

PhD-FSTM-2022-010
The Faculty of Sciences, Technology and Medicine

DISSERTATION

Defence held on 21/02/2022 in Esch-sur-Alzette

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN INFORMATIQUE

by

Inês PINTO GOUVEIA
Born on 22nd April 1994 in Lisboa, (Portugal)

ARCHITECTURAL SUPPORT FOR HYPERVISOR-LEVEL

INTRUSION TOLERANCE IN MPSOCS

Dissertation defence committee

Dr Marcus Völp, dissertation supervisor

Professor, Université du Luxembourg

Dr António Casimiro, Member
Professor, Faculdade de Ciências da Universidade de Lisboa

Dr Gerhard Fohler, Member

Professor, Technische Universität Kaiserslautern

Dr Peter Y. A. Ryan, Chairman

Professor, Université du Luxembourg

Dr Gilbert Fridgen, Vice Chairman

Professor, Université du Luxembourg

To the greatest mother ever

Acknowledgements
First and foremost I would like to thank my supervisor Prof. Marcus Völp for his
unending patience, calmness, sense of humor, support and determination in making
sure I did not have a heart attack until I finished the PhD. Thank you also, of course, for
all the imparted knowledge on such diverse topics.

My deepest gratitude to my co-supervisor Prof. Paulo Esteves-Veríssimo not only
for his scientific and academic guidance, but also for the incredible motivational and
emotional support throughout this journey. Some life-changing conversations were truly
priceless and I learned way more than what goes in this thesis. I do not have words to
thank you enough.

A huge thanks to Prof. António Casimiro for all the encouragement and guidance
and for helping me navigate and survive the academic storm. I’m not sure I would have
finished this thesis otherwise.

I am also grateful to the whole CritiX research group, past and current members, for
the daily chats, academic discussions, support and shared laughs. A special thanks to
Prof. Jérémie Decouchant, Dr. Rafał Graczyk, Natalie Kirf, Christoph Lambert and my
"adoptive mother" Dr. Ivana Vukotic.

I would like to extend my gratitude also to the Navigators group at the University of
Lisbon for being my academic starting home and inspiring me to pursue an academic
career. In particular, thanks to Prof. Alysson Bessani for taking the time to review
my work and provide feedback and to Prof. Nuno Neves for the valuable advice. A
note of acknowledgement to Prof. José Rufino for helping me believe in myself and in
achieving my dreams.

The biggest thanks to my parents, Milú Pinto and Henrique Gouveia, and grand-
mother Dulce Guedes, who always had my back, believed in me and did everything in
their power to make me happy. I cannot express how grateful I am to be this lucky in
having an amazing family.

Thanks to my greatest friend Paulo Antunes for always being there in the good
and not so good moments. For making me laugh in the darkest times and keeping me
company in this doctoral journey and everywhere else.

Many thanks to all my other friends in Portugal for spending so much time with
me, even from far away, and lighting the mood every time. Thanks to all of you, I did
not dive into this adventure alone: Ricardo Costa, Miguel Falé, João Feio, Jerónimo
Oliveira, Diogo Ventura, Ana Monteiro, Catarina Jorge, Joaquim Afonso, Henrique
Mendes and Rubén Baldé.

Finally, a word of gratitude to all my friends in Luxembourg for being so welcom-
ing and helping me have a life outside of work. A special thanks to Cristiana Silva,
Konstantinos Thoukydidis, Viola Glaser, Giorgio Angioletti, Stefano Amodio, Jessica
Bonacina, Dr. Mads Engelund and Jacqueline Poupart.

iii

Declaration
I, Inês Pinto Gouveia, declare that the thesis titled, “Architectural Support for Hypervisor-
Level Intrusion Tolerance in MPSoCs” and the work presented therein are my own. I
confirm that:

• this work was done wholly or mainly while in candidature for the degree Docteur
de l’Université du Luxembourg;

• where any part of this thesis has previously been submitted for a degree or any
other qualification at this university or any other institution, this has been clearly
stated;

• where I have consulted the published works of others, these are clearly attributed;

• where I have quoted from the works of others, the sources are always given;

• where the work presented in this thesis is based on work done by myself jointly
with others, I have clearly outlined what was done by others and what I con-
tributed;

• with the exception of such quotations, this is entively my own work; and

• I have acknowledged all main sources of help.

Signed:

Date:

iv

Abstract
Increasingly, more aspects of our lives rely on the correctness and safety of computing
systems, namely in the embedded and cyber-physical (CPS) domains, which directly
affect the physical world. While systems have been pushed to their limits of function-
ality and efficiency, security threats and generic hardware quality have challenged their
safety.

Leveraging the enormous modular power, diversity and flexibility of these systems,
often deployed in multi-processor systems-on-chip (MPSoC), requires careful orches-
tration of complex and heterogeneous resources, a task left to low-level software, e.g.,
hypervisors. In current architectures, this software forms a single point of failure (SPoF)
and a worthwhile target for attacks: once compromised, adversaries can gain access to
all information and full control over the platform and the environment it controls, for
instance by means of privilege escalation and resource allocation. Currently, solutions
to protect low-level software often rely on an simpler, underlying trusted layer which is
often a SPoF itself and/or exhibits downgraded performance.

Architectural hybridization allows for the introduction of trusted-trustworthy com-
ponents, which combined with fault and intrusion tolerance (FIT) techniques leveraging
replication, are capable of safely handling critical operations, thus eliminating SPoFs.
Performing quorum-based consensus on all critical operations, in particular privilege
management, ensures no compromised low-level software can single handedly manip-
ulate privilege escalation or resource allocation to negatively affect other system re-
sources by propagating faults or further extend an adversary’s control. However, the
performance impact of traditional Byzantine fault tolerant state-machine replication
(BFT-SMR) protocols is prohibitive in the context of MPSoCs due to the high costs of
cryptographic operations and the quantity of messages exchanged. Furthermore, fault
isolation, one of the key prerequisites in FIT, presents a complicated challenge to tackle,
given the whole system resides within one chip in such platforms.

There is so far no solution completely and efficiently addressing the SPoF issue in
critical low-level management software. It is our aim, then, to devise such a solution
that, additionally, reaps benefit of the tight-coupled nature of such manycore systems.
In this thesis we present two architectures, using trusted-trustworthy mechanisms and
consensus protocols, capable of protecting all software layers, specifically at low level,
by performing critical operations only when a majority of correct replicas agree to their
execution: iBFT and Midir. Moreover, we discuss ways in which these can be used
at application level on the example of replicated applications sharing critical data struc-
tures. It then becomes possible to confine software-level faults and some hardware faults
to the individual tiles of an MPSoC, converting tiles into fault containment domains,
thus, enabling fault isolation and, consequently, making way to high-performance FIT
at the lowest level.

v

Contents

Abstract v

1 Introduction 1
1.1 Motivation . 1

1.1.1 Motivating Example . 3
1.2 Thesis Purpose and Approach . 3
1.3 Thesis Scope . 6
1.4 Overview . 7
1.5 Publications . 8

2 Background and Related Work 9
2.1 Privilege Enforcement . 9

2.1.1 Access Control . 10
2.2 Resource Allocation . 11
2.3 A Micro-Kernel Example . 12
2.4 The Failure Risk of Low-Level Software 13

2.4.1 Is this a real risk? . 14
2.4.2 Being the risk real, are there no solutions yet? 15
2.4.3 Summary . 16

2.5 MPSoC Safety and Security . 17
2.6 Fault and Intrusion Tolerance . 17

2.6.1 Byzantine Fault Tolerance . 19
2.6.1.1 Detailed Explanation on BFT 20
2.6.1.2 Safety and Liveness Properties 21

2.6.2 Differentiated Fault Models 22
2.6.2.1 Architectural Hybridization 22
2.6.2.2 Optimistic Protocols 22

2.6.3 BFT Over Shared-Memory . 23
2.6.4 Tightly-Coupled Systems . 23
2.6.5 Resilience . 24
2.6.6 Conclusion . 24

vi

3 From MPSoCs to D-MPSoCs 25
3.1 Gap Analysis . 25

3.1.1 Consensual Updates . 27
3.1.2 Equivocation . 28

3.1.2.1 Consensus Without Cryptography 28
3.1.2.2 Impossibility to Diagnose Faults 29

3.2 D-MPSoC Fault Tolerance Requirements 30
3.2.1 Nature of the Presented Solutions 31

3.3 Solutions . 32
3.4 System Model . 32

4 Midir 34
4.1 The Midir Architecture . 35
4.2 Fault Model . 36
4.3 T2-H2 . 37

4.3.1 Voted and non-voted operations 40
4.3.2 Consensual Privilege Change 41
4.3.3 Implementation . 42

4.3.3.1 Buffered vs. Unbuffered Votes 43
4.3.3.2 Immediate vs. Deferred Masking 44
4.3.3.3 Internal vs. External Error Handling 45
4.3.3.4 Dimensioning Voters 45
4.3.3.5 Voting Interface . 46

4.4 Properties . 46
4.4.1 Privilege Reversion . 46
4.4.2 Protection . 46

4.4.2.1 Replica Identifiers 47
4.5 Fault and Intrusion Tolerant Micro-Hypervisors 47

4.5.1 Consensual System Calls . 50
4.5.2 Generic Voting Pattern . 51
4.5.3 System Call Vote . 52
4.5.4 Subordinate Votes . 54

4.6 Experimental Results . 56
4.6.1 Per-Replica Capability Space 57
4.6.2 Consensually-Updated Capability Space 58
4.6.3 Scalability . 61
4.6.4 Code Size and Hardware Utilization 62

4.7 Midir Discussions . 63
4.7.0.1 Safety . 64
4.7.0.2 Liveness . 64

vii

5 iBFT 66
5.1 The iBFT Architecture . 66

5.1.1 Setup . 67
5.1.2 Execution Environment . 68

5.2 Fault Model . 69
5.3 Introspection . 70
5.4 Write-Once Memory . 71

5.4.1 Microcode-Based Write-Once Memory 73
5.4.2 Tagged-Memory Based Write-Once Memory 73
5.4.3 Implementation Details . 75
5.4.4 Reset . 75

5.5 iBFT Protocol . 76
5.5.1 Clients . 76
5.5.2 Normal Phase . 77
5.5.3 Error Handling . 80
5.5.4 Checkpoints and Reset . 80
5.5.5 Optimism . 82

5.6 Experimental Results . 82
5.6.1 Implementation . 82
5.6.2 Performance Cache-Based Implementation 83
5.6.3 Performance Tag-Based Implementation (FPGA) 86
5.6.4 Code Size and Hardware Utilization 87

5.7 iBFT Discussions . 87
5.7.1 Performance . 89
5.7.2 Equivocation . 89
5.7.3 Write-Once Memory Pitfalls 90
5.7.4 Leader or Leaderless? . 91
5.7.5 Safety and Liveness . 91
5.7.6 Why is Homogeneous Consensus Unfeasible? 92
5.7.7 Trusted Copy Operation . 92
5.7.8 Remote Direct-Memory Accesses 93

6 Solutions Discussion 95
6.1 iBFT vs. Midir . 95
6.2 T2-H2 vs. Write-Once Memory . 97
6.3 Persistent Consensus . 97
6.4 How is the SPoF Eliminated? . 98

viii

7 Resilience 99
7.1 Restoring Synchrony . 100
7.2 Rejuvenating Proven vs. Suspected Faulty Replicas 100
7.3 Diversity and Replica Pool . 101
7.4 Relocation . 102

8 Application-Level Use Case 103
8.1 Data Structures for Critical Data Protection 103

8.1.1 Motivating Example . 105
8.1.2 Setting . 106

8.1.2.1 Trust Model . 107
8.1.2.2 Threat Model . 108

8.1.3 Single Replicated Subsystem 108
8.1.4 Replica Groups . 110

8.1.4.1 Multiple Non-Replicated Readers 111
8.1.4.2 Multiple Replicated Readers 112

8.1.5 Implementations . 112
8.1.5.1 Data Structure Service 113
8.1.5.2 Read-Shared Per-Replica Data Structures 114
8.1.5.3 Element-Granular Read-Shared Consensual Data Struc-

tures . 115
8.1.5.4 Read/Write-Shared Consensual Data Structures . . . 116

8.1.6 Concurrent Access by Multiple Subsystems 117
8.1.6.1 Synchronization . 117
8.1.6.2 Lock-Free vs. Consensual Locks 118
8.1.6.3 Lock-Free: Azura 118
8.1.6.4 Consensual Locks 120

8.2 Discussion . 121
8.2.1 Azura Fault Model . 121

9 Conclusions and Future Work 122
9.1 Conclusion . 122
9.2 Limitations and Future Work . 123

ix

List of Figures

1.1 Collision avoidance system. 4

2.1 ACL - capability relationship. 11

2.2 Installing malicious valid translations. 13

3.1 MPSoC tiles abstraction, showcasing the possible contents of tiles and
how they interconnect. 26

4.1 Isolation of tiles by means of a trusted component, the T2-H2, placed at
the tile-to-NoC interface. 34

4.2 Overview of the Midir architecture: a multi-/manycore system aug-
mented with T2-H2 hardware capability units (blue dots) at the NoC
interface. 36

4.3 Simplified look into T2-H2’s contents. 39

4.4 Capability-mediated access of tile-external resources. Invoking capabil-
ity register c1, application A invokes memory capability M : (p, s, {r, w})
to write val to location a in region [p, p+ s]. 40

4.5 Consensual update of location a in the tile-external memory block (up-
per voter) and consensual reconfiguration of capability register c2 in the
T2-H2 of tile A. Reconfiguration is always consensual (requiring agree-
ment of a majority of the tiles A, B and C); tile-external resources may
be optionally treated in that manner (by granting access to a voter, but
no direct access). The voter installs the majority decision (e.g., it up-
dates location a with the consensual value 1 or the capability in c2 with
the agreed upon read-only memory capability). 41

4.6 Internal structure of a voter. n (a) or a single (b) buffers hold the repli-
cas’ message to be voted upon and its length size. f defines the fault
threshold, seq is a voter maintained sequence number. The agreement
and reset vector are described below. 43

x

4.7 Overview of the Midir architecture: a multi-/manycore system aug-
mented with T2-H2 hardware capability units (blue dots) at the NoC
interface. Access to tile-external resources is subject to privilege con-
firmation in T2-H2 and possibly voting. Here, the hypervisor replicas
h1, . . . h3 consensually reconfigure the privileges of the VM on the 4th
core, which in turn obtains access to a region of memory in the scratch-
pad memory of the application on tile 5. Privilege change is a voted
upon operation, indicated by dashed lines. 48

4.8 Read-shared, consensually updated data structures used by the hypervi-
sor replicas: system calls are recorded in the syscall log, the error log
keeps voting error information, and a capability space holds an applica-
tion’s capabilities. 50

4.9 Generic voting pattern used in the service loop and when executing sys-
tem calls. 52

4.10 Service loop - Phase 1: agree on next system call to execute 53
4.11 System call execution - Phase 2: subordinate votes and error handling . 55
4.12 Average execution times of the three consensual system calls — null,

grant and prime — when executed on a per-replica capability space
implementation. System calls are broken down into the individual votes
for agreeing on the system call and for performing the critical updates
required. Shown are also the Q5 / Q95 percentiles and the average costs
of executing the respective system calls on a singleton hypervisor. . . . 58

4.13 Average execution times of the three system calls for consensually-
updated capability spaces. 59

4.14 System calls broken down into individual votes. Shown are the Q5 and
Q95 percentiles for the main system call vote and each subordinate vote
for single-buffer voters. 60

4.15 Same as Figure 4.14 for n-buffer voters. 60
4.16 Latency of the null system calls for increasing number of replicas in

microseconds. 61
4.17 Code size in lines of C++ / VHDL code (logic / total). 62
4.18 FPGA resources required by T2-H2 (without / with AXI interface). . . . 63

5.1 iBFT architecture overview. 67
5.2 Setup and permissions of shared and memory buffers and internal struc-

ture of the protocol buffers in wo memory. 68
5.3 Relation among replicas and request blocks. The rw relation means the

replica has read and write access to the block and ro means the block is
read-only for that replica. 71

5.4 Implementation of wo memory as a combination of an AXI slave tag-
mem device and a standard BRAM block. 74

xi

5.5 Client Code . 77
5.6 Normal Phase, Checkpoint and Buffer Reset 79
5.7 Error handling . 81
5.8 Latency of normal-case operation (in cycles), comparing cache-based

and the tag-mem variant of iBFT against MinBFT on the same platform.
wo memories can crash. 84

5.9 Latency of normal case operation (N) with one late replica and catch up
(C) of this replica. wo memories can crash. 84

5.10 Comparing normal case iBFT when wo memories can crash vs. when
they are assumed not to not crash. 85

5.11 Comparing normal case iBFT plus catch up when wo memories can
crash vs. when they are assumed not to not crash. 86

5.12 Mean values (bars) together with the 5% and 95% percentiles for both
versions of the wo memory in iBFT . 87

5.13 Trusted Copy Operation. 93
5.14 Representation of the trusted copy mechanism, copying an agreed-upon

request to the designated destination address. 94

6.1 Comparison of the normal case phase hardware FPGA implementa-
tion’s mean cycle count of both variants of the Midir voters (single
buffer and N buffer) and both fault model cases of iBFT (the case where
wo memories can crash and the one where they are assumed not to crash). 96

7.1 Possible configurations when rejuvenating proven faulty vs. suspected
faulty replicas (shown for f = 2). 100

7.2 Rejuvenation of replica h3. To create a new, sufficiently diverse replica,
h1 and h2 provide h3 with a capability to the next fresh image in the
replica pool. The remaining images remain inaccessible until they are
required. 102

8.1 Shared data structure updated by multiple threads vs. consensual mem-
ory updated by a replicated application. 104

8.2 Naive consensual append of two cyclic double-linked lists. 106
8.3 Subsystem interacting with (i) local or (ii) the consensually-updated

memory. 109
8.4 Sequence lock code . 111
8.5 Replicated reader group reading different versions of the same correct

data structure in the case where the values read are not agreed by at least
f + 1. 112

8.6 Data structure service. 113
8.7 Read-shared data structure service. 114

xii

8.8 Element-granular read-shared data structure service. 116
8.9 Read/write-shared data structure service. 117
8.10 System overview, depicting the interaction of replica groups and the

trusted-trustworthy components — voters and Azura — involved in im-
plementing consensual memory. Replicas vote to update data struc-
tures in shared memory, while reading directly from this memory block.
Azura arbitrates concurrent votes and ensures that votes are atomic. . . 119

8.11 Azura’s voter to memory forward pattern. 119
8.12 Consensual lock voting. 121

xiii

List of Tables

3.1 Network latency of 256 byte and 4096 byte transfers in relation to local
transfers (memcpy/memcmp using x86’ rep; movsq rep; cmpsq
instructions) and to the costs of 256-sha HMAC computation and veri-
fication. Measurements are shown in microseconds (µs) and processor
cycles (c) of an AMD Ryzen 7 3700X 8-Core CPU (2 threads per core)
running at 2.2GHz. 29

5.1 Code size in lines of C++ and VHDL code. For the tagged mem-
ory (Tag Mem) interface, we separate the hardware-based (HW)/cache-
based (SW) implementations; and for the tagged memory hardware im-
plementation we separate logic/total (logic plus port declaration). 88

5.2 Top table: FPGA resources required by the hardware-based tagged mem-
ory implementation (without / with AXI interface). Bottom table: FPGA
resources required by the hardware-based reset device implementation.
The few lines of code are implemented directly on n = 3 AXI inter-
faces, thus we present here the total numbers of AXI code plus custom
reset code. The values presented denote resource utilization for each
interface. 88

xiv

Chapter 1

Introduction

1.1 Motivation
Computer systems frequently fail on account of a panoply of reasons, ranging from ac-
cidental, sporadic faults to well-mounted and persistent cyber attacks. Furthermore, the
ways such systems fail are aplenty [Dav16; LAC16; Lee18; Tsi18; Yus19; Pri19], lead-
ing to potentially severe consequences, whether their impact resides solely on the cyber
realm or extends to the physical world as well. Given the increasing dependency on
information and communication technologies, modern societies are, thus, functionally
dependent on the correctness of these systems.

Embedded and, later, cyber-physical systems (CPSs) [KS19], for instance, became
present in, or the base of, several environments, from industrial/manufacturing facili-
ties, to financing, power grids and autonomous vehicles such as self-driving cars and
unmanned aerial vehicles (UAV). This close relation with the physical environments
and, in some cases, human lives, raises these systems’ cyber-security requirements to
unprecedented standards. Their criticality calls for safety- and security-aware designs,
fault and intrusion tolerance (FIT) and resilience mechanisms to reduce or completely
mitigate the risk of failure1.

While sometimes distributed [Fen+18], the aforementioned systems are often inca-
pable of tolerating the failure of individual nodes. Moreover, even though some rely on
replication and FIT solutions and can, theoretically, tolerate such failures, they may still
pose a severe threat if an individual node does fail or falls under control of an adversary.
Take the example of a swarm of drones, where a mission may still be accomplished
despite the failure of one unit, but the very same failure can lead the affected drone to
clash into the others or any other element of the surrounding area. Additionally, full-
node replication costs are often high, whether in terms of resources, by replicating entire
systems or subsystems (e.g., replicating a whole Electronic Control Unit (ECU)); power

1We shall use the terminology and cause-effect fault’error’failure sequence presented in [ALRL04]

1

consumption; or area.
Simultaneously, with increased dependency on computing comes higher perfor-

mance and functional requirements. Systems have been progressively pushed to ex-
tremes of efficiency through modularity in platform sharing, firstly through virtualiza-
tion and lately by leveraging the power growth, functional diversity and adaptation flex-
ibility offered by multi- and manycore platforms, namely multiprocessor systems-on-
chips (MPSoCs) [DT01; WJM08; BDM09; Ram11; Fur+12]. Such platforms are made
possible by the increasing number of smaller transistors able to be fit into a smaller
area (Moore’s Law [Moo+65]), translating into a larger quantity of components being
consolidated into a single chip. MPSoCs have emerged as, not only traditional multi-
processors integrated on a silicon board together with other common resources, but also
as a means to fulfill embedded applications’ requirements [WJM08].

The increased complexity, reduced transistor sizes and, often, custom off-the-shelf
(COTS) hardware bring, however, a greater likelihood of accidental faults. Hardware
components are often exposed to radiation, thermal variations, energy variations and
some mechanical exertion [Dö14] and smaller transistor sizes make them more vulner-
able to such predicaments. At the same time, more critical application domains lead to
greater interest in hijacking, i.e., hacking these systems. It is, then, more crucial than
ever to advocate for the implementation of fault and intrusion tolerance and resilience,
not only in a distributed system environment as heavily discussed in numerous research
works [Lam98; CL99; Kap+12; Ver+13; CSK07; Yin+19], but locally in each node, or
chip, (i) decreasing both the risk of failure and, consequently, the possible compromise
of an entire system; and (ii) reducing replication costs. As we shall describe, taking
strategic advantage of the tight coupling of MPSoCs will enable accelerated fault toler-
ance mechanisms, providing adequate performance for such environments.

Naturally, fault prevention greatly helps reducing the probability of a compromise
by, for instance, reducing the attack surface of a system, however, as we shall see,
vulnerabilities are hardly ever fully eliminated. As such, a system must be designed to
survive even if it gets (partially) compromised.

Solutions have been presented aiming to devise means for fault tolerance in MPSoCs
at different levels of the software stack, targeting the operating system (OS), kernel and
hypervisor layers [BS95; Bau+09; Dö14; ECP18], i.e., the low-level software layers that
support the system - the last line of defense. However, all these solutions were devised
under the assumption of a trusted low-level kernel (e.g., hypervisor or platform man-
ager), which, as we shall argue, is a single point of failure (SPoF) itself. Even formally
verified kernels, e.g., seL4 [Kle+09a]), may fail due to model/reality discrepancies or
hardware faults violating modeling assumptions [BLH18a]. In addition, solutions aim-
ing to conduct safety verification [HHWT97; Fre+11; CAS13] of CPSs tend to have
intensive computation costs.

So far, no solution fully eliminates software SPoFs, namely in critical, low-level

2

management software, meaning they cannot withstand partially successful attacks. Any
layer then, even if trusted by the layers above, represents a SPoF, which is detrimental
for the system’s continued correct operation. If these SPoFs are compromised by ad-
versaries, the latter gain full authority over the platform’s privilege-enforcement mecha-
nisms and, through them and resource allocation, access to all information and complete
control over all platform resources (e.g., cloud-based systems), including, in the case of
cyber-physical systems, extended control over the physical environments on which they
act, e.g., nuclear power plants [Das19], power grid stations [Mes07] or contemporary
and autonomous cars [Gre15]. It is then in our best interest to eliminate system man-
agement SPoFs.

1.1.1 Motivating Example
Consider an autonomous car’s collision avoidance system where a replicated collision
avoidance application votes, in a triple modular redundancy fashion, to use the car’s
breaks when the sensors detect an object. Triple modular redundancy (TMR) consists
of three replicas executing in lock-step, with the same state. Each replicas "votes" on a
result and the majority is applied. If one fails, we can determine which one is wrong,
meaning that TMR provides fault masking and diagnosis of up to one fault. So, in this
case, even if a minority, one replica, fails, a majority of healthy collision avoidance
replicas will apply the breaks by agreeing on the correct value. However, if it is the
operating system or overall platform manager that is compromised, then it is possible
to exploit vulnerabilities in this layer to access resources such as the breaks and prevent
them from actuating independently of the application’s decision. Figure 1.1 showcases
this example.

This ability to influence resources once the low-level software is compromised is due
to privilege enforcement being managed by these layers. Additionally, access control
depends on privileges and resource allocation is as well managed by the low-level layers,
typically the kernel. So any vulnerabilities in this software gives way for the adversary
to take full control. Finally, the lack of proper isolation among system components,
which is dependent on access control, makes an fault propagation easier.

1.2 Thesis Purpose and Approach
The common solution to address low-level SPoFs and protect systems’ last line of de-
fense has been to introduce a trusted underlying layer, with reduced functionality, e.g.,
a micro-kernel or micro-hypervisor. However, this new layer suffers from the same is-
sues, as the base mechanisms responsible for isolation, access control and resource allo-
cation, which must be trusted, are still present. So, in turn, this layer becomes the SPoF.
Solutions aiming to protect privilege enforcement and other critical operations [NW74;

3

Platform Manager

collision
avoidance

Core Core Core

Mem

collision
avoidance

Mem Mem

collision
avoidance

sensors

Voter

brakes

Platform Manager

collision
avoidance

brakes

Figure 1.1: Collision avoidance system.

Cha+95; KSRL10; Asm+16] have been implemented, but again run into the same pitfall
where the protection mechanism itself becomes the SPoF. As we shall see in Chapter 2,
adversaries can exploit vulnerabilities to "taint" whichever resources they desire by at-
tacking system management software, for instance, by reaching and modifying page
tables [XCP15], even in trusted enclaves [Fer+17] such as Intel SGX [VB+17].

Fault tolerance has been widely implemented by means of some sort of replication,
with TMR being a well-known technique, however, TMR does not benefit from iso-
lation nor from more fine grained forms of agreement. Reaping inspiration from the
classical works on Byzantine fault tolerant state-machine replication (BFT-SMR), we
can bring MPSoCs to the level of fault and intrusion tolerance and resilience available
in current distributed systems and, therefore, prevent any self-contained individual sys-
tem from failing completely, even if that node is then connected in a distributed network.
Performing critical operations in a consensual manner, carried on only if a majority of
safely isolated replicas agree to its execution, as in BFT-SMR, while ensuring replica
isolation, provides the bases for a system architecture capable of securing the last line
of defense.

The perfect example of a critical operation is the ability of replicas to change their
own privileges (e.g., access to a resource), which cannot be allowed to be performed
single handedly, without the others’ consent, at risk of breaking the isolation principle.
Faults must be contained to the originating replica, in order to prevent compromised
replicas from affecting the others and any critical resources.

4

The classical BFT solutions are normally based on replication and the masking of a
minority of faulty replicas behind a majority of healthy ones working in consensus. As
long as a threshold f of faults, whether accidental or intentional, is not exceeded, the
system remains operational, as a quorum [MR98] of nodes agrees to modify the state
(data) correctly. Interestingly, MPSoCs and classical distributed systems have parallel
characteristics. The former can be organized in the abstract concept of tiles [Wai+97],
containing a range of resources (e.g., cores, caches) and, thus, closely resembling the
notion of nodes in the latter. Thus, instead of achieving fault tolerance by replicating the
whole system or MPSoC, one can instead utilize different tiles as fault containment do-
mains and the cores readily available in the chip as replicas for the low-level software we
wish to protect. These software replicas can then be augmented with trusted-trustworthy
hardware devices, as well replicated, which handle the execution of critical operations,
but are themselves trusted not to fail.

The direct translation of distributed BFT protocols and mechanisms to a tightly-
coupled environment such as MPSoCs is, however, far from straightforward. The mere
replication of low-level software across tiles does not provide the core principle required
for FIT to work in the first place: fault containment and isolation. Furthermore, we must
achieve this increased level of safety while freeing the system from (i) having to trust
any underlying software layer and from (ii) suffering from the performance penalty FIT
techniques would have in a tightly-coupled setting due to cryptographic operations and
high message transit.

By building new MPSoC architectures that tackle the challenges presented above,
it is possible to secure any software layer with minimal overhead, achieving a perfor-
mance in the order of microseconds, as demanded by a self-contained silicon platform.
For the purpose of this thesis, we constructed a minimal functionality micro-hypervisor
in two distinct new architectures and showed, on the example of consensual data struc-
tures, how critical applications benefit from the presented trusted extensions and the
tight coupling of tiles. To develop such new FIT MPSoC architectures that respect fault
isolation, we designed low-complexity trusted-trustworthy units that act as the contain-
ment edge for each replica. These units are simple to the point of executing no code
and instead being the secure means through which access control, voting and platform
reconfiguration are handled. Then, high-performing consensus protocols are run among
the low-level software replicas, making use of said units, and ensuring FIT properties.

Nonetheless, considering the long-term running period of most systems, FIT is not
enough. Eventually, the fault threshold shall be surpassed given enough time or a pow-
erful enough adversary, turning the MPSoC into a liability at some point in time. Ergo,
reliability must be considered. The rejuvenation and relocation of faulty replicas has
long been implemented in the distributed systems realm [SNV06; Sou+10], returning
previously compromised replicas to a fresh, correct state. It is then our intent to, not
only protect the systems’ last line of defense, but to protect it throughout its entire life-

5

time by applying these techniques to rejuvenate tiles and relocate their software from
permanently damaged ones to spares.

The working hypothesis of this thesis and, thus, its main contribution is, then, as
follows. Through low-complexity trusted-trustworthy units, it is possible to confine
software-level faults and some hardware faults to the tiles of an MPSoC system, turning
tiles into fault containment domains (akin to nodes) and enabling fault and intrusion
tolerance and resilience mechanisms at the lowest level. The units’ low complexity
thereby opens pathways to easily bring these necessarily trusted components close to
a zero defect target, easing verification, if necessary. This introduction of independent
trusted units allows for retaining the flexibility MPSoCs provide in terms of resource
allocation, dynamic re-allocation and recovery both through rejuvenation from transient
faults and relocation from permanently ones. We, thus, gain the advantage of a dynamic
system with hardened safety and security guarantees akin to those observed in classical
distributed systems.

Therefore, in this thesis, we:

• evaluate how low-level software can fail, placing the system contained within the
MPSoC (and possibly others) at risk;

• formulate how we can apply concepts from distributed Byzantine fault and intru-
sion tolerance together with access control mechanisms to devise a system archi-
tecture and protocols capable of eliminating all SPoFs throughout the software
stack, focusing on the example of an FIT micro-hypervisor;

• develop ways to reap benefit from the tight coupling of such manycore chips to
accelerate these solutions; and

• consider how the proposed architectures and devices can benefit applications, pro-
viding the example of critical data structure-sharing among replicated subsystems.

1.3 Thesis Scope
The approaches presented in this thesis target, as mentioned, MPSoCs as well as other
sorts of manycore-based systems. Such concepts are often present in embedded and/or
cyber-physical systems, often critical in totality or partially [Cas+14; CGR17]. As the
nature of MPSoC indicates, we have in mind systems containing all or most of their
components on a single chip, with a chip-level fast network interconnecting them.

Performance: Naturally, directly translating state-of-the-art distributed FIT proto-
cols to such systems would result in a prohibitive performance that would be more than
suitable for nodes distributed across a traditional network, but severely high in our con-
text. This means we require solutions that perform at the level of a few hundred or

6

thousand processor cycles and exhibit processing times in the order of nanoseconds or
microseconds.

Fault Types: As shall be further detailed in the system 3.4 and fault model 4.2,
5.2 Sections, we consider not only accidental faults, but also Byzantine malicious ones.
These faults can then result in a crash or random (Byzantine) behaviour, but such effects
shall remain confined to the originating tile, i.e., to the fault containment domain where
the fault occurred.

Intrusion Tolerance: Focusing on the FIT mechanisms for the protection of low-
level software layers, their performance and scalability, we evaluate resilience by assum-
ing up to f replicas fail arbitrarily and systematically analyze how they may jeopardize
the system. As shall be demonstrated when we present the experimental results in Sec-
tions 4.6 and 5.6, the system performs just as well even when a minority of replicas are
faulty or late.

The frequency and seriousness of hypervisor-, kernel- and RTOS-level faults has
been detailed in multiple works [ABWER21; BCP12; PE12; TS13; TN16].

1.4 Overview
This section provides a synopsis for each of the remaining chapters of this thesis, struc-
tured as follows:

Chapter 2 presents background information pertaining to the vulnerability of low-
level software, the affected mechanisms and how it can give adversaries advantage and
control over the whole system. It also discusses MPSoC safety and security and the
relevant related work both in low-level software protection and classical Byzantine fault
tolerance.

Chapter 3 describes how to construct SPoF-free systems in terms of their replica-
tion, fault containment and FIT requirements. We explain how to bridge the gap from
current generic MPSoCs to distributed MPSoCs (D-MPSoCs), providing the basis on
which to build the envisioned systems, capable of addressing the SPoF problem. We
also discuss how to achieve consensus without cryptography for chip-level performance,
executing consensus in an equivocation-free manner. Finally, we briefly introduce the
two solutions proposed in this thesis and present their system model.

Chapter 4 introduces the Midir architecture, an enhanced manycore architecture,
effecting a paradigm shift from SoCs to distributed SoCs. Midir changes the way plat-
form resources are controlled, by retrofitting tile-based fault containment through well
known access-control mechanisms, while securing low-overhead quorum-based consen-
sus on all critical operations, in particular privilege management and, thus, management
of containment domains.

Chapter 5 presents iBFT , the first hybrid, Introspection-based BFT-SMR protocol,
crafted for systems where consensus performance should remain close to the speed of

7

the replica-connecting communication mechanism, i.e., the chip network. iBFT’s main
concern is acceleration of consensus at low-level, however, it can as well be used to get
the system safety achieved by Midir.

Chapter 6 discusses resilience for continued unattended operation through rejuve-
nation and relocation of faulty replicas within the MPSoC.

Chapter 7 applies the given solutions to an application-level use where multiple
replicated application subsystems interact by sharing critical data structures.

Chapter 8 finalizes with the conclusions and directions for future work.

1.5 Publications
The list of publications related to this research is the following:

• Behind the Last Line of Defense: Surviving SoC Faults and Intrusions
Inês Pinto Gouveia, Marcus Völp, Paulo Esteves-Verissimo

Submitted to Elsevier’s Computers & Security journal.

• Behind the Last Line of Defense: Surviving Microhypervisor Intrusions
Inês Pinto Gouveia, Marcus Völp, Paulo Esteves-Verissimo

Intel whitepaper.

• Introspection: Look What The Other Replicas Did
Inês Pinto Gouveia, Marcus Völp, Rafal Graczyk, Paulo Esteves-Verissimo

Submitted to EuroSys 2022.

• Introducing Attack Tolerance for Modern Systems on Chip
Marcus Völp, Inês Pinto Gouveia, Paulo Esteves-Verissimo

Intel whitepaper.

• To verify or tolerate, that’s the question
Inês Pinto Gouveia, Mouhammad Sakr, Rafal Graczyk, Marcus Völp

Accepted in PAVeTrust Workshop.

8

Chapter 2

Background and Related Work

The organization of complex computing resources such as MPSoCs depends on low-
level platform management hardware, for instance, memory-management units (MMUs);
and software, e.g., firmware, hypervisors and management engines (MEs). However,
current MPSoC architectures are such that these management components, which should
form a last line of defense against severe accidental faults or adversaries intruding the
system (malicious faults), instead constitute a single point of failure, mainly for two
main reasons: (i) the way platform privilege-enforcement mechanisms (e.g., MMUs
or hardware-enforced capabilities [Woo+14]) are designed allows faults in a core/tile
to propagate through MPSoC components; (ii) faults in this lowest-level management
software, e.g., hypervisors, configuring these privileges, are bound to propagate across
management and managed components, again causing common-mode failure scenarios.
This Chapter will be dedicated to the discussion on why these SPoFs exist and why
current solutions have not fully addressed the problem of their existence; and to the
background explanation of the techniques we will be using to solve it.

We shall provide, in Section 2.1 a description of what privilege escalation is as well
as, in Section 2.1.1, an overview of well known access control mechanisms, protecting
resources from processes. Next, in Section 2.2, we discuss resource allocation and
in Section 2.3 an example of how resource allocation and management is performed
within a micro-kernel. Afterwards, in Section 2.4 we discuss the failure risk of low-
level software and why it presents a serious concern. MPSoC safety and security is
briefly presented in Section 2.5. Then, finally, in Section 2.6, we describe Byzantine
fault tolerance and its inner workings, and give an overview of the state-of-the-art.

2.1 Privilege Enforcement
A key piece in system management is, privilege management. In a privilege escalation
attack, an adversary can promote the privilege of a process to a higher level by exploit-

9

ing an OS vulnerability. If the attack succeeds, it is possible to operate the system with
a privilege that is higher than the one originally assigned, for instance, avoiding ac-
cess control and gaining read/write permissions for all system information [Yam+21].
Privilege escalation occurs in two forms: vertically, where a lower privilege user or
application accesses functions or content reserved for higher privileged ones; and hor-
izontally, where a normal user accesses functions or content reserved for other normal
users. Since a process’ privileges are stored in the kernel and cannot be referenced by
user applications, they cannot be directly tampered with at application level. However,
attacks that issue system calls in a sophisticated manner and exploit vulnerabilities in
the kernel space can tamper with process privileges stored in the kernel.

In [Yam+21], an investigation was made on memory corruption vulnerabilities that
can allow privilege escalation, as reported on the JVN iPedia Vulnerability Counter-
measure Information Database [Jvn]. It was concluded that approximately 89% of the
vulnerabilities reported to be capable of privilege escalation were classified as "Critical"
or "High" in the CVSSv3 score. CWE-269, for instance, details improper privilege man-
agement, with multiple security vulnerabilities associated, such as CVE-2021-42109,
CVE-2021-41387 and CVE-2021-40489; and works such as [Sca11] and [Iqb+16] dis-
cuss hypervisor-related privilege escalation attacks, namely how a security breach in
one hypervisor may break down the whole hypervisor and, consequently, influence the
system’s guest OSs.

2.1.1 Access Control
Access control is a security technique that regulates which users or system processes are
granted access to objects, i.e., which privileges they are given. Multiple techniques have
been developed to perform access control, making sure entities have the right privileges
to access a certain resource.

Access Control Lists: An ACL represents the permissions attached to an object
that specifies which users or processes are granted access to that object, as well as the
operations that can be performed on them [Smi19].

Access Control Matrix: An access matrix can be envisioned as a rectangular array
of cells, with one row per subject and one column per object. The entry in a cell - that is,
the entry for a particular subject-object pair - indicates the access mode that the subject
is permitted to exercise on the object. Each column is equivalent to an ACL for the
object and each row is equivalent to an access profile for the subject [Lam74].

Capabilities: Capability-based security is based on unforgeable tokens of authority
and refers to a value that references an object along with an associated set of access
rights, e.g., read/write. A capability is usually implemented as a privileged data struc-
ture that consists of a section that specifies access rights and a section that uniquely
identifies the object to be accessed, and are generally stored by the OS in a list, with
some mechanism in place to prevent a user process from directly modifying the con-

10

Memory Allocation Sensor Actuator

Operating System R/W -- --

Application A -- R --

Application B -- -- W

Capability

ACL

Figure 2.1: ACL - capability relationship.

tents of the capability in order to forge access rights or change the object it points to.
Attempts to access a referenced object must then be validated by the OS, typically by
means of an ACL. Capabilities and ACLs are in fact related. Figure 2.1 demonstrates
this relationship.

2.2 Resource Allocation

Any process requires resources to be allocated to it in order to run, such as access to
a portion of the memory’s address space. Resources can, however, be any component
internal (physical or virtual) to the system or externally connected to it, for example,
cores, memory, peripherals, files, etc. The task of allocating these resources generally
falls to the operating system or other low-level software, such as a micro-kernel or
hypervisor. Let us take the example of address spaces in a micro-kernel.

At the hardware level, an address space is an amount of memory, i.e., range of ad-
dresses, allocated to a process. Most systems use, however, the notion of virtual mem-
ory, giving a process the illusion of a larger memory space, in turn making it possible to
run several processes concurrently and isolated from each other. The mapping between
physical and virtual addresses is manged by the OS or a smaller underlying layer and
it is implemented by the translation lookaside buffer (TLB) hardware and page tables.
Page tables are data structures used by the core to store the virtual to physical address
mappings and the TLB consists on a cache containing a subset of the page table and used
for recently used translations. The MMU traverses page tables to replace translations in
case no mapping is present for the currently accessed page.

11

2.3 A Micro-Kernel Example
A micro-kernel is the close-to-minimum low-level software providing the mechanisms
needed to implement an OS. It provides minimal services of process and memory man-
agement and inter-process communication (IPC). It is often the software operating at
the most privileged level and, thus, controls critical resources and possesses powerful
mechanisms, namely for privilege escalation and resource allocation, that must not fall
into the hands of adversaries. A micro-kernel hides the physical hardware concept of
address spaces, since otherwise, implementing protection among processes would be
impossible [Lie95]. For constructing and maintaining address spaces, the micro-kernel
often provides two operations: grant and take.

Address space operations: The owner of an address space can grant any of its
pages to another space, provided the recipient agrees. The granted page is removed from
the granter’s address space and included into the grantee’s address space. Similarly, one
can make it so that the page can be accessed in both address spaces. Finally, a page can
be taken, maintaining it accessible in the taker’s address space, but removing it from all
other address spaces which had received the page directly or indirectly. These are clear
examples of critical operations that, once the micro-kernel is compromised, give way
for an attacker to control other (critical) resources in the system.

Issues: Even if the micro-kernel was to be replicated, since MMUs implement
virtual-to-physical address translation by traversing OS-managed page tables and given
that most systems today perform no further checks once resource accesses pass the
MMU, compromised replicas (i) installing valid translations or (ii) bitflips in page ta-
bles may, therefore, violate fault containment and cause faults in one kernel replica to
bring down other replicas. Replication of data structures or consequent application of
error-correcting codes (ECC) and memory scrubbing for non-replicated data structures
prevents the latter (ii), however, the first obstacle (i) remains, even if memory keeps its
value despite bitflips.

Exploitation examples: There are several ways page tables can be altered and/or
deviated from their purpose by corrupted management software: (a) accessing pages
without going through both the first- and second-level page tables can lead to a page
table being interpreted as a page, (b) mistaking second level page tables as first level
may lead a page to become a page table, and finally (c) page tables can be mapped as
writable pages. Figure 2.2 provides a visualization of the three issues just described.
An example of TLB exploitation via a privileged user is detailed in CVE-2019-19339
and a Linux vulnerability that allows access to a physical page after it has been released
back to the page allocator and reused is described in CVE-2018-18281. In fact, most
reported OS kernel vulnerabilities are due to improper memory management [SPWS13;
CDA14].

The need for protection of the means for privilege escalation and, therefore, resource
access thus emerges from their frailty. Gaining the means to manipulate address spaces

12

MMU

PT Base

RAM

{r, w}

{r, w}

Must not be mapped
writeable to any address

space.

Low level software can
change the content of

these pages at will{…, w}

Cannot mistake page for
page table

Cannot mistake 2nd

level as 1st level PT
(if format is

compatible, blue
page becomes PT

Cannot map page
table as writable

page

Figure 2.2: Installing malicious valid translations.

at will gives an adversary means to sway the systems to their own profit.

2.4 The Failure Risk of Low-Level Software
On the hardware side, existing mechanisms such as the MMU and MPU (memory pro-
tection unit) play an important role in providing memory protection, mainly to prevent
a process from accessing memory that has not been allocated to it. However, as we have
seen in previous sections, these are not enough for isolation.

On the software side, conventional OS designs equate control over resources with
the possibility of directly or indirectly obtaining access to them. For example, by ma-
nipulating page tables as mentioned above, an OS kernel can install virtual-to-physical
address mappings to any resource that resides in the platform’s memory map and, once
installed, it may access this resource through this very same mapping. Of course, one
can differentiate application and kernel-level access, confining the latter to a boot-time
fixed partition. Nonetheless, even restricting the system resources that are available to
the kernel, a compromised instance would still be able to indirectly access said resource
by mapping it to an application it controls.

Traditionally, the pattern to solve this issue has been to introduce an underlying soft-
ware layer to perform these resource management decisions on behalf of the virtualized
kernel. Examples include hypervisors (and micro-hypervisors), virtualizing guest OSs,
but also Intel SGX, preempting management OS access to enclave memory and ensur-
ing data is encrypted and signed before it is returned to this OS. Unfortunately, this layer
now becomes the single point of failure and target for attacks.

13

2.4.1 Is this a real risk?
It is, if the vulnerability rate of these low-level platforms is non-negligible. Recent
problems, whether in Intel’s CSME [EG17], Xen/Critix [Xen] or concerning Spec-
tre [Koc+18] and Meltdown [Lip+18], have been repeatedly reminding us of how brittle
the assumption of "tamperproof and unattackable low-level platform management as-
sets" is.

Numerous vulnerabilities have been reported in real-time operating systems’ (RTOSs)
source code, namely in IoT devices (e.g., CWE-119, CWE-120, CWE-126, CWE-134,
CWE-398, CWE-561, CWE-563) [ABWER21]. Vulnerability analysis of virtualized
environments and hypervisor security have shown the various ways these can be at-
tacked [BCP12; PE12; TS13; TN16; ZD20]. As previously mentioned, works such
as [Sca11] and [Iqb+16] have already discussed privilege escalation attacks in hyper-
visors for full compromise. Even micro-hypervisors are vulnerable to attacks. While
their assigned features are reduced which, consequently, means fewer lines of code and,
perhaps, reduced complexity for formal verification; this also means slimmer or min-
imal security features, making micro-hypervisors relatively easy to gain access to, as
remarked by [TS13].

Furthermore, the vulnerability analysis performed in [BCP12] supports the claim
that protecting one system node (e.g., in a network) is essential in preventing other
nodes from being tampered with. Attackers can exploit vulnerabilities in virtualization
environments to compromise one or more of its software processes, but also exploit a
defect in the relationship between two components. Exploiting a defective component
to establish a trusted path to a second component, it is possible to compromise the
availability of the latter by setting up a malicious alternate component with the same
internet protocol (IP) address setting the stage for a man-in-the-middle attack. Even
though attacks across a traditional network, in classical distributed systems, is out of the
scope and not the purpose of this thesis, this further endorses the need for the protection
of individual systems to protect themselves, but also other nodes, e.g., in a CPSoS.

Even formally verified software (e.g., kernels such as seL4 [Kle+09b]), although
mathematically proved to be "flawless", may fail due to model/reality discrepancies or
hardware faults violating modeling assumptions [BLH18b]. Namely, errors can still
be found in software checked by a theorem prover [FZWK17], in particular if the as-
sumptions they are based on are over-simplified. Additionally, the considerable effort
that goes into proving new or existing pieces of software questions practicality. For in-
stance, seL4’s kernel implementation, correctness proof and binary verification took a
total of 24.7 person years to complete.1

1Of course, the collaboration between fault tolerance and formal verification results in the best combi-
nation for the reliability of the system. What we argue here is that, aside from the practicality of verifying
even a small micro-kernel, formal verification alone may not be sufficient, namely due to possibly needed
simplifications and approximations.

14

It is a risk because, in essence, compromising low-level software can give attackers
(i) access to information; (ii) access to privilege management, resulting in the ability to
escalate its own privileges; (iii) ways to perform critical operations; (iv) access to other
components of the system or other systems; and (v) the ability to inject, modify and
execute code.

2.4.2 Being the risk real, are there no solutions yet?

The solution design space for contemporary hardware platforms’ (namely MPSoCs) de-
pendability and security has been unfolding in two directions: (i) application-specific
system-level replication (e.g., triple modular redundancy, mainly in CPSs, by means of
multiple ECUs), where the lack of flexibility limits the extension to general systems;
(ii) manycore-level replica management and consolidation, which then, if on bare MP-
SoCs, reintroduces the SPoF concern, now for the low-level replication management
component.

Moreover, solutions attempting to secure low-level software layers tend to rely on
a smaller, but still SPoF, underlying layer. Mitigation measures have been studied for
detection and containment of errors in operating systems and manycore-support soft-
ware [McC+10; SLQP07; Dö14; SYT16] through this underlying, assumed-trustworthy
layer. Minotaur introduces a toolkit to improve the analysis of software vulnerability
to hardware errors by leveraging concepts from software testing [Mah+19]. However,
these have a non-negligible complexity and, in consequence, even a residual fault or
vulnerability rate in these supposedly trusted components may breach the platform’s
dependability and security goal.

In fact, as confirmed by [HDL13], "simple" components with at least a few thou-
sand lines of code (KLOCs) have a non-negligible statistical fault footprint. Other stud-
ies [OW02; OWB04] reveal between 1–16 bugs per 1,000 lines of code go undetected
before deployment, even in well-tested software. Operating-system kernels form no
exception [PG05; Mat+14]. Recent insights [Pal+14] reveal that faults in stateful core
subsystems — on which we focus here — outrank driver bugs in severity.

Many approaches target operating systems with the goal of improving their re-
silience against faults. However, typically they protect applications [DS10; BCM13;
Kuv+16] or specific OS subsystems [Sun+10; SABL06; Zho+06; ES13] and only from
accidental faults. Efforts for providing whole-OS fault tolerance include [Her+06;
NB13; DCCC08; LAK09; Bha+16; GTHR99; Gen18]. Nevertheless, the complex-
ity of these recovery kernels is comparable to that of a small hypervisor. For exam-
ple, OSIRIS [Bha+16] directs OS recovery to a 29 KLOC reliable computing base
(RCB) [ED12], roughly twice the size of modern micro-kernels [Lie95; LWHH18;
Kle+09a; Asm+16]. Again, this makes the likelihood of residual faults or vulnerabilities
non-negligible.

15

Some systems based on capability-based addressing have hardware support for ca-
pabilities. CHERI [Woo+14] complements a page-based virtual memory protection
mechanism with conventional MMU-based architectures and hardware-supported de-
scriptions of capabilities. Here, capability addressing occurs before virtual-address
translation, such that each process is a self-contained virtual capability system. Since
CHERI adds capability protection on top of OS managed page-based protection, it in-
cludes the MMU and the OS in each application’s reliable computing base (RCB), that
is, the set of system components that are assumed trusted not to fail. As we have seen,
though, such an assumption is brittle given OSs proneness to vulnerabilities.

Several other works have given early steps in the direction of the solutions we shall
advocate for, minimizing the threat surface, or enforcing isolation. Nohype [SKLR11]
removes all but a small kernel substrate from application cores, which run functionality-
rich OSs in virtual machines (VMs), reducing the threat surface. However, this kernel
substrate forms a single point of failure. Cap [NW74] and M3 [Asm+16] exploit hard-
ware capability units, and Hive [Cha+95] and Stanford-Flash’s MAGIC a bus-level fire-
wall to isolate VMs at tile granularity. These approaches provide for capability unit/-
firewall reconfiguration through the kernel. However, although this avoids trusting local
kernel substrates for isolation, their configuration interface, which is necessary to retain
flexible resource sharing, turns the configuring kernel into a single point of failure. The
Loki architecture [ZKDK08] uses tagged memory to simplify security enforcement by
associating security policies with data in physical memory. However, the HiStar OS
(and its simplified version LoStar), using Loki, still relies on a security monitor, run-
ning underneath the kernel in a special processor privilege mode, to manage tags for
tagged memory and protection domains. REBOUND [Gan+21] does not mask faults,
but instead aims to return the system to correct behaviour within a bounded time, focus-
ing on recovery, thus allowing the system to go through periods of incorrect behaviour.
Additionally, it considers a synchronous system, which although suitable for the CPS
targeted, given real-time constraints, is sometimes put to the test as shall be discussed
in Section 3.4.

2.4.3 Summary

The realm of low-level software vulnerabilities and attack vectors has been studied and
the importance of strongly protecting these last lines of defense has been recognized.
Regrettably, although some solutions have been attempted for their safety and security,
none so far managed to eliminate the SPoF syndrome that plagues them, with solutions
constantly falling under the SPoF themselves. Their merit, however, is relevant and we
shall adopt some concepts, such as hardware capability units [NW74; Asm+16] and
replication to develop our solution.

16

2.5 MPSoC Safety and Security
Since MPSoCs are an emerging trend in the embedded and cyber-physical worlds and
given our interest in them for their increasing popularity as a platform in the systems
we target, it is of interest to discuss their specific safety and security issues already
documented in literature.

Research in MPSoCs has been done with special concern on the NoC, which has
received significant attention by adversaries due to its connectivity with various com-
ponents. A NoC can be considered an on-chip version a wide area network and was
initially proposed in [DT01; BDM02]. It provides a way of communicating between
components in the MPSoC, including features such as routing, flow control, switching,
arbitration and buffering.

In [CM21], a thorough survey of NoC attacks and countermeasure is provided.
There, it is discussed how a compromised NoC can corrupt data, degrade performance
and steal sensitive information; and the most common types of vulnerabilities are ana-
lyzed, such as information leakage, denial-of-service and data corruption. Specifically,
it analyzes five types of security attacks and, most importantly, their corresponding
countermeasures2: eavesdropping [ACR14; SZFS17; RP19; CM20b; CM20a], spoofing
and data integrity corruption [SK11; KRAT13; YF13; SZFS17; HMGP18], denial-of-
service [Was+13; JACR15; BDK16; Sep+18; CLM19], buffer overflow/memory extrac-
tion [LC10] and side channel attacks [KJJR11; WS12; Rei+16; IHRS19; Guo+19].

The usage of such countermeasures, or a subset combination of those, can help
both NoC manufacturers and embedded or CPS designers to better construct platforms
capable of resisting common attacks which, in turn, further supports the fault models
presented in Sections 4.2 and 5.2. For example, the solutions presented in this thesis
control access to memory, but assume access itself is implemented correctly.

Note, however, that a combination of all solutions may not be possible, feasible,
needed or even compatible.

2.6 Fault and Intrusion Tolerance
Given our interest in providing fault and intrusion tolerance at low level, we shall dis-
cuss well-known replication-based FIT techniques commonly researched in distributed
systems in this Section.

Fault tolerance, i.e., constructing a system in such a way that it retains the abil-
ity to sustain correct operation despite the presence of faults, has been used for years,
commonly in the form of dual (DMR) or triple modular redundancy (TMR) in CPSs
to replicate critical control tasks. Modular redundancy refers to the multiplication of

2The citations provided correspond to the countermeasures of each type.

17

system components, providing redundancy should one fail. These ’cloned’ components
usually work in parallel (often in lockstep) with the same state so as to make sure at
least one keeps operating and achieves the intended result. DMR provides robustness
to the failure of one component and error detection, it does not provide, however, error
correction, that is, which component is correct and which is malfunctioning (diagno-
sis and masking) cannot be automatically determined as there is no majority. TMR
can determine which of the replicated components is in error, given only one fault oc-
curs. Naturally, TMR allows at most one instance to be faulty and provides no isolation
among the components. It consists solely of a voting ’circuit’ that applies a majority
result, as exemplified back in Section 1.1.1.

CPSs replicate critical control tasks in DMR or TMR systems to ensure safety de-
spite accidental faults in an attempt to protect the cyber and physical assets the system is
entrusted with. An example of the use of TMR in highly critical systems can be seen in
the primary flight computers of Boeing 777’s fly-by-wire (FBW) system [Yeh98]. In a
similar context, a form of passive redundancy can also be seen in Airbus’ dependability-
oriented approach to FBW, where "hot spares" are used in case the active computer
interrupts its activity [TLS04]. The concept was extended to multi-phase tightly syn-
chronous message-passing protocols still in the CPS domain [Man86; KB03].

Unfortunately, standard replication through DMR or TMR is not sufficient to elim-
inate SPoFs as it does not provide any form of fault isolation. That is, for as much as
we replicate the components we consider to be SPoF, e.g., a micro-hypervisor, with-
out means of fault isolation to prevent propagation to other replicas, one compromised
replica can still bring the whole system under the control of an adversary. Thus, repli-
cated low-level software on its own is still a SPoF.

On the other hand, crash (CFT) and Byzantine fault tolerance (BFT) have been heav-
ily studied in distributed systems. Byzantine fault and intrusion tolerant state-machine
replication (BFT-SMR) is a generic technique for hardening systems to tolerate arbitrary
faults as well as making them highly available. The idea is to replicate a service across
several machines so that if one machine fails in any way (e.g., by crashing or being
compromised), then the service is still available through the other machines/replicas.
Replication techniques such as this one often rely on agreement protocols (commonly
called consensus protocols) to ensure that the different replicas are consistent with each
other and that one result is achieved for each agreement instance, i.e., for each request.

If we apply resilient BFT, covering not only accidental faults, but also malicious
attacks carried out by a perpetrator, at the low-level software tiers without relying on a
complex trusted underlying infrastructure and without applying costly mechanisms that
significantly slow down execution, then we can have fault-tolerant MPSoCs whose last
line of defense is no longer a SPoF and perpetually protects the system and ensures its
correct operation without jeopardizing execution times.

18

2.6.1 Byzantine Fault Tolerance

BFT-SMR carries the much stronger promise of automated and unattended resilience
while the system is under attack, even after classical intrusion detection and prevention
mechanisms have failed. In distributed systems, BFT-SMR has been shown to mask
the actions of a minority of compromised replicas behind a healthy majority operating
in consensus, with rejuvenation techniques maintaining this majority over extended pe-
riods of time. The so-called ’Paxos’ [Sch+14], and ’Byzantine’ [CL99] (BFT-SMR)
classes of protocols promote resilience to threats, accidental and both accidental and
malicious, respectively, extending the fault tolerance concept to generic classes of ap-
plications, namely in loosely-coupled distributed systems.

Building on Lamport’s Byzantine generals problem [LSP82], the seminal PBFT pro-
tocol [CL99] masks the actions of a minority of up to f compromised replicas, by
reaching a majority voted consensus of |Q| = 2f + 1 out of n = 3f + 1 replicas using
a baseline voting mechanism among the values proposed by a pre-defined number of
replicated and fault-independent components, thus achieving both safety and liveness.
While safety is always guaranteed despite an asynchronous environment, i.e., clients
eventually receive correct replies in accordance to linearizability to all their requests;
liveness, i.e., progress is eventuallly made, however, requires eventual bounds on mes-
sage delays, providing a way around the well-known FLP impossibility result [FLP85].

Given that PBFT operates in an asynchronous environments, i.e., where there are no
bounds on message delivery delays, the rationale for n >= 3f + 1 replicas comes from
the fact that f replicas can be faulty and not responding, and f may be correct but late,
and therefore f of those that responded may be faulty.

Byzantine dissemination quorums are, therefore, used [MR98], i.e., requests can
only be created by clients and these requests and every message passed among replicas
can be authenticated with the utilization of message authentication codes (MAC), the
keys of which are changed during recoveries to avoid impersonation if an attacker learns
the MAC keys. These quorums hold two fundamental properties: any two quorums have
at least one correct replica in common (intersection); and there is always one available
quorum (availability).

The algorithm’s aims is to reach consensus on the order of client operations to ex-
ecute. All correct replicas execute the same operations in the same order, i.e., they
are deterministic. For that purpose, PBFT uses quorum replication and primary-backup
mechanisms in a 3-phase protocol based on atomic multicast. The use of 3-phases (pre-
prepare, prepare and commit) allows for the establishment of the total order of requests.

BFT-SMR protocols such as PBFT can not only tolerate accidental faults, but also
targeted attacks, with other BFT protocols steming mostly from the seminal PBFT [CL99]
and from [CNV04], exhibiting a wide range of fault models with tolerance spanning
non-byzantine to byzantine faults.

19

2.6.1.1 Detailed Explanation on BFT

PBFT is considered the first practical BFT-SMR protocol and is the one of the baseline
reference protocols of the BFT-SMR research community. As such, we shall recap its
inner workings here, giving an overview of how BFT and consensus work in the realm
of distributed systems.

PBFT supports the assumption of asynchronous, unreliable networks where mes-
sages can be dropped, altered, delayed, duplicated, or delivered out of order; and tol-
erates independent network failures. Although one expects more synchrony from on-
chip networks, attacks on the timeliness of the system may exhibit in the small the
similar network properties than one finds in the large. Multiple works discuss NoC
performance degradation as a consequence of denial of service (DoS) attacks [FPS08;
FLHZ13; PKCC17; CLM19] and, although countermeasures for NoC DoS attacks ex-
ist, as enumerated in Section 2.5, other sources of asynchrony may arise, as shall be
presented in Section 3.4. Fault tolerance studies in asynchronous NoCs can be found
in [Zha16].

Each replica maintains the service state and implements the service operations.
Clients send requests to all replicas and await for f + 1, i.e., a majority of matching
replies from different replicas. Correct replicas are deterministic and execute the same
operations in the same order, thus maintaining an equal state. The 3f +1 replicas move
through a succession of configurations called views. In each view v, one replica (p = v

mod |R|) assumes the role of primary (or leader), while others are backups. The primary
coordinates consensus, picking the order in which client requests are executed. Every
view is marked by a change in the primary replica through a view change protocol,
changing every round (marked by a checkpoint creation) or triggered upon a timeout
or suspicion of malicious activity. A majority of honest nodes can then vote on the le-
gitimacy of the current primary and replace it with the next leader, ensuring liveness.
Spinning [VCBL09] mitigates performance attacks by changing the primary after every
batch of pending requests is accepted for execution.

During normal-case operation, i.e., when the primary is not suspected to be faulty
by a majority of replicas, clients send requests to be executed, triggering the execution
of a consensus protocol among the service replicas to reach agreement on whether to
execute the requests and in which order. Consensus consists on a 3-phase protocol based
on atomic multicast. The use of 3-phases (pre-prepare, prepare and commit) allows for
the establishment of the total order of requests both within the same view and across
views.

Request: To initiate agreement, a client c sends a request < REQUEST, o, t, c >�c

to the primary replica, being as well prepared to broadcast it to all replicas if replies are
late or the primary changes. This request specifies the operation to execute o and a
timestamp t that orders requests from the same client. Replicas will not re-execute
requests with a lower timestamp than the last one processed for this client.

20

Agreement: Then, during agreement, the protocol goes through the following phases:

• Pre-Prepare: The current view’s primary places pending requests in a total order
and initiates agreement by sending a < PRE � PREPARE, v, n,m >�p mes-
sage to all the other replicas, where m is the nth executed request. The strictly
monotonically increasing and contiguous sequence number n ensures preserva-
tion of this order despite message reordering.

• Prepare: Backup replica i acknowledges the receipt of a pre-prepare message by
sending the digest d of the client’s request in < PREPARE, v, n, d, i >�i to all
replicas, including the primary.

• Commit: Replica i acknowledges the reception of 2f prepare messages matching
a valid pre-prepare by broadcasting < COMMIT, v, n, d, i >�i .

Execution and Reply: Replicas execute client operations after receiving 2f + 1
matching commits, and after having executed all operations with lower sequence num-
bers. Once a replica i has executed the operation requested by client c, it then sends
< REPLY, v, t, c, i, r >�i to c, where r is the result of applying the requested opera-
tion to the server’s state. Client c accepts r if it receives f + 1 matching replies from
distinct replicas.

In order to ensure client and replica authenticity and message integrity, signatures of
the form < m >�i are applied. A replica accepts a message m only if: (1) m’s signature
is correct, (2) m’s view number matches the current view and (3) the sequence number
of m is in the water mark interval. PBFT makes use of checkpoints and water marks to
limit the size of all message logs and to prevent replicas from exhausting the sequence
number space.

2.6.1.2 Safety and Liveness Properties

Safety: A BFT system must return correct results to client requests as long as at most f
replicas are faulty. This essentially means the system must ensure safety. In order to be-
have like a centralized service, i.e., for it to appear as a whole (although replicated) and
not as separate entities, the state of non-faulty replicas needs to be kept consistent. For
a system relying on active replication, this means that a client request that is executed
on one correct replica must also be processed on other correct replicas, and that correct
replicas must handle client requests in the same order, as mentioned above.

Liveness: Liveness refers to clients eventually receiving replies to their requests,
provided at most f replicas are faulty. As proven by [FLP85], consensus in a fully
asynchronous system is impossible if one or more nodes may crash. In consequence, a
BFT system can only ensure liveness in a partially synchronous environment [DLS88],
meaning that there are upper bounds on communication and processing delays. How-
ever, these bounds do not have to be known by the system. A message exchanged

21

between two correct replicas over an unreliable network will eventually arrive at the re-
ceiver, even if after several retransmissions [Yin+03]. In sum, the system must be able
to make progress at some point in time.

2.6.2 Differentiated Fault Models
With the transition from single-core to multi- and many-core systems, sufficiently many
resources became available to sustain in a single node the replication degree required
for these protocols. For example, homogeneous BFT-SMR protocols, such as PBFT,
require n = 3f + 1 replicas to mask the behavior of up to f compromised replicas
behind healthy majorities, operating in consensus. Even some small embedded systems
offer 4–8 cores, supporting fault thresholds of f = 1 or f = 2.

However, the BFT protocols mentioned above are expensive in relation to the num-
ber messages exchanged, the required number of replicas (3f +1) and the task of ensur-
ing these are diverse enough to enforce failure independence. Even with enough space
for such n, for higher values of f , scalability is largely impacted in respect to overhead,
area usage and safety, respectively.

2.6.2.1 Architectural Hybridization

Architectural hybridization [CNV04; Ver06; CNV12], i.e., the inclusion of trusted-
trustworthy components, which follow distinct fault models, allows reducing n to n =
2f + 1 [Ver+13]. The base untrusted system, subject to faults, is extended with a sim-
ple component, on which a higher amount of trust is placed. This component is often
distributed and the only one assumed to be tamperproof in the system. The trusted com-
ponent executes a simple repertoire of functions, similarly to a trusted platform module
(TPM) [ACG15].

Several trusted-trustworthy components have been proposed for the realm of dis-
tributed systems. MinBFT’s USIG [Ver+13] and CheapBFT’s CASH [Kap+12] offer
trusted counters, whereas A2M [CSK07] and TrInc [LDLM09] offer a trusted log or
hash of it. The data they provide and the entailed semantics (e.g., no two messages with
the same counter) can be trusted by receiving replicas if they can validate the signa-
ture or keyed hashes with which these tokens are protected. As we shall see, however,
cryptography is quite costly for tightly-coupled systems and, as such, should ideally be
avoided for our goal.

2.6.2.2 Optimistic Protocols

Optimistic protocols [Dis+11; Kap+12; DCK15] operate through error-free phases with
only n � f active replicas. In case errors are detected, a switch protocol activates the
remaining f replicas (e.g., by involving crash-only hypervisors [Dis+11]) and transfers

22

the state passive replicas require to catch up to the progress of the active subset. In our
work, we shall significantly simplify such switch protocols, namely for late replicas to
catch up, without requiring hypervisor or other kernel support.

2.6.3 BFT Over Shared-Memory
BFT protocols have also considered the use of shared memory, an interesting idea to
look at considering our goal of on-chip solutions. Fault-tolerant shared memory objects
were studied in [MMRT03], built from sticky bits, to coordinate distributed processes
in a Byzantine environment where the object state may become corrupted. Given that
processes can overwrite gibberish data, classical objects such as read/write or read-
modify-write registers that are writable by all processes are useless in a Byzantine en-
vironment. Access control lists, persistent objects, bounds on the numbers of faulty
processes and redundancy can be used to overcome this drawback. An improvement
over this work was presented in [Alo+05], reducing the number of replicas required
from n � (2f + 1)(f + 1) to n � 3f + 1. Another solution applies access control lists
to constrain which operations Byzantine processes may invoke on the policy-enforced
objects they share [Att02], an approach which [BCSFL09; LLOR14] refined to more
fine-grain security policies. None of the above can, however, be applied to our tar-
get environment, given [MMRT03] and [Alo+05] concern only the Byzantine nature of
data, but not of processes; and [Att02], [BCSFL09] and [LLOR14] cannot survive the
presence of faulty low-level software, only application-level faults.

In [AMT93] a model was introduced for benign failures in distributed shared mem-
ory and [ACKM06] introduced Byzantine Disk Paxos, an asynchronous memory con-
sensus protocol targeted for distributed systems where nodes connect to n > 3f disks.
In Byzantine Disk Paxos, up to f memory objects may respond arbitrarily to accesses,
but accessing processes are assumed to exhibit only crash faults. Our goal is approx-
imately the reverse: processes (and their local memories) may fail arbitrarily, but the
values produced by them must keep on being available. The memory content itself can
be protected with ECCs or similar mechanisms.

2.6.4 Tightly-Coupled Systems
BFT protocols have been used in tightly-coupled systems before. For example, in [BS95]
replica coordination support was incorporated into a hypervisor for the first time; the
crash fault-tolerant Paxos [Lam98] was implemented as a Linux kernel module in Ker-
nel Paxos [ECP18]; replication support in micro-kernel-based systems was introduced
in [Dö14]; and in [DGY14] Barrelfish’s two-phase-commit protocol [Bau+09] is re-
placed with non-blocking consensus to tolerate up to f = 1 crash faults. With n =
2f + 1 replicas, our solutions can tolerate up to f arbitrary faults without requiring a
trusted kernel, but while still providing fault isolation among replicas.

23

In [Agu+20] RDMA is leveraged in the crash fault-tolerant system Mu to bring
SMR performance down to microsecond scale, also for BFT [Agu+19]. Mu relies on
changing RDMA write permissions to allow the leader to directly write into follower
logs. In a manycore context, however, such permission changes would have to involve
the OS to, e.g., manipulate page tables, and could induce significant costs, e.g., through
translation lookaside buffer (TLB) flushes.

2.6.5 Resilience
Contrary to what may seem at first sight though, fault-tolerant systems in practice are
not able to tolerate an infinite number of faults. For continuous long-running services,
the upper bound f poses a problem as the number of faulty replicas is likely to eventu-
ally grow beyond any practical maximum number of faults to tolerate. PBFT, as well as
other similar protocols, achieve safety and liveness provided fewer than a threshold, f ,
of nodes are faulty throughout the lifetime of the system, with n >= 3f + 1 replicas.
However, for continuous unattended support, the ability to sustain tolerance is con-
quered by means of proactive recovery, i.e., periodically returning replicas to a correct
state even if they are not suspected of being faulty. To remain resilient despite persistent
attacks, replicas should, however, be rejuvenated proactively and reactively [SNV06;
Sou+10], and faster than an adversary can compromise more than f replicas. To ensure
the latter, diversification [CMS08; RS10; Gar+11; LHBF14; Gar+14; GBN19] cancels
adversarial knowledge on how previously analyzed replicas can be compromised. It
was concluded in [SNV06] that 2k additional replicas are required to prevent exhaus-
tion failure if up to k replicas are rejuvenated simultaneously. This holds a significant
improvement over previous solutions, which tolerated f faults during the whole lifetime
of the system.

2.6.6 Conclusion
We must break new grounds and open promising avenues in the applicability and re-
silience of manycore architectures. For that end, the use of Byzantine fault tolerance
together with other sets of mechanisms such as voting, the aforementioned capability
registers, and concepts of our own design (which we shall introduce in the next chapter),
can help us finally secure systems’ last line of defense. Bridging the gap from MPSoCs
to distributed MPSoCs (D-MPSoCs) shall give rise to new lines of reasoning, allowing
us to see that MPSoCs are, after all, on-chip distributed systems, which, given the proper
interplay among the mechanisms enumerated above, can be made secure.

24

Chapter 3

From MPSoCs to D-MPSoCs

Provided the problem discussion and a background on classical fault tolerance tech-
niques, we now turn to bridging the gap between classical distributed systems and MP-
SoCs, analyzing how exactly components can take the role of nodes, how distributed
protocols can be implemented at low level and how the necessary precondition — fault
containment — can be achieved by means of proper isolation mechanisms.

3.1 Gap Analysis
So, what are we missing exactly to transform an MPSoC into a distributed MPSoC
(D-MPSoC)? Acknowledging that a manycore can behave as a (closely-coupled) dis-
tributed system, allows us to design a set of efficient and low-overhead distributed
systems-inspired modular protection and redundancy management mechanisms, e.g.,
in the fashion of BFT-SMR, for fault and intrusion tolerance.

MPSoCs consolidate in a single chip computing resources that used to reside on
multiple chips, with plenty of resources are available for processing with high intercon-
nectivity among them. Shared memory is also becoming increasingly popular in such
environments, as evidenced by the AURIX architecture [Tec19] for autonomous driv-
ing, turning data sharing among resources easier. Tiles [Wai+97] are placeholders and
instantiation points for resources, typically instantiated with cores and private caches,
or with slices of shared caches and connected through the NoC with each other and with
memory controllers (to reach out to RAM/IO). It is possible as well to cast accelerators,
GPUs and FPGAs into the tile abstraction. Figure 3.1 shows an abstract view of an
MPSoC with several tiles interconnected by a NoC and their possible contents.

The modularity and networked interconnection of tiles already suggests attributes of
a distributed system and has inspired first steps to hardware-enforced fault containment
at tile level, as pioneered by Hive [Cha+95] and M3 [Asm+16]. Moreover, tiles favour
functional and non-functional diversity since they can host cores from several makers

25

tiletile Core

L1 / I L1 / D

L2

tile

tile tile tile

MMU

NoC

…

…

…

……

Figure 3.1: MPSoC tiles abstraction, showcasing the possible contents of tiles and how
they interconnect.

and can have distinct internal structures (e.g., a different set of components, as long as
their ability to host a low-level software replica remains). This improves fault inde-
pendence through the implied low likelihood of experiencing the same fault in different
tiles. Similarly, different versions of the same code can be used at distinct tiles to fulfil
the same goal [AC+77; KL86; JA88]. This already provides us the bare bones of a fault
tolerant distributed MPSoC: tiles that can host replicas of the low-level software (redun-
dancy), a network interconnecting them and some form of fault isolation (although, for
now, incomplete).

As explained in Chapter 2, the issue with Hive and M3, though, is that, although
they avoid trusting tile-local kernel substrates for isolation, their configuration interface,
which is necessary to retain flexible resource sharing, turns the configuring kernel into a
single point of failure. In other words, privilege and access control configuration is still
a SPoF, as, say, a hypervisor or micro-kernel replica, operating in one of the tiles, could
still reconfigure these at will.

A naive first approach would, then, be to replicate the low-level software we are
aiming to protect, e.g., a micro-hypervisor, across different tiles and rely on diversity to
justify a fault threshold for compromised replicas. These replicas would then vote on
the operations to perform, just like in the aforementioned BFT protocols, and maintain
a cohesive, virtually centralized state, as if only one micro-hypervisor instance existed.
Unfortunately, even with the replication of low-level software across tiles and the iso-
lation mechanisms provided in Hive and M3, fault containment remains imperfect: po-
tentially faulty or compromised low-level kernels retain control over platform privilege
configuration mechanisms and, thus, form a single-point of failure. Consequently, we
require simple mechanisms capable of holding the trusted-trustworthy property, that,
ideally, run no code and that can guarantee the number one concern in MPSoC fault
tolerance: isolation, consensual platform reconfiguration and consensual access to re-

26

sources. These mechanisms should have a close-to-zero probability of failing and be
easily verifiable. Such mechanisms need as well to be replicated, with one provided to
each replica much like the USIG in MinBFT.

The modular nature of this solution is crucial not only for its applicability at any
layer of the software stack, but also, and most specially, to give latitude to apply an
incremental level of protection as desired and as called for given the system’s criticality,
thus preserving flexibility. We need, then, to investigate novel solutions for the con-
struction of highly-efficient BFT-SMR protocols for tightly-coupled systems, that have
performance in the order of micro or nanoseconds to match chip-level latency numbers.

3.1.1 Consensual Updates

Platform reconfiguration (e.g., privilege management or resource allocation) and access
to critical resources, including devices, is but reading and writing regions of memory.
Privilege information and access policies are stored in some memory addresses that
should be protected. It is imperative that updates to these sorts of data structures are
done consensually1 by a trusted-trustworthy mechanism.

Traditionally, locks protect data structures accessed by multiple threads (or repli-
cas) from possible inconsistencies caused by simultaneous updates. Threads are often
required to acquire one or more locks to ensure certain operations are executed in a
mutually exclusive manner, i.e., in absence of concurrent writes. However, locks do not
prevent a faulty replica from corrupting the data being accessed and, most importantly,
would not be the correct means with which to protect data as replicas should not access
it directly in the first place. As long as a lock is attained, the replica is free to update
it at will, and faulty replicas accessing the data could modify it in ways that would not
only corrupt it, but also enable privilege escalation, as explained. Not to mention faulty
replicas could potentially hold locks indefinitely. In order to protect individual replicas
and the system as a whole, shared data must, therefore, be protected from such faulty
replicas.

Devising a mechanism capable of performing consensual updates would provide the
guarantee that, even if the lowest system layer is compromised, integrity properties are
kept for critical data. Consensual updates refer, thus, to voted/agreed-upon updates on
shared data, by essentially providing fast enough means of executing on-chip consensus
among replicas. From BFT and the notion of majority quorums, voting shall be used to
achieve consensus on the critical operations to perform, ensuring a majority of correct
replicas agree to their execution.

1Consensually means agreed-upon by a majority of replicas.

27

3.1.2 Equivocation
Sadly, a key factor of BFT, authentication, becomes problematic in the context of MP-
SoCs. All practical BFT protocols rely on the presence of authentication and, thus, cyrp-
tographic operations in order to ensure replicas do not impersonate others or lie about
their votes. PBFT, for instance, relies on digital signatures, requiring that requests and
every message passed among replicas are authenticated with the utilization of message
authentication codes (MAC), the keys of which are changed during recovery to avoid
impersonation if an attacker learns the MAC keys. In MinBFT, the trusted-trustworthy
device USIG is in charge of signatures and provides two simple operations create
UI and verify UI. Every message generated by a USIG is tagged with a certificate
called UI (unique identifier), containing an ID (the replica’s unique identifier), a mono-
tonically increasing counter value and a signed hash of the message; and serves the
purpose of uniquely identifying messages. These generated signatures are then verified
in other replicas’ USIGs.

3.1.2.1 Consensus Without Cryptography

In on-chip environments, however, cryptographic costs, although perfectly acceptable
in the context of distributed systems, given their fair performance ratio considering eth-
ernet message passing costs, would not be suitable, since local transfer operations and
cross-tile NoC bus costs are in the microsecond to nanosecond domains. Table 3.1
compares these costs for 256 byte and 4KB transfers2 and HMAC signature generation
and verification, a cryptographic operation that, as mentioned, is found at the heart of
many BFT-SMR protocols. As it can be seen, HMAC signatures are one order of mag-
nitude more costly than cache-to-cache transfers or tightly-coupled memory accesses
(e.g., memcpy), even if the read data is compared to a local copy (memcmp). As an
additional comparison, we also measured the network latency across two machines in
the same network.

Close-to-native communication latencies, therefore, require abandoning cryptog-
raphy and, with this, transferable authentication. Consensus without transferable au-
thentication was first investigated by Lamport et al. in the oral messages (OM) proto-
col [LSP82]. They identified an impossibility to diagnose errors and hence recover from
situations where replicas continue to lie inconsistently to others (i.e., equivocate) in pro-
tocols where messages lack authenticators while replicas remain in control of delivered
information. In essence, replicas lose the ability to prove the origin of messages once
this message leaves the originator’s state. There is, thus, the following property.

Non-repudiation: Without cryptographic primitives, state loses its authenticity once
it leaves the original writer’s memory, e.g., by being copied.

2256 byte sizes correspond to the size of a cache line pair on the x86 architecture and 4KB is the
typical ethernet packet size. Additionally, most system calls have parameters with less than 256 bytes.

28

operation 256 bytes 4096 bytes
ethernet 153.2 µs (337130 c) 323.9 µs (712698 c)
hmac-sig 1.9 µs (4179 c) 5.2 µs (11362 c)
hmac-ver 1.9 µs (4348 c) 5.2 µs (11492 c)
memcpy 0.1 µs (246 c) 1.1 µs (2331 c)
memcmp 0.4 µs (822 c) 4.9 µs (10680 c)

Table 3.1: Network latency of 256 byte and 4096 byte transfers in relation to local trans-
fers (memcpy/memcmp using x86’ rep; movsq rep; cmpsq instructions) and to
the costs of 256-sha HMAC computation and verification. Measurements are shown in
microseconds (µs) and processor cycles (c) of an AMD Ryzen 7 3700X 8-Core CPU (2
threads per core) running at 2.2GHz.

To solve this problem we must rely on architectural hybridization and the introduc-
tion of trusted-trustworthy mechanisms, as we shall later discuss in Chapters 4 and 5.

3.1.2.2 Impossibility to Diagnose Faults

Banning cryptographic operations due to their costs leads to an impossibility to diag-
nose faults as long as replicas remain entitled to change the regions of memory where
they write the proposals of their votes. Remember that, in classical distributed pro-
tocols, replicas send messages to each other through an ethernet connection. Taking
the example of PBFT, once a replica receives a Pre-Prepare, Prepare or Commit mes-
sage from another with a certain sequence number, it will ignore further messages from
the same replica with the same sequence number, forbidding the sending replica from
"changing its mind" about the request being voted upon. Inside an MPSoC, however,
data must be written in memory, in such a way that replicas can read the votes of others.
As such, one must be cautious about an important detail: the time at which a replica
reads the memory where the proposals are stored. Additionally, in order to obtain a per-
formance as optimal as possible, reaping benefit of the tight coupling of replicas, one
must minimize reads and writes, meaning replicas should be able to just read a memory
region whenever they desire, without having to request that information and wait for it
to arrive.

Let us assume we have three replicas A, B and C. Replica A is faulty, while the other
two are correct. A, being the leader, proposes a request m to be executed next (Pre-
Prepare). B reads m and, thus, proposes the same (Prepare). Then, before C has the
change to read A’s vote, A changes m to m

0. C reads m0 and proposes that. When cross
checking (Prepare), B and C will notice their requests differ. Who is faulty, then? B
cannot tell whether it is A or C, and C cannot tell if it is A or B. More precisely, replicas
can rely on the authenticity of the information they directly observe from the original

29

writer (sender), since only a single writer must have access to their own state, but not
on information that replicas relay in their state (after having received this information
from other replicas).

Specifically, the impossibility applies because faulty replicas may change the in-
formation stored in memory before, while or after it is read and, without synchronizing
writes with reading operations, they may do so to deliver some information to one group
of replicas, while conveying different information to others. It is, therefore, impossible
to distinguish a scenario where the sender of a message falsely sends (i.e., writes) some
information from one where the receiver (i.e., reader) modifies it.

As such, we must circumvent the above impossibility by not relying on fault diag-
nosis for reaching agreement.

3.2 D-MPSoC Fault Tolerance Requirements
Replication: Replication is the first step towards a SPoF-free system. As the name in-
dicates, the multiplication of the low-level software into redundant instances maintains
the availability of data despite failures (up until the threshold f). In order to guar-
antee proper isolation, replication needs to happen across tiles, meaning the low-level
software replicas must be running on distinct tiles each. Replicas can, however, run
alongside other pieces of software, such as applications, in the same tile or even in the
same core. Since the tile is the fault containment domain, whatever happens inside its
boundaries is irrelevant and does not affect other replicas or system components.

Furthermore, replicas must run the same commands in the same order and start from
the same initial state, as in classical BFT protocols. Nevertheless, it is not required for
them to operate in lockstep. The latter refers to running the same set of operations at
the same time in parallel. However, we allow replicas to be late and then catch up. This
shall be further discussed in Chapters 4 and 5.

Finally, replication must be applied only to low-level software and to the trusted-
trustworthy components we shall introduce. Replication of every system component is
not needed and would, in fact, result in already used costly and inefficient techniques
that use the replication of the whole system for fault tolerance.

Consensus and Voting: So that replicas can agree on what operations to perform,
some form of consensus protocol must be implemented and, as such, a voting mecha-
nism.

Isolation: Consensus is, however, not enough. In order to enforce fault isolation,
nodes, i.e., tiles, require (i) privilege enforcement mechanisms to be reconfigurable only
through voting, thus ensuring a majority of correct replicas agree to granting different
privileges; (ii) some form of access control so that replicas are locked out of certain
resources unless it is otherwise consensually agreed upon; and, naturally, (iii) trusted
means for the replicas to perform voting. This shall be further discussed in Chapters 4

30

and 5.
Consensual Critical Updates: Performing updates only if a majority of healthy

replicas agree to their execution is the core of fault tolerance. This is especially impor-
tant for critical operations, be it in application execution or in platform reconfiguration.
No low-level software replica shall conduct critical changes by itself, thus preventing
the minority of compromised replicas, if any, from single-handedly changing its privi-
leges or obtaining access to critical resources. Consensual privilege reconfiguration is
one of the main contributions of this thesis. This shall be further discussed in Chapters 4
and 5.

Persistent Consensus: Consensus must be, to some extent, persistent. Otherwise,
the information concerning agreed upon requests would only be available to the agreeing
quorum of f + 1 replicas and, if faulty replicas are participating, but refuse to execute
the request later on, too few correct replicas would have obtained this knowledge to
complete said request. Storing agreed upon system calls in a form of log allows lagging
replicas to catch up with the requests they missed. This shall be further discussed in
Chapters 4 and 5.

Performance and Shared Memory Communication: Given the tightly-coupled
nature of an MPSoC, communication must be carried by the proper means. Performance
must be in the microsecond to nanosecond mark. As we saw in Section 3.1.2, this means
cutting off the cryptographic costs present in most BFT protocols. It also means message
exchange and overhead must be cut to a minimum. To this end, replicas should be able
to read the information they require without having to request it, be it agreement data
from other replicas, the log of executed operations or error records. Hence, the choice
of (protected) shared memory is the most fitting.

Equivocation Prevention: With the lack of transferable authentication, usually pro-
vided by cryptography, replicas must still not be able to lie to each other by changing
their votes at strategic points in time. Instead, other trusted-trustworthy means of pro-
tection must be in place. This shall be further discussed in Chapters 4 and 5.

Trusted-Trustworthy Mechanisms: Each node must leverage a trusted-trustworthy
component capable of performing the tasks described above: voting, access control and
isolation. Meaning, these components must not fall into the SPoF syndrome, being as
simple as possible and running no code. The location and nature of these mechanisms
will determine performance, hardware integration and the solution’s reliable computing
base (RCB). This shall be further discussed in Chapters 4 and 5.

3.2.1 Nature of the Presented Solutions
The possible solutions for the problems presented in this thesis are then distinguishable
in a number of ways, particularly in terms of how they deal with:

• The type of trusted-trustworthy mechanisms used (see Sections 6.2 and 5.7.7);

31

• Where to locate the memory that is going to hold the consensus values, which
shall not be modified at will by the replicas to prevent equivocation (see Sec-
tion 6.2);

• How to make sure lagging replicas, i.e., correct replicas that are late, are able to
easily and efficiently catch up and how to ensure they get the correct, latest state
(see Chapters 4 and 5). This is related to the previous item;

• Simplicity and optimization (see Sections 6.1 and 6.2).

3.3 Solutions
In this thesis, we present two distinct fully-fledged solutions for the problems defined in
Chapter 1, while incorporating the requirements enumerated in Section 3.2: Midir and
iBFT . These solutions differ in the ways described in Section 3.2.1 and have different
advantages and trade-offs. In order to provide a more comprehensive view of both,
we shall dedicate Chapters 4 to 7 to the several aspects of D-MPSoC construction and
analyze how these solutions contribute differently to that goal.

3.4 System Model
Target platforms: As described when discussing the motivation for this thesis, tightly-
coupled systems are the target of the solutions presented here. We refer to systems
where resources are, generally speaking, closed together and highly interconnected, thus
also making them quite dependent on each other. Such is the case of most embedded
and cyber-physical systems. Namely, we consider tiled manycore systems, integrated
entirely on chip, such as MPSoCs.

Network-on-chip: In our system model, we assume thus a fully connected tiled
system, where on-chip network components offer the abstraction of a correct network,
interconnecting all tiles to one another. Messages sent are eventually delivered, un-
changed, to the destination, but possibly only after several retries. This is fair as network
coding [OAHY08], multi-tenant [CMDTM] and adaptive routing techniques [Yan+16]
increase the coverage of this assumption. We leave, however, coverage of network at-
tacks and their mitigation for future work.

Diversity: We shall further assume tiles are instantiated with heterogeneous pro-
cessing elements and will hence exhibit a certain level of fault independence through
the implied low likelihood of experiencing the same fault in different tiles, i.e., fault
independence through diversity.

Tile-internal functionality: Note that, emulating the spacial isolation of distributed
system nodes, we are agnostic about the semantics and interplay of tile-internal and/or

32

core-level components, e.g., MMUs and their virtualization, copy-on-write, memory
protection or recovery functionalities.

Chip-wide failures: Conventional multi- and manycore designs retain the possibil-
ity of common mode failures in central hardware components (e.g., the clock or power
distribution network), which must be addressed differently. Resilient clocks [SS10] mit-
igate some of these common-mode faults and the recent trend towards interconnected
chiplets further improves the physical decoupling of tiles. Once the physical (hardware)
effects of a fault are retained to the causing tile and the signals it exhibits to the system,
any remaining faults can be contained through trustworthy tile-level privilege enforce-
ment (as we shall latter describe in Section 4.3 for Midir and Sections 5.4 and 5.7.7 for
iBFT).

Synchrony: In the time domain, although manycores might seem the perfect ex-
ample of a (closely-coupled) synchronous (distributed) system, reality is a bit different,
there are several possibilities for instability. For example, (i) excessive resource use
raises the temperature and causes thermal managers to throttle the speed of tiles near
this hot spot; (ii) interfering access patterns reduce memory bandwidth by evicting cache
lines from shared caches; and (iii) NoC-level bursts may cause noticeable and, with un-
fair arbitration, unbounded message delays. Faulty behavior (accidental or malicious)
might further worsen these negative time-domain effects. A strict synchronous model
would not reflect reality and thus be proved brittle. In fact, as mentioned in [FS12],
modern VLSI (Very Large Scale Integrated) chips can no longer be viewed as mono-
lithic blocks of synchronous hardware given today’s deep submicron technology with
clock speeds in the GHz levels, with wiring delays dominating transistor switching de-
lays, and electrical signals not being able to traverse the whole chip within a single clock
cycle any more. We, instead, rely on a partially-synchronous model [DLS88] and pre-
pare for possible delays (notably by using buffering). Two particularities exist in these
closely-coupled environments, in contrast to large-scale distributed systems, which play
in our favor: (i) barring delay variations, liveness is normally guaranteed; and (ii) the
infrastructure is plastic in terms of timeliness trade-offs. Therefore, as in most contem-
porary BFT approaches, we consider asynchrony for safety and partial synchrony for
liveness. The structure of our protocols is time-free, and as such they remain safe in the
presence of delay oscillations, provided that the fault assumptions hold (no more than
f tiles get compromised). Then, the protocols inherit whatever synchrony they achieve
from the timeliness of the infrastructure they are immersed in: the manycore works with
high performance, in execution and communication, exhibiting short and bounded de-
lays during long enough periods of time, but can exhibit significant variations in these
bounds. These are fair expectations, considering the nature of these systems.

RCB: Finally, note that Midir and iBFT represent different possible configurations
with different implications on the RCB, which we shall discuss in the following Chap-
ters, namely in Section 6.1.

33

Chapter 4

Midir

Our first solution to the issues presented thus far is Midir.
Midir is an architecture that constrains the connection of all tiles to the network-

on-chip (NoC) through simple and self-contained hardware-based trusted-trustworthy
components, which we call T2-H2. Exploring the concept of architectural hybridiza-
tion [Ver06], we consider those components to be ultra-reliable and to not fail arbitrarily
(they may crash, deeming the associated replica faulty), while being agnostic about the
reliability of individual tiles and their contents, which may be compromised or fail. The
assumption is justified by the simplicity of T2-H2, which, in turn, promotes verifiability.
The T2-H2s implement the functionality required for fault independence, containment
and tolerance mechanisms described in Section 3.2, and ensure platform reconfiguration
is done safely, that is, changes in access control, resource allocation and other critical
operations cannot be performed unless the right conditions are met within T2-H2. In
consequence, tile-internal software or hardware faults are contained in the tile and the
objects the tile can access as specified by the trusted component’s permissions.

tiletile Core

L1 / I L1 / D

L2

tile

tile tile tile

MMU

Figure 4.1: Isolation of tiles by means of a trusted component, the T2-H2, placed at the
tile-to-NoC interface.

34

Figure 4.1 shows T2-H2’s location between the tile and the NoC interconnect, which
not only provides a clear pathway for integration by chip manufacturers and integra-
tors, but also allows drawing from many well-understood building blocks (e.g., region
protection, capabilities [NW74], and other chip-level resource management mecha-
nisms [ARJS07], capable of isolating tiles and the resources they can access).

The novelty of Midir lies in T2-H2’s placement to avoid SPoFs, even while they are
reconfigured. These units contain hardware-only logic containing capability registers
for access control and voters for voting on critical operations, namely the reconfigura-
tion of the privileges held in the former.

Low-level software replicas running on the tiles then make use of T2-H2 to access
resources, directly (provided the necessary permissions in the capability registers) or
through voting, and to vote on critical operations.

Furthermore, the baseline mechanisms for protection and redundancy management
provided by T2-H2 can be extended and recursively applied at any software layer, giv-
ing the designer ample latitude for crafting resilience into systems, both "horizontally"
(incremental power of defense mechanisms) and "vertically" (depth of defense).

4.1 The Midir Architecture
In essence, Midir is an architectural concept based on augmenting manycore systems
in a minimally intrusive way through strategically placed, simple and self-contained
trusted-trustworthy components (T2-H2). In fact, T2-H2 provides just two generic base-
line functions staged in hardware at the tile-to-NoC interface: access control (capability
registers) and quorum-based consensus (voters).

Figure 4.2 depicts one possible layout, of a stereotypical hypervisor-based system,
where the hypervisor is replicated for fault/intrusion tolerance, serving virtualized op-
erating systems and applications: hypervisor replicas are distributed across tiles, so that
each replica executes on a different tile, separate from applications (although the latter
condition does not necessarily need to apply); tiles and software therein interface with
each other through the NoC; and T2-H2 are the "blue dots" performing that interconnec-
tion. The hypervisor represents an use-case example for Midir, however, other sorts of
low-level software could be used. Note that replication is only required for the low-level
software, which occupy the pre-existing tiles and are equipped with a T2-H2 each.

As long as the execution in a tile remains within the resources associated to this
tile (local caches, memories, accelerators, etc.) no overhead occurs, since T2-H2 is not
involved in authorizing or denying these accesses. In fact, we remind that it is not the
purpose of Midir to provide fault containment between software components co-located
on the same tile, as isolation is done across tiles, deeming tiles the fault containment
domain. This resembles the internal behavior of nodes in a distributed system, where
nodes are the unit of fault containment.

35

h1 h2

h3

app appapp
IO

Memory
Controler

RAM

Shared Cache

Figure 4.2: Overview of the Midir architecture: a multi-/manycore system augmented
with T2-H2 hardware capability units (blue dots) at the NoC interface.

Once software components are spread across tiles, they interact through external op-
erations (e.g., via a resource in another tile, via shared on-chip memories or via external
memory or I/O). In this case, T2-H2 interposes such accesses and validates that each of
them has sufficient privileges. Consequently, hardware faults inside a tile or accidental
or malicious faults in any part of the software it executes are limited in propagation to
the objects authorized by these capabilities, which are only modified consensually, as
we shall explain later on.

Midir’s concept of controlling the tiles’ lowest-level privilege enforcement mecha-
nism is agnostic to the mechanism used. However, the simpler such a mechanism and
the closer it can be implemented to the tile’s NoC interconnect, the more architecture-
level faults Midir will be able to tolerate.

4.2 Fault Model
Midir’s fault model considers software-level compromise at all levels, including in the
hypervisor, in the firmware, and, more generally, in any critical software component.
This assumption is consistent with our aim of tolerating an incremental level of threat,
up to advanced and persistent threats, such as sophisticated attacks mounted by highly
skilled and well-equipped adversaries, on tiled manycore systems, often deployed en-
tirely on-chip. Moreover, we consider a limited set of hardware-level faults and attacks:
precisely those whose physical effects are confined to a tile (e.g., trapdoors in a core,
but no hardware faults that cause a chip-wide collapse).

We strive to establish the tile as a unit of component failure. There is no guaranteed

36

fault containment inside tiles. That is, adversaries (or accidents) will be capable of
compromising the whole software in any tile (e.g., but not only, a hypervisor replica).
Once that happens, we no longer make any assumptions about the correctness of any
software in that tile, until it is recovered (see Chapter 7). However, we also consider
that tiles themselves are fault containment domains.

The system is composed by a set of n low-level-replicas N = {s0, . . . , sn�1} exe-
cuting on different tiles, such that n = 2f +1, following a model based on architectural
hybridization. We assume that no more than f tiles are compromised during a refer-
ence time Ta. Note that this supports the classical fault and intrusion tolerance fault
bound, but also opens the way to promoting resilience [SNV06]. In fact, classical hard-
ening, diversification and intrusion prevention help in putting barriers in the adversaries’
way [Gar+14], ensuring that Ta has a usefully large value and shrinks no further.

The generic system components (including low-level platform management ones)
can be hardened as needed, down to a residual fault and vulnerability rate. This is good,
but not enough, especially under malicious threats. We, thus, leverage architectural hy-
bridization to amplify the coverage of the assumptions made in this threat model, by
allowing differentiated strategies towards the fault rate targets across system compo-
nents. We shall use trusted-trustworthy components, which fall under a more restricted
fault model, failing only by crashing, much like USIGs in [Ver+13].

We assume it is unfeasible to construct and/or verify software or hardware of reason-
able dimensions, to a 0-defect goal. However, we stipulate that it is possible to design
ultra-reliable, ultimately trusted-trustworthy simple components to a 0-defect target.
The consequence is that these will remain correct and operational, despite compromise
of the local tile. As discussed in [Ver06], this is an extremely powerful combination in
algorithmic terms: trusted components used routinely to assist critical mechanisms and
algorithms (e.g. privilege enforcement, redundancy management) overcoming the resid-
ual fault and vulnerability rate of most system components, in order to achieve correct
operation with extremely high probability. This is only possible if we strive for abso-
lute simplicity (for verifiability, e.g., by proof assistants) of these trusted-trustworthy
components.

4.3 T2-H2
Midir’s simple and self-contained hardware-based trusted-trustworthy components are
called T2-H2. Exploring the concept of architectural hybridization [Ver06], whilst we
consider those components to be ultra-reliable and not fail, we are agnostic about the
reliability of individual tiles, which may be compromised or fail. The assumption is
justified by the simplicity of the former, promoting verifiability.

Placing the trusted device, T2-H2, at the tile-to-NoC boundary, delimiting the tile
as the fault containment domain and ensuring all faults occurring within one tile do

37

not overflow to other tiles or MPSoC resources, allows us to already achieve some of
the desired properties of a D-MPSoC: fault isolation, access control and, given T2-
H2’s composition, consensual reconfiguration of privileges and consensual execution of
critical operations. Figure 4.1 provided a view of this device in the spacial context of
the MPSoC. In this Section, we shall discuss this trusted device in detail.

Capability registers: In order to interact with resources outside the tiles and with
other replicas, the replica on a tile must first go through this barrier-like component.
Each replica has one. Then, first of all, what T2-H2 needs to do is to provide some form
of access control. We chose capabilities, which are data structures usually implemented
as a privileged data structure that consists of a section that specifies access rights and
a section that uniquely identifies the object to be accessed. It shall tell whether or not
a process has access to a resource, making it a logical choice. These capabilities al-
low, then, to access or update a critical resource. Cap [NW74] and M3 [Asm+16] have
implemented capabilities in hardware before, albeit with the aforementioned predica-
ments. These capabilities are placed in the T2-H2 hardware unit in the form of capabil-
ity registers (small memory units) containing a base address, a range of protection, the
permissions the tile has for the resources in that range and the tile’s ID.

Capability space: Typically the systems maintain much more capabilities than fit
in capability registers. The data structure used for keeping large amounts of capabilities
is a capability space, which is typically an OS-maintained array. We shall then use a
capability space in memory (RAM), where the list of granted capabilities will be stored.
Granting a capability assigns that capability to a resource and places it in the capability
space, preparing them for later revocation. However, a replica should only be allowed to
use capabilities in the trusted component, in the capability registers. As such, the next
requirement is to find a way to install capabilities into the registers.

To configure/reconfigure these registers, a capability must be primed, meaning copy-
ing a capability from the requester’s (low-level software replica) capability space into
a capability register of its own T2-H2. Once there, it is then ready to be invoked by
the corresponding tile. Any reconfiguration of these capabilities, whether modifying an
existing one, inserting a new capability or removing, must be a prime operation con-
sensually agreed upon by a majority of replicas. Remember that the capabilities will be
giving access to critical resources as well and, as we shall see, to the ability to vote on
critical operations; and that they interface with hardware configurations, such as gener-
ally critical MMIO like a car’s brakes, as exemplified in Section 1.1.1.

Voters: This brings us to consensual updates, of capabilities and other critical data,
so that no replica can escalate its privileges single-handedly or modify any critical re-
sources. This means the reconfiguration interface of T2-H2’s capabilities must be acces-
sible only through a voter and not invoked directly. Although of course, some accesses
to other less critical resources in the system may be allowed to be accessed directly.
Thus, the final elements of T2-H2 are voters for consensual updates. Remember that

38

Capability
Registers

…

T2-H2

Voter2

Voter1

Voters

…

VotervIDconfigure capabilities

invoke capabilities

Tile

Breaks

Figure 4.3: Simplified look into T2-H2’s contents.

this is all a hardware unit, so nothing in the T2-H2 runs code. Voters must consist of
write-once memory locations, where votes are cast and not changed until the voting
round is complete or until the voter is reset, this can be accomplished by means of the
hardware logic, which ignores modifications to a vote during a voting round. Details on
the voter implementations are provided in Section 4.3.3.

Voting can then happen in any tile’s T2-H2, depending on the nature of the operation.
When tiles invoke the T2-H2, capabilities are checked for access control and votes are
issued through the network-on-chip to the proper voter (of course it can also happen that
the tile invokes its own voter). Voting is, however, not as easy as simply voting on a final
result. We shall discuss the details of reaching agreement on operations and executing
them in Section 4.5.

So, in addition to capability checking, Midir is capable of subjecting resource ac-
cesses to voting by means of distributed components, the T2-H2s, in different tiles. This
is especially important for critical operations, be it in application execution or in plat-
form reconfiguration, in order to achieve some form of fault/intrusion tolerance, from
error detection or self-checking by comparison, to error masking by consensus. To vote,
tiles must hold a capability to the corresponding voter, which authorizes this tile to make
proposals as one of these distributed components. Voting is mandatory to install new
or change existing capabilities, in order to prevent faulty replicas from bypassing the
aforementioned fault containment when reconfiguring the resources a tile can access.
Figure 4.3 shows a simplified look on T2-H2’s contents, with the example of consen-
sually accessing a car’s breaks and configuring capabilities. This figure shows only a
single tile invoking a capability. Naturally, to consensually reach a decision within the
voters at least f + 1 replicas would need to vote, this is just a schematic simplification.

Simplicity also governs our voter design. Midir’s voters merely collect and act upon
proposals of related operations from different components, letting the voted-upon op-

39

core

cache

Tile A

T2H2

capability registers

c1.write(a, val)

interface to
configure

capabilities

T2H2
interface to invoke

capabilities

h1

RAM p
s

a: val

M:(p,s, {r,w})c1
voter
f=1

NoC

Figure 4.4: Capability-mediated access of tile-external resources. Invoking capability
register c1, application A invokes memory capability M : (p, s, {r, w}) to write val to
location a in region [p, p+ s].

eration proceed. Because tile-external resources are typically memory mapped, these
operations are normally simple writes. The voters themselves implement no error han-
dling or diagnostics functionality, but provide information for the voting replicas to
perform these tasks. More precisely, voters suspend voting on disagreement, freeze the
proposals made and expose them for diagnosis. Moreover, they implement a sequence
number seqi for progress tracking, which they increment after each vote unless the vote
gets suspended. A voted upon voter-reset operation resumes voting and, as well,
increments seqi .

4.3.1 Voted and non-voted operations
To retain the flexibility of the software in a manycore system, allowing it to dynamically
adapt resource-to-application mappings as needed, T2-H2 supports direct access to tile-
external resources. This way, applications possessing a capability can directly invoke
operations on external resources (e.g., to access read-shared or private data in RAM or
to interact with non-critical devices). The scenario in Figure 4.4 illustrates a non-voted
(write) memory access by Tile A, performed by invoking a capability in this tile’s T2-
H2. Since T2-H2’s capability register c1 holds a read-write capability to the memory
region [p, p+ s], the operation to write value val in variable a is authorized.

40

core

Memory

Tile A

T2H2
capability registers

c1.vote[write(a, 0)]
T2H2

h1

RAM a: 1

NoC

vote […]1c1

voter
f=1

voter
f=1

M:(p,s, {r})c2

…

Tile B

Tile C

core

cache

h2

core

cache

h3

Figure 4.5: Consensual update of location a in the tile-external memory block (upper
voter) and consensual reconfiguration of capability register c2 in the T2-H2 of tile A.
Reconfiguration is always consensual (requiring agreement of a majority of the tiles A,
B and C); tile-external resources may be optionally treated in that manner (by granting
access to a voter, but no direct access). The voter installs the majority decision (e.g., it
updates location a with the consensual value 1 or the capability in c2 with the agreed
upon read-only memory capability).

However, T2-H2 also supports voting, particularly useful when, e.g., platform man-
agement software or hypervisor replicas must execute critical operations (e.g., privi-
lege change or critical device accesses). These operations are voted upon, within pre-
configured detection or tolerance mechanisms, to prevent compromised components
from causing harm. Several strategies may be served by Midir, such as self-checking,
recovery blocks, or -out-of-n error masking by majority voting in the presence of f

faulty components, but they are all supported by the same baseline voting mechanism.
Figure 4.5 represents a similar operation as in Figure 4.4, but in voted access form. The
hypervisor replicas in Tile B and C vote to write value 1, while the one in Tile A, being
faulty, votes to write value 0. In order to perform these votes, all tiles invoke a capa-
bility on their local T2-H2 to access the designated voter (in this case, the upper voter
(orange) residing on Tile A’s T2-H2). Given that a majority of tiles voted to write 1,
value 1 will be written to variable a.

4.3.2 Consensual Privilege Change
One particularly relevant scenario for voted access is consensual reconfiguration of the
T2-H2 instances themselves. T2-H2’s reconfiguration interface (see Figure 4.4) is ac-
cessible only through a voter and cannot ever be invoked directly.

41

Let us understand why this is a relevant innovation. In conventional OS design,
any single kernel instance can directly or indirectly enforce modifications on platform
resources. So, even in fault tolerant designs, a faulty or compromised kernel instance
could still be able to threaten the platform correctness. For example, by manipulat-
ing page tables, any low-level OS kernel instance can install virtual-to-physical address
mappings to any resource in the platform’s memory map and access it through this
mapping. Of course, a trusted underlying layer could solve this issue (e.g., by me-
diating page-table access). However, whether this layer is software, as in the Inktag
kernel [Hof+13] or firmware, as in Intel SGX [CD16], it becomes a single point of
failure for the platform.

Midir provides an additional level of protection, whereby the designer can constrain
access to the platform reconfiguration, by allowing a particular mechanism, its regis-
ters and data structures to be only effected in a consensual manner, through a voter.
As with general voting, discussed in Section 4.3.1, these voted accesses will normally
correspond to the implementation of detection or tolerance strategies, in this case, di-
rected to the protection against threats on the platform itself. In Figure 4.5, in green
colour (lower voter), we represent such a flow of reconfiguration of a platform capabil-
ity register in tile A’s T2-H2. Exemplifying with f-out-of-n error masking in a replicated
low-level hypervisor, several replicas make the reconfiguration request, which is voted
(green voter). The result from the voter is wired through a special T2-H2 capability
configuration interface to the concerned capability register, masking the presence of up
to f faulty replicas.

Midir does not constrain how systems are configured and hence what faults are
tolerated. Instead it provides the means to tolerate an incremental quality of faults,
including, for highly critical systems, up to f faults in system management software
(e.g., the hypervisor), by providing n = 2f + 1 hypervisor replicas and by subjecting
all critical operations to voting.

4.3.3 Implementation

The implementation of capability invocation is standard (c.f.[NW74]): T2-H2 is in-
voked by tiles to perform external operations, then it looks up the capability in the
capability register file, and forwards the operation to the NoC after the privilege check
succeeds, silently dropping the operation otherwise. Replica IDs are communicated as
labels in the capability [Har85], which T2-H2 inserts as an additional parameter into the
operation.

Our voter implementation is driven by the following considerations and their impact
on functional simplicity.

42

inactive buffers

f=1

a) voter (n buffers)
buffer size

b) voter (single buffer)

reset

HV1
f

HV2

HV3

reset

f=1

A

seq

buffer size
agreement vector

A
D
-

-

seq mod n

seq

HV1
f

HV2

HV3

Figure 4.6: Internal structure of a voter. n (a) or a single (b) buffers hold the replicas’
message to be voted upon and its length size. f defines the fault threshold, seq is a voter
maintained sequence number. The agreement and reset vector are described below.

4.3.3.1 Buffered vs. Unbuffered Votes

Perhaps most impactful is the decision to buffer votes to allow replicas to make their
proposals without first having to synchronize on the time when the signal for such a
vote must be held. Although buffering increases the complexity of the voter, it decou-
ples replicas, allowing them to act in a partially synchronous fashion and, as long as
different voters are used, even partially out-of-order1. Buffering votes is ideal in a NoC
architecture, since votes are transmitted as normal messages (e.g., writes to the mem-
ory mapped registers of the voter). Tiles can continue executing once the message is
sent. We therefore implement voters to contain buffers (memory registers) for storing
proposals from the different replicas for the current vote executed with this voter.

1To simplify monitoring of the progress of a system call, we have required that all replicas execute
the critical operations of each system call in the same order. Operations of different system calls need not
be constrained in this way, and, at the cost of a more complex progress tracking, this requirement can be
further relaxed to: same order as far as a single voter is concerned.

43

4.3.3.2 Immediate vs. Deferred Masking

A similarly impactful decision is whether voters should be able to mask faults imme-
diately. Alternatively, voting can be repeated until a valid proposal is made. The con-
sequences, besides time to agreement, are the amount of memory needed for buffering
votes vs. the complexity of the voter logic.

To mask faults and reach agreement immediately after |Q| = f+1 matching propos-
als arrive, the voter needs to buffer suggestions from at least f + 1 replicas. Since up to
f such messages may be wrong and because the voter can only find out after receiving
f + 1 matches, buffer space for at least f + 1 messages is needed to prevent having to
repeat the vote.

We implemented two variants of T2-H2 voters to evaluate the resource/performance
trade-off at the two extremes of this spectrum. The n-buffer variant (Figure 4.6 a)
implements one message buffer per replica. Each time a message arrives, it is compared
against all other stored messages and the operation applied once f + 1 buffers match.
The single-buffer variant (Figure 4.6 b) trades agreement time for a more resource-
efficient implementation: there is only one buffer; and only the current leader replica
is granted write access to this buffer. The single-buffer voter follows a leader-follower
voting scheme, with the leader proposing a vote and followers validating this proposal.
To prevent inconsistency, the voter prevents modification of the leader proposal once
the leader marks the proposal as ready, meaning that further proposals for the same
sequence number will be ignored by the voter. This allows follower replicas to observe
the stored message and express their agreement/disagreement. For this purpose, the
single-buffer voter implements an agreement vector with one (initially empty: �) tri-
state cell for each replica to express agreement A or disagreement D. Now, one of three
things may happen when replicas propose:

(i) a majority of f + 1 or more replicas disagree with the leader proposal. In this
case, the leader proposal is considered invalid and the operation is not applied; or

(ii) a majority of at least f + 1 replicas agree. In this case, the proposal is accepted
and the voter applies the operation in its buffer.

(iii) the operation times out without a majority of replicas agreeing / disagreeing. In
this case, the replicas record this error and repeat the vote after rotating to the next
leader.

The n-buffer version requires logic circuits for pairwise buffer comparison, whereas
in the single-buffer version a 2 data-bit majority gate over the agreement vector suffices,
deeming the latter more resource efficient. On the other hand, although the single-buffer
voter guarantees that, latest after repeating the vote f times, a healthy replica is elected
as leader and makes a valid proposal, the n-buffer version may proceed as soon as it
finds f + 1 matching proposal, making it more efficient in terms of execution time.

44

4.3.3.3 Internal vs. External Error Handling

The third question is whether the voter itself should include provisions for diagnosing
errors and for informing replicas about them. Errors are detected when one replica di-
verges with the majority decision. Voter-initiated error handling translates to the voter
tracing back to the voting replicas’ cores to identify where to deliver error-handling
interrupts. The expected complexity discourages such a solution. We therefore of-
fload error handling to software and support replicas with means to track progress (the
sequence number seq) and by suspending voting after detecting a mismatch. In this
situation, seq does not advance, but the voter may still apply the operation (in case of
f +1 agreement). Replicas read the voter registers and buffers to diagnose the error, by
looking for divergences.

To resume execution of suspended voters, replicas reset the voter, which clears all
buffers and the agreement and reset vectors and advances the sequence number by one.
Reset itself is a voted operation over the reset vector, which contains one bit per replica.
The voter resets once f + 1 bits in this vector are set. Although this quorum guarantees
that at least one correct replica agrees to resetting the voter, it does not prevent faulty
replicas from resetting the voter prematurely, that is, before all correct replicas were
able to retrieve the error state. The protocol in Section 4.5.4 handles this corner case.

4.3.3.4 Dimensioning Voters

The last question we discuss here is: for how many faults should the voter hardware be
laid out. Since we aim at implementing voters in silicon, we have to make this choice
at system design time to dimension buffers and vectors large enough for the maximum
number of faults to tolerate (fmax). However, to not always have to execute at this
maximum replication degree, a fault threshold f  fmax of voters can be configured at
boot time. For instance, if the system should tolerate up to fmax = 3 faults, it needs to be
dimensioned to have nmax = 2fmax + 1 = 7 fields in the vectors (and an equal amount
of buffers in the n-buffer variant). This voter can be operated at any fault threshold
0  f  fmax .

The voter design has been kept simple enough, and decoupled enough from the
surrounding logic. As such, we can expect with high confidence that T2-H2 can be
implemented and shown correct, as well as stay functional even when the tile it is as-
sociated with fails. A crashed T2-H2 prevents its tile from invoking any operation on
tile-external resources, in particular from issueing votes. Midir ensures safety and live-
ness as long as the overall number of faulty tiles (including those with a crashed T2-H2)
does not exceed f .

45

4.3.3.5 Voting Interface

In addition to the questions discussed above, one crucial point remains in the construc-
tion of a safe voter: its lock-free interface. Faulty replicas must not prevent correct ones
from issuing votes, by locking the I/O through which votes are sent to the respective
buffers (or agreement vectors). The voting interface must then provide separate chan-
nels for each replica to use and adapted internal logic to handle each channel, checking
sequence numbers and storing the incoming vote in the appropriate location.

4.4 Properties

In this section we discuss some properties we are able to obtain from Midir’s design.

4.4.1 Privilege Reversion

Kernel (or any other low-level management software) replicas can agree to equip user-
level applications with the resources an untrusted resource manager selects for them.
However, because no healthy replica will agree to kernel replicas granting themselves
or untrusted components access to the same memory pages, the recipient will be more
privileged than the manager. We call this phenomenon privilege reversion.

Privilege reversion has virtuous consequences, it gives rise to interesting design pat-
terns, which were previously available only at application level (assuming a trusted-
trustworthy kernel), but which can now be exploited inside the kernel. For example, by
agreeing to grant read access to memory, but never direct write access (i.e., write access
only through a voter), we obtain the notion of consensually-updateable memory, which
we shall use for the bulk of read-most shared kernel data structures. Moreover, granting
a single application write access to a page while denying the same for all other compo-
nents (including the kernel) creates an authentic buffer, since only this application can
write. We shall use this for communicating with the kernel replicas.

4.4.2 Protection

Midir gives the designer latitude to use incremental protection, not preventing, in one
extreme, configurations where a single instance controls T2-H2’s privilege enforcement
mechanism (by setting f = 0). It is even possible to disable the mechanism entirely
by installing capabilities to cover the entire host physical address space. On the other
extreme, it provides full protection, eliminating all software-level single points of fail-
ure, if the system is configured such that the following properties are preserved during

46

execution (starting from an appropriately initialized system2):

1. Impersonation prevention: no healthy replica agrees to installing in different tiles
capabilities to the same voter with the same replica identifier (see Section 4.4.2.1).

2. Bypass prevention: no healthy replica agrees to installing capabilities to directly
access a T2-H2 configuration interface, which would bypass voting.

3. Replica integrity preservation: under no circumstances healthy replicas agree to
installing capabilities that convey direct write access to the code and local state of
a replica, respective to critical data.

4.4.2.1 Replica Identifiers

There are two types of replica identifiers: The ID encoded in the capability and the
T2-H2 ID used for immediate revocation.

The ID in the capability identifies towards the voter which replica executes on the
tile. For example, if it is replica 2, then it will get the second slot in the agreement
vector of the voter (or the second request buffer in the n buffer case). We encode this
in the capabilities to allow replicas to have different IDs at different voters. If two tiles
would hold such a capability to the same voter, then one could assume the role of the
other when voting at this voter.

The one fixed identifier is the T2-H2 Identifier, which is an unique identifier value
encoding which software is currently running on the tile. If other tasks have capabilities
to invoke this software (e.g., by writing to a memory buffer they read), they will no
longer be able to do so if this ID changes.

4.5 Fault and Intrusion Tolerant Micro-Hypervisors
We now turn our attention to the construction of Midir-aware FIT micro-hypervisors,
such as suggested in Figure 4.7. We discuss this topic in terms of Midir and T2-H2,
however, this could as well be implemented equivalently with iBFT (see Chapter 5),
reaching consensus on system calls and using the trusted copy presented in Section 5.7.7
to apply the sensitive operations. Additionally, we use the hypervisor as an example,
given its guest OS isolation-oriented nature and the criticality it represents. The remain-
der of this Section could equally be applied to another kind of low-level software. Note

2We boot all kernel replicas simultaneously, ensuring an initial capability setup that allows them to
reach a voter. Otherwise, the setup disables all outstanding capabilities to the replicas’ code and data
segment, only granting the respective replica access to these memory regions. From there on, following
properties 1–3, the replicas boot into an intrusion-tolerant system state, consensually giving themselves
further privileges as needed.

47

RAM

Core

Cache

Core

Cache

Core

Cache

Core

Cache

Core

Cache

h1 h2 h3

VM App(e.g., Linux)

Figure 4.7: Overview of the Midir architecture: a multi-/manycore system augmented
with T2-H2 hardware capability units (blue dots) at the NoC interface. Access to tile-
external resources is subject to privilege confirmation in T2-H2 and possibly voting.
Here, the hypervisor replicas h1, . . . h3 consensually reconfigure the privileges of the
VM on the 4th core, which in turn obtains access to a region of memory in the scratch-
pad memory of the application on tile 5. Privilege change is a voted upon operation,
indicated by dashed lines.

as well that, throughout this section we shall be using the example of a single buffer
voter implementation and, thus, referring to the usage of a leader replica.

Hypervisor replicas execute on dedicated tiles, from where they remotely config-
ure the privileges of applications executing on other tiles. Most of the other common
OS-functionality (e.g., context switching, inter-process communication, (non-critical)
device access, etc.) can be left to the application and its kernel-support libraries.

Midir gives the designer latitude to use incremental levels of protection for individ-
ual operations or sets thereof. On one extreme, configurations may be allowed where
all accesses are direct, and thus unprotected by voting (setting up voters for direct pass-
through of proposals, i.e., f = 0, to reconfigure capabilities).

On the other extreme, the highest level of protection, while retaining the flexibility of
a manycore system, eliminates all software-level single points of failure3 by subjecting
all critical operations to voting. We focus on this facet. The replicated micro-hypervisor
offers a system call interface executed by its replicas, entering a service loop and main-
taining data structures used to handle system call requests, which they receive from
applications, other replicas (e.g., requesting a privilege they lack for executing a system
call) or from hardware (e.g., triggered by device interrupts). We provide an informal
argument of the protocol’s safety and liveness in Section 4.7.

Remembering that the unit of fault containment in Midir is the tile (equivalent to
a node in a distributed system) the essential requirement for a fault tolerant micro-

3Modulo Midir’s T2-H2, which, justified through its simplicity, we assume will not fail.

48

hypervisor design is that the replicas behind critical operations are placed in different
tiles, such that they communicate by messages, are subject to T2-H2 access control, and
converge on the necessary votes as dictated by the algorithm. In order to fully enjoy the
baseline functionality provided by Midir, a few additional design principles should be
followed:

• P.1 Impersonation prevention: Correct replicas must deny any operation with a
replica identifier that is already in use (T2-H2 voting relies on identifying the in-
dividual replicas through their capability; no two replicas should have a capability
to the same voter with the same identifier).

• P.2 Bypass prevention Correct replicas must deny any operation attempting to
grant direct write access to a consensual-update-only object.

Let us illustrate the design with the example of reallocating the tile to a different
application. Signaling the tile, an application-specific library may save the state neces-
sary to resume execution (e.g., utilizing memory assigned for this purpose). The actual
switch then proceeds by resetting the tile followed by installing the capabilities the new
application’s library needs, in order to load its state. Obviously, reset and, as we have
seen, privilege change are critical operations, which must be performed consensually
to prevent compromised kernel replicas from prematurely stopping applications. Chan-
neling such critical operations to voters and confining access with capabilities prevents
faulty replicas from causing harm, since, as long as no more than f replicas become
compromised, a correct majority out of the n = 2f +1 replicas will outvote these oper-
ations. This turns system call execution into updates of replicated state and a sequence
of voted operations, which we shall later call subordinate votes. This works as well
with any other replicated critical software, even firmware such as in SGX (e.g., pre-
venting enclave misconfiguration) or device drivers, when interacting with the physical
world. Replies to system calls must also be voted upon, given that hypervisor replicas,
by nature, act on behalf of multiple applications, possibly storing information of one
that must not be revealed to others.

The above is of course true provided replicas have reached agreement on the sys-
tem call to execute and on the parameters with which the client has invoked this call.
Clients are applications and other low-level software (e.g., hypervisor) replicas that in-
voke system calls. A further role of the service loop is therefore to reach consensus
on system call execution order and parameters. From our evaluation (Section 4.6) we
found that Midir’s support for consensually executing critical operations also provides
for accelerating the BFT protocol that the replicas must execute to reach agreement.

49

cache

RAM

on-chip memory
syscall log

shared state
(e.g., capability spaces)

err

core

cache cache
…

vlog
verr

v1

RAMv1:
set (…) {(v1,3)}

op {(v1,1)}

h1 h2 h3

mem. ctrl.

core core

Figure 4.8: Read-shared, consensually updated data structures used by the hypervisor
replicas: system calls are recorded in the syscall log, the error log keeps voting error
information, and a capability space holds an application’s capabilities.

4.5.1 Consensual System Calls
Figure 4.8 provides a more detailed picture of how T2-H2’s voters and capability regis-
ters contribute to reaching consensus about the system call to execute and its parameters.
The service loop of FIT hypervisors needs to reach consensus before it can start execut-
ing operations that may have critical side effects when misused.

The service loop utilizes two data structures: a syscall log and an error log.
System call log: A consensually updated ringbuffer — the syscall log — records

agreed upon system calls and their parameters to give kernel replicas the opportunity to
learn about those agreed upon. Otherwise, this information would only be available to
the agreeing quorum of f +1 replicas and if faulty replicas participate in the agreement,
but refuse to execute the system call later on, too few correct replicas would have ob-
tained this knowledge to complete the system call. Storing agreed upon system calls in
the log allows lagging replicas to catch up with the system calls they missed.

Error log: Similarly, the service loop utilizes an error log to protect error informa-
tion from getting lost if the voter is reset prematurely before all replicas have learned
about this error. Updates of the syscall and error logs are made through dedicated voters:
vlog and verr , respectively.

Macroscopically, clients place system call requests in authentic buffers, which the
hypervisor replicas poll4 for new requests. Consensual privilege change allows creating
such buffers by granting write access to a single client, but to no hypervisor replica. The

4Sleep/wake protocols can be used in periods where no requests are pending.

50

leading hypervisor replica proposes one such system call by initiating a vote with vlog ,
which followers observe and agree or deny. Once written to the syscall log, replicas
proceed by executing the system call and the votes for its critical operations, as well as
responding to the client. We call these subordinate votes as they depend on the main
vote, logging the system call. That is, no correct replica will engage in a subordinate
vote unless the system call has been logged. Subordinate votes include at least replying
to the client and advancing the syscall log to the next free slot. They are performed
utilizing a set of voters V = {v1, . . .} that is disjoint from {vlog , verr}.

We make no assumptions on the order in which replicas update their local state (even
transactional or speculative updates are imaginable). However, to simplify tracing the
progress of the system call (and, in turn, the code that late or rebooted replicas have
to execute to catch up), we require subordinate votes to be executed in the same order
by all replicas and assume that this order is completely specified by the system call
parameters.

Our rationale for agreeing on the system call first is to circumvent a fundamental
problem of consensus protocols without authenticators: the impossibility to diagnose
faults if messages can be altered during multicast operations [LSP82]. In our setting,
cryptographic operations would come at overproportionally high costs relative to the
speed of the transport medium (the NoC). Since consensus adds to system call execution
times, having an execution time close to the NoC’s speed is a desirable property. We
therefore avoid sending unforgeable authentication tokens (e.g., HMACs) and instead
exploit the authentication we obtain from a client being the single writer of its request
buffer. However, given clients maintain write access to their request buffers, they can
change the request after the leader has proposed it, but before followers validate it,
which makes it impossible for followers to distinguish whether the leader proposed
a wrong system call or whether the leader proposed the client’s original suggestion,
but the client changed it afterwards. In consequence, they cannot differentiate faulty
clients from faulty leaders to provably identify the leader as faulty. We omit this form
of error diagnosis for the system call vote to regain this property when we need it: in
the subordinate votes for reaching agreement on critical operations.

Leaders tricked into such a fault are rotated and the new leader proceeds with all
other pending requests before returning to the suspicious client.

The following details the protocols the hypervisor replicas execute to reach consen-
sus on and execute system calls. Leveraging the generic voting pattern in Figure 4.9,
replicas first reach agreement on the system call (Figure 4.10) to then consensually per-
form critical updates during its execution (Figure 4.11).

4.5.2 Generic Voting Pattern
Figure 4.9 shows the generic pattern and how replicas interact with voters. Evaluating
the sequence number vi.seq of voter vi, replicas identify the leader as the replica with

51

1 agreement:
2 seq i := vi.seq
3 i f (replica = seq imod n) {
4 // leader
5 vi.propose(op, seq i)
6 } e l s e {
7 // follower
8 wait f o r leader proposal: op

9 validate op
10 i f (valid) vi.confirm(op, seq i)
11 e l s e vi.decline(op, seq i)
12 }
13 // all
14 wait f o r f + 1 replicas to
15 agree/disagree/timeout

Figure 4.9: Generic voting pattern used in the service loop and when executing system
calls.

identifier vi.seq mod 5
n in its capability. The leader proposes a request by invoking

its vote capability to write operation op to its voter buffer, which the voter prevents
from being changed once the leader marks this proposal as complete. Followers wait
for the leader to complete its proposal to then validate the operation and express their
agreement/disagreement (by submitting the operation they saw or by writing the corre-
sponding value to the agreement vector (see Section 4.3.3)).

4.5.3 System Call Vote
In Phase 1, replicas first agree on the system call to execute following the generic pat-
tern above. In Phase 2, they then vote on critical operations. Figure 4.10 shows the
pseudocode for system call agreement. Lines 16–23 illustrate the client invocation pat-
tern discussed above. The leader selects a pending system call (Line 26) with a valid
opcode (Line 27) and prepares the entry to log. To prevent equivocation during subor-
dinate votes (e.g., attempts to trick a replica into proposing the next system call without
completing the current one), we enforce some additional principles:

• P.3 Coordinated subordinate votes: correct replicas vote only on subordinate
voters (vi 2 V) to execute the current system call.

5As long as enough tiles are available, n and f can be reconfigured, namely when adopting optimistic
voting schemes. Such changes can namely de done on the go, provided a safe initialization, rejuvenation
and relocation protocol. However, we leave the dynamic modification of these parameters and associated
advantages for discussion in future work.

52

16 client ck:
17 write m := syscall opcode + parameters
18 to ck’s request buffer
19 wait f o r reply in ck’s response buffer

20 hypervisor replica HVi:
21 service loop:
22 p o l l all client buffers
23 remember new request (m, ck) as pending

24 on pending request:
25 // leader
26 (m, ck) := pending.remove_head
27 i f (m is invalid syscall)
28 skip to next pending request
29 VS := ;
30 f o r each voter vi used to execute m

31 // collect voter sequence numbers
32 introspect vi to read seq i := vi.seq
33 VS := VS [{(vi, seq i)}
34 // follower
35 i f (pending requests 6= ;)
36 set timeout
37 // all
38 vlog.agree_on (‘‘write(log, hm, ck,VS i)’’)
39 with validate :=
40 (m 6= request from client ck) ||
41 (vlog .seq 6= seq log) ||
42 (seqv 6= v.seq, where (v, seqv) 2 VS))
43 i f (at least one replica disagrees)
44 vlog.vote_for_reset()
45 i f (not f + 1 agreement)
46 repeat vote
47 execute m

Figure 4.10: Service loop - Phase 1: agree on next system call to execute

53

• P.4 Presence of correct replica: no voted operation succeeds without at least one
correct replica.

We enforce P.4 by requiring quorums of at least f + 1 matching votes, while pre-
venting impersonation (P.1). In combination, these principles ensure that subordinate
voters vi 2 V will keep their state while in Phase 1 (including their sequence numbers).
By agreeing, alongside the system call, on the first sequence number of all voters used
in this system call (collected in Lines 29–33 in the set VS and validated in Line 42), we
ensure that all replicas know all sequence numbers to start with in subordinate votes,
even if they have been lagging behind. In the absence of errors, the jth subordinate vote
on vi will be executed with sequence number seq i + j, assuming (vi, seq i) 2 V S was
the start sequence number of vi. This agreement on the initial sequence number then
allows for a simpler progress tracking in Phase 2, when executing subordinate votes.

Because of the impossibility in Section 4.5.1, system call votes operate with reduced
error diagnostics: replicas reset vlog if it got suspended after disagreement (Lines 43, 44)
and repeat votes for pending system calls unless they fail for all client-leader combina-
tions, in which case they exclude this client.

4.5.4 Subordinate Votes
The code for executing subordinate votes in Figure 4.11 has to solve two problems:

1. Preserve determinism despite errors.

2. Prevent replicas from prematurely resetting voters.

From reaching agreement on the system call, we know that the first subordinate
vote on vi starts with seq i because (vi, seq i) 2 VS . As such, without errors, the j

th

subordinate vote on vi happens with sequence number seq i + j. The same applies to
votes with at least one disagreeing replica that all received f + 1 agreement because,
after the voter resets (Line 62), they are not repeated (Line 66). The key for lagging
replicas to catch up in case of error is to make sure they learn about all errors, so that
they know how many times a vote was repeated and when it was successful. Assume
the k

th subordinate vote (k < j) was the last to fail with seqki , then k completed with
seqki +1 and the system call progressed to subordinate request j if vi.seq�seqki = j�k.

Solutions to the second problem address the point that all replicas must learn about
errors. With n = 2f + 1 and |Q| = f + 1, up to n � |Q| = f replicas may lag behind
while the remaining |Q| progressed to another subordinate request or even to another
system call. In particular, faulty replicas may fail a subordinate vote, but agree to reset
the voter, which erases the error information about the failed vote from the voter and
leaves behind as few as a single correct replica to know about the error. This scenario
occurs if f faulty and one correct replica resets the voter before others diagnosed it.

54

48 HVi.vote (log, vi, seq i, req, m, dest) {
49 i f (syscall_log.log 6= log)
50 return success
51 i f (vi.seq 6= seq i)
52 i f ((err[vi].log 6= log) ||
53 (err[vi].req 6= req) ||
54 (err[vi].eseq > seq i + 1))
55 return success
56 push_error_and_reset_voter
57 i f (!err[vi].success)
58 repeat vote with seq i + 1
59 // HVi is up to speed with the others
60 vi.agree_on(‘‘write(dest, m)’’) with seq i
61 and validate := (m, dest) is valid
62 i f (at least one replica disagrees)
63 push_error_and_reset_voter
64 initiate recovery
65 i f (f + 1 agreement)
66 return success
67 repeat vote with seq i + 1
68 }
69 push_error_and_reset_voter:
70 error := introspect(vi)
71 verr.agree_on(‘‘write(err[vi], error)’’)
72 with validate :=
73 adjust own error information
74 (proposed error = own error)
75 i f (error vote fails)
76 verr.vote_for_reset(eseq)
77 repeat pushing the error
78 vi.vote_for_reset(seq i)

Figure 4.11: System call execution - Phase 2: subordinate votes and error handling

55

Clearly, without costly cryptographic information, the honest replica cannot convince
others about what has happened. The following design principle solves this problem by
preventing premature resets before error information is pushed to the error log.

• P.5 No reset before error logging: correct replicas reset subordinate voters only
after the error got logged.

This error state contains information about the current system call, i.e., the system
call entry log ; the subordinate vote req ; the sequence number of the voter vi; the point
where it failed eseq and which replicas agreed/disagreed. In consequence, lagging repli-
cas can validate if the current subordinate vote succeeded (Lines 52–55) and, if not, who
was responsible for it to fail. Voter vi prevents destructive writes until it is reset, which
P.5 and P.4 ensure happens only after error information was written to the log. Non-
destructive writes are updates of empty buffers, respectively, updates of the agreement
vector from timeout to agree/disagree and from empty to any of these three.

The argument for why the problem does not recur with the nested vote for logging
the error state is as follows:

1. The state to push is held in the voter vi. Therefore, even if a replica lags behind,
finding vi suspended, it knows what information to write to the log.

2. Because of P.5, and because at least f + 1 replicas are required (P.4) for votes to
succeed, the only way to make progress is by writing correct error information.

Therefore, either faulty replicas agree to writing correct error information or even-
tually correct replicas catch up and write correct information. The exact information
seen by the replicas may differ depending on the time they read it, i.e., in late reads,
more replicas may have expressed their consent or disagreement. However, it will al-
ways contain at least the consensual result of the vote, i.e., whether f +1 replicas agree,
disagree or timed out, and, in the former two error cases, it identifies at least one replica
that diverges from the majority (the leader, in case of f + 1 disagreement). This replica
is proven faulty. Followers, reading error information after the leader and finding pro-
posals of additional replicas, downgrade their own information to that of the leader after
validating it as described above (Line 73). Repeating the vote while rotating the leader
ensures that valid error information is proposed latest after f retries. It then suffices to
reset verr , whenever it becomes suspended (Line 76). Once error information is pushed,
replicas vote to reset the voter vi for the subordinate vote (Line 78) and continue exe-
cuting it.

4.6 Experimental Results
We have implemented T2-H2 with both voter variants in VHDL on a Zynq-7 ZC702
Evaluation Board. We instantiated 3 Microblaze cores as tiles, running at 50 MHz, each

56

with one T2-H2, connecting the tiles through T2-H2 with an AXI interconnect (serving
as the NoC). We have implemented and measured the performance of the service loop
of a fault- and intrusion- tolerant hypervisor (Figure 4.10). The service loop is used to
agree on and execute client-invoked system calls for two critical operations: granting
and priming capabilities. Grant (L4.map [Lie95]) copies capabilities between capa-
bility spaces and prepares for later revocation. Prime consensually copies a capability
from the client’s capability space into a T2-H2 capability register, where it is ready for
invocation. We have measured the performance of grant and prime in two different im-
plementations of capability spaces, a container object for the capabilities an application
possesses:

(i) as a private data structure in each replica (Section 4.6.1), requiring, in the case of
prime, only the vote to install capabilities and two further to reply to the client
and mark the system call as finished; and

(ii) as a read-shared, consensually-updated data structure (Section 4.6.2), trading off
speed for a smaller memory footprint by introducing additional votes for track
keeping.

As baselines, we compare to a cross-tile invoked singleton hypervisor (horizontal
line), executing the same system calls on its private state (with no agreement or usage
of the T2-H2s), with 1637 cycles for grant (1977 cycles for prime); and to a shared-
memory variant of MinBFT6 requiring 242824 cycles to agree on a system call. Our
agreement protocol outperforms MinBFT by one order of magnitude.

A comparison to a cross-tile invoked singleton hypervisor allows us to understand
the overhead the T2-H2 introduces in remote memory block access, which is present
only in the execution of critical operations. The presented values for this baseline are
justified by the absence of caches, as we want cores to be as decoupled as possible. The
choice for comparison with MinBFT relates to its high efficiency and state-of-the-art
popularity in hybrid BFT solutions.

4.6.1 Per-Replica Capability Space
Figure 4.12 shows the average performance of the grant and prime system calls in a
per-replica capability space implementation relative to two baselines: null and a sin-
gleton hypervisor instance performing these system calls in a non-consensual manner
(horizontal red line). Shown are the system calls broken down into individual votes and
the Q5 / Q95 percentiles of the overall measurements.

6We omit client signatures in favor of authentic buffers, but implement UIs with HMACs. USIGs can
be accessed without overhead.

57

Figure 4.12: Average execution times of the three consensual system calls — null, grant
and prime — when executed on a per-replica capability space implementation. System
calls are broken down into the individual votes for agreeing on the system call and for
performing the critical updates required. Shown are also the Q5 / Q95 percentiles and
the average costs of executing the respective system calls on a singleton hypervisor.

The minimal costs for learning about a system call request and executing it are 1571,
1637 and 1977 cycles on average for null, grant and prime, respectively. System calls
for the single-buffer version have a factor of 8.9 (null) to 9.6 (grant) increase, which
can be explained due to the voter not benefiting from caching. Whereas the singleton
hypervisor merely has to copy one request from the memory where the client core places
it, missing in all caches in the process, follower replicas have to poll the voter to wait
for the leader to make a proposal and then confirm (or reject) the proposal made. Each
such voter access amounts to costs equivalent to a cache miss.

As can be seen, reaching agreement on the subordinate votes is much faster, which
is due to the fact that replicas already align themselves when reaching agreement on the
system call to execute.

In the n-buffer version of the voter, higher costs occur during the agreement on the
system call, which is due to the writing of the complete request to the voter, not just
setting a bit in its agreement vector. However, subordinate votes are much faster, since
replicas no longer wait for the leader to make a proposal. Instead, they just propose
what should be written as critical operation.

4.6.2 Consensually-Updated Capability Space
Figure 4.13 shows a similar diagram as Figure 4.12, this time, however, for consensually-
updated capability spaces. Granting and priming capabilities now require additional

58

Figure 4.13: Average execution times of the three system calls for consensually-updated
capability spaces.

votes to update the data structure.
This time, the 6.7 (single-buffer) and 7.3 (n-buffer) times slower performance rel-

ative to the singleton hypervisor can, once again, be explained due to the voter not
benefiting from caching:

Singleton hypervisor: System call execution is triggered by the client writing to
shared memory on one core and the hypervisor (on another core) reading it. From then
on, all the operations happen locally in the core of the hypervisor without any interaction
with the outside. Therefore, all memory operations aside from the invocation and reply
hit in the core’s cache, which, in our setting, responds within 1 cycle. The cross-core
operations (invocation (1) + reply (2)) dominate these costs.

Replicated hypervisor: System call execution starts as well with invocation (1), but
then, the leader needs to propose the request (2), followers validate it (3) and express
agreement (4) upon which the voter updates the memory and all replicas wait for the
vote to reach agreement (5). In the case of the per-replica capability space (case (i)),
we then execute locally, but for replying (to not introduce storage channels) we have to
repeat at least (4) + (5), assuming n-buffer voters. As such, even without any delays, we
have 7 cache misses vs. 2 in the singleton hypervisor execution, hence a factor of 3.5.
Additionally, more voter accesses are performed to read the sequence number, which
we need for flow control.

To confirm that variations in fact originate from the agreement on the system call
to execute, we have broken down system call execution into their individual votes and
measured their Q5 and Q95 percentiles. Figures 4.14 and 4.15 show these values for
single- and n-buffer voters, respectively. As expected, subordinate votes remain close to

59

Single-buffer voter

Figure 4.14: System calls broken down into individual votes. Shown are the Q5 and
Q95 percentiles for the main system call vote and each subordinate vote for single-
buffer voters.

N-buffer voter

Figure 4.15: Same as Figure 4.14 for n-buffer voters.

60

0

100

200

300

400

500

600

f=1/n=3 f=1/n=3 f=2/n=5 f=3/n=7 f=4/n=9 f=5/n=11 f=6/n=13 f=7/n=15

La
te

nc
y

[u
s]

faults tolerated / number of replicas

Scalability of Midir to larger f

FPGA

Figure 4.16: Latency of the null system calls for increasing number of replicas in
microseconds.

their average execution times, whereas agreement on the system call varies significantly.

4.6.3 Scalability

Since our FPGA board’s resource limitation prevents us from instantiating more repli-
cas, we confirm the scalability of our approach in an emulation on x86. Hypervisor
replicas are pinned as the sole application on the cores of a 24-core Intel Xeon CPU
E5-4650 system, running at 2.10 GHz. They execute the same server loop like on the
FPGA, but emulate voters in software.

Figure 4.16 shows the latency results of scaling the null system call to an increasing
number of replicas and hence an increasing fault threshold from f = 1 to f = 7. Also
shown (although not directly comparable) is the performance of the FPGA implemen-
tation, converted to microseconds. As can be seen, the execution of the null system call
scales linearly with the number of replicas, which in part is due to the emulation having
to acquire a lock during voting. We expect a similar, though less steep, linear increase in
a larger scale FPGA implementation due to the additive effects of having to wait for the
agreement of an increasing number of replicas with fluctuating system-call execution
times.

61

Figure 4.17: Code size in lines of C++ / VHDL code (logic / total).

4.6.4 Code Size and Hardware Utilization

Figure 4.17 lists the code size (excluding initialization) for the service loop, for con-
sensually executing critical operations and for interfacing with the capability registers.
Also shown are the VHDL source lines of code for the logic only and for the overall
design (including I/O declaration) of the voter and capability unit (containing the ca-
pability registers). As can be seen, the amount of code that each replica executes for
the above grant and prime system call is well below 1000 lines of code. Faults in this
code are masked by the majority of replicas outvoting faulty replicas in critical opera-
tions. Similarly, the hardware overhead is just above 400 lines of VHDL code for the
logic plus 2411 lines of VHDL for connecting the logic to the AXI interface I/O and
for mapping the corresponding internal signals. VHDL simply defines the logic to be
programmed in the board, it is not executed by the voters or capability units.

Figure 4.18 shows the FPGA resources of the (post-synthesis) implementation of
our components. LUTs are units with no state, used to implement the combinatorial
logic; while registers hold state, e.g, to keep buffer contents, but implement no logic.
Each F7 Mux (wide multiplexer) combines the outputs of two LUTs together, while F8
Muxes combine the outputs of two F7 Muxes.

Notice that the absolute resource requirement of T2-H2 will not increase signifi-
cantly if more complex cores are to be controlled. The amount of registers needed for
both the capability units and the voters, as well as the logic required for the voters,
will increase linearly with higher numbers of n, but it will not increase in function of
the complexity of other components, such as cores. Hence, the relative overhead will
shrink when more complex tiles are considered.

62

Figure 4.18: FPGA resources required by T2-H2 (without / with AXI interface).

4.7 Midir Discussions
In this section, we argue about the safety and liveness of the BFT protocol for process-
ing system calls (as shown in Figures 4.10 and 4.11). That is, any two healthy replicas
execute the same system calls in the same order (safety) and all correct system calls will
be eventually executed (liveness). We assume the combination of a sleep-wake notifica-
tion mechanism and polling (summarized in Line 22) reveals any pending system call
to all replicas. However, before we start arguing about safety and liveness, let us see
why faulty replicas cannot trick healthy ones into participating in votes with a wrong
sequence number.

System call execution involves as set of voters: the subordinate voters vi mentioned
in V S, plus vlog and verr . By construction, voters ignore proposals and confirmations
for all sequence numbers other than the current one and only if voting is not suspended.
That is, a voter vi will only react to commands with a sequence number seq if seq =
vi.seq . Sequence numbers advance only if f + 1 replicas agree to a proposal and no
replica disagrees, or if f + 1 replicas agree to reset the voter due to some error case
(e.g., one or more replicas disagreeing with the proposal).

From property P.3 and P.5 and the arguments we have given in Sections 4.5.3 and
4.5.4 we know that no healthy replica participates in reset before error information has
been confirmed by such a replica and logged through verr . Moreover, we know that
healthy replicas will engage with subordinate voters only for executing the current sys-
tem call they process. This means either the replica is participating in the current system
call or it was lagging behind other replicas. In the latter case, the sequence numbers it
will use to invoke the voter are smaller7 and the voter will ignore the request without
any effect.

7We assume sequence numbers used by lagging replicas will never be overtaken by the current write
and say that such a sequence number is smaller, despite possible wrap-arounds of the used integer. We
substantiate this assumption by implementing a large enough sequence number space and recommend
rejuvenating replicas before their sequence numbers could be overtaken.

63

4.7.0.1 Safety

Proposing V S as part of the system call (Line 38) and including this as part of the
agreement (Line 42) means a fault-threshold exceeding quorum of replicas agrees to the
starting point of subordinate votes and from there we know, from the arguments given
in Section 4.5.4, that without errors the j

th subordinate vote on a voter vi is executed at
seqi+j where (vi, seqi) 2 V S (and similarly with errors, by recording and acknowledg-
ing the number of retries). Therefore, if a healthy replica votes for a subordinate vote, it
will always vote with the correct sequence number, which implies faulty replicas cannot
leverage this vote/agreement to confirm a different request.

From the above, we can conclude safety holds, by seeing that replicas will not agree
on different system calls for the same sequence number. The voter will only write sys-
tem calls to the log which received f + 1 agreement, and the log position is advanced
consensually and in a way that allows all replicas to learn about updates (last subordi-
nate vote of the previous system call). The voter itself thereby prevents equivocation by
freezing the proposal the leader makes for the current sequence number, i.e., by prevent-
ing it from being overwritten for the current sequence number. Additionally, sequence
number will not be reused for the same vote since both successful requests and reset
advances this number.

From safety of the logged system call, its parameters and V S, then follows the
safe execution of the subordinate votes, given that the j

th subordinate vote on voter
vi is completely defined by these aspects. Notice that all healthy replicas execute the
logged system calls, including their subordinate votes. In particular, Line 50 will not
lead to skipping the execution of the remaining system call, but only short cuts through
the subordinate votes when realizing that the system call has already been completed.
Healthy, but lagging replicas therefore first update their state with logged system calls
before engaging in new system call requests.

Notice also that, while it is possible for faulty clients to trick leaders in proposing a
system call that followers will not confirm, the consequence of this is merely a rotation
of the leader (by reset of vlog in Line 43) and the next leader continuing with another
client.

4.7.0.2 Liveness

What remains to be seen is why the system is live (i.e., why it will eventually process all
requests from correct clients). The combination of sleep-wake and polling in Line 22
will iterate through all client/replica combinations. Therefore, each valid client will re-
peatedly find a correct leader who proposes the request. Partial synchrony then ensures
that during the long enough periods of synchronous behavior, healthy replicas engage
in processing this request. Let us therefore, for the following argument, assume request
processing happens in such a good phase and will not time out. Then latest after rotating

64

through f leaders, the client will find a healthy leader to propose the request.
As shown in Line 14 and 15, replicas will wait for either f + 1 replicas to agree,

f + 1 replicas to disagre or f + 1 replicas to time out. Thus, if the request is proposed
by a healthy leader (or by a faulty, but stealthy leader in a correct manner) at most
f (respectively f � 1) replicas can disagree and, in the absence of timeouts, f + 1
agreement will be reached. Then, even if the vote is suspended due to a disagreeing
replica, the voter will record the system call in the log and all healthy replicas will
proceed by executing the logged call (after resetting vlog in Line 44 to return this voter
into a state where it accepts further votes, including the next system call).

For subordinate votes, a similar argument applies. In the absence of timeouts during
long enough phases of synchrony, when a replica proposes an operation for a subordi-
nate vote, replicas wait until either f + 1 replicas agree to the proposal (in which case
the voter executes the operation, e.g., by writing to the specified destination), even if a
minority of replicas disagree; or f +1 replicas disagree. Disagreeing replicas causes an
error to be recorded and the vote to be repeated. From the arguments in Section 4.5.4
we know that error logging makes progress latest when a healthy replica proposes a
valid error record and when lagging healthy replicas catch up to find the error informa-
tion in the voter (remember P5 prevents premature reset before the correct information
is logged). As such, latest after rotating through f faulty leaders a healthy leader will
propose and reach f+1 agreement (from healthy followers or from stealthy faulty repli-
cas responding correctly). This ensures that each subordinate vote gets executed and,
consequently, the system call as a whole.

Having seen that the proposed BFT protocol for system call execution is in fact
safe and life, we now focus on the implementation of the voters and how it ensures the
behavior we require, namely freezing proposals and suspension until consensual reset.

65

Chapter 5

iBFT

Our second solution to the stipulated problem is iBFT . This approach is not merely a
different idea to the implementation of SPoF-free systems, instead it presents different
advantages and drawbacks which shall later be discussed in Chapter 6. Nevertheless,
iBFT is primarily concerned with accelerating consensus in a tightly-coupled environ-
ment, so in that sense, it differs from Midir’s primary goal of eliminating all SPoFs
and not using, in any possible configuration, a trusted underlying layer. iBFT can still,
however, be used for the same goal as Midir.

5.1 The iBFT Architecture
iBFT is a consensus protocol, augmented with trusted-trustworthy devices (such as
Midir), for tightly-coupled systems which focuses on a mechanism — called Intro-
spection — that grants replicas the ability to observe the internal state and progress of
their peers without requiring the peers’ active involvement or consent. Rather than hav-
ing to request information and wait for the other replica to send it, introspection allows
information-providing replicas to remain passive (or even become faulty) without pre-
venting other replicas from reading (but not writing) their state. In essence, iBFT is an
accelerated form of consensus that takes advantage of the low overhead of operations
like memcpy and memcmp to achieve an efficient form of fault tolerance. In order to
avert equivocation without having to rely on cryptography, replicas’ local memories,
used to store voting and progress information, are hardened with a trusted-trustworthy
mechanism that transforms regular memory into read-shared write-once memory, pre-
venting votes from being changed until reset in a consensual manner.

Figure 5.1 gives a general overview of an iBFT-supporting architecture. Shown are
the containment domains (tiles), including a core and a memory whose write ports are
exclusively connected to this core. Other cores are connected through the NoC only
to the read ports of this memory. The same holds for slices of tagged memory (t-mem

66

core core core core

mem mem mem mem
w r

w* r

t-mem t-mem t-mem t-mem
r

containment domain for hardware faults

tagged memory watchdog

r

s1 s2 s3 s4

reset

Figure 5.1: iBFT architecture overview.

in the figure), that cores use to implement the trusted-trustworthy write-once memory
abstraction (see Section 5.4 for an in-depth explanation).

Replicas leverage shared memory for communicating with local clients and wo
memory for communicating with their peers. Remote clients can be supported through
local proxies and user level networking or through the operating-system kernel invok-
ing all replicas with incoming client requests. As a hybrid BFT-SMR protocol, iBFT
requires n = 2f + 1 replicas to tolerate up to f faults.

5.1.1 Setup
Figure 5.2 shows the basic setup of shared memory buffers connecting the server repli-
cas among themselves and to their clients. Each client ci has a request buffer (req)
mapped writable to its address space and read-only to the address space of all replicas.
Conversely, service replicas (s1, s2, s3 for f = 1 and n = 3) use per-client writable
reply buffers, which are mapped read-only into the client address space.

Each replica receives restricted write access (rw⇤) to its memory and read-only ac-
cess to the memories of other replicas1. Replicas organize memory in slots. Each slot
is comprised of one character string, used by the leading replica to record the client
request m to execute, a client sequence number seq and the identifier ci of the client,
and of n bitfields (flags), one for each replica and used to store status information and to
express agreement. The tagged-memory device ensures that the character string is sen-

1Write access is restricted in the sense of allowing values to be written exactly once in between resets
(see Section 5.4).

67

rw

ro
ro
ro

ci

re
pl

y
re

q.

ro
rw

ro
rw

ro
rw

ro ro ro ro roro

s1 s2 s3

leader
s1

s2
……

ci seq m
P, C, A

status flags

n = 3 ; f = 1

rw
*

rw
*

rw
*

P = Prepare (n)
C = Commit (n)
A = Accept – ready to execute - (1)
PE, CE, AE = Error form of each (tri-state) flag – mismatch or timeout

…

Figure 5.2: Setup and permissions of shared and memory buffers and internal structure
of the protocol buffers in wo memory.

sitive to the bitfield of the leader and ensures that no further modification of the string
are possible once a bit is set in the bitfield.

Because each buffer can be written by exactly one replica (or in case of request
buffers by exactly one client), we have implicit writer authentication, but this authenti-
cation is not transferable, as explained in Section 3.1.2.2.

5.1.2 Execution Environment
There are several ways to establish the execution environment iBFT requires. For ex-
ample, trusted-trustworthy kernels, at least the boot code of such kernels, may estab-
lish shared-memory mappings to grant read-only access to remote peers and restricted
write access to memory. However, it is also possible to completely remove such a ker-
nel (or boot code) from the RCB by hardwiring each replica’s core to the read port
(but not to the write port) of the trusted memory devices defined in Section 5.4. iBFT
requires no kernel support or privilege changes once replicas are started, but will of
course benefit from client-identifying signals or from a kernel for sharing the CPUs of
replicas with other applications. Even the wake up of passive replicas can work with-
out kernel support, provided the platform offers a sleep/wait mechanism, such as x86
monitor/mwait, at application level.

iBFT is concerned primarily with reaching consensus among replicas efficiently.
However, with the help of a trusted copy operation, which we shall further describe in
Section 5.7.7, iBFT can be converted into a resilience mechanism that is as powerful as
Midir (though with a larger RCB).

68

5.2 Fault Model

Introspection is built for scenarios where a number of tightly-coupled nodes operate in
consensus in a multitude of possible configurations with different implications on the
RCB and hence on the trustworthiness of the replication scheme. We consider hosted
as well as bare-metal implementations (e.g., with replicas executing in a single chip on
the cores of a multi- or many-core system). In the remainder of this thesis, we will
primarily refer to a bare-metal execution of iBFT . For bare-metal configurations, we
consider tightly-coupled systems to be comprised of sufficiently many nodes to execute
all n replicas N = {s0, . . . , sn�1} concurrently, such that n = 2f+1. We follow a model
with architectural hybridization, where trusted-trustworthy components and other parts
of the RCB follow a distinct fault model.

We consider fault models at two ends of a spectrum. At the one end, we investigate
contemporary systems that rely on a trusted hypervisor to configure and isolate replicas.
In these systems, the software and hardware components required for establishing the
replicas’ fault containment (e.g., memory management units (MMUs)) remain part of
the RCB. On this end of the spectrum, up to f replicas may exhibit arbitrary faults, but
only at application-level. Hypervisor and hardware faults cannot be tolerated. At the
other end of the spectrum are systems where cores may fail arbitrarily, even at hardware
level, but not in a way where such a hardware failure brings down other cores. At this
end, we tolerate up to f arbitrary faults at hard- or software-level, as long as the physical
effects of faults remain confined to the core or the data it produces. These include bit-
flips in local state, wrong computations, among others, but no power glitches that bring
down neighboring cores and also no faults in the power distribution and clock networks,
which are often shared and span large areas of the chip. Multi-chip solutions, such as
triplicated ECUs with access to a shared memory, are one example of such a configura-
tion. However, multi- and manycore systems on a chip have the potential to achieve the
same fault containment, provided power and clock distribution are handled carefully.
In particular chiplet-based solutions bear the promise of achieving the required level of
fault containment.

The former side of the spectrum seems to contradict the whole purpose of this thesis,
however, we remind the reader that (i) this represents only one end of the spectrum of
configurations where iBFT could be used and (ii), unlike Midir, iBFT’a primary concern
is an accelerated form of consensus, although it can also be used to achieve the same
goals as Midir.

Implementations of the trusted-trustworthy component, write-once memory (wo for
short), may follow distinct fault models of which we consider two flavors, orthogonal
to the question of which parts of the hardware to trust:

• Write-once memory implementations that do not fail.

69

• Write-once memory implementations that can fail, but only by crashing and in a
detectable manner.

For the former, we assume these memories to eventually complete Introspection and
write operations and to report the last value written. Moreover, we assume they prevent
overwriting values that have been marked as ’ready’. In this setting, no further progress
guarantees can be conveyed once a write-once memory crashes. Our second trust model
considers such crashes. We aim to continue guaranteeing progress unless more than
a total of f replicas become faulty or their memories crash. We further assume these
memories crash only in a detectable manner. As long as memory value errors build
up slowly, the combination of ECCs, memory scrubbing and deliberate crashing2 (once
ECC detects more errors than can be corrected) ensures safety despite crashes. Also
notice that we only bound the total number of faults, not distinguishing replicas with
a crashed write-once memory from compromised replicas. This aspect will become
important for the safety of our approach, since with c write-once memories crashed, we
will assume that the remaining system has to cope only with up to f � c Byzantine
replicas. One added benefit of this fault model is that intrusion detection systems may
deliberately crash a write-once memory to silence a suspected faulty replica.

When recovering, iBFT avoids extra replicas if service down times can be tolerated3.

5.3 Introspection
Introspection grants replicas the ability to observe the internal state and progress of
their peers without requiring the peers’ active involvement or consent. Rather than
having to request information and wait for the other replica to send it, Introspection
allows information-providing replicas to remain passive (or even become faulty) without
preventing other replicas from reading (but not writing) their peer’s state. In this setting,
the following challenges arise (see Section 3.1.2 for a deeper discussion):

1. From BFT-SMR protocols for tightly-coupled systems, one expects performance
characteristics close to the speed of the replica-connecting communication media.
In case of NoCs, this is several orders of magnitude faster than Ethernet TCP/IP
or UDP;

2. Because of this higher communication speed, the relative costs of cryptographic
means, traditionally used for ensuring transferable authentication, become pro-
hibitively high.

2The main reason a write-once memory would crash itself is when its correction ability for memory
faults is exhausted. Deliberate crashing is an additional mechanism, which requires consensus among
replicas and is applied only after a replica revealed itself as Byzantine, which cannot be known initially.

3Service down-time is only required if one wishes to prevent having to use the additional 2k replicas
(as described in [Sou+10]), where k equals the number of simultaneously rejuvenating replicas.

70

s1 s3
rw rw rws2

slot

rw

ro
Write-Once Memory

request

Figure 5.3: Relation among replicas and request blocks. The rw relation means the
replica has read and write access to the block and ro means the block is read-only for
that replica.

To address these challenges, each node leverages a trusted-trustworthy component,
implementing the notion of write-once (wo) memory: replicas obtain write access to
their dedicated wo memory block and read-only access to the blocks of all other replicas.
Figure 5.3 depicts this relation among replicas and request blocks. Once the replica
marks a value (a request) as written in their block, the trusted component prevents it
from being overwritten and hence replicas from changing proposals.

With such a mechanism in place, we designed a hybrid4 Introspection protocol,
iBFT , which we shall describe in detail in Section 5.5. iBFT naturally leans towards
the concept of optimistic protocols [Kap+12; DCK15], since passive replicas merely
have to introspect the progress of active replicas to catch up. Likewise, introspection
relieves replicas from assembling and transferring the progress they have made, which
further simplifies exceptional situations like view change or the catch-up after replicas
have been rejuvenated. For the latter, it is sufficient to reset to-be-rejuvenated replicas
to a fresh, diverse instance, from which they catch up independently.

5.4 Write-Once Memory
Write-once (wo) memory is a trusted-trustworthy memory abstraction, which leaves
reads unconstrained, but prevents successfully written values from being overwritten
until the location holding this value is reset. Reset is a consensual operation, which
requires agreement from f + 1 replicas. More specifically, it prevents replicas from

4Meaning, base on architectural hybridization.

71

modifying consensus information (the request string or progress flags) after they have
been set and until consensually reset.

We shall use two types of data for this type of memory:

• Write-once tri-state bitfields, whose bits can be set, but not cleared. Bits are split
into agreement and error bits, forming together the tri-state. Setting an agreement
bit, prevents the corresponding error bit to be set and vice versa.

• Fixed-size character strings, for requests, which cannot be overwritten once the
string is marked ’ready’ (e.g., by setting a bit in a corresponding write-once bit-
field).

In iBFT , a leader replica encodes client requests in a character string, stores it in its
write-once memory buffer and marks it as ’ready’. Introspecting this buffer and observ-
ing this status, peers detect this proposal and know from its status that the proposing
replica can no longer change what is suggested, which prevents equivocation. There-
fore, because followers read the same location as the leader, the leader cannot lie incon-
sistently about the client or its request. Note, it is still possible for a leader to make up a
request. Followers express their agreement/disagreement in a similar manner by setting
the corresponding bits in a write-once bitfield, which prevents equivocation during this
protocol step as well (i.e., a replica indicating agreement toward one of its peers and
disagreement to others).

We consider and evaluate two implementations of write-once memory:

1. Using microcode-based atomic operations to conditionally set bits in bitfields or
write parts of the string, provided the string is not marked ready - Section 5.4.1;

2. Using tagged memory hardware devices, configured as shown in Figure 5.4 -
Section 5.4.2.

The first variant is a trivial microcode exercise by constraining the operations that
can write the otherwise read-only memory pages used for wo-memory. In fact, aside
from this enforcement, contemporary architectures, such a Intel x86, can already emu-
late wo memory in a performance-preserving manner. Write-once bitfields are written
exclusively by bit set operations (e.g., a generalized lock; bts as in x86, i.e., atomic
bit test and set, but for tri-state flags). Write-once character strings are written by atomic
compare and swap, where compare checks for a specific value reserved to denote an
empty buffer. Of course, full microcode access would also allow for cache-lock pro-
tected multi-address conditional writes, checking the bitfield and writing conditionally
to the bits being clear. We have implemented the above emulation (cache-based) on x86
and a full implementation of the second variant on a Zync ZC702 FPGA. We describe
both in the following two sections.

72

Naturally, microcode-based variants rely on the correctness of all cores, caches and
of the cache coherence logic, leading to quite a large RCB in terms of necessarily trusted
hardware. Our tagged-memory variant partially lifts these correctness assumptions, by
removing the above components from the reliable computing base. However, it does so
by requiring special hardware to implement tags and to interpose writes to wo memory
for the purpose of checking tags. Instead of all cores and the whole memory subsystem,
only the tag-based wo memory devices must be trusted.

This trust can come in two forms: trusted to not fail at all, and, as it is more common
in other works leveraging architectural hybridization, trusted to fail only by crashing. In
this work, we investigate both and discuss the complications that arise from the latter,
even if it can be reliably detected whether a wo memory crashed.

5.4.1 Microcode-Based Write-Once Memory
By restricting which operations can be executed on write-once memory blocks (e.g.,
through a memory type or page permission flag), it is possible to utilize standard mem-
ory subsystems for implementing wo memory. The wo bitfields can be constrained
to only allow atomic bit-set operations (again, a generalized bit_test_and_set),
checking both error and agreement bits, and the wo strings can be realized by reserving
one value (e.g., exp = ~0UL) to denote writable words, and by writing with atomic
compare_exchange(dest, exp, value).

Cache locks are one common way to implement atomic read-modify-write instruc-
tions in modern processor architectures. More fine-grain control over these locks opens
further, more direct ways of implementing write-once semantics. For example, one
could make writes to strings conditional to tags in the bitfield being clear.

The above mechanisms do not prevent caching write-once memory locations. Aside
from requiring atomic operations to write these locations, microcode-based implemen-
tations therefore incur no extra overhead. However, the RCB of this variant necessarily
includes all hardware components that are required to execute instructions atomically
(i.e., all processors, caches and the used fragment of the memory subsystem). Our sec-
ond variant further reduces the RCB.

5.4.2 Tagged-Memory Based Write-Once Memory
Tagged memory implementations significantly reduce the RCB, albeit at the cost of
more expensive introspection operations. Rather than polling bitfields in local caches
(possibly leveraging sleep-wake techniques, such as x86’ monitor and mwait), repli-
cas must now reach out to remote (yet on-chip) devices to observe changes. Values can
no longer be cached without trusting caches and coherence logic.

Tagged memory [Feu71] stores values as unions of data and type while making it
dependent on the type which operations can be executed on the data. For write-once

73

…

s1

… … …

rw*

rw
clear?

s2 s3
n = 3; f = 1

data

rw* ro

noyes

cores:

tag device:

BRAM:
…

bits:

ro

Figure 5.4: Implementation of wo memory as a combination of an AXI slave tag-mem
device and a standard BRAM block.

memory, it suffices to implement a restricted form of tagged memory, using for each
string buffer a field of sticky bits to define whether the data buffer remains writeable (all
tag bits clear) or whether no further writes are allowed (any tag bit set).

To evaluate this variant, we have implemented wo memory as a combination of a
standard per-replica block RAM (BRAM) area to hold wo strings and an AXI5 slave
device for implementing wo bitfields (one per buffer), as shown in Figure 5.4. The
slave device interposes writes and prevents overwriting strings that are marked as ready
by setting any one of the bits in the corresponding bitfield. Moreover, it prevents the
replica from clearing bits by and-ing updates to the inverse of the bits that are already
set (both error and agreement bits), prior to or-ing them to the stored value. We denote
this in the figures as restricted read/write permissions (rw⇤). Peer replicas obtain direct
read-only access to the bitfields and string buffers.

Since, in this variant, writes are mediated by the trusted AXI slave device and since
the trusted BRAM guarantees that reads cannot modify data, cores no longer need to
be trustworthy, provided proper fault containment. This reduces the RCB to the tagged
memory device, its BRAM, and the reset devices, which we discuss in Section 5.4.4.
BRAM can be further protected from accidental faults through error correcting codes.

5The Advanced eXtensible Interface (AXI), part of the ARM Advanced Microcontroller Bus Archi-
tecture 3 (AXI3) and 4 (AXI4) specifications, is a communication interface for on-chip communication.
AXI interface IP blocks are common in block designs for Xilinx FPGAs, such as the one we use in our
implementation (Zynq ZC702).

74

5.4.3 Implementation Details
The simplest implementation of wo memory would be a local memory and/or scratchpad
SRAM (static random-access memory) with a device interposing the write enable signal
of the core. More specifically, taking the example of the tagged-memory hardware
implementation, write enabling is still done by the regular memory controller, however,
the enable signal is and-ed (logic-wise, with no code) with an enable signal produced
by the write-once memory upon receiving (from the memory controller) the address
that is to be written. This hardware logic will evaluate the bitfields set for that address
and determine whether the write is allowed. If it is not, the wo memory will decide a
write enable signal of 0, which and-ed with the 1 from the memory controller will still
prevent the write. The write-once memory is not merely a block of memory, but a simple
hardware construction that contains memory space and an associated logic for checking
flags for an incoming address that will determine the write enable output for writing on
the memory block. The allocation of this memory can be hard-coded in hardware at
design time (as in our proof of concept) or managed by a trusted hypervisor (in case of
the least harsh fault model as described in the our fault model in Section 5.2).

5.4.4 Reset
Obviously, replicas consume wo memory space over time as they use it to handle re-
quests. Therefore, once the available buffer space is used up, replicas have to reset wo
memory to clear all tags before they can resume processing requests. We shall align this
reset with the writing of a checkpoint and store the latter as well in wo memory. Double
buffering alternates between checkpoint buffers and ensures that the latest checkpoint
always remains intact.

Single handed or premature reset would allow replicas to equivocate, by resetting
and overwriting a field after another replica has introspected it. We therefore make
reset a consensual operation and require f + 1 replicas to agree before tags are cleared.
The fact that a reset has just happened is recorded by setting reset flags RF , which are
checked together with the remaining bits of the bitfield, but which can be cleared by the
replica to continue writing to the device. We shall return to the necessity to synchronize
checkpoints and resets in Section 5.5.4.

Several implementations of the above reset functionality are conceivable. For ex-
ample, replicas could enter a trusted execution environment (TEE), e.g., enclaves, and
implement reset by waiting for f + 1 replicas to enter their TEE before clearing wo
bitfields and strings through normal writes or through a dedicated interface. Obviously,
the permission to perform these operations must be restricted to the TEE.

Alternatively, reset could be implemented as a second device, similarly to write-
once memories, collecting the intention to reset in a bitfield with one bit per replica.
The device resets all wo memories (clearing bits and making strings writable again), as

75

described above, after f + 1 replicas agree by setting their reset bit. Naturally, reset
must as well be part of the RCB.

We have implemented the latter for our tagged-based implementation, but recom-
mend using a TEE-based implementation for microcode-based wo memory. The high
costs of entering and leaving TEEs discourage implementing also wo memory writes
in such an environment. We therefore limit the use of TEEs to the occasional resets
required to clear the buffers.

It is of course possible to implement a reset device per core, capable of only resetting
this core’s write-once memory, this must, however, be done as a trusted operation.

5.5 iBFT Protocol
We refer back to Figure 5.2 to briefly explain status flags before diving into the protocol
itself. P flags denote a resemblance to the prepare phase in PBFT, MinBFT and other
BFT protocols and serve the purpose of making sure replicas compared the leader’s
proposal with the client request. C flags correspond to the commit phase and ensure at
least f + 1 replicas prepared. A is set to mark the request ready to execute, i.e., after
seeing f +1 C flags. The error form of each flag (PE, CE and AE) denote a mismatch
or timeout in each phase of the protocol and trigger error handling, being then also used
to skip requests. AE is the final tri-state value of A and ensures the A flag is no longer
modifiable in case of error, preventing faulty replicas from tricking others into executing
requests.

In iBFT only the software replicas running the protocol (on different cores) and the
write-once memories are replicated6, as redundancy of other components is not man-
dated by the protocol. However, communication between the cores and all write-once
memories and reset devices is needed, but, since NoCs are now a common means of
having all-to-all communication between cores and certain peripherals like memories,
this is not an issue.

Let us then describe the behaviour of all involved parties in each phase of the proto-
col.

5.5.1 Clients
Clients ci store requests in their request buffer (Line 1 in Figure 5.5) and coordinate with
the server replicas by setting the client sequence number7

ci.req .seq to a value larger

6Replication of the reset device is also possible and, in fact, recommended.
7We shall use standard C notation for accessing arrays and structures, but allow whole structure copy

and compare. For example, buf l[x].P [l] in Line 17 in Figure 5.6 refers to slot x in the buffer of replica l,
accessing the P flag array in the message data structure at position l. That is, we set the P flag of replica
sl in this replica’s buffer at the current request slot x.

76

1 client ci:
2 ci.req .m := m

3 ci.req .seq := ci.req .seq + 1
4 wait f o r f + 1 matching replies in ci.reply [k]
5 from different replicas sk

Figure 5.5: Client Code

than the previously processed requests. After executing the request, the replicas si will
reply with this sequence number to indicate that they have completed this request. In
particular, this ensures that servers will not confuse requests that remain in the client’s
request buffer as new, since these requests will have a client sequence number ci.req .seq
that is smaller than or equal to the client sequence number of requests that the server
has already processed (Line 11 in Figure 5.6).

5.5.2 Normal Phase
iBFT draws inspiration from Veronese et al. [VCBL09] and implements a rotating leader
scheme, while recording proposals and agreement status in wo memory. We start by
discussing the iBFT pseudocode for error-free cases (shown in Figure 5.6), before we
consider error handling and the code in Figure 5.7. We have marked in both figures the
introspection operations poll8, copy and compare in green. Lines marked with ’*’
are required only to cope with crashing wo memories.

Replicas take turns as leaders for a configurable number of slots_per_leader
(Line 9). As long as unused slots are available, leaders insert pending client requests9

from ci.req in the next free slot x they control10, copying the message m, the client
sequence number seq and the client number ci into their buffer buf l[x] (Lines 10–16)
and marking it as complete by setting their P flag (Line 17), which in turn instructs wo
memory to prevent further writes to this character string.

Followers maintain a timeout for pending client requests to avoid indefinite waiting
for a faulty leader not proposing pending requests11. To find out when the leader has
proposed, they poll the P flag of the leader sl in the leader’s buffer (i.e., buf l[x].P [l]),

8The operation poll refers to repeated polling until the target is found.
9iBFT supports multiple clients. The leader, when searching for new client requests, polls different

clients, for instance in a round-robin fashion.
10In Figure 5.6, buffer_length refers to the number of slots and not the size of the slot.
11In a bare metal implementation, both the leader and its followers have no other means than polling

to learn about new requests, cycling through all clients in the process. Naturally, this can be quite inef-
ficient as the number of local clients grows. For this reason, we recommend complementing sleep/wait
techniques with some way of informing about the source, triggering the wake up. Hosted setups provide
this source information with the replica-invoking inter-process communication.

77

possibly using sleep/wake techniques to limit contention and to reduce energy consump-
tion (Line 22).

Finding P [l] set, followers know that the proposed request can no longer be changed
by the leader. They therefore copy the leader proposal to their buffer (Line 25) and com-
pare it against the proposal made by the client (Line 27). Upon match, they indicate their
agreement, by setting the leader’s P flag P [l] in their buffer (i.e., buf k[x].P [l]) (Line 28),
otherwise, in case of mismatch (or timeout), they set this flag as PE (remember flags
are tri-state).

Lacking transferable authentication, replicas cannot distinguish whether (1) the leader
is faulty and made up a request, (2) the client is faulty and tricked the leader into propos-
ing a wrong message12, or (3) both client and leader are faulty. Leaders therefore copy
the request into their wo memory and followers copy the leader request into their wo
memories to prepare for the case when the wo memory of the leader might crash. Fol-
lowers si compare the leader proposal against the client request and confirm this by
setting P [i]

After that, leader and followers alike wait for f+1 replicas sj to set their P flag P [j]
(Lines 32–36), after which they set their C flag (Line 37) (or CE in case of timeout) and
wait until f + 1 replicas have done the same before they consider the request as ready
to execute, by setting the A flag (Line 43). In particular, they confirm before setting
P -flags that remote copies match their copy as received from the leader.

Waiting for f + 1 C-flags set in f + 1 replicas ensures for the case when c  f wo
memories crash that f � 1 replicas confirmed the copies in the f � c+ 1 remaining wo
memories of replicas that participated in this operation. This third round is not required
when no further guarantees are given upon wo memory crash.

Ready requests are executed by the code (Lines 45–48) once previous slots are ex-
ecuted (or skipped as a result of error handling). Replicas reply by writing both the
response and the client sequence number to the reply buffer, which is mapped read-only
to the client (Lines 50–51). The consensual reply resets the client buffer13.

First marking slots by comparing proposals and by setting P flags accordingly, but
then delaying execution until all previous slots are executed or skipped, allows for some
out-of-order processing without sacrificing linearizability.

We shall return in Section 5.5.4, to checkpoints and the reset operation required to
clear the buffer when wrapping around and discuss now how iBFT handles errors.

12The word "wrong" here relates to equivocation, i.e., making other replicas believe the leader is in the
wrong when, in fact, the client changed the request.

13Multiple buffers can be used for each client to amortize reset costs.

78

6 server replica sk:
7 /* round 1 */
8 /* next free slot: x */
9 l e t l = x div slots_per_leader mod n

10 i f (sk = sl) /* leader */
11 i f x < buffer_length
12 search new client requests
13 on new request req from ci:
14 buf l[x].req .c := ci

15 buf l[x].req .seq := ci.req .seq
16 buf l[x].req .m := ci.req .m
17 set buf l[x].P [l]
18 x := x + 1
19 e l s e /* follower */
20 on new client requests (e.g., req from cj):
21 set timeout (cj)
22 p o l l buf l[x].P [l]
23 on buf l[x].P [l] is set:
24 /* found proposal from leader */
25 * copy buf l[x] to buf k[x]
26 l e t ci = buf k[x].req .ci
27 i f compare buf l[x].req = ci.req
28 set buf k[x].P [l]
29 x := x + 1
30 /* round 2: both */
31 f o r each slot y < x not ready to execute:
32 p o l l buf j [y].P [j] of other replicas sj

33 on buf j [y].P [j] is set:
34 * i f buf k[y].P [l] and compare buf j [y] = buf k[y]
35 set buf k[y].P [j]
36 on f + 1 P-flags are set:
37 * set buf k[y].C[k]
38 * /* round 3 */
39 * p o l l buf j [y].C[j] of other replicas sj

40 * on C[j] and f + 1 P-flags set in buf j [y]:
41 * set buf k[y].C[j]
42 * on f + 1 C-flags are set in f + 1 replicas
43 buf k[y].A[k] /*mark y as ready to execute*/
44 /* consensus reached */
45 f o r each slot y < x:
46 i f all slots z < y are executed or skipped
47 and ready to execute(y)
48 result := execute buf k[y].req .m
49 /* reply to client */
50 ci.reply [k].m := result
51 ci.reply [k].seq := buf k[y].req .seq
52 /* wrap around */
53 i f all slots y < x are executed
54 and x = buffer_length
55 compute checkpoint C

56 store C in write-once memory and set P flag
57 i f f + 1 matching checkpoints are written
58 reset flags, buffers
59 and the previous checkpoint; x := 0

Figure 5.6: Normal Phase, Checkpoint and Buffer Reset

79

5.5.3 Error Handling

Once healthy replicas time out they no longer modify their acceptance flags. Instead,
they set the error flags corresponding to all acceptance flags (AE flags) not yet set in all
slots y that have been proposed, but not yet completed, including in all slots for which
the current leader is responsible. We denote the latter by [x]. wo memory detects if the
A-flag or its corresponding error flag AE is set in f + 1 replicas and will trigger the
equivalent of the operation from Line 63 in all wo-memories to ensure replicas can no
longer change flags after the majority timed out. Replicas will not engage into actually
processing this timeout before either f + 1 � c replicas have prepared the request or
f + 1 � c reached an error state where the tri-state nature of flags prevent them from
preparing it later. Here, c is the number of wo memories that have crashed.

Similar to MinBFT, we define as necessary condition for a replicas to have prepared
a request that it has set f + 1 of its P -flags, which resembles iBFT’s notion of having
received f + 1 prepare messages. However, we consider a replica as prepared only if it
either completed to executing the request (i.e., if it has f + 1 C � flags and the A-flag
set as well, respectively only the A-flag for the no-crash case), or if it has timed out and
set all error flags for the agreement flags that remained unset and if in this state it has set
at least f + 1 P -flags. If replicas set a P -flag, the trusted wo memory implementation
prevents them to also set the E-flag. It is important to require replicas to have timed out
before considering them to be prepared in a state less advanced than all flags set that are
required for execution since replicas need to independently reach the same conclusion
whether or not a request should be processed.

Replicas execute those requests for which they find that f + 1 � c replicas having
prepared this request (Lines 70–74). They skip executing this slot if f + 1� c replicas
have reached an error state from which they cannot later prepare it (Line 75). Since the
leader’s wo memory might have crashed, this request may reside as a copy in another
replica’s buffer. Lines 71–72 identify this request.

5.5.4 Checkpoints and Reset

Once all slots are used up, replicas have to reset the buffer before they can proceed.
Without such a reset, slots, which now have flags set, would not be writable due to wo
memory preventing overwrites. However, there are three inherent race conditions when
resetting buffers:

1. A faulty replica may prematurely agree to reset the wo memories before the check-
point is stable;

2. A replica may vote to reset a buffer that has just been reset; and

80

60 /* replica sk */
61 on timeout or error:
62 f o r each slot y  [x]
63 set all error bits f o r unset agreement bits(*)
64 p o l l buf j [y] of other replicas sj

65 * l e t c be the number of \emph{wo} memories
66 * that have crashed
67 wait until either f + 1� c replicas have pre-
68 pared the request or f + 1� c have reached
69 an error state with � f + 1 E-flags set
70 in the former case
71 * identify request m such that m matches
72 * the request in the buffers of � f + 1� c

73 * replicas that have prepared this request
74 execute request // (ln. 46-51)
75 otherwise skip the slot by setting buf j [y].AE

Figure 5.7: Error handling

3. A lagging, but otherwise healthy, replica may resume in a slot after the other
replicas have reset all wo memories. In this case a faulty replica may exploit
the lagging replica to replay an old request that the lagging replica was about to
handle.

We avoid the first by requiring healthy replicas to first agree on a checkpoint and wait
for this checkpoint to stabilize before agreeing to reset the wo memories. Checkpoints
are written to write-once memory as well, using double buffering to always have a
valid checkpoint in place. Checkpoints include a version number to denote which of
the buffers holds the most recent checkpoint. Like for requests, wo memory prevents
modification of completed checkpoints by setting a corresponding P flag (Line 57).
Once a healthy replica detects f +1 matching checkpoints, it agrees to reset the buffers
in all replicas, including the now old checkpoint.

The second race is in fact an instance of the first, since without further precautions,
agreeing to reset after the reset already happened translates into prematurely agreeing
to the reset in the next round. We shall use the same mechanism to prevent the second
and third race condition: We use one additional flag RF in the bitfields to denote that
a reset has just happened. RF is checked when writing wo memory or when setting
flags to prevent any modification of the tag-based wo memory device due to ongoing
operations. Instead, these operations will fail, leaving the device in the state after reset,
which allows the replica to recover from this situation. Moreover, RF is checked when
agreeing to reset wo memory. The agreement is ignored when RF is set.

In consequence of the above, after each wo memory write or set flag operation and
after reset in Line 57, the replica checks whether the device has just undergone reset

81

and reacts to this by clearing all RF flags, loading the most recent checkpoints and
resuming from this checkpoint and an empty buffer. We have omitted these checks from
the pseudocode for better readability. RF flags are the only flags that can be reset by
the writing replica, but only by this one. As indicated above, the most recent checkpoint
is the one that received f + 1 agreement and that has the higher version number of the
two checkpoint slots.

5.5.5 Optimism
iBFT naturally leans towards the concept of optimistic protocols [Kap+12; DCK15],
since passive replicas merely have to introspect the progress of active replicas to catch
up. Likewise, introspection relieves replicas from assembling and transferring the progress
they have made, which further simplifies exceptional situations like view change or the
catch-up after replicas have been rejuvenated. For the latter, it is sufficient to reset
to-be-rejuvenated replicas to a fresh, diverse instance, from which they catch up inde-
pendently.

5.6 Experimental Results
We have measured our a cache-based emulation on x86 of the microcode-based14 im-
plementation of iBFT on an AMD Ryzen 7 3700X 8-Core CPU (2 threads per code)
running at 2.2GHz (with 64GB RAM, 256KB L1I, 256KB L1D, 4MB L2 and 32MB
L3 caches); and a tag-based implementation on a Zync-7 ZC702 FPGA configured with
3 Microblaze cores (running at 50MHz) and AXI busses to connect to our tag-mem
devices and the BRAM block.

Our measurements focus on two scenarios: agreement with all replicas participat-
ing and catch-up with one replica remaining unresponsive while the remaining replicas
reach agreement to then catch up with the progress they made. Replicas do not write
checkpoints or wrap around buffers in this scenario. We evaluate both wo failure by
crashing and the case where no further guarantees are provided in case wo-memory
fails.

5.6.1 Implementation
The emulation of cache-based wo memory modifies wo bitfields with atomic or in-
structions (lock; orq) and wo strings with atomic compare exchange instructions
(lock; cmpxchgq), which check for ⇠0UL. The implementation always writes the
complete string buffer for a single slot to prevent faulty replicas from appending to

14A full microcode implementation would require access to the full x86 Intel microcode, which we do
not have.

82

shorter prefixes. Reads are through arbitrary instructions. The emulation described
above exhibits correct performance characteristics, but does not prevent writes through
other instructions or unaligned writes with the above instructions. This behaviour can
be easily retrofitted through microcode instructions.

We evaluated performance on the cache-based x86 emulation, with up to n = 2f +
1 = 13, to tolerate up to f = 6 faults. On the other hand, on the hardware tag-based
wo memory implementation, we evaluated exclusively the setting f = 1 due to FPGA
resource constrains15.

As baseline, we have implemented the seminal hybrid BFT protocol MinBFT [Ver+13]
over the same communication medium that we use for iBFT , but without any restric-
tions. That is, we use cachable shared-memory buffers on x86 and a shared BRAM
block for Microblaze16. We have inlined MinBFT’s trusted-trustworthy component —
the USIG — into the C++ code to not introduce further overheads. For the same rea-
son, we omit client signature generation and validation. That is, the primary overhead of
MinBFT origins from HMAC computation and validation, which iBFT does not require.
The choice for comparison with MinBFT relates to its high efficiency and state-of-the-
art reputation in hybrid BFT protocols.

5.6.2 Performance Cache-Based Implementation
All figures plot the mean latency of request handling in cycles as experienced by clients
(i.e., the time between issuing a request and receiving f + 1 matching responses) (y-
axis), for an increasing number of tolerated faults (x-axis).

Figure 5.8 shows the time to agreement (Scenario 1), i.e., normal case execution,
whereas Figure 5.9 shows the two cases of Scenario 2, that is, normal-case operation of
n�1 replicas and time for the late replica to catch up. The figures identify the graph bars
corresponding to the iBFT cache-based version of wo memory on x86 in the situation
where wo memories can crash, side-by-side with the corresponding tag-based hardware
implementation (which we shall discuss next). These results are as well compared with
a shared memory-based implementation of MinBFT.

Catch up in MinBFT is implemented as the lagging replica receiving the messages
sent by the other replicas (by reading their message buffers) and processing the request
as usual.

As can be seen, iBFT is roughly 10 times faster than MinBFT when reaching agree-
ment (16, respectively if wo memories do not crash), which we attribute mostly to the

15Note that we refer specifically to Zynq ZC702 resource constraints, where we could only instantiate
up to 4 MicroBlaze cores plus the corresponding tagged memory devices, block memories and AXI
interfaces, bringing the maximum possible f to 1 (n = 3). Other, modern FPGA boards will allow for
more replicas to coexist.

16To be precise, we use the very same architecture for both settings, but access no tag-mem devices in
MinBFT and use the shared BRAM block in iBFT only for storing measurements.

83

0

50000

100000

150000

200000

250000

300000

1 2 3 4 5 6

La
te

nc
y

[c
yc

le
s]

Number of Faulty Replicas

iBFT vs. MinBFT - Cache-Based x86 + HW Tagged Memory,
Normal Phase - Memories Can Crash

iBFT - x86
iBFT - HW
MinBFT - x86
MinBFT - HW

Figure 5.8: Latency of normal-case operation (in cycles), comparing cache-based and
the tag-mem variant of iBFT against MinBFT on the same platform. wo memories can
crash.

0

50000

100000

150000

200000

250000

300000

1 2 3 4 5 6

La
te

nc
y

[c
yc

le
s]

Number of Faulty Replicas

iBFT Cache-Based x86 + HW Tagged Memory, with Catchup
- Memories Can Crash

iBFT - x86 - N
iBFT - x86 - C
iBFT - HW - N
iBFT - HW - C
MinBFT - x86 - N
MinBFT - x86 - C
MinBFT - HW - N
MinBFT - HW - C

Figure 5.9: Latency of normal case operation (N) with one late replica and catch up (C)
of this replica. wo memories can crash.

84

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5 6

La
te

nc
y

[c
yc

le
s]

Number of Faulty Replicas

iBFT - x86 + HW - Normal Phase - Crash vs. No Crash

iBFT - x86 - Crash
iBFT - HW - Crash
iBFT - x86 - No Crash
iBFT - HW - No Crash

Figure 5.10: Comparing normal case iBFT when wo memories can crash vs. when they
are assumed not to not crash.

costs of HMAC computation and validation, but in a significantly smaller part also to
the larger message sizes that origin from having to transmit up to two HMACS (for
commit). The optimization of iBFT , which allows lagging replicas to catch up to the
progress of the leading ones, proved effective, by requiring only 1019 cycles on average
for f = 1 (324 respectively for the no-crash version), with a linear increase for higher
f .

We consider also a model where wo memories do not crash. Figures 5.10 and 5.11
represent a comparison of both environments: where memories can crash and where
memories do not crash.

In an environment with no wo crashes, the reader may notice a stabilization of the
latency with the increasing number of replicas participating. The ratio of reads (to
introspect peers) versus writes (to update replicas’ own state) increases. The cache
coherence protocol executes these reads in parallel, which leads to the smoother slope
in the graph. Cross hyper-thread17 pre-fetching further improves performance.

It is also relevant to mention latency numbers can slightly vary depending on which
replicas are late. Since replicas can proceed once they find f + 1 occurrences of the in-
formation sought after, and since introspected replicas start sequentially from the replica
with the lowest ID to the one with the highest, if there is no late replica in the first f +1,

17Cores can support hyper-threading, the implementation of which would be assumed part of the RCB
in our cache-based variant. In our second variant, the core as a whole is considered the fault containment
domain. That is, even though the core may have multiple hardware threats, there can only be one replica
on this core.

85

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6

La
te

nc
y

[c
yc

le
s]

Number of Faulty Replicas

iBFT - x86 + HW - Normal Phase + Catchup - Crash vs. No
Crash

iBFT - x86 - N - Crash
iBFT - x86 - C - Crash
iBFT - HW - N - Crash
iBFT - HW - C - Crash
iBFT - x86 - N - No Crash
iBFT - x86 - C - No Crash
iBFT - HW - N - No Crash
iBFT - HW - C - No Crash

Figure 5.11: Comparing normal case iBFT plus catch up when wo memories can crash
vs. when they are assumed not to not crash.

latency will not be affected by non-consecutive reads of late replicas’ state. For the
shown evaluation we let the late replica always be the one with highest ID, meaning
it does not interfere with normal-case operation. Giving late replicas low IDs would
slightly increase latency by a few cycles corresponding to introspecting the late replica.

5.6.3 Performance Tag-Based Implementation (FPGA)
For the following discussion, let us notice that writing a tag-mem device register / a
word in the shared BRAM block requires 65 cycles. This corresponds roughly to the
time required to reach the shared cache (L3) on x86. This translates into 99 cycles for
setting flags and 106 cycles for reading.

Like above, Figs. 5.8 and 5.9 show the performance for the two scenarios (normal-
case only and normal-case plus catch up) for iBFT , and Figs. 5.10 and 5.11 represent
the no-crash case.

As can be seen, the previous results from the cache-based wo memory implemen-
tation are confirmed. With a factor of 23.24 (83.09 respectively if wo memories do not
crash), iBFT is, on average, almost one order of magnitude faster than shared-memory
MinBFT and almost two orders of magnitude faster in the no-crash version. However,
the percentiles are much closer to the average times (see Figure 5.12), which on one
side is due to the higher determinism of tightly-coupled memory accesses over coherent
caches, with frequent bounces when polling shared data for state changes. However, it
also indicates higher best case costs due to the inability to cache state. Catch up remains

86

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5 6

La
te

nc
y

[c
yc

le
s]

Number of Faulty Replicas

iBFT - x86 + HW - Normal Phase - Memories Can Crash - 5% and
95% Percentiles

iBFT - x86
iBFT - HW

Figure 5.12: Mean values (bars) together with the 5% and 95% percentiles for both
versions of the wo memory in iBFT .

relatively fast with a 5927 cycle latency on average (1972 respectively for the no-crash
version).

5.6.4 Code Size and Hardware Utilization

Table 5.1 lists the C++ lines of code (LoC) for iBFT . Also shown are the VHDL source
lines of code for the logic alone and the overall design (logic plus AXI interface) of the
tagged memory device and the C++ lines of code for interfacing with this device. The
reset device LoCs are minimal and, thus, not shown.

Table 5.2 shows the FPGA resources of the (post-synthesis) implementation of tagged
memory and of the reset device. LUTs are units with no state, used to implement the
combinatorial logic; while registers hold state, e.g, to keep buffer contents, but imple-
ment no logic. Each F7 Mux (wide multiplexer) combines the outputs of two LUTs
together, while F8 Muxes combine the outputs of two F7 Muxes.

5.7 iBFT Discussions

We dedicate this Section to the discussion of iBFT-related details, clarifications and
enhancements (such as the trusted copy operation discussed in Section 5.7.7).

87

iBFT LoC Crash No Crash
Common Definitions 49 C++ 49 C++
Agreement (Normal Case) 404 C++ 278 C++
Error Handling 154 C++ 100 C++
Recover from Checkpoint 83 C++ 83 C++
Total: 690 C++ 510 C++
wo memory
Tag Mem SW Interface 156/207 C++ 156/207 C++
Tag Mem HW 64 / 97 VHDL 64 / 97 VHDL

Table 5.1: Code size in lines of C++ and VHDL code. For the tagged memory (Tag
Mem) interface, we separate the hardware-based (HW)/cache-based (SW) implemen-
tations; and for the tagged memory hardware implementation we separate logic/total
(logic plus port declaration).

Tagged Memory Reset Device
wo/ AXI w/ AXI w / AXI

Slice LUTs 2339 2372 58
Slice Registers 2144 2400 145
F7 Mutexes 803 803
F8 Mutexes 286 286

Table 5.2: Top table: FPGA resources required by the hardware-based tagged memory
implementation (without / with AXI interface). Bottom table: FPGA resources required
by the hardware-based reset device implementation. The few lines of code are imple-
mented directly on n = 3 AXI interfaces, thus we present here the total numbers of AXI
code plus custom reset code. The values presented denote resource utilization for each
interface.

88

5.7.1 Performance

The latency for iBFT (in both implementations of wo memory) clearly demonstrates
the benefit of constructing hybrid BFT-SMR protocols specifically for tightly coupled
systems. The value of introspection is confirmed, in particular when replicas have to
catch up to the progress of their peers.

Of course, we are naturally introducing overhead in comparison to non-replicated
operation, but with added fault tolerance and resilience. Considering the costs of fully
replicating the whole system (e.g., ECU), iBFT offers a safety advantage without greatly
increasing replication costs. This is a performance/safety trade-off. As seen in the
comparison with MinBFT, if one considers the added cost of the required cryptographic
operations plus the rest of the protocol, in order to achieve the same safety result, iBFT
greatly accelerates consensus.

As for the presented versions, although a direct performance comparison between
cache and tag-based wo memory is not possible, we would like to emphasize the sig-
nificant RCB reduction when opting for the second solution, even in otherwise cache-
coherent systems, in particular when core isolation can be enforced without having to
trust caches or their coherence logic.

Finally, as we expected, the hardware overhead, in terms of resources, of tag-based
wo memory is dominated by the resources required for the tightly-coupled memory
(i.e., the BRAM block itself). Costs for the tag-mem device, as shown in Table 5.2
are negligible. We therefore propose to augment on-chip memories, with tag-based wo
memories to enable iBFT and similar algorithms that would benefit from write-once
behavior.

5.7.2 Equivocation

In the setting discussed in [CJKR12] the impossibility result regarding non-equivocation
and transferable authentication (discussed in Section 3.1.2) applies since faulty replicas
may change the information stored in memory before, while or after it is read and,
without synchronizing writes with reading operations, they may do so to deliver some
information to one group of replicas, while conveying different information to others.
It is, therefore, impossible to distinguish a scenario where the sender of a message
falsely sends (i.e., writes) some information from one where the receiver (i.e., reader)
modifies it. iBFT circumvents the above impossibility by not relying on fault diagnosis
for reaching agreement. This problem is solved by relying on architectural hybridization
and the introduction of trusted-trustworthy mechanisms as described by the fault model
in Section 5.2. Assuming at most f replicas are faulty and given replicas only have write
access to their own write-once memories, we can ensure replicas stick to their votes.

89

5.7.3 Write-Once Memory Pitfalls

Let us discuss some of the pitfalls wo memory and introspection provide for BFT-SMR
protocols and how iBFTovercomes them.

The first aspect an attentive reader might wonder about is why iBFTis a hybrid pro-
tocol. In a homogeneous protocol without transferable authentication, faulty replicas
may continue to lie inconsistently about error states, reporting for example to one repli-
cas that the request got executed and to the other that the request is not yet prepared.

This dilemma remains even in the presence of wo memory in the following two
aspects: First, without tri-state flags and wo memory enforcing that acceptance and
error cannot be set simultaneously, a faulty replica could indicate acceptance to one
healthy replica, making it believe that the request has to be executed, to then set also the
error flag, revealing itself as faulty and making it impossible for another healthy replica
to believe that the request should have been executed.

The second aspect occurs when a healthy replica keeps lagging behind while another
healthy replica experiences a timeout. Because of the impossibility to distinguish late
from faulty replicas, healthy replicas can only wait for up to n � f replicas before
it would need to proceed with error handling. Since in iBFT , we aim at reaching a
conclusion whether to execute or skip a slot without coordinating with other replicas
(e.g., in a view change), situations might arise where less than f + 1 of these replicas
have prepared the request. In this case, the only conclusion a replica may take is to skip
the slot. However, the lagging replica may later prepare the request and tip the global
state over this threshold, which consequently indicates execution. We avoid this by wo
memory triggering part of the timeout operation also in the other wo memories once
they find f +1 replicas to have set their timeout or execution indicating A-flag (to either
accept or the corresponding error state).

Crashing wo memories cause a further difficulty of this sort. Some replicas may
find the memory not yet crashed while others will see it crashed at a later stage18.
iBFTrecovers from crashed memories exclusively during error handling. Our time-
out mechanism ensures that before a replica starts processing timeouts (i.e., after f + 1
replicas have timed out as well or already executed the requesst) that all unset flags of
all wo memories for this state are set to their error state. Therefore if one replicas sees
the request prepared with up to c wo-memories crashed (i.e., f + 1 � c replicas have
prepared this request), then the same is true if another replica finds c0 > c wo-memories
crashed (i.e., it sees the same replicas having prepared the request minus possibly the
c
0 � c replicas whose wo memories crashed as well).

18Thanks to an anonymous reviewer for spotting this pitfall.

90

5.7.4 Leader or Leaderless?
In iBFT , the leader provides total order for the client requests. A leaderless approach
is possible if the assignments of client requests to slots is deterministic. Without a
leader, replicas would still have to agree on an order or rely on some secondary ordering
mechanism to do that for them. Having a rotating leader simplifies agreeing on the
sequence of requests and their parameters.

5.7.5 Safety and Liveness
iBFT , as described in Figures 5.6 and 5.7, is safe and live in the sense that only those
requests are executed for which a quorum of f + 1 replicas has reached consensus
(in the agreed upon order and with the additional notion that if one healthy replica
executes a request then all do so) and that the protocol makes progress in phases where
the environment exhibits sufficient synchrony. Let us provide a formal argument for
these facts.

Safety: It is easy to see why the base iBFTprotocol is safe under a fault model
where no guarantees are made once a wo memory crashes. Once proposed, the leader
can no longer change its proposal. So for the same slot, either all healthy replicas will
confirm the leader proposal (by setting their P -flag in Line 29) or set their E-flags when
they time out. Therefore, because the wo-memory timeout mechanisms sets unset E-
flags after f + 1 replicas have either executed or timed out, timeout handling replicas
either find f + 1 replicas to have prepared the request (i.e., f + 1 P-flags set) or f + 1
replicas that have not (and due to the timeout mechanism) will not in the future execute
the request. Before timing out, healthy replicas will not execute a request unless it is
prepared. Replicas cannot change their flags once set. Therefore, a request will be
executed by all healthy replicas if and only if it is executed by one healthy replica. The
deterministic order follows from the way replicas proceed through slots and from the
fact that reset prevents replicas from proceeding without first clearing the RF -flags.

To ensure safety in case wo-memory crashes, we have to see why replicas will only
find valid requests in the matching f + 1� c non-crashed wo memories of replicas that
have prepared the request. If c = f , then only healthy replicas remain with non-crashed
wo memories, who trivially fulfill this condition. If c < f , then f � c faulty replicas
may have forged a request when copying from the leader or from the client. But then
for the request to be prepared, a healthy replica would need to have f + 1 P -flags set,
which it will only do if it can confirm that the faulty replica has copied the proposal
correctly. Like above, the fact that a healthy replica executes a request if and only if all
healthy replicas do so follows from the insight that during normal phase operation, no
healthy replica will execute a request unless it finds f + 1 replicas having verified the
copies in f other replicas.

Liveness: Liveness during "good" phases of bounded computation and communi-

91

cation, follows from the fact that at no time, healthy replicas wait for more than n � f

replicas. During error handling, where replicas wait in Lines 68-69 for either f + 1� c

replicas to have prepared the request or for f + 1 � c to have reached an error state
where they have all unset E-flags set. The wo memory timeout mechanism fulfills this
condition, latest after f + 1 replicas have their A-flag or the corresponding E-flag set.
Therefore, eventually the system will reach a state where replicas experience synchrony
long enough to process the last timeout their experienced before this situation, caught
up to the same slot and executed a slot for which a healthy leader proposed a request by
a correct client, skipping faulty ones.

5.7.6 Why is Homogeneous Consensus Unfeasible?
As discussed in Section 3.1.2, without synchronizing all introspection operations, a
third replica can no longer distinguish whether the originator has produced a wrong
message at the time it was introspected by a replica which then correctly accuses the
originator as being faulty, or whether the introspecting replica has wrongly accused
the originator. In particular, this third replica cannot check the originator buffer for
this information, because by the time it is introspecting this buffer, the originator may
already have replaced the message with a correct one.

Synchronizing introspection would allow all introspecting replicas to see the same
message. However, the hardware overhead and complications entailed with synchroniz-
ing access to the buffers outweigh any benefits obtained from Introspection itself; not
to mention the possibility of faulty replicas stalling its peers if locks are used to enforce
simultaneous and exclusive reads.

From the above, we further see that there is no full replacement for commonly ap-
plied message authentication techniques such as signatures or MAC vectors. Unfor-
tunately, proofs of agreement, by chaining certificates of the above kinds from a quo-
rum of different replicas, cease to work in introspection-only protocols (i.e., without
architectural hybridization and trusted-trustworthy mechanisms), as do certificates for
checkpoints.

5.7.7 Trusted Copy Operation
iBFT does not, however, solve our safe platform reconfiguration problem by itself. In
order to safely reconfigure privileges and update critical data, a trusted copy operation
is required to copy the agree-upon request from the replicas’ local write-once memory
to the designated memory zone. Essentially, in addition to consensus, Midir’s T2-H2
voters offer in-place updates by writing the agreed upon value to the intended location.
iBFT reaches consensus out-of-place in the replicas’ write-once memory buffers. To
apply these consensual decisions, we therefore have to introduce a trusted operation to

92

1 TC tci:
2 f o r slot l = 0 to max_slots
3 i f l marked ready to execute on f + 1 replicas
4 dest.[req.m.addr] := buf l[x].req .m.data

5 e l s e
6 l + 1

Figure 5.13: Trusted Copy Operation.

allow replicas to copy the agreed upon value to the agreed upon address, unchanged and
exactly once.

Naturally, such a copy operation would need to be implemented by some trusted-
trustworthy mechanism, either in hardware (as tagged memory) or in microcode (cached-
based version). Introspecting replicas’ wo memory, this mechanism, upon finding f +1
matches on ready-to-execute marked requests, would then copy the agreed-upon result
to the destination address, much like T2-H2 forwards it through the network to the final
location. Figure 5.13 lists the simple pseudo code for this procedure. An atomic op-
eration must check the ready-to-execute flag on f + 1 replicas for a given slot l (since
a faulty one may just deliberately mark some request as agreed upon without actually
achieving consensus) and write the data associated with that slot in the appropriate des-
tination denoted by req.m.addr, a piece of information embedded within request m
itself. The copy must be made in the order found in the slots, as such, if a request for
a certain slot did not reach agreement, it is skipped and the next slot is checked. Fig-
ure 5.14 illustrates the trusted copy mechanism, copying an agreed-upon request to the
designated destination address.

As with wo memory and T2-H2, the implementation of the trusted copy is simple
enough to be trusted not to fail and to be easier to verify, however, it can be made
redundant for continued operation in the case of a crash and the memory itself (plus
the memory controller) may as well have some form of redundancy depending on the
desired fault model. Recall that the failure of a wo memory or a T2-H2 simply means
the associated replica is now considered faulty. The trusted copy is not implemented
for each replica, but instead an instance that collects results. Therefore, its level of
redundancy is not dependent on the value of n.

5.7.8 Remote Direct-Memory Accesses
Although this work focuses exclusively on manycore systems, our results apply equally
well to coarser grain replica consolidation schemes, for example, by placing repli-
cas on multiprocessor sockets and connecting them through buses, or by leveraging
server nodes connected through a network supporting remote direct-memory accesses
(RDMA). As replicas move closer together, new mechanisms become available through

93

s1 s2 s3

n = 3 ; f = 1

… … …

Destination Address

Trusted Copy
Mechanism

Execute Execute

f + 1

Figure 5.14: Representation of the trusted copy mechanism, copying an agreed-upon
request to the designated destination address.

which replicas can act over their peers.

94

Chapter 6

Solutions Discussion

This Chapter will be dedicated to the comparison of our two solution, Midir and iBFT ,
and to a conclusive dive into persistent consensus and the successful elimination of
SPoFs. We shall compare the two solutions as a whole as well as the trusted devices
used by each.

6.1 iBFT vs. Midir
The choice of Midir over iBFT or vice versa pertains to a couple of trade-offs regarding
RCB size, simplicity, overhead, cacheability, memory restrictions and MPSoC area.
The study of both solutions envisioned the evaluation of these performance/reliability
points.

RCB: As previosuly discussed in Chapter 5, iBFT variants themselves present RCB
trade-offs. While the tagged memory implementation trades cacheability for a reduced
RCB (at the cost of more expensive Introspection operations), trusting the tagged mem-
ory device, its BRAM, and a reset device (and the trusted copy operation, if used); the
microcode-based variant must rely on the correctness of all cores, caches and the cache
coherence logic, leading to quite a large RCB in terms of necessarily trusted hardware.
Midir on the other hand, requires solely the T2-H2 device to be trusted.

Simplicity: iBFT relies on simpler trusted-trustworthy mechanisms than Midir does,
which in turn leads to greater performance. In other words, iBFT further accelerates
consensus and is an optimization over Midir on that parameter. The wo memory is more
concise and much simpler logic-wise than T2-H2. An easy way to make such a compar-
ison, is to analyze the inner workings of the tagged memory version of iBFT vs. T2-H2
as they are both hardware-based. While tagged memory merely checks if a bit (ready
flag) is set to decide whether or not to let a write through, T2-H2 must perform access
control via the capability registers, collect votes, check their sequence number, wait for
f + 1 matches, forward the agreed upon request and check for reset votes.

95

0

2000

4000

6000

8000

10000

12000

Midir Single
Buffer

Midir N Buffer iBFT w/ Crash iBFT w/ No Crash

La
te

nc
y

[c
yc

le
s]

Midir vs. iBFT

Figure 6.1: Comparison of the normal case phase hardware FPGA implementation’s
mean cycle count of both variants of the Midir voters (single buffer and N buffer) and
both fault model cases of iBFT (the case where wo memories can crash and the one
where they are assumed not to crash).

Overhead: Figure 6.1 compares the normal case phase hardware FPGA implemen-
tations (mean cycle count) of both the single buffer and N buffer variants of Midir, in the
per-replica capability space context studied in Section 4.6, and both fault model cases
of iBFT , the case where wo memories can crash and the one where they are assumed
not to crash. The fairest way to compare iBFTand Midir in terms of overhead is to com-
pare the results of the fastest Midir version, N buffer, with the version of iBFT with the
same fault model, i.e., when memories are allowed to crash, given the T2-H2s in Midir
are as well allowed to fail by crashing. In the case just described, iBFT beats Midir’s
performance by approximately 1068 cycles. This is observable mostly due to simplicity
and cacheability. However, if we compare Midir’s N buffer variant with the case where
wo memories crash, then iBFT is around 6555 cyles faster. Recall that iBFT is safe
whether or not the wo memories crash, the protocol just gains higher complexity if they
are allowed to.

Additional Votes: iBFT gives us the system call log directly when voting, as re-
quests are stored in slots up until all slots are used, which is dependent on memory size,
and a checkpoint must be taken. It, however, requires a trusted copy to transfer agreed
upon votes elsewhere. Midir’s T2-H2s, on the other hand, require voting on insert-
ing entries in the system call log, which is an independent data structure in consensual
memory, outside of the voting space.

Cacheability: Voters’ contents cannot be cached, leading to poorer performance in
comparison to wo memory microcode-based implementation, thus behaving similarly,

96

in that regard, to the tagged memory version.
Memory Restrictions: Midir’s voters present a memory restriction. As they are

designed in hardware, buffer size and quantity is determined at design time, making the
available space for voting limited. iBFT , on the other hand, resolves voting in memory,
with the trusted device merely mediating the success of write operations.

6.2 T2-H2 vs. Write-Once Memory
The most obvious way in which wo differs from T2-H2 has to do with the consensus
buffers’ location within the MPSoC. While the former opts for an in-memory approach,
with a trusted-trustworthy device mediating write accesses to memory; the latter instead
places this buffers within the T2-H2 voters themselves.

Another difference lies in the functionalities offered by each: while T2-H2 yields in
itself trusted-trustworthy access control and voting, wo merely protects the voting space
by means of trusted-trustworthy tri-state bitfields.

Additionally, T2-H2 is constructed in a way that the reconfiguration voter’s output
is directly connected to its own access control/privilege reconfiguration interface, en-
suring updates to this information are done exclusively through agreement of a majority
of replicas. Also, the access control capabilities therein provide fault isolation for that
tile. On the other hand, wo by itself does not provide fault isolation or privilege re-
configuration and, instead, needs to be aided by the trusted copy operation discussed
in Section 5.7.7. Nevertheless, wo incurs less overhead than T2-H2, given its greater
simplicity.

6.3 Persistent Consensus
One of the requirements established for the successful construction of a SPoF-free D-
MPSoC was the guarantee of persistent consensus, i.e., the ability to allow replicas
to catch up if late/lagging, always ensuring enough replicas know about the requests
agreed for execution. Although the ways to tackle this requirement were addressed
for both solutions throughout the description of their protocols, we summarize here the
main points for each.

iBFT tackles this both through Introspection’s nature and with the way checkpoints
and resets are handled (see Section 5.5.4). Introspection makes it possible for a late
replica to introspect other at any time and catch up with their progress and checkpointing
requiring healthy replicas to first agree on it and wait for it to stabilize before agreeing to
reset the wo memories. In addition, the RF flag stops a lagging replica from resuming
in a slot after the other replicas have reset all wo memories. Hence, the availability and
consistency of consensus information does not waver.

97

Midir ensures this same property via the syscall and error logs, and through careful
handling of sequence numbers in subordinate votes. The syscall log records agreed upon
system calls and the error log error information to protect it from getting lost if the voter
is reset prematurely. Thus, even if a replica misses one or more votes and, thus, cannot
read the consensus data directly from the voter itself, it can always know precisely what
happened during the agreement phases it missed.

6.4 How is the SPoF Eliminated?
As discussed earlier, Midir and iBFTequipped with a trusted copy operation both man-
age to resolve all D-MPSoC requirements to address the main problem we set to solve in
this thesis: eliminating all software low-level SPoFs. In essence, this is accomplished by
combining techniques from the state of the art, such as on-chip tile isolation, capability-
based access control and voting; with ways to safely reconfigure privileges and, thus,
resource management, in a fast enough manner, without relying on a trusted underly-
ing software layer, tasked to implement the fault containment and communication that
resilience protocols require.

Midir’s T2-H2s, being the trusted-trustworthy devices that represents the core of the
architecture and means through which critical operations are handled, are trusted not to
fail. Our threat model in fact assumes T2-H2 to fail only by crash (due to its simplicity),
in which case we consider the replica failed. Similarly, iBFT is already prepared to
consider both cases where the write-once memory is (i) trusted to not fail at all or (ii)
trusted to fail only by crashing (as supported by its simplicity) up to the threshold f .
Additionally, T2-H2’s and write-once memory’s low complexity makes them easy to
formally verify, specially in comparison to micro-kernels and micro-hypervisors.

98

Chapter 7

Resilience

In this Chapter, long-run resilience will be discussed in the context of Midir. Although
the rejuvenation techniques mentioned below can and should be applied to iBFT as well,
for the sake of simplicity, and also due to the more robust nature of the former, we shall
focus solely on Midir’s rejuvenation and tile relocation.

As long as no more than f replicas become compromised, voting on critical op-
erations prevents harm, while mandatory consensual privilege change puts a stop to
faulty replicas breaking out of their fault containment domains: the tiles on which they
execute. However, over time, any healthy majority may get depleted, asking for rejuve-
nation. In our case, rejuvenation must be done over bare metal, that is, without having
to rely on the correctness of software in an underlying infrastructure. Rejuvenation is
the process of returning suspected or proven faulty replicas into a healthy state that is
sufficiently diverse from the states adversaries have already analyzed. Without any un-
derlying infrastructure, rejuvenation translates into performing a sequence of critical
(and therefore voted upon) operations that conclude in booting the rejuvenated replicas
into a fresh image. From there, replicas access the shared syscall log to catch up with
the others. The voted operations are:

1. Stop all execution in the tile to prevent compromised code from manipulating the
new binary while booting;

2. Copy the boot trampoline code to the tile1;

3. Equip the tile with capabilities to read the new binary;

4. Reboot the tile (to roll forward into the new state).

1This step is required if the booted core in a tile cannot fetch instructions through capabilities, but
only from tile-local scratchpad memory.

99

Figure 7.1: Possible configurations when rejuvenating proven faulty vs. suspected
faulty replicas (shown for f = 2).

7.1 Restoring Synchrony
Rejuvenation needs to outpace adversaries in compromising more than f replicas. Clearly,
this is not possible in an asynchronous model [FLP85]. To obtain synchrony, replicas
enter a reduced functionality mode (akin to "exception handling") where they stop exe-
cuting client requests, disable interrupts to avoid interrupt bursts, and only focus on re-
juvenation. Reducing their functionality, limits their threat surfaces and how adversaries
may interfere, but also the performance replicas are able to achieve. Therefore, latest af-
ter some cool-down period, tiles will start to exhibit known bounded execution times for
rejuvenation, however, at costs that likely will not be sustainable for normal operation.
Prioritizing rejuvenation traffic at the NoC and switching to deterministic arbitration
leads to similar performance/predictability trade-offs and known bounded communica-
tion delays. We set timeouts larger than these bounds to identify non-responsive replicas
as faulty.

7.2 Rejuvenating Proven vs. Suspected Faulty Replicas
Figure 7.1 illustrates the problem we have to solve when rejuvenating up to k � f

replicas at a time with less than 2f +1+2k replicas, as suggested in [SNV06; Sou+10]
as long as only proven faulty replicas are rejuvenated (left case), enough healthy replicas
remain as rejuvenators to outvote the remaining faulty ones.

Rejuvenating k proven faulty replicas, n � k = 2f + 1 � k rejuvenators remain of
which at most f � k are faulty; we have f + 1 healthy rejuvenators. Unfortunately,
no such proof will be available when rejuvenating replicas proactively. In this case, a
situation similar to the one on the right may occur, where, out of the n� k rejuvenators,
f replicas are faulty. To resolve it, we have arranged for the rejuvenation steps to use
double buffering to not be destructive until we reach the final Step 4 in which we reboot
to the new image. Therefore, we can always resume executing the suspected (but not

100

proven faulty) replica in a state where it left off. Now, the only way for a replica to
not get rejuvenated is if there is disagreement in any of the votes for one of the four
steps. But then, together with the vote of the suspected replicas, we can diagnose the
cause of this disagreement to proof that one of the disagreeing replicas is faulty. Once
diagnosed, we first reactively rejuvenate this proven faulty replica before returning to
proactively rejuvenating the suspected. Notice, that we have to repeat all four steps and
that the image is used up if the first rejuvenation failed between Step 3 and 4. Switching
the system to synchronous mode for rejuvenation ensures that the votes for Step 1–4
will not repeatedly timeout and that therefore the above diagnosis will become possible.
What remains to see is why all replicas will be rejuvenated, even if faulty replicas may
conceal themselves by exposing other replicas when pushing error state. First, proac-
tive rejuvenation will be triggered periodically for all replicas in groups of size k and
healthy replicas will persist rejuvenating these replicas until all are rejuvenated (or re-
located). Therefore, the only way to prevent this rejuvenation is by causing subordinate
votes for the above steps to fail. But then, we obtain proof of a faulty replica, which we
reactively rejuvenate to escape the worst-case situation of f healthy vs. f faulty reju-
venators. Once there, we can roll forward the proactive rejuvenation of the k replicas.
The remaining faulty replicas may still cause voters to get suspended, but they cannot
prevent the votes from succeeding (latest after f � 1 retries).

7.3 Diversity and Replica Pool
We have already seen that it is necessary to present adversaries a moving target. To
achieve this, we exploit privilege reversion and decouple replica generation from use,
by managing a pool of unused replicas (see Figure 7.2). A possibly replicated local
application, to which none of the kernel replicas has read or write access, fills this pool
either by decrypting images from an external source or by creating them with the help of
a local diversifier. The kernel grants this application write access to the next free buffer
without ever giving kernel replicas read or write access. It revokes this write access once
the image is prepared. Only in Step 3 of the rejuvenation procedure, when equipping
the to-be rejuvenated replica with capabilities to a new binary, will the other replicas
engage in a vote to grant this replica and only this replica read access to the next unused
image in the replica pool. This image is then used up in the process of rejuvenating the
replica. It may happen that the votes up to Step 3 succeed, but a faulty replica reveals
itself in Step 4 before rebooting the to-be rejuvenated replica. Since in this case the
replica rolls back to its previous state, the image must be dropped and a fresh image
chosen when returning to the rejuvenation of this replica. Otherwise, if f > 1, both the
replica that failed the reboot and the to-be rejuvenated replica could be faulty, which
would give the adversary the possibility to analyze the image and thereby reduce the
time to compromise this replica.

101

RAM

mem. ctrl.
on-chip memory
log

(rejuvenating)h1

shared state
(e.g., page tables)

…

err

core
code data

h2

code data

h3

code data

replica pool

…

…

external
server /

local
diversifier

vbuf
verr vi

core core

Figure 7.2: Rejuvenation of replica h3. To create a new, sufficiently diverse replica, h1

and h2 provide h3 with a capability to the next fresh image in the replica pool. The
remaining images remain inaccessible until they are required.

7.4 Relocation
Relocation becomes necessary if a tile fails persistently due to permanent hardware
errors. We evade this tile and allocate a new kernel replica at another tile. The steps for
relocation are the same as for rejuvenation, except that the old tile is stopped and the
new tile rebooted. However, special care must be taken to not violate property 1 and
allow the old tile to impersonate the new one in votes. We resolve this by implementing a
trusted wormhole protocol [Ver06] between the involved T2-H2s, which replaces Step 4
in the rejuvenation sequence. The kernel replicas agree to silence the persistently failing
tile (which is an operation at this tile’s T2-H2 to clear all capabilities) and to initiate the
reboot of the specified destination tile through that tile’s T2-H2. This way, the two
tiles are never active simultaneously. Since we assume Mon crashes are detectable,
replicas can always reboot the new tile after detecting such a crash happening during
the wormhole protocol. Tiles with a crashed Mon cannot invoke capabilities and in turn
execute operations on external objects.

102

Chapter 8

Application-Level Use Case

Aside from the protection of low-level management software and their elimination as a
SPoF, the target of this thesis, the solutions presented so far can as well have application-
level uses. In the MPSoC scenario already studied here, different (replicated) applica-
tions may share critical data. However, applications are not necessarily trusted even if
replicated, as emphasized by the discussion in Chapter 2. In this Chapter, we provide an
example of how solutions such as iBFT or Midir can be extended for use at application
level and for the protection of critical data shared by replicated applications that may
represent a subsystem within the chip.

8.1 Data Structures for Critical Data Protection
We have addressed the consensual execution of critical operations in the context of
dynamic tightly-coupled, manycore environments. We now turn our attention to the
data kept and shared by application-level subsystems (interchangeably, applications
or replica groups) and, assuming for our study the increasingly complex functional-
ity of critical systems is realized by multiple subsystems working together on the same
multi- or many-core system-on-a-chip (MPSoC), we investigate how such subsystems
can share data and how we can apply the strategies devised to further protect critical
data structures in general, building up on a specific example provided in Section 4.6,
where a data structure was used to keep consensually-updated capabilities in memory.
This issue is relevant both if a single replicated subsystem is accessing the data or if
multiple communicating subsystems share this data and, possibly, manipulate it.

As we shall demonstrate in Section 8.1.1, classical multi-threaded applications need
necessarily be correct, as one malicious thread is enough to corrupt a data structure kept
in shared memory, meaning also that, as we have discussed previously, replication is not
enough. The solution presented in this Chapter makes it possible to tolerate a minority
of compromised application replicas. Only the application, as a whole, needs to be

103

Thread 1 Thread 2 Thread 3 Replica 1 Replica 2 Replica 3

Group 1

Voter

Consensually-updated Memory(i) (ii)Shared Data Structure

Figure 8.1: Shared data structure updated by multiple threads vs. consensual memory
updated by a replicated application.

correct, as it shall be secured by a majority of correct replicas. Figure 8.1 illustrates
this point, where in (i) threads manipulate the same shared data structure and in (ii) the
memory where is resides is updated consensually.

Solutions have been proposed to carefully control when replicas can write individ-
ual elements of critical data structures [Gol84; CVP99]. However, the overheads of
these solutions are significant and they necessarily involve OS functionality which, in
consequence, has to be part of each replica’s RCB.

As such, it becomes necessary to construct a complexity-reducing solution that not
only tackles overheads imposed by previous solutions, but also enhances safety by sig-
nificantly reducing the RCB. We must also establish the same level of autonomy over
data structures in replicated subsystems as seen in regular multi-threaded applications,
where threads query the structure on their own and often update it in a similar fashion,
constrained only by the requirement to acquire one or more locks to ensure certain op-
erations are executed in a mutually exclusive way. This parallels with the distributed
systems’ reality, where, following their replication and interaction pattern, operations
on data structures can be provided as a replicated service, invoked by clients to query
and update them.

There are, however, two major ways data structures can be shared. We shall describe
and discuss the setting where i) a single read\write subsystem is used to manipulate
local per-replica data structures, we call this managing subsystem the "owner group";
and ii) consensually-updated shared data structures. We extend the use of these data
structures to multiple subsystems, where several applications interact with the same

104

data simultaneously (with provided synchrony).
With Midir we explored the consensual execution of critical operations on a BFT-

like, fault-isolated manycore architecture by means of trusted-trustworthy hardware
components; and with iBFT we looked at means of accelerating consensus, taking
advantage of the tight-coupling on the manycore environment and using a write-once
memory abstraction to prevent replicas from equivocating others (both by means of
hardware components called tagged memory or a with microcode-based implementa-
tion). Concepts from both can be used to achieve our generic consensual data structures
goal, however, we shall borrow from the mechanisms from the latter, as it has improved
performance.

As demonstrated with Midir, there are performance and memory usage trade-offs
when using (i) a read-shared per-replica memory region or (ii) a single, read-write
shared and consensually-updated one with which all replicas interact with (see Sec-
tion 4.6). We measured there the performance of capability installation in the setting of
a private data structure in each replica (i), where updating the data structure meant vot-
ing to install the capability, to reply to the client (application requesting the hypervisor
to perform the operation) and to mark the system call as finished; and in the setting of
a read-shared, consensually-updated data structure (ii), trading off speed for a smaller
memory footprint by introducing additional votes for track keeping. The choice is then
application dependent.

In the construction of consensual data structures, it is tempting to search for solu-
tions where consensus about individual updates is reached within the elements forming
the data structure. For example, one could equip the next pointer of a linked list with
bits set for all those replicas that have agreed to its value. However, such constructions
require complex ownership management (and, in turn, costly privilege management)
operations to prevent the value-proposing replica from modifying other parts of the data
structure and followers of this leader from tampering with the agreement bits of other
replicas or resetting their own after agreement has been reached. Instead, we choose to
utilize iBFT mechanisms.

8.1.1 Motivating Example
Unlike what may be apparent at first, safely updating a data structure does not come
down to voting and reaching consensus on write operations pertaining to said object.
To further illustrate this statement, let us briefly discuss the pitfalls of consensual data
structures on the example of appending cyclic doubly-linked lists, which we shall use
as running example throughout the remainder of this chapter.

The append operation merges two lists A and B by putting together a list contain-
ing all elements from A and B, while maintaining their order. In case of cyclic doubly-
linked lists (without head element), this implies dereferencing the prev pointers of the
element at the head of A and B to obtain the respective tail element, and connecting the

105

Figure 8.2: Naive consensual append of two cyclic double-linked lists.

head of B to the tail of A and vice versa. The pseudocode in Figure 8.2 illustrates this
operation, if we replace the consensual assignment :=c with normal assignment := and
execute this code in a single thread.

Replicated execution is, however, prone to race conditions, such as the following,
which we illustrate in Figure 8.2 by marking with superscripts what the individual repli-
cas read and store in their local variable tmp. Assume replica r2 is malicious and
replica r3 is correct but slightly delayed in executing the code presented in the figure.
Replica r1 and r2 advance to Line 4, voting to consensually assign A->prev->next,
B->prev->next, and A->prev to their respective values. In particular, they read
A->prev as the last element of list A and store this result in tmp. The update :=c

denotes such a consensual update, i.e., a state modification that reached agreement by
a safe quorum in the system. Before executing Line 5, replica r2 allows r3 to catch up.
However, because r1 and r2 already updated A->prev in Line 4, replica r3 reads tmp
= B->prev, the last element of list B. Consequently, without further precautions, r3
will propose B’s last element when reaching agreement in Line 5 on what to store in
B->prev. Anticipating this confusion, the compromised replica r2 may even agree
with this proposal to consensually update B->prev to the situation shown in the lower
part of Figure 8.2.

Notice that each individual vote was correct and that there is also no confusion about
sequence numbers. Instead, the root cause of the race condition at hand is the write in
Line 4, which modifies a value that still needs to be read by other replicas if they are late.
We shall call these writes destructive for the data structure-manipulating subsystem.

8.1.2 Setting
Even though so far we have considered a single MPSoC system with internally repli-
cated low-level software, for the purpose of this section, we shall extend our setting to
the resilient interaction among multiple subsystems (applications) sharing data struc-
tures. We consider both bare-metal and hosted settings. For the latter, we assume that
the operating-system kernel gives the abstraction of being correct and impenetrable by

106

adversaries through the usage of a solution like iBFT or Midir.
Let G = {G0, . . . , Gm} be the set of subsystems (replica groups) that share a con-

sensual data structure. Each group Gi 2 G represents an application ⌧i in the original
(non-resilient) system. Additionally, groups may have different replication degrees. Let
N = {n0, . . . , nmax}. Each group may have a number of replicas n0 to nmax, depend-
ing on their criticality. We strive to tolerate that up to fi < ni of the replicas in each
group can be Byzantine (i.e., be faulty in an arbitrarily malicious manner). We denote
the replicas of a group Gi by s

1
i , . . . s

ni
i and write Gi = {s1i , . . . s

ni
i }. We assume groups

have disjoint replica sets (i.e., Gi \Gj = ; for i 6= j).
Depending on the choice of a per-replica or a common, consensually-updated shared

memory space, each replica has write access to a region of memory that can either only
be modified by this replica or consensually modified by all groups. In case of the former,
we assume this region to hold the per-replica copies of the data structure or its elements.
For the latter, read/write shared consensual data structures, atomic operations in the
form of compare and swap (CAS) are required to ensure updates are performed atom-
ically when multiple groups simultaneously request an update. For this end, trusted-
trustworthy memory controllers, such as Azura for Midir or an enhanced trusted copy
operation for iBFT , will ensure concurrent updates happen atomically relative to each
other and relative to concurrent reads, at the granularity of the vote. We shall further
describe Azura and the enhanced copy in Section 8.1.6.

8.1.2.1 Trust Model

Replicas of one group trust the consensual decisions of all other groups. That is, if
group gi performs an operation consensually with agreement from a fault threshold fi

exceeding quorum of replicas, then the effects of this operation are assumed to be correct
by all healthy replicas of all other groups.

The rationale for this system and trust model is as follows. Typically, applications
operate on shared data structures with code of different complexity and criticality. For
example, one pattern commonly found in real-time applications includes complex pro-
ducers that are monitored by much simpler observers which, in turn, are responsible
for verifying the timely creation of data items (e.g., the next control command) and for
initiating countermeasures if no such command was received in time. Whereas in such a
setting, more exploitable vulnerabilities are to be expected in complex subsystems, mo-
tivating higher fault thresholds fi and replication degrees ni for this group gi, criticality
may as well indicate higher replication degrees due to the consequences of failure on
the safety of the overall system. By being able to operate with different such values for
different groups, we retain the flexibility to optimize each group individually.

Also shown in the above example is the importance of different functionalities (e.g.,
complex control and safety monitoring) providing liveness and quality of service while
retaining safety. Whereas individual replicas in the functionality-providing groups may

107

fail, the functionality as a whole must be provided for an operational and safe system,
even if, depending on the application, more distinguished trust models are possible (e.g.,
failure of the complex control as long as shared data structures remain consistent to not
propagate this failure to other subsystems).

Notice also that we explicitly include the possibility of applications that are com-
prised of several components, which, despite forming single-points of failure in the
original, non-resilient instance, are sufficiently isolated to cope with situations of other
components failing.

8.1.2.2 Threat Model

For this setting, we tolerate up to fi arbitrary (i.e., Byzantine) faults in each replica group
and choose ni large enough for this fault threshold (e.g., ni = 2fi + 1 with quorums
Qi of size |Qi| = fi + 1). Adversaries compromise up to fi replicas of a group no
faster than T

a
i . The overall amount of faults is, therefore, f = ⌃

i
fi and T

a = min{T a
i }.

A rejuvenation period T
r
i of rejuvenating all ni replicas of gi faster than T

a
i prevents

exhaustion failures.

8.1.3 Single Replicated Subsystem
The simplest case where consensual data structures are applied is the case of a sin-
gle, replicated subsystem interacting with the data structure. Such a scenario is greatly
equivalent to the capability space management example provided in Midir. There, we
measured the performance of agreeing on and executing client-invoked system calls
for granting and priming capabilities kept in a data structure. This measurement was
performed in two different implementations of capability spaces: (i) as a private data
structure in each replica, requiring, e.g., in the case of prime, a vote to install capa-
bilities (add an element to a data structure) and two further to reply to the client and
mark the system call as finished; and (ii) as a read-shared, consensually-updated data
structure, trading off speed for a smaller memory footprint by introducing additional
votes for track keeping. Figure 8.3 exemplifies the interaction between the replicas of
the subsystem and the (i) local or (ii) the consensually-updated memory. In both cases
a voting trusted-trustworthy mechanism is used to agree on the order of the updates to
perform. In the figure, this mechanism is represented as black-box voting entity for sim-
plicity, hiding the details of iBFT . However, for a local memory approach, upon reach-
ing agreement within the data-structure-implementing group, each replica individually
applies the operation on its own copy of the data structure, residing on each replica’s
local memory block. On the other hand, when using consensually-updated memory, the
voting results are applied to a single block of memory, shared by all replicas directly by
the trusted operation of the voting mechanism, preventing replicas from directly mod-

108

Replica 1 Replica 2 Replica 3

Group 1

Local
Memory

Local
Memory

Local
Memory

Replica 1 Replica 2 Replica 3

Group 1

Voter

Consensually-updated Memory(i) (ii)

Figure 8.3: Subsystem interacting with (i) local or (ii) the consensually-updated mem-
ory.

ifying the memory region where the shared structure resides and avoiding the need to
have a structure-owning group.

Even a single group interacting with a data structure requires attention to some de-
tails, depending on the approach chosen for the memory implementation. In such a
scenario, issues only arise when using approach (ii):

• 1) As exemplified in Section 8.1.1, agreeing on old values is crucial to safely per-
forming destructive updates. This issue is, however, only relevant for approach
(ii), as in (i) each replica will read from its own local memory, to which faulty
replicas shall have no access, an assumption substantiated by the presented archi-
tectures. Thus, in (ii), replicas of the subsystem must vote not only on the update
to perform, but also keep the values that will be destroyed, e.g., by storing them
in consensually-updated group local storage before any writes can be made, i.e.,
applied by the voting mechanism;

• 2) Group local storage, a per-group consensual memory, then stores old values
needed temporarily for the safety of an update. In a sense, group local storage has
the same purpose as the system call log in Midir, storing information that would
otherwise not be know to enough replicas;

• 3) Ensuring a deterministic order for subordinate votes ensures correct replicas
apply the same updates to the same state. In Midir, we called subordinate votes
the sequence of voted operations that resulted from agreeing on a system call, such

109

as performing critical operations and responding to the client. Our solution does
not require lock-step execution and makes no assumptions on the order in which
replicas update their local state. Nevertheless, to simplify tracing the progress of
the update (and in turn the code that late or rebooted replicas have to execute to
catch up), it is important that this requirement is met;

• 4) Replicas read the structures according to the implementation limitations and
taking into account read/write synchrony. In the case of local per-replica struc-
tures, the fault threshold accounts for one limitation, as a majority of copies must
be read to ensure faulty replicas did not meddle with the data. We shall go into
such details in Section 8.1.5;

The positive trade-off for using approach (ii) comes from the smaller memory foot-
print and the lack of overhead from reading a majority of copies.

8.1.4 Replica Groups
We now generalize our approach from a single subsystem to multiple interacting sub-
systems, reading and updating common data structures. In addition to the concurrency
(and possibly malicious intent of faulty replicas) in a single group, a second dimension
is added for concurrency and malicious intent, by allowing different groups and the ma-
licious replicas therein to perform different operations concurrently on the same data
structure. Specifically, faulty replicas of one group now find as potential victims the
healthy replicas of other groups and as potential accomplices the faulty replicas of these
groups. In other words, there are now two dimensions of concurrency: (i) replicas of
the same group accessing a shared data structure and (ii) synchronization across replica
groups. We therefore have to ensure in addition the following principles:

• P1: Replicas s
j
i of a group Gi can only participate in consensual operations of

that group;

• P2: Replicas sji cannot impersonate replicas of other groups;

• P3: Faulty replicas in Gi cannot create inconsistencies in the data structure by
performing concurrent operations (consensually, on their own or in collusion with
other faulty replicas).

We achieve P1 and P2 by constraining replicas to per replica group-dedicated voting.
That is, at any point in time, vk 2 V is either exclusively accessible by group Gi or
multiplexed among groups in a trustworthy manner. To address P3, we introduce the
notion of consensual locks, to coordinate which group obtains access to specific parts
of the data structure.

110

1 reader:
2 pre := read seqn
3 read structure
4 post = read seqn
5 i f pre != post
6 repeat
7
8 writer:
9 seqn++

10 write structure
11 seqn++

Figure 8.4: Sequence lock code

Before moving to the details regarding the different ways consensual data structures
can be implemented, let us further illustrate the remaining minutiae on achieving safe
reading and updates. We shall enumerate here these important technicalities, explaining
and referring to them later in Section 8.1.5 as we describe the implementations.

8.1.4.1 Multiple Non-Replicated Readers

The simplest case of reading interaction with multiple subsystems pertains to multi-
ple non-replicated readers interacting with a single data-structure-implementing group.
This would be the case if readers consisted of non-replicated subsystems. Different
subsystems may have distinct replication degrees, according, e.g., to their criticality. As
such, a subsystem with no replicas is possible to co-exist with other subsystems.

Synchronization: For a subsystem to have a chance to read a consistent snapshot of
the data structure, it must know whether a write operation is ongoing or whether such
a write interleaved with the read, a knowledge sequence locks can secure. Figure 8.4
demonstrates their use. When a reader initiates a read, it saves the value of the current
sequence lock, held by structure-implementing group. It then proceeds to read the data
structure and, once the operation is terminated, compare the saved value with the se-
quence lock value after the read. If they differ, it means a write was performed during
the read, deeming a repetition of the read necessary.

Writers, on the other hand, increase the sequence lock before writing and then again
after writing. When the value is odd, it means a write is ongoing, when it is even it
means the write concluded.

Faulty replica behaviour: Faulty replicas may not adhere to data structure invari-
ants. This is an issue affecting only the local per-replica approach, as the shared con-
sensual option has the trusted copy operation performing the write to a single memory
region. In the former approach, each replica updates their local copy individually, mean-
ing that faulty ones may introduce null pointers, pointers to arbitrary memory, pointers

111

Replica 1 Replica 2 Replica 3

Group 1

Replica 1 Replica 2 Replica 3

Group 2

Consensually-updated Memory
Version 2

Version 3

Voter

Figure 8.5: Replicated reader group reading different versions of the same correct data
structure in the case where the values read are not agreed by at least f + 1.

to addresses that will result in a fault (if the memory region is not pre-mapped) and cre-
ate wrong structures, e.g., cycles in supposedly acyclic lists and wrong prev and next

pointers.

8.1.4.2 Multiple Replicated Readers

When the interaction involves multiple replicated readers, a new issue arises: the possi-
bility of inconsistent reads when reading from the same shared data structure. It may so
happen that replicas within a subsystem read different versions of the same correct struc-
ture. As discussed before, even within a manycore’s NoC, synchronicity cannot always
be guaranteed, as such, latency and interleaved writes may lead two correct replicas to
read different values. Figure 8.5 exemplifies such a scenario. Replicas 1 and 3 read
version 3 of the structure, while replica 2 reads version 2. Thus, consensus can only be
reached if f + 1 replicas reach agreement on the same value and same version number.

8.1.5 Implementations

Several implementations are possible depending on how one wishes to share the data
and synchronize operations. In this section we show some options and discuss their
respective advantages and pitfalls.

112

Service:

Clients:

!!! !!" !!#

Group G1

!"! !"" !"#

Group G2

insert C a#er B,G1.seq)!!,)!#
dequeue A, G2.seq)"",)"#,)"$

!#! !#" !##

Data Structure Service: Group G3

!"% !"$

H
A B

H
A B

f

H
A‘

B
H

B
H

A‘
H

B
H

B
H

A‘
H

C C C‘

0

1

2

• Both R and W exec by
the DS-holding group

• Reach consensus on op
• Exec on local state

time

Figure 8.6: Data structure service.

8.1.5.1 Data Structure Service

Implementing the data structure as a service (client-server model) in essence means one
of the subsystems will be the implementing data structure-managing group. Figure 8.6
exemplifies such an implementation and a demo interaction. In it, two groups G1 and G2

act as clients of the service, wishing to update the shared data structure that is held by
group G3. Each group has a different request, with G1 asking to insert element C after
B and G2 asking to dequeue A. Here, a local per-replica memory model is provided
and each replica is responsible for updating their own copy of the data. Informally, each
group votes on the operation to perform on their own and, when consensus has been
reached, the operation is proposed for execution in the implementing group, which, in
turn, orders the requests received from all the groups and has each replica update their
local data structure independently. Both read and write operations are executed by the
data structure-holding group, meaning replicas from other groups cannot ever directly
access the data.

Such an approach comes, of course, with its own pitfalls. Namely, locally updating
state means faulty replicas are free to modify their state as they please, ignoring the
requests, applying it more than once, updating the data in a completely different way
than intended or deleting it. This incurs some overhead in operations such as reads,
which have to be performed on a majority of replicas to ensure the results reflects a
correct majority.

113

Service:

Clients:

time

• Direct exec of read ops
• Consensus for write

ops

1) pre = read seq lock
2) read data struct
3) if (read seq lock =/ pre)

repeat op

!!! !!" !!#

Group G1

!"! !"" !"#

Group G2

dequeue A, G2.seq """, ""#, ""$

!!! !!" !!#

!"% !"$

H
A B

H
A B

f

H
A‘

B
H

B
H

A‘
H

0
1

2

search B

Data Structure Service: Group G3

0
1

2

0
1

2

Figure 8.7: Read-shared data structure service.

8.1.5.2 Read-Shared Per-Replica Data Structures

Data structure services can implement read-shared data structures in a similar manner
by granting subsystems direct read access to the memory regions of the service replicas.
Write requests (such as dequeueing an element) are handled as described above, how-
ever, subsystems are expected to perform read requests on their own as depicted by the
dashed lines in Figure 8.7.

As shown in the Figure and described in Section 8.1.4.1, several challenges must be
addressed to compensate for the service no longer ordering read requests and to mask
potentially faulty service replicas. For the former, we shall at first only discuss how
replicas can detect when exactly they are reading (relative to the writes of other groups)
to then return in Section 8.1.6.4 to more elaborate synchronization schemes. For a group
(here G1) to have a chance to read a consistent snapshot of the data structure, it must
know whether a write operation is ongoing or whether such a write interleaved with the
read. Sequence locks1 meet this requirement. That is, healthy replicas mark the data

1Sequence locks (seqlock) are a reader–writer mechanism addressing the issue of writer starvation. A
seqlock stores both a lock and a sequence number. Naturally, the lock enables synchronization between
two writers, while the counter secures consistency for readers. When updating the shared data, the writer
increments the sequence number, both after acquiring the lock and before releasing it. Readers read the
sequence number before and after reading the shared data. If the sequence number is odd when read, then
a writer took the lock while the data was being read and it may have changed. If the sequence numbers
are different, a writer has changed the data while it was being read. Reader keep on polling until they
manage to read the same even sequence number before and after reading the data.

114

structure as being written by incrementing a sequence number from an even to an odd
value, advancing it again after the write completes. Readers check this sequence number
before and after the read, waiting for the sequence number to become even if the initial
check revealed an ongoing write (odd sequence number) and repeating the operation if
sequence numbers do not match.

Notice that it may well happen that different replicas (e.g., s11 and s
2
1) read the struc-

ture at different points in time (i.e., with different sequence numbers), as first mentioned
in Section 8.1.4.2. It then depends on the operation implemented by this group whether
such behavior can be tolerated. In Section 8.1.6.4, we will discuss consensual locks to
allow replicas to read the data structure in the same state.

The second challenge — masking the behavior of faulty replicas during reads —
requires further precautions. For one, faulty replicas are not guaranteed to follow the
sequence number scheme depicted above. This means they may present a consistent
view while modifying it. Moreover, no guarantee is provided whether data is structured
in the expected way. For example, in 8.7, replica s

3
3 presents cycles to the reader in a

supposedly acyclic list. Traversal (e.g., when searching for element B) can, therefore,
not rely on the validity of pointers or on the termination condition one expects from a
correct instance. Before dereferencing a pointer, reading replicas must therefore check
its validity (i.e., whether they point into the service replica’s memory region). More-
over, as stated, readers cannot advance through the replica copies individually, but must
consider multiple copies at the same time to detect faults in structural mismatches.

8.1.5.3 Element-Granular Read-Shared Consensual Data Structures

Read-shared consensual data structures still require a dedicated replica group to perform
all updates on the data structure. This limits concurrency, in particular if groups com-
monly operate on their own elements without changing the structure (e.g., if they update
the data kept in the list elements they added without re-enqueueing them to a different
position). Element-granular read-shared consensual data structures provide for this ex-
tra concurrency. Rather than holding a copy of the entire data structure, the replica group
which inserts an element keeps a copy of this element in each of its replica’s memory
region. This way, updates to this element can be performed directly without having to
first consult with another replica group. To enqueue this element into the structure, the
help of other groups is required to update in their respective elements pointers that must
refer to this new element.

Figure 8.8 illustrates this approach. To insert B, group G2 allocates a copy of it
in their replica’s memory regions and then requests group G1, owner of element A to
update A’s next pointer to refer to B.

Several implementation variants are imaginable. However, approaches capable of
reusing the same pointer for all copies suggest themselves. Assuming the memory re-
gion of each replica is known, then allocating elements at the same offset in this region

115

time

!!!

!!"

!!#

Group G1 Group G2

H
A

H
A0

H
A0

f

0

!"!

!""

!"#

B

B

0

B

0

f

0
H

A

H
A

H
A

A.next := B,
G2.seq

""", ""#
1
2

1
2

1
2

1
2

1
2

1
2

Figure 8.8: Element-granular read-shared data structure service.

allows a single pointer to be encoded as identifying the group and this offset.

8.1.5.4 Read/Write-Shared Consensual Data Structures

The previously presented approaches all use per-replica local memory. Instead this final
solution allows for a single read/write-shared memory location for all replicas, which is
consensually updated and used by all replica groups needing access to the data structure
therein.

Naturally, there are two dimensions of concurrency: replicas of the same group ac-
cessing a shared data structure and synchronization across replica groups. All individual
groups must reach consensus on the updates to perform as desired by the correspond-
ing application. Thus, the challenge becomes coordinating each group’s access to this
shared state. When considering a single replica group, one does not need to worry about
multiple entities modifying the same data structure simultaneously. The debate arises
only from concurrent replica groups.

As explained previous sections, the agreed upon operations, if any, are copied (using
the trusted copy operation) to memory, representing only one update, i.e., the update is
not executed by each replica. However, this does not restrain each group from trying
to update the same element of a data structure simultaneously. We need some way to
prevent these concurrent writes to the same memory location, giving the opportunity to
solely one group to write at a given time. Otherwise, consistency is compromised. In
other words, this problem can be described as lock-free vs. lock-based data structures,
which we shall explain in Section 8.1.6.

Figure 8.9 depicts the interaction of two replica groups with a read/write-shared data
structure.

116

!!! !!" !!#

Group G1

!"! !"" !"#

Group G2

!"$!"%

0
1

2

H
A

B
H

A

B
H

A

vote "#$%& '
vote(A.next := B)search B

time

Figure 8.9: Read/write-shared data structure service.

8.1.6 Concurrent Access by Multiple Subsystems
In order to discuss concurrent access by multiple subsystems to the same shared data
structure, let us first introduce access synchronization to then discuss it in the context of
this Chapter.

8.1.6.1 Synchronization

Generally, when processes or threads must access a shared data structure, they do so
either in a blocking, non-blocking or lock-free manner. In the first case, an unexpected
delay by one process or thread can prevent others from making progress. In the worst
case, a thread holding the lock may be put to sleep and thus block every other thread that
is waiting on that lock, preventing them from making any progress. In essence, some op-
eration is considered blocked if it is unable to progress in its execution until some other
thread releases a resource. Non-blocking data structures [Her93; HLM03] are those on
which all operations are non-blocking. For instance, all lock-free data structures are
inherently non-blocking. Spin-locks are an example of non-blocking synchronization,
meaning that, if one thread has a lock then waiting threads are not suspended, but must
instead loop until the thread that holds the lock releases it. However, spin locks and
other algorithms with busy-wait loops are not lock-free, since, if the thread holding the
lock is suspended, then no thread can make progress. In order for operations to qualify
as lock-free, they must allow a thread to complete its task regardless of the state of other
threads.

A lock-free data structure is one that does not use any locks. The implication is

117

that multiple threads can access the data structure concurrently without race conditions
or data corruption. Nevertheless, this does not mean that there are no access restric-
tions. A lock-free linked list might allow one thread to add values to the back while
another removes them from the front, allowing this structure to be modified concur-
rently without corruption. In contrast, multiple threads adding new values concurrently
would potentially make it corrupt. The data structure description must then identify
which combinations of operations can safely be called concurrently. Therefore, if any
thread performing an operation on the data structure is suspended at any point during
that operation then the other threads accessing the data structure must still be able to
complete their tasks.

8.1.6.2 Lock-Free vs. Consensual Locks

When two subsystems update the same shared data structure, then it must be either lock-
free, meaning parallel updates must be considered, or one subsystem must prevent the
other from interfering in the middle of a sequence of updates. Locks achieve the latter.
For example, in the case of a doubly-linked list, two writes are required to delete a
node (prev->next = next; next->prev = prev). Using locks would then
be required to prevent another subsystem from inserting an element after the first, but
before the second operation. Naturally, the modification of a data structure by one
subsystem does not necessarily lock it in its entirety. As long as the updates of different
subsystem target distinct elements, i.e., distinct memory pieces, parallel updates can be
considered. This is, however, a design decision on where to place locks and at what
granularity.

In our case, however, locks must be acquired and released by a group in a consensual
manner as well, otherwise, a faulty replica could get hold of the lock preventing others
from making progress by either never releasing it or constantly attempting to acquire it.

The question now becomes "how can we update distinct elements if they are corre-
lated?". For instance, group A wishes to update element x with the value of y, while
group B wants y to take the value of x. Even with a compare and swap operation, these
two cannot be allowed to execute in parallel as it would be risky and possibly lead to
inconsistencies.

8.1.6.3 Lock-Free: Azura

Compare and swap (CAS) is the most used primitive in lock-free algorithms [HLM03;
DHM13], consisting on an atomic instruction for synchronization. CAS compares the
contents of a memory location with an expected value and, if they match, modifies the
contents of that memory location with the selected value.

A lock-free solution using CAS, for a specific location in memory, ensuring atomic-
ity, comes in the form of a simple device, Azura. Azura gathers the updates originating

118

Replica 1 Replica 2 Replica 3

Group 1

Replica 1 Replica 2 Replica 3

Group 2

Voter G1

Azura

Memory Block

Replica 4 Replica 5

…

…
Voter G2

Data Structure:

voted write

direct read

Figure 8.10: System overview, depicting the interaction of replica groups and the
trusted-trustworthy components — voters and Azura — involved in implementing con-
sensual memory. Replicas vote to update data structures in shared memory, while read-
ing directly from this memory block. Azura arbitrates concurrent votes and ensures that
votes are atomic.

1 i f non-conflicting addresses then
2 i f enough memory ports
3 forward all in parallel
4 e l s e
5 check last forwarded request
6 set priority to last+ 1
7 forward last+ 1

Figure 8.11: Azura’s voter to memory forward pattern.

from all voters and allows only one to go through at a time, unless they involve com-
pletely independent elements, in which case more than one update can be forwarded at
a time if we assume a memory block with more than one port.

An overview of the interaction among replica groups, their voters, Azura and con-
sensual memory is represented in Figure 8.10 and the pseudocode for Azura’s logic can
be found in Figure 8.11.

By taking into account the memory addresses accessed by each voters’ operations,
Azura is automatically locking other groups when necessary. Consider two cases:

Conflicting Updates: Imagine all voters, each representing a subsystem, tell Azura
they want to update the same element. Assuming a memory controller does not apply
some sort of coherence mechanism for conflicting updates to the same element per-
formed simultaneously through different ports, all voters requests cannot be forwarded

119

to the memory in parallel. With this in mind, Azura applies a round robin-like arbitration
scheme, nonetheless, without waiting for any update. Consider the following example.
It is group g0’s turn to update memory, according to Azura’s "scheduling". However, g0
has no update to be performed. Instead of waiting for g0 to propose an update, Azura
simply checks if it received any update from g1. If g1 has an update, this update is
forwarded to memory, otherwise, Azura checks for g2. In case g1 has sent nothing, g2
is still next in line and g0 is not checked again until Azura wraps around back to the
beginning of the list. If g0 for some reason flooded Azura with requests conflicting with
other groups, it would be given the same chance to access the data structure as all the
other groups.

Independent Updates: Imagine now groups are proposing independent updates.
Azura checks in each cycle, which updates there are from each of its group ports. It
compares the addresses requested by each and, if, independent forwards as much re-
quests as there are ports to the memory block.

8.1.6.4 Consensual Locks

Alternatively, and to avoid the lock-free complexity, one could implement locks to pro-
tect the data structures from concurrent access in a more classical way, although by ac-
quiring and releasing locks consensually to prevent corruption by faulty replicas. Also,
for more complex algorithms requiring more fine grained mutual exclusivity, an ap-
proach in the form of consensual locks is demanded. Consensual lock (and unlock)
operations come in the form of a spin lock, involving checking if a lock is free and
collecting the sequence numbers for subordinate votes, i.e., acquiring and releasing the
lock.

Consensual locks raise the same concerns that we have already seen in previous
sections, namely if operations include destructive updates:

• By participating in the consensual acquisition, faulty replicas may prevent healthy
replicas from learning that the lock is held;

• By participating in the consensual release, faulty replicas may create inconsisten-
cies by colluding with replicas that have not learned about the release and possibly
the re-acquisition of the lock; and

• Similar race conditions occur when quorum-size subsets of a subsystem consensu-
ally release a lock they hold, since late replicas in the complement of this quorum
may continue to propose votes even after the lock has been released.

Unfortunately, the principles presented in Section 8.1.4 are not sufficient to prevent
these inconsistencies, due to the inherent race conditions with other replica groups. The
following illustrates these points.

120

1 vote("CAS (lock, free) => groupID, seq", seq)
2 vote("write_lock = free", seq + ops + 1)

Figure 8.12: Consensual lock voting.

Let us start by assuming an abstract lock, investigating which properties extend to
consensual locks, before we provide concrete implementations for the latter. In classi-
cal lock implementations (e.g., bit-test-and-set), only the lock acquiring thread
learns about the acquisition (by finding the bit clear). If we would generalize this behav-
ior to consensual locks, only the replicas of the lock acquiring quorum learn about the
acquisition. But if faulty replicas in this quorum refuse to participate in the subsequent
vote to record in group-local storage the fact that the lock is held by the group, too few
healthy replicas remain for forming a quorum that know about the acquisition.

A consensual lock operation must, thus, indicate both lock holder (allowing lag-
ging replicas to know) and sequence number pertaining to when the lock was acquired,
preventing any further operations after its release. Figure 8.12 presents the pseudo code.

8.2 Discussion
We have presented in this Chapter one of the many possible uses of Midir and iBFT on
the context of interacting replicated applications sharing critical data structures. Despite
Midir’s or iBFT’s applicability to any level of the software stack, specific considerations
need to be taken when devising solutions for specific problems, such as consensual data
structures. We have discussed ways in which subsystems may interact and how that
interaction can be implemented. We have also analyzed how concurrent access can be
handled when multiple subsystems must update the same data.

8.2.1 Azura Fault Model
Much like any other trusted component introduced thus far, Azura is simple enough to
be trusted not to fail and easy to verify. It, however, still consists on a SPoF for crash
faults. As such, similarly to the mechanism implementing the trusted copy, some form
of replication can be applied, independent of the number of subsystems and their repli-
cation degree, both for Azura and the memory, depending on the chosen fault model.

121

Chapter 9

Conclusions and Future Work

9.1 Conclusion

This thesis presents solutions for the elimination of single points of failure in low-level
management software, thus protecting the ever rising-in-popularity and -criticality MP-
SoCs. We devised ways to provide fault and intrusion tolerance by reaping benefit of
the tight coupling of replicas in such an environment and by applying concepts from
classical distributed systems.

In particular, we constructed two distinct solutions with different approaches and
benefits: Midir and iBFT . We showed how to circumvent a well-known impossibility
for BFT-SMR protocols that cannot rely on transferable authentication, which is the
case for tightly-coupled BFT-SMR protocols if they want to remain close to the per-
formance of the replica-connecting communication medium: the on-chip networks of
multi- and manycore systems and the shared memories they connect. We introduced
trusted-trustworthy components to establish means for replicated low-level software to
vote on critical operations, such as privilege reconfiguration and resource access.

D-MPSoCs achieve a quantum step towards off-the-shelf chip resilience, since the
mechanisms presented are generic enough to support, in-chip and with high reliability,
a large variety of the protection and redundancy management techniques normally im-
plemented in software at higher layers in ’macro’ systems. To convincingly prove our
point, we exemplified and evaluated an implementation, over Midir, of the most com-
plex version of our solution set: a Byzantine fault tolerant micro-hypervisor. We have
shown the practicality of our concept, having quite satisfying performance. We observed
that iBFT is able to outperform a shared memory implementation of the state-of-the-art
hybrid BFT protocol MinBFT by one/two orders of magnitude (wo can crash/cannot
crash); and Midir by one order of magnitude.

The low overhead of our approach shows as well large promise for future safe, full
hardware solutions. Furthermore, our solutions were intentionally designed as a non-

122

intrusive extensions to current chip architectures, being anchored on simple and self-
contained hardware extensions or microcode instructions (for the case of microcode-
based iBFT). Taken up by a hardware manufacturer or integrator, they allow a backwards-
compatible, non-fracturing evolution. We hope that our findings may be key to enhance
general MPSoC architectures towards D-MPSoCs and, among other avenues, lead to
next-generation COTS resilient chips.

9.2 Limitations and Future Work
Although we have achieved the goal we set for in Chapter 1, some challenges remain
to be addressed in future work. Also, several questions remain to be answered, namely
on kernel design details, diversification for sustainability, application-level uses, real-
time applicability, coverage for network attacks, dynamic reconfiguration of deployed
parameters and so forth.

Formal verification: In order to achieve maximum certainty of the zero fault proba-
bility of the trusted-trustworthy components presented (T2-H2, write-once memory and
Azura), their formal verification should be carried out.

Scalability: We have not yet tested the work present here for an n in the order
of the hundreds. As the available cores in manycore architectures continue to grow
and given the increasing systems’ complexity and security threats, higher replication
degrees should be evaluated.

Memory Safety: Our work for now assumes the memory bus and memory subsys-
tem to work correctly, hardware wise. As we have mentioned in regards to the trusted
copy and Azura, some form of redundancy for the memory blocks and memory con-
troller could be applied to ensure continued operation in the case of a crash. Further
research on this topic should be carried out.

Bottlenecks: The L2 cache represents a bottleneck for agreeing on requests when
introspecting other replicas in core to core communication. Even though this has not
proven troublesome when evaluating iBFT , it can potentially hinder performance for
higher values of n.

Safe Micro-Kernel Construction: Several aspects of micro-kernel construction re-
main untapped that Midir or iBFT could further simplify. In Section 4.6 we provided an
example of granting and priming capabilities, however, more use cases can be explored.

Diversification: Although we consider diversification of chip components and n-
version programming to be part of Midir and iBFT’s implementation, further research
can be done on the subject, namely taking into account the state of the art. This pairs
well with investigating network attacks, since at times the usage of components from
different manufacturers (namely in regards to the NoC, which is not covered by fault
isolation in our model) may not be a positive decision if the IP can potentially be cor-
rupt. For instance, a compromised NoC IP would be able to manipulate data, degrade

123

performance or steal sensitive information [CM21].
Application-Level Uses: The motivation for our work was the SPoF syndrome in

low-level management software, however, application-level software could as well ben-
efit from the technologies we presented. Midir and iBFT could be used and/or adapted
for application level use, providing for different scenarios of usability and criticality. As
previously mentioned, our solutions can be applied at any level of the software stack.

Real-Time: We can adjust the developed mechanisms and protocols for use in
safety-critical real-time systems and develop real-time kernel-level recovery mecha-
nisms. Although we have high confidence both Midir and iBFT fit in real-time systems,
as they require a finite number of operations and, in the worst case scenario, rotate lead-
ers f + 1 times before completing agreement on an operation; further checking should
be carried out.

Network Attacks: In our system model we assume the abstraction of a correct net-
work. We did not, however, study the impact network attacks can have on the NoC and,
in fact, did not perform any form of fault injection in the system as this was off the scope
of the work performed in this thesis. Nonetheless, it is, of course, an interesting and rel-
evant line of research. NoC security is, in fact, quite crucial since (i) it transports all
system data and (ii) spans across the entire MPSoC. As pointed out in [CM21], there are
three major forms of NoC vulnerabilities: malicious implants, backdoor/side-channels
using test/debug interfaces, and unintentional vulnerabilities [FHM20]. Although coun-
termeasures to these types of NoC attacks are already being developed, e.g., [SAJB14;
RSBS16; CLM19; IHRS19], evaluating how they can be implemented on a Midir- or
iBFT-aware platform is one of the predominant directions for future research.

Dynamic Reconfiguration: Hardware designs are, for now, not dynamically recon-
figurable at run-time. Either it is in ASIC1 (application-specific integrated circuit) form
and, thus, an immutable integrated circuit; or programmed in an FPGA, in which case
the "reconfigurable logic" term only applies to programming the hardware at design
time, but not after the system is deployed. For instance, once the number of replicas is
defined in the hardware, that circuitry serves no other purpose for the lifetime of the sys-
tem. If we define n to be 5 and, thus, create 5 voter buffers, these will forever be there
usable only for the purpose of voting. Of course we can later defined n in software to be
3 and leave 2 buffers unused, but we cannot repurpose that logic for something different.
The idea is, then, that n, as well as other parameters, become reconfigurable while the
system is running. This is possible to some extent by dynamically reprogramming the
FPGA, however, this requires system downtime.

1An integrated circuit customized for particular use, commonly yielding better performance than re-
configurable hardware such as FPGAs

124

Bibliography

[ABWER21] Abdullah Al-Boghdady, Khaled Wassif, and Mohammad El-Ramly. “The
Presence, Trends, and Causes of Security Vulnerabilities in Operating
Systems of IoT’s Low-End Devices”. In: Sensors 21.7 (2021), p. 2329.

[AC+77] Algirdas Avizienis, Liming Chen, et al. “On the implementation of N-
version programming for software fault-tolerance during program exe-
cution”. In: (1977).

[ACG15] Will Arthur, David Challener, and Kenneth Goldman. A practical guide
to TPM 2.0: Using the new trusted platform module in the new age of
security. Springer Nature, 2015.

[ACKM06] Ittai Abraham, Gregory Chockler, Idit Keidar, and Dahlia Malkhi. “Byzan-
tine disk paxos: optimal resilience with byzantine shared memory”. In:
Distributed Computing 18.5 (2006), pp. 387–408.

[ACR14] Dean Michael Ancajas, Koushik Chakraborty, and Sanghamitra Roy.
“Fort-nocs: Mitigating the threat of a compromised noc”. In: Proceed-
ings of the 51st Annual Design Automation Conference. 2014, pp. 1–
6.

[Agu+19] Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra
Marathe, and Igor Zablotchi. “The Impact of RDMA on Agreement”. In:
Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing. PODC ’19. Toronto ON, Canada: Association for Com-
puting Machinery, 2019, pp. 409–418. DOI: 10.1145/3293611.
3331601. URL: https://doi.org/10.1145/3293611.
3331601.

[Agu+20] Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra J.
Marathe, Athanasios Xygkis, and Igor Zablotchi. “Microsecond Con-
sensus for Microsecond Applications”. In: 14th USENIX Symposium on
Operating Systems Design and Implementation. Nov. 2020.

125

https://doi.org/10.1145/3293611.3331601
https://doi.org/10.1145/3293611.3331601
https://doi.org/10.1145/3293611.3331601
https://doi.org/10.1145/3293611.3331601

[Alo+05] Noga Alon, Michael Merritt, Omer Reingold, Gadi Taubenfeld, and Re-
becca N Wright. “Tight bounds for shared memory systems accessed by
Byzantine processes”. In: Distributed Computing 18.2 (2005), pp. 99–
109.

[ALRL04] Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl Landwehr. “Ba-
sic concepts and taxonomy of dependable and secure computing”. In:
IEEE transactions on dependable and secure computing 1.1 (2004),
pp. 11–33.

[AMT93] Yehuda Afek, Michael Merritt, and Gadi Taubenfeld. “Benign failure
models for shared memory”. In: International Workshop on Distributed
Algorithms. Springer. 1993, pp. 69–83.

[ARJS07] Nidhi Aggarwal, Parthasarathy Ranganathan, Norman P. Jouppi, and
James E. Smith. “Configurable isolation: building high availability sys-
tems with commodity multi-core processors”. In: International Sympo-
sium on Computer Architecture (ISCA). 2007, pp. 470–481.

[Asm+16] Nils Asmussen, Marcus Völp, Benedikt Nöthen, Hermann Härtig, and
Gerhard Fettweis. “M3: A Hardware/Operating-System Co-Design to
Tame Heterogeneous Manycores”. In: Architectural Support for Pro-
gramming Languages and Operating Systems. ACM. Atlanta, GA, USA,
Apr. 2016.

[Att02] Paul Attie. “Wait-free Byzantine consensus”. In: Information Process-
ing Letters 83.4 (2002), pp. 221–227.

[Bau+09] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,
Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and
Akhilesh Singhania. “The Multikernel: A New OS Architecture for Scal-
able Multicore Systems”. In: Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles. SOSP ’09. Big Sky, Mon-
tana, USA: ACM, 2009, pp. 29–44. DOI: 10.1145/1629575.1629579.
URL: http://doi.acm.org/10.1145/1629575.1629579.

[BCM13] Cristiana Bolchini, Matteo Carminati, and Antonio Miele. “Self-Adaptive
Fault Tolerance in Multi-/Many-Core Systems”. In: J. Electron. Test.
29.2 (Apr. 2013), pp. 159–175. DOI: 10 . 1007 / s10836 - 013 -
5367-y. URL: http://dx.doi.org/10.1007/s10836-
013-5367-y.

[BCP12] Tyson T Brooks, Carlos Caicedo, and Joon S Park. “Security vulnera-
bility analysis in virtualized computing environments”. In: International
Journal of Intelligent Computing Research 3.1/2 (2012), pp. 277–291.

126

https://doi.org/10.1145/1629575.1629579
http://doi.acm.org/10.1145/1629575.1629579
https://doi.org/10.1007/s10836-013-5367-y
https://doi.org/10.1007/s10836-013-5367-y
http://dx.doi.org/10.1007/s10836-013-5367-y
http://dx.doi.org/10.1007/s10836-013-5367-y

[BCSFL09] Alysson Neves Bessani, Miguel Correia, Joni da Silva Fraga, and Lau
Cheuk Lung. “Sharing memory between Byzantine processes using policy-
enforced tuple spaces”. In: IEEE Transactions on Parallel and Distributed
Systems 20.3 (2009), pp. 419–432.

[BDK16] Travis Boraten, Dominic DiTomaso, and Avinash Karanth Kodi. “Se-
cure model checkers for Network-on-Chip (NoC) architectures”. In: 2016
International Great Lakes Symposium on VLSI (GLSVLSI). IEEE. 2016,
pp. 45–50.

[BDM02] Luca Benini and Giovanni De Micheli. “Networks on chips: A new SoC
paradigm”. In: computer 35.1 (2002), pp. 70–78.

[BDM09] Geoffrey Blake, Ronald G Dreslinski, and Trevor Mudge. “A survey
of multicore processors”. In: IEEE Signal Processing Magazine 26.6
(2009), pp. 26–37.

[Bha+16] Koustubha Bhat, Dirk Vogt, Erik van der Kouwe, Ben Gras, Lionel
Sambuc, Andrew S. Tanenbaum, Herbert Bos, and Cristiano Giuffrida.
“OSIRIS: Efficient and Consistent Recovery of Compartmentalized Op-
erating Systems”. In: 2016 46th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN). June 2016, pp. 25–
36. DOI: 10.1109/DSN.2016.12.

[BLH18a] Simon Biggs, Damon Lee, and Gernot Heiser. “The Jury Is In: Mono-
lithic OS Design Is Flawed”. In: Asia-Pacific Workshop on Systems (AP-
Sys). Korea: ACM SIGOPS, Aug. 2018. DOI: 10.1145/3265723.
3265733.

[BLH18b] Simon Biggs, Damon Lee, and Gernot Heiser. “The Jury Is In: Mono-
lithic OS Design Is Flawed”. In: Asia-Pacific Workshop on Systems (AP-
Sys). Korea: ACM SIGOPS, Aug. 2018. DOI: 10.1145/3265723.
3265733.

[BS95] Thomas C. Bressoud and Fred B. Schneider. “Hypervisor-based fault
tolerance”. In: 15th ACM Symposium on Operating Systems Principles
(SOSP). Copper Mountain, Colorado, USA, 1995, pp. 1–11.

[Cas+14] António Casimiro, José Rufino, Ricardo C Pinto, Eric Vial, Elad M
Schiller, Oscar Morales-Ponce, and Thomas Petig. “A kernel-based ar-
chitecture for safe cooperative vehicular functions”. In: Proceedings of
the 9th IEEE International Symposium on Industrial Embedded Systems
(SIES 2014). IEEE. 2014, pp. 228–237.

[CAS13] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. “Flow*: An
analyzer for non-linear hybrid systems”. In: International Conference
on Computer Aided Verification. Springer. 2013, pp. 258–263.

127

https://doi.org/10.1109/DSN.2016.12
https://doi.org/10.1145/3265723.3265733
https://doi.org/10.1145/3265723.3265733
https://doi.org/10.1145/3265723.3265733
https://doi.org/10.1145/3265723.3265733

[CD16] Victor Costan and Srinivas Devadas. Intel SGX Explained. Tech. rep.
https://eprint.iacr.org/2016/086.pdf (Accessed: 2016-07-22). Massachusetts
Institute of Technology, 2016.

[CDA14] John Criswell, Nathan Dautenhahn, and Vikram Adve. “KCoFI: Com-
plete control-flow integrity for commodity operating system kernels”.
In: 2014 IEEE Symposium on Security and Privacy. IEEE. 2014, pp. 292–
307.

[CGR17] António Casimiro, Inês Gouveia, and José Rufino. “Enforcing timeli-
ness and safety in mission-critical systems”. In: Ada-Europe Interna-
tional Conference on Reliable Software Technologies. Springer. 2017,
pp. 53–69.

[Cha+95] John Chapin, Mendel Rosenblum, Scott Devine, Tirthankar Lahiri, Dan
Teodosiu, and Anoop Gupta. “Hive: Fault Containment for Shared-memory
Multiprocessors”. In: Proceedings of the Fifteenth ACM Symposium on
Operating Systems Principles. SOSP ’95. Copper Mountain, Colorado,
USA: ACM, 1995, pp. 12–25. DOI: 10.1145/224056.224059.
URL: http://doi.acm.org/10.1145/224056.224059.

[CJKR12] Allen Clement, Flavio Junqueira, Aniket Kate, and Rodrigo Rodrigues.
“On the (limited) power of non-equivocation”. In: Proceedings of the
2012 ACM symposium on Principles of distributed computing. 2012,
pp. 301–308.

[CL99] Miguel Castro and Barbara Liskov. “Practical Byzantine Fault Toler-
ance”. In: 3rd Symposium on Operating Systems Design and Implemen-
tation. ACM. New Orleans, USA, Feb. 1999.

[CLM19] Subodha Charles, Yangdi Lyu, and Prabhat Mishra. “Real-time detec-
tion and localization of DoS attacks in NoC based SoCs”. In: 2019 De-
sign, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE. 2019, pp. 1160–1165.

[CM20a] Subodha Charles and Prabhat Mishra. “Lightweight and trust-aware rout-
ing in NoC-based SoCs”. In: 2020 IEEE Computer Society Annual Sym-
posium on VLSI (ISVLSI). IEEE. 2020, pp. 160–167.

[CM20b] Subodha Charles and Prabhat Mishra. “Securing network-on-chip using
incremental cryptography”. In: 2020 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI). IEEE. 2020, pp. 168–175.

[CM21] Subodha Charles and Prabhat Mishra. “A Survey of Network-on-Chip
Security Attacks and Countermeasures”. In: ACM Computing Surveys
(CSUR) 54.5 (2021), pp. 1–36.

128

https://doi.org/10.1145/224056.224059
http://doi.acm.org/10.1145/224056.224059

[CMDTM] Carlos Colman-Meixner, Chris Develder, Massimo Tornatore, and Biswanath
Mukherjee. “A Survey on Resiliency Techniques in Cloud Computing
Infrastructures and Applications”. In: IEEE Communications Surveys
Tutorials 18.3 (), pp. 2244–2281. DOI: 10.1109/COMST.2016.
2531104.

[CMS08] Byung-Gon Chun, Petros Maniatis, and Scott Shenker. “Diverse Repli-
cation for Single-machine Byzantine-fault Tolerance”. In: USENIX 2008
Annual Technical Conference. ATC’08. Boston, Massachusetts: USENIX
Association, 2008, pp. 287–292. URL: http://dl.acm.org/
citation.cfm?id=1404014.1404038.

[CNV04] Miguel Correia, Nuno Ferreira Neves, and Paulo Verissimo. “How to
tolerate half less one Byzantine nodes in practical distributed systems”.
In: Reliable Distributed Systems, 2004. Proceedings of the 23rd IEEE
International Symposium on. IEEE. 2004, pp. 174–183.

[CNV12] Miguel Correia, Nuno Ferreira Neves, and Paulo Verissimo. “BFT-TO:
Intrusion tolerance with less replicas”. In: The Computer Journal 56.6
(2012), pp. 693–715.

[CSK07] B. Chun, P. Maniatis andS. Shenker, and J. Kubiatowicz. “Attested append-
only memory: Making adversaries stick to their word”. In: 21st ACM
Symposium on Operating Systems Principles (SOSP). Stevenson, Wash-
ington, USA, Oct. 2007, pp. 189–204.

[CVP99] Tzi-cker Chiueh, Ganesh Venkitachalam, and Prashant Pradhan. “Inte-
grating segmentation and paging protection for safe, efficient and trans-
parent software extensions”. In: Proceedings of the seventeenth ACM
symposium on Operating systems principles. 1999, pp. 140–153.

[Das19] Debak Das. An Indian nuclear power plant suffered a cyberattack. Here’s
what you need to know. https://www.washingtonpost.com/
politics/2019/11/04/an-indian-nuclear-power-
plant-suffered-cyberattack-heres-what-you-need-
know/. Accessed: 2017-03-12. 2019.

[Dav16] Alex Davies. Tesla’s Autopilot Has Had Its First Deadly Crash. https:
//www.wired.com/2016/06/teslas-autopilot-first-
deadly-crash/. Accessed: 2017-03-12. 2016.

[DCCC08] Francis M. David, Ellick M. Chan, Jeffrey C. Carlyle, and Roy H. Camp-
bell. “CuriOS: Improving Reliability Through Operating System Struc-
ture”. In: Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation. OSDI’08. San Diego, California:

129

https://doi.org/10.1109/COMST.2016.2531104
https://doi.org/10.1109/COMST.2016.2531104
http://dl.acm.org/citation.cfm?id=1404014.1404038
http://dl.acm.org/citation.cfm?id=1404014.1404038
https://www.washingtonpost.com/politics/2019/11/04/an-indian-nuclear-power-plant-suffered-cyberattack-heres-what-you-need-know/
https://www.washingtonpost.com/politics/2019/11/04/an-indian-nuclear-power-plant-suffered-cyberattack-heres-what-you-need-know/
https://www.washingtonpost.com/politics/2019/11/04/an-indian-nuclear-power-plant-suffered-cyberattack-heres-what-you-need-know/
https://www.washingtonpost.com/politics/2019/11/04/an-indian-nuclear-power-plant-suffered-cyberattack-heres-what-you-need-know/
https://www.wired.com/2016/06/teslas-autopilot-first-deadly-crash/
https://www.wired.com/2016/06/teslas-autopilot-first-deadly-crash/
https://www.wired.com/2016/06/teslas-autopilot-first-deadly-crash/

USENIX Association, 2008, pp. 59–72. URL: http://dl.acm.
org/citation.cfm?id=1855741.1855746.

[DCK15] Tobias Distler, Christian Cachin, and Rüdiger Kapitza. “Resource-efficient
Byzantine fault tolerance”. In: IEEE transactions on computers 65.9
(2015), pp. 2807–2819.

[DGY14] Tudor David, Rachid Guerraoui, and Maysam Yabandeh. “Consensus
Inside”. In: Proceedings of the 15th International Middleware Confer-
ence. Middleware ’14. Bordeaux, France: ACM, 2014, pp. 145–156.
DOI: 10.1145/2663165.2663321. URL: http://doi.acm.
org/10.1145/2663165.2663321.

[DHM13] David Dice, Danny Hendler, and Ilya Mirsky. “Lightweight contention
management for efficient compare-and-swap operations”. In: European
Conference on Parallel Processing. Springer. 2013, pp. 595–606.

[Dis+11] Tobias Distler, Ivan Popov, Wolfgang Schröder-Preikschat, Hans P Reiser,
and Rüdiger Kapitza. “SPARE: Replicas on Hold.” In: NDSS. 2011.

[DLS88] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. “Consensus in
the presence of partial synchrony”. In: Journal of the ACM (JACM) 35.2
(1988), pp. 288–323.

[DS10] Alex Depoutovitch and Michael Stumm. “Otherworld: Giving Appli-
cations a Chance to Survive OS Kernel Crashes”. In: Proceedings of
the 5th European Conference on Computer Systems. EuroSys ’10. Paris,
France: ACM, 2010, pp. 181–194. DOI: 10.1145/1755913.1755933.
URL: http://doi.acm.org/10.1145/1755913.1755933.

[DT01] William J Dally and Brian Towles. “Route packets, not wires: on-chip
inteconnection networks”. In: Proceedings of the 38th annual design
automation conference. 2001, pp. 684–689.

[Dö14] Björn Döbel. “Operating System Support for Redundant Multithread-
ing”. PhD thesis. Dresden, Germany: Technische Universität Dresden,
Nov. 2014.

[ECP18] Emanuele Giuseppe Esposito, Paulo Coelho, and Fernando Pedone. “Ker-
nel Paxos”. In: 37th Symposium on Reliable Distributed Systems (SRDS).
IEEE. 2018.

[ED12] Michael Engel and Björn Döbel. “The reliable computing base: A paradigm
for software-based reliability”. In: Workshop on SOBRES. 2012.

130

http://dl.acm.org/citation.cfm?id=1855741.1855746
http://dl.acm.org/citation.cfm?id=1855741.1855746
https://doi.org/10.1145/2663165.2663321
http://doi.acm.org/10.1145/2663165.2663321
http://doi.acm.org/10.1145/2663165.2663321
https://doi.org/10.1145/1755913.1755933
http://doi.acm.org/10.1145/1755913.1755933

[EG17] Mark Ermolov and Maxim Goryachy. “How to Hack a Turned-Off Com-
puter —- or Running Unsigned Code in Intel Management Engine”. In:
Black hat Europe. avail at https://www.blackhat.com/docs/eu-17/materials/eu-
17-Goryachy-How-To-Hack-A-Turned-Off-Computer-Or-Running-Unsigned-
Code-In-Intel-Management-Engine.pdf, accessed 15.04.2018. London,
UK, Sept. 2017.

[ES13] Kevin Elphinstone and Yanyan Shen. “Increasing the trustworthiness of
commodity hardware through software”. In: 43rd Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks (DSN).
2013.

[Fen+18] Yixiong Feng, Bingtao Hu, He Hao, Yicong Gao, Zhiwu Li, and Jian-
rong Tan. “Design of distributed cyber–physical systems for connected
and automated vehicles with implementing methodologies”. In: IEEE
Transactions on Industrial Informatics 14.9 (2018), pp. 4200–4211.

[Fer+17] Andrew Ferraiuolo, Yao Wang, Rui Xu, Danfeng Zhang, Andrew My-
ers, and Edward Suh. “Full-processor timing channel protection with
applications to secure hardware compartments”. In: (2017).

[Feu71] Edward A Feustel. “The Rice research computer: a tagged architecture”.
In: Proceedings of the May 16-18, 1972, spring joint computer confer-
ence. 1971, pp. 369–377.

[FHM20] Farimah Farahmandi, Yuanwen Huang, and Prabhat Mishra. System-on-
Chip Security. Springer, 2020.

[FLHZ13] Dabin Fang, Huikai Li, Jun Han, and Xiaoyang Zeng. “Robustness anal-
ysis of mesh-based network-on-chip architecture under flooding-based
denial of service attacks”. In: 2013 IEEE Eighth International Confer-
ence on Networking, Architecture and Storage. IEEE. 2013, pp. 178–
186.

[FLP85] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. “Impossi-
bility of distributed consensus with one faulty process”. In: Journal of
the ACM (JACM) 32.2 (1985), pp. 374–382.

[FPS08] Leandro Fiorin, Gianluca Palermo, and Cristina Silvano. “A security
monitoring service for NoCs”. In: Proceedings of the 6th IEEE/ACM/I-
FIP international conference on Hardware/Software codesign and sys-
tem synthesis. 2008, pp. 197–202.

131

[Fre+11] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Ra-
jarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang,
and Oded Maler. “SpaceEx: Scalable verification of hybrid systems”.
In: International Conference on Computer Aided Verification. Springer.
2011, pp. 379–395.

[FS12] Matthias Függer and Ulrich Schmid. “Reconciling fault-tolerant dis-
tributed computing and systems-on-chip”. In: Distributed Computing
24.6 (2012), pp. 323–355.

[Fur+12] Steve B Furber, David R Lester, Luis A Plana, Jim D Garside, Eustace
Painkras, Steve Temple, and Andrew D Brown. “Overview of the spin-
naker system architecture”. In: IEEE Transactions on Computers 62.12
(2012), pp. 2454–2467.

[FZWK17] Pedro Fonseca, Kaiyuan Zhang, Xi Wang, and Arvind Krishnamurthy.
“An empirical study on the correctness of formally verified distributed
systems”. In: Proceedings of the Twelfth European Conference on Com-
puter Systems. 2017, pp. 328–343.

[Gan+21] Neeraj Gandhi, Edo Roth, Brian Sandler, Andreas Haeberlen, and Linh
Thi Xuan Phan. “REBOUND: defending distributed systems against at-
tacks with bounded-time recovery”. In: Proceedings of the Sixteenth Eu-
ropean Conference on Computer Systems. 2021, pp. 523–539.

[Gar+11] Miguel Garcia, Alysson Bessani, Ilir Gashi, Nuno Neves, and Rafael
Obelheiro. “OS diversity for intrusion tolerance: Myth or reality?” In:
2011 IEEE/IFIP 41st International Conference on Dependable Systems
& Networks (DSN). IEEE. 2011, pp. 383–394.

[Gar+14] Miguel Garcia, Alysson Bessani, Ilir Gashi, Nuno Neves, and Rafael
Obelheiro. “Analysis of operating system diversity for intrusion toler-
ance”. In: Software: Practice and Experience 44.6 (2014), pp. 735–770.

[GBN19] Miguel Garcia, Alysson Bessani, and Nuno Neves. “Lazarus: Automatic
Management of Diversity in BFT Systems”. In: Proceedings of the 20th
International Middleware Conference. ACM. 2019, pp. 241–254.

[Gen18] David Gens. “OS-Level Attacks and Defenses: From Software to Hardware-
Based Exploits”. PhD thesis. Technische Universität Darmstadt, Dec.
2018.

[Gol84] Jack Goldberg. Development and analysis of the software implemented
fault-tolerance (SIFT) computer. SRI International, 1984.

[Gre15] Andy Greenberg. Hackers Remotely Kill a Jeep on the Highway. http://www.wired.com/2015/07/hackers-
remotely-kill-jeep-highway/. 2015.

132

[GTHR99] Kinshuk Govil, Dan Teodosiu, Yongqiang Huang, and Mendel Rosen-
blum. “Cellular Disco: Resource Management Using Virtual Clusters on
Shared-memory Multiprocessors”. In: Proceedings of the Seventeenth
ACM Symposium on Operating Systems Principles. SOSP ’99. Charleston,
South Carolina, USA: ACM, 1999, pp. 154–169. DOI: 10 . 1145 /
319151.319162. URL: http://doi.acm.org/10.1145/
319151.319162.

[Guo+19] Shize Guo, Jian Wang, Zhe Chen, Zhonghai Lu, Jinhong Guo, and Lian
Yang. “Security-aware task mapping reducing thermal side channel leak-
age in CMPs”. In: IEEE Transactions on Industrial Informatics 15.10
(2019), pp. 5435–5443.

[Har85] Norman Hardy. “KeyKOS Architecture”. In: SIGOPS Oper. Syst. Rev.
19.4 (Oct. 1985), pp. 8–25. DOI: 10.1145/858336.858337.

[HDL13] Martin Hoffmann, Christian Dietrich, and Daniel Lohmann. “Failure by
Design: Influence of the RTOS Interface on Memory Fault Resilience”.
In: Proceedings of the 2nd GI Workshop on Software-Based Methods
for Robust Embedded Systems (SOBRES ’13). Ed. by German Society
of Informatics. Koblenz, Germany, 2013. URL: http://www4.cs.
fau.de/Publications/2013/hoffmann_13_sobres.pdf.

[Her+06] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew
S. Tanenbaum. “Construction of a Highly Dependable Operating Sys-
tem”. In: Proceedings of the Sixth European Dependable Computing
Conference. EDCC ’06. Washington, DC, USA: IEEE Computer Soci-
ety, 2006, pp. 3–12. DOI: 10.1109/EDCC.2006.7. URL: https:
//doi.org/10.1109/EDCC.2006.7.

[Her93] Maurice Herlihy. “A methodology for implementing highly concurrent
data objects”. In: ACM Transactions on Programming Languages and
Systems (TOPLAS) 15.5 (1993), pp. 745–770.

[HHWT97] Thomas A Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. “HyTech:
A model checker for hybrid systems”. In: International Journal on Soft-
ware Tools for Technology Transfer 1.1-2 (1997), pp. 110–122.

[HLM03] Maurice Herlihy, Victor Luchangco, and Mark Moir. “Obstruction-free
synchronization: Double-ended queues as an example”. In: 23rd Inter-
national Conference on Distributed Computing Systems, 2003. Proceed-
ings. IEEE. 2003, pp. 522–529.

133

https://doi.org/10.1145/319151.319162
https://doi.org/10.1145/319151.319162
http://doi.acm.org/10.1145/319151.319162
http://doi.acm.org/10.1145/319151.319162
https://doi.org/10.1145/858336.858337
http://www4.cs.fau.de/Publications/2013/hoffmann_13_sobres.pdf
http://www4.cs.fau.de/Publications/2013/hoffmann_13_sobres.pdf
https://doi.org/10.1109/EDCC.2006.7
https://doi.org/10.1109/EDCC.2006.7
https://doi.org/10.1109/EDCC.2006.7

[HMGP18] Mubashir Hussain, Amin Malekpour, Hui Guo, and Sri Parameswaran.
“EETD: An energy efficient design for runtime hardware trojan detec-
tion in untrusted network-on-chip”. In: 2018 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI). IEEE. 2018, pp. 345–350.

[Hof+13] Owen S. Hofmann, Sangman Kim, Alan M. Dunn, Michael Z. Lee, and
Emmett Witchel. “InkTag: Secure Applications on an Untrusted Oper-
ating System”. In: SIGPLAN Not. 48.4 (Mar. 2013), pp. 265–278. DOI:
10.1145/2499368.2451146. URL: http://doi.acm.org/
10.1145/2499368.2451146.

[IHRS19] Leandro Soares Indrusiak, James Harbin, Cezar Reinbrecht, and Jo-
hanna Sepúlveda. “Side-channel protected MPSoC through secure real-
time networks-on-chip”. In: Microprocessors and Microsystems 68 (2019),
pp. 34–46.

[Iqb+16] Salman Iqbal, Miss Laiha Mat Kiah, Babak Dhaghighi, Muzammil Hus-
sain, Suleman Khan, Muhammad Khurram Khan, and Kim-Kwang Ray-
mond Choo. “On cloud security attacks: A taxonomy and intrusion de-
tection and prevention as a service”. In: Journal of Network and Com-
puter Applications 74 (2016), pp. 98–120.

[JA88] Mark K. Joseph and Algirdas Avizienis. “A fault tolerance approach
to computer viruses”. In: IEEE Symposium on Security and Privacy.
Oakland, CA, USA. 1988, pp. 52–58.

[JACR15] Rajesh JS, Dean Michael Ancajas, Koushik Chakraborty, and Sang-
hamitra Roy. “Runtime detection of a bandwidth denial attack from a
rogue network-on-chip”. In: Proceedings of the 9th International Sym-
posium on Networks-on-Chip. 2015, pp. 1–8.

[Jvn] https://jvndb.jvn.jp/en/.

[Kap+12] Rüdiger Kapitza, Johannes Behl, Christian Cachin, Tobias Distler, Si-
mon Kuhnle, Seyed Vahid Mohammadi, Wolfgang Schröder-Preikschat,
and Klaus Stengel. “CheapBFT: Resource-efficient Byzantine Fault Tol-
erance”. In: Proceedings of the 7th ACM European Conference on Com-
puter Systems. EuroSys ’12. Bern, Switzerland: ACM, 2012, pp. 295–
308. DOI: 10.1145/2168836.2168866. URL: http://doi.
acm.org/10.1145/2168836.2168866.

[KB03] Hermann Kopetz and Günther Bauer. “The time-triggered architecture”.
In: Proceedings of the IEEE 91.1 (2003), pp. 112–126.

[KJJR11] Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. “Intro-
duction to differential power analysis”. In: Journal of Cryptographic
Engineering 1.1 (2011), pp. 5–27.

134

https://doi.org/10.1145/2499368.2451146
http://doi.acm.org/10.1145/2499368.2451146
http://doi.acm.org/10.1145/2499368.2451146
https://jvndb.jvn.jp/en/
https://doi.org/10.1145/2168836.2168866
http://doi.acm.org/10.1145/2168836.2168866
http://doi.acm.org/10.1145/2168836.2168866

[KL86] John C. Knight and Nancy G. Leveson. “An experimental evaluation
of the assumption of independence in multiversion programming”. In:
IEEE Transactions on software engineering 1 (1986), pp. 96–109.

[Kle+09a] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolan-
ski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Win-
wood. “seL4: Formal Verification of an OS Kernel”. In: ed. by Jeanna
Neefe Matthews and Thomas E. Anderson. ACM, 2009, pp. 207–220.
DOI: 10.1145/1629575.1629596. URL: http://doi.acm.
org/10.1145/1629575.1629596.

[Kle+09b] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolan-
ski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Win-
wood. “seL4: Formal Verification of an OS Kernel”. In: ed. by Jeanna
Neefe Matthews and Thomas E. Anderson. ACM, 2009, pp. 207–220.
DOI: 10.1145/1629575.1629596. URL: http://doi.acm.
org/10.1145/1629575.1629596.

[Koc+18] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haar, Mike Ham-
burg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. Spectre Attacks: Exploiting Speculative Execution.
Tech. rep. (see also: CVE-2017-5715, -5753, CVE-2018-3693, -3640,
-3639, -3665, -3615, -3620, -3646, -9056). ArXiv e-prints 1801.01203,
Jan. 2018.

[KRAT13] Hemangee K Kapoor, G Bhoopal Rao, Sharique Arshi, and Gaurav Trivedi.
“A security framework for noc using authenticated encryption and ses-
sion keys”. In: Circuits, Systems, and Signal Processing 32.6 (2013),
pp. 2605–2622.

[KS19] Sandeep K. Shukla. Editorial: Reflections on the History of Cyber-Physical
versus Embedded Systems. ACM Digital Library: https : / / dl .
acm.org/doi/fullHtml/10.1145/3325115. 2019.

[KSRL10] Eric Keller, Jakub Szefer, Jennifer Rexford, and Ruby B. Lee. “Nohype:
Virtualized cloud infrastructure without the virtualization”. In: 37th In-
ternational Symposium on Computer Architecture (ISCA’10). Saint-Malo,
2010.

[Kuv+16] Dmitrii Kuvaiskii, Rasha Faqueh, Pramod Bhatotia, Pascal Felber, and
Christof Fetzer. “HAFT: Hardware-assisted Fault Tolerance”. In: 11th
European Conference on Computer Systems (EuroSys). London, UK,
Apr. 2016, pp. 1–17.

135

https://doi.org/10.1145/1629575.1629596
http://doi.acm.org/10.1145/1629575.1629596
http://doi.acm.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
http://doi.acm.org/10.1145/1629575.1629596
http://doi.acm.org/10.1145/1629575.1629596
https://dl.acm.org/doi/fullHtml/10.1145/3325115
https://dl.acm.org/doi/fullHtml/10.1145/3325115

[LAC16] Robert M. Lee, Michael J. Assante, and Tim Conway. Analysis of the
Cyber Attack on the Ukrainian Power Grid. E-ISAC: https://ics.
sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf.
Mar. 2016.

[LAK09] Andrew Lenharth, Vikram S. Adve, and Samuel T. King. “Recovery Do-
mains: An Organizing Principle for Recoverable Operating Systems”.
In: Proceedings of the 14th International Conference on Architectural
Support for Programming Languages and Operating Systems. ASPLOS
XIV. Washington, DC, USA: ACM, 2009, pp. 49–60. DOI: 10.1145/
1508244.1508251. URL: http://doi.acm.org/10.1145/
1508244.1508251.

[Lam74] Butler W Lampson. “Protection”. In: ACM SIGOPS Operating Systems
Review 8.1 (1974), pp. 18–24.

[Lam98] Leslie Lamport. “The part-time parliament”. In: Transactions on Com-
puter Systems 16.2 (1998), pp. 133–169.

[LC10] Slobodan Lukovic and Nikolaos Christianos. “Hierarchical multi-agent
protection system for NoC based MPSoCs”. In: Proceedings of the In-
ternational Workshop on Security and Dependability for Resource Con-
strained Embedded Systems. 2010, pp. 1–7.

[LDLM09] Dave Levin, John R Douceur, Jacob R Lorch, and Thomas Moscibroda.
“TrInc: Small Trusted Hardware for Large Distributed Systems.” In:
NSDI. Vol. 9. Boston, Massachusetts, USA, 2009, pp. 1–14.

[Lee18] Dave Lee. MyFitnessPal breach affects millions of Under Armour users.
bbc.com. Mar. 2018.

[LHBF14] Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz.
“SoK: Automated Software Diversity”. In: Proceedings of the 2014 IEEE
Symposium on Security and Privacy. SP ’14. Washington, DC, USA:
IEEE Computer Society, 2014, pp. 276–291. DOI: 10.1109/SP.
2014.25.

[Lie95] Jochen Liedtke. “On micro-Kernel Construction”. In: ed. by Michael B.
Jones. ACM, 1995, pp. 237–250. DOI: 10.1145/224056.224075.
URL: http://doi.acm.org/10.1145/224056.224075.

[Lip+18] Moritz Lipp, Michael Schwart, Daniel Gruss, Thomas Prescher, Werner
Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and
Mike Hamburg. Meltdown (CVE-2017-5754). Tech. rep. ArXiv e-prints
1801.01207, Jan. 2018.

136

https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
https://doi.org/10.1145/1508244.1508251
https://doi.org/10.1145/1508244.1508251
http://doi.acm.org/10.1145/1508244.1508251
http://doi.acm.org/10.1145/1508244.1508251
https://doi.org/10.1109/SP.2014.25
https://doi.org/10.1109/SP.2014.25
https://doi.org/10.1145/224056.224075
http://doi.acm.org/10.1145/224056.224075

[LLOR14] Aldelir Fernando Luiz, Lau Cheuk Lung, and Luciana de Oliveira Rech.
“On the practicality to implement byzantine fault tolerant services based
on tuple space”. In: 2014 IEEE 28th International Conference on Ad-
vanced Information Networking and Applications (AINA). IEEE. 2014,
pp. 1041–1048.

[LSP82] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. “The Byzan-
tine Generals Problem”. In: ACM Trans. Program. Lang. Syst. 4.3 (1982),
pp. 382–401. DOI: 10.1145/357172.357176. URL: http://
doi.acm.org/10.1145/357172.357176.

[LWHH18] Adam Lackorzynski, Alexander Warg, Michael Hohmuth, and Hermann
Härtig. L4Re. https://l4re.org/doc/index.html. 2018.

[MA09] Jeanna Neefe Matthews and Thomas E. Anderson, eds. ACM, 2009.

[Mah+19] Abdulrahman Mahmoud, Radha Venkatagiri, Khalique Ahmed, Sasa
Misailovic, Darko Marinov, Christopher W Fletcher, and Sarita V Adve.
“Minotaur: Adapting Software Testing Techniques for Hardware Er-
rors”. In: Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems. ACM. 2019, pp. 1087–1103.

[Man86] Luigi Mancini. “Modular redundancy in a message passing system”. In:
IEEE Transactions on Software Engineering 1 (1986), pp. 79–86.

[Mat+14] Rivalino Matias, Marcela Prince, Lúcio Borges, Claudio Sousa, and
Luan Henrique. “An Empirical Exploratory Study on Operating Sys-
tem Reliability”. In: Proceedings of the 29th Annual ACM Symposium
on Applied Computing. SAC ’14. Gyeongju, Republic of Korea: ACM,
2014, pp. 1523–1528. DOI: 10.1145/2554850.2555021. URL:
http://doi.acm.org/10.1145/2554850.2555021.

[Mes07] Jeanne Meserve. Mouse click could plunge city into darkness, experts
say. http://edition.cnn.com/2007/US/09/27/power.
at.risk/index.html. Accessed: 2017-03-12. 2007.

[MMRT03] Dahlia Malkhi, Michael Merritt, Michael K Reiter, and Gadi Tauben-
feld. “Objects shared by Byzantine processes”. In: Distributed Comput-
ing 16.1 (2003), pp. 37–48.

[Moo+65] Gordon E Moore et al. Cramming more components onto integrated cir-
cuits. 1965.

[MR98] Dahlia Malkhi and Michael Reiter. “Byzantine quorum systems”. In:
Distributed computing 11.4 (1998), pp. 203–213.

137

https://doi.org/10.1145/357172.357176
http://doi.acm.org/10.1145/357172.357176
http://doi.acm.org/10.1145/357172.357176
https://doi.org/10.1145/2554850.2555021
http://doi.acm.org/10.1145/2554850.2555021
http://edition.cnn.com/2007/US/09/27/power.at.risk/index.html
http://edition.cnn.com/2007/US/09/27/power.at.risk/index.html

[NB13] Ruslan Nikolaev and Godmar Back. “VirtuOS: An Operating System
with Kernel Virtualization”. In: Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles. SOSP ’13. Farminton,
Pennsylvania: ACM, 2013, pp. 116–132. DOI: 10.1145/2517349.
2522719. URL: http://doi.acm.org/10.1145/2517349.
2522719.

[NW74] Roger M. Needham and Maurice V. Wilkes. “Domains of Protection and
the Management of Processes”. In: The Computer Journal 17.2 (1974).

[OAHY08] Simon Ogg, Bashir Al-Hashimi, and Alex Yakovlev. “Asynchronous
Transient Resilient Links for NoC”. In: Proceedings of the 6th IEEE/ACM/I-
FIP International Conference on Hardware/Software Codesign and Sys-
tem Synthesis. CODES+ISSS ’08. Atlanta, GA, USA: ACM, 2008, pp. 209–
214. DOI: 10.1145/1450135.1450182. URL: http://doi.
acm.org/10.1145/1450135.1450182.

[OW02] Thomas J. Ostrand and Elaine J. Weyuker. “The Distribution of Faults in
a Large Industrial Software System”. In: Proceedings of the 2002 ACM
SIGSOFT International Symposium on Software Testing and Analysis.
ISSTA ’02. Roma, Italy: ACM, 2002, pp. 55–64. DOI: 10.1145/
566172.566181. URL: http://doi.acm.org/10.1145/
566172.566181.

[OWB04] Thomas J. Ostrand, Elaine J. Weyuker, and Robert M. Bell. “Where the
Bugs Are”. In: Proceedings of the 2004 ACM SIGSOFT International
Symposium on Software Testing and Analysis. ISSTA ’04. Boston, Mas-
sachusetts, USA: ACM, 2004, pp. 86–96. DOI: 10.1145/1007512.
1007524. URL: http://doi.acm.org/10.1145/1007512.
1007524.

[Pal+14] Nicolas Palix, Gaēl Thomas, Suman Saha, Christophe Calvès, Gilles
Muller, and Julia Lawall. “Faults in Linux 2.6”. In: ACM Trans. Comput.
Syst. 32.2 (June 2014), 4:1–4:40. DOI: 10.1145/2619090. URL:
http://doi.acm.org/10.1145/2619090.

[PE12] BP Prabahar and BE Edwin. “Survey on virtual machine security”. In:
International Journal of Advanced Research in Computer Engineering
Technology (IJARCET) 1.8 (2012), pp. 115–121.

[PG05] David Patterson and Archana Ganapathi. “Crash Data Collection: A
Windows Case Study”. In: 3D Digital Imaging and Modeling, Inter-
national Conference on (2005), pp. 280–285. DOI: 10.1109/DSN.
2005.32.

138

https://doi.org/10.1145/2517349.2522719
https://doi.org/10.1145/2517349.2522719
http://doi.acm.org/10.1145/2517349.2522719
http://doi.acm.org/10.1145/2517349.2522719
https://doi.org/10.1145/1450135.1450182
http://doi.acm.org/10.1145/1450135.1450182
http://doi.acm.org/10.1145/1450135.1450182
https://doi.org/10.1145/566172.566181
https://doi.org/10.1145/566172.566181
http://doi.acm.org/10.1145/566172.566181
http://doi.acm.org/10.1145/566172.566181
https://doi.org/10.1145/1007512.1007524
https://doi.org/10.1145/1007512.1007524
http://doi.acm.org/10.1145/1007512.1007524
http://doi.acm.org/10.1145/1007512.1007524
https://doi.org/10.1145/2619090
http://doi.acm.org/10.1145/2619090
https://doi.org/10.1109/DSN.2005.32
https://doi.org/10.1109/DSN.2005.32

[PKCC17] N Prasad, Rajit Karmakar, Santanu Chattopadhyay, and Indrajit Chakrabarti.
“Runtime mitigation of illegal packet request attacks in Networks-on-
Chip”. In: 2017 IEEE International Symposium on Circuits and Systems
(ISCAS). IEEE. 2017, pp. 1–4.

[Pri19] Rob Price. Facebook says it ’unintentionally uploaded’ 1.5 million peo-
ple’s email contacts without their consent. Businessinsider.com. Apr.
2019.

[Ram11] Carl Ramey. “Tile-gx100 manycore processor: Acceleration interfaces
and architecture”. In: 2011 IEEE Hot Chips 23 Symposium (HCS). IEEE.
2011, pp. 1–21.

[Rei+16] Cezar Reinbrecht, Altamiro Susin, Lilian Bossuet, Georg Sigl, and Jo-
hanna Sepúlveda. “Side channel attack on NoC-based MPSoCs are prac-
tical: NoC Prime+ Probe attack”. In: 2016 29th Symposium on Inte-
grated Circuits and Systems Design (SBCCI). IEEE. 2016, pp. 1–6.

[RP19] Venkata Yaswanth Raparti and Sudeep Pasricha. “Lightweight mitiga-
tion of hardware Trojan attacks in NoC-based manycore computing”.
In: 2019 56th ACM/IEEE Design Automation Conference (DAC). IEEE.
2019, pp. 1–6.

[RS10] Tom Roeder and Fred B Schneider. “Proactive obfuscation”. In: ACM
Transactions on Computer Systems (TOCS) 28.2 (July 2010), pp. 1–54.

[RSBS16] Cezar Reinbrecht, Altamiro Susin, Lilian Bossuet, and Johanna Sepúlveda.
“Gossip noc–avoiding timing side-channel attacks through traffic man-
agement”. In: 2016 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI). IEEE. 2016, pp. 601–606.

[SABL06] Michael M. Swift, Muthukaruppan Annamalai, Brian N. Bershad, and
Henry M. Levy. “Recovering Device Drivers”. In: ACM Trans. Com-
put. Syst. 24.4 (Nov. 2006), pp. 333–360. DOI: 10.1145/1189256.
1189257. URL: http://doi.acm.org/10.1145/1189256.
1189257.

[SAJB14] Ahmed Saeed, Ali Ahmadinia, Mike Just, and Christophe Bobda. “An
ID and address protection unit for NoC based communication architec-
tures”. In: Proceedings of the 7th International Conference on Security
of Information and Networks. 2014, pp. 288–294.

[Sca11] KA Scarfone. Guide to security for full virtualization technologies. Vol. 800.
125. DIANE Publishing, 2011.

139

https://doi.org/10.1145/1189256.1189257
https://doi.org/10.1145/1189256.1189257
http://doi.acm.org/10.1145/1189256.1189257
http://doi.acm.org/10.1145/1189256.1189257

[Sch+14] Nicolas Schiper, Vincent Rahli, Robbert Van Renesse, Marck Bickford,
and Robert L Constable. “Developing correctly replicated databases us-
ing formal tools”. In: 2014 44th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks. IEEE. 2014, pp. 395–
406.

[Sep+18] Johanna Sepúlveda, Damian Aboul-Hassan, Georg Sigl, Bernd Becker,
and Matthias Sauer. “Towards the formal verification of security prop-
erties of a Network-on-Chip router”. In: 2018 IEEE 23rd European Test
Symposium (ETS). IEEE. 2018, pp. 1–6.

[SK11] K Sajeesh and Hemangee K Kapoor. “An authenticated encryption based
security framework for NoC architectures”. In: 2011 International Sym-
posium on Electronic System Design. IEEE. 2011, pp. 134–139.

[SKLR11] Jakub Szefer, Eric Keller, Ruby B. Lee, and Jennifer Rexford. “Elimi-
nating the Hypervisor Attack Surface for a More Secure Cloud”. In: Pro-
ceedings of the 18th ACM Conference on Computer and Communica-
tions Security. CCS ’11. Chicago, Illinois, USA: ACM, 2011, pp. 401–
412. DOI: 10.1145/2046707.2046754. URL: http://doi.
acm.org/10.1145/2046707.2046754.

[SLQP07] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. “SecVisor: A
Tiny Hypervisor to Provide Lifetime Kernel Code Integrity for Com-
modity OSes”. In: Proceedings of Twenty-first ACM SIGOPS Sympo-
sium on Operating Systems Principles. SOSP ’07. Stevenson, Washing-
ton, USA: ACM, 2007, pp. 335–350. DOI: 10.1145/1294261.
1294294. URL: http://doi.acm.org/10.1145/1294261.
1294294.

[Smi19] Richard E Smith. Elementary information security. Jones & Bartlett
Learning, 2019.

[SNV06] Paulo Sousa, Nuno Ferreira Neves, and Paulo Verissimo. “Proactive
resilience through architectural hybridization”. In: Proceedings of the
2006 ACM symposium on Applied computing. ACM. 2006, pp. 686–
690.

[Sou+10] Paulo Sousa, Alysson Neves Bessani, Miguel Correia, Nuno Ferreira
Neves, and Paulo Verissimo. “Highly available intrusion-tolerant ser-
vices with proactive-reactive recovery”. In: IEEE Transactions on Par-
allel and Distributed Systems 21.4 (2010), pp. 452–465.

[SPWS13] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. “Sok: Eter-
nal war in memory”. In: 2013 IEEE Symposium on Security and Privacy.
IEEE. 2013, pp. 48–62.

140

https://doi.org/10.1145/2046707.2046754
http://doi.acm.org/10.1145/2046707.2046754
http://doi.acm.org/10.1145/2046707.2046754
https://doi.org/10.1145/1294261.1294294
https://doi.org/10.1145/1294261.1294294
http://doi.acm.org/10.1145/1294261.1294294
http://doi.acm.org/10.1145/1294261.1294294

[SS10] Ulrich Schmid and Andreas Steininger. Decentralised fault-tolerant clock
pulse generation in VLSI chips. Patent: US7791394B2. TU Wien. 2010.

[Sun+10] Swaminathan Sundararaman, Sriram Subramanian, Abhishek Rajimwale,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Michael
M. Swift. “Membrane: Operating System Support for Restartable File
Systems”. In: Trans. Storage 6.3 (Sept. 2010), 11:1–11:30. DOI: 10.
1145/1837915.1837919. URL: http://doi.acm.org/10.
1145/1837915.1837919.

[SYT16] Jiangyong Shi, Yuexiang Yang, and Chuan Tang. “Hardware assisted
hypervisor introspection”. In: SpringerPlus 5.1 (2016), pp. 1–23.

[SZFS17] Johanna Sepúlveda, Andreas Zankl, Daniel Flórez, and Georg Sigl. “To-
wards protected MPSoC communication for information protection against
a malicious NoC”. In: Procedia computer science 108 (2017), pp. 1103–
1112.

[Tec19] Infineon Technologies. AURIX System Architecture. https://www.
infineon.com/dgdl/Infineon-AURIX_System_Architecture-
Training-v01_00-EN.pdf?fileId=5546d46269bda8df0169ca92d6362599.
2019.

[TLS04] Pascal Traverse, Isabelle Lacaze, and Jean Souyris. “Airbus fly-by-wire:
A total approach to dependability”. In: Building the Information Society.
Springer, 2004, pp. 191–212.

[TN16] Ammarit Thongthua and Sudsanguan Ngamsuriyaroj. “Assessment of
hypervisor vulnerabilities”. In: 2016 International conference on cloud
computing research and innovations (ICCCRI). IEEE. 2016, pp. 71–77.

[TS13] Louis Turnbull and Jordan Shropshire. “Breakpoints: An analysis of po-
tential hypervisor attack vectors”. In: 2013 Proceedings of IEEE South-
eastcon. IEEE. 2013, pp. 1–6.

[Tsi18] Joseph Tsidulko. The 10 Biggest Cloud Outages Of 2018. https://www.crn.com/slide-
shows/cloud/the-10-biggest-cloud-outages-of-2018. Dec. 2018.

[VB+17] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and
Raoul Strackx. “Telling your secrets without page faults: Stealthy page
table-based attacks on enclaved execution”. In: 26th {USENIX} Security
Symposium ({USENIX} Security 17). 2017, pp. 1041–1056.

141

https://doi.org/10.1145/1837915.1837919
https://doi.org/10.1145/1837915.1837919
http://doi.acm.org/10.1145/1837915.1837919
http://doi.acm.org/10.1145/1837915.1837919
https://www.infineon.com/dgdl/Infineon-AURIX_System_Architecture-Training-v01_00-EN.pdf?fileId=5546d46269bda8df0169ca92d6362599
https://www.infineon.com/dgdl/Infineon-AURIX_System_Architecture-Training-v01_00-EN.pdf?fileId=5546d46269bda8df0169ca92d6362599
https://www.infineon.com/dgdl/Infineon-AURIX_System_Architecture-Training-v01_00-EN.pdf?fileId=5546d46269bda8df0169ca92d6362599

[VCBL09] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, and
Lau Cheuk Lung. “Spin One’s Wheels? Byzantine Fault Tolerance with
a Spinning Primary”. In: Proceedings of the 2009 28th IEEE Interna-
tional Symposium on Reliable Distributed Systems. SRDS ’09. Wash-
ington, DC, USA: IEEE Computer Society, 2009, pp. 135–144. DOI:
10.1109/SRDS.2009.36. URL: https://doi.org/10.
1109/SRDS.2009.36.

[Ver+13] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, Lau
Cheuk Lung, and Paulo Verissimo. “Efficient Byzantine Fault-Tolerance”.
In: IEEE Transactions on Computers 62.1 (Jan. 2013), pp. 16–30. DOI:
10.1109/TC.2011.221. URL: http://dx.doi.org/10.
1109/TC.2011.221.

[Ver06] Paulo E Verissimo. “Travelling through wormholes: a new look at dis-
tributed systems models”. In: ACM SIGACT News 37.1 (2006), pp. 66–
81.

[Wai+97] Elliot Waingold, Michael Taylor, Devabhaktuni Srikrishna, Vivek Sarkar,
Walter Lee, Victor Lee, Jang Kim, Matthew Frank, Peter Finch, Rajeev
Barua, Jonathan Babb, Saman Amarasinghe, and Anant Agarwal. “Bar-
ing it all to Software: Raw Machines”. In: IEEE Computer (Sept. 1997),
pp. 86–93.

[Was+13] Hassan MG Wassel, Ying Gao, Jason K Oberg, Ted Huffmire, Ryan
Kastner, Frederic T Chong, and Timothy Sherwood. “SurfNoC: A low
latency and provably non-interfering approach to secure networks-on-
chip”. In: ACM SIGARCH Computer Architecture News 41.3 (2013),
pp. 583–594.

[WJM08] Wayne Wolf, Ahmed Amine Jerraya, and Grant Martin. “Multiproces-
sor system-on-chip (MPSoC) technology”. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 27.10 (2008),
pp. 1701–1713.

[Woo+14] Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W.
Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neu-
mann, Robert Norton, and Michael Roe. “The CHERI Capability Model:
Revisiting RISC in an Age of Risk”. In: Proceeding of the 41st Annual
International Symposium on Computer Architecuture. ISCA ’14. Min-
neapolis, Minnesota, USA: IEEE Press, 2014, pp. 457–468.

[WS12] Yao Wang and G Edward Suh. “Efficient timing channel protection for
on-chip networks”. In: 2012 IEEE/ACM Sixth International Symposium
on Networks-on-Chip. IEEE. 2012, pp. 142–151.

142

https://doi.org/10.1109/SRDS.2009.36
https://doi.org/10.1109/SRDS.2009.36
https://doi.org/10.1109/SRDS.2009.36
https://doi.org/10.1109/TC.2011.221
http://dx.doi.org/10.1109/TC.2011.221
http://dx.doi.org/10.1109/TC.2011.221

[XCP15] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. “Controlled-channel
attacks: Deterministic side channels for untrusted operating systems”.
In: 2015 IEEE Symposium on Security and Privacy. IEEE. 2015, pp. 640–
656.

[Xen] Recently reported Xen/Critix Hypervisor vulnerabilities, documented in
CVE-2019-18420, CVE-2019-18421, CVE-2019-18424, CVE-2019-18425.

[Yam+21] Toshihiro Yamauchi, Yohei Akao, Ryota Yoshitani, Yuichi Nakamura,
and Masaki Hashimoto. “Additional kernel observer: privilege escala-
tion attack prevention mechanism focusing on system call privilege changes”.
In: International Journal of Information Security 20.4 (2021), pp. 461–
473.

[Yan+16] Pengfei Yang, Quan Wang, Wei Li, Zhibin Yu, and Hongwei Ye. “A
Fault Tolerance NoC Topology and Adaptive Routing Algorithm”. In:
2016 13th International Conference on Embedded Software and Systems
(ICESS). Aug. 2016, pp. 42–47. DOI: 10.1109/ICESS.2016.20.

[Yeh98] Ying C. Yeh. “Triple-triple redundant 777 primary flight computer”. In:
1996 IEEE Aerospace Applications Conference. Proceedings. Vol. 1.
IEEE. 1998, pp. 293–307.

[YF13] Qiaoyan Yu and Jonathan Frey. “Exploiting error control approaches
for hardware trojans on network-on-chip links”. In: 2013 IEEE interna-
tional symposium on defect and fault tolerance in VLSI and nanotech-
nology systems (DFTS). IEEE. 2013, pp. 266–271.

[Yin+03] Jian Yin, Jean-Philippe Martin, Arun Venkataramani, Lorenzo Alvisi,
and Mike Dahlin. “Separating agreement from execution for Byzantine
fault tolerant services”. In: Proceedings of the nineteenth ACM sympo-
sium on Operating systems principles. 2003, pp. 253–267.

[Yin+19] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and
Ittai Abraham. “HotStuff: BFT consensus with linearity and responsive-
ness”. In: Proceedings of the 2019 ACM Symposium on Principles of
Distributed Computing. 2019, pp. 347–356.

[Yus19] Najeer Yusof. Personal data of 808,000 blood donors compromised for
nine weeks; HSA lodges police report. TODAYonline. Mar. 2019.

[ZD20] Dina Zoughbi and Nitul Dutta. “Hypervisor Vulnerabilities and Some
Defense Mechanisms, in Cloud Computing Environment”. In: Inter-
national Journal of Innovative Technology and Exploring Engineering
10 (Dec. 2020), pp. 42–48. DOI: 10 . 35940 / ijitee . B8262 .
1210220.

143

https://doi.org/10.1109/ICESS.2016.20
https://doi.org/10.35940/ijitee.B8262.1210220
https://doi.org/10.35940/ijitee.B8262.1210220

[Zha16] Guangda Zhang. Fault Tolerant Techniques for Asynchronous Networks
on Chip. The University of Manchester (United Kingdom), 2016.

[Zho+06] Feng Zhou, Jeremy Condit, Zachary Anderson, Ilya Bagrak, Rob En-
nals, Matthew Harren, George Necula, and Eric Brewer. “SafeDrive:
Safe and Recoverable Extensions Using Language-based Techniques”.
In: Proceedings of the 7th USENIX Symposium on Operating Systems
Design and Implementation - Volume 7. OSDI ’06. Seattle, WA: USENIX
Association, 2006, pp. 4–4. URL: http://dl.acm.org/citation.
cfm?id=1267308.1267312.

[ZKDK08] Nickolai Zeldovich, Hari Kannan, Michael Dalton, and Christos Kozyrakis.
“Hardware Enforcement of Application Security Policies Using Tagged
Memory.” In: OSDI. Vol. 8. 2008, pp. 225–240.

[McC+10] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam
Datta, Virgil Gligor, and Adrian Perrig. “TrustVisor: Efficient TCB Re-
duction and Attestation”. In: 2010 IEEE Symposium on Security and
Privacy. May 2010, pp. 143–158. DOI: 10.1109/SP.2010.17.

144

http://dl.acm.org/citation.cfm?id=1267308.1267312
http://dl.acm.org/citation.cfm?id=1267308.1267312
https://doi.org/10.1109/SP.2010.17

	Abstract
	Introduction
	Motivation
	Motivating Example

	Thesis Purpose and Approach
	Thesis Scope
	Overview
	Publications

	Background and Related Work
	Privilege Enforcement
	Access Control

	Resource Allocation
	A Micro-Kernel Example
	The Failure Risk of Low-Level Software
	Is this a real risk?
	Being the risk real, are there no solutions yet?
	Summary

	MPSoC Safety and Security
	Fault and Intrusion Tolerance
	Byzantine Fault Tolerance
	Detailed Explanation on BFT
	Safety and Liveness Properties

	Differentiated Fault Models
	Architectural Hybridization
	Optimistic Protocols

	BFT Over Shared-Memory
	Tightly-Coupled Systems
	Resilience
	Conclusion

	From MPSoCs to D-MPSoCs
	Gap Analysis
	Consensual Updates
	Equivocation
	Consensus Without Cryptography
	Impossibility to Diagnose Faults

	D-MPSoC Fault Tolerance Requirements
	Nature of the Presented Solutions

	Solutions
	System Model

	Midir
	The Midir Architecture
	Fault Model
	T2-H2
	Voted and non-voted operations
	Consensual Privilege Change
	Implementation
	Buffered vs. Unbuffered Votes
	Immediate vs. Deferred Masking
	Internal vs. External Error Handling
	Dimensioning Voters
	Voting Interface

	Properties
	Privilege Reversion
	Protection
	Replica Identifiers

	Fault and Intrusion Tolerant Micro-Hypervisors
	Consensual System Calls
	Generic Voting Pattern
	System Call Vote
	Subordinate Votes

	Experimental Results
	Per-Replica Capability Space
	Consensually-Updated Capability Space
	Scalability
	Code Size and Hardware Utilization

	Midir Discussions
	Safety
	Liveness

	iBFT
	The iBFT Architecture
	Setup
	Execution Environment

	Fault Model
	Introspection
	Write-Once Memory
	Microcode-Based Write-Once Memory
	Tagged-Memory Based Write-Once Memory
	Implementation Details
	Reset

	iBFT Protocol
	Clients
	Normal Phase
	Error Handling
	Checkpoints and Reset
	Optimism

	Experimental Results
	Implementation
	Performance Cache-Based Implementation
	Performance Tag-Based Implementation (FPGA)
	Code Size and Hardware Utilization

	iBFT Discussions
	Performance
	Equivocation
	Write-Once Memory Pitfalls
	Leader or Leaderless?
	Safety and Liveness
	Why is Homogeneous Consensus Unfeasible?
	Trusted Copy Operation
	Remote Direct-Memory Accesses

	Solutions Discussion
	iBFT vs. Midir
	T2-H2 vs. Write-Once Memory
	Persistent Consensus
	How is the SPoF Eliminated?

	Resilience
	Restoring Synchrony
	Rejuvenating Proven vs. Suspected Faulty Replicas
	Diversity and Replica Pool
	Relocation

	Application-Level Use Case
	Data Structures for Critical Data Protection
	Motivating Example
	Setting
	Trust Model
	Threat Model

	Single Replicated Subsystem
	Replica Groups
	Multiple Non-Replicated Readers
	Multiple Replicated Readers

	Implementations
	Data Structure Service
	Read-Shared Per-Replica Data Structures
	Element-Granular Read-Shared Consensual Data Structures
	Read/Write-Shared Consensual Data Structures

	Concurrent Access by Multiple Subsystems
	Synchronization
	Lock-Free vs. Consensual Locks
	Lock-Free: Azura
	Consensual Locks

	Discussion
	Azura Fault Model

	Conclusions and Future Work
	Conclusion
	Limitations and Future Work

