(503 + 5341)/6999 = 83.5% ; for MQTT (503 + 2954)/14177 = 24.4%). In-
deed, we consider that the generic data model (with the use of semantic
vocabularies) introduced in O-DF is beneficial for representing IoT data/ser-
vice in order to integrate more complex reasoning out of them. Even though25

MQTT can give some information about the hierarchy (through the topic
structuration), MQTT does not allow to add metadata to the sensors’ values
(e.g, unit of the value, accuracy of the sensor, and so on).

2.4.2 Aggregation- vs. non aggregation-like mechanism

In this section, the objective is to set up the size of the data structure – O-DF30

parameters such as the Object’s name, InfoItems’s name and values, as well as
MQTT parameters such as the topics’ name and values – in order to assess the
impact of the number of O-DF InfoItems or MQTT topics on the Traffic Load,
and accordingly the impact of using an aggregation-like mechanism. To do so, it is
important to increase only one parameter (i.e. the number of InfoItems/topics) at35

the same time. Based on the lengths defined in the real-life scenario, the average
length for each parameters is considered, namely ℓobjID = 8 bytes, ℓname = 14 bytes
and ℓvalue = 6 bytes (i.e., that all objects name/InfoItems name/values have re-
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spectively the same length. As the request does not change with the previous
scenario (requesting all available information), it means that the first response
only contains one InfoItem for O-MI/O-DF and only one topic for MQTT, the sec-
ond only two (first) InfoItems/topics, and so on, until reaching the whole InfoItem
hierarchy/topics (78 in total).5

Figure 2.5 gives insight into the Traffic Load evolution, along with the number
of frames sent according to the number of O-DF InfoItems or MQTT topics. It
can thus be noted that:

• If the number of InfoItems/topics to be collected is inferior to 10, then the
aggregation mechanism of O-MI/O-DF is not efficient in terms of traffic load10

since the traffic load in MQTT is less important in this case.
• On the contrary, if the number of InfoItems/topics to be collected is superior

to 10, then the aggregation mechanism of O-MI/O-DF is more efficient.
However, this conclusion should also be put into perspective with the fact that,

the higher the number of MQTT topics, the higher the number of messages. But15

at the same time, the higher the number of O-DF InfoItems, the bigger the size
of the O-MI/O-DF response. This is also important to be noted, as the traffic
load will significantly increase in case of frame error occurrences (since TCP needs
to retransmit the frames in error). All these considerations must be taken into
account when designing a network, including more complex functionalities such as20

the network control (e.g., for adapting it to the demand).

2.5 Conclusion: Towards Performance-driven net-
work designs in Industrial CPS

Industrial CPS is gaining a growing attention in both the academic and indus-
trial sectors. With an increasingly trend to digitalize all aspects of companies, it is25

an important shift of paradigm that is leading to a new way to design the industry.
Lower level systems (in the automation pyramid) needs to be visible at the higher
level, but also accessible from the outside world for creating more flexible, agile
and smarter services for the industry. It consists of developing digital shadow(s) of
the vertically-oriented closed and proprietary systems by relying to the best extent30

possible on open and standardised technologies, standards and frameworks. All
these shadows form a complex and interlinked System, also referred to as “System-
of-Systems” in the scientific community. Those systems need to communicate and
cooperate, in real time, with each other and potential human beings. To do so, it is
of the utmost importance to have a deep understanding to what extent these new35

protocols perform, and to what extent they impact on the network performance
(e.g., in terms of traffic load). This is important, as it helps system designers
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Figure 2.5: Traffic Load evolution vs. Number of O-DF InfoItems

to properly (re-)think and adapt the design of the network by assessing the com-
pliance with the QoS requirements (freshness, delay, …), while supporting more
dynamic structures. Dynamic refers here to the fact that the network has the
ability to adapt itself to new production demands or fault recovery purposes. For
example, if the production planning is frequently modified due to the use of the5

“order your personalised product online to get it tomorrow” paradigm, the network
needs to be online reconfigured. For the design of the network, it means that
the control functions, which are currently running on field controllers, become dis-
tributed on software components rather than on dedicated hardware devices. Such
capabilities are offered by paradigms such as Software-defined networking (SDN)10

and Network Functions Virtualization (NFV).
In addition to succinctly presenting two open and standardised protocols for

Machine-to-Machine communications (MQTT and O-MI/O-DF) through their as-
sessment in a real-life industrial case-study, this studys provides some conclusions
and trends regarding the use of aggregation-like mechanisms. Those trends could15

be used, as first rules, to control what mechanisms (or protocols) should be used
for transporting real-time data according to current status of the network (current
traffic load, noisy environment, …) and potential demands (in terms of number
of requested data items/topics). Those rules could be implemented in an IoT
gateway, as a PONTE-like bridge (https://www.eclipse.org/ponte/), which han-20
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dles interoperability issues by selecting the appropriate protocol and associated
request/response messages.
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3
TRIDENT: A Three-Steps
Strategy to Digitise an
Industrial System for
Stepping into Industry 4.05
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Foreword

Chapter II demonstrated that O-MI/O-DF and MQTT were theoretically
suitable for providing interoperability in a production plant and for feeding
a monitoring application regarding a given scenario. We also demonstrated
that, depending on the data hierarchy/format, the aggregation mechanism
(implemented by O-MI/O-DF) can have a positive impact on the generated
traffic-load. This study helps demonstrate the impacts of the intrinsic pro-
tocols’ mechanisms on the network. This is particularly interesting to pay
particular attention to it when designing a data collection architecture.
Industrial companies willing to step into Industry 4.0 - and then looking for
a unified data collection architecture -, have two options:

1. (re)build from scratch a new plant with PLC of new generation, em-
bedding communications interface that provides intrinsically connec-
tivity and interoperability between the different data producers and
consumers. In that case, everything can be designed from scratch to
fulfill the different requirements in an optimal way, in particular by
choosing the suitable equipments - possibly off-the-shelf - that provide
the required functionalities and interfaces, both for business and oper-
ational applications. Even if designing a new ecosystem from scratch
has some benefits (e.g. interoperability-, connectivity- by-design), it
remains a hot research topic since it needs a straightforward, system-
atic and performant strategy to cover the different topics related to
the Industry 4.0 by design.

2. Update an existing production plant composed of legacy devices that
have to be interconnected using wrappers and gateways. Things can
be even more complex than the first option, or at least require in-
termediate stages in the design and in the implementation of such a
data-driven ecosystem. It can be due to the history of the company,
from its legacy systems to the way the production plant itself has
been designed and upgraded over time. Actually, manufacturers have
evolved their productions tools in order to enrich their catalog and to
fit with the changing requirements of their customers, or even with the
legal aspects (regarding safety, security or quality of the production).
This led the companies to deal with heterogeneous technologies that
cannot be connected to the entreprise network in a plug-and-play man-
ner. Launching a digitisation project in such a plant’s configuration
requires some retro-fitting actions (as inventory of existing devices,
their behaviours, available communications capabilities and the data
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they can provide/manage) in order to build a strong mapping between
old data producers and the future servers that will interface with the
applications that consume this data.

These different options do not have the same cost for the companies and
do not require exactly the same strategies. However, irrespective of the pre-
ferred option, it is of utmost importance to have a strategy to digitise a
production plant that is standardised, unified, generic and replicable with
the less effort possible. Even if the finality of both options remains the same
(being able to develop and connect the different IT and OT applications
with the same data-driven approach), the strategy to meet the expectations
can slightly differ. One will require less intermediate/preparation steps (i.e.
retro-fitting, wrapper creations, …) to collect and consume the data, the
other will require less physical and humans changes (new (expensive) ma-
chines, humans teaching processes, …). Note that, in this research, devel-
opment and innovation project, our partner Cebi Luxembourg S.A. chooses
the second option (i.e. update of the production plant).
In that context, we propose a three-steps strategy in order to digitise an
industrial production plant. This strategy is based on three main steps: 1)
the definition of the information model consisting in identifying the data of
interest and formatting them in a unified modelling language, 2) the creation
of IoT gateways, composed of wrappers that will act as translators between
proprietary closed protocols and open standards that provide interoperabil-
ity, and IoT servers that provide the interface with the applications, and 3)
the creation of the applications (e.g. Monitoring, ML, …) that are fed by the
collected data.
Although it is a real need for industrial companies, and especially for our
partner, to have this straightforward data-driven approach, it is also impor-
tant to demonstrate that such a strategy can be reliable and efficient for
their applications. To do so, we evaluate this generic strategy (that can be
instanced with any protocols) in terms of temporal performance, which is a
critical performance indicator for industrial companies. We have chosen to
conduct experiments on O-MI/O-DF and MQTT (i.e. the same protocols
than the previous study), and also on OPC-UA due to its growing adoption
within the industrial community. Actually, looking at the protocols that
are pushed by the different industrial consortiums, PLC manufacturers or
companies that have already stepped into the fourth industrial revolution,
OPC-UA seems to be the protocol that tends to be the most adopted to
provide connectivity and interoperability in production plants. There are al-
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ready big controllers/machines brands selling PLC with embedded OPC-UA
servers. Also, these protocols can be implemented following different commu-
nication modes (aggregation vs. non-aggregation mechanisms, client/server
communication, publish/subscribe service) for which there are benefits and
downfallss. The choices of such implementations are a cornerstone in the
design of an architecture and can have a big impact on the performance of
the different applications. The further evaluation of our three-steps strat-
egy takes these different possible choices into account in order to give the
insights of such technical decisions to companies desiring to implement it.
This chapter presents our study and has been published as a peer-reviewed
conference paper titled ”TRIDENT: A Three-Steps Strategy to Digitise an
Industrial System for Stepping into Industry 4.0” [BRLT19] at the 45th

Annual Conference of the IEEE Industrial Electronics Society, 2019.
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3.1 Abstract

Nowadays, industrial companies are engaging their global transition toward
the fourth industrial revolution (the so-called Industry 4.0). The main objective
is to increase the OEE, by collecting, storing and analysing production data. The
challenge to be tackled is to collect and make available data from the production5

units in a real-time and standardised manner. This paper proposes a strategy to
digitise an industrial system, that can be used regardless the industrial environ-
ment . This strategy is applied on a real case-study and deployed on an industrial
assembly line. The evaluation has been led by measuring the performance of three
standards (i.e. OPC-UA, MQTT and O-MI/O-DF) highlighted by both industrials10

and academics. The study points out the i) feasibility of applying our strategy and
ii) the suitability of 2 out of 3 standards to meet the requirements (in particular,
in terms of performance) of real-life industrial scenario.

3.2 Introduction

Nowadays, industrial companies are engaging their global transition toward15

the fourth industrial revolution (the so-called Industry 4.0). The main objective
is to increase the (OEE), by collecting, storing and analysing production data.
This digital shift brings a lot of requirements (e.g. in terms of network reliability
or data-analytics) as detailed in [KWLJ17]. One of the most important require-
ment is the connectivity between all the components. Unfortunately, companies -20

especially companies having decades of existence - do not meet this requirement. In-
deed, while we all dream about an ultra-connected ecosystem allowing the smooth
transition toward this fourth industrial revolution, companies have still legacy,
heterogeneous and proprietary systems and technologies making it even more com-
plex.25

To overcome smoothly this connectivity issue, industrial companies - that have
definitely the objective to digitize their industry - may rely on IoT gateways for
bridging the gap between the OT and IT worlds [SL11]. The gateways have to
implement open and standardised Application Programming Interface (API)s so
as to enable horizontal interoperability across vertically-oriented closed systems.30

The challenge to be tackled is therefore to collect and make available data from
the production units in a real-time and standardised manner. This will enable
to build efficient industrial applications (e.g. monitoring of production units) by
retrieving those data in real-time.

To address this challenge, this study proposes i) a generic and reproducible35

strategy for defining an information model, that will be exploited for publishing
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data coming from physical processes in a standardised way, and ii) an experi-
mental performance evaluation of the standards OPC-UA, MQTT and O-MI/O-
DF that are growing in the IoT world, as claimed by both industrial [RJ17] and
academic communities. Note that, several studies have been led on those proto-
cols with different purposes: i) for defining a roadmap to make the shift from5

Open Platform Communications (OPC)/Distributed Component Object Model
(DCOM) to OPC-UA [HSK08], ii) for extending protocols with additional func-
tionalities, such as a RESTful extension of OPC-UA [GPP16] iii) for conducting
experimental evaluations [CCM10] in different scenarios and/or criteria [NDJ+16,
PSK09, DdCGH16, NSP17, DCJ15, FFR+18, KRKLT17] iv) for ensuring a full10

interoperability at any level of the factory, by proposing to use the new Ether-
net standards Time-Sensitive Networking (TSN) [BSB+19] or v) for proposing
analytical models [RKLTF16, BRLTK18]. However, these papers do not propose
neither a common methodology for collecting and publishing data into the IoT
gateways, nor a common evaluation and comparison of the standards through real15

case-study and with the same criteria. That is why, after defining a strategy to
digitise an industrial system, the strategy is evaluated on a real industrial pilot
use case through a performance evaluation of the aforementioned standards. This
case study is made possible thanks to the collaboration with CEBI Luxembourg
S.A., a manufacturer of electromechanical components for automotive equipments20

and household appliances sector.
The rest of the chapter is organised as follows. The proposed methodology is

detailed in 3.3. Our methodology is therefore assessed through the performance
evaluation of the aforementioned standards in a real environment in 3.4. Finally,
Section 3.5 concludes this study.25

3.3 A strategy to digitise an industrial system

The purpose of this paper is to develop an effective strategy in order to digitise
an industrial system (e.g. a production unit/cell) so as to make it Industry 4.0-
ready. It will enable to offer production data to applications built on top of those
digital shadows. We adopt a straightforward three-steps strategy called TRIDENT30

to incrementally enable the development of applications exploiting the process data
and interacting with the industrial system. TRIDENT is voluntarily generic and
high-level, not to say agnostic to a specific technique and/or protocol, since its goal
is to provide a simple and common-sense structure for digitising a heterogeneous
industrial system. TRIDENT has been successfully applied to our case study,35

and its simplicity is an advantage when interacting with stakeholders. As shown
in Figure 3.1, the proposed methodology consists of several steps: 1) definition
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Figure 3.1: Strategy to digitise an industrial system

of an information model, 2) wrappers creation & deployment - if needed and 3)
applications creation & deployment. The role of each steps are detailed in the
following subsections.

3.3.1 Definition of an information model

TRIDENT suggests a classical first step to digitise an industrial system start-5

ing by establishing an information model of the system (that will be used by the
digital shadow). This model relies on two models: i) a model of the industrial
system topology (actuators, sensors and controllers), ii) a model of the processes
running on it. Indeed, digital transformation cannot be done without an in-depth
understanding of the current settings of the industrial system. The objective is10

to create a concrete (digital) representation that can be seen as an instance of
a conceptual model (e.g. a meta-model or business model in the model-driven
engineering terminology) with the relationships, constraints, rules, and operations
specifying data semantics for Industry 4.0. TRIDENT suggests to have a current
model corresponding to the current state of the factory and a targeted model (i.e.15

with all envisaged improvements in terms of new devices, information, …). TRI-
DENT is model-agnostic, i.e. any information modelling technique (e.g. Unified
Modeling Language (UML), Domain-Specific Language (DSL), ontologies) or any
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process modelling language (e.g. activity diagram, statechart, Business Property
Specification Language (BPSL)) can be used to obtain finally a structured and
semantically rich information model.

In practical terms, it needs to make the inventory of current sensors/actuators/-
controllers, the relevant data (in particular, the variables used in the controllers)5

and also the contextual information. Indeed, adding context will enable to make
easier the automated reasoning that could be implemented in the applications.
TRIDENT suggests that the (current and targeted) information model is defined
in a structured way (e.g. in a hierarchical way), typically in a form of a file that can
be manipulated and processed for the deployment on the physical process. The way10

to use this information model depends on the following aspects: i) if the process
is already deployed or not, and ii) if the system on which it needs to be deployed
relies on standards or proprietary technologies. In the first case, if the physical
process is not yet implemented, this information model constitutes a mandatory
element of specification that the manufacturer will leverage for implementation.15

In the second case, if the process is based on proprietary and closed solutions, the
development of a wrapper is needed to be deployed on IoTs gateways. Otherwise,
the information model can be deployed directly in the controller.

3.3.2 Creation of wrappers

The wrapper enables data translation from a proprietary to a standardised20

format. In some cases, it can also store data for different purposes (e.g. data logger
at the edge). The main idea is to define a minima the two following microservices
functions:

• Function 1 - Update: This function updates the data on the digital shadow
from the data directly collected from the physical process. Usually, it is25

necessary to use proprietary protocol(s) for gathering data before translating
them into the standardised data format selected for operating in the digital
shadow.

• Function 2 - Read: This function responds to the users and/or applications
request for reading related data. The type of request depends on the com-30

munication mode (client/server or publish/subscribe).
Let us note that those functions are related to the four basic functions of the

Create, Read, Update, Delete (CRUD) model, that are usually used when building
APIs. This model is also recommended by the Industrial Internet Consortium
[RJ17] for managing the lifecycle of a data object. The first function ’Create’35

is related to the creation of the information model in the digital shadow. Its
implementation will depend on the selected standard. The function ’Delete’ is
just a management operation of this information model, that can be managed by
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the digital node, e.g. by using the information model file as input. In addition,
those different functions can be located at different places in the Industry 4.0
architecture. In our vision, the wrapper is running on same device than the digital
shadows (but it will depend on the resources available on the device, plus the
requirement in terms of real-time).5

3.3.3 Creation of applications

The creation of applications is depending on the communication mode imple-
mented by the IoT gateway. In TRIDENT, since we access the data via READ
functions offered by the wrapper (or directly by the industrial device), two com-
munications modes have to be supported. The first communication mode is clien-10

t/server (e.g. when using OPC-UA). In that case, the application requests in a
regular basis some of the available data. The second mode occurs when the wrap-
per uses publish/subscribe mechanisms (e.g. when using MQTT). In that case, the
application subscribes to the needed data, and will receive them in an event-driven
manner (i.e. when data values change). TRIDENT requests to well understand15

the communication mode before developing any application, since it may impact
the way to develop the temporary storage - if needed - for consuming such data.
TRIDENT also recommends to properly timestamp the data that are collected in a
uniform way, since data analytics may exploit timestamped information to analyse
the industrial process and diagnose potential issues. Many industrial processes do20

collect the information in a non-uniform way (either timestamped by the controller,
or by the data aggregator, or by the data consumer). Having a non-uniform and
non-systematic way to timestamp data may lead to inaccurate information and
further analysis. Indeed, those data can be used in multiple applications, e.g. in
an User Interface (UI) for monitoring them, by an agent enabling to push them25

into a permanent database or even data analytics.
Next section demonstrates how this strategy has been applied in a real indus-

trial case-study.

3.4 Industrial Case Study

In the framework of our partnership with CEBI Luxembourg S.A., we have30

access to the shop floor of the factory for deploying, testing and evaluating our
strategy to digitise an industrial system. For this purpose, we selected one typi-
cal assembly line, that is not (yet) connected to the IT network. This assembly
line consists of a PLC associated with sensors and actuators that are connected
through a proprietary fieldbus (here, DeviceNet). All the information are processed35

36



locally, either by the controller itself, or by local applications such as monitoring
of the process through a Human-Machine Interface (HMI). The objective of this
study is to apply our strategy on this specific application of monitoring by making
available data in a standardised manner for this application, but also for future
applications (e.g. analytics). Beyond presenting how to apply the strategy, per-5

formance is the first bottleneck for the applicability of such strategy and that is
why we aim at evaluating the following protocols associated with an open available
implementation: OPC-UA with two different versions open62541 developed in C
& Eclipse Milo in java, MQTT with Eclipse Mosquitto and O-MI/O-DF with a
java-based reference implementation (https://github.com/AaltoAsia/O-MI). We10

use an industrial IoT gateway (Kunbus Revolution PI). In addition, we tested a
new PLC (OMRON NX1) that embeds an OPC-UA server that would enable i)
to avoid building of wrappers and ii) potentially to make the next generation of
assembly line interoperable with the IT network since relying on Ethernet.

3.4.1 Digitisation of an assembly line15

Figure 3.2 shows the implementation of our strategy to digitise an assembly
line of our partner. This section describes how to practically implement every step
of the strategy presented in the previous section from a practical viewpoint:

Definition of an information model

As mentioned previously, it requires a deep understanding of the physical pro-20

cess (hardware and software). In our case, an assembly line is composed of several
production stations that have a specific task to operate. Those kinds of informa-
tion is what we called ’contextual information’ in the previous section. Then, each
station consists of several sensors and actuators that are listed in the PLC in terms
of variables. Based on these both information, we built a hierarchical information25

model in the form of ’Machine number Õ station number Õ sensor/actuator name’.
Note that metadata could be used to give additional information to a sensor value,
e.g. unit or precision. From a practical perspective, the developed information
model relies on the OPC-UA address space. Accordingly, we used the free soft-
ware ’opc-ua modeler’ to generate it and saving it as an XML file, that will be30

used as input of the server/broker running on the IoT gateway. For instance, this
file can be directly used in the OPC-UA implementation ’open62541’ that creates
the information model (or address space in the OPC-UA terminology). However,
for other implementations such as Eclipse Milo, we developed our own agent for
processing the file to create the information model. In the specific case of MQTT,35

the information model (in the form of MQTT topics that are created from the eX-
tensible Markup Language (XML) file) is built when sending the first data update

37



Figure 3.2: Implementation of our strategy to digitise an assembly line

managed by the wrapper. Finally, our information model for this assembly line
consists of 64 variables, that have been considered as relevant. This information
model could be extended in the future if needed. Regarding the embedded OPC-
UA on the PLC OMRON NX1, the implementation of this information model
is more complex. Indeed, it is impossible to select process variables for making5

them available through the OPC-UA server. Instead, we need to declare all the
variables as global (i.e. that could be shared with the process) in a flat manner.
This flat table will be added to a pre-defined hierarchical address space, meaning
that the variables cannot be structured according to our information model, what
constitutes a flaw in our perspective.10

Wrappers creation & deployment

The objective of the wrapper is to collect data from the assembly line, and
to translate them into the selected standards (i.e. OPC-UA, O-MI/O-DF and

38



Algorithm 1: Wrapper & Service Response Time (SRT) measurement
1 begin
2 Periodically
3 Start← get(current time) in µs
4 Collect all the data from PLC
5 Update all the data on Server/Broker
6 End← get(current time) in µs
7 SRT ← (End− Start)
8 if SRT < period then
9 wait(period - SRT)

10 else
11 continue // go to next period without waiting
12 end
13 end
14 end

MQTT in our experimentation). We developed all the wrappers in C. The main
steps are i) to collect data every 100 ms (to meet at least the current specification
of the monitoring application) by using the proprietary protocol (OMRON FINS
in our case) and ii) to update those data on the server/broker, i.e. by sending
write request on the OPC-UA and O-MI/O-DF server and publish message to the5

MQTT broker. Note that the various implementation of the servers and broker
are using different programming languages that may have an impact on the overall
performance and will be evaluated in the next subsection. Note that wrappers
and servers/brokers are running on the same device (IoT gateway), meaning that
exchange between them are made locally.10

Applications creation & deployment
To create our monitoring application, we developed an agent (in node.js) that

is able to gather all published data either by sending periodic requests to the server
(OPC-UA or O-MI/O-DF) or by subscribing and receiving event data to/from the
broker (MQTT). Then, a web-based UI has been developed relying on the REACT15

framework for displaying the monitored data. An overview of this interface is given
in the Figure 3.2 (right part).

3.4.2 Experimental performance analysis

This section aims at evaluating the wrapper implementation associated with
the standardised protocols OPC-UA, MQTT, and O-MI/O-DF on the aforemen-20
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tioned case-study. Our objective is to answer the following questions: i) Can we
update the data on the IoT gateway at least every 100 ms as done with the current
implementation (i.e. with the HMI directly connected to the PLC with a serial
cable)? and ii) Can we refresh our UI at least at the same frequency? The first
question is related to the wrapper efficiency whereas the second is related to the5

application efficiency.

Wrapper efficiency
For evaluating the efficiency of our wrappers, we focused on the SRT defined

as the time taken for supplying the ’Update’ service, as described by the algo-
rithm 1. Note that, if the SRT is below the period (of 100 ms) (cf. line 8-9),10

we are waiting the difference between 100 ms and the recorded SRT to ensure
that a data collection process is starting exactly every period. On the contrary,
if the SRT exceeds the period (cf. line 10-11), we directly execute a new loop to
minimise the jitter between two data collection. Figure 3.3 provides an aggregated
view of the results for both different 12-minutes experiments, as a boxplot that15

provides the minimum, 1st percentile, median, 99st percentile, and maximum of
the SRT measurements. Data have been cleaned by removing the measurement
bias/outliers, that represents only 7 measures out of 7200 (i.e. less than 1‰) in
each experiment. In addition, we used tcpdump for capturing network traffic so
as to gain knowledge about the concurrent traffic (since we are plugging our IoT20

gateway on the existing embedded Ethernet network without any knowledge) and
the throughput generated by our digitisation chain. The following conclusions can
therefore be drawn:

Concurrent traffic: The analysis of the captures shows that few traffic is
existing on this network. Indeed, there are only ’real-time’ traffic between con-25

trollers (via the Ethernet/IP) representing only 26 kbits/s and few management
traffic (e.g. Address Resolution Protocol (ARP), Dynamic Host Configuration Pro-
tocol (DHCP), ...) representing less than 300 bits/s. This traffic load (wrt. the
network capacity equals to 100 Mbits/s) will have very little impact on the data
collection (wrapper).30

Throughput for data collection: it corresponds to the requests/responses
made with the proprietary protocols (Factory Interface Network Services (FINS))
to collect all the data (i.e. 64 variables) every 100 ms. Overall, the measured
throughput generated by our wrapper is 32 kbits/s, that is relatively low compared
to the network capacity. A typical DHCP frame size (request or response) is35

between 70 and 94 bytes (taking in average 7 ms as round-trip time) depending
on the number of variables requested at the same time (aggregation mechanism).
Indeed, if the variable numbers are not consecutives (depending on how the PLC
variables have been defined), we need to use several frames (3 in our experiments)
for collecting all the selected data. The throughput is the same whatever the40
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Figure 3.3: SRT measurements on the wrapper (note the log-scale on the y-axis)

protocols used for updating the IoT gateway.
Protocols efficiency wrt. 100 ms-period:
– O-MI/O-DF: According to the experiments, this standard is not suitable

for the considered industrial scenario since it does not meet the specified
expectations in terms of SRT (largely greater than 100 ms) in both experi-5

ments (cf. Figure 3.3). Our first investigations highlight that the embedded
database is the bottleneck of this implementation (at least for the version we
used). Note that O-MI/O-DF was designed for meeting IoT requirements,
that most of the time do not need to decrease the update time below seconds.

– OPC-UA: Both versions of the server (i.e. open62541 in C and Eclipse Milo10

in java) are suitable for this scenario, since all measures are below to 100 ms.
However, it can be noticed that the C version gives better results than the
java version since 98% of the values are in the [24; 41] ms range (compared
to [41; 84] ms range provided by the java version). Note that the aggregation
mechanism (at the application level), enabling to embed several variables (as15

much as in the DHCP requests) in the sameOPC-UA request(s), have been
used in those experiments.

– MQTT: the results we have obtained are also satisfying for this protocol. All
points are above 100 ms with 98% of the values are in the [23; 56] ms range.
As MQTT implements a publish/subscribe mechanism, each variable is sent20
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to the broker by using one ’publish’ message. Despite the higher number of
frames (compared to OPC-UA with the aggregation mechanism), the broker
is able to manage them.

Overall, only OPC-UA (all versions) and MQTT standards are selected for
going further in the analysis, and in particular from the application perspective.5

Application efficiency
The analysis of the application efficiency is split in two parts: the first one

focuses on the evaluation done on the real assembly line (legacy system), whereas
the second is based on a testbed consisting of the PLC OMRON NX1 that is under
test for a potential use in the next generation of assembly line.10

* legacy system: Instead of looking at the SRT, we are interested to the inter-
arrival time, i.e. time elapsed between the two consecutive receptions of the same
variable. The choice enables the comparison between protocols. It is not possible
to compute a SRT (where the service is a ’Read/Retrieve’) in the case of MQTT,
since it relies on the publish/subscribe mechanism. Indeed, once subscribing to15

each variable, the application does not need to generate other request; the broker
pushes values to the application each time it receives a new one (publish by the
wrapper). In addition, OPC-UA is here considered when giving the best results, i.e.
by implementing the aggregation mechanism (at the application level). Figure 3.4
provides an aggregated view of the results for both 12-minutes experiments. Based20

on those results associated to the network captures, the following conclusions can
therefore be drawn:

Throughput for data reading: it corresponds to either the requests/re-
sponses made with OPC-UA to read all the data on the IoT gateway or the MQTT
publish messages sent by the IoT gateway. Overall, the measured throughput is25

210 kbits/s when using OPC-UA with aggregation mechanism at the application
level (as previously explained) and 550 kbits/s in average when using MQTT. The
throughput of MQTT varies (between 469 and 631 kbits/s) because of the Nagle’s
algorithm (implemented on Linux-based systems by default). Indeed, this algo-
rithm enqueues all new data received by the TCP layer in the same segment until30

the TCP- acknowledgement of the previous segment is received.
Protocols efficiency wrt. 100 ms-period: Ideally (i.e. without network

delay, processing time, …), the inter-arrival time is equal to the 100 ms period.
However, in real applications, those parameters impact the inter-arrival, as shown
in Figure 3.4.35

– MQTT: 98% of the values are between 84 and 116 ms. Indeed, those inter-
arrival times are directly linked with the performance of the wrapper itself,
since the data are pushed to the application each time the broker receive a
new data from the data sources (i.e. our wrapper). It can be noticed that
some values are below 100 ms, which can be explained by the waiting time40
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Figure 3.4: Inter-arrival measurements on the application

(less than a period) defined in the algorithm 1 line 8-9. The inter-arrival
time will be more important than the period in the next loop. However, if
the SRT exceeds the period of 100 ms, we can obtain higher inter-arrival
values as seen with the maximum (around 220 ms) in the Figure 3.4. Note
that this situation has been rare in our experiments (only one time).5

– OPC-UA: The server developed in C is able to respond quickly to all the
requests since the 98% of the inter-arrival times are in the [100−110] ms with
a maximum of 120 ms. The server developed in java has more difficulties to
process all the requests (between 70 and 140 ms). Note that it is possible to
have values below 100 ms since, as for the wrapper (algorithm 1 line 8-11),10

the application code starts a new loop if the previous loop took more than
one period. Even if these situations have been rare as well for OPC-UA, we
wanted to highlight this fact, that may occur in this kind of infrastructure.

Overall, open62541 implementation of OPC-UA has best results in terms of
inter-arrivals times, MQTT and Eclipse Milo (OPC-UAs in java) are also suitable15

for this industrial applications due to the scarcity of the non expected situations.
* next generation of assembly lines: As previously, we measured the inter-

arrival time by requesting data with the aggregation mechanism. It can be noticed
that the variation of this inter-arrival time is important for both experiments
(between 3 and 105 ms). This shows that the server takes a long time to process20
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the request (almost 100 ms) leading to generate the next request shortly after
the previous response (since we use the same code in the application than lines
8-11 in the algorithm 1). In addition, in this experiment, since there was no
industrial process/communications, one may wonder whether the PLC would be
able to manage the both tasks simultaneously (or if one task would have higher5

priority than the other). This investigation will be achieved in the future work.
But, this already shows the weaknesses of such device to manage the Industry 4.0
requirements.

3.5 Discussion and Conclusion
Industrial companies are engaging their global transition toward the Industry10

4.0, with the objective to increase the OEE. This can be done by collecting, stor-
ing and analysing production data. However, companies need to deal with legacy,
heterogeneous and proprietary systems. Therefore, they are facing difficulties re-
garding technological/implementation choices in their digital shift. That’s the
reason why they need to rely on a suitable and application-oriented strategy to15

digitise an industrial system, as proposed in this paper. The underlying compo-
nents and standards have to meet the applications’ requirements, particularly in
terms of performance. Beyond the choice of the standard, one important result
of this study is the need to well select the hardware that will be implemented in
the next generation of assembly lines. Indeed, the IT/OT convergence leads the20

manufacturers to integrate new functionalities in their devices (e.g. the OPC-UA
server embedded in PLC OMRON NX1). Unfortunately, the first results obtained
on the PLC under test show that the hardware resources are not sufficient to man-
age efficiently the application traffic load. Next step would be to define a real
process, to check whether the PLC can still manage the both tasks (process and25

data management) or not.
In this study, the strategy has been applied to a specific real-world assembly

line from our partner CEBI Luxembourg S.A., but suits all the industrial applica-
tions (results may differ according to the architecture and traffic). Only a part of
the whole factory information model has been defined by focusing on a specific ap-30

plication (local monitoring). Note that the paper already shows that OPC-UA is
a promising solution for implementing it. Future work will focus on the extension
of this information model for taking into account new applications (in particular,
data analytics) and assembly lines. This will lead to design a complete network
infrastructure by integrating edge, fog and cloud computing while considering so-35

lutions ensuring a full interoperability and real-time requirements such as TSN.
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Foreword

The first part of the dissertation addressed the challenge of designing and
evaluating a unified data-driven strategy in presence of heterogeneous data
producers by relying on open communication standards, thus providing inter-
operability between vertically closed silos. Chapter II and III demonstrated
how to build a unified data-driven approach for industrial production plant.
To reach a full Industry 4.0 readiness (as defined in the RDI project between
SnT and Cebi Luxembourg S.A.) it is also necessary to introduce ML meth-
ods for data analysis tasks. Industrial actors tend to be interested in ML
approaches to help them analyse their production data and make decisions
on top of it. Indeed, the digitisation of the industry using unified data-
collection architecture allows the acquisition of such volume of data that
becomes challenging to be analysed by human beings. In this kind of config-
uration, most of the data collected from the production floors are produced
by the different sensors present on the machines and are collected/stored as
time-series, and more specifically Univariate Time Series (UTS).
Previous works concerning the use of ML algorithms for UTS TSC tasks
have delivered encouraging results in terms of performance and accuracy
over time, thanks to publicly available data sets (e.g., University of Cali-
fornia Riverside (UCR)) that helps ML community improve their models.
However, industrial actors still need to get empirical evidence that the out-
puts (classification of UTS in our case) of these algorithms are accurate and
can be used in such an industrial environment with its own expectations
and constraints. Indeed, ML algorithms can have many perks in terms of
performance for data analysis tasks, but require a good data-quality to pro-
duce accurate classification. Earlier studies have already highlighted that
data-quality can affect the results of such stochastic approaches, and have
tackled this problem in many domains (e.g., for image recognition), some-
times by relying on complex methods and solutions, that require solid ML
knowledge to apply to domain specifics: many companies do not have such a
solid knowledge of ML techniques. In the specific case of UTS classification
in industrial settings, the problem has not been tackled and has still to be
studied, since the robustness of ML is critical when it is used in indus-
try, especially in industries for which consequences of misclassification can
be tragic. Indeed, we demonstrated in Part I of the dissertation that even
with a digitisation strategy that provides interoperability and open commu-
nication interfaces, performance can be tempered by different factors and
then alter the data-quality. In chapter II ([BRLTK18]) we highlighted that
depending on the data format/hierarchy and the data aggregation mecha-
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nism used in the implementation of the protocols, the traffic load generated
on the network can be highly heterogeneous, and this heterogeneity on the
traffic load can grow in case of data losses. In chapter III ([BRLT19]), we
evaluated different implementations of our generic strategy to digitise an
industrial production plant and the results showed that time performance
are sparse, depending on the protocol that is used, its communication mode
(i.e., publish/subscribe or request/response), its programming language (C,
Java) and even the hardware hosting the different agents (gateway or new
generation of PLC). Also, industrial actors will continue to upgrade and to
integrate new machines in their production plants to cover the upcoming
customers needs. In addition, they will be continuously willing to enhance
their production tools and data-analysis tools by enlarging the use of ML
methods for analysing an increasing volume of data. This data-driven evo-
lution of the production tool will increase the traffic-load on the network
and can generate perturbations during the data-collection phase. Overall,
Overall, even without considering any other factor but only network traffic
and its impact, the question of the robustness of ML models in an industrial
environment is critical and has not yet been studied.
Since there is no existing systematic approach to evaluate the robustness of
ML classifiers for UTS TSC tasks, that would help industrial actors trust
such techniques, we decide to design a reference use case and to evaluate it.
It intends at being aware of the potential misclassification/weaknesses of the
models, which can be the consequence of a degraded data-quality, likely to
occur in such a data-driven production system prone to perturbations. More
importantly, such an evaluation also helps know the limits of the models and
their domain of validity. One of the most important aspect of this approach
is that it is a systematic and reproducible method. It is not feasible to eval-
uate directly the system in production, since 1) the real data may not be
degraded at the time of the evaluation, 2) the goal of the validation is to
anticipate the risk for the system to fail in case of unforeseen but realistic
cases. As a consequence, we propose to generate artificially such realistic
perturbations and injecting them into the data sets. This approach is simi-
lar to adversarial testing of ML models, except that we target perturbations
that mimic possible situations. This allows to cover a large amount of poten-
tial perturbations scenarios in a systematic and automatic manner, without
stopping the production lines, which would result in production and money
losses, while being detrimental for the production-line operations. As a mat-
ter of fact, a massive production system cannot be stopped for a long period
in order to intentionally generate errors and dysfunctions for the sake of a
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study, whereas it is critical for stepping into the next industrial revolution.
Then, the method we further propose aims at providing the different steps
that are required for evaluating ML models under perturbations and can be
used before a future implementation of ML models in a production system,
or to prevent the impact of the evolution of the production plant (e.g., when
increasing the number of connected devices, models, protocols, …). As we do
not have an operational data set of a production-line data collection process
at the moment of proposing this systematic approach, since our partner had
not deployed a production-ready unified data driven architecture yet. As a
consequence, we evaluate our methodology on state-of-the-art UTS datasets,
thus allowing the research community to reproduce our findings, while allow-
ing our partner to understand the benefits of such a robustness systematic
study ML models.
This chapter presents our study and has been published as a peer-reviewed
journal paper titled ”A Systematic Approach for Evaluating Artificial Intel-
ligence Models in Industrial Settings” [BRLT21] in MDPI Sensors journal,
Volume 21, Issue 18, 2021.
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4.1 Abstract

AI is one of the hottest topics in our society, especially when it comes to
solving data-analysis problems. Industry are conducting their digital shifts, and
AI is becoming a cornerstone technology for making decisions out of the huge
amount of (sensors-based) data available in the production floor. However, such5

technology may be disappointing when deployed in real conditions. Despite good
theoretical performances and high accuracy when trained and tested in isolation,
a ML model may provide degraded performances in real conditions. One reason
may be fragility in treating properly unexpected or perturbed data. The objective
of the paper is therefore to study the robustness of seven ML and DL algorithms,10

when classifying UTS under perturbations. A systematic approach is proposed for
artificially injecting perturbations in the data and for evaluating the robustness of
the models. This approach focuses on two perturbations that are likely to happen
during data collection. Our experimental study, conducted on twenty sensors’
datasets from the public UCR repository, shows a great disparity of the models’15

robustness under data quality degradation. Those results are used to analyse
whether the impact of such robustness can be predictable—thanks to decision
trees—which would prevent us from testing all perturbations scenarios. Our study
shows that building such a predictor is not straightforward and suggests that such
a systematic approach needs to be used for evaluating AI models’ robustness.20

4.2 Introduction

Nowadays, with the advent of the IoT and IIoT, public and industrial actors are
leveraging these technologies to enhance their systems while satisfying new require-
ments entailed by such a social revolution [GBMP13, GCL18, AIM10, BS15, VT14,
KWLJ17]. Focusing on the industrial context, with the industry 4.0 (r)evolution,25

companies want to meet new business goals by increasing the OEE. In the mean-
time, their customers are increasingly demanding better quality, flexibility or even
security. In order to tackle these new challenges, industrial actors are looking at
exploiting unused data coming from their production’s systems. The amount of
data is unprecedentedly huge, making it difficult for humans to analyse and make30

decisions quickly and efficiently. That is the reason why AI is being increasingly
used for solving a large range of problems and applications, e.g., the TSC problem,
which is one of the most common in the industry and also recognised as one of the
ten listed problems in data-mining researches [YW06].

Using AI requires good data quality whatever the applications. Although data-35

quality consideration strongly depends on the end-users or use-cases needs, it
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should be specifically considered for each data-driven system [WS96, FF19, BBET+15]
to avoid regrettable experiences, e.g., a pedestrian killed by a self-driving car
in Arizona [ped18]. Indeed, by learning from inaccurate or inadequate datasets,
the downstream results can be flawed and lead to an inaccurate analysis of the
data, resulting in inappropriate actions from the different actors [LDSP18, GAD17,5

SLS+18]. In industry, there is a lot of situations where data quality can be de-
graded throughout the production system’s entire lifetime. Beyond the ageing of
the sensors, the whole data collection infrastructure may introduce some perturba-
tions. This is all the more true for companies with decades of existence that rely
on legacy industrial architectures where data producers (i.e., sensors, PLCs, etc.)10

are heterogeneous, requiring middleware to access and standardise data, while pro-
viding an interface between the business and industrial worlds [SL11]. Such data
collection infrastructure may have sparse performance, in particular in terms of
network metrics such as losses, delays or traffic-load [BRLT19, BRLTK18], result-
ing in data quality degradation.15

Unfortunately, most of the studies – tackling the TSC problem using AI –
do not consider such data quality degradation scenarios when evaluating their
algorithms. Researchers are indeed focusing on improving the algorithms per-
formance especially in terms of accuracy or even response time [SL17]. Perfor-
mances are evaluated on public benchmark datasets such as the UCR datasets20

([DBK+19] (https://www.cs.ucr.edu/%7Eeamonn/time_series_data_2018/, (ac-
cessed on July 2021))). Such datasets are then considered as clean and without
any biases. Although sthese evaluations are needed, this is not sufficient to be
confident in the robustness of these algorithms/models in case of perturbations
(that may happen temporarily or gradually over time).25

The objective of the chapter is therefore threefold: (i) to propose a systematic
approach, inspired by mutation testing techniques, for artificially injecting two
types of perturbations in benchmarking datasets, (ii) to evaluate the impact of
such perturbations on 7 state-of-the-art algorithms and 20 sensor-based datasets
and (iii) to analyse whether such impact can be predictable or not without testing30

all perturbations scenarios.

The chapter is organised as follows: Section 4.3 presents the related work re-
garding AI that consider perturbations. In Section 4.4, a systematic approach for
evaluating AI models under perturbations is developed. Then, in Section 5.4, the
systematic approach is therefore assessed by experiments on two realistic perturba-35

tions, called hereafter swapping and dropping perturbations. Section 4.6 aims at
trying to predict the robustness of models by using decision trees. Finally, Section
5.5 presents the conclusion of the chapter.
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4.3 Background and Related Work
AI is a domain that includes a lot of techniques to tackle a large range of

problems and applications. Focusing on the TSC problem, ML techniques are
beginning to be the new standard in recent industrial systems, and DL also tends
to be adopted in certain cases ([WMZ+18, LCA+16, WLS+19, LDSP18]). Looking5

at the definition of a Time Series (TS) in the literature, authors use different ones
depending on the context [SL17, MRB+18, FFW+19] while being quite similar. It
is worth mentioning that it is, nonetheless, important to define it, as pointed out
in [Gam17]. In this study, we define it as follows:

A time series TS is an ensemble E representing a sequence of N data-points en,10

assumed as equally distributed: E = [e1, · · · , eN ].

Our literature review is intended to analyse to what extent research work (in
ML and DL) are evaluating ”the degree to which a system or component can
function correctly in the presence of invalid inputs or stressful environmental con-
ditions”, defined as robustness in IEEE standard glossary of software engineering15

terminology [15990]. In the AI context, ”robustness (therefore) measures the re-
silience of a ML system’s correctness in the presence of perturbations” [ZHML20].
Based on these definitions and the aforementioned literature review objective, we
applied the following three-step methodology for selecting papers to analyse: (i)
keep only papers dealing with the TSC problem. Our corpus consists of 141720

papers collected in seven main library databases: IEEE Xplore, ACM Digital Li-
brary, Springer, ScienceDirect, MDPI, Taylor and Francis and Wiley; (ii) filter
papers mentioning perturbations (or related terms, e.g., robustness, adversarial,
data inconsistency). Only 35 papers were remaining, and (iii) they were filtered
through a careful reading. Finally, 14 papers are presented and listed in Table 4.1,25

while summing up (as in Table 4.1 footer) with:
• column ”Approach”: the approach (ML or DL) used in the research work;
• column ”Method”: the methods/algorithms used or analysed;
• column ”TS Type”: the type of TS, i.e., either UTS or Multivariate Time

Series (MTS);30

• column ”Perturb. Model”: the type of perturbations model;
• column ”Reproducible?”: if such analysis is reproducible (can we recreate

ourselves datasets with perturbations according to predefined parameters);
• column ”Public repo?”: if such datasets before/after perturbations are pub-

licly available.35
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Table 4.1: Related work.

Paper Approach Method TS type Perturb. Model Reproducible? Public repo?
M-L D-L UTS MTS initial modified

[HL18] 7 3 CNN 3 7 Random Noise 7 7 7

[TMH17] 3 7 SVM,1-NN,
DT, RF

7 3 Data Loss 3 3 7

[CJM+19] 3 7 XG-Boost 3 7 Missing Data 7 7 7

[MSJR19] 3 3 SVM, DT,
RF, NN,
CNN

3 7 Random Missing Data 7 7 7

[IFW+19] 7 3 ResNet, FCN 3 7 Noise 3 3 7

[KMM18] 7 3 CNN 3 3 Missing Data 3 3 7

[YPT19] 3 7 ARM-SONS 3 7 Missing Data 7 3 7

[ZH13] 3 7 BPSO,
IBPSO,
INSIGHT

3 7 Random Noise 7 3 7

[YWS+19] 3 7 DTW 3 7 Missing data and Noise 3 3 7

[PAK+13] 3 7 ANN, SVM,
SSL

7 3 Noise 3 3 7

[ODPL20] 3 3 OSVM, DNN 7 3 Color Perturbations 7 3 7

[NKK17] 3 3 STRiD, NN,
SVM, ID3

7 3 Missing Data 3 3 7

[MBSRJ18] 3 7 1-NN 3 3 Missing Data 3 3 7

[dRSd+17] 3 7 BoW+SVM 3 7 Noise & Artifacts 3 3 7

3: original data set contains the perturbation
”Approach”: the approach (M-L or D-L) used in the research work, ”Method”: the methods/algorithms used or analysed, ”TS Type”: the type of
time-series (TS), i.e. either Univariate Time Series (UTS) or Multivariate Time Series (MTS), ”Perturb. Model”: the type of perturbations model,
”Reproducible?”: if such analysis is reproducible (can we recreate ourselves datasets with perturbations according to predefined parameters), ”Public
repo?”: if such datatets before/after perturbations are publicly available
CNN: Convolutional Neural Network, SVM: Support Vector Machine, 1-NN: 1- Nearest Neighbors, DT: Decision-Tree, RF: Random Forest, XG-Boost:
eXtreme Gradient Boosting , NN: Neural Network, ARM-SONS: Sparse Online Newton Step for AR with Missing Data, BPSO: Binary Particle Swarm
Optimization, IBPSO: Immune Binary Particle Swarm Optimization, DTW: Dynamic Time Warping, ANN: Artificial Neural Network, OSVM: One-class
Support Vector Machine, SSL: Semi-Supervised Learning, DNN: Deep Neural Network, STRiD: Statistical Tolerance Rough Set induced Decision tree, ID3:
Iterative Dichotomiser 3, BoW: Bag of Words
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This highlights that there are only a few works that evaluate the robustness
of models by providing a reproducible model of their (natural) perturbations or
a (artificially) perturbed dataset that is publicly available. Only 3 studies (i.e.,
[IFW+19, TMH17, MBSRJ18]) out of 14 (artificially) generated perturbations to
modify the datasets and then perform experiments on the models. Other listed5

studies do not provide a fault model that is reproducible, or they use datasets that
are known as containing some perturbations (noise or missing data) but without
identifying the characteristics of these perturbations (making it difficult to repro-
duce on other datasets for comparison purposes). Concerning the studies in which
perturbations’ models aim at modifying the data, the experiments are focused on10

the perturbations models and evaluating few algorithms, but they do not anal-
yse to what extent the perturbations impact the performance of the model itself.
Moreover, even if research solving some adversarial robustness problems exists, ad-
versarial robustness can lead to a decrease in accuracy when no perturbations are
present ([TSE+18]).15

Based on those facts, we decided to study the robustness of ML/DL models
under perturbations, which we defined in Section 4.4 and allows anybody to repro-
duce them for benchmarking purposes. To do so, we selected two different works
as the baseline:

• The algorithm presented in [SL17], called The Word ExtrAction for time20

SEries cLassification (WEASEL)—as an ML solution, which obtains the
best accuracy of the former algorithm on most of the public UCR datasets,

• The framework/algorithms presented in [FFW+19], which can be used as
a black-box in the DL category and showed great performance on UCR
datasets.25

In addition, as we focused on industrial scenarios, only sensor-based datasets
(UTS) were used for our experiments (20 in total, presented in the following sec-
tion).

4.4 A Systematic Approach for Evaluating AI
Models Under Perturbations30

In this section, we intended to define a systematic approach for evaluating AI
models under perturbations that could appear over the AI models’ lifetime. In that
sense, we assume that the AI models are trained in ”normal conditions” it does
not mean that the data are clean and without any biases but reflects the normal
behaviour of the data collection infrastructure at a time of the model training.35

Usually, test datasets are also collected in the same conditions—even if it is not
clearly mentioned, the characteristics of the training and testing datasets are simi-
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lar. There is an important literature in ML that demonstrates that trained models
may not be robust to corner cases (e.g., adversarial cases) despite a high accuracy.
We thus believe that trained models shall be tested against perturbation to assess
and improve their robustness in situations that may occur in a realistic setting. It
also important to include potential derivations in the data that could appear over5

time or in ”degraded conditions”, so as to evaluate their robustness. Our objective
is therefore to generate perturbations (on test datasets) that are not too far from
the reality and more importantly reproducible—either on the same datasets or
in a similar way on other datasets—so as to be able to benchmark/compare the
robustness of AI models under such perturbations. In this approach, we define10

two kinds of perturbations:
• The swapping perturbation: the sequence of the N data points en is al-

tered/not respected. It is a realistic situation in several settings, e.g., when
using User Datagram Protocol (UDP) as transport protocol for data exchang-
ing between sensors and controller, since UDP does not enable re-ordering15

of the packets in the network and/or if the timestamping of the data can
only be performed on the controller side (sensors usually do not have the
capacity of timestamping).

• Dropping perturbation: some data points in the time-series are missing. As
for the swapping perturbations, this is realistic as a network protocol such20

as UDP does not enable packet retransmission in the case of loss, or when
software processing data reception has memory overflow (especially when
processing a huge amount of sensors data in constrained devices, such as
raspberry-like devices), which can also lead to such losses.

Since every (industrial) environment is different, it is usually difficult to iden-25

tify the perturbations existing in such environment. That is the reason why our
perturbations require to be parameterised using a suitable mathematical and sys-
tematic form. It enables, in particular, varying the parameters so as to identify
the limits of the robustness of the AI models in the experimental analysis. As a
matter of fact, let us formally define the perturbations:30

• The swapping perturbation: Let us first reiterate that a time series TS is
an ensemble E representing a sequence of N data-points en, assumed as
equally distributed: E = [e1, · · · , ei, · · · , ej, · · · , eN ]. A swapping pertur-
bation is therefore a pair of data points that are interchanged/swapped.
In the case where only one pair has been swapped, the time-series becomes35

E ′ = [e1, · · · , ej, · · · , ei, · · · , eN ], where the events ei and ej have been
swapped. However, swapping only one pair would probably not have an
impact. We therefore define two parameters:

– Pe as the percentage (0% < Pe < 100%) of swapped events/values in
each time-series of a dataset. It means that S = N ∗ P e

100 values will be40
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randomly interchanged in a TS of length N .
– R as the range in which the value is swapped (i.e., at which position

the data are moved in a certain range of possibilities). For instance, let
R = [1, 2], which means that if we randomly pick 1. as the position to be
changed, an event e4 is interchanged with the event e3 (and vice-versa).5

To apply such swapping perturbations on all the time-series in a dataset D,
we define the function presented in Algorithm 2, which gives a new dataset
D′ as the output. Note that a dataset D consists of a set of times-series Ek

with the same length—i.e., the number of data points N (as it is usually the
case in public benchmarking repositories)—, such as D = [E1, · · · , EM ] with10

M the number of TS in D. The newly created dataset D′ consisting of a
set of times-series E ′

k has the same features (in particular, the number of TS
and of data points per TS) than D. Finally, to keep it as generic and open
(for experimentation) as possible, no probability distribution is imposed in
the random processes used in this algorithm.15

Algorithm 2: Swapping perturbations function.
input :D, Pe, R
output :D′

1 Function Swap(E, pos1, pos2):
2 epos1 = epos2
3 epos2 = epos1
4 return E;
5 begin
6 S ← ⌊N ∗ Pe⌋ // No. of values to swap
7 for i← 1 to M do
8 indexS ← randomSelection(0, N, S) // S indexes in the TS
9 for j ← 1 to S do

10 pos← randomSelection(R, 1)
11 E ′

i ← Swap(Ei, indexSj, indexSj − pos)
12 end
13 end
14 end

• Dropping perturbation: A dropping perturbation is the consequence of a
data loss (e.g., between a sensor that has sent the data to be stored and
the controller that has to store the data). Formally speaking, it means that
a time-series E = [e1, · · · , eN ] is becoming E ′ = [e1, · · · , eN−Q] where the
length of the time-series is decreased in terms of the number of lost/deleted20

events Q (Q < N). However, in that case and particularly in practice, E ′ will
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not strictly follow the definition of a TS where the data points en are assumed
as equally distributed over time. This means that all the indexes will be only
shifted. To be consistent, mathematically speaking, we propose to have a
reconstruction mechanism to fill out a missing value (e.g., in practice, the
controller knows that it should receive a value periodically, so it can compute5

a value when detecting a missing value). Even if such mitigation mechanism
can limit the impact on the models’ robustness a priori, it is important for
us to consider it in a formal way, since in a real environment, it would be
probably and easily implemented. We nonetheless keep the term ”dropping”
since it is the origin of the expected perturbations. Based on these choices,10

we define a dropping function presented in Algorithm 3. It also takes the
percentage Pe of removed events/values in each time-series of a dataset
D as a parameter. Similarly to the swapping function, the indexes of the
dropped (and reconstructed) elements are randomly selected. Note that,
after reconstruction, the length of E ′ is equal to the one of E. Finally, to15

keep it as generic and open (for experimentation) as possible, the method
for recomputing a value at the dropped values positions is not imposed by
the algorithm as such.

Algorithm 3: Dropping perturbations function.
input :D, Pe
output :D′

1 Function Drop(E, pos):
2 epos ← deleteAndReconstructElement(epos)
3 return E;
4 begin
5 Q← ⌊N ∗ Pe⌋ // No. of values to drop
6 for i← 1 to M do
7 indexQ← randomSelection(0, N, Q) // Q indexes in the TS
8 for j ← 1 to Q) do
9 pos← indexQj

10 E ′
i ← Drop(Ei, pos) // drop value in ith time series

11 end
12 end
13 end
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4.5 Robustness Evaluation based on Perturba-
tions Generation

The approach presented in the previous section is applied for evaluating the ro-
bustness of AI models trained with seven algorithms: six DL algorithms (referred
to as Fully Convolutional Neural Network (FCN), Residual Network(ResNet), Con-5

volutional Neural Network (CNN), Multi Channel Deep Convolutional Neural Net-
work (MCDCNN), Multi Layer Perceptron (MLP) and Time Le-Net (Tlenet)) pro-
posed as a framework by [FFW+19] and one ML algorithm (WEASEL) developed
and evaluated by [SL17]. This evaluation is achieved on 20 sensor-based datasets
available in the public UCR (https://www.cs.ucr.edu, accessed on July the 5th,10

2021) repository. These were selected since the data looks similar to the ones we
can find in industrial scenarios, when a sensor delivers an UTS. The algorithms
are selected for two reasons: (i) they are freely and publicly available to be used
as a blackbox, and (ii) they give good performance on the selected datasets to be
served as a baseline of our work.15

4.5.1 Methodology of the Evaluation

Let us first present the methodology used for this evaluation:

1. The preparation phase consists of training models with the available datasets
and then generating datasets with perturbations that will be used for evalu-
ating the robustness of the models in phase 2.20

(a) Retrieve the 20 selected UTS datasets of the sensors’ type (from the
UCR repository).

(b) Train models using the different selected classifiers on the previously
collected datasets. This phase is needed since the models (of existing
researches) for the benchmark datasets are not available publicly (and25

the hardware as well as the software can impact the models’ accuracy,
especially when DL is used). Since training a DL model several times
can lead to different accuracy results (even with the same parameters
and dataset), we trained each pair 5 times <classifier; dataset> (it was
enough to reach the same—or even better—accuracy as the existing30

benchmark). In total, 700 models (5 iterations for 7 classifiers on 20
datasets) were trained. In this training phase, the objective is to obtain
the best classifier/model that could be deployed in real settings. In that
sense, we kept only the best iteration/model for each pair <classifier;
dataset>, resulting in 140 models.35
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(c) As a first filter of our evaluation, we keep only the models that have an
accuracy higher than 90% (models with lower accuracy would not even
be considered for deployment in practice, or even for trying to improve
them before deployment) on test datasets without perturbations. Re-
sults of this step are given in Table 5.1, where results in red are related5

to the models we used in the following (53 models). In this table, two
accuracy values are presented for each dataset. This represents (i) the
accuracy results obtained in the literature (column ”Ref”)—especially
in [FFW+19]—and (ii) our own accuracy results (column ”Our”). As
explained previously, the hardware (as well as the software) can im-10

pact such results, so comparing results enables only keeping models
that have equal or greater accuracy than the ones in the literature.
Note that, as the Tlenet classifier does not offer satisfying models for
any datasets (i.e., with accuracy > 90%), it will not be studied any
deeper. Similarly, no classifier gave suitable results on the datasets15

”DodgerLoopDay”, ”DodgerLoopGame”, ”Earthquakes”, ”FordB”, ”In-
sectWingbeatSound”, ”Lightning2” and ”Lightning7”. These datasets
will, therefore, be discarded from further analysis.

(d) Generate new datasets containing perturbations as defined in the previ-
ous section. In this evaluation, we generated a total of 13,250 datasets20

(5 different values for Pe—from 1% to 20%, in steps of 5%—using
swapping and dropping perturbations and 9 different values for R us-
ing swapping perturbations from 1 to 10 positions in steps of 1, all
over 5 iterations to take into account the randomness of the perturba-
tions functions). Note that only uniform distribution has been used25

in the random processes, and a linear regression between the previous
and next values (i.e., the average value: ej = ej+1−ej−1

2 , where j is the
index of the dropped/reconstructed value) is used for filling out the
dropped value. Note also that this linear regression used to reconstruct
a dropped value is convenient for the implementation of the DL algo-30

rithms since it requires the same length for all the TS (in addition to
following the mathematical properties of a TS, i.e., to be equally dis-
tributed). We therefore believe that practitioners need to be aware of
such constraints when implementing AI models.

2. The empirical study consists of:35

(a) Evaluating the robustness of each model (on each dataset generated);

(b) Concluding about the impact of such perturbations on the algorithm-
s/models.
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To run these experiments, we implemented the DL models by using Keras 2
(https://keras.io, accessed on July 2021) framework with TensorFlow backend
(Python 3.6) and the WEASEL algorithm developed in Java. All the models were
trained on the University of Luxembourg High-Performance Computer (HPC) with
1 Graphics Processing Unit (GPU) (NVIDIA TESLA V100) on Compute Unified5

Device Architecture (CUDA).
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Table 4.2: Accuracy of the best models for each dataset (Accuracy in %)

Dataset mlp resnet tlenet mcdcnn cnn fcn WEASELOur Ref Our Ref Our Ref Our Ref Our Ref Our Ref

Car 77 80 93 93 32 32 75 80 78 80 93 93 82
DodgerLoopDay 54 16 54 15 16 16 54 53 59 58 40 15 53
DodgerLoopGame 86 88 86 80 52 48 88 90 83 83 78 78 80
DodgerLoopWeekend 99 98 96 96 74 74 99 99 98 98 91 93 97
Earthquakes 76 73 75 73 75 75 75 75 72 72 74 73 74
FordA 85 82 94 95 52 52 89 89 90 90 92 92 97
FordB 72 71 82 82 50 50 70 73 77 77 78 78 83
FreezerRegularTrain 82 91 100 100 50 50 98 98 99 99 100 100 98
FreezerSmallTrain 69 69 96 93 50 50 70 74 74 75 71 71 91
InsectWingbeatSound 66 61 51 50 9 9 61 58 59 59 40 40 63
ItalyPowerDemand 96 96 96 96 50 50 97 97 96 96 96 96 96
Lightning2 77 70 80 80 54 54 72 69 67 66 77 75 61
Lightning7 67 64 85 85 26 26 62 64 70 66 82 84 70
MoteStrain 87 86 94 93 54 54 85 86 89 90 94 94 95
Plane 96 98 100 100 14 14 98 98 98 97 100 100 100
SonyAIBORobotSurface1 73 70 97 97 43 43 79 90 71 72 97 97 85
SonyAIBORobotSurface2 83 83 98 98 62 62 84 86 84 84 98 99 95
StarLightCurves 85 95 98 98 58 58 95 95 93 93 97 97 98
Trace 61 81 100 100 24 24 86 95 96 96 100 100 100
Wafer 100 100 100 100 89 89 99 100 96 96 100 100 100

Our case-study (Sec. 4.6) 95 100 na 99 99 100 100
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4.5.2 Results of the Evaluation

Let us now look at the results of the empirical study with regard to the per-
turbations. Tables 4.3 and 4.4 present an overview of our results. For the sake of
our analysis, we consider here that a model is impacted if its accuracy decreases
more than 1% over the experiments (with regards to its accuracy without any5

perturbations). Results show that:
• Very few models are not impacted at all by the swapping perturbations. To

understand to what extent the models are impacted by such perturbations
over the considered sensor-based datasets, we compute an average robustness,
as shown in Figure 4.1. It appears that:10

– MLP, MCDCNN, CNN: Even if the results of the MLP, MCDCNN
and CNN models are limited to, respectively 4, 5 and 7 (out of 13
possible models/ datasets), the impact of these perturbations on the
models tends to be quite limited since in the worst case (i.e., with a
percentage of 20% and a swap range of [1–10]), the loss of accuracy15

is, respectively, around 3%, 3.5% and 5% on average. Of course, in
practice, the tolerance of such degradation would require analysis for
each given use case.

– ResNet, FCN: Contrary to MLP, MCDCNN and CNN, ResNet and
FCN have been evaluated on all possible models of our study. This20

analysis shows clearly that such algorithms/models are more rapidly
impacted by the swapping perturbations since the loss of accuracy is
already about 10% on average for a low percentage of swap values (5%)
and a small range ([1–3/4]) to reach 30% in the worst case scenario of
our study.25

– WEASEL: Although WEASEL is clearly impacted by the swapping
perturbations, the impact is more limited (compared to ResNet and
FCN) for low percentage and range since the loss of accuracy tends to
be less than 6% before being really degrading when the percentage is
important (more than 15%) and/or range is high (more than [1–4]).30

• Very few models are impacted by the dropping perturbations. This shows
how the mitigation mechanism (as simple as it is) plays an important role
in the models’ robustness. It is therefore really important that practitioners
understand this point and integrate it from the design phase of such AI
usage. Note that, even if we consider ResNet impacted on the Car dataset,35

the accuracy decreases only by 5% in the worst iteration (over the 5) when
the perturbations are at the maximum (i.e., Pe = 20%). Similar behaviour
was found for FCN on this dataset (but from Pe ≥ 15%). FCN accuracy
on FordA decreases by 6% and less than 2% on SonyAIBORobotSurface1 in
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Table 4.3: Robustness under swapping perturbations

Dataset mlp resnet mcdcnn cnn fcn WEASEL

Car na 7 na na 7 na
DodgerLoopWeekend 3 7 3 3 7 3

FordA na 7 na na 7 7

FreezerRegularTrain na 7 7 7 7 7

FreezerSmallTrain na 7 na na na 7

ItalyPowerDemand 7 7 7 7 7 7

MoteStrain na 7 na na 7 7

Plane 7 7 7 7 7 7

SonyAIBORobotSurface1 na 7 na na 7 na
SonyAIBORobotSurface2 na 7 na na 7 7

StarLightCurves na 7 na 3 7 7

Trace na 7 na 7 3 7

Wafer 3 7 3 3 7 3

na: not considered in our study cf. XX 3: robust (not impacted) 7: not robust (impacted)

the worst iteration. Weasel on FordA appears to be an exception where the
accuracy is decreased by 21% to 41%.

Overall, this study demonstrates that some of the models/algorithms can be
impacted by the data quality, especially when it is decreasing over time. Indeed,
the conditions in which the data are collected can be different from the time the5

models were trained, leading to an accuracy decrease. Based on those results, one
may wonder whether such degradation can be predicted before deploying a model
in real-life scenarios, i.e., without the need to generate as many datasets as possible
for testing it under perturbations (as proposed by our systematic approach). The
next section tries to answer this question.10

4.6 Is Robustness Predictable?

The objective is to answer the question, is robustness predictable? If so, we
aim to provide humans/engineers with a method—as simple to understand and
to interpret as decision trees—to determine whether a model will be impacted
by some of the perturbations. To do so, we assume that the characteristics of15

the datasets (i.e., the shape) impact the robustness of the models. Based on this
assumption and our previous results, we created a dataset (consisting of 2700 rows)
with the following information:

• The characteristics of the TS of each dataset presented in Table4.5, i.e.,
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Table 4.4: Robustness under dropping perturbations

Dataset mlp resnet mcdcnn cnn fcn WEASEL

Car na 7 na na 7 na
DodgerLoopWeekend 3 3 3 3 3 3

FordA na 3 na na 7 7

FreezerRegularTrain na 3 3 3 3 3

FreezerSmallTrain na 3 na na na 3

ItalyPowerDemand 3 3 3 3 3 3

MoteStrain na 3 na na 3 3

Plane 3 3 3 3 3 3

SonyAIBORobotSurface1 na 3 na na 7 na
SonyAIBORobotSurface2 na 3 na na 3 3

StarLightCurves na 3 na 3 3 3

Trace na 3 na 3 3 3

Wafer 3 3 3 3 3 3

na: not considered in our study cf. XX 3: robust (not impacted) 7: not robust (impacted)

– The TS length (denoted len(TS),
– The number of classes (Nocl),
– The Pearson correlation coefficient [Pea96], which is defined as the co-

variance of two variables divided by the product of their standard de-
viations. It is an intuitive and easy to understand a way of measuring5

the linear correlation between two signals (here, two time-series), which
has been used in many studies from different fields to characterise the
correlation between TS [AP10, BCH08]. In this study, we used the
average (i) of the Pearson correlation coefficients computed between all
time series of the same class (Pin−cl) and (ii) of the Pearson correlation10

coefficients computed between the different classes for all the datasets
(Pbet−cl).

– The average derivative (Deriv), enabling to reflect the changes/varia-
tions in a time series.

• The parameters of the considered perturbations as defined in Section 5.4, i.e.,15

Pe, the percentage of swapped/dropped values, and R, the range in which
the value is swapped,

• Finally, a label (per classifier) representing if the model is impacted (or not)
by such perturbations/characteristics settings.

This dataset is used to create as many decision trees as classifiers. To do so,20

we used the sklearn decision trees library (https://scikit-learn.org/stable/
modules/tree.html, accessed on June 2021). Although one of the major features
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Figure 4.1: Average robustness over all the considered datasets under swapping
perturbations.
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Table 4.5: Datasets’ characteristics for decision trees.

Dataset len(T S) Nocl Pin−cl Pbet−cl Deriv

Car 577 4 0.862 0.826 0.99
DodgerLoopWeekend 288 2 0.72 0.585 0.569
FordA 500 2 0.002 −0.002 0.115
FreezerRegularTrain 301 2 0.799 0.715 0.629
FreezerSmallTrain 301 2 0.799 0.715 0.629
ItalyPowerDemand 24 2 0.829 0.734 0.236
MoteStrain 84 2 0.547 0.421 0.238
Plane 144 7 0.95 0.648 0.131
SonyAIBORobotSurface1 70 2 0.743 0.672 0.153
SonyAIBORobotSurface2 65 2 0.402 0.231 0.206
Trace 275 4 0.743 0.064 0.575
Wafer 152 2 0.123 0.044 0.386

Our case-study (Section 4.6) 305 3 0.7180 0.5470 0.0459

len(TS): the time-series length, Nocl: the number of classes, Pin−cl: the Pearson correlation
coefficients between all time-series of the same class, Pbet−cl: the Pearson correlation coefficients
between the different classes, Deriv: the average derivative.

of the decision trees visualisation, the size and number of our decision trees are
too significant to be presented here. Note that the StarLightCurve dataset does
not appear due to the computational resources that are needed to compute the
different parameters since it contains too many long time series. Table 4.6 gives
an overview of the number of leaves and depth. This shows an important disparity5

between the decision tree’s features, and more particularly, the number of leaves,
e.g., MLP has ”only” 21 leaves while ResNet has 125 for the swapping perturba-
tions. The depth is relatively steady, even if it is quite important with 7 to 12
levels. Contrary to the decision trees for the swapping perturbations, their num-
ber of leaves and the depth for dropping perturbations are not so important (even10

very low). Indeed, several classifiers count only 1 leaf and a depth of 0, showing
the ability of models to correctly classify the time series after perturbations as it
has also been raised in the previous section (partially due to the linear regression
mitigation mechanism). Overall, such decision trees (in particular for swapping
perturbations) do not generate easy-to-understand rules as we expected and do not15

provide clear indications of which parameter(s) impact the robustness the most
(or the classification in a class ”impacted”/”not impacted”).

To test if such decision trees are nonetheless applicable to predict whether
the model accuracy will be impacted by our perturbations, we applied a proof
by contradiction (reductio ad absurdum), assuming that the characteristics of the20
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Table 4.6: Characteristics of decision trees for both perturbations.

Classifier Swapping Perturb. Dropping Perturb.
Leaves Depth Leaves Depth

MLP 21 7 1 0
ResNet 125 12 6 5
MCDCNN 42 10 1 0
CNN 68 10 1 0
FCN 76 12 10 5
WEASEL 64 10 2 1

datasets and therefore the decision trees enable predicting the impact of the pertur-
bations on a dataset. To put it in another way, if an example does not satisfy this
assumption, then the answer to the aforementioned question will be considered as
”No”. To do so, we developed a case-study for collecting our own data. Thanks
to our Fischertechnik factory simulation (https://www.fischertechnik.de/en/5

service/elearning/simulating/fabrik-simulation-24v, accessed on July 2021),
we collected data from a light sensor that is used for classifying the parts according
to their colours (blue, white or red), i.e., 3 classes for our time-series classification
problem. The datasets’ characteristics are described in the Table 4.5. Note that
the training and testing sets consist of, respectively, 100 and 50 TS of each colour10

(i.e., resp., a total of 300 and 150 TS). New datasets with perturbations have,
therefore, been generated as achieved with the public datasets (cf. previous sec-
tion) and analysed similarly, as shown in Figure 4.2. Then, decision trees are
applied to the characteristics of our original datasets to predict if the model will
be impacted with a given level of perturbations. Table 4.7 gives an overview of15

the results. Overall, this shows that:

Table 4.7: Accuracy of decision trees for the swapping effect.

Classifier MLP ResNet MCDCNN CNN FCN WEASEL

Swapping perturb. 12% 30% 43% 37% 36% 89%
Dropping perturb. 100% 80% 100% 100% 100% 100%

• Swapping perturbation: we notice a disparity in the results between DL and
ML methods.

– Deep-learning: The accuracy of the decision trees on DL models is re-
ally low. This means that the decision trees here are not able to predict20

whether the dataset will be impacted (or not). Indeed, by training de-
cision trees, we try to create a model (the tree) that represents the
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behaviour of the DL classifier. However, deep-learning models are very
complex. There are so many parameters to take into account —even
the hardware resources—, which make it almost impossible to predict
its behaviour beforehand. To illustrate this complexity, let us look at
Figure 4.1 where ResNet, FCN and WEASEL were the least robust5

classifiers under perturbations over the 12 datasets, while MLP, MCD-
CNN and CNN seemed to be robust. This observation could have led
to a first —quick/natural—conclusion, where the three latter classifiers
should be the best to deploy (especially in a possibly noisy environ-
ment). However, regarding the results of our case-study, the results are10

the opposite: MLP, MCDCNN and CNN are the classifiers for which
the accuracy decreases quicker under perturbations when ResNet, FCN
and WEASEL are more robust to them. One may note that this has
further opened up a research topic on explainable ML.

– WEASEL: Concerning Weasel, which is more a ”traditional ML clas-15

sifier”, a decision tree is more able to predict the impact of a future
perturbation. Actually, the decision tree has an accuracy of 89%, which
can be satisfying for helping humans to make a decision out of it (espe-
cially when associated to his/her expertise of the environment).

• Dropping perturbation: decision trees have a better accuracy in such pertur-20

bations. This is due to the small impact they have on the robustness of the
models (again, thanks to linear regression mitigation mechanism), resulting
in few scenarios where models are impacted, leading to an easier behaviour
prediction.

In conclusion, this study shows that it is not easy to predict (based on the25

characteristics of a dataset) that some perturbations will impact the accuracy of a
model trained on a dataset assumed to be ideal (i.e., without perturbations). As a
consequence, the systematic approach, presented in Section 4.4, is really important
to perform for evaluating AI models under perturbations before the deployment
in an industrial environment prone to data quality degradation.30

4.7 Conclusions, Implications, Limitations and
Future Research

4.7.1 Conclusions

The world is engaging its digital transformation by providing industry with
new tools for controlling their production and business systems. It aims at im-35

proving the efficiency of the production while covering the needs of sustainability,
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Figure 4.2: Average robustness over FischerTecknik dataset under swapping per-
turbations.
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transparency, traceability and customisation requested by the customers. Thanks
to the huge amount of sensor data available, AI is suitable for decision-making.
However, in many companies, there is a lack of skilled engineers who master both
AI technologies and the business specificities of the company. Thus, a condition for
broad adoption is that engineering a performant and robust AI-based system must5

remain simple while leading to performances at least equal to existing solutions. In
that sense, industries are not ready to implement such technology without being
convinced that it will work smoothly and properly. That is why it is important
to also evaluate the performance of AI models under perturbations (that could
happen in the industrial environment). This paper shows that it is costly and10

hardly predictable, since predicting whether an AI model will be impacted is not
straightforward (or not accurate enough). This shows the necessity to generate
different perturbations (as presented in this paper) to evaluate the robustness of
the AI models.

4.7.2 Implications15

This research presents two main implications. First, it points out that ML/DL
researchers should not stop their model evaluation once they have the accuracy
computed on clean datasets and without any biases. The robustness of their
model should always be assessed by presenting the perturbations formally. Second,
it shows practitioners that simple measures such as the linear regression used for20

handling potential losses (dropping perturbations) can prevent AI algorithms from
degrading in noisy environments.

4.7.3 Limitations and Future Research

Some limitations of our research can be pointed out. First, the approach and
the empirical study are only based on two kinds of perturbations (swapping and25

dropping perturbations). Future researches will go further in that direction by
proposing analyses of other perturbations (which we encourage when implement-
ing/evaluating such an AI system in/for such industrial environment). In addition,
choices have been made concerning the range of perturbations’ parameters. For
instance, ranges and percentages of perturbations could be widened, or a finer-30

grained analysis could be conducted. Furthermore, our perturbations follow a uni-
form distribution, which can be adapted for other use-cases. Finally, the proposed
methodology for predicting the robustness of the AI models, relying on decision
trees, is based on ’only’ the experiments of thirteen datasets and seven algorithms
for each kind of perturbation to train the trees. This might be too few, and input35
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training data could give different results with more inputs.
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5
Towards Models
Robustification in Industrial
Settings
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Foreword

This chapter presents an extension of the previous systematic approach to
the Machine Learning models’ robustness in industrial settings.
This work is not yet published, but we aim to submit it in the Elsevier
Journal of Manufacturing Systems in the future.
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5.1 Abstract

Machine Learning tends to be widely used for solving data analysis problems
in our society. It can reach great performance for various data mining problems,
such as time series classification. While industries are shifting from the third to the
fourth industrial revolution, the volume of data becomes impossible to be analysed5

by humans. To overcome this issue, industrial actors aims at relying on Machine
Learning solutions to monitor and make decisions based on this large volume of
sensors-based data collected on their production tools. However, companies have
to be ensured that AI-based solutions are able to perform over time, with the
evolution of the production systems, the applications and the perturbations that10

are likely to happen during their lifetime. The objective of this study is to provide a
fine-grained systematic approach, based on Genetic Algorithm, to inject artificially
perturbations in the data sets and to evaluate the robustness of Machine Learning
and Deep Learning models. In this evaluation, we extend our previous coarse-
grained empirical study, and compare the results of both approaches on 53 models15

under swapping effect perturbation, regarding state-of-the-art classifiers and data
sets. The results of this fine-grained evaluation aim at being used for further
robustification process of the models. The results of this fine-grained robustness
evaluation show that 49 out of the 53 models are impacted by the perturbations,
and in most of the cases, they are more impacted than using the previous random20

perturbation generation approach from chapter IV.

5.2 Introduction

The recent progress in the fields of ML, automation and process management
have motivated industrial actors upgrading their productions systems, shifting
from the third to the fourth industrial revolution, the so-called Industry 4.0. In-25

deed, in the past decades, a large volume of data is becoming available from
the production tools of manufacturers, due to the wide use of distributed con-
trol systems based on open communications technologies that allows to collect
data in a unified manner as we already presented in the first part of the disserta-
tion. While it becomes more and more difficult to build first-principle models in30

those increasingly complex processes, data-driven process modeling, monitoring,
prediction and control have received much attention in recent years [GSDH17].
To overcome this growing complexity in data-analysis, researchers have paid at-
tention to data-mining techniques for industrial purposes [MC12, GSG13, Qin12].
Data-driven models are based on the observations of the process (e.g., by the35

different sensors) and are very attractive modelling approaches that enhance the
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decision support methods and the monitoring of the production [APBRPOM15].
In this category of models, we can find ML classifiers for which industrial ac-
tors tend to rely on for analysing their production data (observations). However,
data coming from the production tools (e.g. sensors on mechanical machines) are
prone to data-drift during the life-cycle of the production plant [KGS09]. We have5

demonstrated in Part I that data collection infrastructures may have sparse per-
formance, in particular in terms of network metrics as losses, delays or traffic-load
[BRLT19, BRLTK18] resulting in the data quality degradation. In order to fully
trust intelligent data-analysis tools (e.g., Machine-Learning models), we (SnT and
our partner Cebi Luxembourg S.A.) are willing to explore the limits of a given10

model, in order to ensure that this model can still perform in degraded conditions.
We have therefore conducted a first coarse-grained study, presented in chapter
IV ([BRLT21]), in order to evaluate the robustness of several ML models under
perturbations, concerning TSC task in industrial settings. We have demonstrated
that the robustness of the models under perturbations is contrasted, depending15

on the classifier and the data set under evaluation. Some of the models are re-
ally robust to perturbations, needing to make consequent changes in the data
set in order to notice a decrease of the accuracy. On the contrary, for a subset
of the models under test, the accuracy drops quickly with fewer changes in the
data sets. In addition, we also noticed that for some of the models, even with a20

large percentage of perturbations, the accuracy does not drop, illustrating a great
robustness of such models to a kind of perturbation. However, this study has
been conducted using random perturbation generations using a straightforward
and easy-to-apply algorithm to modify the time series composing the data sets.
Even if it helps be aware of the potential misclassification of such models under25

perturbations, we want to refine this study by exploring limits and critical cases
of each of the models. Those limit cases could be subject to be used for further
robustification of the different models (independently). To do so, in this chap-
ter, we want to extend the previously developed systematic robustness evaluation
approach in a optimised manner. The goal of this optimisation of perturbations30

generation is to find the weaknesses of a model, meaning that the objectives are to
decrease the accuracy while minimising the perturbations. This is done by shift-
ing from a random method to a optimised one that aims at minimise multiple
objectives. It intents at being aware if such an optimised method can perturb the
models that were previously robust to (random) perturbations, but also to know35

whether for previously not robust models, we could decrease their accuracy with
less changes in the time series, by optimising the perturbations on the weaknesses
of the models. To do so, this chapter proposes a fine-grained study by artificially
injecting perturbations in data sets. The method used to craft the perturbations is
based on Genetic Algorithm (GA), that have shown great performance for optimi-40
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sation problem [EAAV20]. This optimised approach evaluated on the previously
selected models and data sets (from chapter IV) in a matter of fair comparison.
The UTS produced by the optimisation methods aims at being further used for
the robustification of the models. This robustification process is not studied in
this dissertation. The objective of the chapter is therefore twofold: i) to evaluate5

the impact of swapping perturbation generated using genetic algorithm method
on 6 state-of-the-art algorithms and 13 sensor-based benchmark data sets and ii)
to compare the results of the optimised approach using genetic algorithm with
the random perturbation generation used in the previous chapter. The chapter
is organised as follows: Section 5.3 presents a optimised systematic approach for10

evaluating AI models under perturbations. Then, in section 5.4, the systematic
approach is therefore assessed by experiments on swapping perturbation, gener-
ated using Genetic Algorithm optimisation method. Finally, section 5.5 presents
the conclusion of the chapter.

5.3 An optimised systematic approach to evalu-15

ate models’ robustness

In this section, we present the systematic approach we propose to evaluate the
robustness of the models. This approach is based on our previous study presented
in Chapter IV, yet some of the stages have to be reshaped, as depicted in Figure 5.1.

Let us present the different steps of the methodology hereafter:20

• Training phase: The first step of the approach consists in training models
on the desired data sets (Trx on Figure 5.1, with x ∈ X, X a set of data sets).
This training phase has to be done with the assumption that the data sets
do not contain perturbations. The outputs of this first phase is the different
trained models, namely mx in Figure 5.1. In this study, this phase has been25

skipped, since we want to compare the optimised generation of perturbations
with the random one. To do so, we reused the previously trained models from
Chapter IV. However, in case of applying this methodology from scratch, user
should care about the behaviour of the classifiers under test. Indeed, using
DL methods can lead to different accuracy results through different iterations.30

In our previous study [BRLT21], presented in Chapter IV, we performed 5
training iterations for each couple ”classifier/data set” and retained only the
best out of the 5 iterations. This training phase had been done on 20 UCR
UTS data sets of the Sensors category and 7 classifiers, namely MLP, Resnet,
Tlenet, MCDCNN, CNN, FCN and Weasel.35

• Testing phase: The second step of the approach is the testing phase of
the models. This phases consists in testing the models on the data sets that
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Figure 5.1: System approach for optimised models’ robustness evaluation

do not contain perturbation (Tex in Figure 5.1). This accuracy without
perturbation will be used for two purposes: 1) It will be the input for the
Selection Stage of the methodology, and 2) It will be an input to compare
the accuracy of the models after testing them with perturbed data sets, in
order to evaluate their robustness to perturbations. In this study, the testing5

phase (without perturbations) has also been skipped since we use the models
from our precedent study presented in Chapter IV. In case of using UCR
UTS data sets, the testing sets are provided independently from the training
sets. However, in these cases, the testing phase is done on a sub-part of the
training set.10

• Selection Stage: The third step of our approach consists in selecting the
models for which the robustness to perturbations will be evaluated. Actually,
as mentioned in Chapter IV, from a practical viewpoint, a model that does
not reach a certain threshold in terms of accuracy (before any perturbations
injection) will not be retained for a future deployment, since it would require15

many engineering phases and human resources to improve its performance in
normal conditions. Outputs of this stage are the previously trained models
mx from the Training phase that reached the predefined accuracy threshold.
In our case, we decided to discard the models that do not reach an accuracy
of 90% in nominal conditions, resulting in 53 models distributed between 620

classifiers and 13 data sets. The output of this phase is presented in Table 5.1.
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• Box Constrained Optimisation Approach: This phase is the core of the
systematic approach. It consists in selecting, designing and tuning the opti-
misation method that will be used to alter the data , and then to evaluate the
robustness of the models in these degraded data quality conditions. In this
chapter, we want to evaluate the robustness of the models under swapping5

effect perturbations. We already did it in the previous chapter using random
algorithm to generate perturbations. In this study, we want to optimise the
perturbations generation in order to perturb the models with less changes
in the time series, and to compare the results with the random ones. As a
reminder, the swapping effect consists in swapping a pair of data points in10

a TS1. We therefore define two parameters that define the swapping effect
perturbation:

1. Pe as the percentage (0% < Pe < 100%) of swapped events/values in
each TS of a data set. It means that S = N ∗ P e

100 values will be swapped
in a TS of length N .15

2. R as the range in which the value is swapped (i.e., at which position
the data are moved in a certain range of possibilities).

The optimisation problem is then multi-objectives, with three objectives to
minimise, as formalized hereafter:

1. The first objective g1(E ′) is related to the accuracy of the model under20

study. A classifier H outputs h(E ′), the probability of the TS E ′ to
belong to the right class. We want to minimise this objective so that
the classifier predicts a higher probability for E ′ to belong to another
(false) class. That is equivalent to minimise h(E ′), denoted as follows:

minimise(g1(E ′)) ≡ h(E ′)25

2. The second objective is related to the perturbations generation. As
mentioned above, we want to swap values of the TS in order to min-
imise the accuracy of the models. However, we want to minimise the
percentage Pe of swapped values into the TS. It can be then expressed
as the minimisation of a distance between an original time series E and30

a altered one E ′, with regards to the number of values that have been
swapped:

minimise(g2(E ′)) ≡ DistSwap1(E, E ′)

DistSwap1 represents the number of values that have been swapped
1A time series TS is an ensemble E representing a sequence of N data-points en, assumed as

equally distributed: E = [e1, · · · , ei, · · · , ej , · · · , eN ].
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between a TS E and E ′ and is formalised as follows:

DistSwap1(E, E ′) = |{i
: ei ̸= e′

i}|
|E|

s.t. (ei, e′
i) ∈ (E × E ′) (5.1)

With i representing the indexes of the values in the TS.
3. The third objective is also related to the perturbations generation. As

mentioned above, we want to swap the values of the TS between a
certain range R. In a matter of optimisation, we want to minimise this
range in-which values are interchanged. It can be thus expressed as the5

minimisation of a distance between a TS E and E ′:

minimise(g3(E ′)) ≡ DistSwap2(E, E ′)

DistSwap2 represents the average (avg) range R of the values that have
been swapped between a TS E and E ′, and is formalised as follows:

DistSwap2(E, E ′) = avg({|i− j|; ∀(i, j) ∈ J0, NK; ei = e′
j})

s.t. (ei, e′
i) ∈ (E × E ′) (5.2)

The three-objective function to minimize can then be expressed as follows:

minimise(g1(E ′)) ≡ h(E ′)
minimise(g2(E ′)) ≡ DistSwap1(E, E ′)
minimise(g3(E ′)) ≡ DistSwap2(E, E ′)

To solve this multi-objective problem, we have got inspired by the MoEvA2
framework [SDG+21, GCG+20], which operates in a black-box way. This
framework is based on a genetic algorithm and aims to craft adversarial10

examples to decrease the accuracy of ML models, by minimising a multi-
objective fitness function. In their framework, they also implemented a
domain-specific constraints aspect that, at this stage of this study, is not
implemented for our case-study. Algorithm 4 formalizes our optimised per-
turbations generation approach. Note that the resulting data sets (named15

Te′
x in Figure 5.1), containing swapping effect perturbations, are stored for

two purposes 1) To test the models for evaluating their robustness under
perturbation, and 2) To use them in the robustification phase, in accordance
with the decision-making process outcome.

• Evaluation: The evaluation phase consists in the comparison of the models20

accuracy before injection of perturbations (which is in our case the nomi-
nal accuracy, denoted ax in Figure 5.1), and after injection of perturbations
(denoted as a′

x). In addition, as we want to also compare the impact of
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an optimised approach to generate perturbations with a random approach
(evaluated in Chapter IV), the evaluation is done regarding three different
accuracies for each model: the nominal accuracy ax, the randomly-perturbed
accuracy axR and the optimised-perturbed accuracy a′

x. These three accu-
racies (for each model) serve as inputs for the decision-making stage. Note5

that, in a matter of comparison with the random perturbations generation,
we evaluate this optimised approach for a percentage Pe of swapped values
between 0% and 20%, 0% representing the accuracy of the model without
perturbation, and for a range R between 1 and 10 positions. Thus, during
testing phase of the models under perturbations, we test the models only10

on the solutions (created with our genetic algorithm) respecting these two
parameters boundaries.

• Decision-Making: This phase is related to the decisions to make with
regards to the results of the robustness evaluation of the models. Indeed, ac-
cording the the accuracy of the models under a certain pertubation, different15

counter-measures can be applied in order to make the system robust to them
and avoiding misclassification. The decision belongs to the end-user of this
approach depending on the context of its study (wrt. the perturbations that
have been studied). For instance, if a model is robust to perturbations (its
accuracy does not decrease when testing it in degraded data-quality condi-20

tions), the evaluation process can terminate and the model can be deployed.
However, if a model shows signs of non-robustness to perturbations (its accu-
racy drops of a certain percentage after perturbations injection; in our case
more than 1% compared to the nominal accuracy), counter-measures should
be taken in order to either avoid the perturbations or to make the model25

robust to them. These counter-measures are applied in the robustification
phase.

• Robustification: The robustification phase consists in applying the deci-
sion(s) that have been made during the previous decision-making stage, in
case of models non-robustness. It aims at either make the models more ro-30

bust to perturbations, or make changes in the data-collection architecture,
by applying the different counter-measures that have been decided during
the decision-making stage. Indeed, based on the perturbations that have
been studied, the end-user could either have chosen to re-design its data-
collection architecture (e.g. protocols, gateways, hardware, or even produc-35

tion tools instruments), or to use models robustification’s techniques such
as data augmentation for the retraining of the models, with the perturbed
data generated during the box-constrained-optimisation phase. At the end
of this phase, two choices can be made:

– one is to conduct an other robustness evaluation on the model, in or-40
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der to know whether the counter-measures that have been taken have
reached the expectations or not in terms of model’s accuracy;

– second is to stop the robustness evaluation, resuming this systematic
evaluation process.

At this stage of the dissertation, the robustification phase has not been5

developed and belongs to the perspectives of the thesis.
• End: The End of this systematic approach is reached is two cases: 1) When

a model is robust, meaning that there is no more need of robustification
process before deploying it on a real environment, or 2) When a model is not
robust to perturbations, but techniques to avoid them and/or robustifying10

the model are too costly (in terms of resources such as time, human or
money). In these cases, end-users decide to stop the strategy to evaluate
and/or robustify the model, and then make the decision to deploy it (or not)
in their production plant data analysis tool.

Table 5.1: Accuracy of the best models for each dataset (Accuracy in %)

Dataset mlp resnet mcdcnn cnn fcn WEASEL

Car na 93 na na 93 na
DodgerLoopWeekend 99 96 99 98 91 97
FordA na 94 na na 92 97
FreezerRegularTrain na 100 98 99 100 98
FreezerSmallTrain na 96 na na na 91
ItalyPowerDemand 96 96 97 96 96 96
MoteStrain na 94 na na 94 95
Plane 96 100 98 98 100 100
SonyAIBORobotSurface1 na 97 na na 97 na
SonyAIBORobotSurface2 na 98 na na 98 95
StarLightCurves na 98 na 93 97 98
Trace na 100 na 96 100 100
Wafer 100 100 99 96 100 100

na: not considered in our study

Algorithm 4 presents the perturbations generation process of our study. We15

detail the different stages hereafter:
• Initial population: Here, an individual represents a particular time series

E and a gene represents a particular index of the time series. Actually, in
order to create solutions from values that belongs to the original times E and
not creating new values in the time series, we process our algorithm on the20

indexes the time series, and then we reconstruct the time series by mapping
the new indexes with their corresponding values. In addition, if two values
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Algorithm 4: Swapping Effect using GA
Input :E, an initial state;

fitness = [g1(E ′), g2(E ′), g3(E ′)], a list of objectives to
minimise;

Ngen, a number of generations;
L, a population size;

Output :P , a population minimising the objectives
1 begin
2 P ← init(E, L);
3 for i← 1 to Ngen do
4 Pparents ← random(P )
5 Poffsprings ← Crossover(Pparents)
6 Poffsprings ←Mutation(Poffsprings)
7 P ← Survive(Pparents ∪ Poffsprings, f itness)
8 end
9 end

10 Return P

ei and ej are equal and are swapped, when computing the distance the result
would be 0, leading to miss the swap that has been done. By working on
the indexes, we avoid this case. For instance, a time series E composed of
N values ei becomes a time series E composed of N indexes i. Then our
algorithm processes on this list of indexes. At the end of the evolutionary5

process, we replace the list of (swapped) indexes i by their values ei. The
algorithm first initializes a population P of L solutions. from the original
test data set (Tex on Figure 5.1) . In this case the initial population P
comprises L copies of E, with L = 203. This choice is made for technical
reason described later with the survival process, we use 203 instead of 20010

elements.
• Population Evolution: The algorithm proceeds iteratively and makes the

population evolve into new “generations”, until it reaches a predefined num-
ber Ngen of generations. At each generation, the algorithm evaluates each
individual in the current population on the three-objectives to minimise (e.g.15

g1(E ′), g2(E ′), g3(E ′)) defined above. The evolution of the population is com-
posed of four steps detailed as follows:

1. Random Selection: A sampling process defines the initial set of solu-
tions which are the starting point of the optimization algorithm. Our
algorithm produces, through successive random selection of P popu-20

lation, a population Pparents comprising 50 pairs of parents, randomly
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selected from P .

2. Crossover: An order crossover [Liu10] is performed on Pparents to cre-
ate a new population of 50 pairs of offsprings Poffsprings. The order
crossover is a permutation operator in which a strip of consecutive genes
(here an index of a TS) from one parent drops down to the child, and5

the remaining values are placed in the child in the order as they appear
in the second parent [WLW+16].

3. Mutation: Then, our algorithm operates permutation inversion muta-
tion on Poffsrpings. It randomly selects a segment of a chromosome and
reverse its order [WLW+16]. The set of children that results from this10

mutation process is then added to the current population.

4. Survival Selection: At this stage, our algorithm unifies initial popula-
tion Pparents composed of 203 individuals and Poffsprings composed of
100 individuals (50 pairs). It then determines which individuals should
be kept in the next generation by evaluating them with regards to our15

three objectives functions, and results in a new population P with 203
individuals. Acutally, using R-NSGA-III2 algorithm requires to use ref-
erence directions in the survival selection. Thus 203 is the first number
following 200 (which is the size of Poffsprings × 2, such that the popula-
tion is at most renewed of 50% at each generation) that equally divides20

a 3D space using Riesz energy3 (due to our three-objectives function).

After the specified number of generations Ngen, set to 100 in this study, the
algorithm returns the last population P of size L. This population is then
used in the evaluation phase to test the robustness of the algorithm. Note
that this algorithm is ran for each time series E of the data set, then resulting25

in a data set Te′
x, of size L ×D, with D representing the number of TS in

the original data set Tex.

5.4 Results of the Evaluation

Let us now look at the results of the empirical study, with regards to the
robustness of models under swapping effect perturbations, generated using the30

genetic algorithm 4. For the sake of the study, we consider that a model is not
robust (or impacted) if its accuracy drops more than 1% over the experiments
(with regards to its accuracy without perturbations). Note that, in chapter IV, 10

2https://www.pymoo.org/algorithms/moo/rnsga3.html
3https://www.pymoo.org/misc/reference_directions.html
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models were robust to swapping effect using the random process of perturbations,
as reminded in Table 5.2 - column R.

Table 5.2: Robustness under swapping perturbations

Dataset mlp resnet mcdcnn cnn fcn W.
R G R G R G R G R G R G

Car na na 7 7 na na na na 7 7 na na
DodgerLoopWeekend 3 7 7 7 3 3 3 3 7 7 3 3

FordA na na 7 7 na na na na 7 7 7 7

FreezerRegularTrain na na 7 7 7 7 7 7 7 7 7 7

FreezerSmallTrain na na 7 7 na na na na na na 7 7

ItalyPowerDemand 7 7 7 7 7 7 7 7 7 7 7 7

MoteStrain na na 7 7 na na na na 7 7 7 7

Plane 7 7 7 7 7 7 7 7 7 7 7 7

SonyAIBORobotSurface1 na na 7 7 na na na na 7 7 na na
SonyAIBORobotSurface2 na na 7 7 na na na na 7 7 7 7

StarLightCurves na na 7 7 na na 3 3 7 7 7 7

Trace na na 7 7 na na 7 7 3 7 7 7

Wafer 3 7 7 7 3 7 3 7 7 7 3 7

na: not considered in our study; 3: robust (not impacted) 7: not robust (impacted); W.: Weasel;
R: Random; G: Genetic Algorithm

As a first step, we want to verify that the optimised perturbations generation
approach (based on GA) helps us find weaknesses of the models that have not been
found with the random approach. In such scenarios, the minimal accuracy of a5

given model would be lower than the minimal accuracy using the random approach.
Figure 5.2 gives an overview of this comparison. Each point of the graph represents
the minimum accuracy of a given model under perturbation , out of the 53 retained
from the selection phase (presented in Table 5.1). X-axis represents the average
minimum accuracy of the models using random perturbations, Y-axis represents10

the minimum accuracy of the models using GA perturbations. The red dashed line
(x = y) represents the boundary that separates area where a method outperforms
the other. Overall, the optimised method (using GA) outperforms the random
method for decreasing the accuracy of the models. Over the 53 models, only 5
know a higher accuracy decrease using the random method.15

As a second step, let us analyse to what extent the optimised method impacts
the robustness of a given model. To do so, we plot the accuracy evolution in
function of our two perturbations parameters (percentage and range of swapped
values). In total, there are 53 robustness comparisons (two figures per model). For
the sake of readability, we only include in this chapter some particular comparisons20

88



0.0 0.2 0.4 0.6 0.8 1.0
Random: min(accuracy)

0.0

0.2

0.4

0.6

0.8

1.0

GA
: m

in
(a
cc
ur
ac

y)

Random Better

GA Better

GA vs. Random

Figure 5.2: Comparison of perturbation methods results

that illustrate representative examples. For the interested reader, appendices of
Chapter V presents the whole set of results.

Hereafter are presented the main observations of this analysis:
• Robust models: From the 10 robust models of the random study, there

are still 4 models that are robust to perturbations generated with our GA,5

namely the models {MDCNN/DodgerLoopWeekend}; {CNN/DodgerLoopWeek-
end}; {WEASEL/DodgerLoopWeekend}; {CNN/StarLightCurves}, highlighted
in blue in Table 5.2. For these 4 models, neither random method to generate
perturbations nor optimised methods have been able to decrease the accu-
racy of the models for more than 1%. The models’ accuracy is depicted in10

the following Figure 5.2. For these models, even with great perturbations
(20% of values swapped in the time series, in a range of 10 indexes, the accu-
racy does not decrease more than 1%. It is especially the case for the data
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set ”DodgerLoopWeekend”, for which 3 classifiers are still able to perform a
correct classification after data quality degradation. In conclusion, for these
4 models that are robust to perturbations (to the extent of our study), during
the decision-making phase of the approach, the end user could chose to de-
ploy them without robustification phase. Indeed, both robustness evaluation5

studies (random and optimised) were not able to perturb the classification,
leading to a confidence in their ability to be used in an environment prone
to this swapping effect.

• Robust to Not Robust models: From the 10 robust models of the random
study, 6 of them have been impacted by the perturbations generated with10

our GA approach, meaning that, for these particular models, our algorithm
is better for finding the weaknesses than the random approach. This is the
case for the following models: {MLP/DodgerLoopWeekend}; {MLP/Wafer};
{WEASEL/DodgerLoopWeekend}; {Weasel/ Wafer}; {FCN/Trace}; {CN-
N/Wafer}, highlighted in grey in Table 5.2. The robustness of these models15

is depicted in Figure 5.3. For these models, even if using an optimised ap-
proach that is able to perturb the models with swapping effect perturbations
(with regards to the limits of our parameters), we can notice that the drop
of accuracy is low. Actually, the models are still robust until the very high
limit of percentage and range of swapped values. To conclude on these mod-20

els, even if the optimised approach using GA is able to produce time series
that are misclassified, in the specified limits of the perturbations parameters,
the models remain very robust except in limit cases. For these models, the
decision-making phase could propose two different options: 1) Consider that
those limit cases may not happen, or at least so rarely such that a trade-off25

between cost of misclassifications and a robustification phase should be done,
in order to make the decision to robustify the models or not, 2) Consider that
we have to pay a particular attention to those limit cases and then process
a robustification phase in order to avoid them or to be robust to them.

• Not Robust models: During this evaluation, we did not only focused on30

the robust models from chapter IV, but we also conducted the optimised
robustness evaluation on models that were already not robust to swapping
effect with the random approach. The results (depicted in appendices) show
that all the models that were not robust to random perturbations are still
not robust to optimised perturbations. It still exists 5 models for which35

the accuracy drops lower using the random approach, i.e. {RESNET/Car};
{RESNET/StarLightCurves}; {WEASEL/FordA}; {WEASEL/FreezerRegu-
larTrain}; {WEASEL/FreezerSmallTrain}; {WEASEL/StarLightCurves}, de-
picted in in the upper part of the Figure 2.2. However, for these cases, the
difference between optimised approach and the random approach is really40
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thin, meaning that the optimised approach almost reach the same perfor-
mance in terms of accuracy perturbations. Even if our GA searches for the
best individuals that lead to misclassification, it does not explore all the
possible combinations and sometimes random approach can outperform op-
timisation approach. After all, for the remaining models, that have not been5

presented before, the accuracy’s decrease is faster with the optimised per-
turbations generation (using GA) than with the random approach used in
Chapter IV. Actually, many of the models know a faster accuracy decrease,
meaning that with less perturbations the accuracy drops lower than with
random perturbations generation. It can be explained by the fact that GA10

tries to keep most of the individuals that have the best fitness score accord-
ing to our three-objectives functions, and then is more likely to find the limit
cases that make the models misclassify the time series. Those limit cases,
that can be interpreted as the weaknesses of the models, can be further used
in the robustification phase. To conclude on these models, that are not ro-15

bust to swapping effect in both evaluations, the end user should then decide
(during the decision-making phase) to robustify them. This robustification
could be done with a data augmentation, by re-training the models adding a
subset of the data sets containing perturbations to the original training sets.
Then, another robustness evaluation should be conducted on these re-trained20

models, in order to be aware whether their robustness have improved or not
before a potential deployment, with regards to the results of the robustness
evaluation.

Very few models are robust to swapping effect perturbation generated using our
optimised approach based on Genetic Algorithm. This fine-grained robustness25

evaluation shows that models can be really sensitive to perturbations that are
likely to happen in industrial settings, and that even with few changes in the
data, the output of classifier can be inaccurate. Indeed, using GA showed us
that models can have weaknesses even if the data has not been hugely tempered.
Finally, this evaluation shows that a particular attention have to be paid on the30

models robustness before a real-life deployment, in order to be aware of their limits,
but also to make decisions to avoid or to be robust to these degraded data quality
cases.
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Figure 5.3: Robustness comparison between perturbations generated by Genetic
Algorithm (GA) and Random algorithm for robust models
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Figure 5.2: Robustness comparison between perturbations generated by Genetic
Algorithm (GA) and Random algorithm for robust models

5.5 Conclusions, Limitations and Future Research

5.5.1 Conclusions

Thanks to the recent improvements that have been made in the field of Machine
Learning, industrial actors are showing an interest in such intelligent approaches
to analyse their production data, for monitoring and managing their productions5

plants. Indeed, due to the huge volume and diversity of data collected on the
production tools, AI technologies tend to be at the forefront in the context on
Industry 4.0. However, companies need to trust these technologies before rely-
ing on them for making decision. If studies showed that ML models can reach
great performance for state-of-the-art applications, industrial actors need to be10

ensured that such AI-based systems can perform in case-specific degraded condi-
tions. This chapter proposes a fine-grained robustness evaluation approach, based
on injecting artificially perturbations in the data. This approach, extended from
the Chapter IV, proposes to use optimisation method to generate perturbations,
such that weaknesses and limits of the models can be found. The approach then15

proposes to use the robustness of the models for further decision-making process,
aiming at deciding if a robustification of the models, before real-life deployment,
as to be envisaged or not. This study aims at being systematic and reproducible
for other perturbations, to the willing of the end-user, such as our partner Cebi
Luxembourg S.A. We finally evaluated our approach on state-of-the-art UTS clas-20

sifiers and data sets, with regards to swapping effect perturbation generated using
a Genetic Algorithm. The results show that such perturbations can lead to inac-
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Figure 5.3: Robustness comparison between perturbations generated by Genetic
Algorithm (GA) and Random algorithm for robust to not robust models
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Figure 5.3: Robustness comparison between perturbations generated by Genetic
Algorithm (GA) and Random algorithm for robust to not robust models
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curate data analysis in most of the cases. We also compared the results of this
fine-grained evaluation with our previous coarse-grained evaluation (based on ran-
dom perturbations) generation). This comparison shows that is most of the cases,
the optimised approach is more efficient to generate perturbations that will impact
the classification. This shows the interest of conducting such fine-grained models5

robustness evaluation before real deployment, and we encourage to replicate it on
the different perturbations that can happen in industrial settings.

5.5.2 Limitations and Future Research

Some limitations of our research can be mentioned. First, the optimisation
method to generate perturbations is based on Genetic Algorithm with specific10

parameters. Indeed, choices have been made on the reference algorithm (i.e. R-
NSGA-III), and on the initial population, the number of generations, the muta-
tions and the survival selection. Also, the algorithm has been ran only one time
for each case (perturbing a specific model), but the study could gain in consistency
by iterating this process several times. However, running GA requires a lot of com-15

putational resources, especially in case of huge data sets. This could be a serious
obstacle for companies that do not have the computational capacity to conduct
such an empirical study. Even if GA show great performance for multi-objectives
optimisation tasks, other otpimisation methods to generate perturbations in UTS,
such as Particle Swarm Optimization (PSO) or Generative Adversarial Networks20

(GAN), could be investigated. In addition, we evaluated our approach for only one
perturbation (swapping effect), and we have made choices concerning the scope
of the parameters of the perturbations (i.e. the percentage of swapped values
and their range). This systematic approach could be applied for other kind of
perturbations. Finally, the results of the robustness evaluation aim to be used25

for studying the robustification possibilities, such as applying countermeasures on
the data collection architecture to avoid the perturbations, or data augmentation
process to make the models more robust to them. This should be studied in future
research.
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6
Conclusion and Perspectives

6.1 Conclusion

This dissertation is mainly composed of two parts. The first part of the disserta-
tion proposes and evaluates a data-driven approach to collect data from industrial5

production plants in a unified manner. To do so, we have first proposed an analyti-
cal model of the traffic-load generated through the network for a remote industrial
monitoring application, considering a real industrial use-case from our partner Cebi
Luxembourg S.A. This analytical study has been conducted on two well-known
protocols (i.e. O-MI/O-DF and MQTT) of the industrial community that provide10

interoperability. It showed that using such open and standardised protocols al-
lows to monitor production tools in real-time. In the meantime, the theoretical
performance evaluation showed that the traffic-load generated is still dependent of
the implementation choices, necessitating a specific care before the deployment in
the real production system. Then, we proposed a generic three-steps strategy that15

defines the different stages to make a step from vertically-closed production plants
with heterogeneous protocols to a fully connected and interoperable architecture
based and open standards, reaching the industry 4.0 expectations. We evaluated
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this three-steps strategy on pilot productions line of our partner. Performance
of three protocols (i.e. O-MI/O-DF,MQTT and OPC-UA), that are pushed by
both academic and industrial communities, have been investigated. Results show
that protocols implementations and configurations can have an impact in terms of
temporal performance. We moreover highlighted, thanks to our partner making5

us available recent industrial equipment, that a particular attention has to be paid
to the hardware aspects of the data collection architecture.

To conclude on this first part of the dissertation, we demonstrated that indus-
trial actors can rely on open protocols to collect data from their production plants
for feeding their monitoring and data analysis tools in a unified manner. Also, we10

demonstrated that the strategy we have developed can be used when designing a
new production system or when upgrading a legacy production plant. Nonetheless,
a particular attention have to be paid to the different protocols and hardware to
be used, by conducting performance evaluation before a real-life deployment, since
performance are impacted by these choices.15

The second part of this dissertation presents a systematic approach to evaluate
the robustness of Machine Learning models in industrial settings. These systematic
approaches are based on the artificial injections of perturbations into the data
sets. We conducted empirical study on Univariate Time Series (UTS) from state-
of-the-art data sets of the well-known UCR repository, and on state-of-the-art20

Machine Learning models, that reach great performance for classification tasks
on these data sets. The first approach proposes a coarse-grained evaluation of
models’ robustness, following a random algorithm method to craft the different
perturbations (swapping effect and dropping effect) that are injected in the UCR
data sets. Then, the models are tested on these degraded data in order to figure-25

out their robustness under such perturbations. The results show great disparity of
models’ robustness, and pointed-out the importance of such robustness evaluations
before deploying AI-based models in industrial settings. The second approach is
a finer-grained extension of the previous one. Actually, based on the diversity
of the models’ robustness from the coarse-grained evaluation, we extended the30

approach using an optimisation method, based on genetic algorithm, to generate
perturbations. We focused on the swapping effect, and evaluated the robustness
of each model individually, to find their limit cases for which they are prone to
misclassification. The results show that this optimisation method is, most of the
time, more efficient to impact the robustness of the models.35

To sum up, let us discuss about those two parts that need to be merged for
implementing a unified and robust data-driven approach. We explored the differ-
ent steps and solutions to build unified and robust data-driven production plants,
but this digital transformation of industrial productions plants brings-out many
challenges to tackle. Actually, even if we demonstrated that unified data-driven40
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approaches can be used for industrial purposes, a specific attention as to be paid
before totally relying on it in real-life environment. We have shown that open
protocols providing a unified data collection architecture, still have some lacks
in terms of performance, and have to be investigated with regards to scalability
aspects. It is especially the case for companies willing to upgrade legacy produc-5

tion plants, since it needs some retro engineering stages, but also intermediate
steps for accessing the data and providing interoperability between heterogeneous
proprietary systems from different ages. In addition, we have pointed-out the
fact the Machine Learning solutions, although showing outstanding results in the
literature, are still impacted by perturbations likely to happen in industrial envi-10

ronments. However, since performance of open protocols and hardware shows a
great diversity, relying on such AI-based solutions to analyse the data upon on
these open protocols, seems to remain an obstacle for industrial companies. Thus,
solutions exist to tackle the different challenges for accessing and analysing the
production data, but there is still room for improvements to use these components15

in collaboration, as a unified and robust industrial ecosystem.

Thanks to our collaboration with Cebi Luxembourg S.A., we can see that there
are not only scientific barriers to tackle, but also in terms of cultural change. In-
deed, such changes in companies take a lot of time to be adopted and accepted
by the different levels of the enterprise hierarchy, more precisely the management20

board as well as the operators. This paradigm shift implies a lot of strategic
changes at the enterprise levels. Of course, such an industrial revolution induces
expenses for Research and Development, but also for renewing/upgrading the pro-
duction tools as well as the business tools (such as applications). It also needs a
very deep expertise from the people designing and developing the different com-25

ponents to reach the new industrial expectations. This expertise is sometimes
difficult to find in the within the companies that were, until today, focused on in-
vesting and developing new products. This gap of expertise is hard to fill internally
and needs sometimes to be delegated to tiers companies, rising questions of cost,
intellectual properties and confidentiality. Moreover, and not the least, human30

aspect has to be taken into account. This changes on the manner of managing
the production, on collecting the data, and analysing it obviously implies changes
for operators on the machines. These changes lead to a need of sensitisation and
awareness to these new technologies in order to be accepted by the operators, as
well as a need in formation/teaching.35

Finally, we are going towards a unified and data-driven approach for the digital
transformation of production plants, but it still remains some scientific and society
challenges to overcome.

99



6.2 Perspectives
Looking at the studies that compose this dissertation, there are still researches

to be conducted on the different topics, that we would like to explore in the fu-
ture. Concerning the unified data collection aspect, some paradigms could be
investigated in order to prevent some of the network perturbations to happen.5

Technologies such as SDN and TSN could be part of a solution for improving the
network performance in industrial networks, that are prone to changes over time,
leading to potential alterations of the data quality impacting the robustness of ML
models. Evaluating the implications and the benefits of implementing/deploying
such network configurations technologies in the case of the digital transformation10

of production plants, could have a real interest. Concerning the robustness of the
Machine Learning models, there is still a lot of possibilities to explore. In our
experimental study, we only focus on two types of network perturbations, that are
swapping and dropping effect. However, future researches aiming at modelling and
evaluating the models robustness for other kinds of perturbations (e.g. physical15

perturbations of the process) constitute an interesting extension of our researches.
In addition, other methods to generate perturbations should be investigated and
compared. Then, the robustification of the data-driven approach, by considering
solutions such as TSN to avoid certain perturbations, or by robustifying the models
using techniques like data augmentation, remains a challenge to be tackled. Over-20

all, we are confident, considering the remaining challenges, that we can smoothly
overcome them to propose a unified and robust data-driven approach to digitise
the production plants in the era of Industry 4.0.
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A
Appendix

A.1 Appendices of Chapter V
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Figure A.1: Robustness comparison between perturbations generated by Genetic
Algorithm (GA) and Random algorithm for MLP classifier
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Figure A.2: Robustness comparison between perturbations generated by Genetic
Algorithm (GA) and Random algorithm for MLP classifier
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Figure A.3: Robustness comparison between perturbations generated by Genetic
Algorithm (GA) and Random algorithm for ResNet classifier

104



pe
rce
nta
ge

0.0
2.5

5.0
7.5

10.0
12.5

15.0
17.5

20.0
avg range

0
2

4
6

8
10

Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Robustness of resnet/FreezerRegularTrain

0.5

0.6

0.7

0.8

0.9

(g) GA

pe
rce

nta
ge

0.0
2.5

5.0
7.5

10.0
12.5

15.0
17.5

20.0
avg range

0
2

4
6

8
10

Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Robustness of RESNET/FreezerRegularTrain

0.86

0.88

0.90

0.92

0.94

0.96

0.98

(h) Random

pe
rce
nta
ge

0.0
2.5

5.0
7.5

10.0
12.5

15.0
17.5

20.0
avg range

0
2

4
6

8
10

Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Robustness of resnet/FreezerSmallTrain

0.6

0.7

0.8

0.9

(i) GA

pe
rce

nta
ge

0.0
2.5

5.0
7.5

10.0
12.5

15.0
17.5

20.0
avg range

0
2

4
6

8
10

Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Robustness of RESNET/FreezerSmallTrain

0.86

0.88

0.90

0.92

0.94

(j) Random

pe
rce
nta
ge

0.0
2.5

5.0
7.5

10.0
12.5

15.0
17.5

20.0
avg range

0
2

4
6

8
10

Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Robustness of resnet/ItalyPowerDemand

0.0

0.2

0.4

0.6

0.8

(k) GA

pe
rce
nta
ge

0.0
2.5

5.0
7.5

10.0
12.5

15.0
17.5

20.0
avg range

0
2

4
6

8
10

Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Robustness of RESNET/ItalyPowerDemand

0.65

0.70

0.75

0.80

0.85

0.90

0.95

(l) Random

Figure A.3: Robustness comparison between perturbations generated by Genetic
Algorithm (GA) and Random algorithm for ResNet classifier
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Figure A.3: Robustness comparison between perturbations generated by Genetic
Algorithm (GA) and Random algorithm for ResNet classifier
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Figure A.3: Robustness comparison between perturbations generated by Genetic
Algorithm (GA) and Random algorithm for ResNet classifier
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Figure A.3: Robustness comparison between perturbations generated by Genetic
Algorithm (GA) and Random algorithm for ResNet classifier
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Figure A.4: Robustness comparison between perturbations generated by Genetic
Algorithm (GA) and Random algorithm for MCDCNN classifier
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Figure A.4: Robustness comparison between perturbations generated by Genetic
Algorithm (GA) and Random algorithm for MCDCNN classifier
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Figure A.5: Robustness comparison between perturbations generated by Genetic
Algorithm (GA) and Random algorithm for CNN classifier
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Figure A.5: Robustness comparison between perturbations generated by Genetic
Algorithm (GA) and Random algorithm for CNN classifier
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Figure A.6: Robustness comparison between perturbations generated by Genetic
Algorithm (GA) and Random algorithm for FCN classifier
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