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ABSTRACT

The interaction context (or environment) is key to any HCI task
and especially to adaptive user interfaces (AUIs), since it represents
the conditions under which users interact with computers. Unfor-
tunately, there are currently no formal representations to model
said interaction context. In order to address this gap, we propose a
contextual framework for AUIs and illustrate a practical applica-
tion using learning management systems as a case study. We also
discuss limitations of our framework and offer discussion points
about the realisation of truly context-aware AUIs.
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tools; HCI theory, concepts and models; Ubiquitous and mobile com-
puting theory, concepts and paradigms.
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1 INTRODUCTION

Research in Adaptive User Interfaces (AUIs) has provided empirical
evidence about the importance of contextual information from the
user’s environment to aid personalisation of Uls [Shankar et al.
2007]. Although there are several works on context-aware AUIs
that explore the role of said environment, this research area remains
open. In practice, users evolve in a physical space together with
other people and devices that often tend to influence the behaviour
of the users. Additionally, a physical space by itself has certain rules
that govern user behaviour and impose additional constraints on
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how users interact with computers, which ultimately determines
how interfaces should be adapted. Nevertheless, classic approaches
to AUIs focus on cues and signals solely collected from users to per-
sonalise interfaces, largely ignoring contextual information. In this
work we propose a general framework which allows to incorporate
the user’s interaction context (or environment) in AUIs by design.

In order to provide contextual grounding for our framework we
first briefly overview related work on AUIs (section 2). Then, in
section 3, we formalise the problem by taking a systems theory
perspective [Maier 1996], and present our proposed framework
inspired by a classic reinforcement learning architecture [Sutton
and Barto 1998; Watkins and Dayan 1992]. In section 4 we present a
case study that illustrates a potential application of our framework.
We finish with implications of our proposal and provide several
points for discussion and future work (section 5).

2 RELATED WORK

Many studies in AUIs explore the role of user’s feedback on in-
terface personalisation. Some types of feedback collected include:
using natural language programming to optimise behaviour of arti-
ficial agents and task disambiguation [Jiang et al. 2019]; introducing
head-gesture analysis to facilitate hands-free interaction with Head
Mounted displays [Yan et al. 2018]; enabling silent-speech interac-
tion mode with a mobile device by analysing user’s mouth opening
degree [Sun et al. 2018]; utilising users’ mouse behaviour to auto-
matically modify layout of a website [Leiva 2012]; or using user
body postures and physical activity to adjust the features of the
surrounding environment such as ambient light, temperature or
music [Wang et al. 2019].

Another line of research focused on system features that can be
used for interface adaptation. For instance, Jiang et al. [Jiang et al.
2019] proposed a novel layout method that adds OR-constraints
(ORC) to standard constraint-based layout specifications. The pro-
posed method unifies grid layout and flow layout, offering new
possibilities for flexible Uls that were not supported by any other
layout method. In another study, Swearngin et al. [Swearngin et al.
2020] proposed the Scout system to help designers rapidly explore
alternative interface layouts through mixed-initiative interaction
with high-level constraints (e.g. semantic structure, emphasis, order)
and design feedback.
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2.1 AUI Frameworks

Previous formalizations of AUIs have approached the adaptation
problem from different angles. One notable example in this area is
the SuPPLE system [Gajos and Weld 2004] which framed UI adap-
tation as an optimisation problem. SUPPLE minimises user’s effort
by providing interface adaptations that meet device and user ca-
pabilities. However, SuppLE did not account for the modeling of
environment features.

Similarly, Bouzit et al. [Bouzit et al. 2017] formalised a design
space for user interface adaptation, alas without modelling the
environment. The proposed framework is based on Perception-
Decision-Action cycle that is augmented by Learning-Prediction-
Action, allowing for UI designs that are descriptive, comparative,
and generative.

On the other hand, Abrahéo et al. [Abrahio et al. 2021] proposed
a conceptual reference framework for intelligent user interface
adaptation with a set of conceptual adaptation properties that are
crucial for model-based AUIs. While the authors mention an “Envi-
ronmental Model” as a part of their “Context Model” that affects
system adaptation, there is no formulation provided regarding the
elements that define the environment and the role of their interac-
tions.

Overall, while previous work on proposed conceptual modelling
of the system, to the best of our knowledge, conceptual modelling
of the environment has not been proposed yet. Moreover, while
taxonomies of interaction environment exist there are currently
no formalisation of this concept. Bearing in mind the importance
of contextual information that can be obtained from interaction
environment and benefits that it can be for development of AUIs, in
the current paper we propose a conceptual framework for modelling
the environment.

3 A CONTEXTUAL FRAMEWORK FOR AUIS

We propose that the environment of the user can be understood as
a System-of-Systems (SoS) which contains sub-systems such as the
user, the device which implements the adaptation or personalisation,
other users and entities in the same physical space with the user
that may have a direct or indirect influence on their behaviour or
on the personalisation. Each of these sub-systems posses their own
systemic properties; i.e. components, objectives, relations, behaviour,
structure, interface, environment, and functions [Maier 1996]. Taking
such a systemic view allows to better understand the coexisting
entities, their inter-dependencies, as well as their influence on the
environment and vice versa. Thus, we can formalise the problem of
Ul adaptation p as a function of the composing systems, given by

p=f(ude) 1)

where u is the user, d is the device to be adapted through its interface,
and e is the environment potentially influencing the user as an
independent system as well as containing subsystems itself, such
as other people and devices that may have an impact on the user.
Adapting Uls often entails changing some functionalities such
as information content, presentation layout, or distinctiveness of
an interface to increase its personal relevance to the user. Doing
so requires taking into account not only the user but also environ-
mental constraints and potential influences imposed on the user.
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This essentially means devising an efficient strategy to understand
and reason about dynamic interaction responses of the user and,
consequently, adapting the UI to the environmental changes. Imple-
menting this, however, is not a trivial task as it requires to derive
efficient representations of the user, the coexisting entities, and the
environment’s state from high-dimensional sensory inputs, and use
these information sources to generalise past experiences to new
situations in order to better adapt Uls.

Such types of challenging tasks are remarkably solved by hu-
mans and other animals through a harmonious combination of
reinforcement learning (RL) and hierarchical sensory processing
systems [Fukushima and Miyake 1982; Serre et al. 2005]. This in
particular has inspired the development of several RL algorithms
over the years, cf. Nguyen et al. [Nguyen et al. 2020]. Early RL
algorithms were limited to domains in which useful features could
be handcrafted, or to domains with fully-observed low-dimensional
state spaces.

Recently, Deep Q-networks (DQNs) can learn successful policies
directly from high-dimensional sensory inputs using end-to-end
reinforcement learning [Mnih and Kavukcuoglu 2017]. DQNs have
been tested in various complicated tasks and were able to outper-
form all previous RL algorithms [Silver et al. 2016, 2017]. DQN's
have also enabled breakthroughs such as “AlphaGO” [Chen 2016]
and“AlphaStar” [Arulkumaran et al. 2019], which have inspired re-
cent work on AUIs in the context of linear menus [Todi et al. 2021].
These advancements demonstrate the potential of RL to build intel-
ligent agents by giving them the freedom to learn by exploring their
environment and make decisions to take actions that maximise a
long term reward.

We believe that RL can be highly beneficial to AUISs, as it allows
learning through exploration, unlike classic approaches and super-
vised methods, that often require large amounts of labelled data
and are harder to train with continuous action spaces. Taking this
inspiration, in the following we reformulate the goal of AUIs as an
RL task by extending the high-level formalisation in Equation 1.

In classic RL, agents interact with their environment through
a sequence of observations, actions, and rewards [Watkins and
Dayan 1992]. At a given time, an agent takes an observation (i.e.,
information about the state of the environment) and takes an action
that will maximise a long-term reward. The agent then observes
the consequence of the action on the state of the environment and
the associated reward. It then continues to make decisions about
which actions to take in a way that maximises the cumulative future
reward. This is done by learning action value function:

Q" (s,a) = mjeTixE Z Yirilso=s.ap=an )
>0

which is the maximum sum of rewards r; discounted by y at
each time step t, achievable by a policy = = p(als), after making
an observation of s and taking an action a. This means that RL
agents operate based on a policy 7 to approximate Q-values (state-
action pairs) that maximise a future reward. Figure 1 illustrates the
schematics of the different components in classic RL. We refer the
reader to the work of Watkins and Dayan [Sutton and Barto 1998;
Watkins and Dayan 1992] for the details on Q-learning and RL.
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Figure 1: Classic Reinforcement Learning framework [Sutton
and Barto 1998].
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Adopting this to the context of AUISs, the agent corresponds to
the device d which operates based on some policy . The action
taken by the device a; at any time step t corresponds to selecting
an optimal UI configuration layout denoted by x = (x1, ..., xn)
representing a configuration over N features. The observation state
st then corresponds to the combination of the state of the user
s; and the state of the environment s7. The reward the device
receives r; for selecting a configuration x is the sum of the rewards
deemed appropriate for the corresponding states of the user and
the environment: r; = r;* + r{. Figure 2 illustrates the problem of
AUISs as an RL task.

Following the classic RL formulation, at each step the approxima-
tion of the optimal Q-value function Q* will be refined by enforcing
the Bellman equation [Watkins and Dayan 1992], which can be
reformulated for our AUI setting by substituting an action a with
the task of selecting a configuration x given by

0%(s,x) = Egwe |r + ymax Q*(s’, x") s, x|, (3)
X,

which states that given any state-configuration pair s and x, the
maximum cumulative reward achieved is the sum of the reward for
that pair, r, plus the value of the next state we end up with, s’. The
value at state s’ will be the maximum over all possible configura-
tions x” at Q*(s”, x”). Thus, the optimal policy 7* corresponds to
selecting the best UI configuration in any state, as specified by Q*.

In this iterative process, the Bellman equation is used as a value-
iteration algorithm to refine Q*:

Qi+1(s,x) =B |r + ymax Q; (s, x")|s, x|, 4)
a

where Q; converges to Q* as i approaches to infinity.

In the context of AUISs, we are interested in finding an optimal
policy on which the device operates in order to select the best
possible configuration given the states of the user and the envi-
ronment. Since users in such settings experience cognitive and
physical workload, they respond differently depending on: indi-
vidual skills, Ul familiarity, preferences, etc. In particular, these
user states may correspond to implicit interactions which are often
hard to detect and analyse. Nevertheless, considerable advances
have been made in inferring emotional, cognitive, and behavioural
states through response monitoring of various biosignals [Dinh
et al. 2020], for example electrocardiography [Cairns et al. 2016],
electroencephalography [Holler et al. 2017], or eye-gaze [Menges
et al. 2019] and mouse [Brickner et al. 2021] movements. Thus,
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such biosignals can be leveraged as an underlining technique of our
approach to iteratively infer user states to find the best personalised
UI configuration through an optimal policy given the inferred user
states.

4 USE CASE: LEARNING MANAGEMENT
SYSTEMS

With the COVID-19 pandemic, the use of learning management
systems has increased dramatically [Szopinski and Bachnik 2022].
Since these systems can be accessed with different devices (e.g. desk-
top, mobile, tablet) and in various environments (e.g. home-office,
conference rooms, common areas in universities), it is important
that the UI can consider these environments for adaptation. For the
purpose of demonstrating our proposed framework, we will con-
sider a use case where an AUI accounts for changes in environment
in order to improve the user’s remote learning experience.

Mark is a student participating in a remote lecture that is broad-
casted live on an online learning platform. Mark is attending from
his apartment (environment(e)), which he shares with other stu-
dents. When the lecture starts, Mark joins from his living room
using a laptop and listens to the audio via laptop speakers, as he
does not have any headset available. The current layout of the
content presentation on his laptop (device (d)) corresponds to a
configuration (x) chosen by the AUL Some time later, a persistent
drilling noise starts coming out from his neighbour’s flat, so the
AUI automatically activates closed captions. The captions appear
to be too small to read, which makes Mark lean closer to the screen.
The AUI detects this movement and modifies the font size to im-
prove readability. After 20 minutes, the drilling noise stops and
the QA session starts, so Mark switches on his microphone to ask
a question. As he begins to speak, suddenly one of his flatmates
enters the living room. The AUI recognises a visual change in the
environment and automatically blurs Mark’s background to min-
imise the distracting impact that it may have on other students who
are currently attending the lecture. Shortly after the doorbell rings.
Mark is now alone in the apartment so he should answer the door.
However, since the QA session is still going on, Mark continues
listening to it via his mobile phone as he walks towards the door.
The AUI modifies the layout to account for the limitations of the
small screen display. The lecture concludes as Mark opens the door:
it is a deliveryman with the headphones that he recently ordered.

In the presented scenario the changes in the environment such
as the drilling noise (acoustic signal), someone entering the room
(background visual signal), walking towards the door (posture
change), etc. are signals collected from the user as well as the
environment that serve as input to interpret the state of user (s}’)
and environment (sy). In RL, rewards guide the exploratory nature
of an agent. Hence, in our proposed framework, the device expects
some form of feedback from the user and the environment in the
form of a reward (r), either positive or negative, for choosing the
content presentation (x) given their observed states. It should be
noted that modelling such a reward is rather a challenging task
due to difficulties in interpreting the true meaning of multi-modal
signals collected from the users and their environment. Nonethe-
less, the above use case illustrates how modelling and responding
to the changes in user environment can contribute to an improved
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Figure 2: User interface adaptation as an RL task.

learning experience by using signals capture from the environ-
ment to automatically adapt user interface to different interaction
circumstances.

5 CURRENT CHALLENGES AND
IMPLICATIONS

Although our framework paves a path towards incorporating the
environment in the design of AUIs, the RL formulation suffers
from a scalability problem. This is due to the fact that one must
compute Q(s, x) for every state-configuration pair in order to select
the best UI configuration. This is computationally infeasible as
the configuration space is potentially infinite, only limited by the
number of elements that can be adapted. Take for example the
domain of web applications: with CSS and JavaScript it is possible
to modify any Ul element at will [Leiva 2011].

Recent research in RL has addressed the scalability problem by
using function approximators, typically a neural network, to esti-
mate the action-value function Q(s, a; 0) ~ Q* (s, a) where 0 is the
trainable parameters (weights) of the neural network [Mnih and
Kavukcuoglu 2017]. Deep Q-learning is one of the most commonly
used techniques to approximate optimal action-value functions
using a neural network. Hence, we can define our Q-function ap-
proximator using a neural network too. This means that, in the
forward pass while training the network, we use a loss function to
minimise the error of the Bellman equation, thereby determining
how far Q(s, x) is from the target Q*(s, x), given by

Li(6:) = Egxp() [yi — Qs x:6,)]° (5

where, y; = By [r + y maxy Q(s”,x’; 0i—1)|s, x]. Then, then back-
ward pass is a gradient update with respect to the Q-function pa-
rameters 6.

It is also evident from recent works that there are different varia-
tions of DQN that have enjoyed a huge success in RL tasks such as
Actor-Critic methods [Xiang et al. 2019], which combine DQN with
Deep Deterministic Policy-Gradient Algorithms (DDPG) [Lillicrap
et al. 2015] and a multi-agent version of actor-critic methods [Lowe
et al. 2017; Ryu et al. 2020]. We are optimistic that our proposed

framework, complemented by such techniques, may overcome scal-
ability issues and open new, interesting research opportunities in
AUISs, as it enables adaptation by learning through exploration.

Overall, our proposed contextual framework can bring several
practical benefits. Firstly, it allows a contextual modelling approach
of AUISs that incorporates environment and accounts for its con-
stituent elements. Secondly, framing the problem as an RL task
opens possibility of multidisciplinary research at the intersection
of Machine Learning, Cognitive Science and Psychology. Thirdly, if
applied in practise, the RL architecture empowers us to learn com-
plex interaction responses of users and their environment through
exploration, which, in turn, can lead to design of more seamless
and user-friendly AUIs. Furthermore, although we have used a
single user setting to illustrate the proposed architecture, it could
be extended to more complicated interaction scenarios such as
multi-user setting and group adaptation, where single adaptation
is applied to multiple users.

Nevertheless, we would like to note that there are several open
questions that need to be addressed before the practical implemen-
tation of our framework becomes feasible. Firstly, determining the
reward function poses a challenge as it requires keeping the user
in the loop in order to provide their feedback based on system’s
actions. Secondly, the system needs to correctly interpret and act
on a multitude of signals from the environment that may poten-
tially have contradictory meaning. Thirdly, due to complexity of
the environment, the neural network requires to be exposed to a
large number of examples which makes training extremely time
consuming and negatively impacts scalability of the system.

We anticipate that by concerted collaborative efforts, the AUI
community will begin to address these challenges to pave way to
practical implementation of the proposed contextual framework in
the future.
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