

PhD-FSTM-2022-36
The Faculty of Sciences, Technology and Medicine

DISSERTATION

Defence held on 04/04/2022 in Esch-sur-Alzette

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN INFORMATIQUE

by

Zhiqiang ZHONG
Born on 19 July 1993 in Suzhou, (China)

LEVERAGING GRAPH MACHINE LEARNING FOR

SOCIAL NETWORK ANALYSIS

Dissertation defence committee
Dr. Jun Pang, dissertation supervisor
Senior Researcher, Université du Luxembourg

Dr. Sjouke Mauw, Chairman
Professor, Université du Luxembourg

Dr. Martin Theobald, Vice Chairman
Professor, Université du Luxembourg

Dr. Cheng-Te Li
Associate Professor, National Cheng Kung University

Dr. Davide Mottin
Assistant Professor, Aarhus University

iii

Abstract
Leveraging Graph Machine Learning for Social Network Analysis

by Zhiqiang Zhong

As a ubiquitous complex system in quotidian life around everyone, online social
networks (OSNs) provide a rich source of information about billions of users world-
wide. To some extent, OSNs have mirrored our real society: people perform a
multitude of different activities in OSNs as they do in the offline world, such as
establishing social relations, sharing life moments, and expressing opinions about
various topics. Therefore, understanding OSNs is of immense importance. One
key characteristic of human social behaviour in OSNs is their inter-relational na-
ture, which can be represented as graphs. Due to sparsity and complex structure,
analysing these graphs is quite challenging and expensive.

Over the past several decades, many expert-designed approaches to graphs have
been proposed with elegant theoretical properties and successfully addressed nu-
merous practical problems. Nevertheless, most of them are either not data-driven
or do not benefit from the rapidly growing scale of data. Recently, in the light of
remarkable achievements of artificial intelligence, especially deep neural networks
techniques, graph machine learning (GML) has emerged to provide us with novel
perspectives to understanding and analysing graphs. However, the current efforts
of GML are relatively immature and lack attention to specific scenarios and charac-
teristics of OSNs. Based on the pros and cons of GML, this thesis discusses several
aspects of how to build advanced approaches to better simplify and ameliorate
OSN analytic tasks. Specifically:

1. Overcoming flat message-passing graph neural networks. One of the most widely
pursued branches in GML research, graph neural networks (GNNs), follows a
similar flat message-passing principle for representation learning. Precisely,
information is iteratively passed between adjacent nodes along observed edges
via non-linear transformation and aggregation functions. Its effectiveness has
been widely proved; however, two limitations need to be tackled: (i) they
are costly in encoding long-range information spanning the graph structure;
(ii) they are failing to encode features in the high-order neighbourhood in
the graphs as they only perform information aggregation across the observed
edges in the original graph. To fill up the gap, we propose a novel hierarchical
message-passing framework to facilitate the existing GNN mechanism. Follow-
ing this idea, we design two practical implementations, i.e., HC-GNN and
AdamGNN, to demonstrate the framework’s superiority.

iv

2. Extending graph machine learning to heterophilous graphs. The existing GML ap-
proaches implicitly hold a homophily assumption that nodes of the same class
tend to be connected. However, previous expert studies have shown the enor-
mous importance of addressing the heterophily scenario, where “opposites at-
tract”, is essential for network analysis and fairness study. We demonstrate
the possibility of extending GML to heterophilous graphs by simplifying su-
pervised node classification models on heterophilous graphs (CLP) and de-
signing an unsupervised heterophilous graph representation learning model
(Selene).

3. Online social network analysis with graph machine learning. As GML approaches
have demonstrated significant effectiveness over general graph analytic tasks,
we perform two practical OSN analysis projects to illustrate the possibility of
employing GML in practice. Specifically, we propose a semantic image graph
embedding (SiGraph) to improve OSN image recognition task with the associ-
ated hashtags semantics and a simple GNN-based neural link prediction frame-
work (NeuLP) to boost the performance with tiny change.

Keywords: Graph machine learning, Social network analysis, Graph neural net-
works, Hierarchical structure, Homophily/Heterophily graphs, Link prediction,
Online image content understanding.

v

To the memory of my father.

vii

Acknowledgements
This thesis represents not only my work of the four-year PhD study but also a
milestone in my research career and my life. In addition to the produced papers
and thousands of lines of code, it is more important than the journey over the past
four years has taught me how to think, investigate, write and present, and have
taught me to be curious, optimistic and collaborative, and have made me realise
my ordinary and extraordinary. I am deeply thankful to the following people,
without the help and support of whom I would not have managed to complete this
journey of a lifetime.

First and foremost, I would like to thank Jun Pang for giving me the opportu-
nity to pursue a PhD under his supervision. I am tremendously grateful for his
continuous support, for countless inspiring discussions, for giving me the freedom
to pursue a variety of research directions, and for frequently encouraging me to
explore the unknown in the past four years.

Being part of SaToSS group was a wonderful and genuinely growing experi-
ence. Thanks to Sjouke Mauw for his encouragement, advice and kind help. It has
been a pleasure to have him as one of my CET (comité d’encadrement de thèse)
committees. Thanks to Olga Gadyatskaya, Aleksandr Pilgun and Stanislav Da-
shevskyi, who helped me a lot during the first teaching assistant experience of the
first semester. They gave me great courage and confidence. I have fond memories of
sharing an office with Marco Crepaldi and Semen Yurkov; I could not have hoped
for a more joyful environment for working, especially enjoyed the “afternoon tea
break” (with Aleksandr Pilgun too). I am also pleased to have had the opportunity
to collaborate with Yang Zhang, Ninghan Chen and Xihui Chen, and thanks for the
inspiring discussions and encouragement. To all my other colleagues in SaToSS,
thanks for making the past four years an unforgettable experience.

Thanks to Martin Theobald for his continuous guidance and insightful discus-
sion. I also count myself lucky for having him as one of my CET committees and
encouraging me to perform in-depth research.

I am also very happy to have had the opportunity to collaborate with fantastic
researchers outside of the University of Luxembourg: Cheng-Te Li, Sergey Ivanov,
Guadalupe Gonzalez and Daniele Grattarola. I have had the chance to work with
very talented MSc students: HaoCheng Ho and Yi-Wei Cheng.

Many special thanks go to my friends and colleagues, including Cui Su, Ning-
han Chen, Marco Crepaldi and Semen Yurkov, for all the wonderful moments with
them in Luxembourg.

Finally, I would like to thank my family. My mother, not only gave me endless
love, but I would not be where I am today as a person without having her in my
life. Thank you for enduring my absence in the past few years. To my fiancee,
Zhe Xie: thank you for your steadfast support in every way I could imagine with
encouragement and tolerance.

Sincerely,
Zhiqiang Zhong

ix

Contents

Abstract iii

Acknowledgements vii

1 Introduction 1
1.1 Human Social Activities and Social Networks 1
1.2 Artificial Intelligence and Graph Machine Learning 2
1.3 Scope and Research Questions . 3
1.4 List of Papers . 5

2 Background 7
2.1 Notations . 7
2.2 Graph Representation Learning . 8
2.3 Graph Neural Networks . 9
2.4 Graph Representation Learning for Social Network 11
2.5 Self-Supervised Learning . 12

I Overcoming flat Message-passing Graph Neural Networks 15

3 Hierarchical Message-passing Graph Neural Networks 19
3.1 Introduction . 19
3.2 Additional Related Work . 22
3.3 Problem Statement . 23
3.4 Proposed Approach . 24

3.4.1 Hierarchical Message-passing GNNs 25
3.4.2 Hierarchical Community-aware GNN 27
3.4.3 Theoretical Analysis and Model Comparison 28

3.5 Experiments . 29
3.5.1 Evaluation Setup . 29
3.5.2 Experimental Results . 33
3.5.3 Empirical Model Analysis . 36

3.6 Conclusion and Future work . 38

x

4 Multi-grained Semantics-aware Graph Neural Networks 39
4.1 Introduction . 39
4.2 Additional Related Work . 40
4.3 Proposed Approach . 42

4.3.1 Preliminaries . 42
4.3.2 Adaptive Graph Pooling for Multi-grained Structure Generation 42
4.3.3 Graph Unpooling . 45
4.3.4 Flyback Aggregation . 46
4.3.5 Training Strategy . 46
4.3.6 Algorithm . 47

4.4 Experiments . 49
4.4.1 Experimental Setup . 49
4.4.2 Experimental Results and Ablation Study 51
4.4.3 More Model Analysis . 54

4.5 Conclusion and Future work . 59

II Extending Graph Machine Learning to Heterophilous Graphs 61

5 Simplifying Node Classification on Heterophilous Graphs 65
5.1 Introduction . 65
5.2 Additional Related Work . 67
5.3 Preliminaries . 68
5.4 An Experimental Investigation . 69
5.5 Proposed Approach . 70

5.5.1 Simple Base Predictor . 70
5.5.2 Estimation of Compatibility Matrix 71
5.5.3 Compatible Label Propagation 72
5.5.4 Theoretical Analysis of CLP . 73
5.5.5 Summary . 74

5.6 Evaluation . 75
5.6.1 Datasets . 75
5.6.2 Experimental Setup . 77
5.6.3 Results on Real-world Graphs 77
5.6.4 Results on Synthetic Graphs . 78
5.6.5 More Analysis . 80

5.7 Conclusion and Future work . 82

6 Unsupervised Heterophilous Graph Embedding 83
6.1 Introduction . 83
6.2 Additional Related Work . 84
6.3 Preliminaries . 85
6.4 An Experimental Investigation . 87
6.5 Proposed Approach . 88

6.5.1 Dual-channel Feature Embedding (RC1) 89

xi

6.5.2 r-ego Network Sampling and Anonymity (RC1) 90
6.5.3 Non-negative Self-supervised Learning (RC3) 91
6.5.4 Model Scalability . 92

6.6 Evaluation . 93
6.6.1 Datasets . 93
6.6.2 Experimental Setup . 94
6.6.3 Experimental Results . 95
6.6.4 Analysis . 97

6.7 Conclusion and Future work . 98

III Online Social Network Analysis with Graph Machine Learning 101

7 A Graph-based Approach to Explore Relation between Hashtags & Images105
7.1 Introduction . 105
7.2 Additional Related Work . 107
7.3 Image-Hashtag Relationship Verification 108
7.4 Quantifying Image-Hashtag Relationship 109

7.4.1 Word Embedding based Approach 110
7.4.2 Shallow Graph Embedding based Approach 110
7.4.3 Deep Graph Embedding based Approach 110
7.4.4 Experiments . 111

7.5 Application . 113
7.6 Conclusion and Future Work . 116

8 NeuLP: An End-to-end Deep-learning Model for Link Prediction 117
8.1 Introduction . 117
8.2 Additional Related Work . 119
8.3 Framework . 119

8.3.1 Partial Aggregation . 120
8.3.2 Information Fusion . 121
8.3.3 Model Prediction and Optimisation 121

8.4 Experimental Evaluation . 122
8.4.1 Dataset Description . 122
8.4.2 Experimental Settings . 123
8.4.3 Performance Comparison . 124
8.4.4 Attributed Online Social Networks 124

8.5 Conclusion and Future Work . 127

9 Concluding Remarks 129
9.1 Contribution . 129
9.2 Limitations and Future Directions . 131

9.2.1 Scalability . 131
9.2.2 Interpretability . 131

xii

9.2.3 GML Driven Medicine Discovery and Development 132
9.3 Conclusion . 132

Bibliography 133

Curriculum Vitae 152

xiii

List of Figures

3.1 Elaboration of the proposed hierarchical message passing: (a) a col-
laboration network, (b) an illustration of hierarchical message-passing
mechanism based on (a) and (c), and (c) an example of the identified
hierarchical structure. 20

3.2 (a) The architecture of HMGNNs: we first generate a hierarchical
structure, in which each level is formed as a super graph, use the level
t graph to update nodes of level t + 1 graph (bottom-up propaga-
tion), apply the typical neighbour aggregation on each level’s graph
(within-level propagation), use the generated node representations
from level 2 ≤ t ≤ T to update node representations at the level 1
(top-down propagation), and optimises the model via a task-specific
loss. (b) NN-1: bottom-up propagation. (c) NN-2: within-level prop-
agation. (d) NN-3: top-down propagation. 25

3.3 Results in Micro-F1 for semi-supervised node classification using
HC-GNN by varying: (a) the number of hierarchy levels adopted for
message passing, and (b) the approaches to generate the hierarchical
structure. 36

3.4 Results on semi-supervised node classification in graphs by varying
the percentage of removed edges. 37

4.1 Ratio of covered nodes with various selection ratios. 40
4.2 (a) An illustration of AdamGNN with 3 levels. AGP: adaptive graph

pooling, GUP: graph unpooling. (b) An example of performing adap-
tive graph pooling on a graph: (i) ego-network formation, (ii-iii) su-
per node generation, (iv) maintaining super graph connectivity. . . . 43

4.3 Ablation study of Ego-network size λ in terms of different tasks. NC
task follows the supervised settings. 54

4.4 Visualisation of attention weight for messages at different granularity
levels. Dark colours indicate higher weights. 55

4.5 Visualisation of different granularity levels. 56
4.6 Visualisation of the adjacency matrices stacking the 1-st (green), 2-nd

(blue), and 3-rd (yellow) granularity levels on the Wiki dataset. 57
4.7 Visualisation of graph structure and adjacency matrix at different

granularity levels of Karate-club dataset 58
4.8 A toy example of the aggregation schemas of vanilla GNNs (left) and

AdamGNN (right). 58

5.1 Classification accuracy for different 1-hop subgraph homophily ra-
tios on Wiki (5.1a) and ACM (5.1b) graphs. 69

xiv

5.2 Overview of Compatible CLP model. Step (i): base predictor, MLP,
makes class predictions for each node using only node features. Step
(ii): global compatibility matrix between classes is computed with
Equation 5.6. Step (iii): propagate class predictions with LP algo-
rithm and get the classes for test nodes. Intuitively, compatibility
matrix measures the weighted probabilities of any two target classes
being connected, and as such, it defines the edge weights in LP algo-
rithm. 70

5.3 Comparison of three propagation schemes, M represents the received
messages after one propagation iteration. In LP nodes 1 and 2 receive
the same message; LP with H overturns prior prediction of node
1; CLP adapts the heterophily of the graph and reassures confident
prior predictions. 72

5.4 Performance comparison of C&S and CLP with best performance of
GNN models (SOTA) on homophily graphs under medium splitting. . . 78

5.5 Classification accuracy of different methods with different label rates
on synthetic datasets. Only competitive results are presented due to
the space limit. 79

5.6 Performance comparison of CLP and CLP* on Syn-1 dataset with
medium splitting. 80

5.7 Classification accuracy and L2-distance between estimated/true com-
patibility matrix with different label rates. 81

5.8 Classification accuracy and execution time of different methods with
different layers on heterophily graphs. Execution time is marked in
the plot in terms of seconds (s). 81

6.1 A toy example of the rooted aggregation trees on an example het-
erophilous graph (h = 0.2). Different colours represent different node
classes. (a) An example graph; (b) Two rooted 2-layers aggregation
trees of two connected nodes, i.e., v0 and v1. Duplicated components
of two rooted trees are marked with the same shadow colour. (c)
After ego network sampling and anonymity, two rooted aggregation
trees have no duplicates. 86

6.2 Node clustering accuracy of representative GE methods on synthetic
datasets, i.e., Synthetic (a) and Synthetic-Products (b). 87

xv

6.3 An illustration of our proposed framework Selene. X and A are raw
node attributes and adjacency matrix of the input graph G, respec-
tively. X(1) and X(2) are two distorted node attribute matrix, X̂ is
the reconstructed node attribute matrix. Extracted r-ego network
(Gr(v)) of ego node v is anonymised to break its connection to neigh-
bour nodes, and then distorted to two ego networks, i.e., G(1)r (v)
and G(2)r (v). Node attribute encoder is optimised by the reconstruc-
tion loss Lrec(X, X̂) and attribute Barlow-Twins loss LBT(H(1), H(2));
graph structure encoder is optimised by the graph Barlow-Twins loss
LBT(U(1), U(2)). The final node representation is obtained by apply-
ing Combine to the generated node attribute representation H and
graph structure representation U. 88

6.4 Clustering accuracy comparison of Selene vs SDCN vs GBT vs FAGCN∗

on Synthetic (a) and Synthetic-Products (b). 96
6.5 Loss function exploration. We ablate constituent of our loss function

and report Selene’s performance. 97
6.6 Framework component exploration. We ablate components of our

dual-channel feature embedding pipeline and report Selene’s perfor-
mance. 98

6.7 Hyper-parameter influence exploration. We present Selene’s cluster-
ing accuracy on two graphs with different px and pe. 98

7.1 Visualisation of our SIGraph embeddings. The images information
are mapped to the 2D space using the t-SNE package with learned
SIGraph image embedddings as input. We select some labels: [“an-
imal”, “cat”], [“ocean”, “water”], [“flowers”, “plants”], [“fish”, “wa-
ter”], [“airport”, “clouds”], [“lake”, “mountain”], [“plane”, “sky”],
[“animal”, “birds”] and [“sky”, “tower”] and collect images have
these labels. 115

8.1 NeuLP’s model architecture. The two input user feature vectors (left:
vi, right: vj) are firstly transformed with two GNNs and further fused
with multiple propagation layers, and the output is the predicted
possibility of existing friendship between vi and vj. 120

8.2 Link prediction performance comparison of NeuLP on the Instagram
datasets. NeuLP: without user attributes. NeuLP*-feature: adopting
random-walk related methods generated embeddings as user fea-
tures. 125

8.3 Prediction accuracy of four link prediction methods on the Instagram
datasets with different geodesic distances. P-GNNs lead to OOM on
Instagram-2 dataset; thus not showing in Figure 8.3b. 126

xvii

List of Tables

2.1 Summary of notations . 7
2.2 Define different GNN variants according to Equation 2.1. 10

3.1 Model comparison in aspects of Node-wise Task (NT), SUPervised
training paradigm (SUP), Transductive Inference (TI), Inductive In-
ference (II), Long-range Information (LI), and Hierarchical Semantics
for Node Representations (HSNR). 23

3.2 Summary of additional notations. 23
3.3 Summary of dataset statistics. LP: Link Prediction, NC: Node Clas-

sification, CD: Community Detection, N.A. means a dataset does not
contain node features or node labels. 30

3.4 Results in Micro-F1 and Macro-F1 for transductive semi-supervised
node classification task. Results in Acc for node classification of
Ogbn-arxiv follows the default settings of OGB dataset [HFZ+20],
and results in NMI for community detection (i.e., on the Emails data
in the last column). Standard deviation errors are given. ‡ indicates
the results from OGB leaderboard [HFZ+20]. OOM: out-of-memory. 33

3.5 Micro-F1 results for inductive node classification. Standard deviation
errors are given. 34

3.6 Micro-F1 results for few-shot node classification. Standard deviation
errors are given. 34

3.7 Results in AUC for link prediction. Cora-Feat means node features
are used in the Cora dataset, and conversely, Cora-NoFeat means
node features are not used. Standard deviation errors are given. . . . 35

3.8 Comparison of HC-GNN with different primary GNN encoders (within-
level propagation), follow the transductive node classification settings.
Reported results in Micro-F1. 37

4.1 Model comparison from various aspects: Node-wise Task (NT), Graph-
wise Task (GT), Pooling and/or Unpooling (P/U), Adaptive Pooling
(AP), Efficient Pooling (EP), Multi-grained Explanation (ME). 41

4.2 Summary of additional notations. 42
4.3 Data statistics for node-wise tasks and the split for the semi-supervised

node classification task. N.A. means a dataset does not contain node
attributes or does not support semi-supervised settings. 49

4.4 Data statistics for graph classification. 49
4.5 Results in accuracy (%) for supervised and semi-supervised node

classification on eight datasets. ‡ indicates the results from OGB
leaderboard [HFZ+20]. The bold numbers represent the top-2 results. 51

xviii

4.6 Results in AUC for link prediction on seven datasets. 52
4.7 Results in accuracy (%) for graph classification on six datasets. 52
4.8 Comparison of AdamGNN with different loss functions on three

tasks. NC task follows the supervised settings. 52
4.9 Comparison of AdamGNN with and without flyback aggregation in

terms of graph classification accuracy on NCI1, NCI109 and Muta-
genicity datasets. 53

4.10 Comparison of AdamGNN with different number of granularity lev-
els in terms of different tasks. NC task follows the supervised set-
tings. 53

4.11 Comparison of AdamGNN with different primary GNN encoders,
follow the semi-supervised node classification settings. 54

4.12 Average one epoch running time (in seconds) for supervised node
classification task. (×2) means accelerated by 2 GPUs [KSO+21]. . . . 55

4.13 Average one epoch running time (in seconds) for graph classification
task. 55

4.14 Performance comparison for 1-shot-NC task on Karate-club dataset. . 57

5.1 Statistics of real-world graphs. |V|: number of nodes; |E |: number
of edges; π: dimensionality of nodes features; OSF: nodes only have
structure related features; davg: average degree; |Y|: number of pos-
sible class labels; h: homophily ratio; Split: split approach of graph;
Directed: if the graph is directed. 76

5.2 Statistics for synthetic Datasets. (Prod) means node features come
from Ogbn-Products [HFZ+20], or adopt the statistic features de-
signed by 2D Gaussians [APK+19]. 76

5.3 Summary of node classification results on heterophily graphs under
medium splitting. ‡ indicates the results from [LHL+21]. The bold
numbers represent the top-2 results. 78

6.1 Summary of additional notations. 86
6.2 Statistics of real-world datasets. |V|: number of nodes; |E |: num-

ber of edges; π: dimensionality of nodes features; OSF: nodes only
have structure related features; davg: average degree; |Y|: number of
possible class labels; h: homophily ratio; 93

6.3 Node clustering results on heterophilous datasets. The bold numbers
represent the top-2 results. OOM: out-of-memory. SAGE: Graph-
SAGE. 95

6.4 Node clustering results on homophilous datasets. The bold numbers
represent the top-2 results. OOM: out-of-memory. SAGE: Graph-
SAGE. 96

7.1 Two example images from Instagram. Hashtags are generated by
users, and labels are provided by Google’s Cloud Vision API. 106

7.2 Summary of additional notations. 109
7.3 Comparison of the experimental results of the top 3 image multi-label

classification on the NUS-WIDE dataset with 5018-hashtags. 114

xix

7.4 Two example predictions by the CNN approach and the CNN+SIGraph
approach on the NUS-WIDE dataset. 114

8.1 Statistics summary of the seven datasets. 123
8.2 Link prediction performance comparison with baseline methods on

graph datasets (AUC). OOM: out of memory. 124
8.3 Link prediction performance comparison between NeuLP and base-

line methods on attributed social network datasets with one user at-
tribute type (AUC). OOM: out of memory. 125

1

Chapter 1

Introduction

1.1 Human Social Activities and Social Networks

Millions1 of years of evolution have made humanity stand out from millions of
species on this planet2, and also reshaped the way we live and our perception and
cognition. Meanwhile, human interaction also evolved from cooperative hunting
to collective farming to novel forms after the industrial revolution3. Predominantly
driven by the fourth industrial revolution, humans have taken perception to new
extremes to create the internet. Humans can perform social activities in virtual
scenes - the online social networks (OSNs).

OSNs have become a vital part of modern human life. They contain a wealth of
useful information about human online social activity, including establishing social
relations, sharing life moments, pursuing social interactions and expressing opin-
ions about various topics. To some extent, OSNs have mirrored our real social so-
ciety and have become an indispensable tool for understanding and solving offline
real-world issues, such as social healthcare analysis [TY12, DYKC18], academic net-
work analysis [GN02, TZY+08], information and trust propagation [GKRT04, JE10],
natural disaster mitigation [NSJ12, ÖE12] and viral marketing [DTSS10, ML10].

How can we formalise and investigate online social networks? - A heuristic question is
naturally raised in our minds. To answer this question, the researchers proposed
formally defining OSNs as large-scale ubiquitous complex systems composed of a
collective of components (individual or human groups) that may interact with each
other (social interactions). In order to simplify the processing of OSNs, researchers
further proposed a definition - graph - which provides a unified way to represent
information in a complex system. A graph is a data structure describing a set of
entities, represented as nodes, and their pairwise interactions represented as edges.
Additional rich properties corresponding to each node and edge are summarised
as node and edge attributes.

With the assistance of the concept of the graph, we can conveniently represent
OSNs. However, understanding and analysing them is still challenging due to the
involuted dependencies, transformation, and relationships.

1Or billions, when considering the beginning of biology
2“Sapiens: A Brief History of Humankind”, a book by Yuval Noah Harari
3https://en.wikipedia.org/wiki/Industrial_Revolution

https://en.wikipedia.org/wiki/Industrial_Revolution

2 Chapter 1. Introduction

1.2 Artificial Intelligence and Graph Machine Learning

“Those who can imagine anything, can create the impossible. ”

Alan Turing

The desire to understand online social networks (OSNs) has spawned a variety of
scientific disciplines. Theoretical physics, graph theory, graph signal processing and
the study of artificial intelligence (AI) are the most prominent examples of scientific
fields. The past decade has observed impressive achievements of AI in terms of
theoretical understanding and practical applications [RN20].

The work in this thesis is situated in the field of machine learning, which is one of
the most widely pursued branches in AI research [JM15]. The principal objective
of machine learning is to answer the question of if/how we can build intelligent
systems and design agile algorithms that learn from data and experience. Such
a novel schema contrasts the traditional approaches in computer science, where
systems are explicitly programmed to follow a precisely outlined sequence of in-
structions [DCG+89].

The problem of machine learning is accustomed approached by fitting a well-
designed model to data with the goal that this learned model can generalise to
new data. Traditionally, machine learning models are built on top of designed or
processed feature sets, extracted from the raw data format using a pre-defined pro-
cedure. For instance, the pixel distribution in image data and the word occurrence
statistics in text documents are treated as processed features. After, we can train
the learning model upon the obtained features by tuning the model’s parameters
to memory knowledge from the data. The memorised knowledge will be employed
on new experiences.

Nevertheless, the process of developing practicable features - also referred to as fea-
ture engineering - plays a decisive role in the model performance and requires lots of
human effort. Moreover, the developed feature extractor are often not transferable
that we need to design for each dataset and task.

Deep learning, another widely pursued branch in AI Research, has enjoyed the im-
mense spotlight in recent years [LBH15]. Instead of manually developing learn-
ing models with handcrafted features extractors, it directly learns representations
from raw data. This is achieved by stacking multiple layers of differentiable lin-
ear and non-linear transformations and by training such a model with the raw
data in an end-to-end fashion. The derived class of models that follow the deep
learning paradigm is referred to deep neural networks. Such unified and strong
models have demonstrated superior power in many areas, including computer vi-
sion [LBD+89, KSH12], nature language processing [LBBH98, BDVJ03], automaton
controlling [MKS+15, SSS+17], etc [LKB+17, PSY+19].

Despite recent soaring successes of deep learning in many areas, those aforemen-
tioned deep neural networks are still falling short of general ability for complex
systems that take the form of graphs. So how can we build systems and algo-
rithms that work well with an arbitrary structure? For example, the prestigious

1.3. Scope and Research Questions 3

deep neural network architecture, convolutional neural networks [LBBH98], comprises
trainable grid-shaped parameter sets that are tied or shared across image locations,
requiring grid-structured data with a fixed size. Another reputable architecture,
recurrent neural networks [Hoc98], shares parameter sets over time steps and hence
generalise more favourably on sequential data. But it still cannot cope with more
complex graph structure data.

In this thesis, we focus on a different machine learning category, referred to as
graph machine learning (GML) [CWPZ19, ZCZ20, XSY+21], that is designed as a
predominant approach to finding effective data representations from complex sys-
tems that take the form of graphs. The principal target of GML is to extract
the desired features of a graph as informative representations that can be easily
used by downstream tasks such as node-level, edge-level and graph-level, pat-
tern discovery, analysis, classification and regression tasks. One way to achieve
this is by designing handcrafted feature extractors and explicit algorithms that
learn from graph-structured data and experience, which is similar to traditional
machine learning approaches and suffers from parallel deficiencies. Another way
is by structuring the representations and computations in a deep neural network
in the form of a graph, leading to a class of models named graph neural networks
(GNNs) [GMS05, SGT+09, KW17, WPC+21], which is of central importance in this
thesis. Precisely, we reflect on the mechanism of GNNs based on two typical on-
line human social activity scenarios and propose our solutions. Moreover, two
interesting social network analysis projects are further presented to illustrate the
effectiveness of GML.

1.3 Scope and Research Questions

This thesis is structured in three parts: Part I first demonstrates the flatness of vanilla
message-passing graph neural networks (GNNs) and then introduces two advanced
graph neural network models to overcome the flat message-passing mechanism.
Part II discusses the availability of applying graph machine learning (GML) models on
heterophilous graphs, i.e., nodes of different classes tend to be connected (“opposites
attract”) and presents two GML approaches that work well on both homophily and
heterophily. Part III presents two fascinating example projects that demonstrate
utilising GML methods for online social network (OSN) analysis.

The contributions of this thesis are guided by the following questions:

Research Question 1: Can we develop graph machine learning models that overcome the
limitations of flat message-passing mechanism to learn more comprehensive representations?

Our main contribution to address this research question is designing a novel hi-
erarchical message-passing idea that allows information aggregation through ob-
served graph structure and implicit hierarchical relations from the graph. We
name the novel designed framework as hierarchical message-passing graph neural net-
works. Following the proposed hierarchical message-passing idea, in Chapter 3, we

4 Chapter 1. Introduction

propose practical and effective implementations, i.e., hierarchical community-aware
graph neural network (HC-GNN), to adopt several hierarchical community detec-
tion algorithms to reveal the implicit hierarchical structure and build up message-
passing pipelines follow this structure. Theoretical complexity analysis confirms
HC-GNN’s efficiency, and extensive experimental results demonstrate its effective-
ness on node-wise and edge-wise tasks on inductive and transductive settings.

Research Question 2: Can we realise the hierarchical message-passing idea without any
manual preprocessing?

After introducing the hierarchical community-aware graph neural network that im-
plements the hierarchical message-passing idea with hierarchical community de-
tection algorithms in Chapter 3. We further argue that the predefined hierarchical
structure may not be optimised for every downstream task on graphs with differ-
ent characteristics, and such a framework violates the end-to-end training mecha-
nism of deep learning models. Therefore, we introduce another ameliorated model,
namely adaptive multi-grained graph neural networks (AdamGNN), which can adap-
tively construct the hierarchical structure and enhance the node representation with
the learned multi-grained semantics. We demonstrate applications of AdamGNN
to a multitude of different downstream tasks in Chapter 4.

Having introduced advanced GNNs for overcoming the flat message-passing mech-
anism in Part I of this thesis (Chapters 3 and 4), Part II investigates whether/how
GML models can be developed and efficiently applied to graphs with heterophily,
i.e., linked nodes are likely to be from different classes.

Research Question 3: Can graph machine learning models be efficiently applied on het-
erophilous graphs?

Classic GML models implicitly assume graphs have homophily property, that said
nodes of the same class tend to be connected. However, heterophilous graphs
widely exist in the real world and addressing the heterophilous scenario is essential
for OSN analysis and fairness study. Therefore, we perform a large-scale empiri-
cal study to investigate the performance of existing node representation learning
models and propose a simple but strong node classification framework, termed
compatible label propagation (CLP), in Chapter 5.

Research Question 4: Can graph machine learning models be utilised for unsupervised
node representation learning on heterophilous graphs?

To address this challenging task, that learning useful node representation without
supervision from graphs where linked nodes are likely to be from different classes,
we first analyse the performance and embedding mechanisms of existing unsuper-
vised graph representation learning models. We find that the homophily ratio can
significantly affect the performance of graph representation learning models that

1.4. List of Papers 5

rely on the graph structure. There are three challenges to designing valid unsu-
pervised graph representation learning models that work well with homophily and
heterophily. To address these three research challenges, we introduce our solution:
the self-supervised network embedding (Selene) in Chapter 6. This model demonstrates
outstanding performance on challenging node clustering task that does not utilise
any supervisor information on homophilous and heterophilous graphs.

Aside from the above-listed research questions that were investigated in this thesis,
Part III presents two interesting practical OSN analysis projects.

Research Question 5: Can online social networks be used for image classification?

Image is one of the most popular information shared in OSNs, and large-scale
image classification is a classic and challenging task. Chapter 7 proposes to utilise
OSN languages, i.e., image associated hashtags, to organise images into a graph. We
utilise graph representation learning methods to learn image representations that
involve the relationship among images’ contents, which can significantly improve
image classification performance.

Research Question 6: Can graph neural networks be utilised for link prediction in online
social networks?

Link prediction, which aims to estimate the likelihood of the existence of an edge
between two nodes, is one of the key problems in OSN mining and has been
widely applied for many business scenes. In Chapter 8, we propose a unified
end-to-end deep learning model, namely neural link prediction (NeuLP). The model
integrates the linearity and non-linearity user interactions to overcome the lim-
itation of GNNs in capturing long-range interactions. Experimental evaluation
demonstrates NeuLP’s significant improvements over several baseline models. And
NeuLP achieves a reliable link prediction given two users’ different types of at-
tributes.

After presenting the main body of our work in Parts I, II and III, we conclude and
outline interesting directions for future work in Chapter 9.

1.4 List of Papers

The main content (Parts I-III) of this thesis is based on the following papers:

• Zhiqiang Zhong, Cheng-Te Li and Jun Pang. “Hierarchical Message-Passing
Graph Neural Networks” [ZLP20b], Under review of Journal Track of European
Conference on Machine Learning and Data Mining. Chapter 3 is mainly based on
this paper.

6 Chapter 1. Introduction

• Zhiqiang Zhong, Cheng-Te Li and Jun Pang. “Multi-grained Semantics-aware
Graph Neural Networks” [ZLP20a], Under review of IEEE Transactions on
Knowledge and Data Engineering. Chapter 4 is based on this paper.

• Zhiqiang Zhong, Sergey Ivanov and Jun Pang. “Simplifying Node Classifi-
cation on Heterophilous Graphs with Compatible Label Propagation”, Under
review of 2022 International Conference on Knowledge Discovery and Data Mining.
Chapter 5 is based on this paper.

• Zhiqiang Zhong, Guadalupe Gonzalez, Daniele Grattarola and Jun Pang.
“Unsupervised Heterophilous Network Embedding via r-Ego Network Dis-
crimination”, Under review of IEEE Transactions on Neural Networks and Learn-
ing Systems. Chapter 6 is based on this paper.

• Zhiqiang Zhong, Yang Zhang and Jun Pang. “A Graph-Based Approach to
Explore Relationship Between Hashtags and Images” [ZZP19], In 2019 Inter-
national Conference on Web Information Systems Engineering. Chapter 7 is based
on this paper.

• Zhiqiang Zhong, Yang Zhang and Jun Pang. “NeuLP: An End-to-End Deep-
Learning Model for Link Prediction” [ZZP22], In 2020 International Conference
on Web Information Systems Engineering. Chapter 8 is based on this paper.

The author has further contributed to the following papers:

• Zhiqiang Zhong, Cheng-Te Li and Jun Pang. “Personalised Meta-path Gen-
eration for Heterogeneous Graph Neural Networks” [ZLP22], In 2022 Journal
Track of European Conference on Machine Learning and Data Mining.

• Ninghan Chen, Zhiqiang Zhong and Jun Pang “An Exploratory Study of
COVID-19 Information on Twitter in the Greater Region” [CZP21], In Journal
of Big Data and Cognitive Computing.

• Yi-Wei Cheng, Zhiqiang Zhong, Jun Pang and Cheng-Te Li. “Hierarchical
Bipartite Graph Convolutional Network for Recommendation”, Under review
of ACM Transactions on Intelligent Systems and Technology.

• Ninghan Chen, Xihui Chen, Zhiqiang Zhong, Jun Pang. “From #Jobsearch to
#Mask: Improving COVID-19 Cascade Prediction with Spillover Effects” [CCZP21],
In 2021 International Conference on Advances in Social Networks Analysis and Min-
ing. Another extended version “Exploring Spillover Effects for COVID-19
Cascade Prediction” [CCZP22], In Journal of Entropy.

• Ninghan Chen, Xihui Chen, Zhiqiang Zhong and Jun Pang. ““Double vacci-
nated, 5G boosted!": Learning Attitudes towards COVID-19 Vaccination From
Social Media”, Under review of 2022 International Conference on Knowledge Dis-
covery and Data Mining.

7

Chapter 2

Background

In this chapter, we provide a brief introduction to several important background
topics and notations that are extensively used throughout this thesis. Additional
background for each specific topic will be introduced where necessary in later chap-
ters. In what follows, we give an introduction to graph representation learning in
Section 2.2, to graph neural networks in Section 2.3, to node representations for social
network analysis in Section 2.4 and lastly to self-supervised learning in Section 2.5.

2.1 Notations

This section provides a reference for the most commonly used notations throughout
this thesis. Individual chapters introduce additional notations where necessary.

Table 2.1: Summary of notations

Notation Description
G Graphical representation of the data with n nodes
V Set of nodes in the graph, |V| = n
E Set of edges in the graph, E ⊆ V × V
A Adjacency matrix that summarises V and E , A ∈ {0, 1}n×n

X Node attribute matrix, X ∈ Rn×π

xi Node attribute of node vi, xi ∈ Rπ

Y Set of class labels for all v ∈ V
yi Class label of node vi
Y Set of one-hot class labels for all v ∈ V
yi One-hot class label of node vi
f (x), f (X) If f (·) is a function defined on scalars, then f (x) and f (X) are

to be understood as an element-wise application of f (·) on the
elements of the vector x or matrix X

fθ(·), fϕ(·) Parameter dependency of functions is typically made explicit
with a greek alphabet θ or ϕ.

Z Node representation matrix, Z ∈ Rn×d

zi Node representation vector of node vi, zi ∈ Rd

L Loss function

8 Chapter 2. Background

2.2 Graph Representation Learning

Graphs are a ubiquitous data structure that models objects and their relationships,
such as social networks, biological protein-protein networks, recommendation sys-
tems, etc [HYL17a]. However, how to deal with the complex and diverse non-
Euclidean data structure is a challenging and essential task. Over the last decade,
in the light of the outstanding developments of artificial intelligence, graph rep-
resentation learning has become a promising approach to machine learning with
graphs. The goal of graph representation learning is to learn low-dimensional
representations for all entities of a graph [ZCZ20], which can be applied for a
multitude of different applications that involve node-wise [KW17, XHLJ19], edge-
wise [KW16, ZC18] and graph-wise tasks [ZLLW19, BWS+20]. We start with nec-
essary definitions and preliminaries.

Definition 1 (Graph). An attributed unweighted graph with n nodes can be formally
represented as G = (V , E , X), where V is the set of nodes and |V| = n, E ⊆ V ×V denotes
the set of edges, and X = {x1, x2, . . . , xn}, with each xi ∈ Rπ, represents node features (π
is the dimensionality of node features). Y stands for a set with class labels for all v ∈ V . For
subsequent discussion, we summarise V and E into an adjacency matrix A ∈ {0, 1}n×n.

To process the graph-structured data, traditional approaches mainly rely on hand-
crafted features, including graph statistics [BKT13], kernel functions [VSKB10] and
experts designed features [LK07]. However, these conventional approaches often
suffer from practical limits on large-scale graphs with rich node and edge attributes.
Recently, graph representation learning emerged to be a promising direction.

Definition 2 (Graph representation learning). For node-wise and edge-wise tasks, given
a graph G, the task of graph representation learning (or termed as graph embedding in
some papers) is to learn a mapping function fn : G → Z, where Z ∈ Rd, and each row
zi ∈ Z corresponds to node vi’s representation. For graph-wise tasks, similarly it aims
to learn a mapping fg : D → Z, where D = {G1,G2, . . . } is a set of graphs, each row
zi ∈ Z corresponds to the graph Gi’s representation. The mapping function’s effectiveness
is evaluated by applying Z to different downstream tasks.

Depending on the graph representation learning (GRL) model’s inherent architec-
ture, existing GRL methods can be categorised into "shallow" or "deep" groups.
Shallow GRL methods comprise an embedding lookup table that directly encodes
each node as a vector and is optimised during training. Within this group, sev-
eral Skip-Gram [MSC+13]-based GRL methods have been proposed, such as Deep-
Walk [PARS14] and node2vec [GL16] as well as their matrix factorisation interpre-
tation NetMF [QDM+18], LINE [TQW+15] and PTE [TQM15]. To better capture
the structural identity of nodes independent of network position and neighbour-
hood’s labels, struc2vec [RSF17] constructs a hierarchy to encode structural node
similarities at different scales.

The deep GRL methods - graph neural networks (GNNs) - have recently shown
promising results in modelling structural and relational data [WPC+21]. GNNs

2.3. Graph Neural Networks 9

related GRL models and applications are of central importance to the topics cov-
ered in this thesis, we give a formal and more comprehensive introduction in the
next section.

2.3 Graph Neural Networks

“All models are wrong, but some are useful.”

George E.P. Box

Graph neural networks (GNNs) are a class of neural network models suitable for
processing graph-structured data. They use the graph structure (A) and node fea-
tures (X) to learn a representation vector of a node (zv), or the entire graph (zG).
Modern GNNs follow a common idea of a recursive neighbourhood aggregation or
message-passing scheme, where we iteratively update the representation of a node
by aggregating representations of its neighbouring nodes. After ℓ iterations of ag-
gregation or message-passing, a node’s representation captures the graph structural
information within ℓ-hop neighbourhood.

Let Â = (Âuv)u,v∈V , where Âuv is a normalised value of Auv. Thus, we can formally
define ℓ-th layer of a GNN as:

m(ℓ)
a = Aggregate

N({Âuv, h(ℓ−1)
u | u ∈ N (v)}),

m(ℓ)
v = Aggregate

I({Âuv | u ∈ N (v)}) h(ℓ−1)
v ,

h(ℓ)
v = Combine(m(ℓ)

a , m(ℓ)
v)

(2.1)

where Aggregate
N(·) and Aggregate

I(·) are two possibly differential parame-
terised functions. m(ℓ)

a is aggregated message from node v’s neighbourhood nodes
(N (v)) with their structural coefficients, and m(ℓ)

v is the residual message from node
v after performing an adjustment operation to account for structural effects from
its neighbourhood nodes. After, h(ℓ)

v is the learned as representation vector of node
v with combining m(ℓ)

a and m(ℓ)
v , termed as Combine(·), at the ℓ-th iteration/layer.

Note that, we initialise h(0)
v = xv and the final learned representation vector after L

iterations/layers zv = h(L)
v . In addition, in terms of the representation of an entire

graph (zG), we can apply a READOUT function to aggregate node representations
of all nodes of the graph G, as

zG = READOUT({zv | ∀zv ∈ V}) (2.2)

where READOUT can be a simple permutation invariant function such as summa-
tion or a more sophisticated graph-level pooling function.

Following the general structure of GNNs as defined in Equation 2.1, we can further
generalise the existing GNNs as variants of it. For instance, several classic and
popular GNNs can be summarised as Table 2.2.

The complete formations of these GNN models are represented as:

10 Chapter 2. Background

Table 2.2: Define different GNN variants according to Equation 2.1.

GNN Model Aggregate
N(·) Aggregate

I(·) Combine(·)
GCN ∑

u∈N (v)

W(ℓ)h(ℓ−1)
u√

|N (u)||N (v)|
W(ℓ)hℓ−1

v√
|N (v)||N (v)|

σ(Sum(m(ℓ)
a , m(ℓ)

v))

GraphSAGE Agg({h(ℓ−1)
u | u ∈ N (v)}) h(ℓ−1)

v σ(W(ℓ) ·Concat(m(ℓ)
a , m(ℓ)

v))

GAT ∑
u∈N (v)

αuvW(ℓ)h(ℓ−1)
u αvvW(ℓ)h(ℓ−1)

v σ(Sum(m(ℓ)
a , m(ℓ)

v))

GIN ∑
u∈N (v)

h(ℓ−1)
u (1 + ϵ)h(ℓ−1)

v MLPθ(Sum(m(ℓ)
a , m(ℓ)

v)))

Graph convolutional network (GCN) [KW17] is the classic modern GNN which ap-
plies two normalised mean aggregations to aggregate feature vectors node v’s
neighbourhood nodes N (v) and combine with itself:

h(ℓ)
v = σ(∑

u∈N (v)

W(ℓ)h(ℓ−1)
u√

|N (u)||N (v)|
+

W(ℓ)h(ℓ−1)
v√

|N (v)||N (v)|
) (2.3)

where
√
|N (u)||N (v)| is a constant normalisation coefficient for the edge Euv,

which is calculated from the normalised adjacent matrix D−1/2AD−1/2. D is the
diagonal node degree matrix of A. W(ℓ) ∈ Rn×d is a trainable weight matrix of
layer ℓ and σ is a non-linear activation (ReLU).

GraphSAGE [HYL17b] learns aggregation functions to inductively generate node
representations by sampling and aggregating node feature vectors from node v’s
neighbourhood nodes:

h(ℓ)
v = σ(W(ℓ) ·Concat(Agg({h(ℓ−1)

u | u ∈ N (v)}), h(ℓ−1)
v)) (2.4)

where W(ℓ) ∈ Rn×d is a trainable weight matrix of layer ℓ and σ is a non-linear
activation (ReLU). GraphSAGE considered three different aggregation functions
(Agg), such as mean aggregator, LSTM aggregator [HS97] and pooling aggregator.

Graph attention network (GAT) [VCC+18] adaptively learns a normalisation coeffi-
cient αuv for edge Euv to aggregate feature vectors from node v’s neighbourhood
nodes N (v) and combine with itself:

h(ℓ)
v = σ(∑

(u,v)∈E
α
(ℓ)
uv W(ℓ)h(ℓ−1)

u)

α
(ℓ)
uv = Softmax(LeakReLU(a[Wh(ℓ−1)

u ∥ Wh(ℓ−1)
v]))

(2.5)

where W(ℓ) ∈ Rn×d is a trainable weight matrix of layer ℓ, σ is a non-linear activa-
tion (ReLU) and ∥ is the concatenation operator.

Graph isomorphism network (GIN) [XHLJ19] takes the sum aggregation over neigh-
bourhood nodes of a node, followed by the multi-layer perceptron (MLP) [Ros61]:

h(ℓ)
v = MLP(ℓ)((1 + ϵ(ℓ))h(ℓ−1)

v + ∑
u∈N (v)

h(ℓ−1)
u) (2.6)

where ϵ(ℓ) is a learnable parameter or fixed scalar.

2.4. Graph Representation Learning for Social Network 11

We will review additional prior and concurrent work on GRL and GNNs related
to our contributions where necessary. For an overview of recent variants and
applications of GRL and GNNs, we recommend the comprehensive review arti-
cles [CZC18, CWPZ19, ZCZ20, WPC+21].

2.4 Graph Representation Learning for Social Network

With the advent of graph representation learning (GRL), social network analysis has
been evolved into a new schema of classification and prediction models on low-
dimensional latent representations. Typical example applications include node
role identification [BCM11], personalised recommendation [ZZP22], social health-
care [BM21], academic network analysis [TZY+08], graph classification [ZCNC18]
and epidemic trend study [CZP21]. Next, we formally represent several example
social network analysis tasks that are of great importance to the topics covered in
this thesis.

Node classification. In social networks (G), users (nodes) (V) are often associated with
semantic labels (Y) relevant to certain about them, such as gender, age, affiliation,
interest etc. However, these graphs are often partially (or sparsely) labelled or
even unlabelled due to the high cost of node selection and labelling. With partially
labelled nodes (supervised settings) (YTrain), the node classification aims to identify
labels for the rest of unlabelled nodes (YTest) by leveraging connectivity patterns
(homophily or heterophily) of labelled ones extracted from the graph structure. On
the other hand, if there is no given labelling information about the graph’s nodes,
which are termed unsupervised settings, we name this task as node clustering. The
main goal of node clustering is to predict labels for all nodes (YV) by identifying
nodes with similar structural information and node attributes. For example, Twitter
attempts to identity fraud accounts to protest other users from being scammed.

Link prediction. The graph structures (A) of social networks (G) are not always
complete as partial friendship links between users can be temporally missing. Link
prediction aims to infer the presence of emerging links (A+) in the future based
on node attributes and observed graph structure and evolution mechanism. Since
social networks evolve fast and continuously, link prediction is crucial to know
what could happen soon and can help recover a whole social graph when we only
have an incomplete view of it. For instance, this technique has been widely used
for personalised recommendations on Facebook and Amazon.

Graph classification. In social networks (G), users (nodes) (V) tend to be often in-
teracted by nodes with similar interests or background so that different social net-
works (graph set) or user groups (sub-graph set) (D = {G1,G2, . . . }) are formed.
By finding commonalities among users of the same group and differences between
different user groups, we can categorise them as different categories. For example,
LinkedIn identifies different career concerns of different professional groups.

12 Chapter 2. Background

2.5 Self-Supervised Learning

Self-supervised learning (SSL) provides a promising learning paradigm that reduces
the dependence on manual labels [LZH+21]. In SSL, models are learned by solv-
ing a series of handcrafted auxiliary tasks (so-called pre-given tasks), in which the
supervision signals are acquired from data itself automatically without the need
for manual annotation. With the help of well-designed pre-given tasks, SSL en-
ables the model to learn more informative representations from unlabelled data to
achieve better performance, generalisation and robustness on various downstream
tasks [JT21]. This approach naturally fits graph-structured data, as relations are
given by the edges in the graph [LPJ+21]. We can cast this problem in with a
mathematical formulation of graph self-supervised learning (GSSL).

Given an attributed graph G = (V , E , X). We construct an encoder-decoder frame-
work to formalise GSSL. The encoder fθ (parameterised by θ) aims to learn a low-
dimensional representations Z for all nodes V of G. In general, the encoder fθ can
be any GNNs as introduced in Section 2.3. The pre-given decoder fϕ (parameterised
by ϕ) takes Z as its input for the pre-given tasks. The architecture of fϕ depends on
specific downstream tasks.

Under this framework, GSSL can be formulated as:

θ∗, ϕ∗ = argmin
θ,ϕ

Lgssl(fθ , fϕ, D) (2.7)

where D denotes the graph data distribution that satisfies (V , E) ∼ D in an un-
labelled graph G, and Lgssl is the GSSL loss function that regularises the output
of pre-given decoder according to the specific crafted tasks. In the following, we
present a taxonomy of GSSL whose category is classified into (i) generation-based
methods, (ii) auxiliary property-based methods, (iii) contrast-based methods and
(iv) hybrid methods.

Generation-based methods. They form the pretext task as the graph data reconstruc-
tion from two perspectives: node/edge attributes and graph structure. Specifically,
they focus on the node/edge features or/and graph adjacency reconstructions. In
such a case, Equation 2.7 can be further derived as:

θ∗, ϕ∗ = argmin
θ,ϕ

Lgssl(fϕ(fθ(Ĝ)), G) (2.8)

where Ĝ denotes the graph data with perturbed node/edge features or/and ad-
jacency matrix. For most of the generation-based approaches, the self-supervised
objective function Lgssl is typically defined to measure the difference between the
reconstructed and the original graph data.

Auxiliary property-based methods. They enrich the supervision signals by capitalising
on a larger set of attributive and topological graph properties. In particular, for
different crafted auxiliary properties, we further categorise these methods into two

2.5. Self-Supervised Learning 13

types: regression- and classification-based. Formally, they can be formulated as:

θ∗, ϕ∗ = argmin
θ,ϕ

Lgssl(fϕ(fθ(Ĝ)), c) (2.9)

where c denotes the specific crafted auxiliary properties. For regression-based ap-
proaches, c can be localised or global graph properties, such as the node degree
or distance to clusters within G. For classification-based methods, on the other
hand, the auxiliary properties are typically constructed as pseudo labels, such as
the graph partition or cluster indices.

Contrast-based methods. They are usually developed based on the concept of mu-
tual information (MI) maximisation, where the estimated MI between augmented
instances of the same object (e.g., node, subgraph, and graph) is maximised. For
contrastive-based GSSL, Equation 2.7 is reformulated as:

θ∗, ϕ∗ = argmin
θ,ϕ

Lgssl(fϕ(fθ(G(1),G(2)))) (2.10)

where G(1) and G(2) are two differently augmented instances of G. In these methods,
the pretext decoder fϕ indicates the discriminator that estimates the agreement
between two instances and minimise the MI between negative samples, which is
implicitly included in Lgssl .

Hybrid methods. They take advantage of previous categories and are consist of more
than one pretext decoder and/or training objective. We formulate this branch of
methods as the weighted or unweighted combination of two or more GSSL schemes
based on formulas from Equations 2.8 to 2.10.

We will make use of GSSL for unsupervised representation learning on heterophilous
graphs and node clustering in Chapter 6 using an objective-based on a contrast-
based method (Equation 6.8).

15

Part I

Overcoming flat Message-passing
Graph Neural Networks

17

Motivation and Summary

Graphs are a ubiquitous data structure, and graph neural networks (GNNs) have
been proved as a useful approach for learning node representations from large scale
graphs for a wide variety of graph-related tasks. However, GNNs mainly follow a
flat message-passing mechanism, which may lead to the following two limitations:
(i) it is very costly to encode global information on the graph topology and (ii)
GNNs may fail to model meso- and macro-level semantics hidden in the graph.

This part of the thesis explores how we can overcome flat message-passing GNNs
to learn more effective node and graph representations.

In Chapter 3, we introduce the hierarchical message-passing graph neural networks
(HMGNNs) framework, which performs message-passing in a hierarchical man-
ner. In addition, we propose a practical implementation model following the idea
of the HMGNNs framework, hierarchical community-aware graph neural network (HC-
GNN), which exploits well-known hierarchical community detection algorithms to
build up the hierarchical structure. We theoretically confirm HC-GNN’s signifi-
cant ability in capturing long-range interactions without introducing heavy com-
putation complexity and empirically demonstrate the efficiency and effectiveness
of HC-GNN on node- and edge-level tasks under different settings.

Chapter 4 introduces the adaptive multi-grained graph neural networks (AdamGNN)
model, which follows the hierarchical message-passing idea but does not rely on
an external algorithm to build the hierarchical structure. That said, AdamGNN
can adaptively construct a proper hierarchical structure of one graph for different
downstream tasks. The practical evaluation confirms the effectiveness of AdamGNN
on node- edge- and graph-level tasks.

19

Chapter 3

Hierarchical Message-passing
Graph Neural Networks

3.1 Introduction

Graphs are a ubiquitous data structure that models objects and their relationships
within complex systems, such as social networks, biological networks, recommen-
dation systems, etc [WPC+21]. Learning node representation from a large graph
has been proved as a useful approach for a wide variety of network analysis tasks,
including link prediction [ZC18], node classification [ZAL18] and community de-
tection [CLB19].

Graph neural networks (GNNs) are currently one of the most promising paradigms
to learn and exploit node representations due to their effective ability to encode
node features and graph topology in transductive, inductive, and few-shot set-
tings [ZCZ20]. Many existing GNN models follow a similar flat message-passing
principle where information is iteratively passed between adjacent nodes along ob-
served edges. Such a paradigm is able to incorporate local information surrounded
by each node [GSR+17]. However, it has been proven to suffer from several draw-
backs [XHLJ19, MWW20, LWWL20].

Among these deficiencies of flat message-passing GNNs, the limited ability for in-
formation aggregation over long-range has attracted significant attention [LHW18],
since most graph-related tasks require the interactions between nodes that are not
directly connected [AY21]. That said, flat message-passing GNNs struggle in cap-
turing dependencies between distant node pairs. Inspired by the outstanding ef-
fectiveness of very deep neural network models that have been demonstrated in
computer vision and natural language processing domains [LBH15], a natural so-
lution is stacking lots of GNN layers together to directly increase the receptive field
of each node. Consequently, deeper models have been proposed by simplifying
the aggregation design of GNNs and accompanied by well-designed normalisation
units [CWH+20]. Nevertheless, Alon and Yahav have theoretically shown that flat
GNNs are susceptible to being a bottleneck when aggregating messages across a
long path and lead to severe over-squashing issues [AY21].

On the other hand, in this chapter, we further argue another crucial deficiency of
flat message-passing GNNs is that they rely on only aggregating messages across

20 Chapter 3. Hierarchical Message-passing Graph Neural Networks

Level 3
(research area)

Level 2
(institute)

Level 1
(author)

𝑠ଵ 𝑠ଶ 𝑠଺𝑠ଷ 𝑠ହ 𝑠଻ 𝑠଼𝑠ସ 𝑠ଽ

(c)

𝑣ଵ 𝑣ହ 𝑣଼ 𝑣ଵଶ 𝑣ଵ଻… ………

𝑟ସ𝑟ଷ𝑟ଶ𝑟ଵ

(a) Collaboration Network

𝑣଻
𝑣ଽ

𝑣଺
𝑣ଵ଻

𝑣ସ

𝑣ଵ଴

𝑣ହ

𝑣ଷ

𝑣ଶ

𝑣ଵ

𝑣ଵ଺

𝑣ଵହ

𝑣ଵସ

𝑣଼

𝑣ଵଶ

𝑣ଵଵ

𝑣ଵଷ

𝑠ଵ

𝑠ସ

𝑠଺
𝑠ହ𝑠ଽ

𝑠଼
𝑠଻

𝑠ଶ

sଷ
Target

:𝑟ଵ :𝑟ଶ :𝑟ଷ :𝑟ସResearch areaInstitute: 𝑠௜

Level 3

Level 2

Level 1

Target

(b)

𝑣ସ 𝑣ହ

𝑟ଵ
𝑟ଶ

Bottom‐Up

Top‐Down

Within‐Level

Propagation Manner

Hierarchical StructureHierarchical
Message Passing

Figure 3.1: Elaboration of the proposed hierarchical message passing: (a) a collaboration
network, (b) an illustration of hierarchical message-passing mechanism based on (a) and
(c), and (c) an example of the identified hierarchical structure.

the observed topological structure. The hierarchical semantics behind the graph
structure provides useful information and should be incorporated into the learning
of node representations. Taking the collaboration network in Figure 3.1-(a) as an
example, author nodes highlighted in light yellow come from the same institutes,
and nodes filled with different colours indicate authors in various research areas. In
order to generate the node representation of a given author, existing GNNs mainly
capture the co-author level information depending on the explicit graph structure.
However, information hidden at meso and macro levels is neglected. In the example
of Figure 3.1, meso-level information means authors belong to the same institutes
and their connections to adjacent institutes. Macro-level information refers to au-
thors of the same research areas and their relationship with related research areas.
Both meso- and macro-level knowledge cannot be directly modelled through flat
message passing via observed edges.

In this chapter, we investigate the idea of a hierarchical message-passing mechanism
to enhance the information aggregation pipeline of GNNs. The ultimate goal is to
make the node representation learning process aware of both long-range interactive
information and implicit multi-resolution semantics within the graph.

We note that a few graph pooling approaches have recently delivered various at-
tempts to use the hierarchical structure idea [GJ19, YYM+18, HLL+19, RST20]. g-U-
Net [GJ19] employs a bottom-up and top-down pooling operation; however, it does
not allow long-range message-passing. DiffPool [YYM+18], AttPool [HLL+19]
and ASAP [RST20] target at graph classification tasks instead of enabling node
representations to capture long-range dependencies and multi-grained semantics
of one graph. Moreover, P-GNNs [YYL19] create a different information aggrega-
tion mechanism that utilises sampled anchor nodes to impose topological position
information into learning node representations. While P-GNNs can capture global
information, the hierarchical semantics mentioned above is still overlooked, and the
global message-passing is not realised. Besides, the anchor-set sampling process is
time-consuming for large graphs, and it cannot work well under the inductive set-
ting.

Specifically, we present a novel framework, hierarchical message-passing graph neural
networks (HMGNNs), elaborated in Figure 3.1. In detail, HMGNNs can be organ-
ised into the following four phases.

3.1. Introduction 21

(i) Hierarchical structure generation. To overcome long-distance obstacles in the
process of GNN message-passing, we propose to use a hierarchical structure
to reduce the size of graph G gradually, where nodes at each level t are inte-
grated into different super nodes (st+1

1 , . . . , st+1
n) at each level t+1.

(ii) t-level super graph construction. In order to allow the message passing
among generated same-level super nodes, we construct a super graph Gt

based on the connections between nodes at its lower level t−1.

(iii) Hierarchical message propagation. With the generated hierarchical structure
for a given graph, we develop three propagation manners, including bottom-
up, within-level and top-down.

(iv) Model learning. Last, we leverage task-specific loss functions and a gradient
descent procedure to train the model.

Designing a feasible hierarchical structure is crucial for HMGNNs, as the hierarchi-
cal structure determines how messages can be passed through different levels and
what kind of meso- and macro-level information to be encoded in node represen-
tations. In this chapter, we consider (but are not restricted to) network communities.
As a natural graph property, the community has been proved very useful for many
graph mining tasks [WPL14, WCW+17]. Lots of community detection methods
can generate hierarchical community structures. Here, we propose an implemen-
tation model for the proposed framework, hierarchical community-aware graph neu-
ral network (HC-GNN). HC-GNN exploits a well-known hierarchical community
detection method, i.e., the Louvain method [BGLL08] to build up the hierarchical
structure, which is then used for the hierarchical message-passing mechanism.

The theoretical analysis illustrates HC-GNN’s remarkable capacity in capturing
long-range information without introducing heavy additional computation com-
plexity. Extensive empirical experiments are conducted on 9 graph datasets to re-
veal the performance of HC-GNN on a variety of tasks, i.e., link prediction, node
classification, and community detection, under transductive, inductive and few-
shot settings. The results show that HC-GNN consistently outperforms a set of
state-of-the-art approaches for link prediction and node classification. In the few-
shot learning setting, where only 5 samples of each label are used to train the
model, HC-GNN achieves a significant performance improvement, up to 16.4%.
We also deliver a few empirical insights: (a) the lowest level contributes most to
node representations; (b) how to generate the hierarchical structure has a signifi-
cant impact on the quality of node representations; (c) HC-GNN maintains an out-
standing performance for graphs with different levels of sparsity perturbation; (d)
HC-GNN possess significant flexibility in incorporating different GNN encoders,
which means HC-GNN can achieve superior performance with advanced flat GNN
encoders.

22 Chapter 3. Hierarchical Message-passing Graph Neural Networks

3.2 Additional Related Work

Flat message-passing GNNs. They perform graph convolution, directly aggregate
node features from neighbours in the given graph, and stack multiple GNN lay-
ers to capture long-range node dependencies [KW17, HYL17b, VCC+18, XHLJ19].
However, they were observed not to benefit from more than a few layers, and re-
cent studies have theoretically shown to be over-smoothing. On the other hand,
GraphRNA [HSLH19] presents graph recurrent networks to capture interactions
between far-away nodes. Still, we can not apply it to inductive learning settings,
and the recurrent aggregations introduce high computation costs. P-GNNs [YYL19]
incorporate a novel global information aggregation mechanism based on the dis-
tance of a given target node to each anchor set. However, P-GNNs sacrifice the
ability to exist GNNs on inductive node-wise tasks and the anchor-set sampling
operation brings a high computational cost for large-size graphs. Recently, deeper
flat GNNs have been proposed by simplifying the aggregation design of GNNs and
accompanied with well-designed normalisation units [CWH+20]. Nevertheless, it
[AY21] has theoretically shown that flat GNNs are susceptible to being a bottleneck
when aggregating messages across a long path and lead to severe over-squashing
issues. Moreover, we will theoretically discuss the advantages of our method com-
pared with flat GNNs in Section 3.4.3, in terms of long-range interactive capability
and complexity.

Hierarchical representation GNNs. In recent years, some studies generalise the
pooling mechanism of computer vision [RFB15] to GNNs for graph representation
learning [YYM+18, HLL+19, GJ19, RST20]. However, most of them, such as Diff-
Pool [YYM+18], AttPool [HLL+19] and ASAP [RST20], are designed for graph
classification tasks rather than learning node representations to capture long-range
dependencies and multi-resolution semantics. Thus they cannot be directly applied
to node-level tasks. g-U-Net [GJ19] defines a similarity-based pooling operator
construct the hierarchical structure and implements bottom-up and top-down op-
erations. Despite the success of g-U-Net on producing graph-level representations,
they cannot model the multi-grained semantics and realise long-range message-
passing. HARP [CPHS18] and LouvainNE [BMD+20] are two unsupervised net-
work representation approaches that adopt a hierarchical structure, but they do not
support the supervised training paradigm to optimise for specific tasks, and they
cannot be applied with inductive settings.

Table 3.1 summarises the critical advantages of the proposed HC-GNN and com-
pares it with a number of state-of-the-art methods published recently. We are the
first to present the hierarchical message passing to efficiently model long-range in-
formative interaction and multi-grained semantics. In addition, our HC-GNN can
utilise the community structures and be applied for transductive, inductive and
few-shot inferences.

3.3. Problem Statement 23

Table 3.1: Model comparison in aspects of Node-wise Task (NT), SUPervised training
paradigm (SUP), Transductive Inference (TI), Inductive Inference (II), Long-range Infor-
mation (LI), and Hierarchical Semantics for Node Representations (HSNR).

NT SUP TI II LI HSNR
GCN [KW17]

√ √ √ √
GraphSAGE [HYL17b]

√ √ √ √
GAT [VCC+18]

√ √ √ √
GIN [XHLJ19]

√ √ √ √
P-GNNs [YYL19]

√ √ √ √
GCNII [CWH+20]

√ √ √ √ √
DiffPool [YYM+18]

√ √ √
g-U-Net [GJ19]

√ √ √ √ √
AttPool [HLL+19]

√ √ √
ASAP [RST20]

√ √ √
GraphRNA [HSLH19]

√ √ √
HARP [CPHS18]

√ √
LouvainNE [BMD+20]

√ √
HC-GNN

√ √ √ √ √ √

3.3 Problem Statement

Problem setup. Given a graph G and a pre-defined representation dimension d,
the goal is to learn a mapping function fθ : G → Z, where Z ∈ Rn×d and each
row zi ∈ Z corresponds to the node vi’s representation. The effectiveness of fθ

is evaluated by applying Z to different tasks, including node classification, link
prediction, and community detection. Table 3.2 lists the additional mathematical
notation used in this chapter.

Table 3.2: Summary of additional notations.

Notation Description
T Number of hierarchy level
Gt Super graph at level t
st

n n-th super node of Gt at level t
H Set of constructed super graphs
N (v) Set of neighbour nodes of node v

Flat node representation learning. Prior to introducing the hierarchical message-
passing mechanism, we first give a general review of existing graph neural networks
(GNNs) with flat message-passing. Let Â = (Âuv)u,v∈V , where Âuv is a normalised
value of Auv. Thus, we can formally define ℓ-th layer of a flat GNN as:

m(ℓ)
a = Aggregate

N({Âuv, h(ℓ−1)
u | u ∈ N (v)}),

m(ℓ)
v = Aggregate

I({Âuv | u ∈ N (v)}) h(ℓ−1)
v ,

h(ℓ)
v = Combine(m(ℓ)

a , m(ℓ)
v)

(3.1)

24 Chapter 3. Hierarchical Message-passing Graph Neural Networks

where Aggregate
N(·) and Aggregate

I(·) are two possibly differential parame-
terised functions. m(ℓ)

a is aggregated message from node v’s neighbourhood nodes
(N (v)) with their structural coefficients, and m(ℓ)

v is the residual message from node
v after performing an adjustment operation to account for structural effects from its
neighbourhood nodes. After, h(ℓ)

v is the learned as representation vector of node v
by with combining m(ℓ)

a and m(ℓ)
v , termed as Combine(·), at the ℓ-th iteration/layer.

Note that, we initialise h(0)
v = xv and the final learned representation vector after L

iterations/layers zv = h(L)
v .

Take the classic graph convolutional network (GCN) [KW17] as an example, which
applies two normalised mean aggregations to aggregate feature vectors node v’s
neighbourhood nodes N (v) and combine with itself:

h(ℓ)
v = ReLU(∑

u∈N (v)

W(ℓ)h(ℓ−1)
u√

|N (u)||N (v)|
+

W(ℓ)h(ℓ−1)
v√

|N (v)||N (v)|
) (3.2)

where
√
|N (u)||N (v)| is a constant normalisation coefficient for the edge Euv,

which is calculated from the normalised adjacent matrix Â = D−1/2AD−1/2. D
is the diagonal node degree matrix of A. W(ℓ) ∈ Rn×d is a trainable weight matrix
of layer ℓ. From Equation 3.1 and Equation 3.2, we can find that existing GNNs
iteratively pass messages between adjacent nodes along observed edges, which will
lead to two significant limitations: (a) the limited ability for information aggrega-
tion over long-range. They need to stack k layers to capture interactions within
k steps for each node. (b) they are infeasible in encoding meso- and macro-level
graph semantics.

3.4 Proposed Approach

We propose a framework, hierarchical message-passing graph neural networks (HMGNNs),
whose core idea is to use a hierarchical message-passing structure to enable node
representations to receive long-range messages and multi-grained semantics from
different levels. Figure 3.2 provides an overview of the proposed framework, con-
sisting of four components. First, we create a hierarchical structure to coarsen the
input graph G gradually. Nodes at each level t of the hierarchy are grouped into dif-
ferent super nodes (st

1, . . . , st
n). Second, we further organise level t generated super

nodes into a super graph Gt+1 at level t+1 based on the connections between nodes
at level t, in order to enable message-passing that encodes the interactions between
generated super nodes. Third, we develop three different propagation schemes to
propagate messages among nodes within the same level and across different levels.
At last, after obtaining node representations, we use the task-specific loss function
and a gradient descent procedure to train the model.

3.4. Proposed Approach 25

… …

Task-related
Loss function

…

1

2

K

3

Hierarchical
structure generation

Bottom-up
propagation

Within-level
propagation

Top-down
propagation

NN-1 NN-2

NN-3

t level t+1 level

M
ean pooling

Within-level
sampled

neighbours

Aggregator

Com
bine

NN-1 NN-2 NN-3

𝛼𝛼1

𝛼𝛼2

𝛼𝛼3

Aggregator

Com
bine

Self – Level 1

Level 2

Level 4

Level 3
Generated
hierarchical

structure

Attention
weights

(a)

(d)(c)(b)

Self – Level 1

…

1

2

K

3

𝛼𝛼4

Figure 3.2: (a) The architecture of HMGNNs: we first generate a hierarchical structure,
in which each level is formed as a super graph, use the level t graph to update nodes
of level t + 1 graph (bottom-up propagation), apply the typical neighbour aggregation on
each level’s graph (within-level propagation), use the generated node representations from
level 2 ≤ t ≤ T to update node representations at the level 1 (top-down propagation), and
optimises the model via a task-specific loss. (b) NN-1: bottom-up propagation. (c) NN-2:
within-level propagation. (d) NN-3: top-down propagation.

3.4.1 Hierarchical Message-passing GNNs

I. Hierarchical structure generation. A graph G can be naturally organised by su-
per node structures, in which densely inter-connected nodes are grouped. For ex-
ample in Figure 3.1-(a), authors {v1, v2, . . . , v17} can be grouped into different super
nodes {s1, s2, . . . , s9} based on their institutes. Institutes also can be grouped into
higher-level super nodes {r1, r2, . . . , r4} according to research areas. Meanwhile,
there is a relationship between nodes at different levels, as indicated by dashed
lines in Figure 3.1-(c). Hence, we can generate a hierarchical structure to depict the
inter- and intra-relationships among authors, institutes, and research areas. We will
discuss how to implement the hierarchical structure generation in Section 3.4.2.

II. t-Level super graph construction. The level t super graph Gt is constructed
based on level t−1 graph Gt−1 (t ≥ 2), where G1 represents the original graph
G. Given all nodes at level t−1, i.e., {st−1

1 , . . . , st−1
m }, we consider every node st−1

i
belonging to the same super node as a super node in the super graph Gt, and create
an edge between super nodes st−1

i and st−1
j if there exist more than γ edges in Gt−1

connecting elements in st−1
i and elements in st−1

j , where γ is a hyper-parameter and
γ = 1 by default. In this way, we represent the hierarchical structure H as a list
of graphs H = {G1, . . . ,GT}, where G1 = G. In which inter-level edges are created
to depict the relationships between super nodes at levels t and t−1, if a level t−1
node has a corresponding super node at level t, as shown in Figure 3.1-(c). We
initialise the feature vectors of generated super nodes to be zero vectors with the
same length as the original node feature vector xi. Take the collaboration network in
Figure 3.1 as an example. At the micro-level (level 1), we have authors and their co-
authorship relations. At the meso-level (level 2), we organise authors according to

26 Chapter 3. Hierarchical Message-passing Graph Neural Networks

their affiliations and establish relations between institutes. At the macro-level (level
3), institutes are further grouped according to their research areas, and we have the
relations among the research areas. In addition, inter-level links are also created to
depict the relationships between authors and institutes and between institutes and
research areas.

III. Hierarchical message propagation. The hierarchical message-passing mecha-
nism works as a supplementary process to enhance the node representations with
long-range interactions and multi-grained semantics. Thus it does not change the
flat node representation learning process as described in Section 3.3, to ensure the
local information is well maintained. And we adopt the classic GCN, as described
in Equation 3.2, as our default flat GNN encoder throughout this chapter. Particu-
larly, the hierarchical message-passing mechanism consists of ℓ-th layer consisting
of 3 steps.

1. Bottom-up propagation. After obtaining node representations (h(ℓ)
st−1) of Gt−1 with

ℓ-th flat information aggregation, we perform bottom-up propagation, i.e.,
NN-1 in Figure 3.2-(b), using node representations in Gt−1 to update node
representations in Gt (t ≥ 2) in the hierarchy H, as follows:

a(ℓ)st
i
=

1
|st

i |+ 1


 ∑

st−1∈st
i

h(ℓ)
st−1 + h(ℓ−1)

st
i


 (3.3)

where st
i is a super node in Gt, and st−1 is a node in Gt−1 that belongs to st

i in
Gt. h(ℓ−1)

st
i

is the node representation of st
i that generated by layer ℓ−1 in graph

Gt, |st
i | is the number of nodes of level t−1 that belonging to super node st

i ,
and a(ℓ)st

i
is the updated representation of st

i .

2. Within-level propagation. We explore the typical flat GNN encoders [KW17,
HYL17b, VCC+18, XHLJ19, CWH+20] to propagate information within each
level’s graph {G1,G2, . . . ,GT}, i.e., NN-2 in Figure 3.2-(c). The aim is to aggre-
gate neighbours’ information and update within-level node representations.
Specifically, the information aggregation at level t is depicted as follows:

m(ℓ)
a = Aggregate

N({Ât
uv, a(ℓ)u | u ∈ N t(v)}),

m(ℓ)
v = Aggregate

I({Ât
uv | u ∈ N t(v)}) a(ℓ)v ,

b(ℓ)
v = Combine(m(ℓ)

a , m(ℓ)
v)

(3.4)

where a(ℓ)u is the node representation of u after bottom-up propagation at the
ℓ-th layer, N t(v) is a set of nodes adjacent to v at level t, and b(ℓ)

v is the ag-
gregated node representation of v based on local neighbourhood information.
Note that we adopt the classic GCN, as described in Equation 3.2, as our de-
fault GNN encoder throughout this chapter. We will discuss the possibility of
incorporating with other advanced GNN encoders in Section 3.5.3.

3.4. Proposed Approach 27

3. Top-down propagation. The top-down propagation is illustrated by NN-3 in
Figure 3.2-(d). We use node representations in {G2, . . . ,GT} to update the rep-
resentations of original nodes in G. The importance of messages at different
levels can be different for other tasks. Hence, we adopt the attention mecha-
nism [VCC+18] to adaptively learn the contribution weights of different levels
during top-down integration, given by:

h(ℓ)
v = ReLU(W ·MEAN{αuvb(ℓ)

u }), ∀u ∈ C(v) ∪ {v} (3.5)

where αuv is a trainable normalised attention coefficient between node v to
super node u or itself, MEAN is an element-wise mean operation, C(v) de-
notes the set of different-level super nodes from level {2, . . . , K} that node v
belongs to (|C(v)| = K − 1), and ReLU is the activation function. H(ℓ) is the
generated node representation of layer ℓ with h(ℓ)

v ∈ H(ℓ). We generate the
output node representations of the last layer (L) via:

zv = σ(W ·MEAN{αuvb(L)
u }), ∀u ∈ C(v) ∪ {v} (3.6)

where σ is the Euclidean normalisation function to reshape values into [0, 1].
Z ∈ Rn×d is the final generated node representation with each row vector
zv ∈ Z.

IV. Model learning. The proposed HMGNNs could be trained in unsupervised,
semi-supervised, or supervised settings. Here, we only discuss the supervised
setting used for node classification in our experiments. We define the loss function
based on cross entropy, as follows:

L = − ∑
v∈V

y⊤v log(Softmax(zv)) (3.7)

where yv is a one-hot vector denoting the label of node v. We allow L to be cus-
tomised for other task-specific objective functions, e.g., the negative log-likelihood
loss [VCC+18].

We summarise the process of hierarchical message-passing graph neural networks in
Algorithm 1. Given a graph G, we first generate the hierarchical structure and com-
bine it with the original graph G, to obtain H = {Gt | t = 1, 2, . . . , T}, where G1 = G
(line 2). For each node, including original and generated super nodes, in each NN
layer, we perform three primary operations in order: (1) bottom-up propagation
(line 6), (2) within-level propagation (line 7), and (3) top-down propagation (line
9−15). After getting the representation vector of each node that is enhanced with
informative long-range interactions and multi-grained semantics, and we train the
model with the loss function L in Equation 3.7.

3.4.2 Hierarchical Community-aware GNN

Identifying hierarchical super nodes for the proposed HMGNNs is the most crucial
step as it determines how the information will be propagated within and between

28 Chapter 3. Hierarchical Message-passing Graph Neural Networks

Algorithm 1: Hierarchical Message-passing Graph Neural Networks
Input: Graph G = (V , E , X).
Output: Node representations Z ∈ Rn×d.

1 h(0)
v ← xv ;

2 Generate hierarchical structure: H = {Gt|t = 1, 2, . . . , T} ;
3 for ℓ← {1, 2, . . . , L} do

4 h(ℓ)
v = ReLU(∑

u∈N (v)

W(ℓ)h(ℓ−1)
u√

|N (u)||N (v)|
+ W(ℓ)h(ℓ−1)

v√
|N (v)||N (v)|

), ∀v ∈ G ;

5 for t← 2 to T do
6 a(ℓ)st

i
= 1
|st

i |+1

(
∑st−1∈st

i
h(ℓ)

st−1 + h(ℓ−1)
st

i

)
, ∀st

i ∈ Gt ;

7 b(ℓ)
v = ReLU(∑

u∈N (v)

W(ℓ)a(ℓ)u√
|N (u)||N (v)|

+ W(ℓ)a(ℓ)v√
|N (v)||N (v)|

), ∀v ∈ Gt ;

8 end
9 for v ∈ G do

10 if ℓ < L then
11 h(ℓ)

v = ReLU(W ·MEAN{αuvb(ℓ)
u }), ∀u ∈ C(v) ∪ {v} ;

12 else
13 zv = σ(W ·MEAN{αuvb(L)

u }), ∀u ∈ C(v) ∪ {v} ;
14 end
15 end
16 end

levels. We consider hierarchical network communities to construct the hierarchy. The
network community has been proved helpful for assisting typical network analysis
tasks, including node classification [WPL14, WCW+17] and link prediction [SH12,
RGP+15]. Taking the algorithm efficiency into account, we adopt the well-known
Louvain algorithm [BGLL08] to build the first implementation of HMGNNs, termed
as hierarchical community-aware graph neural network (HC-GNN). The Louvain algo-
rithm returns us a hierarchical structure as described in Section 3.4.1, based on
which we can learn node representations involving long-range interactive informa-
tion and multi-grained semantics.

3.4.3 Theoretical Analysis and Model Comparison

Long-range interactive capability. We now theoretically analyse the asymptotic
complexity of different GNN models to capture long-range interaction. We first
analyse flat GNN models, that they need to stack O(diam(G)) layers to ensure the
communication between any pair of nodes in G. For HMGNNs, let us assume that
|Vt+1|/|Vt| = λ, that λ is the pooling ratio. Thus, the potentially total number of
nodes in HMGNNs over G with n nodes is ∑∞

t=1 nλt = O(n), while the number
of possible levels is logλ−1 n = O(log n). That said, the shortest path between any
two nodes of G is upper-bounded by O(log n). Compared to O(diam(G)) with flat
GNNs, HMGNNs lead to significant improvement over the capability in capturing
long-range interactions.

3.5. Experiments 29

Model complexity. For the vanilla flat GNN model, i.e., GCN, its computational
complexity of one layer is O(n3) [KW17], and the computational complexity of
a GCN model contains ℓ is O(ℓn3). For GAT, except for the same convolutional
operation as GCN, the additional masked attention over all nodes requires O(ℓn2)

computational complexity [VCC+18]. Thus, overall it takes O(ℓ(n3 + n2)) complex-
ity. For the hierarchical representation model, g-U-Net, its computational complex-
ity of one hierarchy is O(2ℓn3) [GJ19], because its unpooling operation introduces
another O(ℓn3) complexity, in addition to the convolutional operations as GCN.
Thus the complexity of g-U-Net with T levels is ∑T

t=1 2ℓ(nλt−1)3 = O(2ℓn3), since
the pooled graphs are supposed have much smaller number of nodes than G. For
HC-GNN, take GCN as an example GNN encoder and the Louvain algorithm as an
example hierarchical structure construction method, which has optimal O(n log c)
computational complexity [Tra15], where c is the average degree. The top-down
propagation allows each node of G to receive T different messages from T levels
with different weights, this introduces O(Tn) computational complexity, where T
is the number of levels, and we assume T ≪ n. Altogether, the complexity of HC-
GNN is ∑T

t=1 ℓ(nλt−1)3 +O(n log c + Tn) = O(ℓn3 + n log c + Tn), which is more
efficient than GAT and g-U-Net.

3.5 Experiments

We conduct extensive experiments to answer 6 research questions (RQ):

• RQ1: How does HC-GNN performs vs. state-of-the-art methods for node clas-
sification (RQ1-1), community detection (RQ1-2), and link prediction (RQ1-
3)?

• RQ2: Can HC-GNN leads to satisfying performance under settings of trans-
ductive, inductive, and few-shot learning?

• RQ3: How do different levels in the hierarchical structure contribute to the
effectiveness of node representations?

• RQ4: How do various hierarchical structure generation methods affect the
performance of HC-GNN?

• RQ5: Does HC-GNN survive from low sparsity of graphs?

• RQ6: Does HC-GNN available with different encoders?

3.5.1 Evaluation Setup

Datasets. We perform experiments on both synthetic and real-world datasets. For
the link prediction task, we adopt 3 datasets:

• Grid [YYL19]. A synthetic 2D grid graph representing a 20× 20 grid with
|V| = 400 and no node features.

30 Chapter 3. Hierarchical Message-passing Graph Neural Networks

Table 3.3: Summary of dataset statistics. LP: Link Prediction, NC: Node Classification, CD:
Community Detection, N.A. means a dataset does not contain node features or node labels.

Dataset Task #Nodes #Edges #Features #Classes
Grid LP 400 760 N.A. N.A.
Cora LP&NC 2,708 5,278 1,433 7

Power LP 4,941 6,594 N.A. N.A.
Citeseer NC 3,312 4,660 3,703 6
Pubmed NC 19,717 44,327 500 3
Emails CD 799 10,182 N.A. 18

PPI NC 56,658 818,435 50 121
Protein NC 42,576 79,482 29 3

Ogbn-arxiv NC 169,343 1,166,243 128 40

• Cora [SNB+08]. A citation network consists of 2, 708 scientific publications
and 5, 429 links. A 1, 433 dimensional word vector describes each publication
as a node feature.

• Power [WS98]. An electrical grid of western US with 4, 941 nodes and 6, 594
edges and no node features.

For node classification, we use 6 datasets: including Cora, Citeseer [KW17] and
Pubmed [KW17] and a large-scale benchmark dataset Ogbn-arxiv [HFZ+20] for
transductive settings, and 2 protein interaction networks Protein and PPI [YYM+18]
for inductive settings.

• Cora. The same above-mentioned Cora dataset contains 7 classes of nodes. A
citation network consists of 3, 312 scientific publications classified into one of
6 classes, and the dataset contains 4, 660 edges. Each node is labelled with the
class it belongs to.

• Citeseer [SNB+08]. Each node comes with 3, 703-dimensional node features.

• Pubmed [NLGH12]. A dataset consists of 19, 717 scientific publications from
PubMed database about diabetes classified into one of 3 classes. Each node is
described by a TF/IDF weighted word vector from a dictionary which consists
of 500 unique words.

• PPI [ZL17]. 24 protein-protein interaction networks and nodes of each graph
comes with 50 dimensional feature vector.

• Protein [BOS+05]. 1113 protein graphs and nodes of each graph comes with
29 dimensional feature vector. Each node is labelled with a functional role of
the protein.

• Ogbn-arxiv [HFZ+20]. A large-scale citation graph between 169, 343 computer
science arXiv papers. Each node is an arXiv paper, and each directed edge
indicates that one paper cites another one. Each paper comes with a 128-
dimensional feature vector obtained by averaging the embeddings of words
in its title and abstract. The task is to predict the 40 subject areas of these
papers.

3.5. Experiments 31

For node community detection, we use an email communication dataset:

• Emails [LK14]. 7 real-world email communication graphs from SNAP with
no node features. Each graph has 6 communities, and each node is labelled
with the community it belongs to.

The data statistics of datasets is summarised in Table ,3.3 and they are available for
download with our published code.

Experimental settings. We evaluate HC-GNN under the settings of transductive
and inductive learning. For node classification, we additionally conduct experi-
ments with the few-shot setting.

• Transductive learning. For link prediction, we follow the experimental settings
of [YYL19] to use 10% existing links and an equal number of non-existent
links as validation and test sets. The remaining 80% existing links and a
dual number of non-existent links are used as the training set. For node
classification, we follow the semi-supervised settings of [KW17]: if there are
enough nodes, for each class, we randomly sample 20 nodes for training,
500 nodes for validation, and 1000 nodes for testing. For the Emails dataset,
we follow the supervised learning settings of [HSLH19] to randomly select
80% nodes as the training set, and use the two halves of remaining as the
validation and test set, respectively. We report the test performance when the
best validation performance is achieved.

• Inductive learning. This aims at examining a model’s ability to transfer the
learned knowledge from existing nodes to future ones that are newly con-
nected to existing nodes in a graph. Hence, we hide the validation and testing
graphs during training. We conduct the experiments for inductive learning
using PPI and Protein datasets. We train models on 80% graphs to learn an
embedding function f and apply it on the remaining 20% graphs to generate
the representation of new-coming nodes.

• Few-shot learning. Since the cost of collecting massive labelled datasets is high,
having a few-shot learning model would be pretty valuable for practical ap-
plications. Few-shot learning can also be considered as an indicator to eval-
uate the robustness of a deep learning model. We perform few-shot node
classification, in which only 5 samples of each class are used for training. The
sampling strategies for testing and validation sets follow those in transductive
learning.

Evaluation metrics. We adopt AUC to measure the performance of link prediction.
For node classification, we use micro- and macro-average F1 scores and accuracy.
NMI score is utilised for community detection evaluation.

Competing methods. To validate the effectiveness of HC-GNN, we compare it
with 9 competing methods which include 6 flat message-passing GNN models, 2
hierarchical GNN models and another state-of-the-art model.

32 Chapter 3. Hierarchical Message-passing Graph Neural Networks

• GCN1 [KW17] is the first deep learning model which generalises the convo-
lutional operation on graph data and introduces the semi-supervised train
paradigm.

• GraphSAGE2 [HYL17b] extends the convolutional operation of GCN to mean/
max/ LSTM convolutions and introduces a sampling strategy before employ-
ing convolutional operations on neighbour nodes.

• GAT3 [VCC+18] employs trainable attention weight during message aggrega-
tion from neighbours, which makes the information received by each node
different and provide interpretable results.

• GIN4 [XHLJ19] summarises previous existing GNN layers as two compo-
nents, Aggregate and Combine, and models injective multiset functions for
the neighbour aggregation.

• HARP5 [CPHS18] is a hierarchical structure by various collapsing methods
for unsupervised node representation learning.

• P-GNNs6 [YYL19] introduce anchor-set sampling to generate node represen-
tation with global position-aware.

• g-U-Net
7 [GJ19] generalises the U-nets architecture of convolutional neural

networks for graph data to get better node representation. It constructs a
hierarchical structure with the help of pooling and unpooling operators.

• GraphRNA8 [HSLH19] proposes using recurrent neural networks to capture
the long-range node dependencies to assist GNN to obtain better node repre-
sentation.

• GCNII9 [CWH+20] simplifies the aggregation design of flat GNNs and joined
with well-designed normalisation units to get much deeper GNN models.

Reproducibility. For fair comparison, all methods adopt the same representation
dimension (d = 32), learning rate (= 1e−3), Adam optimiser and the number of
iterations (= 200) with early stop (50). In terms of the neural network layers, we
report the one with better performance of GCNII with better performance among
{8, 16, 32, 64, 128}; for other models, we report the one with better performance
between 2−4; For all models with hierarchical structure (including g-U-Net and
HC-GNN), we use GCN as the default GNN encoder for fair comparision. Note
that for the strong competitor, P-GNNs, since its representation dimension is related
to the number of nodes in a graph, we add a linear regression layer at the end of

1https://github.com/tkipf/pygcn
2https://github.com/williamleif/GraphSAGE
3https://github.com/PetarV-/GAT
4https://github.com/weihua916/powerful-gnns
5https://github.com/GTmac/HARP
6https://github.com/JiaxuanYou/P-GNN
7https://github.com/HongyangGao/Graph-U-Nets
8https://github.com/xhuang31/GraphRNA_KDD19
9https://github.com/chennnM/GCNII

https://github.com/tkipf/pygcn
https://github.com/williamleif/GraphSAGE
https://github.com/PetarV-/GAT
https://github.com/weihua916/powerful-gnns
https://github.com/GTmac/HARP
https://github.com/JiaxuanYou/P-GNN
https://github.com/HongyangGao/Graph-U-Nets
https://github.com/xhuang31/GraphRNA_KDD19
https://github.com/chennnM/GCNII

3.5. Experiments 33

P-GNNs for node classification tasks to ensure its end-to-end structure is the same
as other models [HSLH19]. For HC-GNN, the number of HC-GNN layers is varied
and denoted as 1L, 2L or 3L. In Section 3.5.3, HC-GNN adopts the number of layers
leading to the best performance for model analysis i.e., 2L for the Cora dataset,
1L for the Citeseer and Pubmed datasets. For Louvain community detection, we
use the implementation of a given package10, which does not require any hyper-
parameters. We use PyTorch Geometric to implement all models mentioned in this
chapter. More details are referred to our code file11. The experiments are repeated
10 times, and average results are reported. Note that we use only node features with
unique one-hot identifiers to differentiate different nodes if there are no given node
features from the datasets and use the original node features if they are available.
We employ Pytorch and PyTorch Geometric to implement all models. Experiments
were conducted with GPU (NVIDIA Tesla V100) machines.

3.5.2 Experimental Results

Table 3.4: Results in Micro-F1 and Macro-F1 for transductive semi-supervised node classifi-
cation task. Results in Acc for node classification of Ogbn-arxiv follows the default settings
of OGB dataset [HFZ+20], and results in NMI for community detection (i.e., on the Emails
data in the last column). Standard deviation errors are given. ‡ indicates the results from
OGB leaderboard [HFZ+20]. OOM: out-of-memory.

Cora Citeseer Pubmed Emails Ogbn-arxiv
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 NMI Acc (%)

GCN 0.802±0.019 0.786±0.020 0.648±0.019 0.612±0.012 0.779±0.027 0.777±0.026 0.944±0.010 71.74±0.29‡

GraphSAGE 0.805±0.013 0.792±0.009 0.650±0.027 0.611±0.020 0.768±0.031 0.763±0.030 0.925±0.014 71.49±0.27†

GAT 0.772±0.019 0.761±0.023 0.620±0.024 0.594±0.015 0.775±0.036 0.770±0.022 0.947±0.009 72.06±0.31†

GIN 0.762±0.020 0.759±0.018 0.615±0.023 0.591±0.020 0.744±0.036 0.733±0.041 0.640±0.047 71.76±0.33†

P-GNNs 0.438±0.044 0.431±0.040 0.331±0.019 0.314±0.018 0.558±0.033 0.551±0.036 0.598±0.020 OOM
GCNII 0.823±0.017 0.801±0.022 0.722±0.011 0.677±0.010 0.791±0.009 0.790±0.016 0.947±0.010 72.74±0.16

HARP 0.363±0.020 0.350±0.021 0.343±0.023 0.317±0.017 0.441±0.024 0.329±0.019 0.371±0.014 OOM
GraphRNA 0.354±0.070 0.244±0.040 0.352±0.050 0.259±0.047 0.476±0.054 0.355±0.089 0.434±0.047 OOM
g-U-Net 0.805±0.017 0.796±0.018 0.673±0.015 0.628±0.012 0.782±0.018 0.781±0.019 0.939±0.015 71.78±0.37

HC-GNN-1L 0.819±0.002 0.816±0.005 0.728±0.005 0.686±0.003 0.812±0.009 0.806±0.009 0.961±0.005 72.69±0.25

HC-GNN-2L 0.834±0.007 0.816±0.006 0.696±0.002 0.652±0.006 0.809±0.004 0.804±0.005 0.962±0.005 72.79±0.31

HC-GNN-3L 0.813±0.008 0.806±0.006 0.686±0.006 0.633±0.008 0.804±0.004 0.780±0.020 0.935±0.014 72.58±0.27

Transductive node classification (RQ1-1&RQ2). We present the results of trans-
ductive node classification in Table 3.4. We can see that HC-GNN consistently
outperforms all of the competing methods in the 5 datasets, and even the shal-
low HC-GNN model with only one layer may lead to better results. We think the
outstanding performance of HC-GNN results from two aspects: (a) the hierarchi-
cal structure allows the model to capture informative long-range interactions of
graphs, i.e., propagating messages from and to distant nodes in the graph; and (b)
the meso- and macro-level semantics reflected by the hierarchy is encoded through
bottom-up, within-level, and top-down propagations. On the other hand, P-GNNs,
HARP, and GraphRNA perform worse in semi-supervised node classification. The
possible reason is they need more training samples, such as using 80% of existing

10https://python-louvain.readthedocs.io/en/latest/api.html
11Code and data are available at https://github.com/zhiqiangzhongddu/HC-GNN

https://python-louvain.readthedocs.io/en/latest/api.html
https://github.com/zhiqiangzhongddu/HC-GNN

34 Chapter 3. Hierarchical Message-passing Graph Neural Networks

nodes as the training set, as described in their papers [YYL19, HSLH19], but we
have only 20 nodes for training in the semi-supervised setting.

Table 3.5: Micro-F1 results for inductive node classification. Standard deviation errors are
given.

PPI Protein
GCN 0.444±0.004 0.542±0.018

GraphSAGE 0.409±0.014 0.637±0.018

GAT 0.469±0.062 0.608±0.077

GIN 0.571±0.008 0.631±0.016

GCNII 0.507±0.008 0.614±0.011

g-U-Net 0.433±0.012 0.547±0.011

HC-GNN-1L 0.48±0.091 0.638±0.027

HC-GNN-2L 0.584±0.087 0.622±0.031

HC-GNN-3L 0.584±0.002 0.582±0.025

Inductive node classification (RQ1-1&RQ2). The results are reported in Table 3.512.
We can find that HC-GNN is still able to show some performance improvement
over existing GNN models. But the improvement gain is not so significant and
inconsistent in different layers of HC-GNN compared to the results in transduc-
tive learning. The possible reason is that different graphs may have other hier-
archical community structures. Nevertheless, the results lead to one observation:
the effect of transferring hierarchical semantics between graphs for inductive node
classification is somewhat limited. Therefore, exploring an ameliorated model that
can adaptively exploit hierarchical structure for different graphs for different tasks
would be interesting. We further discuss it in Section 3.6 as one concluding remark.

Table 3.6: Micro-F1 results for few-shot node classification. Standard deviation errors are
given.

Cora Citeseer Pubmed
GCN 0.695±0.049 0.561±0.054 0.699±0.059

GraphSAGE 0.719±0.024 0.559±0.049 0.707±0.051

GAT 0.630±0.030 0.520±0.054 0.664±0.046

GIN 0.691±0.038 0.509±0.060 0.714±0.036

P-GNNs 0.316±0.040 0.332±0.011 0.547±0.037

GCNII 0.701±0.022 0.564±0.015 0.717±0.047

HARP 0.224±0.033 0.260±0.035 0.415±0.039

GraphRNA 0.274±0.063 0.206±0.019 0.429±0.042

g-U-Net 0.706±0.054 0.567±0.044 0.693±0.036

HC-GNN-1L 0.681±0.023 0.639±0.019 0.704±0.043

HC-GNN-2L 0.759±0.015 0.660±0.024 0.724±0.052

HC-GNN-3L 0.752±0.017 0.642±0.016 0.742±0.045

Few-shot node classification (RQ1-1&RQ2). We exhibit the results in Table 3.6.
HC-GNN demonstrates better performance in few-shot learning than all competing

12Since HARP, P-GNNs and GraphRNA cannot be applied in the inductive setting, we do not
present their results in Table 3.5.

3.5. Experiments 35

methods across 3 datasets. Such results indicate that the hierarchical message pass-
ing is able to transfer supervised information through inter- and intra-level propa-
gations. In addition, the hierarchical message-passing pipeline further enlarges the
influence range of supervision information from a small number of training sam-
ples. With effective and efficient pathways to broadcast information, HC-GNN is
proven to be quite promising in few-shot learning.

Community detection (RQ1-2). The community detection results conducted on the
Emails dataset are also shown in Table 3.4. It can be seen that HC-GNN again
outperforms all competing methods. We believe this is because the communities
identified by Louvain are further exploited by learning their hierarchical interac-
tions in HC-GNN. In other words, HC-GNN is able to reinforce the intra- and
inter-community effect and encode it into node representations.

Table 3.7: Results in AUC for link prediction. Cora-Feat means node features are used in
the Cora dataset, and conversely, Cora-NoFeat means node features are not used. Standard
deviation errors are given.

Grid Cora-Feat Cora-NoFeat Power
GCN 0.763±0.036 0.869±0.006 0.785±0.007 0.624±0.013

GraphSAGE 0.775±0.018 0.870±0.006 0.741±0.017 0.569±0.012

GAT 0.782±0.028 0.874±0.010 0.789±0.012 0.621±0.013

GIN 0.756±0.025 0.862±0.009 0.782±0.010 0.620±0.011

P-GNNs 0.867±0.034 0.818±0.013 0.792±0.012 0.704±0.006

GCNII 0.807±0.024 0.889±0.019 0.770±0.011 0.695±0.014

HARP 0.687±0.021 0.837±0.033 0.721±0.017 0.529±0.004

g-U-Net 0.701±0.032 0.909±0.006 0.772±0.007 0.628±0.024

HC-GNN-1L 0.823±0.035 0.884±0.006 0.795±0.012 0.682±0.016

HC-GNN-2L 0.913±0.011 0.895±0.007 0.837±0.006 0.767±0.020

HC-GNN-3L 0.914±0.011 0.891±0.007 0.839±0.004 0.784±0.017

Link prediction (RQ1-3). Here, we motivate our idea by considering pairwise rela-
tion prediction between nodes. Suppose a pair of nodes u, v are labelled with label
y, and our goal is to predict y for unseen pairs. From the perspective of represen-
tation learning, we can solve the problem via learning an embedding function f
that computes the node representation zv, where the objective is to maximise the
likelihood of distribution p(y|zu, zv). The results in Table 3.7 indicate that the HC-
GNN leads to competitive performance compared to all competing methods, with
up to 11.4% AUC improvement, demonstrating its effectiveness on link prediction
tasks. To examine whether HC-GNN cannot better work on link prediction with-
out node features, we conduct the same experiment on Cora without using node
features (i.e., Cora-NoAtt), and we find HC-GNN leads to the best results. Because
HC-GNN can better model graph topology and hierarchical semantics to capture
the underlying relation between nodes.

36 Chapter 3. Hierarchical Message-passing Graph Neural Networks

Cora Citeseer Pubmed
0.60

0.65

0.70

0.75

0.80

0.85

M
ic

ro
-F

1

(a)

GCN
HC-GNN-1H
HC-GNN-2H
HC-GNN-3H
HC-GNN-4H

Cora Citeseer Pubmed
0.60

0.65

0.70

0.75

0.80

0.85

0.90

(b)

GCN
HC-GNN-Random
HC-GNN-Girvan Newman
HC-GNN-Louvain

Figure 3.3: Results in Micro-F1 for semi-supervised node classification using HC-GNN
by varying: (a) the number of hierarchy levels adopted for message passing, and (b) the
approaches to generate the hierarchical structure.

3.5.3 Empirical Model Analysis

Contribution of different levels (RQ3). Since HC-GNN highly relies on the gener-
ated hierarchical structure, we aim to examine how different levels in the hierarchy
contribute to the prediction. We report the transductive semi-supervised node clas-
sification performance by varying the number of levels (from 1 to 4). GCN is also
selected for comparison because it considers no hierarchy, i.e., only within-level
propagation in the original graph. The results are shown in Figure 3.3(a), in which
1H and 2H indicate only the first level and the first 2 levels are adopted, respec-
tively. We can find that HC-GNN using more levels for hierarchy construction lead
to better results. The flat message passing of GCN cannot work well. Such results
provide strong evidence that GNNs can significantly benefit from the hierarchi-
cal message-passing mechanism. In addition, more hierarchical semantics can be
encoded if more levels are adopted.

Influence of hierarchy generation approaches (RQ4). HC-GNN implements the
proposed hierarchical message-passing graph neural networks based on the Louvain
community detection algorithm, that is termed HC-GNN-Louvain in this paragraph.
We aim to validate (A) whether the community information truly benefits the clas-
sification tasks, and (B) how different approaches to generate the hierarchical struc-
ture affect the performance. To answer (A), we construct a random hierarchical
structure to generate randomised HC-GNN, termed HC-GNN-Random, in which
Louvain detects hierarchical communities, and nodes are randomly swapped among
the same-level communities. In other words, the hierarchy structure is maintained,
but community memberships are perturbed. The results on semi-supervised node
classification are exhibited in Figure 3.3(b). We can see that HC-GNN-Random
works worse than GCN in Cora and Pudmed, and much worse than HC-GNN-
Louvain. It implies that hierarchical communities generated from the graph topol-
ogy genuinely lead to a positive effect on information propagation. To answer (B),
we utilise Girvan Newman [GN02] to produce the hierarchical structure by follow-
ing the same way described in Section 3.4.1, and have a model named HC-GNN-
Girvan Newman. The results are shown in Figure 3.3(b). Although HC-GNN-Girvan
Newman is not as effective as HC-GNN-Louvain, they still outperform GCN. Such

3.5. Experiments 37

a result indicates that the approaches to generate the hierarchical structure will
influence the capability of HC-GNN. While HC-GNN-Louvain leads to promising
performance, one can search for a proper hierarchical community detection method
to perform better on different tasks.

0% 10% 20% 30% 40% 50%
Ratio of removed edges

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

M
ic

ro
-F

1

Cora-Graph Sparsity

0% 10% 20% 30% 40% 50%
Ratio of removed edges

0.72

0.74

0.76

0.78

0.80

0.82

M
ic

ro
-F

1

Cora-Node Sparsity

0% 10% 20% 30% 40% 50%
Ratio of removed edges

0.62

0.64

0.66

0.68

0.70

0.72

M
ic

ro
-F

1

Citeseer-Graph Sparsity

0% 10% 20% 30% 40% 50%
Ratio of removed edges

0.60

0.62

0.64

0.66

0.68

0.70

0.72

M
ic

ro
-F

1

Citeseer-Node Sparsity

HC-GNN GCN GraphSAGE GAT g-U-Nets

Figure 3.4: Results on semi-supervised node classification in graphs by varying the per-
centage of removed edges.

Influence of graph sparsity (RQ5). Since community detection algorithms are sen-
sitive to the sparsity of the graph [NN12], we aim at studying how HC-GNN per-
form under graphs with low sparsity values in the task of semi-supervised node
classification. We consider two kinds of sparsity. One is graph sparsity by randomly
removing a percentage of edges from all edges in the graph, i.e., 10%− 50%. The
other is node sparsity by randomly drawing a portion of edges incident to every
node in the graph. The random removal of edges can be considered that users hide
partial connections due to privacy concerns. The results for Cora and Citeseer are
presented in Figure 3.4. HC-GNN significantly outperforms the competing meth-
ods on graph sparsity and node sparsity under different edge-removal percentages.
Such results prove that even though communities are subject to sparse graphs, our
HC-GNN are more robust than other GNN models.

Table 3.8: Comparison of HC-GNN with different primary GNN encoders (within-level
propagation), follow the transductive node classification settings. Reported results in Micro-
F1.

Models Cora Citeseer Pubmed
GCN 0.802 0.648 0.779
HC-GNN w/ GCN 0.834 0.728 0.812
GAT 0.772 0.629 0.775
HC-GNN w/ GAT 0.801 0.712 0.819
GCNII 0.823 0.722 0.791
HC-GNN w/ GCNII 0.841 0.734 0.816

Ablation study of different primary GNN encoders (RQ6). We adopted GCN as
the default primary GNN encoder in model presentation (Section 3.4) and previous
experiments. Here, we present more experimental results by endowing HC-GNN
with advanced GNN encoders in Table 3.8. The table demonstrates that advanced
GNN encoders can still benefit from the multi-grained semantics of HC-GNN. For
instance, GCNII can stack lots of layers to capture long-range information; how-
ever, it still follows a flat message-passing mechanism hence naturally ignoring the

38 Chapter 3. Hierarchical Message-passing Graph Neural Networks

multi-grained semantics. HC-GNN further ameliorates this problem for better per-
formance.

3.6 Conclusion and Future work

This chapter has presented a novel hierarchical message-passing graph neural networks
(HMGNNs) framework, which deals with two critical deficiencies of the flat mes-
sage passing mechanism in existing GNN models, i.e., the limited ability for infor-
mation aggregation over long-range and infeasible in encoding meso- and macro-
level graph semantic information. Following this innovative idea, we further pre-
sented the first implementation, hierarchical community-aware graph neural network
(HC-GNN), with the assistance of a hierarchical communities detection algorithm.
The theoretical analysis confirms HC-GNN’s significant ability in capturing long-
range interactions without introducing heavy computation complexity. Extensive
experiments conducted on 9 graph datasets show that HC-GNN can consistently
outperform state-of-the-art GNN models in 3 tasks, including node classification,
link prediction, and community detection, under settings of transductive, inductive,
and few-shot learning. Furthermore, the proposed hierarchical message-passing
GNN provides model flexibility. For instance, it friendly allows different choices
and customised designs of the hierarchical structure, and it incorporates well with
advanced flat GNN encoders to obtain more impressive results. That said, the
HMGNNs could be easily applied to work as a general practical framework to
boost downstream tasks with arbitrary hierarchical structure and encoder.

The proposed hierarchical message-passing GNNs provide a good starting point for
exploiting graph hierarchy with GNN models. In the future, we aim to incorporate
the learning of the hierarchical structure into the model optimisation of GNNs such
that a better hierarchy can be searched on the fly. Moreover, it is also interesting to
extend our framework for heterogeneous networks.

39

Chapter 4

Multi-grained Semantics-aware
Graph Neural Networks

4.1 Introduction

Having explored the problem of flat message-passing mechanism of graph neu-
ral networks (GNNs) and proposed the hierarchical message-passing graph neural net-
works (HMGNNs) framework and the practical implementation model, hierarchical
community-aware graph neural network (HC-GNN), in the previous chapter. And as
shown in the experimental results on inductive node classification, HC-GNN per-
forms less effective than on transductive settings. We argue it is because HC-GNN’s
hierarchical structure is pre-defined by the hierarchical community detection al-
gorithm and the effect of transferring hierarchical semantics between graphs for
inductive setting is somewhat limited. Therefore, we now turn to explore an ame-
liorated model that can adaptively exploit hierarchical structure for different graphs
for different tasks.

In addition, in the midst of investigation, we also found that most existing graph
machine learning models solve either the node-wise task or the graph-wise task in-
dependently while they are inherently correlated. That said, node representations
form graph representation, and graph representation can provide node represen-
tations with meso/macro-level semantic information in the graph. Joint modelling
with node- and graph-wise tasks allows GNNs to overcome the limitation of flat
propagation mode in capturing multi-grained semantics, and the enriched node
representation could further ameliorate the graph representation. However, to the
best of our knowledge, none of the existing work simultaneously exploit node-
and graph-wise tasks, along with capturing multi-grained semantics hidden in the
graph, to learn representations of nodes and the graph.

In this chapter, we introduce a novel model, adaptive multi-grained graph neural net-
works (AdamGNN), that follow the HMGNNs framework. It integrates graph con-
volution, adaptive pooling and unpooling operations into one framework to adap-
tively generate the hierarchical structure and generate both node and graph level
representations interactively. Unlike the above-mentioned GNN models, we treat
node and graph representation learning tasks in a unified framework so that they
can collectively optimise each other during training. In modelling multi-grained

40 Chapter 4. Multi-grained Semantics-aware Graph Neural Networks

10% 30% 50% 70% 90%
Ratio of selection

20%

40%

60%

80%

100%

R
at

io
 o

f c
ov

er
ed

 n
od

es

Top-K selection
Emails
Cora
ACM

Figure 4.1: Ratio of covered nodes with various selection ratios.

semantics, the adaptive pooling and unpooling operators preserve the important
node features and hierarchical structural features.

More concretely, as shown in Figure 4.2-(a), we employ (i) an adaptive graph pool-
ing (AGP) operators to generate a multi-grained structure based on the derived pri-
mary node representations by a GNN layer, (ii) graph unpooling (GUP) operators
to further distribute the explored meso- and macro-level semantics to the corre-
sponding nodes of the original graph, and (iii) a flyback mechanism to integrate all
received multi-grained semantic messages as the evolved node representations. Be-
sides, the attention-enhanced flyback aggregator provides a reasonable explanation
of the importance of messages from different grains. Experimental results reveal
the effectiveness of AdamGNN, and the ablation and empirical studies confirm the
effectiveness and flexibility of different components in AdamGNN. At last, through
case studies, AdamGNN is shown to highlight variant-range node interactions in
different graph datasets.

4.2 Additional Related Work

Graph pooling. Pooling operation overcomes GNN’s weakness in generating graph-
level representation by recursively merging sets of nodes to form super nodes in
the pooled graph. DiffPool [YYM+18] is a differentiable pooling operator, which
learns a soft assign matrix that maps each node to a set of clusters, treated as super
nodes. Since this assignment is relatively dense that incurs high computation cost, it
is not scalable for large graphs [CVJ+18]. Following this direction, a Top-k selection
based pooling layer (g-U-Net) is proposed to select important nodes from the orig-
inal graph to build a pooled graph [GJ19]. SagPool [LLK19] and ASAP [RST20]
further use attention and self-attention for cluster assignment. They address the

4.2. Additional Related Work 41

Table 4.1: Model comparison from various aspects: Node-wise Task (NT), Graph-wise
Task (GT), Pooling and/or Unpooling (P/U), Adaptive Pooling (AP), Efficient Pooling (EP),
Multi-grained Explanation (ME).

NT GT P/U AP EP ME
GCN [KW17]

√
GraphSAGE [HYL17b]

√
GAT [VCC+18]

√
GIN [XHLJ19]

√ √
PNA [CCB+20]

√ √
GCNII [CWH+20]

√
GRAND [FZD+20]

√
DiffPool [YYM+18]

√
P

g-U-Net [GJ19]
√ √

P, U
√

SagPool [LLK19]
√

P
√

EigenPool [MWAT19]
√

P
√ √

StructPool [YJ20]
√

P
ASAP [RST20]

√
P

√
AdamGNN

√ √
P, U

√ √ √

problem of sparsity in DiffPool, however, such a manual-defined hyper-parameter
k is quite sensitive to the final performance [GJ19], thus limiting the adaptivity of
these models on graphs of different sizes. In addition, as shown in Figure 4.1, dif-
ferent k values significantly affect the number of covered nodes in the graph, which
means the important node features could get lost during the trivial pooling opera-
tion. Note that nodes covered by a super node refer to nodes involved in the super
node’s aggregation tree.

Recently, EigenPool [MWAT19] proposes a pooling operator based on graph Fourier,
which does not rely on the Top-k selection strategy, StructPool [YJ20] designs
strategies to involve both node and graph structures, and includes conditional ran-
dom fields technique to ameliorate the cluster assignment. However, StructPool

treats the graph assignment as a dense clustering problem, which gives rise to a
high computation complexity as in DiffPool.

Discussion. Table 4.1 summarises the key advantages of the proposed AdamGNN
and compares it with a number of state-of-the-art methods. Among the exist-
ing GNN models, g-U-Net and AdamGNN support both node- and graph-level
tasks. However, (i) the Top-k selection strategy of g-U-Net introduces a new hyper-
parameter and may lose important node features or graph structure; (ii) g-U-Net

generates super graph only with k selected super nodes, which ruins multi-grained
semantics of the original graph; (iii) g-U-Net does not support mini-batch because
it needs to compute scores of all nodes in one big batch to select super nodes. On
the contrary, AdamGNN is a unified framework that adaptively integrates multi-
grained semantics into node representations and achieves a mutual optimisation
between node- and graph-wise tasks. Besides, AdamGNN supports efficient mini-
batch pooling and unpooling, and also provides model explanation via the multi-
grained semantics. Therefore, we believe AdamGNN’s framework is more general,
effective and scalable than G-U-Net.

42 Chapter 4. Multi-grained Semantics-aware Graph Neural Networks

4.3 Proposed Approach

4.3.1 Preliminaries

Problem setup. For node-wise tasks, the goal is to learn a mapping function
fn : G → Z, where Z ∈ Rd, and each row zi ∈ Z corresponds to node vi’s rep-
resentation. For graph-wise tasks, similarly it aims to learn a mapping fg : D → Z,
where D = {G1,G2, . . . } is a set of graphs, each row zi ∈ Z corresponds to the
graph Gi’s representation. The mapping function’s effectiveness fn and fg is eval-
uated by applying Z to different downstream tasks. Table 4.2 lists the additional
mathematical notation used in this chapter.

Table 4.2: Summary of additional notations.

Notation Description
T Number of hierarchy level
Gt Super graph at level t
D Set of generated super graphs
Cλ List of generated ego-networks from G
N λ

i Set of nodes in the ego-network of node vi
St Assignment matrix at level t

Primary node representation. We use graph convolution network (GCN) [KW17] as
an example primary GNN encoder to obtain the node representation and GCN
(Equation 2.3) can be formally represented as:

H(ℓ+1) = ReLU(D̂−
1
2 ÂD̂

1
2 H(ℓ)W(ℓ)) (4.1)

where Â = A + I, D̂ = ∑j Âij and W(ℓ) ∈ Rn×d is a trainable weight matrix for
layer ℓ. H(ℓ) is the generated node representation of layer ℓ which is defined as the
primary node representations H = H(ℓ).

Node representations are generated based on each target node’s local neighbours,
which are aggregated via learning based on the adjacency matrix A. GCN cannot
capture meso/macro-level knowledge, even with stacking multiple layers. Hence
we term such generated node representations as primary node representations.

4.3.2 Adaptive Graph Pooling for Multi-grained Structure Generation

The proposed model, AdamGNN, adaptively generates a multi-grained structure
to realise the collective optimisation between the node and graph level tasks within
one unified framework. The key idea is that apply an adaptive graph pooling
operator to present the multi-grained semantics of G explicitly and improve the
node representation generation with the derived meso/macro information. While
AdamGNN is usually performed under multiple levels of granularity (T different
grains), in this section, we present how level t’s super graph is adaptively con-
structed based on graph of level t−1, i.e., Gt−1 = (Vt−1, Et−1, Xt−1).

4.3. Proposed Approach 43

Level t+1

Level t

(a) AdamGNN Flowchart (b) AGP & GUP

(i)

(iv)

𝐿𝐿oss

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑅𝑅 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐀𝐀,𝐀𝐀′)

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐾𝐾𝐾𝐾 = 𝐾𝐾𝐾𝐾(𝑃𝑃||𝑄𝑄)

+

+

AGP

AGP
GUP

Flyback Aggregator

GNN

GNN

GNN

GUP (iii)

(ii)

Figure 4.2: (a) An illustration of AdamGNN with 3 levels. AGP: adaptive graph pooling,
GUP: graph unpooling. (b) An example of performing adaptive graph pooling on a graph:
(i) ego-network formation, (ii-iii) super node generation, (iv) maintaining super graph con-
nectivity.

Ego-network formation. We initially consider the graph pooling as an ego-network
selection problem, i.e., each ego node can determine whether to aggregate its local
neighbours to form a super node, resolving the dense issue of DiffPool by avoiding
using a dense assignment matrix. As shown in Figure 4.2-(b)-(i), each ego-network
cλ contains the ego and its local neighbours N λ

i within λ-hops., i.e., N λ
i = {vj |

d(vi, vj) ≤ λ}, where d(vi, vj) means the shortest-path length between vi and vj.
Thus an ego-network can be formally presented as: cλ(vi) = {vj | ∀vj ∈ N λ

i },
and a set of ego-networks Cλ = {cλ(v1), . . . , cλ(vn)} can be generated from G. We
investigate the impact of the ego-network size in the ablation studies of Section 4.4.2

Super node determination. Given G with n nodes has n ego-networks, forming
a super graph with all ego-networks blurs the useful multi-grained semantics and
lead to a high computation cost. We select a fraction of ego-networks from Cλ

to organise the multi-grained semantics of G. We make the selection based on a
closeness score ϕi that evaluates the representativeness of the ego vi to its local
neighbours vj ∈ cλ(vi). We first create a function to calculate the closeness score ϕij

between vi and vj:

ϕij = f non
ϕ (vi, vj)× f lin

ϕ (vi, vj)

= Softmax(−→a T σ(WH[j] ∥ WH[i]))× Sigmoid(HT[j] ·H[i])
(4.2)

where −→a ∈ R2π is the weight vector, ∥ is the concatenation operator and σ is an
activation function (LeakReLU) to avoid the vanishing gradient problem [Hoc98]

during the model training process. f non
ϕ (vi, vj) = exp(−→a T σ(WH[j]∥WH[i]))

∑vr∈Nλ
j

exp(−→a T σ(WH[j]∥WH[r])) cal-

culates one component of ϕij considering the non-linear relationship between node

44 Chapter 4. Multi-grained Semantics-aware Graph Neural Networks

vj’s and ego vi’ representations, and its output lies in (0, 1) as a valid probabil-
ity for ego-network selection. Meanwhile, we further add another component
f lin
ϕ (vi, vj) = Sigmoid(HT[j] · H[i]) to supercharge ϕij with the linearity between

node vj and ego vi to capture more comprehensive information. Consequently,
nodes with similar features and structure information to the ego contribute to
higher closeness scores. In the end, we produce the closeness score of cλ(vi) as:

ϕi =
1
|N λ

i |
∑

vj∈N λ
i

ϕij (4.3)

where |N λ
i | indicates the number of nodes in N λ

i .

After obtaining ego-networks’ closeness scores, we propose an adaptive approach
to select a fraction of ego-networks to form super nodes without pre-defined hyper-
parameters (cf. the Top-k selection strategy [GJ19]). Our key intuition is that a high
diameter ego-network could be composed of multiple low diameter ego-networks.
Therefore, we intend first to find these low diameter ego-networks, then recursively
aggregate them to form a super node that contains these ego-networks. Specifically,
we form ego-networks by selecting a fraction of egos N̂p as: N̂p = {vi | ϕi >

ϕj, ∀vj ∈ N 1
i }, where N 1

i means the neighbour nodes of node vi within the first
hop. Note that each node may belong to various ego-networks since they may
play different roles in different groups. Therefore, we allow overlapping between
different selected ego-networks and utilise N 1

i instead of N λ
i . If we adopt N λ

i
here, the selected ego node vi cannot be involved in other ego-networks anymore.
Following this, we can select a fraction of ego-networks to form super nodes at
granularity level t.

Proposition 1. Let G be a connected graph with n nodes, and a total number of n ego-
networks can be formed from the graph G, i.e., Cλ = {cλ(v1), cλ(v2), . . . , cλ(vn)}. Each
ego-network cλ(vi) is assigned with a closeness score ϕi. Then, there exist at least one
ego-network cλ(vi) that satisfies ϕi > ϕj, ∀vj ∈ N 1

i .

Proof of Proposition 1. For G = (V , E , X) with n nodes. n ego-networks can be gen-
erated by following the procedures, cλ(vi) = {j | ∀j ∈ N λ

i }, and each ego-network
is given a closeness score ϕi as Equation 4.3. We assume that these cluster closeness
scores are not all the same thus, there exists at least one maximum ϕmax. Hence, the
clusters with closeness score ϕmax satisfy the requirements of ego-network selection
requirement that:

ϕmax > ϕj, ∀vj ∈ N 1
max (4.4)

where N 1
max = {vj | i f d(vi, vj) = 1}. So, for any connected G with n nodes,

there exists at least one cluster that satisfies the requirements of our ego-network
selection approach.

Proposition 1 ensures that our super node determination method can find at least
one ego-network to generate a super graph for any graph. It guarantees the gener-
ality of our strategy.

4.3. Proposed Approach 45

Meanwhile, we would also retain nodes that do not belong to any selected ego-
networks, denoted as N̂r, to maintain the graph structure: N̂r = {vj | vj /∈ cλ(vi), ∀vi ∈
N̂p}. In this way, a super node formation matrix St ∈ Rn×(|N̂p|+|N̂r |) can be formed,
where (|N̂p|+ |N̂r|) is number of nodes of the generated super graph, rows of St

corresponds to the n nodes of Gt−1, and columns of St corresponds to the selected
ego-networks (N̂p) plus the remaining nodes (N̂r). We have St[i, j] = ϕij if node vj

belongs to the selected ego-network cλ(vi) and St[i, j] = 1 if node vj is a remain-
ing node corresponds to node vi in the super graph; otherwise St[i, j] = 0. The
weighted super node formation matrix St can better maintain the relation between
different super nodes in the pooled graph.

Maintaining super graph connectivity. After selecting the ego-networks and re-
taining nodes in level t−1, as shown in Figure 4.2-(b)-(iii-iv), we construct the new
adjacent matrix At for the super graph using Ât−1 and St as follows: At = ST

t Ât−1St.
This formula makes any two super nodes connected if they share any common
nodes or any two nodes are already neighbours in Gt−1. In addition, At retains
the edge weights passed by St−1 that involves the relation weights between super
nodes. Eventually, we obtain a generated super graph Gt at granularity level t.

Super node feature initialisation. All nodes in the super graph Gt need initial fea-
ture vectors to support the graph convolution operation. Recall that we have the
closeness score as calculated in Equation 4.2, between node vj to the ego vi. How-
ever, this is not equivalent to the contribution of node vj’s feature to the super node
feature, since we need to compare the relationship strength between ego vi and vj

with the relation between other vr ∈ cλ(vi). Therefore, we further propose a super
node feature initialisation method through a self-attention mechanism [VCC+18].
Specifically, it can be described as:

Xt[i] = Ht−1[i] + ∑
vj∈cλ(vi)\vi

αijHt−1[j] (4.5)

where Ht−1 is the generated node representation by the (t−1)-th primary GNN
layer, i.e., at level t−1 with a similar method as Equation 4.1, αij describes the
importance of node vj to the initial feature of cλ(vi) at level t. And αij can be

learned as follows: αij =
exp(−→a1

T σ(W(ϕijHt−1[j])∥Ht−1[i]))
∑vr∈cλ(vi)

exp(−→a1
T σ(W(ϕirHt−1[r])∥Ht−1[i]))

) where −→a1 ∈ R2π is the

weight vector. For the remaining nodes N̂r that do not belong to any super nodes,
we keep their representations of Ht−1 as initial node features.

4.3.3 Graph Unpooling

Different from existing graph pooling models [YYM+18, CVJ+18, LLK19, RST20,
YJ20] which only coarsen graphs to generate graph representations, we aim to
mutually utilise node-wise and graph-wise tasks to better encode multi-grained
semantics into both node and graph representations under a unified framework.
We design a mechanism to allow the learned multi-grained semantics to enrich the
node representations of the original graph G as shown in Figure 4.2-(a). Vice versa,
the updated node representation can further ameliorate the graph representation

46 Chapter 4. Multi-grained Semantics-aware Graph Neural Networks

in the next training iteration. A reasonable unpooling operation that passes macro-
level information to original nodes has not been well studied in the literature. For
instance, Gao et al. [GJ19] directly relocate the super node back into the original
graph and utilise other GNN layers to spread its message to other nodes. However,
these additional aggregation operations cannot allow each node to receive mean-
ingful information since some nodes may be distant from super nodes. In such a
case, these operations can exacerbate local-smoothing [LHW18].

We implement the unpooling process by devising a top-down message-passing mech-
anism, which endows GNN models with meso/macro level knowledge. Specifi-
cally, since St records how nodes of Gt−1 form the super nodes of Gt, so we utilise
St to restore the generated ego-network representation at level t to that at level t−1
until we arrive at the original graph G, i.e., t→ 0, as follows:

Ĥt = (HT
t ST

t ST
t−1 . . . ST

1)
T (4.6)

where Ĥt ∈ Rn×d. At the end of each iteration, nodes in the original graph G
receive high-level semantic messages from the different levels, i.e., {Ĥ1, . . . , ĤT}.
As illustrated in Figure 4.2-(b)-(iv-i), the graph unpooling process can be treated as
an inverse process of the adaptive graph pooling process.

4.3.4 Flyback Aggregation

Since the super graphs at different granularity levels present multi-grained seman-
tics and how each node utilises the received semantic information with its f lat
representation is a challenging question. And nodes of the same graph may need
different granularity levels’ information. Therefore, we propose a novel attention
mechanism to integrate the derived representations at different levels, given by:

Z = H + ∑
∀t

βt Ĥt (4.7)

where the attention score βt estimates the importance of the message from level t,

given by: βt[i] =
exp(−→a2

T σ(WĤt[i])∥H[i])))
∑j∈T exp(−→a2 T σ(WĤj[i])∥H[i])))

where −→a2 ∈ R2π is the weight vector. We

term this process as the flyback aggregation, which considers the attention scores
of different levels and allows each node to decide whether/how to utilise semantic
information from different granularity levels. We verify the effectiveness of flyback
aggregation in the ablation study of Section 4.4.2 and discuss the explainability in
Section 4.4.3.

4.3.5 Training Strategy

Till now, there are still two challenges when training the model. The first is how to
highlight the difference among nodes’ representations from different ego-networks.
Nodes belonging to neighbouring ego-networks receive closely related messages
from super nodes since their super nodes are connected in the super graph, and
local smoothing makes their representation vectors similar. Representations of

4.3. Proposed Approach 47

proximal nodes could be further closer to each other in the representation latent
space. To address this problem and enhance the discrimination capability be-
tween ego-networks, we exploit a self-optimisation strategy [XGF16], which makes
nodes in different ego-networks distinguishable. Specifically, we use the Student’s
t-distribution (Q) as a kernel to measure the similarity between representation vec-

tors of vj and ego vi: qij =
(1+∥Z[j]−Z[i]∥2/µ)−

µ+1
2

∑i′ (1+∥Z[j]−Z[i′]∥2/µ)−
µ+1

2
, where vj ∈ cλ(vi), vi′ are other

ego nodes, µ are the degrees of freedom of Student’s t-distribution. Following this,
qij can be integrated the probability of assigning node vj to ego vi. In this chapter,
we set µ = 1 the same as [XGF16]. After, we propose to learn better node repre-
sentations by matching Q to the auxiliary target distribution (P), and we choose
the proposition of [XGF16] which first raises qi to the second power and then nor-

malises by frequency per ego-network: pij =
q2

ij/gi

∑i′ (q
2
î j

/gi′)
, where gi = ∑j qij. Therefore,

apart from the task-related loss function Ltask, we further define a KL divergence
loss as:

LKL = KL(P ∥ Q) = ∑
vj

∑
vi

pij log
pij

qij
(4.8)

The second challenge is to avoid the over-smoothing problem that nodes of a graph
tend to have indistinguishable representations. GNN is proved as a special form
of Laplacian smoothing [LHW18, CLL+20] that naturally assimilates the nearby
nodes’ representations. AdamGNN further exacerbates this problem because it
distributes semantic information from one super node representation to all nodes
of the ego-network. Therefore, we introduce the reconstruction loss, which can
alleviate the over-smoothing issue and drive the node representations to retain the
structure information of G by differentiating non-connected nodes’ representations.
Specifically, the reconstruction loss is defined as:

LR = − 1
n ∑(Aij · log(A′ij) + (1−Aij) · log(1−A′ij)) (4.9)

where A′ = Sigmoid(ZTZ). Therefore, the overall loss function consists of the
training task LTask, the self-optimising task LKL, and the reconstruction task LR,
given by:

L = LTask + γLKL + δLR (4.10)

where LTask is a flexible task-specific loss function, and γ and δ are two hyper-
parameters that we discuss in Section 4.4.1. Note that for link prediction task we
have L = LR + γLKL, since LTask equals to LR. Moreover, we demonstrate the effec-
tiveness of each component of loss function L in the ablation study of Section 4.4.2.

4.3.6 Algorithm

We have presented the idea of AdamGNN and the design details of each component
in Section 4.3. Here, we summarise the entire AdamGNN model in Algorithm 2 to
provide a general view of our model. Given a graph G, we first apply a primary
GNN encoder to generate the primary node embedding (line 1). Then we construct

48 Chapter 4. Multi-grained Semantics-aware Graph Neural Networks

Algorithm 2: Adaptive Multi-grained Graph Neural Networks
Input: graph G = (V , E , X).
Output: node representations Z, graph representations Zg

1 H = ReLU(D̂−
1
2 ÂD̂

1
2 XW) ;

2 for t← {1, 2, . . . , T} do
3 for vi ← {v1, v2, . . . , vn} do
4 for vj ∈ N λ

i do
5 ϕij = f non

ϕ (vi, vj)× f lin
ϕ (vi, vj);

6 end
7 ϕi =

1
|N λ

i |
∑vj∈N λ

i
ϕij;

8 end
9 for vi ← {v1, v1, . . . , vn} do

10 N̂p = {vi | ϕi > ϕj, ∀vj ∈ N 1
i };

11 end
12 N̂r = {vj | vj /∈ cλ(vi), ∀vi ∈ N̂c} ;
13 Generate the super node formation matrix: St ;
14 for vi ∈ N̂r do
15 Xt[i] = Ht−1[i] ;
16 end
17 for vi ∈ N̂p do
18 Xt[i] = Ht−1[i] + ∑vj∈cλ(vi)\vi

αijHt−1[j];
19 end
20 At = ST

t Ât−1St ;

21 Ht = ReLU(D̂−
1
2

t ÂtD̂
1
2
t XtWt) ;

22 Ĥt = (HT
t ST

t ST
t−1 . . . ST

1)
T ;

23 end
24 Z = H + ∑T

t βt Ĥt ;
25 Zg = READOUT({Z, Ĥ1, . . . , ĤT}) ∈ Rd ;

a multi-grained structure with t-th level (line 3-13) with the proposed adaptive
graph pooling operator. Meanwhile, we also propose a method to define the initial
features of pooled super nodes (line 14-19). The graph connectivity of the pooled
graph is maintained by line 20. We apply a GNN encoder on the pooled graph to
summarise the relationships between super nodes (line 21) to learn macro grained
semantics of t-th granularity level. The learned multi-grained semantics are further
distributed to the original graph following an unpooling operator (line 22). Last,
the flyback aggregator generates the meso/macro level knowledge from different
levels as the node representations of G (line 24), and an additional READOUT op-
erators [CCB+20] produce the node representations as to the graph representation
(line 25).

Model scalability. According to the design for AdamGNN framework, we can
find that the primary node representation learning module of each level and the
adaptive graph pooling and unpooling operators are categorised as a local network
algorithm [Ten16], which only involves local exploration of the graph structure.
Therefore, our design enables AdamGNN to scale to representation learning on

4.4. Experiments 49

large-scale graphs and to be friendly to distributed computing settings [QCD+20].
We present instances that utilise a multi-GPU computing framework to accelerate
the training process of AdamGNN in Section 4.4.3.

4.4 Experiments

4.4.1 Experimental Setup

We evaluate our proposed model, AdamGNN, on 14 benchmark datasets, and com-
pare with 16 competing methods over both node- and graph-wise tasks, including
node classification, link prediction and graph classification.

Table 4.3: Data statistics for node-wise tasks and the split for the semi-supervised node
classification task. N.A. means a dataset does not contain node attributes or does not
support semi-supervised settings.

Dataset #Nodes #Edges #Features #Classes #Train-#Val-#Test
ACM 3,025 13,128 1,870 3 60-500-1,000
Citeseer 3,327 4,552 3,703 6 120-500-1,000
Cora 2,708 5,278 1,433 7 140-500-1,000
DBLP 4,057 3,528 334 4 80-500-1,000
Emails 799 10,182 N.A. 18 180-309-310
Pubmed 19,717 88,648 500 3 60-500-1,000
Wiki 2,405 1,2178 4973 17 481-962-962
Ogbn-arxiv 169,343 1,166,243 128 40 N.A.

Table 4.4: Data statistics for graph classification.

Dataset #Graphs #Nodes (avg) #Edges (avg) #Features #Classes
NCI1 4,110 29.87 32.3 37 2
NCI109 4,127 29.68 32.13 38 2
D&D 1,178 284.32 715.66 89 2
MUTAG 188 17.93 19.79 7 2
Mutagenicity 4,337 30.32 30.77 14 2
PROTEINS 1,113 39.06 72.82 32 2

Datasets. To validate the effectiveness of our model on real-world applications,
we adopt datasets that come from different domains with different topics and re-
lations. We use 8 datasets for node-wise tasks (data statistics are summarised in
Table 4.3). Ogbn-arxiv [HFZ+20], ACM [BWS+20], Cora [KW17], Citeseer [KW17]
and Pubmed [KW17] are paper citation graph datasets. DBLP [BWS+20] is an
author graph dataset from the DBLP dataset. Emails [LK14] is an email communi-
cation graph dataset. Wiki [YLZ+15] is a webpage graph dataset.

For the graph classification task, we adopt 6 bioinformatics datasets [YJ20] (data
statistics are summarised in Table 4.4). D&D and PROTEINS are datasets contain-
ing proteins as graphs. NCI1 and NCI109 involve anticancer activity graphs. The
MUTAG and Mutagenicity consist of chemical compounds divided into two classes

50 Chapter 4. Multi-grained Semantics-aware Graph Neural Networks

according to their mutagenic effect on a bacterium. Note that all datasets can be
downloaded with our published code automatically.

Competing methods. For node-wise tasks, we adopt 9 competing methods that in-
clude 7 GNN models with flat message-passing mechanism, and one state-of-the-art
method that contains a hierarchical structure: MLP [Ros61], GCN [KW17], Graph-
SAGE [HYL17b], GAT [VCC+18], GIN [XHLJ19], PNA [CCB+20], GCNII [CWH+20],
GRAND [FZD+20] and g-U-Net [GJ19]. For the graph classification task, except for
GIN, PNA and g-U-Net which support graph-wise tasks, we adopt extra 7 compet-
ing methods that involve the state-of-the-art models: 3WL-GNN [MBSL19], Sort-
Pool [ZCNC18], DiffPool [YYM+18], SagPool [LLK19], EigentPool [MWAT19],
StructPool [YJ20] and ASAP [RST20]. Note that we already carefully discussed
these competing methods in Section 3.2 and Section 4.2; therefore, we do not repeat
the method description here. The competing model implementations can be found
in our published project on Github.

Evaluation settings. For the node-wise tasks, we follow the supervised node classi-
fication (Sup-NC) settings of PNA [CCB+20], i.e., using two sets of 10% labelled
nodes as validation and test sets, with the remaining 80% labelled nodes used as
the training set. Meanwhile, we follow the semi-supervised node classification (Semi-
NC) settings of GCN [KW17], and the data split is shown in Table 4.3, i.e., randomly
assigning 20 labelled nodes for each class for training, and 500 and 1000 nodes for
validation and testing, respectively. Note that since the Email does not have a suffi-
cient number of nodes for classic Semi-NC setting, we choose 10 labelled nodes for
each class for training, and the rest data is evenly separated as validation and test
sets. Wiki is imbalanced, where some classes only have very few labelled nodes,
e.g., class 12 has 9 labelled nodes and class 4 has 10 labelled nodes, which cannot
support Semi-NC settings. Therefore, we follow Sup-NC settings to split Wiki for
the Semi-NC experimental parts but use only 20% labelled nodes for training and
the remaining nodes for validation and testing, respectively. Ogbn-arxiv follows the
fixed split of OGB leaderboard [HFZ+20]. For the link prediction (LP) task, we follow
the settings of [YYL19], i.e., using two sets of 10% existing edges as validation and
test sets, with the remaining 80% edges used as the training set. Note that, an equal
number of non-existent links are randomly sampled and used for every set. We
present the average performance of 10 times experiments with random seeds. The
AUC score evaluates link prediction, and node classification tasks are evaluated by
accuracy. We conduct the experiments with random parameter initialisation with
10 random seeds and report the average performance.

For the graph-wise task, i.e., graph classification (GC) task, we perform all experi-
ments following the pooling pipeline of SagPool [LLK19]. 80% of the graphs are
randomly selected as training, and the rest two 10% graphs are used for validation
and testing, respectively. We conduct the experiments using 10-fold cross-validation
and report the average classification accuracy on 10 random seeds.

Model configuration. For all methods, we set the embedding dimension d = 64
and utilise the same learning rate = 0.01, Adam optimiser, number of training
epochs = 1000 with early stop (100). In terms of the neural network layers, we

4.4. Experiments 51

report the one with better performance of GCNII with better performance among
{8, 16, 32, 64, 128}; for other models, we report the one with better performance
between 2−4; For all models with hierarchical structure (including AdamGNN),
we use GCN as the GNN encoder for fair comparision. In terms of the number of
levels that is required by hierarchical models, we present the one with better perfor-
mance, between 2−5. On other hyper-parameter settings of competing methods, we
employ the default values of each competing method, as shown in the paper’s offi-
cial implementation. Particularly, for AdamGNN, by tuning the hyper-parameters
based on the validation set, we have γ = 0.1 and δ = 0.01 for Equation 4.10 for
the experiments to let loss values lie in a reasonable range, i.e., (0, 10). We em-
ploy Pytorch and PyTorch Geometric to implement all models. Experiments were
conducted with GPU (NVIDIA Tesla V100) machines.

4.4.2 Experimental Results and Ablation Study

Table 4.5: Results in accuracy (%) for supervised and semi-supervised node classification on
eight datasets. ‡ indicates the results from OGB leaderboard [HFZ+20]. The bold numbers
represent the top-2 results.

Models ACM Citeseer Cora Emails DBLP Pubmed Wiki Ogbn-arxiv
Sup Semi Sup Semi Sup Semi Sup Semi Sup Semi Sup Semi Sup Semi Sup

MLP 87.08 76.14 70.87 59.10 76.12 57.82 N.A. N.A. 79.17 66.55 83.41 72.81 20.42 17.46 55.50‡

GCN 92.25 86.14 76.13 70.53 88.90 80.41 85.03 77.32 82.68 72.22 86.04 77.33 57.36 46.19 71.74‡

GraphSAGE 92.48 87.18 76.75 70.51 88.92 81.07 85.80 78.19 83.20 72.20 86.01 78.43 57.24 49.21 71.49‡

GAT 91.69 87.52 76.96 69.83 88.33 81.40 84.67 77.35 84.04 73.24 86.21 77.54 58.07 50.27 72.06
GIN 90.66 85.98 76.39 66.87 87.74 79.46 87.18 79.23 82.54 73.42 87.10 77.54 66.29 49.88 71.76
PNA 93.97 89.81 72.67 61.78 88.78 71.25 81.25 73.23 86.21 72.40 87.63 72.90 21.67 19.58 72.37
GCNII 93.05 87.80 76.37 72.27 88.07 82.30 82.51 72.90 84.48 72.82 84.48 79.13 60.24 56.18 72.74‡

GRAND 93.05 86.90 76.88 73.54 87.82 82.80 52.53 71.94 85.47 70.46 86.63 81.93 59.58 27.94 70.97
g-U-Net 93.42 89.34 75.59 67.59 87.68 80.71 89.16 80.48 85.27 73.86 87.67 77.04 71.33 54.18 71.78
AdamGNN 94.37 90.72 78.92 72.42 90.92 81.37 91.88 83.23 88.36 74.60 89.81 80.40 73.37 62.06 72.65

Performance on node-wise tasks. We compare AdamGNN with 7 GNN mod-
els and one pooling-based model, i.e., g-U-Net, since other pooling approaches
do not provide an unpooling operator and thus cannot support node-wise tasks.
Results on node classification (with supervised and semi-supervised settings) are
summarised in Table 4.5. They show that AdamGNN can outperform most com-
peting methods with up to 10.47% and 5.39% improvements on semi-supervised
and supervised settings, respectively. AdamGNN brings the most significant im-
provement in Wiki data with semi-supervised settings, and the competing method
that only adopts node features, i.e., MLP, achieve terrible accuracy, 17.46%. We ar-
gue that because the node features and node labels are weakly correlated in this
dataset, the multi-grained semantics provided by AdamGNN help to ameliorate
the performance.

Link prediction results in Table 4.6 show that AdamGNN can significantly outper-
form the 7 competing methods by up to 25.3% improvement in terms of AUC. It
indicates the versatility of AdamGNN on different node-wise tasks and exhibits the
usefulness of modelling multi-grained semantics into node representations. Similar

52 Chapter 4. Multi-grained Semantics-aware Graph Neural Networks

Table 4.6: Results in AUC for link prediction on seven datasets.

Models ACM Citeseer Cora Emails DBLP Pubmed Wiki
GCN 0.975 0.887 0.918 0.930 0.904 0.941 0.523
GraphSAGE 0.972 0.884 0.908 0.923 0.889 0.905 0.577
GAT 0.968 0.910 0.912 0.930 0.889 0.947 0.594
GIN 0.787 0.808 0.878 0.859 0.820 0.927 0.501
PNA 0.978 0.974 0.731 0.932 0.908 0.896 0.538
GCNII 0.968 0.969 0.871 0.926 0.890 0.933 0.709
g-U-Net 0.890 0.918 0.932 0.936 0.934 0.962 0.734
AdamGNN 0.988 0.975 0.948 0.957 0.965 0.969 0.920

to node classification task, AdamGNN again brings the most significant AUC im-
provement on the Wiki dataset, i.e., achieving 29.76% improvement compared with
the flat GNN models.

Table 4.7: Results in accuracy (%) for graph classification on six datasets.

Models NCI1 NCI109 D&D MUTAG Mutagenicity PROTEINS
GIN 76.17±1.12 77.31±1.42 78.05±1.89 75.11±2.64 77.24±2.26 75.37±1.62

3WL-GNN 79.38±1.73 78.34±1.90 78.32±2.44 78.34±3.39 81.52±2.23 77.92±2.09

PNA 78.96±1.01 79.06±1.15 75.47±2.52 81.91±2.59 81.72±1.46 77.72±2.25

SortPool 72.25±1.33 73.21±2.21 73.31±2.43 71.47±2.31 74.65±3.35 70.49±2.37

DiffPool 76.47±0.96 76.17±1.11 76.16±1.69 73.61±3.94 76.30±0.37 71.90±2.75

g-U-Net 77.56±1.92 77.02±2.30 73.98±2.63 76.60±5.03 78.64±3.11 72.94±3.68

SagPool 75.76±1.29 73.67±2.32 76.21±1.56 75.27±1.92 77.09±1.17 75.27±0.57

EigenPool 77.54±1.82 77.20±1.81 78.25±1.78 76.21±2.74 78.60±1.24 75.19±1.95

StructPool 77.61±1.08 78.39±1.23 80.10±1.77 77.13±3.93 80.94±1.67 78.84±1.70

ASAP 78.21±1.75 78.16±1.62 79.50±1.80 80.17±1.77 81.52±1.24 78.92±1.45

AdamGNN 79.77±1.29 79.36±1.03 81.51±1.56 80.11±2.58 82.04±1.73 77.04±0.78

Performance on graph-wise task. Experimental results are summarised in Ta-
ble 4.7. It is apparent that our AdamGNN achieves the best performance on 4
of the 6 datasets, and consistently outperforms most of competing pooling-based
techniques by 1.76% improvement. For the datasets MUTAG and PROTEINS,
our results are still competitive since PNA and ASAP only slightly outperform
AdamGNN. Nevertheless, AdamGNN is still better than other baselines. This is
because our model involves adaptive pooling and unpooling operators to update
node- and graph-wise information interactively, and further enhance the represen-
tations of nodes and graphs during the training process.

Table 4.8: Comparison of AdamGNN with different loss functions on three tasks. NC task
follows the supervised settings.

DBLP Citeseer Mutagenicity
(LP) (NC) (GC)

AdamGNN w/ LTask 0.956 76.63 79.04
AdamGNN w/ LTask+LKL - 77.17 78.94
AdamGNN w/ LTask+LR - 77.64 80.65
AdamGNN (Full model) 0.965 78.92 82.04

4.4. Experiments 53

Ablation study of different loss functions. The loss function of our AdamGNN
consists of three parts, i.e., LTask, LR and LKL. We examine how each part con-
tributes to the performance. Table 4.8 provides the results. For the link prediction
task, we have L = LR + γLKL, since LTask equals to LR. Thus, two comparison ex-
periments are missing in link prediction. From the results, we can see that LR can
significantly improve the performance over three tasks. This is because it can elim-
inate the over-smoothing problem caused by the received messages from different
granularity levels. Meanwhile, LKL can slightly improve the results of node-wise
tasks as well.

Table 4.9: Comparison of AdamGNN with and without flyback aggregation in terms of
graph classification accuracy on NCI1, NCI109 and Mutagenicity datasets.

AdamGNN NCI1 NCI109 Mutagenicity
No flyback aggregation 75.54 77.49 79.89
Full model 79.77 79.36 82.04

Ablation study of the flyback aggregation. Experimental results of node-wise tasks
confirm that capturing multi-grained semantics in AdamGNN can help to learn
more meaningful node representations. Here, we further study whether flyback
aggregator can improve graph representations. Specifically, we aim to see how
the flyback aggregator contributes to graph classification performance by removing
and keeping it. The results are summarised in Table 4.9. It is clear that the node
representations enhanced by the flyback aggregation can indeed improve the graph
representation in the classification task.

Table 4.10: Comparison of AdamGNN with different number of granularity levels in terms
of different tasks. NC task follows the supervised settings.

Levels (T) DBLP Wiki ACM Citeseer Emails Mutagenicity
LP LP NC NC NC GC

1 0.951 0.912 92.60 77.68 86.83 78.16
2 0.958 0.913 93.38 74.67 91.88 82.04
3 0.959 0.917 94.37 76.15 90.61 81.58
4 0.965 0.920 90.84 78.92 - 81.01

Ablation study of number of granularity levels. As it has been proved that the
existing GNN models have worse performance when the neural network goes
deeper [LHW18], here we examine how AdamGNN can be benefited from more
granularity levels. By varying the number of granularity levels, we report the
performance of AdamGNN on link prediction, supervised node classification and
graph classification, as summarised in Table 4.10. We can observe that increasing
the number of granularity levels can improve both link prediction and node classi-
fications. As for graph classification, 2 levels would be a proper choice.

Ablation study of different primary GNN encoders. We adopted GCN as the
default primary GNN encoder in model presentation (Section 4.3) and previous
experiments. Here, we present more experimental results by endowing AdamGNN
with advanced GNN encoders in Table 4.11. The table demonstrates that advanced
GNN encoders can still benefit from the multi-grained semantics of AdamGNN.

54 Chapter 4. Multi-grained Semantics-aware Graph Neural Networks

Table 4.11: Comparison of AdamGNN with different primary GNN encoders, follow the
semi-supervised node classification settings.

Models Cora Citeseer Pubmed
GCN 80.41 70.53 77.33
AdamGNN w/ GCN 81.37 72.42 80.40
PNA 71.25 61.78 72.90
AdamGNN w/ PNA 76.01 68.12 76.89
GCNII 82.30 72.27 79.13
AdamGNN w/ GCNII 83.48 73.44 80.62

For instance, GCNII can stack lots of layers to capture long-range information;
however, it still follows a flat message-passing mechanism hence naturally ignoring
the multi-grained semantics. AdamGNN further ameliorates this problem for better
performance.

1 2 3 4
Ego-network size

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Node classification

Cora
wiki

1 2 3 4
Ego-network size

0.75

0.80

0.85

0.90

0.95

1.00

AU
C

Link prediction

ACM
Emails

1 2 3 4
Ego-network size

76

78

80

82

84

Ac
cu

ra
cy

 (%
)

Graph classification

NCI1
MUTAG

Figure 4.3: Ablation study of Ego-network size λ in terms of different tasks. NC task
follows the supervised settings.

Ablation study of Ego-network size (λ). The size of an ego-network as defined
in Section 4.3 is captured by λ. We present an ablation study to investigate the
influence of λ on AdamGNN’s performance, results are summarised in Figure 4.3.
The figure indicates that λ has no significant influence on the model performance.
We simply adopt λ=1 throughout the chapter.

4.4.3 More Model Analysis

Running time comparison. We present the average epoch training time of dif-
ferent node and graph classification models in Table 4.12 and Table 4.13, respec-
tively. In terms of node classification task, AdamGNN requires more training time
due to the computation cost of αij and βt, similar to any attention-mechanism en-
hanced models [VSP+17]. However, AdamGNN is designed as a local network
algorithm, maintaining good scalability; hence it can be easily accelerated by mini-
batch and multi-GPUs computing frameworks [KSO+21]. It significantly mitigates
the computational issues. On the other hand, AdamGNN follows the sparse design
similar to SagPool, ASAP, striking a balance between performance improvement
and maintaining proper time efficiency. DiffPool and StructPool employ a dense

4.4. Experiments 55

Table 4.12: Average one epoch running time (in seconds) for supervised node classification
task. (×2) means accelerated by 2 GPUs [KSO+21].

Models ACM Citeseer Cora
GCN 0.008 0.008 0.009
GAT 0.010 0.011 0.011
GCNII 0.045 0.040 0.041
g-U-Net 0.076 0.064 0.069
AdamGNN (×1) 0.087 0.072 0.074
AdamGNN (×2) 0.059 0.050 0.052
AdamGNN (×3) 0.050 0.047 0.048

Table 4.13: Average one epoch running time (in seconds) for graph classification task.

Models NCI1 NCI109 PROTEINS
DiffPool 6.23 3.22 3.65
SagPool 1.95 1.55 0.45
g-U-Net 4.58 4.45 1.46
EigenPool 3.88 3.54 1.38
ASAP 2.04 1.83 1.09
StructPool 6.31 6.04 1.34
AdamGNN 3.62 3.24 1.03

mechanism that is not easily scalable to larger graphs [CVJ+18], and g-U-Net uses
convolution operations, which bring additional computation cost, to distribute the
received information to the graph.

ACM

DBLP

N
od

e
ID

N
od

e
ID

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

Figure 4.4: Visualisation of attention weight for messages at different granularity levels.
Dark colours indicate higher weights.

Messages from different levels. We aim to figure out the importance of received
messages from different granularity levels since messages from different levels con-
tain the meso/macro-level knowledge encoded by super nodes. Here we consider
the node classification on the ACM and DBLP as an example. Specifically, ACM’s
paper nodes are labelled with 3 topics: database (DB), data mining (DM) and wire-
less communication (WC); DBLP’s author nodes have 4 research areas: AI, DB, DM

56 Chapter 4. Multi-grained Semantics-aware Graph Neural Networks

and computer vision. The node classification task on these two datasets is predict-
ing the paper/scholar’s research area. The attention scores of nodes that highlight
the importance of different levels’ messages are plotted in Figure 4.4. We can find
different distributions of attention weights over different granularity levels for var-
ious areas’ classifications. The relatively general topics, i.e., AI and WC, receive
messages from different levels with relatively indistinguishable weights, i.e., higher
attention scores of nodes are distributed across levels. The DM topic in two datasets
has different attention patterns: it receives messages from level 1 with the greatest
attention in ACM but receives greatest attention messages from level 3 in DBLP.
This is because DM is not closely related to the other two topics of ACM dataset,
Scholars of DM-related papers are less likely to collaborate with researchers from
DB or WC. DM papers are close to each other in the network. Thus DM papers only
need to receive level 1 granularity semantic information summarised from neigh-
bouring nodes. In contrast, DBLP’s other 3 topics are close to DM. DM-related
scholars may cite any other scholars’ papers, and information related to DM is scat-
tered over author nodes in DBLP network. Therefore, DM researchers tend to be
characterised by level 3 semantics from a wide range.

0 1 2 3 4 5
Granularity level

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
nu

m
be

r o
f n

od
es

0 1 2 3 4 5
Granularity level

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
nu

m
be

r o
f e

go
-n

od
es

ACM
Citeseer

Cora
Emails

DBLP
Pubmed

wiki

Figure 4.5: Visualisation of different granularity levels.

Visualisation of different granularity levels. To better understand the process of
learning multi-grained semantics, we report the relative numbers of nodes (i.e.,
node ratio concerning the original graph) at different granularity levels generated
by AdamGNN in 7 datasets, as shown in Figure 4.5. In particular, we set the max
number of granularity levels as 5, and level 0 indicates the original graph. We
train AdamGNN with semi-supervised node classification and report the relative
number of nodes and selected ego-nodes at each level. In the right, we can find
out that the number of ego-nodes can stay stable after 1−2 times of our adaptive
pooling, which indicates that AdamGNN can effectively find a compact structure
that contains multi-grained semantics. In the left, we can see that the number
of nodes of each level stabilises after 3−4 times of our adaptive pooling, which
illustrates AdamGNN maintain the graph size at a proper level to avoid a dense
super graph.

Visualisation of adjacency matrices at different granularity levels. One of the
fundamental limitations of existing GNNs is the inability of capturing long-range
node interactions in the graph [LMQ+19]. We find that AdamGNN can provide a

4.4. Experiments 57

Figure 4.6: Visualisation of the adjacency matrices stacking the 1-st (green), 2-nd (blue), and
3-rd (yellow) granularity levels on the Wiki dataset.

possible solution to overcome this limitation. AdamGNN allows nodes to receive
messages from far-away nodes with the support of the adaptive multi-grained struc-
ture. That said, the learned multi-grained structure can be regarded as a kind of
short-cuts to let far-away nodes be aware of each other. We visualise these short-
cut connections at different levels on the Wiki dataset in Figure 4.6. Figure-level
0 plots the original adjacency matrix, Figure-level 1 exhibits the learned short-cuts
by the first pooled super graph (in green). Similarly, figure-levels 2 and 3 present
the derived short-cuts by further stacking the adjacency matrices of the second (in
blue) and third (in yellow) pooled graphs, respectively. We can clearly see that the
original graph of the Wiki dataset is very sparse, and AdamGNN adds short-cuts
between nodes with the help of the learned multi-grained structure. In this way,
AdamGNN allows nodes to capture global information with few adaptively pooled
graphs.

Table 4.14: Performance comparison for 1-shot-NC task on Karate-club dataset.

Model 1-Layer 2-Layers
GCN 65.26 69.74
AdamGNN (1-level) 88.65 97.91

Exploration of short-cuts of AdamGNN. To explore the short-cuts derived by AdamGNN,
we perform another empirical analysis on one additional network, i.e., the Karate [Zac77]
club network. We choose 1-shot NC as target task, where we randomly select one
sample from each class as training set, an equal number of nodes as validation set
and the rest nodes for test. Graph structure, experimental results are summarised
in Table 4.14 and two adjacency matrices are shown in Figure 4.7. Short-cuts de-
rived by the first pooled super graph are depicted in green in the level 1 adjacency

58 Chapter 4. Multi-grained Semantics-aware Graph Neural Networks

Adjacency Matrix– Level 1
(with Short-cuts)

Adjacency Matrix – Level 0

Example node

: Labelled training nodes Example node

Figure 4.7: Visualisation of graph structure and adjacency matrix at different granularity
levels of Karate-club dataset

matrix. We find that AdamGNN outperforms GCN on 1-shot NC task with up to
40.5% performance improvements. The two figures in the right part of Figure 4.7
clearly demonstrate that the short-cuts derived by AdamGNN make the example
node aware of far-away nodes.

Target node

AGP

Pooled node

Aggregation in AdamGNNAggregation in
Vanilla GNNs

Aggregation rooted tree
Of 1 layer Vanilla GNN

Aggregation rooted tree
of AdamGNN

𝑣𝑣𝑎𝑎

𝑣𝑣𝑎𝑎

𝑣𝑣𝑎𝑎𝑣𝑣𝑎𝑎

Target node

GUP

Level 1

Level 0

Figure 4.8: A toy example of the aggregation schemas of vanilla GNNs (left) and
AdamGNN (right).

Comparing aggregation mechanisms. To demonstrate the internal aggregation
mechanism of AdamGNN and figure out the reason that it leads to performance
improvements as shown in Section 4.4.2, we give a toy example of the aggregation
schemas in vanilla GNNs and AdamGNN. As shown in Figure 4.8, 1-layer vanilla
GNN can only capture limited information as presented in the left rooted tree.
Nevertheless, thanks to the adaptive hierarchical structure learned by AdamGNN,
target nodes can receive multi-grained semantics as well as endowed with the abil-
ity to capture information from nodes from a long range. For instance, node va’s
message cannot be obtained by the target node with a few layers of vanilla GNN,
but AdamGNN allows the target node to receive va’s information with 1 granular-
ity level. The level 1’s graph allows the super node to receive a message from node
va and pass it to the target nodes by flyback aggregator.

4.5. Conclusion and Future work 59

4.5 Conclusion and Future work

To summarise, we proposed AdamGNN, an adaptive hierarchical message-passing
graph neural networks model that integrates multi-grained semantics into node
representations and realises collective optimisation between node- and graph-wise
tasks in one unified process. We have designed an adaptive and efficient pool-
ing operator with a novel ego-network selection approach to encoding the multi-
grained structural semantics and a training strategy to overcome the over-smoothing
problem. Extensive experiments conducted on 14 real-world datasets showed the
promising effectiveness of AdamGNN on node- and graph-wise downstream tasks.

One future direction is to appropriately apply the adaptive multi-grained structure
on heterogeneous networks for node and graph level tasks.

61

Part II

Extending Graph Machine
Learning to Heterophilous Graphs

63

Motivation and Summary

Following the triumph of machine learning in computer vision and natural lan-
guage processing, there are more and more success stories coming from machine
learning paradigms suited for graph-structured data. Graph machine learning (GML)
has become a predominant approach for a multitude of graph analytic tasks. How-
ever, these outstanding results of GML approaches are often obtained for the graphs
that exhibit only high homophily, i.e., the structure where nodes of the same class
tend to be connected. In graphs with low homophily, known as heterophily, most
GML approaches fall short. And addressing the heterophily scenario is essential
for network analysis and fairness study.

This part of the thesis explores how we can extend GML approaches to heterophilous
graphs with and without supervision.

In Chapter 5, we introduce the efficient and strong compatible label propagation (CLP)
model for node classification with supervision information.

Chapter 6 focuses on more challenging settings: how to learn useful node repre-
sentations on heterophilous graphs without supervision information? We propose a
unified model, self-supervised network embedding (Selene), to redefine the graph rep-
resentation learning as a r-ego network discrimination task and introduce a set of
designs to accomplish it. We empirically demonstrate that it works well for graphs
with both homophily and heterophily.

65

Chapter 5

Simplifying Node Classification on
Heterophilous Graphs

5.1 Introduction

Following the triumph of deep learning in computer vision and natural language
processing, more and more success stories are coming from graph neural networks
(GNNs) suited for relational data such as graphs or meshes [ZCZ20, WPC+21]. The
majority of modern deep learning architectures can be considered as a special case
of the GNN with specific geometrical structures [BBCV21]. These models have
achieved state-of-the-art performance in tasks such as node classification, common
in real-world applications, and crested popular leaderboards such as Open Graph
Benchmark [HFZ+20]. The landscape of GNNs is rich, and many new architectures
have been recently proposed to compensate for limited expressivity [AL20, XHLJ19,
DHS+19, VCC+18] or to solve specific problems such as oversmoothing, inherent to
the traditional message-passing layers [YHS+21, ZA20, MWW20, LHW18]. Unfor-
tunately, these models attain desiderata with the extra price of being more complex
and less intuitive during inspection of their performance gains, therefore restricting
their applicability in practice.

To address these problems, several models were proposed recently that do not
use message-passing algorithm of GNNs but instead are based on well-studied al-
gorithms that show promising results in graph problems [HHS+21, IP21, RFC+20,
TZPM19]. Here, we resort to a graph algorithm called label propagation (LP) [ZBL+03,
Zhu05] – a competitive algorithm in semi-supervised node classification setup,
which was popular for more than a decade. While GNNs learn mapping functions
between node features and class labels, LP algorithm directly incorporates class
labels of the train nodes to make predictions on the test nodes. As traditional LP
algorithm does not use node features (which may contain significant signal about
the labels of the nodes), it was recently shown [HHS+21] that by making “base
predictions” by a linear network on the node features and then substituting the
predictions to the LP algorithm, it is possible to boost the performance up to the
results of more complex GNNs. These results, however, are often obtained for the
graph datasets that exhibit only high homophily, i.e. structure where neighbour-
ing nodes are likely to have the same class labels. In graphs with low homophily,
known as heterophily (“opposites attract”), LP and traditional GNNs fall short and

66 Chapter 5. Simplifying Node Classification on Heterophilous Graphs

are often outperformed by simple methods such as multi-layer perceptron.

Motivated by this limitation, several GNN architectures were proposed to make
message-passing paradigm work on heterophilous graphs [ZYZ+20, CWH+20, YHS+21,
BWSS21]. These models revolve around modifications of neighbourhoods used for
aggregation schemes of GNNs to enrich the diversity of labels among neighbours.
For example, [ZYZ+20] uses multiple-hop neighbourhoods for the aggregation in
GNNs, which in turn provides more complete information about the connectivity
of different classes. While such approaches bridge the gap for traditional GNNs
on heterophilous graphs, they often do so at the expense of more parameters and
longer training time.

Instead, in this chapter, we modify LP algorithm to work well in semi-supervised
node classification on heterophilous graphs. We start by conducting an experi-
mental investigation over existing models’ micro-level performance, i.e., evaluating
the node classification accuracy for node groups with subgraphs of different ho-
mophily ratios. The investigation results (as shown in Figure 5.1) demonstrate that
recent GNNs designed for heterophilous graphs do not outperform simple neu-
ral network model that only relies on node features, i.e., multi-layer perceptron,
when the subgraph homophily ratio of a node is low. Inspired by this finding,
we propose an efficient framework that relies on base predictions given by a sim-
ple neural network and further ameliorate the base predictions with a compatible
LP algorithm. In particular, we propose a simple pipeline (CLP) with three main
steps (Figure 5.2): (i) base predictions of all nodes are made by a simple neural net-
work purely on the node features; (ii) a global compatibility matrix that computes
connectivity of different labels is estimated; and (iii) smoothing of the predictions
across neighbours weighted by the compatibility of the class labels is performed.
Intuitively, step (i) calculates the class probabilities for the test nodes, while step (ii)
defines the weights on edges with which LP algorithm at step (iii) will propagate
the class probabilities for each node. While steps (i) and (iii) have been tried in-
dependently for semi-supervised classification before [KW17, IP21], it is learning
the compatibility matrix at step (ii) that makes a big difference as we show in the
experiments. In our theoretical analysis, we show that our approach can be com-
puted via closed-form solution that provides necessary and sufficient conditions
for convergence. Empirically, extensive experimental results on a wide variety of
benchmarks show the competitive and efficient performance of CLP.

A significant boost in the performance of our method is related to learning a global
compatibility matrix between classes. This idea is not new — before the rise of neu-
ral networks for semi-supervised learning several algorithms such as DCE [PLG20],
ZooBP [EGF+17], LinBP [GGKF15] and FaBP [KKK+11] use compatibility matrix
for belief-propagation algorithm. However, all of these methods are motivated by
the regularisation framework, where the labelling function minimises some energy
objective that does not depend on the node features [Gat14] and were shown to
have suboptimal performance to GNNs [PLG20]. More recently, compatibility ma-
trix was used for GNNs in the heterophily setting [ZRR+21] and showed a signifi-
cant increase in performance. That being said, we find that learning a compatibility
matrix from the node features significantly improves the performance of LP on

5.2. Additional Related Work 67

heterophilous graphs.

Overall, we generalise LP algorithm to arbitrary heterophily assumption, where
the commonly used smoothness assumption (homophily) is a special case with
the identity matrix acting as the compatibility matrix. In this case, LP is orders
of magnitude faster than log-likelihood estimators such as GNNs, and it presents
new ways to understand the performance of graph learning through the lens of
diffusion-based learning [KKK+11, Gat14, ZBL+03, Zhu05]. For example, the in-
sights of using compatibility matrix and class labels as part of the training can be
incorporated into existing GNN models. As such, we hope that the ideas of LP
algorithm could be fruitful for other tasks such as node regression, and LP could
become a commonly used baseline of graph learning practitioners.

5.2 Additional Related Work

At first, there was rich literature on solving the oversmoothing problem [LHW18]
which prevents an increasing number of layers of GNNs without loss of perfor-
mance (common to deep convolutional nets). After that, with new graph datasets
with high heterophily [PWC+20, APK+19] and new theory that connects the over-
smoothing problem with the tendency of nodes to connect to the opposite classes [YHS+21],
it has become evident that GNNs must incorporate additional knowledge to be
suited for heterophilous graphs. Several GNNs were proposed to deal with het-
erophily setting [CPLM21, BWSS21, ZRR+21]; however, usually improved accuracy
of these GNNs is traded with an extra computational cost which makes it hard
to scale for large datasets, unlike LP algorithm, which is a simple graph algo-
rithm. A recent approach CPGNN [ZYZ+20] also uses compatibility matrix with
LP propagation step; however, there are several notable differences compared to
our approach. First, CPGNN adjusts the weight of the message only based on the
class of a sending node and compatibility matrix. In turn, we additionally con-
sider the class of a receiving node, which significantly improves the results in our
experiments. Second, we provide additional theoretical analysis of our method,
giving a closed-form solution and convergence guarantees, which is not available
for CPGNN model.

Label propagation for heterophily regime. Perhaps the closest work to ours is [Gat14,
GGKF15], where a compatibility matrix is used in the linearised belief propagation
(LinBP) algorithm. There, a compatibility matrix is provided or estimated via a
closed-form solution to minimise a convex energy function and does not use the
node features that are crucial in the estimation of the right labelling functions. Sev-
eral follow-ups aimed to generalise LinBP to various types of heterophily [Pee17]
or Markov Random Fields [Gat17]. It was later shown in the experiments that these
methods are less effective than GNNs in graphs with node features [PLG20]. In
contrast, our method combines two orthogonal sources of information – one from
the labelling function learned on the node features and another from LP algorithm
that uses known labels together with the graph structure.

68 Chapter 5. Simplifying Node Classification on Heterophilous Graphs

5.3 Preliminaries

Problem setup. In this chapter, we focus on the semi-supervised node classification
task on a graph G, where TV ⊂ V with known class labels yv for all v ∈ TV . We aim
to infer the unknown class labels yu for all u ∈ V \ TV . In addition, TV is split into
two subsets: T t

V and T v
V , where T t

V is training set and T v
V works as the validation

set for early stopping or parameter fine-tune to prevent overfitting.

In order to give a precise description of the node label relationship of an arbitrary
graph, here we introduce and formally define the homophily ratio of a graph.

Definition 3 (Homophily Ratio h). For an arbitrary graph G = (V , E , X), its homophily
ratio h is determined by the relationship between node labels and graph structure encoded in
the adjacency matrix. Recent work commonly use two homophily metrics: edge homophily
hedge [ZRR+21] and node homophily hnode [PWC+20]. They can be formulated as:

hedge =
|{(u, v) : (u, v) ∈ E ∧ yu = yv}|

|E |

hnode =
1
|V| ∑

v∈V

|{u : u ∈ Nv ∧ yu = yv}|
|Nv|

(5.1)

where Nv is the set of adjacent nodes of node v and | · | represents the number of elements of
the set. Specifically, hedge evaluates the fraction of edges in a graph that connect nodes that
have the same class labels; hnode evaluates the overall fraction of neighbouring nodes that
have the same class labels. In this chapter, we focus on edge homophily and set h = hedge in
the following sections.

The homophily ratio h defined above is suitable for measuring the overall homophily
level in the graph. However, the actual homophily level is not necessarily uniform
within all parts of the graph. One typical case is that the homophily level varies
among different pairs of classes. To measure the variability of the homophily level,
we further define the compatibility matrix H.

Definition 4 (Compatibility Matrix H). Let Y ∈ R|V|×|Y| where [Y]vj = 1 if yv = j and
[Y]vj = 0 otherwise. Then, the compatibility matrix H is defined as:

H = (Y⊤AY)⊘ (Y⊤AE) (5.2)

where ⊘ is Hadamard (element-wise) division and E is a |V| × |Y| all-ones matrix.

In the semi-supervised node classification settings, compatibility matrix H empiri-
cally models the probability of nodes belonging to each pair of classes to connect.
Modelling H is crucial for heterophily settings, but calculating the exact H would
require knowledge to class labels of all nodes in the graph, which violates the
semi-supervised node classification setting. Therefore it is not possible to incorpo-
rate exact H. In Section 5.5.2, we propose an approach to estimate H based on a
sparsely labelled graph, which is utilised after to assist the label propagation step
(Section 5.5.3). An empirical study in Section 5.6.5 empirically discusses the quality
of estimated H and its influence on the model performances.

5.4. An Experimental Investigation 69

0.00 0.25 0.50 0.75 1.00
hv

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y
GPRGNN
FAGCN
GCN2
GCN
MLP

(a) Wiki

0.00 0.25 0.50 0.75 1.00
hv

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

GPRGNN
FAGCN
GCN2
GCN
MLP

(b) ACM

Figure 5.1: Classification accuracy for different 1-hop subgraph homophily ratios on Wiki
(5.1a) and ACM (5.1b) graphs.

5.4 An Experimental Investigation

In this section, we conduct an empirical study to motivate the design of our ap-
proach. The main idea of this experiment is to study how different models perform
at the level of an individual node depending on the homophily ratio of the 1-hop
subgraphs. We define homophily ratio of an individual node hv as follows:

hv =
|{(u, v) : (u, v) ∈ Ev ∧ yu = yv}|

|Ev|
(5.3)

where Ev is the edge set of the induced 1-hop neighbourhood of v.

We take two graphs as examples: a heterophily graph Wiki with h = 0.30 and a
homophily graph ACM with h = 0.82. We train different models on the training
nodes of a graph and compute predictions for the test nodes. We then aggregate the
accuracy of predictions for each level of homophily, {0, 0.1, . . . , 0.9, 1}, and plot the
obtained results in Figure 5.1. Global accuracy across all test nodes can be found in
Table 5.3 and Figure 5.4.

Results from Table 5.3 and Figure 5.4 demonstrate that in general GNNs outperform
multi-layer perceptron (MLP) [Ros61]. However, if we zoom in on local neighbour-
hoods, as shown in Figure 5.1, the results of MLP are often better than those of
GNNs when the homophily ratio of a node’s 1-hop subgraph is low.

In particular, we can see from Figure 5.1 that (i) vanilla GCN has superior accuracy
for nodes with strong subgraph homophily ratio (hv ≥ 0.7) on both graphs; other
advanced GNN models mainly improve the classification accuracy over nodes with
low hv, and (ii) MLP is relatively stable across different homophily ratio hv and is
a better model for nodes with low hv compared to other GNNs. For instance, MLP
achieves the best accuracy on nodes with hv ≤ 0.3 on Wiki graph and nodes with
hv ≤ 0.6 on ACM graph.

This illustrates that recent GNN models designed for heterophilous graphs do not
outperform MLP for nodes with a considerable fraction of neighbours with op-
posite class labels; instead, they have better global accuracy than MLP by having

70 Chapter 5. Simplifying Node Classification on Heterophilous Graphs

better accuracy on nodes with high homophily ratio hv. Based on this evidence,
we propose a simple but effective approach that mainly relies on the predictions
of MLP to maintain its favourable performance on nodes with low homophily and
that further ameliorates the classification results by incorporating the knowledge of
the graph structure.

5.5 Proposed Approach

X Class
matchB

Node features Base predictions Compatibility
matrix

LP+

Graph

MLP H

Compatibility
matrix

H

Step (i) Step (ii)

Step (iii)

Dataset

Labels

Figure 5.2: Overview of Compatible CLP model. Step (i): base predictor, MLP, makes class
predictions for each node using only node features. Step (ii): global compatibility matrix
between classes is computed with Equation 5.6. Step (iii): propagate class predictions with
LP algorithm and get the classes for test nodes. Intuitively, compatibility matrix measures
the weighted probabilities of any two target classes being connected, and as such, it defines
the edge weights in LP algorithm.

Our approach starts with a simple base predictor on node features, which does
not rely on any learning over the topological structure. Any off-the-shelf graph-
agnostic model can be plugged in to become a base predictor, which enables our
approach to accommodate any node features. After, we propose an approach to
estimate the compatibility matrix H of the overall graph and apply it to calculate
the relation between each pair of nodes. Finally, we use label propagation algorithm
with an estimated compatibility matrix to smooth the prior prediction probabilities
on the weighted graph to get the final predictions.

5.5.1 Simple Base Predictor

To start, we use a simple base predictor that does not rely on graph structure to
learn prior predictions. Specifically, we train a model fθ to minimise ∑v∈T t

V
L(fθ(xv), yv),

where xv is the contextual feature of node v and yv is its true class label, L is a loss
function. In this chapter, we adopt a simple multi-layer perceptron (MLP) as the base
predictor, where ℓ-th layer can be formally formulated as following:

D(ℓ) = σ(D(ℓ−1)W(ℓ) + b(ℓ)) (5.4)

5.5. Proposed Approach 71

where W(ℓ) are learnable parameters and b(ℓ) is the bias vector. σ is the activation
function (e.g. ReLU), and we initialise D(0) = X.

From fθ , we get a prior prediction D̂ = D(ℓ) ∈ R|V|×|Y|, where each row of D̂
is a probability distribution resulting from the softmax of the last layer of base
predictor. Omitting the graph for the prior predictions brings several benefits: (i)
it avoids the sensitivity to homophily/heteriophily of the graph (as was shown in
Figure 5.5, MLP’s performance maintains good stability for graphs with different
homophily levels); and (ii) it significantly reduces the number of parameters that
we need to learn, thus accelerating the approach (as we shown in Figure 5.8). Next,
we use MLP’s predictions to estimate the weights for label propagation algorithm.

5.5.2 Estimation of Compatibility Matrix

The focal idea of compatibility matrix is summarising the relative frequencies of
classes between neighbours. Under the semi-supervised node classification settings,
we only know the class labels of a small fraction of nodes (T t

V). We derive the
preliminary class labels of unknown nodes (V − TV + T v

V) as the base prediction
D̂. Note that we treat validation set nodes as unknown nodes, which will be used
to evaluate the performance of LP step and pick up the better final predictions.

More specifically, denote the training mask M as: [M]i,: =

{
1, if i ∈ T t

V
0, otherwise

. The

preliminary knowledge of class labels can be formally represented as:

B̂ = M ◦ Y + (1−M) ◦ D̂ (5.5)

where ◦ is the Hadamard (element-wise) product.

Next, we define a compatibility matrix Ĥ that calculates the probability that a node
of one class is connected with a node of another class.

Ĥ = S((M ◦ Y)⊤AB̂) (5.6)

where S is the Sinkhorn-Knopp function that ensures Ĥ is doubly-stochastic [SK67,
PLG20].

A compatibility matrix Ĥ can be seen as a multiplication of two matrices, (M ◦ Y)⊤

and AB̂. The matrix (M ◦ Y)⊤ represents one-hot encoded labels of training nodes
only. In turn, the matrix AB̂ computes the sum of class probabilities across all
neighbours of each node. After multiplication of these two matrices, each entry
(i, j) of (M ◦ Y)⊤AB̂ represents a score that a class i among training nodes is con-
nected with a node of class j estimated with prior probabilities D̂. A function S
converts these scores back to probabilities such that each entry (i, j) of Ĥ indicates
a probability that a class i is connected with class j.

72 Chapter 5. Simplifying Node Classification on Heterophilous Graphs

0

1

Propagation

Instance

0

1

2

𝒢𝒢

2

𝐁𝐁 =
0.4 0.6
0.2
0.7

0.8
0.3

𝐇𝐇 = 0.2 0.8
0.8 0.2

M=
0. 0.

0.4
0.4

0.6
0.6

M=
0. 0.

0.56
0.56

0.44
0.44

M=
0 0

0.18
0.66

0.83
0.34

LP LP with 𝐇𝐇 CLP

Figure 5.3: Comparison of three propagation schemes, M represents the received messages
after one propagation iteration. In LP nodes 1 and 2 receive the same message; LP with H
overturns prior prediction of node 1; CLP adapts the heterophily of the graph and reassures
confident prior predictions.

5.5.3 Compatible Label Propagation

After obtaining the estimation Ĥ, we propagate the knowledge about node class
labels with the guide of Ĥ over the graph. The key idea of our method is that
the edge weight of a message u 7→ v in label propagation algorithm depends on
both predicted classes of sending and receiving nodes. That contrasts previous
works [GGKF15, ZRR+21] where edge weight depends only on the sending node
class probabilities. In particular, for each edge (i, j), we define an edge weight as
follows:

[F]ij = ([B̂]iĤ) ◦ [B̂]j (5.7)

Intuitively, edge weight [F]ij depends on the probabilities that node i is connected
with some class k, ([B̂]iĤ), and the probabilities that node j has the same class k.
Naturally, we can assign the edge weights to corresponding positions of adjacent
matrix to get AF ∈ Rn×n×|Y|, where [A]Fij = [F]ij.

Let B̂ and D̂ be the final node class prediction matrix and the base prediction,
respectively. AF is the weighted adjacent matrix. Then, the final node classifications
are approximated by the equation system:

B̂ = (1− α)D̂ + α AF ⊕ B̂ (5.8)

where AF ⊕ B̂(l) = ∥
k∈|Y|

AF
k [B̂(l)]:,k and AF

k means the weighted adjacent matrix

with k-th dimensional edge weights. α is a hyper-parameter, which defines how
much update to the previous state each label propagation step makes.

Iterative updates. Notice that Equation 5.8 gives an implicit definition of the final
node classification after convergence, it can also be used as iterative update equa-
tions, allowing an iterative calculation of the final node classification predictions:

B̂(l+1) ← (1− α)D̂ + αAF ⊕ B̂(l) (5.9)

5.5. Proposed Approach 73

Thus, the final node classification predictions can be computed via linear matrix op-
erations. Note that previous works [GGKF15, ZRR+21] compute the compatibility
matrix Ĥ for LP as follows:

B̂(l+1) ← (1− α)D̂ + αAB̂(l)Ĥ (5.10)

Equation 5.10 defines an edge weight by the relation between the sending node and
Ĥ. Hence, receiving nodes get the same message from a sending node regardless
of the class of the receiving nodes. We argue that the proper weight of a message
should be determined by both sending and receiving nodes (Figure 5.3).

5.5.4 Theoretical Analysis of CLP

Equation 5.9 allows solving CLP Equation 5.8 via iterative updates. Here, we show
an alternative method that provides a closed-form solution, which in turn sets con-
vergence guarantees of CLP. We start by defining vectorisation of a matrix X, which
stacks columns of X side-by-side.

Definition 5 (Matrix Vectorization [HVH81]). Vectorization of an m × n matrix X is
an mn× 1 vector given by:

vec(X) = [x11, . . . , xn1, x12, . . . , xn2, . . . , x1n, . . . , xnn]
T (5.11)

Additionally, the Kronecker product of X and Q is the mp× nq matrix is defined
by:

X⊗Q =




x11Q x12Q . . . x1nQ
x21Q x22Q . . . x2nQ

...
...

. . .
...

xm1Q xm2Q . . . xmnQ




(5.12)

We are now ready to give a closed-form solution to Equation 5.8:

Proposition 2 (Closed-form CLP). The closed-form solution for CLP (Equation 5.8) is
given by:

vec(B̂) = (I− α (I⊗AF))−1(1− α) vec(D̂) (5.13)

Proof of Proposition 2. We start by considering only k-th class in Equation 5.8. In this
case, we can rewrite Equation 5.8 as:

Equation 5.8 : B̂ = (1− α)D̂ + α AF ⊕ B̂

Equation 5.8 : B̂ = (1− α)D̂ + α ∥
k∈|Y|

AF
k [B̂]:,k

Equation 5.8 : [B̂]:,k = (1− α)[D̂]:,k + α AF
k [B̂]:,k (5.14)

74 Chapter 5. Simplifying Node Classification on Heterophilous Graphs

We then can apply Roth’s column lemma [HVH81, GGKF15] to obtain a closed-
form solution:

B̂ = (1− α)D̂ + αAFB̂

vec(B̂) = (1− α) vec(D̂) + α vec(AFB̂)

vec(B̂)− α vec(AFB̂) = (1− α) vec(D̂)

vec(B̂)− α (I⊗AF)vec(B̂) = (1− α) vec(D̂)

(I− α (I⊗AF))vec(B̂) = (1− α) vec(D̂)

vec(B̂) = (I− α (I⊗AF))−1(1− α) vec(D̂) (5.15)

Therefore, instead of iterative updates Eq. 5.10, we can compute the final node
predictions in a closed-form by using Eq. 5.13, as long as the inverse of the matrix
exists. Based on this closed-form solution we next establish necessary and sufficient
criteria of convergence.

Convergence of iterative CLP. We remind that spectral radius of a matrix X is the
maximum eigenvalue, i.e. ρ(X) = max({|λ1|, . . . , |λn|}). With Equation 5.13 we are
now ready to establish convergence guarantees for CLP.

Proposition 3 (Convergence of CLP). CLP iterative updates Equation 5.13 converge if
and only if ρ(AF) < α−1.

Proof of Proposition 3. First, following the Jacobi method [Saa81], we notice that the
solution to Equation 5.13 can be expressed via an iterative form:

vec(B̂(l+1))← (1− α) vec(D̂) + αAFvec(B̂(l)) (5.16)

These equations converge for any choice of the initial value of B0 if and only if the
spectral radius of matrix αAF is less than one. Moreover, from Proposition 2 we
know that the convergence guarantees for CLP Equation 5.8 are equivalent to the
closed-form solution Equation 5.13. Hence, Equation 5.16 converges if and only if
the spectral radius of ρ(αAF) = αρ(AF) < 1 ⇐⇒ ρ(AF) < α−1.

As computing largest eigenvalue may be too expensive for large graphs, following
the Gershgorin circle theorem [Wei03], one can replace the spectral norm with any
sub-multiplicative norm that is faster to compute and give an upper bound to the
spectral radius. For ∥ X ∥p= (∑i ∑j |X(i, j)|p)1/p we have ρ(X) ≤∥ X ∥2≤∥ X ∥1.
Hence, one can use Frobenius or 1-induced norm to obtain sufficient convergence
guarantees faster. In our experiments we found that CLP converges efficiently for
all datasets.

5.5.5 Summary

To review our approach, we start with a base predictor, which purely learns from
node features to make node class label predictions. Next, we estimate the global

5.6. Evaluation 75

compatibility matrix Ĥ based on the sparsely labelled graph and base predictions.
Ĥ describes the overall possibility of nodes belonging to each pair of classes to
connect, which can be utilised to estimate the relationship between each pair of
base prediction vectors. Finally, we perform an efficient LP step to smooth base
predictions and obtain labels with the assistance of the relationship between each
pair of nodes.

Compared with existing GNN models, CLP similarly benefits from both node fea-
tures and graph structure, yet separates them into two processes. It is motivated
by the investigation in Section 5.4 that MLP has better accuracy over other GNN
models for nodes with low homophily. Hence we would like to maintain MLP’s
advantages and utilise graph structure to improve it to obtain final predictions.
Following this way, both node features and graph structure are appropriately in-
volved in our approach, and it only requires learning parameters specified by a
base predictor.

Before showing that CLP achieves competitive performances on node classification
tasks, we briefly describe another simple way of improving performance by nor-
malising the received messages of each node: B̂ = (1− α)D̂ + α F (AF ⊕ B̂), where
F is a function that guarantees that each message is a probability distribution. We
empirically verified that F can additionally boost the performance practically.

5.6 Evaluation

To validate our approach’s effectiveness, we first empirically demonstrate the per-
formance of CLP and competing models on real-world and synthetic datasets with
a wide variety of settings. Second, we compare the number of required parame-
ters, the quality of compatibility estimation, the models’ execution time, and their
performance on different graphs with different label rates. Third, we empirically
show the advantages of our propagation method compared with the previous de-
sign. We also study the influence of different label rates on the compatibility matrix
estimation and classification accuracy and show the efficiency of CLP in terms of
the model size.

5.6.1 Datasets

Real-world datasets. We use a total of 19 real-world datasets (Texas, Wisconsin,
Actor, Squirrel, Chameleon, USA-Airports, Brazil-Airports, Wiki, Cornell, Europe-
Airports, deezer-europe, Twitch-EN, Twitch-RU, Ogbn-Proteins, WikiCS, DBLP, CS,
ACM, Physics) in diverse domains (web-page, citation, co-author, flight transport,
biomedical and online user relation). Note that we use ROC-AUC as the evaluation
metric for the class imbalanced datasets, i.e., Twitch-EN, Twitch-RU and Ogbn-
Proteins, following [LHL+21].

Synthetic datasets. We generate random synthetic graphs with various homophily
levels h and node features by adopting a similar approach [APK+19, KO21] but

76 Chapter 5. Simplifying Node Classification on Heterophilous Graphs

Table 5.1: Statistics of real-world graphs. |V|: number of nodes; |E |: number of edges; π:
dimensionality of nodes features; OSF: nodes only have structure related features; davg: av-
erage degree; |Y|: number of possible class labels; h: homophily ratio; Split: split approach
of graph; Directed: if the graph is directed.

Dataset |V| |E | π OSF |Y| davg h Split Directed
Texas 183 325 1,703 False 5 1.7760 0.061 Random True
Wisconsin 251 515 1,703 False 5 2.0518 0.170 Random True
Actor 7,600 30,019 932 False 5 3.9499 0.216 Random True
Squirrel 5,201 198,493 2,089 False 5 76.3288 0.223 Random False
Chameleon 2,277 31,421 2325 False 5 27.5986 0.234 Random False
USA-Airports 1,190 13,599 1 True 4 22.8555 0.251 Random False
Brazil-Airports 131 2077 1 True 4 16.3969 0.286 Random False
Wiki 2,405 12,761 4973 False 17 10.6121 0.298 Random False
Cornell 183 298 1,703 False 5 1.6284 0.298 Random True
Europe-Airports 399 11988 1 True 4 30.0501 0.309 Random False
deezer-europe 28,281 185,504 31,241 False 2 6.5593 0.525 Random False
Twitch-EN 7,126 77,774 2,514 False 2 17.2035 0.556 Random True
Twitch-RU 4,385 37,304 2,224 False 2 16.1232 0.618 Random True
WikiCS 11,701 291,039 300 False 10 24.8730 0.691 Random True
DBLP 4,057 3,528 334 False 4 1.7397 0.799 Random False
CS 18,333 163,788 6,805 False 15 8.9341 0.808 Random False
ACM 3,025 13,128 1,870 False 3 8.6797 0.821 Random False
Physics 34,493 495,924 8415 False 5 14.3775 0.931 Random False
Ogbn-Proteins 132,534 39,561,252 8 False 2 6.5593 0.623 - 0.940 Fixed False

Table 5.2: Statistics for synthetic Datasets. (Prod) means node features come from Ogbn-
Products [HFZ+20], or adopt the statistic features designed by 2D Gaussians [APK+19].

Benchmark Name |V| |E | |Y| h davg

Syn-(Prod)-1 10, 000 49, 446 to 50, 352 10 [0, 0.1, . . . , 1] 4.95 to 5.02
Syn-(Prod)-2 10, 000 99, 556 to 99, 556 10 [0, 0.1, . . . , 1] 9.96 to 10.01
Syn-(Prod)-3 10, 000 149, 090 to 15, 1494 10 [0, 0.1, . . . , 1] 14.91 to 15.15

with some modifications. For instance, synthetic graphs [APK+19] have no avail-
able contextual node attributes. Specifically, each synthetic graph has 10 classes
and 1, 000 nodes per class. Nodes are assigned random features sampled from 2D
Gaussians (Syn) or features from real-world datasets [HFZ+20] (Syn-Prod). Except
for homophily ratio, we also control the average degree of each graph (around 5, 10
or 15) to investigate the performance with respect to graph sparsity. Here, we give
detailed descriptions of the generation process.

Graph generation. We generate synthetic graph G of |V| nodes with |Y| different
class labels, and G has |V|/|Y| nodes per class. |V| and |Y| are two prescribed
numbers to determine the size of G. Synthetic graph’s homophily ratio h is mainly
controlled by pin and pout, where pin means the possibility of existing an edge
between two nodes with the same label and pout is the possibility of existing an
edge between two nodes with different labels. Furthermore, the average degree
of G is davg = |V|/|Y| · δ, where δ = pin + (|Y| − 1) · pout. Following the de-
scribed graph generation process, with given |V|, Y and davg, we choose pin from
{0.0001δ, 0.1δ, 0.2δ, . . . , 0.9δ, 0.9999δ}. Note that the synthetic graph generation pro-
cess requires both pin and pout are positive numbers, hence we use pin = 0.0001δ

and 0.9999δ to estimate h = 0 and h = 1 cases, respectively.

Node features generation. In order to comprehensively evaluate the performances of

5.6. Evaluation 77

different models, we assign each node with statistic features (Syn) or real-world
contextual node features (Syn-Prod). For graphs with statistic node features, the
feature values of nodes are sampled from 2D Gaussian [APK+19]. The mean of
Gaussian can be described in polar coordinates: each means has radius 300 and
angle 2κ

10 × (class id). For datasets with real-world contextual node features, we first
establish a class mapping ψ : Y → Yb between classes in the synthetic graph Y to
classes of existing benchmark graph Yb. The only requirement for the target graph
dataset is that the class size and node set size in the benchmark is larger than that
of the synthetic graph, i.e., |Y|b ≤ |Y| and |V| ≤ |V|b. In this chapter, we adopt the
large-scale benchmark, Ogbn-Products [HFZ+20].

5.6.2 Experimental Setup

Competing methods. We compare our model against state-of-the-art graph neural
networks and related node classification methods for all datasets under fair set-
tings. Specifically, MLP [Ros61] is the competing model that only utilises node
attributes, while LINK [ZG09] only utilises graph structure. Meanwhile, we also
adopt general GNN models with underlying homophily assumption: GCN [KW17],
GAT [VCC+18] and GCN2 [CWH+20]. Moreover, we adopt several models that are
designed for heterophily graphs: Mixhop [APK+19], SuperGAT [KO21], GPRGNN [CPLM21],
FAGCN [BWSS21], H2GCN [ZYZ+20] and CPGNN [ZRR+21]. At last, two LP-
based models: LP [Zhu05] and C&S [HHS+21].

Implementation and splits. We follow the experimental setup of FAGCN and
CPGNN with minor adjustments. Specifically, our experimental setup examines the
semi-supervised node classification in the transductive setting. We consider four
different choices for the random split into training/validation/test settings, which
we call sparse splittings (5%/5%/90%), medium splitting (10%/10%/80%) and dense
splitting (48%/32%/20%), respectively. The sparse splitting (5%/5%/90%) is similar
to the original semi-supervised setting in [KW17], but we do not restrict each class
to have the same number of training instances since it is the case closer to the real-
world application. For a fair comparison, we generate 10 fixed split instances with
different splitting and results are summarised after 10 runs with random seeds.
Note that Ogbn-Proteins dataset adopts its default splitting settings.

5.6.3 Results on Real-world Graphs

Real-world graphs with heterophily. The performance of diverse methods on het-
erophily graphs is summarised in Table 5.3, top-2 performances of each graph are
highlighted in colour. Advanced GNN models that are designed for heterophily
graphs generally perform better than GNNs designed with high-homophily as-
sumption. MLP, which only utilise node features, achieves outstanding perfor-
mances in several benchmarks. Our model, CLP, inherits the advantage of MLP
but also benefits from graph structure, and it achieves outstanding and stable per-
formance on all heterophily graphs. Moreover, many competing methods lead to

78 Chapter 5. Simplifying Node Classification on Heterophilous Graphs

Table 5.3: Summary of node classification results on heterophily graphs under medium split-
ting. ‡ indicates the results from [LHL+21]. The bold numbers represent the top-2 results.

Texas Wisc. Actor Squirrel Cham. USA-A. Bra.-A. Wiki Cornell Eu.-A. deezer Tw.-EN Tw.-RU O.-Proteins
Hom.R h 0.06 0.17 0.22 0.22 0.23 0.25 0.29 0.30 0.30 0.31 0.53 0.60 0.639 –

MLP 67.94 69.32 32.07 26.18 35.94 54.92 59.52 70.13 68.19 50.41 63.77 59.56 49.33 73.43‡

LINK 59.52 47.79 24.03 46.02 58.28 24.71 27.97 25.07 46.47 29.59 55.95 55.65 51.27 63.49‡

GCN 54.17 47.55 26.82 24.71 34.61 30.88 26.84 53.15 55.81 31.65 59.94 59.79 51.51 72.03‡

GAT 54.12 48.73 27.37 24.55 36.6 28.13 23.76 47.21 55.18 24.34 56.22 58.66 51.65 OOM‡

GCN2 55.22 47.63 27.14 25.5 36.26 36.59 27.22 60.29 53.87 35.05 62.33 59.66 51.53 74.10

Mixhop 54.62 51.63 27.46 27.81 38.14 52.68 44.41 61.74 51.29 45.55 64.16 60.38 52.54 75.60‡

SuperGAT 54.88 49.94 26.69 24.88 35.49 27.02 23.47 33.23 54.47 24.63 57.07 59.66 50.95 OOM
GPRGNN 55.31 50.89 27.72 25.29 34.67 41.83 24.85 68.02 55.03 31.47 62.74 59.42 51.17 OOM‡

FAGCN 60.95 63.08 32.6 24.93 36.68 56.14 48.19 72.12 62.32 48.22 65.04 60.76 50.19 OOM
H2GCN 61.29 65.67 32.27 26.95 36.93 54.24 38.95 70.57 57.26 40.56 62.82 59.06 51.22 OOM‡

CPGNN 62.95 70.05 32.42 28.7 47.7 25.21 27.51 70.18 68.04 34.86 64.95 57.07 52.37 OOM

LP 15.58 11.4 17.69 17.59 20.62 24.35 24.48 23.89 18.51 27.2 55.44 54.42 51.9 75.14‡

C&S 66.9 67.34 31.94 26.85 26.85 45.26 55.33 71.49 67.04 37.32 63.92 59.36 52.12 71.13‡

CLP (Ours) 69.63 72.64 33.1 31.76 43.29 56.3 63.53 74.08 70.36 53.83 65.69 60.81 52.78 75.73

out-of-memory (OOM) issues on the large dataset, i.e., Ogbn-Proteins, but CLP
avoids this problem, demonstrating its memory efficiency.

WikiCS
DBLP CS

ACM
Physics

Data

60

65

70

75

80

85

90

95

100

Te
st

 A
cc

ur
ac

y

SOTA
C&S
C&S

CLP
CLP

Figure 5.4: Performance comparison of C&S and CLP with best performance of GNN mod-
els (SOTA) on homophily graphs under medium splitting.

Real-world graphs with homophily. Performance on homophily graphs is sum-
marised in Figure 5.4. Inspired by [HHS+21], we further adopt the spectral and
diffusion features as additional raw node features to C&S and CLP and compare
their performances with the best performance of competing models (SOTA). C&S†

and CLP† refer to performance with additional raw features and the figure demon-
strates that CLP† outperforms or matches the SOTA on homophily graphs.

5.6.4 Results on Synthetic Graphs

Synthetic graphs without node features. Most previous work [KW17, BWSS21,
ZYZ+20] on semi-supervised node classification have focused only on graphs that
have contextual features on the nodes. However, the vast majority of graph data
does not have node-level features in practical applications, which greatly limits the
utility of methods proposed in prior work. Besides, several components of our

5.6. Evaluation 79

approach depend on node features, for instance, the compatibility matrix estima-
tion (Ĥ) relies on the prior predictions which are learned from node features. Ĥ
plays crucial role in the following LP step. Therefore, it’s natural to ask how CLP
performs over graphs without contextual node features compared with other com-
petitive models?

We conduct extensive experiments on semi-supervised node classification with
sparse, medium and dense splittings on three synthetic datasets with different av-
erage degrees. For instance, Syn-1 dataset contains 11 graphs with h from 0 to 1,
and the average degree per graph is set to around 5 (4.95 to 5.02). Syn-2 and Syn-3
follow similar settings but their average degree of each graph is set to 10 and 15,
respectively.

0.0 0.2 0.4 0.6 0.8 1.0
h

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

CLP
H2GCN
FAGCN
GPRGNN
GCN2
GCN
MLP

(a) Syn-1, Label rate: 5%

0.0 0.2 0.4 0.6 0.8 1.0
h

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y
CLP
H2GCN
FAGCN
GPRGNN
GCN2
GCN
MLP

(b) Syn-Prod-1, Label rate: 5%

0.0 0.2 0.4 0.6 0.8 1.0
h

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

CLP
H2GCN
FAGCN
GPRGNN
GCN2
GCN
MLP

(c) Syn-2, Label rate: 10%

0.0 0.2 0.4 0.6 0.8 1.0
h

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

CLP
H2GCN
FAGCN
GPRGNN
GCN2
GCN
MLP

(d) Syn-Prod-2, Label rate: 10%

0.0 0.2 0.4 0.6 0.8 1.0
h

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

CLP
H2GCN
FAGCN
GPRGNN
GCN2
GCN
MLP

(e) Syn-3, Label rate: 48%

0.0 0.2 0.4 0.6 0.8 1.0
h

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

CLP
H2GCN
FAGCN
GPRGNN
GCN2
GCN
MLP

(f) Syn-Prod-3, Label rate: 48%

Figure 5.5: Classification accuracy of different methods with different label rates on syn-
thetic datasets. Only competitive results are presented due to the space limit.

80 Chapter 5. Simplifying Node Classification on Heterophilous Graphs

We present results of three synthetic datasets in Figure 5.5-(a, b, c). We observe sim-
ilar trends on three figures: CLP has the best trend overall, outperforming compet-
ing methods in heterophily settings while matching with other competing methods
in homophily settings. The performance of vanilla GCN and GCN2 increase with
respect to the homophily level (h → 1). But, while synthetic graphs have no con-
textual node features, MLP is more accurate than them under strong heterophily
(h → 0). From Figure 5.5, we can find that the classification accuracy of MLP has
been stable at about 45%, a relatively low level. Yet, CLP can still achieve the overall
best performance. Overall, it indicates that our approach works for graphs without
contextual features.

Synthetic graphs with node features. We perform extensive experiments on graphs
with contextual features to further validate the performance of CLP under various
settings. Similar to the experiments on synthetic graphs without node features, there
are three synthetic graphs, i.e., Syn-Prod-1, Syn-Prod-2 and Syn-Prod-3, which have
the same graph structure as Syn-1, Syn-2 and Syn-3, but with contextual node fea-
tures. Experimental results are presented in Figure 5.5-(d, e, f). These figures em-
phasise that CLP is the best model for most heterophily cases (h→ 1), which again
confirms the effectiveness of our approach. It echoes the results of the real-world
graphs (Table 5.3). Besides, GCN and GCN2, which was proposed with implicit
homophily assumption, are significantly less accurate than MLP (near-flat perfor-
mance curve as it is graph-agnostic) under strong heterophily (h ≤ 0.4). Such evi-
dence can be found in some cases for other heterophilous GNN models (H2GCN,
FAGCN, GPRGNN). For instance, they perform significantly better than GCN but
are outperformed by MLP on Syn-Prod-1 under h ≤ 0.3 (Figure 5.5b). It reaffirms
what we found in Section 5.4, i.e. MLP could be a better choice for making classifi-
cation for strong heterophily node groups. Our approach, CLP, can always achieve
better performance than MLP in graphs with any heterophily levels and sparsity
levels.

5.6.5 More Analysis

0.0 0.2 0.4 0.6 0.8 1.0
h

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

CLP
CLP*

Figure 5.6: Performance comparison of CLP and CLP* on Syn-1 dataset with medium split-
ting.

5.6. Evaluation 81

Comparison between two propagation schemes. In Section 5.5.3, we explained
the design of our compatible LP process and discussed its advantages over prior
work [ZYZ+20]. The messages between two nodes are adaptively determined
by nodes of both ends. Here, we perform extensive experiments to empirically
compare the performance of LP steps with two propagation schemes. We choose
one synthetic dataset with 11 graphs under various homophily (Syn-1) under the
medium splitting. Other settings follow the common setup of CLP. The approach
that utilises Equation 5.10 named as CLP*. Their performances are reported in Fig-
ure 5.6. We observe that CLP has the better trend overall, outperforming CLP* in
most heterophily settings (h ≤ 0.9) and matching with CLP* in other settings.

5 10 48
Label rate (%)

70

80

90

Te
st

 A
cc

ur
ac

y

0.25

0.50

0.75

1.00

1.25

L2
-d

ist
an

ce
 (H

, H
)

Test Accuracy Wiki
Test Accuracy ACM
L2-distance Wiki
L2-distance ACM

Figure 5.7: Classification accuracy and L2-distance between estimated/true compatibility
matrix with different label rates.

Influence of label rate on test accuracy and quality of compatibility matrix es-
timation. Figure 5.7 presents the CLP’s test accuracy and the quality of compat-
ibility matrix estimation (Ĥ) with different splittings. Specifically, the quality of

Ĥ is evaluated by dist(H, Ĥ) =
√

∑|Y|i=1 ∑|Y|j=1

(
[H]ij − [Ĥ]ij

)2. It is not surprising to
find that higher label rates lead to better performance and more accurate compat-
ibility matrix estimation. Therefore, one of the future directions is to learn better
compatibility matrix estimation according to prior predictions.

2 4 6 8
loge(# Parameters)

0

20

40

60

Te
st

 A
cc

ur
ac

y

0.40s
0.44s

0.49s

0.62s

0.77s

0.84s

Brazil-Airports

H2GCN
CLP

11.5 12.0 12.5
loge(# Parameters)

0

20

40

60

Te
st

 A
cc

ur
ac

y

2.38s
4.81s

6.50s

6.03s

8.07s

18.88s

Wiki

H2GCN
CLP

Figure 5.8: Classification accuracy and execution time of different methods with different
layers on heterophily graphs. Execution time is marked in the plot in terms of seconds (s).

Parameter number and execution time comparison. Our approach often requires
significantly fewer parameters than GNN models since only the base predictor has

82 Chapter 5. Simplifying Node Classification on Heterophilous Graphs

parameters to train, which is less than GNN models. Moreover, another gain is
faster training time because we do not use the graph structure for our prior predic-
tions, and the LP step is time-efficient. As an example, we plot parameter numbers
vs test accuracy of CLP and H2GCN of two heterophily graphs, i.e., Brazil-Airports
and Wisconsin, in Figure 5.8. Note that H2GCN similarly contains an MLP compo-
nent as a node feature encoder. We endow CLP and H2GCN with Linear, 2-layers
and 3-layers MLP models as base predictors (feature encoder for H2GCN). The
hidden dimensions of CLP and H2GCN are the same as the general settings. Each
model’s execution time (average value of 10 runs) under different settings is shown
in Figure 5.8. We observe that CLP achieves much better performance with orders
of magnitude fewer parameters and execution time.

5.7 Conclusion and Future work

In this chapter, we focused on the graph learning tasks with challenging heterophily
settings. Motivated by an experimental investigation of existing models perfor-
mance, we proposed an approach that extends LP algorithm to heterophily settings
by smoothing the prior predictions across neighbours weighted by the compatibility
matrix. A theoretical analysis shows that CLP has a closed-form solution with mild
conditions on an appropriate matrix and we can thus give a detailed explanation of
when CLP will support convergence. Comprehensive experiments demonstrate the
effectiveness and efficiency of our approach on real-world and synthetic graphs.

In future work, we plan to generalise CLP approach to the heterophily setting of
regression problems on graphs.

83

Chapter 6

Unsupervised Heterophilous
Graph Embedding

6.1 Introduction

Following the triumph of machine learning in computer vision and natural lan-
guage processing, there are more and more success stories coming from machine
learning paradigms suited for relational data such as graphs or meshes [ZCZ20].
Graph embedding (GE) or graph representation learning (GRL) has become a predomi-
nant approach to find effective data representations from complex systems that take
the form of graphs [CWPZ19]. Depending on the model’s inherent architecture,
existing GE methods can be categorised into “shallow” or “deep” groups. “Shal-
low” methods are characterised by an embedding lookup table optimised during
training, which directly encodes each vertex as a vector [PARS14, TQW+15, GL16,
RSF17]. Despite the relative success of shallow embedding methods, they often
ignore node attributes and only focus on the graph structural information. This
greatly limits their ability to learn expressive representations.

Unlike shallow embedding methods, “deep” methods are often empowered by
more complex encoders, usually a deep neural network, enabling the natural mod-
elling of graph structures and node attributes [DBV16, KW17, XHLJ19]. These
methods have proven effective in (semi-)supervised settings and have made re-
markable breakthroughs in various application areas, such as social networks, e-
commerce networks, biology networks, and traffic networks [ZCZ20]. Neverthe-
less, the effectiveness of deep methods in unsupervised settings, i.e. how to learn
effective representations without any supervision, is relatively unexplored. In ad-
dition, recent work demonstrated that classic supervised GE methods have limited
representation power on heterophilous graphs [ZYZ+20, BWSS21, LHL+21]. For
instance, GCN [KW17] is proven to be a low-frequency filter that results in indis-
tinguishable node representations on heterophilous graphs [BWSS21]. And more-
over, addressing the heterophily scenario is essential for graph analysis and fairness
study [LvdH13, KGW+18]. In light of these three observations, a natural question
arises RQ1: how do existing GE methods perform on heterophilous graphs without super-
vision?

Contribution. We focus on the effectiveness of GE methods in tackling the node

84 Chapter 6. Unsupervised Heterophilous Graph Embedding

clustering task in a challenging setting: the goal of the task is to group similar
nodes into the same category without any manual supervision [HW79, NJW01]
(for convenience, we refer to unsupervised graph embedding as graph embedding
in the remainder of the text). Moreover, unlike most prior work, which implicitly
holds a homophily assumption that nodes of the same class tend to be connected, we
focus on the more difficult heterophily setting where “opposites attract”, i.e., linked
nodes are likely to be from different classes.

First, we conduct an empirical study on 20 synthetic graphs with a variety of ho-
mophily ratios (h) to investigate whether h influences the node clustering perfor-
mance of representative GE methods (RQ1). Our experimental results, summarised
in Figure 6.2, show that (i) the performance of GE methods that rely on graph
structure information decreases significantly when h → 0; (ii) the performance of
GE methods that rely on node attributes is not affected by changes of h, and their
performance has a significant advantage compared to other methods when h < 0.5.
These two findings directly answer RQ1, and meanwhile, raise another interesting
and challenging question RQ2: could we design a GE framework that adapts well to both
homophily and heterophily settings?

Motivated by the limitations mentioned above, we design the GE task as an r-ego
network discrimination problem and propose a self-supervised network embedding
(Selene) framework. Conceptually, we propose three solutions to avoid the ho-
mophily’s influence on the GE performance and leverage the idea of negative-
sample-free self-supervised learning (SSL) to design an optimisation objective for GE.
Specifically, we propose a dual-channel features embedding pipeline that integrates
node attributes and graph structure information. Next, we revisit representative
GE mechanisms and propose using r-ego network sampling and anonymisation to
break the inherent homophily assumption of GE and introduce graph structure fea-
tures to enhance the framework’s ability to capture structural information. Lastly,
we employ a negative-sample-free SSL objective function to optimise the frame-
work.

6.2 Additional Related Work

Graph embedding before GNNs. GE techniques aim at embedding rich node at-
tributes and structural information in complex systems that take the form of graphs
into low-dimensional node representations [CWPZ19]. Depending on the model
architecture, GE methods can be naturally categorised into two groups: “shallow”
and “deep” methods [DHW+20]. Shallow methods comprise an embedding lookup
table that directly encodes each node as a vector and is optimised during training.
Within this group, several Skip-Gram [MSC+13]-based GE methods have been pro-
posed, such as DeepWalk [PARS14] and node2vec [GL16] as well as their matrix
factorisation interpretation NetMF [QDM+18], LINE [TQW+15] and PTE [TQM15].
DeepWalk generates walk sequences for each node on a graph using truncated ran-
dom walks and learns node representations by maximising the similarity of repre-
sentations for nodes that occur in the same walks, thus preserving neighbourhood

6.3. Preliminaries 85

structures. Node2vec increases the expressivity of DeepWalk by defining a flexible
notion of a node’s graph neighbourhood and designing a second order random
walk strategy to sample the neighbourhood nodes; LINE is a special case of Deep-
Walk when the size of node’s context is set to one; PTE can be viewed as the joint
factorisation of multiple graphs’ Laplacians [QDM+18]. To better capture the struc-
tural identity of nodes independent of graph position and neighbourhood’s labels,
struc2vec [RSF17] constructs a hierarchy to encode structural node similarities at
different scales. Despite the relative success of shallow embedding methods, they
often ignore the richness of node attributes and only focus on the graph structural
information, which hugely limits their performance.

Graph embedding with GNNs. Recently, graph neural networks (GNNs) have shown
promising results in modelling structural and relational data [WPC+21]. The com-
mon idea of capturing nodes’ neighbourhoods to measure nodes’ similarities used
by shallow methods can be intuitively generalised with GNN models that follow
a recursive neighbourhood aggregation or message-passing scheme. Additionally,
GNNs are often powered by more complex encoders, usually a deep neural net-
work, enabling more expressive modelling of graph structure and node attributes.
Existing GNN models can be generally categorised into spectral [DBV16, LMBB17,
XSC+19] and spatial approaches [KW17, HYL17b] and can be trained to fit node
labels or to reconstruct graph structure. Within this field, GE is equivalent to an
optimisation problem that encodes graph nodes into latent vectors by means of an
encoding function, with the objective of ensuring that results decoded from vectors
preserve graph properties of interest. Several approaches leveraging GNNs, such
as ChebNet [DBV16], GCN [KW17], GraphSAGE [HYL17b], CayleyNets [LMBB17],
GWNN [XSC+19] and GIN [XHLJ19], fuse node features and neighbourhood struc-
tures to compute embeddings, have allowed remarkable breakthroughs in numer-
ous fields under (semi-)supervised settings. However, their effectiveness in GE
without manual supervision is relatively unexplored. Recently proposed methods
leveraging GNNs with self-supervised learning, such as DGI [VFH+19], GMI [PHL+20],
SDCN [BWS+20], and GBT [BKC21] have been introduced for the task of unsuper-
vised GE, primarily being evaluated on homophilous graphs.

Heterophilous graph embedding. Recent works focused on the GE on heterophilous
graphs where nodes of different class labels are often connected [ZYZ+20, BWSS21,
CPLM21, LHL+21] and have shown that the representation power of GNNs that
follow (semi-)supervised settings is greatly limited on heterophilous graphs. Nev-
ertheless, how do unsupervised GE methods perform on heterophilous graphs is
still unexplored.

6.3 Preliminaries

Problem setup. In this chapter, we focus on the unsupervised node clustering task
on a graph G. We firstly aim to learn precise node representation Hv ∈ Rd, with d
being the dimensionality of node representations, for all v ∈ V by leveraging node
attributes and local structure context. Then, we infer the unknown class labels yv

86 Chapter 6. Unsupervised Heterophilous Graph Embedding

for all v ∈ V according to the learned node representation Hv with a clustering
algorithm (we utilise the well-known algorithm K-means [HW79] in this chapter).
Note that, for convenience, we refer to unsupervised graph embedding as graph
embedding in the subsequent discussion. Table 6.1 lists the additional mathematical
notation used in this chapter.

Table 6.1: Summary of additional notations.

Notation Description
h Homophily ratio of graph G
Nv Neighbourhood around node v
Gr(v) r-ego network of v
G(1)r , G(2)r Two distorted graphs of Gr(v)
X(1), X(2) Two distorted node attribute matrix of X

Definition 6 (Neighbourhood Nv). We denote a general neighbourhood around ego node
v, excluding v (in case G has self-loops), as Nv; and the corresponding neighbourhood
including the ego node v as Ñv. The neighbouring nodes of ego node v within r hops are
denoted by N r

v = {v : d(u, v) ≤ r}, where d(u, v) is the shortest path instance between u
and v. For example, for the graph shown in Figure 6.1-(a), N 1

v0
= {v0, v1, v2, v4, v7}.

Definition 7 (r-ego Network Gr(v)). [ML12, QCD+20] For an ego node v of G, its
r-ego neighbours are N r

v ⊆ V . The corresponding r-ego network is an induced subnetwork
of G, which is defined as Gr(v) = {N r

v , E r
v, Xr

v}, where E r
v := ((N r

v ×N r
v) ∩ E).

Type equation here.

5

3

4

2

10

9

7

8

6
5

421

0

9

7

860 0 20 7

5

1

960

42 71 1 1 31

(a) An example graph Rooted trees with duplicates

ℎ = 0.2

(b)

(c)Rooted trees without duplicate

x𝑖𝑖 = �x𝑖𝑖 , 𝑣𝑣𝑖𝑖 ∊ 𝒩𝒩 𝑣𝑣0
2 𝑎𝑎𝑎𝑎𝑎𝑎 �𝑣𝑣𝑖𝑖 ∊ 𝒩𝒩 𝑣𝑣1

2

x𝑖𝑖 ≠ �x𝑖𝑖 , 𝑣𝑣𝑖𝑖 ∊ 𝒩𝒩 𝑣𝑣0
2 𝑎𝑎𝑎𝑎𝑎𝑎 �𝑣𝑣𝑖𝑖 ∊ 𝒩𝒩 𝑣𝑣1

2

1

3

1

542

76 81 1 916

432

1

8

5

971 1 31 5

Figure 6.1: A toy example of the rooted aggregation trees on an example heterophilous
graph (h = 0.2). Different colours represent different node classes. (a) An example graph;
(b) Two rooted 2-layers aggregation trees of two connected nodes, i.e., v0 and v1. Duplicated
components of two rooted trees are marked with the same shadow colour. (c) After ego
network sampling and anonymity, two rooted aggregation trees have no duplicates.

Definition 8 (Homophily Ratio h). For an arbitrary graph G, its homophily ratio h
is determined by the relationship between node labels and graph structure encoded in the
adjacency matrix (A). Recent work commonly use two homophily metrics: edge homophily

6.4. An Experimental Investigation 87

(hedge) [ZRR+21] and node homophily (hnode) [PWC+20]. They can be formulated as:

hedge =
|{(u, v) : (u, v) ∈ E ∧ yu = yv}|

|E |

hnode =
1
|V| ∑

v∈V

|{u : u ∈ Nv ∧ yu = yv}|
|Nv|

(6.1)

Specifically, hedge evaluates the fraction of edges in a graph that connect nodes that have the
same class labels; hnode evaluates the overall fraction of neighbouring nodes that have the
same class labels.

In this chapter, we focus on edge homophily and set h = hedge in the following
sections. Figure 6.1-(a) demonstrates an example graph with h = 0.2.

6.4 An Experimental Investigation

In this section, we empirically analyse the performance of GE methods on 20 syn-
thetic graphs with different homophily ratios (h) and node attributes (X). The main
goal is to investigate (RQ1): how do existing GE methods perform on heterophilous
graphs? Specifically, we quantify their performance on the node clustering task
on two sets of synthetic graphs, i.e., Synthetic and Synthetic-Products, with h ∈
[0, 0.1, . . . , 0.9]. A detailed description of the synthetic datasets generation process
can be found in Section 6.6.1; and we refer the reader to Section 6.6.2 for details on
the experimental settings.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
h

20

40

60

80

C
lu

st
er

in
g

Ac
cu

ra
cy

AE
node2vec
struc2vec
LINE

GAE
GraphSAGE
SDCN
GBT

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
h

20

40

60

80

C
lu

st
er

in
g

Ac
cu

ra
cy

AE
node2vec
struc2vec
LINE

GAE
GraphSAGE
SDCN
GBT

(b)

Figure 6.2: Node clustering accuracy of representative GE methods on synthetic datasets,
i.e., Synthetic (a) and Synthetic-Products (b).

Figure 6.2 illustrates that with the decrease of h, the clustering accuracy of represen-
tative GE methods that rely on graph structure, i.e., node2vec[GL16], LINE[TQW+15],
GAE[KW16], GraphSAGE[HYL17b], SDCN[BWS+20] and GBT[BKC21], decreases
significantly. The accuracy of AE[HS06], which only relies on raw node attributes,
remains stable for different values of h and demonstrates apparent advantage on
Synthetic (with h < 0.5). The reason why existing GE methods using graph struc-
ture only fail when h→ 0 is that they all implicitly follow a homophily assumption.
For instance, objective functions of node2vec, LINE and GraphSAGE, guide nodes

88 Chapter 6. Unsupervised Heterophilous Graph Embedding

at close distance to have similar representations and nodes far away to have dif-
ferent ones. The inherent aggregation mechanism of GAE, GraphSAGE, SDCN
and GBT naturally assumes local smoothing[CLL+20, MWW20] (which is mainly
caused by the duplicated aggregation tree as shown in Figure 6.1-(b)), which trans-
lates into neighbouring nodes having similar representations. But as shown in Fig-
ure 6.2, GE methods leveraging graph structure show outstanding performance
with h → 1. Lastly, it is worth noting that struc2vec[RSF17], which relies on
graph structure too, performs worse on the 20 synthetic graphs. The reason is
that struc2vec identifies the structure of ego networks by counting the degree of
nodes of different hops. The synthetic graph generation process assigns node de-
gree to each node with a normal distribution, i.e., nodes from different classes can
have the same degree. Therefore, it is not able to identify the ego network’s local
structure. This suggests that neural network-based models have better usability in
capturing ego network structure patterns than manual defined statistical methods.

6.5 Proposed Approach

In this section, we formalise the main challenges of GE on heterophilous graphs. To
address these challenges, we present the self-supervised network embedding (Selene)
framework. Figure 6.3 shows the overall view of Selene.

r-ego network
extraction

Anonymize/Distort
r-ego network

Encoder

DNN

GNN

AugmentationInput Network

𝒢𝒢 X

A

X(1)

X(2)

ℒ𝑟𝑟𝑟𝑟𝑟𝑟(X, �X)

�X

𝒢𝒢2
(2)(𝑣𝑣)

𝒢𝒢2(𝑣𝑣)

ℒℬ𝒯𝒯(H(1), H(2))

𝒢𝒢2
(1)(𝑣𝑣) ℒℬ𝒯𝒯(U(1), U(2))

Figure 6.3: An illustration of our proposed framework Selene. X and A are raw node at-
tributes and adjacency matrix of the input graph G, respectively. X(1) and X(2) are two
distorted node attribute matrix, X̂ is the reconstructed node attribute matrix. Extracted
r-ego network (Gr(v)) of ego node v is anonymised to break its connection to neighbour
nodes, and then distorted to two ego networks, i.e., G(1)r (v) and G(2)r (v). Node attribute en-
coder is optimised by the reconstruction loss Lrec(X, X̂) and attribute Barlow-Twins loss
LBT(H(1), H(2)); graph structure encoder is optimised by the graph Barlow-Twins loss
LBT(U(1), U(2)). The final node representation is obtained by applying Combine to the
generated node attribute representation H and graph structure representation U.

Challenges. As discussed in Section 6.4, it is crucial to involve both node attributes
and graph structure information in the GE model to learn expressive node represen-
tations by identifying and distinguishing differences among different nodes. Exist-
ing methods address this challenge by reconstructing the graph structure [KW16],

6.5. Proposed Approach 89

node attributes [HS06, BWS+20] or by assuming that nodes close to each other tend
to have similar node representations [PARS14, GL16, HYL17b]. However, these
solutions are not suitable for heterophilous graphs as shown in Section 6.4. There-
fore, the design of an appropriate learning objective is a key challenge to address
in this chapter. In the remainder of this section, we address the following research
challenges:

RC1 How to leverage node attributes and graph structure for graph embedding?

RC2 How to break the inherent homophily assumptions of traditional graph em-
bedding mechanisms?

RC3 How to define an appropriate objective function to optimise the embedding
learning process?

6.5.1 Dual-channel Feature Embedding (RC1)

The empirical analysis of Section 6.4 highlighted that node attributes play a ma-
jor role in the performance of GE methods, especially on heterophilous graphs.
Therefore, we propose a dual-channel feature embedding pipeline to learn node
representation from node attributes and graph structure separately, as shown in
Figure 6.3. Such a design brings two main benefits: (i) both sources of informa-
tion can be well utilised without interfering with each other, and (ii) the inherent
homophily assumptions of GE methods can be greatly alleviated, an issue we will
address in the next subsection.

Node attribute encoder module. As previously mentioned, learning effective node
attribute representations is of great importance for NE. There are several alterna-
tive methods to learn representations for different types of data, including Au-
toencoder [HS06] and its derived variants [MMCS11, MSJG15, MRA+16]. In this
chapter, we employ the basic Autoencoder to learn representations of raw node
attributes, which can be replaced by more sophisticated encoders to obtain higher
performance. We assume an L-layer Autoencoder, with the formulation of the ℓ-th
encoding layer being:

H(ℓ)
e = ϕ(W(ℓ)

e H(ℓ−1)
e + b(ℓ)

e) (6.2)

where ϕ is a non-linear activation function such as ReLU [NH10] or PReLU [HZRS15].
H(ℓ−1)

e ∈ Rn×dℓ−1 is the hidden node attribute representations in layer ℓ− 1, with
dℓ−1 being the dimensionality of this layer’s hidden representation. W(ℓ)

e ∈ Rdℓ−1×dℓ

and b(ℓ)
e ∈ Rdℓ are trainable weight matrix and bias of the ℓ-th layer in the en-

coder. Node representations H = H(L)
e are obtained after successive application of

L encoding layers.

Following the encoder, the decoder reconstructs input node attributes from the
computed node representations H. Typically, a decoder has the same structure as
the encoder by reversing the order of layers. Its ℓ-th fully connected layer can be
formally represented:

H(ℓ)
d = ϕ(W(ℓ)

d H(ℓ−1)
d + b(ℓ)

d) (6.3)

90 Chapter 6. Unsupervised Heterophilous Graph Embedding

where W(ℓ)
d and b(ℓ)

d are trainable weight matrix and bias of ℓ-th layer in the decoder,

respectively. Reconstructed node attributes X̂ = H(L)
d are obtained after successive

applications of L decoding layers. We optimise the autoencoder parameters by
minimising the difference between raw node attributes X and reconstructed node
attributes X̂ with:

Lrec(X, X̂) =
1

2|V| ||X− X̂||2F (6.4)

6.5.2 r-ego Network Sampling and Anonymity (RC1)

The success of GNN-related GE frameworks largely relies on their information ag-
gregation mechanism. Nevertheless, such a design leads to low-quality GE on het-
erophilous graphs due to the implicit homophily assumptions. To address this
issue, we modify the aggregation mechanism by cutting off connections among
aggregation trees and highlighting each node’s local structure.

Specifically, we first define a subnetwork instance of a certain (ego) node v to be its
r-ego network Gr(v). For example, in Figure 6.3, G2(v) represents a 2-ego network
instance of G. We note that given that Gr(v) captures the local structure of v, it is
sufficient to compute a structural representation of v [QCD+20].

Anonymisation. However, as shown in Section 6.4, the rooted aggregation trees
of two connected nodes largely overlap, which can lead to learning indistinguish-
able representations for connected nodes. This property is useful in homophilous
settings but leads to low-quality GE performance on heterophilous graphs. To ad-
dress this, we propose node anonymisation to reduce the overlap of ego networks
of connected nodes. Specifically, we anonymise the sampled ego network Gr(v) by
relabelling its nodes to {1, 2, . . . , |N r

u |}, in an arbitrary order, and erasing raw node
attributes. Note that node order does not influence the representation quality be-
cause most GNNs are invariant to permutations of their inputs [BHB+18]. This step
ensures that v’s representation is only influenced by its local structure, as illustrated
in Figure 6.1-(c).

graph structure features. Despite the significant success of GNNs in a variety of
graph-related tasks, their representation power in graph structural representation
learning is limited [XHLJ19]. In order to obtain invariant node structural represen-
tations so that nodes with different ego network structures are assigned different
representations, we employ the structural features proposed in [LWWL20]. In this
chapter, we adopt variants of shortest-path distance (SPD) as node structural fea-
tures (X̃).

graph structure encoder module. Over the past few years, numerous GNNs have
been proposed to learn node representations from graph-structured data, including
spectral GNNs [DBV16, LMBB17, XSC+19] and spatial GNNs [HYL17b, XHLJ19].
For the sake of simplicity, we adopt a simple GNN variant, i.e., GCN [KW17],
as the building block of the graph structure encoder. The ℓ-th layer of a GCN

6.5. Proposed Approach 91

(Equation 2.3) can be formally defined as:

U(ℓ) = σ(D̂−
1
2 ÂD̂−

1
2 U(ℓ−1)W(ℓ)) (6.5)

with Â = A + I, where I is the identity matrix, and D̂ is the diagonal node degree
matrix of Â. U(ℓ−1) ∈ Rn×dℓ−1 is the hidden representation of nodes in layer ℓ −
1, with dℓ−1 being the dimensionality of this layer’s representation, and W(ℓ) ∈
Rdℓ−1×dℓ is a trainable parameter matrix. σ is a non-linear activation function such
as ReLU or Sigmoid [HM95] function. Structural representations U = U(L) are
obtained after successive applications of L layers.

Final node representations. Representations capturing node attributes (H) and
structural context (U) are combined to obtain expressive and powerful representa-
tions as:

Z = Combine(H, U) (6.6)

where Combine(·) can be any commonly used aggregation operation in GNNs [XHLJ19],
such as mean, max, sum and concat. We utilise concat in all our experiments which
allows for an independent integration of representations learnt by the dual-channel
architecture. In the next subsection, we will introduce the strategy to optimise the
entire framework.

6.5.3 Non-negative Self-supervised Learning (RC3)

The objective function plays a major role in GE tasks. Several objective functions
have been proposed for GE, such as graph reconstruction loss [KW16], distribu-
tion approximating loss [PARS14] and node distance approximating loss [HYL17b].
Nevertheless, none of them is suitable for GE optimisation on heterophilous graphs
because of the homophily assumptions used to determine (dis)similar pairs. In het-
erophilous graphs, node distance on graph alone does not determine (dis)similarity,
i.e., connected nodes are not necessarily similar, and nodes far apart are not nec-
essarily dissimilar. This removes the need for connected nodes to be close in the
embedding space and for disconnected nodes to be far apart in the embedding
space.

Inspired by the latest success of non-negative self-supervised learning (SSL), as
discussed in Chapter 2, we adopt the Barlow-Twins [ZJM+21] as our overall opti-
misation objective. Overall, Barlow-Twins is a method (originally proposed in the
computer vision domain) that learns data representations using a symmetric graph
architecture and an empirical cross-correlation based loss function. Specifically, it
measures the cross-correlation matrix between the output of two identical graphs
fed with distorted versions of a sample and makes it as close to the identity matrix
as possible. This causes representations of distorted instances of a sample to be sim-
ilar, increasing the robustness of representations (invariance to small perturbations)
and minimising the redundancy between the components of these representations.

92 Chapter 6. Unsupervised Heterophilous Graph Embedding

Augmentation. As mentioned previously, we propose a dual-channel feature em-
bedding pipeline to adaptively preserve the useful information from raw node at-
tributes and graph structure. Therefore, there are two types of model inputs, i.e.,
node attributes matrix X and anonymised ego network Gr(v). Following the widely
adopted SSL training strategy [YCS+20, BKC21], we employ two data augmenta-
tion methods (faug), i.e., node attribute masking and edge masking, for distorted
instances generation. As shown in Figure 6.3, with a pair of given masking ra-
tios, i.e., node attribute masking ratio px and edge masking ratio pe, two pairs of
distorted instances can be generated:

f x
aug(X, px) = (X(1), X(2))

f g
aug(Gr(v), px, pe) = (G(1)r (v),G(2)r (v))

(6.7)

Barlow-Twins loss function. Two pairs of node representations follow from the
pairs of distorted instances, computed with the node attribute encoder and graph
structure encoder: node attribute representations H(1) and H(2), and graph struc-
ture representations U(1) and U(2). We utilise each pair of node representations to
compute a cross-correlation matrix C ∈ Rd×d with d being the dimensionality of
input representations. Using node attributes H(1) and H(2) as example, results in
the following objective function:

LBT(H(1), H(2)) =
|V|
∑

i
(1− Cii)

2 + λ
|V|
∑

i

|V|
∑
j ̸=i
C2

ij

with Cij =
∑b h(1)

b,i h(2)
b,j√

∑b(h
(1)
b,j)

2
√

∑b(h
(2)
b,j)

2

(6.8)

where λ > 0 defines the trade-off between the invariance and redundancy reduction
terms, we adopt the default settings as [ZJM+21]. b is the batch indexes and i, j
index the vector dimension of the input representation vectors.

Empowered with Barlow-Twins, we can optimise the framework’s encoders un-
der heterophilous settings. The node attribute encoder is optimised with LBT

(Equation 6.8) and Lrec (Equation 6.4), and the graph structure encoder is opti-
mised with LBT(Equation 6.8). The overall loss function is L = LBT(U(1), U(2)) +

LBT(H(1), H(2)) + Lrec(X, X̂). Final node representations obtained by Equation 6.6
contain information from node attributes and structural context, which can be used
in downstream tasks.

6.5.4 Model Scalability

According to the design for Selene’s framework, we can find that the graph struc-
ture representation learning module is categorised as a local network algorithm [Ten16],
which only involves local exploration of the graph structure. On the other hand, the
node attribute representation learning module (Autoencoder) naturally support the

6.6. Evaluation 93

Table 6.2: Statistics of real-world datasets. |V|: number of nodes; |E |: number of edges;
π: dimensionality of nodes features; OSF: nodes only have structure related features; davg:
average degree; |Y|: number of possible class labels; h: homophily ratio;

Dataset |V| |E | π OSF |Y| davg h
Texas 183 325 1,703 False 5 1.8 0.108
Wisconsin 251 515 1,703 False 5 2.1 0.196
Actor 7,600 30,019 932 False 5 3.9 0.219
Chameleon 2,277 31,421 2,325 False 5 27.6 0.233
USA-Airports 1,190 13,599 1 True 4 22.9 0.251
Cornell 183 298 1,703 False 5 1.6 0.305
Europe-Airports 399 11,988 1 True 4 30.1 0.309
Brazil-Airports 131 2,077 1 True 4 16.4 0.311
Deezer-Europe 28,281 185,504 31,241 False 2 6.6 0.525
Citeseer 3,327 4,552 3,703 False 6 2.7 0.736
DBLP 4,057 3,528 334 False 4 1.7 0.799
Pubmed 19,717 88,648 500 False 3 4.5 0.802

mini-batch mechanism. Therefore, our design enables Selene to scale to represen-
tation learning on large-scale graphs and to be friendly to distributed computing
settings [QCD+20].

6.6 Evaluation

We evaluate our proposed framework, Selene, on benchmark real-world and syn-
thetic datasets and compare with eleven competing methods over node clustering
tasks. Note that different from the experimental settings of relevant work,[VFH+19,
PHL+20, BKC21] which utilise node class labels to train a classifier after obtaining
the node representations to predict test nodes, we do not employ any node class
label supervision to strictly adhere to the unsupervised learning requirements.

6.6.1 Datasets

Real-world datasets. We use a total of 12 real-world datasets (Texas[PWC+20],
Wisconsin[PWC+20], Actor[PWC+20], Chameleon[RAS21], USA-Airports[RSF17],
Cornell[PWC+20], Europe-Airports[RSF17], Brazil-Airports[RSF17], Deezer-Europe[RS20],
Citeseer[KW17], DBLP[FZMK20], Pubmed[KW17]) in diverse domains (web-page,
citation, co-author, flight transport and online user relation). All real-datasets are
available online1. Statistics information is summarised in Table 6.2.

Synthetic datasets. We generate random synthetic graphs with various homophily
levels h and node features by adopting a similar approach to[APK+19, KO21] but
with some modifications. For instance, synthetic graphs of [APK+19] have no avail-
able contextual node attributes. Specifically, each synthetic graph has 10 classes
and 500 nodes per class. Nodes are assigned random features sampled from 2D

1https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html

https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html

94 Chapter 6. Unsupervised Heterophilous Graph Embedding

Gaussians (Synthetic-h) or features from real-world dataset[HFZ+20] (Synthetic-
Products-h). Each dataset, i.e., Synthetic and Synthetic-Products, has 10 graphs
with h ∈ [0, 0.1, 0.2, . . . , 0.9]. The generation process is similar to the Synthetic
datasets generation of the previous chapter.

6.6.2 Experimental Setup

Competing methods. We compare our framework Selene with 11 competing GE
methods. We adopt 3 different shallow competing embeddings methods, includ-
ing node2vec[GL16], struc2vec[RSF17] and LINE[TQW+15]. We adopt 8 additional
deep competing embedding methods, including AE[HS06], GAE & VGAE[KW16],
GraphSAGE[HYL17b], DGI[VFH+19], SDCN[BWS+20], GMI[PHL+20] GBT[BKC21]
and FAGCN∗[BWSS21]. Note that GBT is a self-supervised learning approach that
migrates Barlow-Twins approach to graph structure data. However, they do not
modify the model structure of GNNs but just provide a new model training ap-
proach, hence still maintaining a homophily assumption. FAGCN∗ is a state-of-
the-art heterophilous GNN for supervised settings, here we train it with the same
mechanism as GBT to adapt it to the unsupervised setting.

Evaluation metrics. We employ three node clustering evaluation metrics: accu-
racy (ACC), normalised mutual information (NMI) and average rand index (ARI).
For each evaluation metric, a significant value means better node clustering perfor-
mance.

Model implementation. For shallow embedding methods, we set the embedding
dimension to 128, the number of random walks of each node to 10 and the walk
length to 80. For node2vec, we additionally select p, q over {0.25, 0.5, 1, 2} with best
clustering performance. We train embedding methods, including AE, GAE, VGAE
and SDCN, with the same settings as[BWS+20]. Specifically, we train the models
end-to-end using all nodes and edges with 30 epochs and a learning rate of 1× 10−3.
For AE, we set the representation dimensions to {π− 500− 500− 200− 10}, where
π is the dimensionality of raw node attributes. For GNN-related methods, in-
cluding GAE, VGAE, GraphSAGE, DGI, GBT, GMI, FAGCN∗ and Selene, we set
their representation dimensions to {π − 256− 16}. The representation dimensions
of SDCN’s GCN module are the same as AE. [BWS+20] proposes to pretrain the
SDCN’s AE component to boost its performance, thus we report the best perfor-
mance of SDCN with/without pre-trained AE. For DGI, GMI, GBT and Selene,
we assign the same GCN[KW17] encoder and follow the optimisation protocol
as[BKC21]. We set r = 3 for ego network extraction following[LWWL20] and the
batch size = 512. For shallow competing methods, we utilise the integrated im-
plementations from GraphEmbedding2. For GAE, VGAE, GraphSAGE, DGI and
FAGCN∗ we use the implementation from Pytorch-Geometric3; for AE & SDCN

2https://github.com/shenweichen/GraphEmbedding
3https://pytorch-geometric.readthedocs.io/en/latest/

https://github.com/shenweichen/GraphEmbedding
https://pytorch-geometric.readthedocs.io/en/latest/

6.6. Evaluation 95

and GMI and GBT, we use the implementation from the published code of SDCN4,
GMI5 and GBT6, respectively,

Note that, all experiments are conducted on a single Tesla V100 GPU. For all NN-
based methods, we initialise them 10 times with random seeds and select the best
solution to follow the similar setting as[BWS+20]. After obtaining node representa-
tions with each model, we feed the learned representations into a K-means cluster-
ing model[HW79] to get the final clustering prediction. The final clustering section
is thus repeated 10 times, and we report the mean/std performance.

6.6.3 Experimental Results

Table 6.3: Node clustering results on heterophilous datasets. The bold numbers represent
the top-2 results. OOM: out-of-memory. SAGE: GraphSAGE.

Dataset Metrics AE node2vec struc2vec LINE GAE VGAE SAGE SDCN DGI GMI GBT FAGCN∗ Ours ↑ (%)

Wisc.
ACC 58.61 41.39 43.03 39.4 37.81 40.0 46.29 38.25 44.58 36.97 48.01 61.91 71.35 15.25
NMI 30.92 4.23 11.23 9.7 9.19 9.87 10.16 8.46 10.72 11.68 7.55 27.35 39.31 27.13
ARI 28.53 -0.48 11.5 8.13 5.2 7.97 6.06 3.67 10.31 3.74 3.85 31.56 43.26 37.07

Texas
ACC 50.49 48.8 49.73 49.4 42.02 50.27 56.83 44.04 55.74 35.19 55.46 57.92 64.48 11.33
NMI 16.63 2.58 18.61 16.9 8.49 11.73 16.97 14.24 8.73 7.72 10.17 23.35 25.22 8.01
ARI 14.6 -1.62 20.97 18.08 10.83 21.51 23.5 10.65 8.25 2.96 12.1 22.54 34.19 45.49

Wisc.
ACC 58.61 41.39 43.03 39.4 37.81 40.0 46.29 38.25 44.58 36.97 48.01 61.91 71.35 15.25
NMI 30.92 4.23 11.23 9.7 9.19 9.87 10.16 8.46 10.72 11.68 7.55 27.35 39.31 27.13
ARI 28.53 -0.48 11.5 8.13 5.2 7.97 6.06 3.67 10.31 3.74 3.85 31.56 43.26 37.07

Actor
ACC 24.19 25.02 22.49 22.7 23.45 23.3 23.08 23.67 24.26 26.18 24.68 25.61 28.22 10.19
NMI 0.97 0.09 0.04 0.09 0.18 0.21 0.58 0.08 1.38 0.2 0.74 3.22 4.69 45.65
ARI 0.5 0.06 -0.05 0.11 -0.04 0.34 0.22 -0.01 0.07 0.41 -0.57 0.34 1.82 264.00

Chamel.
ACC 35.68 21.31 26.34 31.97 32.76 30.65 31.04 33.5 27.77 25.73 32.21 31.33 38.49 7.88
NMI 10.38 0.34 3.55 10.78 11.6 6.86 10.55 9.57 4.42 2.5 10.56 14.71 20.05 36.3
ARI 5.8 0.02 1.82 6.04 4.65 4.4 6.16 5.86 1.85 0.52 7.01 5.16 15.89 126.68

USA-Air.
ACC 55.24 26.29 27.58 27.17 30.84 28.71 32.96 33.52 33.36 28.69 34.96 38.82 57.39 3.49
NMI 30.13 0.25 0.44 0.23 2.71 0.55 2.67 5.21 5.52 0.6 5.27 12.3 29.25 0.96
ARI 24.2 -0.05 0.09 -0.08 2.67 0.28 2.52 1.93 4.95 0.29 3.42 9.33 24.69 2.27

Cornell
ACC 52.19 50.98 32.68 34.1 43.72 43.39 44.7 36.94 44.1 33.55 52.19 56.23 57.81 2.81
NMI 17.08 5.84 1.54 2.85 5.11 5.46 4.33 6.6 5.79 5.26 5.94 17.08 17.1 0.12
ARI 17.41 0.18 -2.2 -1.54 6.51 3.97 5.64 3.38 4.87 3.05 0.63 19.88 22.85 14.94

Eu.-Air.
ACC 55.36 30.78 36.89 34.06 34.84 34.51 31.75 37.37 35.59 35.34 39.75 42.11 57.47 3.81
NMI 32.44 3.69 6.15 4.77 10.15 3.68 2.1 8.45 10.77 11.08 9.44 16.81 33.74 4.01
ARI 24.24 0.83 4.49 2.89 7.37 3.02 1.16 5.31 8.44 8.18 7.87 11.98 25.14 3.71

Bra.-Air.
ACC 71.68 30.38 38.93 33.74 36.64 32.82 37.02 38.7 37.1 38.93 40.92 44.2 78.77 9.89
NMI 49.26 2.5 10.23 2.75 10.96 3.7 6.89 14.05 10.64 12.62 12.16 22.67 55.6 12.87
ARI 42.93 -0.22 5.45 0.19 6.56 0.6 4.18 7.27 7.02 9.11 8.31 14.4 52.87 23.15

Deezer.
ACC 55.88 52.97 OOM 52.56 51.51 51.27 51.06 54.76 53.16 OOM OOM 56.81 59.75 5.18
NMI 0.28 0.0 OOM 0.08 0.13 0.12 0.16 0.17 0.05 OOM OOM 0.27 0.31 10.71
ARI 0.81 0.02 OOM 0.23 0.07 0.04 -0.02 0.61 -0.23 OOM OOM 0.82 0.89 8.54

Real-world datasets. Node clustering results on homophilous and heterophilous
real-world datasets are summarised in Table 6.4 and Table 6.3, respectively. In
Table 6.3, we see that Selene is the best-performing method in all heterophilous
datasets. In particular, compared to the best results of competing models, our
framework achieves a significant improvement of up to 15.25% on ACC, 45.65% on
NMI and 264% on ARI. Such outstanding performance demonstrates that Selene
successfully integrates the important node attributes and graph structure informa-
tion into node representations. An interesting case is the comparison of Selene,
FAGCN∗ and GBT, given that FAGCN∗ and GBT also utilise the Barlow-Twins

4https://github.com/bdy9527/SDCN
5https://github.com/zpeng27/GMI
6https://github.com/pbielak/graph-barlow-twins

https://github.com/bdy9527/SDCN
https://github.com/zpeng27/GMI
https://github.com/pbielak/graph-barlow-twins

96 Chapter 6. Unsupervised Heterophilous Graph Embedding

objective function to optimise a GNN model, and the major difference between
FAGCN∗, GBT and Selene is the dual-channel features embedding pipeline. Selene
has a superior performance in all heterophilous datasets, indicating the necessity to
propose an unsupervised heterophilous graph embedding model. Simply porting
supervised models to unsupervised scenarios is not appropriate. And the dual-
channel features embedding pipeline plays a crucial role in improving the repre-
sentation learning in the heterophily scenario.

Table 6.4: Node clustering results on homophilous datasets. The bold numbers represent
the top-2 results. OOM: out-of-memory. SAGE: GraphSAGE.

Dataset Metrics AE node2vec struc2vec LINE GAE VGAE SAGE SDCN DGI GMI GBT FAGCN∗ Ours ↑ (%)

Citeseer
ACC 58.79 20.76 21.22 28.42 48.37 55.67 49.28 59.86 58.94 59.04 57.21 47.42 59.24 -1.04
NMI 30.91 0.35 1.18 8.49 24.59 32.45 22.97 30.37 32.6 32.11 31.9 20.18 29.91 -8.25
ARI 30.29 -0.01 0.17 3.54 19.5 28.34 19.21 29.7 33.16 33.09 33.17 17.93 29.35 -11.52

DBLP
ACC 48.5 29.19 31.65 35.34 57.81 46.0 48.68 61.94 58.22 63.28 73.1 41.25 75.14 2.79
NMI 18.98 0.14 1.33 3.22 28.94 11.57 16.46 27.13 29.98 33.91 42.21 10.6 43.96 4.15
ARI 15.15 -0.04 1.39 2.05 18.78 11.68 13.38 27.77 26.81 28.77 42.57 4.32 46.08 8.25

Pubmed
ACC 65.34 39.32 37.39 50.53 42.08 34.38 67.66 61.9 65.47 OOM OOM 56.88 66.27 -2.05
NMI 26.89 0.02 0.07 18.62 1.28 0.03 30.71 19.71 28.05 OOM OOM 16.91 28.7 -6.55
ARI 25.98 0.09 0.06 8.17 0.15 0.0 29.1 18.63 27.25 OOM OOM 16.27 28.21 -3.06

Results of node clustering on homophilous graphs, contained in Table 6.4, show that
Selene achieves competing performance compared to the best-performing methods,
consistently performing in the top-2, in all 3 datasets on ACC. This shows Selene’s
suitability for homophilous graphs and proves the flexibility of the dual-channel
feature embedding pipeline.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
h

20

40

60

80

C
lu

st
er

in
g

Ac
cu

ra
cy

Ours
SDCN
GBT
FAGCN*

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
h

20

40

60

80

C
lu

st
er

in
g

Ac
cu

ra
cy

Ours
SDCN
GBT
FAGCN*

(b)

Figure 6.4: Clustering accuracy comparison of Selene vs SDCN vs GBT vs FAGCN∗ on
Synthetic (a) and Synthetic-Products (b).

Synthetic graphs. We present Selene vs SDCN (state-of-the-art node clustering
model) vs GBT (state-of-the-art graph contrastive learning model) vs FAGCN∗

(state-of-the-art heterophilous GNN model) clustering accuracy in Figure 6.4. Se-
lene achieves the best performance on the Synthetic dataset and has competitive
performance on the Synthetic-Products dataset. This shows that Selene adapts well
to homophily/heterophily scenarios with(out) contextually raw node attributes.
Moreover, FAGCN∗ performs worse on 20 synthetic graphs, which indicates that
the heterophilous GNNs models designed for supervised settings do not adapt
well to unsupervised settings because they need supervision information to train
the more complex aggregation mechanism.

6.6. Evaluation 97

6.6.4 Analysis

Model scalability. Table 6.3 and Table 6.4 illustrate that two competing methods,
i.e., struc2vec, GMI and GBT, have out-of-memory issues on large datasets, i.e.,
Pubmed and Deezer., an issue which did not arise with Selene. This shows Selene’s
advantage in handling large scale graphs due to its local network algorithm char-
acteristic. Note that we only use one GPU in experiments, and such an advantage
would be more evident in multi-GPU computing scenarios.

USA-Airports Chameleon DBLP
Data

30

40

50

60

70

C
lu

st
er

in
g

A
cc

ur
ac

y

Ours

no Lrec(X, X̂)

no LBT (H(1),H(2))

no LBT (U(1),U(2))

Figure 6.5: Loss function exploration. We ablate constituent of our loss function and report
Selene’s performance.

Effectiveness of loss function. The objective loss function of Selene contains three
components and we thus sought to test the effectiveness of each component. In
particular, we ablate each component and evaluate the obtained node represen-
tations on two heterophilous datasets (USA-Air., Chamel.) and one homophilous
dataset (DBLP). Results shown in Figure 6.5 indicates that ablation of any com-
ponent decreases the model’s performance. Specifically, the ablation of Lrec(X, X̂)
causes a steeper performance degradation in heterophilous datasets, and the abla-
tion of LBT(U(1), U(2)) causes a steeper performance degradation in homophilous
datasets, which indicates the importance of node attributes and graph structure in-
formation for heterophilous and homophilous graphs, respectively (consistent with
observations in Section 6.4).

Effectiveness of dual-channel feature embedding pipeline. Selene contains a
novel dual-channel features embedding pipeline to integrate node attributes and
graph structure information thus we conduct an ablation study to explore the ef-
fectiveness of this pipeline. We first remove the pipeline and only use the Barlow-
Twins loss function to train a vanilla GCN encoding module (such a structure is
the same as GBT, hence we remark it as GBT). Next, we add the graph structure
channel, which includes r-ego network extraction, anonymisation and distortion.
Lastly, we add the node attribute channel to form the complete Selene framework.
Experimental results are shown in Figure 6.6. Overall, we observe that the design
of each channel is useful for learning better representation, with the node attribute

98 Chapter 6. Unsupervised Heterophilous Graph Embedding

GBT +anonym & struc feat Ours
Model

30

40

50

60

70

80

C
lu

st
er

in
g

Ac
cu

ra
cy

Texas
Wisconsin
Actor
Cornell

Europe-Airports
Brazil-Airports
Citeseer
DBLP

Figure 6.6: Framework component exploration. We ablate components of our dual-channel
feature embedding pipeline and report Selene’s performance.

channel playing a major role in the embedding on heterophilous graphs. Note that
adding the node attribute channel slightly decreases the clustering accuracy for the
homophilous dataset, i.e., DBLP, but it is still competitive.

0.0 0.1 0.2 0.3 0.4 0.5
pe

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

p x

72.67 71.76 72.67 71.73 71.74 71.75

73.74 75.57 75.5 75.57 71.07 77.86

78.55 77.86 69.08 78.78 73.28 77.33

76.34 74.81 75.11 73.97 74.81 75.57

72.44 72.52 73.44 73.89 74.81 74.05

72.67 73.28 73.36 72.52 71.91 72.52

Brazil-Airports

0.0 0.1 0.2 0.3 0.4 0.5
pe

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

p x

74.47 69.01 70.94 81.24 78.27 77.65

44.03 55.13 67.85 74.41 78.49 76.99

42.5 50.66 62.56 66.84 73.9 68.37

44.24 50.95 54.58 58.01 68.64 59.8

45.55 46.73 51.77 54.81 59.29 56.66

45.35 47.44 50.49 48.66 52.42 49.33

Synthetic-Products-0.8

70

72

74

76

78

45

50

55

60

65

70

75

80

Figure 6.7: Hyper-parameter influence exploration. We present Selene’s clustering accuracy
on two graphs with different px and pe.

Influence of px and pe. We present Selene’s clustering accuracy on two graphs, i.e.,
Brazil-Airports (h = 0.311) and Synthetic-Products-0.8 with different px and pe in
Figure 6.7. The figure indicates that hyper-parameters of augmentation methods
have a significant influence on representation quality.

6.7 Conclusion and Future work

In this chapter, we focused on the graph embedding task with challenging het-
erophily settings and tackled two main research questions. First, we showed through
an empirical investigation that the performance of existing embedding methods
that rely on graph structure decreases significantly with the decrease of graph ho-
mophily ratio. Second, we proposed Selene to address the identified limitations,

6.7. Conclusion and Future work 99

which effectively fuses node attributes and graph structure information without
additional supervision. Comprehensive experiments demonstrated the significant
performance of Selene, and additional ablation analysis confirms the effectiveness
of the components of Selene on real-world and synthetic graphs.

In future work, we propose to explore the Information Bottleneck [TZ15, WRLL20]
of graph embedding to theoretically define the optimal representation of an arbi-
trary graph and optimally balance expressiveness and robustness against potential
external attacks [ZAG18].

101

Part III

Online Social Network Analysis
with Graph Machine Learning

103

Motivation and Summary

Online social networks (OSNs) have become a norm in our quotidian social and
personal lives and provide a rich source of information about millions of users
worldwide. People have been used to posting images and text to present them-
selves, articulate their social circles, and interact with each other in OSNs. However,
analysing OSNs is very challenging and expensive due to their enormous capacity
and complex structure.

This part of the thesis presents two interesting OSN analysis projects that help read-
ers better understand what is posted in OSNs and discover potential relationships
to facilitate user engagement.

In Chapter 7, we introduce a real-world dataset collected from Instagram and sys-
tematically describe the relationship between posted images and their associated
hashtags. Then we propose a new graph-based approach semantic image graph em-
bedding (SIGraph), to model and mine this relationship and apply it to improve the
performance of the image multi-label classification task.

Chapter 8 introduces the neural link prediction (NeuLP) model to find the new social
relationship between OSN users. Specifically, we utilise graph neural networks to
mine users’ local structure information and leverage neural collaborative filtering to
capture long-range user interactions to obtain useful user representations for inter-
action prediction. Extensive experiments on real-world OSN datasets demonstrate
the effectiveness of NeuLP and illustrate the availability of NeuLP on users with
different attributes.

105

Chapter 7

A Graph-based Approach to
Explore Relation between
Hashtags & Images

7.1 Introduction

The last decade has witnessed the rapid development of online social networks (OSNs).
To some extent, OSNs have mirrored our real society: people perform various ac-
tivities in OSNs as they do in the offline world, such as establishing social relations,
sharing life moments, and expressing opinions about various topics.

Image is one of the most popular information being shared in OSNs. For instance,
300 million photos are uploaded to Facebook on a daily base1. Moreover, there exist
several popular OSNs dedicated to image sharing, including Instagram and Flickr.
Images themselves are a rich source of information. Previously, researchers have
studied images in OSNs from various perspectives [DWP+15, WYHY15, ZLK+18].
These works mainly concentrate on the contents of the images, thus adopting com-
puter vision techniques as the main instrument. Different from images hosted on
other platforms, images in OSNs are often affiliated with other types of user-shared
information, such as image captions and hashtags. Such information can contribute
to understanding OSN images as well. However, the relationship between the im-
ages and user-shared information has been left mostly unexplored. In this chapter,
we aim to fill this gap by analysing the relationship between images and hashtags.

A hashtag is a single word or short phrase prefixed by the “#” symbol [DWP+15];
it is initially created to serve as a metadata tag for people to efficiently search for
information in OSNs. Interestingly, hashtags themselves have evolved to convey
far richer information than expected and provide an incredibly varied and nuanced
method for describing images. Some hashtags describe precise objects in the im-
ages, e.g., #glass, #window, #building, and #sky; some are related to the feelings
and intent of the users, such as #lovelyday, #whyme, and #celebrating; others refer
to some event or geographic position, e.g., #paris, #rio, and #newyork [ZHR+18].
Besides, users also create many hashtags to convey meanings that previously did

1https://zephoria.com/top-15-valuable-facebook-statistics/

https://zephoria.com/top-15-valuable-facebook-statistics/

106 Chapter 7. A Graph-based Approach to Explore Relation between Hashtags & Images

not exist in human languages, e.g., #tbt (an abbreviation for “Throw Back Thurs-
day”).

Table 7.1: Two example images from Instagram. Hashtags are generated by users, and
labels are provided by Google’s Cloud Vision API.

Hashtags
#frenchbulldog #bulldog

#illustration #dog
#LikeASir #Sir

#dog #frenchie
#frenchbulldog

#bulldog #puppy #igdaily

Labels

Nose, Art, Drawing, Sketch,
Dog Like Mammal,

Black And White, Visual Arts,
Eye, Illustration, Human

Dog, Vertebrate,
French Bulldog, Toy Bulldog,

Non Sporting Group,
Companion Dog,

Puppy, Puppy Love

In this chapter, we perform an empirical study on the relationship between hash-
tags and image contents. Our experiments are conducted on a real-world dataset
collected from Instagram. It is worth noting that as it is time-consuming to tag
the image contents for all the images in our dataset manually (148, 106 images), we
use the image labels obtained from an automatic image detection tool, i.e., Google’s
Cloud Vision API, to represent the image contents.

Relationship verification & quantification. We first verify the relationship between
hashtags and image contents (represented by their labels) using the two-sample
Kolmogorov-Smirnov (KS) test. Experiments demonstrate that hashtags are indeed
related to image contents with a significance level α = 0.001.

Furthermore, we model the relationship between hashtags and images (i.e., their
labels) as bi-directional prediction tasks, i.e., using an image’s associated hashtags
to predict the image’s labels (H2L) and using an image’s labels to predict its hash-
tags (L2H). The prediction performance is then used to describe the strength of the
relationship between images and hashtags. For the H2L task, a straightforward ap-
proach is to use word embedding methods [MCCD13] to transform hashtags into
continuous vectors, representing hashtag semantics, which are later used as fea-
tures to train a machine learning classifier. A similar approach can be applied to
the L2H task as well, namely, to use the obtained label vectors from word embed-
ding methods to predict image’s hashtags. However, this approach only considers
the semantic meaning of hashtags (and labels), while neglecting connections among
the images. As demonstrated by the example in Table 7.1, if two images share a
few hashtags (i.e., #dog, #bulldog, #frenchbulldog), then their contents may have
certain similarities as well (i.e., both are about pet dogs). To this end, we propose
a graph-based approach, which can explore both semantic information of hashtags
(and labels) and the graph structure among the images to measure the relationship

7.2. Additional Related Work 107

between hashtags and images.

Through extensive experiments, we show that our approach has the best prediction
performance – 26.84% per-class precision (C-P) for the H2L task and 30.81% C-P
for the L2H task on our Instagram dataset. Compared with the approach based on
word embedding, it achieves 7.7% and 7.8% C-P gain for the two tasks, respectively.

Application. After verifying and quantifying the relationship between hashtags
and images, we further explore this relationship to improve one downstream task –
image multi-label classification. Experiments on the NUS-WIDE dataset [CTH+09]
show that we can achieve a 4.0% C-P gain over a state-of-the-art method. This result
further shows that hashtags can indeed help to improve online image classification.

7.2 Additional Related Work

There has been a diverse array of academic works exploring the information con-
tained in hashtags. Tsur et al. try to explore what information is contained in hash-
tags based on a massive dataset from Twitter [TR12], and they view hashtags as
ideas that could express users. As a result, they present the richness of information
in hashtags. Furthermore, some work use hashtags to detect the topic of tweets on
Twitter [WWL+11] and predict hashtags based on tweet contents [GSN+13, SC14].
These work indicate there is a strong relationship between hashtags and text con-
tents, and it is possible to make two-way predictions between them.

Focusing on the relationship between hashtags and images, Niu et al. propose a
semi-supervised Relational Topic Model (ss-RTM) to use hashtags information to
recognise social media images [NHGT14]. They first organise images into a net-
work if they share some hashtags. Then, they treat this network as a document and
use a statistical model RTM, which is widely used in natural language processing
tasks to extract the topic relationship among documents, to extract images’ relation-
ships into representative vectors. Compared with our work, they only use hashtags’
information to build up the network but ignore their semantic meaning in the fi-
nal features. Besides, due to the computational cost of RTM, they cannot involve a
large number of images in one network, and there might be a strong influence from
noisy hashtags. Wang et al. propose a framework (CNN-RNN) that combines hash-
tags and image features to perform classification [WYM+16]. CNN-RNN mainly
contains two parts – a CNN model for extracting semantic representations from the
images and an RNN (recurrent neural network) to model image/labels relation-
ship and hashtags dependency. Due to the advantages of RNN, this framework can
utilise the order information among hashtags, and it can predict a long sequence
of labels. It achieves better performance than ss-RTM, but it neglects the connec-
tions among images. Recently, Wang et al. utilise a hashtag-related knowledge
graph to improve image multi-label classification [WYG18]. They first build a large
knowledge graph, which contains millions of hashtags and their semantic relation-
ships. Then they apply the deep graph embedding methods to extract hashtags’
relationship to representative vectors and use the representative vectors to assist
the classification task. But it is high-cost work to build up a knowledge graph with

108 Chapter 7. A Graph-based Approach to Explore Relation between Hashtags & Images

millions of hashtags, and they only consider the hashtags semantic information but
neglect the graph structure among the images.

7.3 Image-Hashtag Relationship Verification

Instagram is one of the most popular OSNs and a major platform for hashtag- and
image-sharing. Therefore, we resort to Instagram to collect our dataset relying on
its public API. 2 Our data collection follows a similar strategy as the one proposed
by Zhang et al. [ZHR+18]. Concretely, we sample users from New York by their
geo-tagged posts. Then, for each user, we collect all her images. In total, we ob-
tain 10,605,399 images from 25,658 users. Then, we perform some pre-processing,
filtering out those images with less than 3 hashtags.

As mentioned before, we represent image contents as labels. Manual labelling can
be an option but not scalable. Instead, we adopt Google’s Cloud Vision API 3 to
label images. The Cloud Vision API is supported by pre-trained machine learning
models; it describes an image’s content as a list of labels. The detected labels
cover various aspects of an image ranging from the contained objects to personal
feelings, e.g., happiness. It is worth noticing that this API has been already used in
social media image analysis before [RT18]. Table 7.1 depicts two images labelled by
Google’s Cloud Vision API.

In total, we have spent 227$ on labelling 148,106 images. There are 255,298 different
hashtags associated with these images. On average, each image has 6.46 hashtags,
and each hashtag can appear in 4.19 images. We can see that the images with 3
hashtags have the largest count, and most images have less than 10 hashtags.

For all our images, Google’s Cloud Vision API provides 6,327 different labels. On
average, each image contains 8.27 labels. Google’s Cloud Vision API gives at most
10 labels for one image, thus the amount of images with 10 labels is much more
than the amount of images with other numbers of labels (< 10).

From the example in Table 7.1, we can confirm that the labels given by Google’s
Cloud Vision API can sufficiently describe the image contents. It can find the ob-
jects (e.g., Dog Like Mammal, Dog, Puppy) in the images, and give the style (e.g.,
Art, Drawing) and feeling (e.g., Puppy Love) of images. Besides, we also find
out that some hashtags have a close relationship with image contents, e.g., #dog,
#frenchbulldog, #illustration, #puppy, and some of them describe additional infor-
mation, e.g., #LikeASir, #Sir. However, there are also some other hashtags that do
not have too much relation with the image’s contents, e.g., #igdaily.

To verify the existence of the relationship between hashtags and image labels, we
perform a two-sample KS test. We construct two vectors hcc and hcd with an
equal number of elements, where each element in hcc is obtained by calculating
the appear ratios of labels in images that have one specific hashtag and similarly
each element in hd is the appear ratio score of labels in images that do not have

2The dataset was collected in January 2016 when Instagram’s API was still publicly available.
3 https://cloud.google.com/vision/

https://cloud.google.com/vision/

7.4. Quantifying Image-Hashtag Relationship 109

this hashtag. We perform a two-sample KS test on vectors hcc and hcd. The null
hypothesis here is that the appearing ratio of labels in images with one specific
hashtag does not differ from images without this hashtag, i.e., these two vectors
are the same, H0 : hcc = hcd. Another hypothesis is that the appearing ratio of
labels in images with one specific hashtag differs from images without this hashtag.
Therefore, we have the following two-sample KS test:

H0 : hcc = hcd, H1 : hcc ̸= hcd

. The two-sample KS test result suggests a strong evidence with a significance level
α = 0.001 (p-value= 1e− 91) to reject the null hypothesis. As a result, we confirm
that there exists a relationship between hashtags and image contents.

7.4 Quantifying Image-Hashtag Relationship

In the previous section, we have demonstrated the existence of the relationship be-
tween hashtags and image contents (through examples and a statistical test). In this
section, we systematically quantify this relationship. Table 7.2 lists the additional
mathematical notation used in this chapter.

Table 7.2: Summary of additional notations.

Notation Description
I Set of images
H0, H1 Hypothesis
Hi List of hashtags associated with image i
Li Set of labels associated with image i
H Set of all hashtags of all images
L Set of labels of all images
G1 Graph consists of all images and their hashtags
G2 Graph consists of all images

Our idea for quantification is to model the relationship between hashtags and im-
ages as bi-directional prediction tasks, i.e., using an image’s associated hashtags to
predict the image’s labels (H2L) and using an image’s labels to predict its hashtags
(L2H). The prediction results can be used to quantify the relationship strength –
higher prediction performance indicates a stronger relationship.

In the rest of the section, we first discuss how to use word embedding meth-
ods to extract semantic meaning for hashtags and labels for our prediction tasks
(Section 7.4.1). Then, we present a shallow graph embedding based approach in
Section 7.4.2 and propose a new deep graph embedding based approach in Sec-
tion 7.4.3. The experimental results are presented in the end (Section 7.4.4. For
presentation purposes, we use H2L as an example task, similar approaches can be
described for the L2H task.

110 Chapter 7. A Graph-based Approach to Explore Relation between Hashtags & Images

7.4.1 Word Embedding based Approach

We use I to represent the set of images. Each image i is associated with a list of
hashtags Hi = {h1, h2, . . . , hmi} and a list of labels Li = {ℓ1, ℓ2, . . . , ℓni}. mi and ni

denote the number of hashtags and labels in an image i, respectively. H represents
all the hashtags.

For our H2L task, one approach is to use hashtags’ semantic meaning as the features
to train a machine learning classifier to predict image labels. Concretely, we rely on
word embedding to transform each hashtag into a continuous vector and average
the vectors of all hashtags of an image as its feature. To train hashtag embedding,
we adopt the Word2vec model [MCCD13], meaning that we treat each image’s
associated hashtags as a “phrase”, and all these phrases form a “corpus”. The
learning process follows the same objective function as Skip-Gram, by applying
stochastic gradient descent, we can embed each hashtag into a vector space.

7.4.2 Shallow Graph Embedding based Approach

The above word embedding based approach only considers the semantic meaning
of hashtags (and labels) while neglecting connections among the images. In the ex-
ample depicted in Table 7.1, if two images share some hashtags, then their contents
share certain similarities as well. We hypothesise that connections among images
also possess a strong signal for our prediction task, thus we aim for a method to
summarise this information as new features.

Our first idea of feature extraction is to organise images in a graph according to
the connections among them and extract images’ connection information that is
represented in the graph. The first graph we construct is G1 = (H, I , EHI). G1 con-
tains two types of nodes: hashtags (H) and images (I), each image node connects
with its hashtags, and each hashtag node connects with images that it appears with
(edges in EHI). The state-of-the-art method to extract information from a graph is
graph embedding, which aims to learn a mapping that embeds nodes as points
in a low-dimensional vector space [HYL17a]. Through optimising this mapping,
geometric relation in this learned space reflects the attributes of the original graph.

The shallow graph embedding method we adopt is DeepWalk [PARS14], it is in-
spired by the idea of word embedding. We treat a graph as a “document” and
sample sequence of nodes by random walk on the graph as a “phrase”. Then, word
embedding methods can be applied to these phrases as a traditional document task
to return the feature vectors of image nodes.

7.4.3 Deep Graph Embedding based Approach

In the above discussions, Skip-Gram can use the hashtags’ semantic meaning, and
DeepWalk further explores connections among the images. A natural question to
ask is whether we use both of these two information within one framework.

7.4. Quantifying Image-Hashtag Relationship 111

To achieve this, we propose a new graph-based approach semantic image graph em-
bedding (SIGraph), which could effectively explore both the hashtags’ (and labels’)
semantic information and the graph structure among the images. To construct the
graph structure among the images, we add an edge between two images if these
two images share at least n common hashtags.

To extract information from G1, SIGraph uses a deep graph embedding method
GraphSAGE [HYL17b], which works for computing node representations in an in-
ductive manner. This technique operates by sampling a fixed-size neighbourhood of
each node and then performing a specific aggregator over it (such as the mean over
all the sampled neighbours’ feature vectors or the result of feeding them through
a recurrent neural network). This approach has yielded impressive performance
across several large-scale benchmarks [VCC+18].

7.4.4 Experiments

We evaluate the three approaches proposed in Sections 7.4.1- 7.4.3 on the bi-directional
prediction tasks (H2L and L2H) on our Instagram dataset to quantify the relation-
ship between hashtags and images.

Evaluation metrics. We adopt those evaluation metrics that are widely used in
multi-label image classification fields [WYM+16], including per-class and overall
precision (C-P & O-P), per-class and overall recall (C-R & O-R), per-class and overall
F1 score (C-F1 & O-F1).

The precision is the number of correctly predicted labels (or hashtags) divided by
the number of predicted labels (or hashtags); the recall is the number of correctly
predicted labels (or hashtags) divided by the number of ground-truth labels (or
hashtags); the F1 score is the geometrical average of the precision and recall scores.
Per-class means the average is taken over all classes, and overall means the average
is taken over all testing examples. Moreover, we only consider the top 3 predictions
for both tasks in our evaluation.

Preprocessing. We adopt the following steps to prepare our dataset and build
the graph (G2). We first convert hashtags into lowercase and delete punctuation.
Second, as multiple hashtags may refer to the same underlying concept, we apply
a simple process that utilises WordNet [Mil95] synsets to merge some hashtags into
a single canonical form, such as “coffeehouse” and “coffeeshop” to “cafe”. While
building up the graph (G2) for the SIGraph approach, we require there are at least
n = 3 common hashtags (or labels) between two images in order to add an edge
between them. Third, for the H2L task: we first delete hashtags that appear less than
50 times in the dataset, then we select the most frequent 100 labels from the dataset
and keep images with these labels. For the L2H task: we first select 5 hashtags for
each image and keep 50 most frequent hashtags from the dataset; then we delete
labels that appear less than 50 times in the dataset. After the preprocessing, we
randomly select 13,107 and 18,372 images for H2L and L2H tasks, respectively.

Implementation details. For fairness, the default embedding dimension d in this
chapter is set to 256. For the approach based on word embedding, we adopt the

112 Chapter 7. A Graph-based Approach to Explore Relation between Hashtags & Images

Skip-Gram implementation provided by gensim [ŘS10], and keep the default pa-
rameters provided by the software. For the approach based on shallow graph em-
bedding, i.e., DeepWalk, we set the length of each walk to 20 and the number of
walks per image node to 5.

For our approach SIGraph, we develop a supervised multi-label GraphSAGE model4

based on the Pytorch implementation of Hamilton et al. [HYL17b], and use the out-
put of the last layer’s encoder as the embedding. We use a 2-layer neural architec-
ture with 256 hidden units in each layer, the sample size of the two layers is 5, and
the mini-batch size is 256. Learning rate is set to 0.1 with an iteration number of
500.

In the end, we need to feed these extracted features into a logistic classifier to
make predictions. In this way, we evaluate the following three approaches to our
prediction tasks: Word2vec+logistic, DeepWalk+logistic, and SIGraph+logistic. All
experiments are implemented with the support of GPU (K80).

Results. We can see that all the C-P scores are no less than 19% and the O-P
scores are no less than 30% for all three approaches. Moreover, the results of the
DeepWalk+logistic and SIGraph+logistic approaches are better than the results of
the Word2vec+logistic approach (a 3.5% C-P gain and a 2.6% O-P gain for Deep-
Walk+logistic, and a 7.7% C-P gain and a 6.4% O-P gain for SIGraph+logistic). This
indicates that the images’ graph structure provides a stronger signal than using
hashtag semantics only for our prediction task. The SIGraph+logistic approach
achieves a significant improvement compared with the other two. When compared
with the DeepWalk+logistic approach, there is a 4.2% C-P gain and a 3.8% O-P gain.
This further demonstrates the superior performance of SIGraph.

We can find that all the C-P scores are more than 25% and the O-P scores are
more than 32% for these three approaches. Similarly, the SIGraph+logistic ap-
proach achieves a significant improvement compared with the other two. For the
C-P scores, its performance gain is 4.2% compared with the DeepWalk+logistic
approach and 5.8% compared with Word2vec+logistic. For the O-P scores, its per-
formance gain is 4.8% compared with the DeepWalk+logistic approach and 6.1%
compared with Word2vec+logistic. At last, we can see that for the C-R results,
the performance of the DeepWalk+logistic approach (15.47%) is worse than the
Word2vec+logistic approach (15.83%), and the C-P gain (1.6%) and O-P gain (1.3%)
between these two approaches are smaller than the gains for the H2L task. It indi-
cates that for the L2H task, the information provided by the image graph structure
has a similar strength as only exploring labels’ semantic meaning.

The influence of n. We further evaluate the influence of the hyper-parameter n
on the prediction performance of our SIGraph+logistic approach, where n is the
number of common hashtags required to establish an edge between two images in
G2. For the H2L task, we compare the different results with an equal number of
images, the prediction performance in general gets better if n becomes bigger. This
suggests that more hashtags can better characterise the connections among images.

4Our experimental code is available upon publication.

7.5. Application 113

7.5 Application

After verifying and quantifying the relationship between hashtags and images, we
focus on whether this relationship can be used to improve a downstream task. In
particular, we aim to use hashtags’ information summarised by the approach SI-
Graph to improve the performance of a baseline model on multi-label classification
task.

For this task, we use the NUS-WIDE dataset, which contains human-generated la-
bels and hashtags shared by real users. NUS-WIDE is a web image dataset [CTH+09],
and it contains 269, 648 images from Flickr. 5 It has two types of hashtags: (i)
5018 unique hashtags (5018-hashtags); (ii) 1, 000 cleaner hashtags without noisy
and rarely-appearing hashtags. We could see that the most frequent numbers of
hashtags with images are 4, 5, or 6, and this dataset has quite some images with
less than three hashtags.

The images in the dataset are also manually annotated using 81 labels by human
annotators, which cover different aspects, including object classes, scenes, and at-
tributes. The labels on each image are considered as ground truth to represent the
image contents.6 On average, each image contains 1.87 such labels. We can find
that images with only one label have the largest count, and there are only a few
images with more than 8 labels.

Preprocessing. To demonstrate the application of the relationship between hashtags
and images to improve the performance of image multi-label classification, we use
a pre-trained convolution neural network (CNN) as the baseline approach to extract
the image features (or image embedding). This technique has been successfully
used for many image-related tasks, i.e., image classification [ARW+15, WYM+16],
image recognition [SKP15], etc. Then, we use the returned image embeddings to
train a classifier to make predictions. Second, we use the 5018-hashtags, in this way
we keep all the information provided by users. Third, while building the graph
structure, we use the same settings as in Section 7.4.4, i.e., if there are at least n = 3
common hashtags between two images, we add an edge between them. Finally, we
randomly select 17, 137 images from the NUS-WIDE dataset.

Implementation details. For the baseline CNN, we use 16 layers VGG network [SZ15]
pre-trained on ImageNet 2012 classification challenge dataset [DDS+09] using Py-
torch deep learning framework. For our SIGraph approach, we use the graph struc-
ture G2, and the parameter setting of GraphSAGE remains the same as discussed
in Section 7.4.4. The dimensions of the CNN embeddings and the SIGraph embed-
dings are set as the same (256). To put embeddings together, we simply concatenate
them. In the end, we feed these extracted features into a logistic regression classifier
to make predictions.

Results. We use the same evaluation metrics as discussed in Section 7.4.4. Table 7.3
presents the classification results of approaches using the CNN embeddings, the

5https://www.flickr.com/
6This explains why we cannot directly use our Instagram dataset as we do not have such a ground

truth.

114 Chapter 7. A Graph-based Approach to Explore Relation between Hashtags & Images

Table 7.3: Comparison of the experimental results of the top 3 image multi-label classifica-
tion on the NUS-WIDE dataset with 5018-hashtags.

Methods C-P C-R C-F1 O-P O-R O-F1

CNN+logistic 41.99 32.35 33.55 53.59 59.35 56.32
SIGraph+logistic 23.90 18.72 17.79 45.79 50.71 48.13

CNN+SIGraph+logistic 45.99 37.28 37.38 55.34 61.29 58.16

SIGraph embeddings and the CNN+SIGraph embeddings, respectively. From the
results, we could first find that the CNN+SIGraph+logistic approach can improve
the performance when only using the CNN embeddings for multi-label classifica-
tion (with 4.0% C-P gain and 1.75% O-P gain). Second, the performance of the
CNN+logistic approach is better than the SIGraph+logistic approach (with 18.09%
C-P gain and 7.8% O-P gain). This indicates that information provided by the image
itself is stronger than the relationship information extracted by our approach.

Observations. In this section, we present detailed examples to understand the
different predictions given by the CNN embeddings and the CNN+SIGraph em-
beddings.

Table 7.4: Two example predictions by the CNN approach and the CNN+SIGraph approach
on the NUS-WIDE dataset.

5018-Hashtags
#film, #army

#war, #historic
#fish, #photography

#underwater
Labels (ground truth) military, person animal, coral, fish

Prediction (CNN) person, sky, water animal, coral, water
Prediction (CNN+SIGraph) military, person, sky animal, coral, fish

In Table 7.4, there are two images with their associated labels and hashtags from
the NUS-WIDE dataset, as well as the predictions made by the two approaches
based on the CNN embeddings and the CNN+SIGraph embeddings, respectively.
For the image on the left, the CNN+logistic approach gives one correct prediction
(“person”) and two incorrect predictions (“sky”, “water”). We notice that this im-
age is somehow unclear and over-light. Since the CNN embeddings come from the
image itself, it somehow mistakes this strong light in the background as “sky” or
“water”. Besides, the correctly predicted label “person” is one of the most popu-
lar labels in the dataset (24.6% images contain this label), so this label could not
provide precise information to clarify the image contents. On the other hand, the
CNN+SIGraph+logistic approach correctly predicts the two labels “military" and
“person". This indicates that this approach can capture more comprehensive infor-
mation about this image itself.

7.5. Application 115

Figure 7.1: Visualisation of our SIGraph embeddings. The images information are mapped
to the 2D space using the t-SNE package with learned SIGraph image embedddings as
input. We select some labels: [“animal”, “cat”], [“ocean”, “water”], [“flowers”, “plants”],
[“fish”, “water”], [“airport”, “clouds”], [“lake”, “mountain”], [“plane”, “sky”], [“animal”,
“birds”] and [“sky”, “tower”] and collect images have these labels.

For the image on the right, the CNN+logistic approach gives two correct labels
(“animal”, “coral”) and one incorrect label (“water”). However, this incorrect label
is different from those two incorrect labels for the left image, as it is still relevant
to the contents of the image. We could recognise that the image presents an un-
derwater environment, so “water” is not wrong even it does not appear as one of
the truth labels. The fish in the right image disguises itself in the environment. In
this case, the visual CNN embeddings are not sufficient in capturing small objects
(i.e., “fish") in the image. On the other hand, the CNN+SIGraph+logistic approach
succeeds in predicting all three labels.

From these two example predictions on the NUS-WIDE dataset. We can confirm
that our hashtag features through the SIGraph embeddings can provide useful
information to improve the image multi-label classification even when the image
quality is not good enough, or the objectives in the image are not easy to be found
by visual features.

We are also interested in knowing whether the SIGraph embeddings could embed
images into the correct position in the embedding space. More specifically, whether
they can keep images with similar contents to be close in the space. For this aim,
we select 9 groups of labels and each group to have 2 different labels and collect

116 Chapter 7. A Graph-based Approach to Explore Relation between Hashtags & Images

images only containing one of the groups of labels. We then transform these im-
age embeddings obtained with SIGraph into a 2D space using the dimensionality
reduction algorithm t-SNE [vdMH08].

We visualise the result in Figure 7.1, and observe the existence of clustering struc-
ture in images’ embeddings. These images with different groups of labels are
separated into different clusters, and related clusters are close in the space. For
instance, in the figure, we can find that the embeddings of images with labels [“an-
imal”, “cat”] are very close to images with labels [“animal”, “birds”], as they are all
animal-related images. And the embeddings of images with [“plane”, “sky”] are
far from the previous two types of images. Besides, we can also find that images
labelled by [“lake”, “mountain”] are mixed with the images labelled by [“ocean”,
“water”]. This is due to the contents of the two images having similar semantics.

7.6 Conclusion and Future Work

In this chapter, we have performed an empirical study on verifying and quanti-
fying the relationship between hashtags and images based on real-world datasets
collected from Instagram and Flickr, and we successfully applied the verified rela-
tionship to improve a downstream task.

We have implemented a statistical test to verify the existence of the relationship
between hashtags and images. Then, we designed bi-directional prediction tasks
(H2L and L2H) and used the prediction performance to quantify the relationship. In
particular, we proposed a new graph-based approach to integrate both the semantic
meaning of hashtags (and labels) and the graph structure of the images, which
indeed help to extract more comprehensive information for hashtags (and labels).
In the end, we successfully applied the extracted features of hashtags from the H2L
task to improve the performance of image multi-label classification and achieved a
4% per-class precision gain compared to a state-of-the-art method.

Hashtags can be naturally organised into different categories according to their se-
mantics and functions. In the future, we will first focus on the influence of hashtag
categories, i.e., investigating the different relationship strengths between each cate-
gory of hashtags and images. Second, in OSNs, different users have different habits
of using hashtags, and we hypothesise that the richness of the semantic meaning
contained in their hashtags could be different. How to explore these user differ-
ences is one of our future work. Third, so far, we have only applied the extracted
hashtag features for an image multi-label classification task in this chapter. We
want to further utilise the extracted label features (from the L2H task) to perform
hashtag recommendation in OSNs.

117

Chapter 8

NeuLP: An End-to-end
Deep-learning Model for Link
Prediction

8.1 Introduction

The development of information and communication technologies (ICT) has changed
people’s lifestyle drastically over the last decades. Nowadays, people use online so-
cial networks (OSNs) to communicate with each other, maintain social relationships,
and share life moments in various forms, such as online status, location check-ins,
tweets and hashtags. We term all such user-shared information as user attributes,
and OSNs with user attributes as attributed social networks. The enormous data gen-
erated by OSNs thus provide researchers with an unprecedented opportunity to
gain a deeper understanding of our society. Many data mining problems have been
proposed and extensively studied in the literature, such as link prediction, attribute
inference, and social influence quantification.

Link prediction is one of the key problems in OSN mining, which aims to esti-
mate the likelihood of the existence of an edge (relationship) between two nodes
(users) [LK07]. It has been widely applied for friendship recommendation in OSNs,
which is important to increase user engagement and leads to a more satisfactory
user experience. Besides OSNs, link prediction has drawn the attention of many
different application domains and researches in various fields, such as the study
of protein-protein interaction networks [LR12], and identifying hidden or missing
criminals in terrorist networks [CGK+11].

The existing methods for link prediction in OSNs can be classified into three cate-
gories, ranging from the early methods focusing on hand-crafted features (e.g., see
methods based on user profiles [BGW11] and graph structure [LK07, LLC10]); shal-
low graph embedding-based methods, such as LINE [TQW+15] and node2vec [GL16];
to recently emerged graph neural network (GNN)-based methods [KW17, HYL17b,
VCC+18]. Among these, GNNs are currently the most popular paradigm, largely
owing to their efficient learning capability. In contrast, hand-crafted features meth-
ods are limited in extracting latent information in the OSNs, and shallow graph
embedding-based methods cannot incorporate user attributes.

118 Chapter 8. NeuLP: An End-to-end Deep-learning Model for Link Prediction

GNN-based methods follow a common scheme that explores user information from
either social graph or user attributes as node embeddings and then calculates user
similarity for making link prediction. However, we argue that it is insufficient since
the classic GNNs cannot capture the global information for a given user pair in
an OSN. Current GNNs generally follow message-passing mechanism and assume
that with the use of enough GNN layers (times of interactive aggregation), the
model can capture long-range dependencies. However, recent research shows that
GNNs are not robust to multiple layers since they would become over-smoothing
and lead to vanishing gradient during training [LHW18, LMQ+19]. Therefore, ex-
isting GNNs have shallow architecture, 2−4 layers. It causes nodes to have indistin-
guishable embedding vectors if locally they are at similar positions of an OSN. To
fill this gap, You et al. propose a novel GNN model (P-GNNs) that could capture
the position of a given node with respect to all other nodes in the graph [YYL19].
However, the introduced anchor-set sampling brings high computational costs and
performs less well on attributed graphs.

In this chapter, we propose a unified end-to-end deep learning model, namely neu-
ral link prediction (NeuLP), which could efficiently integrate neural collaborative
filtering to overcome the above limitations, and NeuLP is flexible to handle differ-
ent types of user attributes for link prediction. We first use two shallow GNNs to
transform user information (their social relations and attributes) into embeddings
that interactively aggregate user features from neighbours. We then add a fusion
layer to merge embeddings of two users into one vector, which performs element-
wise product on two user embeddings to capture the linearity interactions between
two users. However, a simple element-wise product does not account for the non-
linearity interactions between users, so we further apply multilayer perceptron (MLP)
on the vector to map it to low dimensions. The MLP can explore the non-linearity
interactions between two users, where each layer performs a non-linear transforma-
tion with an activation function. This architecture is inspired by the recent progress
of recommendation systems [HLZ+17] which is useful for mining online user be-
haviours. In the end, we utilise a linear transformation layer to summarise the
extracted features of a pair of users as the possibility of existing a link between
them.

We conduct extensive experiments on five benchmark datasets and two Instagram
datasets in various pairwise prediction tasks to evaluate the performance of NeuLP
with respect to several state-of-the-art baselines, including (1) link prediction with
only graph structures and (2) link prediction on attributed social network datasets
with one/two type(s) of user attributes. The experimental results demonstrate our
model’s significant improvement over the baselines, with up to 5.8% improvement
in terms of the AUC score, and its capability in leveraging user attributes and in-
teractions when compared with GNN-based baselines. Moreover, NeuLP achieves
a strong link prediction when given users’ two different types of attributes. We
further perform in-depth analyses on the relation between prediction performance
and the graph geodesic of two users in OSNs. This demonstrates that our model
successfully used user interactions to improve GNN-based baselines.

8.2. Additional Related Work 119

8.2 Additional Related Work

We briefly review the state-of-the-art link prediction in OSNs, including methods
based on hand-crafted features, shallow graph embedding and GNNs [MO19]. The
hand-crafted features-based methods extract the feature hidden inside the user at-
tributed and edges’ structures. A heuristic score is used to measure the similarity
and connectivity between two users [LK07, LLC10, BGW11]. These methods are
pellucid and efficient but cannot explore the latent information in OSNs.

Shallow graph embedding-based methods learn a link’s formation mechanism from
the graph other than assuming a particular mechanism (e.g., common neighbours),
and they can be summarised into two groups, i.e., DeepWalk-based methods and
matrix factorisation-based methods. DeepWalk [PARS14] pioneers graph embed-
ding methods by considering the node paths traversed by random walks over the
graph as sentences and leveraging Skip-gram model [MCCD13] for learning node
representations. On the other hand, some works adopt the idea of matrix factori-
sation for graph embedding [QDM+19, LMK+19]. However, these methods cannot
deal with user attributes naturally and cannot optimise parameters for a specific
task.

In the past few years, many studies have adopted GNNs to aggregate node in-
formation in arbitrary graph-structured data for link prediction. Most of the ex-
isting GNN models (e.g., see [KW17, HYL17b, VCC+18]) rely on a series of graph
message-passing architectures that perform the convolution in the graph domain by
aggregating node feature messages from its neighbours in the graph and stacked
multiple GNN layers can capture the long-range node dependencies. However, ex-
isting GNNs can only adopt the shallow architecture, with 2−4 layers, which is
not enough to get global graph structure information. You et al. [YYL19] recently
proposed a global position-aware information capture mechanism to overcome this
limitation. However, the introduced anchor-set sampling incurs high computational
costs and makes the approach perform less well on attributed datasets.

8.3 Framework

Problem setup. Given a social network G = (V , E) or an attributed social network
G = (V , E , X), the goal of the link prediction problem is to learn a scoring function
fθ : V × V −→ R for predicting a new link between an unlabelled pair of users in a
set Ep := (V × V) \ E .

Our proposed model NeuLP has three main components as shown in Figure 8.1:
partial aggregation, information fusion and model prediction. In the partial aggre-
gation part, we use the input layer to get the encoded user attributes and feed them
into GNN layers. Then, the GNN could iteratively aggregate information from a
user’s local neighbourhoods in the social network and update the user presentation
(embedding). After obtaining user embeddings through partial aggregation simul-
taneously, we add a fusion layer to merge embeddings of two users into one vector

120 Chapter 8. NeuLP: An End-to-end Deep-learning Model for Link Prediction

and further apply MLP on the vector to explore the non-linearity interactions be-
tween these two users. At last, we adopt a prediction layer to linearly summarise
the extracted feature of two users as the possibility of existing an edge between
them.

0 1 ... 0 0 0 0 ... 1 0

𝑒𝑒11 𝑒𝑒21 ... 𝑒𝑒𝑛𝑛1 𝑒𝑒17 𝑒𝑒27 ... 𝑒𝑒𝑛𝑛7

...

�𝑦𝑦

Layer 1

Layer 2

Layer N

……

GNN-𝒍𝒍 GNN-𝒓𝒓

User - 𝒗𝒗𝒊𝒊 User - 𝒗𝒗𝒋𝒋
Input Layer

Fusion Layer

GNN Layers

MLP Layers

Prediction Layer
In

fo
rm

at
io

n
Fu

si
on

Pa
rt

ia
l A

gg
re

ga
tio

n

Figure 8.1: NeuLP’s model architecture. The two input user feature vectors (left: vi, right:
vj) are firstly transformed with two GNNs and further fused with multiple propagation
layers, and the output is the predicted possibility of existing friendship between vi and vj.

8.3.1 Partial Aggregation

In this subsection, we describe the details of adopting GNNs to iteratively aggregate
the partial information from a user’s local network neighbourhood and update its
embedding.

Input layer. The bottom input layer consists of two feature vectors xi and xj, where
xi, xj ∈ X, that describe user vi and user vj, respectively. They can be customised
to support a wide range of user attributes, such as location check-ins and posted
hashtags.

GNN encoding. We adopt the GNN to iteratively aggregate neighbour information
for each user in its sub-network and update their embeddings. More specifically,
we use graph convolutional networks (GCN) [KW17] as an example GNN, due to its
widespread use and remarkable contributions. GCN operates directly on a graph
and induces node feature vectors from the properties of their neighbourhoods. The
model can be built by stacking multiple convolutional layers to involve information
from farther neighbours.

Formally, given an attributed social network G = (V , E , X), and its adjacent matrix
A, a GCN layer (Equation 2.3) can be formally represented as:

H(ℓ+1) = ReLU(D̂−
1
2 ÂD̂

1
2 H(ℓ)W(ℓ)) (8.1)

where Â = A + I, D̂ = ∑j Âij and W(ℓ) ∈ Rd is a trainable weight matrix for layer
ℓ. H(ℓ) is the generated node representation of layer ℓ which is defined as the node

8.3. Framework 121

representation matrix Z = H(ℓ). The intuition is that nodes aggregate information
from their local neighbours at each layer. Therefore, we get two embedding matrices
Z1 and Z2 from the left and the right GCNs, respectively.

8.3.2 Information Fusion

We continue to describe the information fusion layer and how to explore non-
linearity user interactions with the MLP layers. The information fusion module
is mainly inspired by the neural collaborative filtering [HLZ+17] that theoretically
proves how does this module estimate classic neural collaborative filtering to learn
global user interactions.

Fusion layer. In this layer, we merge embeddings of two users (zi ∈ Z1, zj ∈ Z2)
into one vector. In detail, inspired by the neural matrix factorisation model [HLZ+17],
we define the fusion function as:

z0 = ϕ(WTzi ⊙ zj) (8.2)

where ⊙, ϕ and W denote the element-wise product of vectors, activation function
and edge weights of the output layer, respectively. The benefit of adopting the
fusion layer instead of concatenating two embeddings together is that we can extract
the linearity pair-wise interaction between two users. This compensates for the
insufficiency of GCNs to acquire global user interactions.

MLP layers. Since the fusion layer analogues the matrix factorisation model to cap-
ture the linear interaction between two users. However, simply capturing linearity
user interaction is not enough. To address this issue, we propose to add hidden
layers on the fused vector, using a standard MLP to extract the non-linear interac-
tions for pairs of users. In this sense, we can endow the interactions between vi and
vj, rather than the way of fusion layer that uses only a fixed element-wise product
on them. More precisely, the MLP layers in our NeuLP model is defined as:

z1 = ϕ1(WT
1 z0 + c1),

z2 = ϕ2(WT
2 z1 + c2),

. . .

zm = ϕm(WT
mzm−1 + cm)

(8.3)

where Wm, cm, and ϕm denote the weight matrix, bias vector, and activation function
for the m-th layer’s perceptron, respectively.

8.3.3 Model Prediction and Optimisation

After the partial aggregation and information fusion layers, we obtain a represen-
tation vector rij = zm for each pair of users (vi and vj), which presents the latent
features between them. As such, in the last prediction layer, we summarise the la-
tent features as a predicted score which represents the possibility of existing a link

122 Chapter 8. NeuLP: An End-to-end Deep-learning Model for Link Prediction

between these two users:
ŷij = σ(WT

f ϕm+1(zm)) (8.4)

where σ(x) = 1
1+e−x to scale the output into (0, 1). With this, we successfully sum

up the comprehensive information between vi and vj into a similarity score ŷij for
link prediction.

To learn model parameters, we optimise the Binary Cross Entropy Loss (BCELoss),
which has been intensively used in link prediction models. We adopt the mini-batch
Adam [KB15] to optimise the prediction model and update the model parameters.
In particular, for a batch of randomly sampled user tuple (vi, vj), we compute the
possibility ŷij of existing a link between them after partial aggregation and infor-
mation fusion, and then update model parameters by using the gradient of the loss
function.

8.4 Experimental Evaluation

In this section, we conducted intensive experiments in order to answer the following
research questions:

• RQ1: How effective is NeuLP when compared with the state-of-the-art base-
lines focusing on graph structures?

• RQ2: How does NeuLP perform when compared with the state-of-the-art
baselines for attributed social network datasets with only one type of user
attribute?

• RQ3: Can we utilise NeuLP for link prediction with two different types of
user attributes? How effective will it be?

8.4.1 Dataset Description

We evaluate our model on five widely used datasets for graph-related machine
learning tasks: USAir, Yeast, Cora, Email and Citeseer. They are publicly accessi-
ble on the websites, together with their dataset descriptions.1 We further use an
Instagram dataset, which we collected from Instagram relying on its public API.2

Our data collection follows a similar strategy as the one proposed by Zhang et al.
[ZHR+18]. Concretely, we sample users from New York by their geotagged posts.
Then, for each user, we collected all her/his posted hashtags and further performed
the following preprocessing to filter out the users matching any of the following cri-
teria: (i) users whose number of followers are above the 90th percentile (celebrities)
or below the 10th percentile (bots); (ii) users without location check-ins or posted
hashtags. Then we generate two datasets, Instagram-1 and Instagram-2, according
to different filter conditions:

1https://linqs.soe.ucsc.edu/data, and http://snap.stanford.edu/data/index.html
2The dataset was collected in 01/2016 when Instagram’s API was publicly available.

8.4. Experimental Evaluation 123

• Instagram-1: users with no less than 100 location check-ins and with no less
than 10 friends.

• Instagram-2: users with no less than 100 location check-ins and with no less
than 5 friends.

Table 8.1: Statistics summary of the seven datasets.

Statistics USAir Yeast Cora Email Citeseer Instageam-1 Instagram-2
of Nodes (|V|) 332 2,375 2,708 799 3,312 6,815 12,944
of Edges (|E |) 2,126 11,693 5,429 10,182 4,660 36,232 61,963
Node features (X) No No Yes No Yes Yes Yes

The reason for generating these two Instagram datasets is that we need datasets
with different types of user attributes to discuss the possibility of applying NeuLP
to attributed social networks with different types of user attributes (RQ3). The
statistics of the seven datasets are given in Table 8.1.

For the experiments, we use two sets of 10% existing links and an equal number of
nonexistent links as test and validation sets. We use the left 80% existing links and
an equal number of nonexistent links as the training sets.

8.4.2 Experimental Settings

Evaluation metrics. Like existing link prediction studies [GL16], we adopt the most
frequently-used metrics “Area under the receiver operating characteristic" (AUC)
to measure the performance.

Baselines. To demonstrate the effectiveness of NeuLP, we compare its performance
with several baseline methods: MF [ME11], NeuMF [HLZ+17], node2vec [GL16]
and several state-of-the-art GNN variants, including GCN [KW17], GraphSAGE [HYL17b],
GAT [VCC+18], and P-GNNs [YYL19]. Besides, we also adopt HGANE [JXZZ19],
which is a collaborative graph embedding framework with a hierarchical graph
attention mechanism.

In order to study the performances of NeuLP on the attributed datasets (link predic-
tion using one same type or two different types of user attributes), we additionally
compare our model with walk2friend [BHPZ17] and tag2friend [Zha19].

Implementation details. For the node2vec related approaches, i.e., node2vec, walk2friend,
tag2friend, we use the default settings as in [GL16]. All the neural network-related
baselines follow their original paper’s code at their GitHub pages if available; other-
wise, we implement it by following their original paper, e.g., HGANE. For NeuLP,
we use a simple GNN model, GCN, for partial aggregation and the layer numbers
of GCN and MLP are 2 and 4, respectively.3 To make a fair comparison, all methods
are set to have a similar number of parameters and hyper-parameters.

124 Chapter 8. NeuLP: An End-to-end Deep-learning Model for Link Prediction

Table 8.2: Link prediction performance comparison with baseline methods on graph
datasets (AUC). OOM: out of memory.

USAir Yeast Cora Instagram-1 Instagram-2

MF 0.831±0.010 0.903±0.003 0.816±0.005 0.740±0.013 0.714±0.008

NeuMF 0.801±0.015 0.907±0.005 0.686±0.009 0.744±0.001 0.727±0.001

node2vec 0.805±0.002 0.905±0.008 0.770±0.005 0.785±0.004 0.738±0.002

GCN 0.903±0.006 0.938±0.003 0.819±0.006 0.804±0.004 0.773±0.003

GraphSAGE 0.897±0.007 0.933±0.004 0.838±0.008 0.802±0.005 0.770±0.002

GAT 0.902±0.006 0.935±0.004 0.839±0.008 0.796±0.005 0.767±0.002

P-GNNs 0.911±0.018 0.940±0.006 0.852±0.008 0.734±0.007 OOM
HGANE 0.901±0.004 0.932±0.006 0.845±0.010 0.797±0.007 0.771±0.008

NeuLP 0.952±0.009 0.965±0.003 0.894±0.006 0.813±0.001 0.790±0.003

8.4.3 Performance Comparison

We first compare the link prediction performance of approaches on the graph
datasets, which do not include any user-shared information. Here, we use the adja-
cent matrix A as the user features set. We compare the performance of NeuLP with
the baselines, except for walk2friend and tag2friend, since the latter two require
user-shared information.

From the results shown in Table 8.2, we first observe that our model consistently
outperforms all the baselines with remarkable improvements. It indicates the ef-
fectiveness of NeuLP for link prediction with only graph structures. In particular,
there is 4.9% AUC improvement on the Cora dataset. NeuLP gets 30.3% AUC
improvement over NeuMF (i.e., on the Cora dataset), this indicates the observed
graph plays an important role in link prediction, as NeuMF does not include the
graph topology. NeuLP also outperforms P-GNNs on the Instagram-1 dataset (with
13.5% AUC improvement), which indicates the advantage of our model on real OSN
datasets to capture their global information.

8.4.4 Attributed Online Social Networks

We continue to discuss the performance of various methods on attributed social
networks. More specifically, we present the performance of NeuLP with one type
of attribute (RQ2) and discuss the possibility of applying NeuLP on attributed
social networks with different types of attributes (RQ3). We use walk2friend &
tag2friend as the baselines for OSN datasets with location check-ins and hashtags,
respectively, and several variant GNNs as baselines for both datasets.

Link prediction with one attribute type. Here we use the encoded user-attributes
matrix as the user features set (i.e., one-hot encoding), where 1 means the user vis-
ited a location (or published a hashtag), and 0 otherwise. NeuLP* means we adopt
the embeddings generated by random walk-based methods, e.g., walk2friend, tag2friend,
as input user features.

3Code and datasets are available at https://github.com/zhiqiangzhongddu/NeuLP.

8.4. Experimental Evaluation 125

Table 8.3: Link prediction performance comparison between NeuLP and baseline methods
on attributed social network datasets with one user attribute type (AUC). OOM: out of
memory.

Attributes Methods Datasets
Instagram-1 Instagram-2

Location
check-in

walk2friend 0.831±0.007 0.820±0.003

GCN 0.808±0.005 0.781±0.003

GraphSAGE 0.801±0.006 0.775±0.003

GAT 0.784±0.006 0.758±0.008

P-GNNs 0.686±0.012 OOM
HGANE 0.830±0.007 0.799±0.002

NeuLP 0.832±0.002 0.828±0.001

NeuLP* 0.885±0.001 0.880±0.001

Hashtag
tag2friend 0.724±0.013 0.696±0.011

GCN 0.812±0.004 0.781±0.003

GraphSAGE 0.806±0.004 0.775±0.003

GAT 0.774±0.012 0.763±0.009

P-GNNs 0.717±0.010 OOM
HGANE 0.819±0.005 0.781±0.004

NeuLP 0.836±0.002 0.826±0.002

NeuLP* 0.880±0.002 0.875±0.001

From Table 8.3, we can see that NeuLP outperforms walk2friend, tag2friend and
other GNN models with up to 5.8% AUC improvement. Moreover, NeuLP* gets
improvements over NeuLP on all three datasets with up to 6.4% AUC improvement,
which means the information reflected by location check-ins or hashtags is a good
supplement to the social network structure, and our model can well capture such
information.

Figure 8.2: Link prediction performance comparison of NeuLP on the Instagram datasets.
NeuLP: without user attributes. NeuLP*-feature: adopting random-walk related methods
generated embeddings as user features.

Link prediction with two different attribute types. To answer the research ques-
tion RQ3, we design experiments on attributed social networks with two different
types of user attributes, which means performing link prediction given two user’s
different types of information, e.g., one user shares location check-ins, and the other
user shares hashtags (see NeuLP*-Different in Figure 8.2). Following the previous
settings, we randomly sample two groups of users where the first group of users

126 Chapter 8. NeuLP: An End-to-end Deep-learning Model for Link Prediction

share their location check-ins and the second group sharing hashtags. These two
groups account for half of all users. We organise two graphs where users with
location check-ins are connected through locations and users with hashtags are
connected through hashtags. Then we apply walk2friend and tag2fiend to these
two graphs to generate user embeddings (model settings are as same as default
settings). We use these two generated user embeddings matrix as two user features
sets for left and right input, respectively.

From the experimental results are shown in Figure 8.2, we can see that NeuLP
on attributed social networks with different types of user attributes gets signifi-
cantly better performances compared with the results without using user attributes.
NeuLP*-Different gets similar prediction performance on attributed social networks
with the ones using one user attribute type, i.e., NeuLP*-Location and NeuLP*-
Hashtag. It demonstrates the flexibility of our model in making link prediction,
even when utilising different types of information that users share in OSNs.

(a) Instagram-1 (b) Instagram-2

Figure 8.3: Prediction accuracy of four link prediction methods on the Instagram datasets
with different geodesic distances. P-GNNs lead to OOM on Instagram-2 dataset; thus not
showing in Figure 8.3b.

Performance analyses with geodesic distances. In order to further investigate the
prediction performances of different methods for different users pairs, we perform
in-depth analyses on the relation between prediction performance and the graph
geodesic of two users in OSNs. The results are drawn in Figure 8.3, which has
two sub-figures to plot the prediction accuracy of the methods (node2vec, GCN,
P-GNNs and NeuLP) with different user-pair geodesic distances (i.e., the num-
ber of edges in a shortest path connecting two nodes in the graph) for the two
Instagram datasets. We see that the accuracy of GCN and P-GNNs significantly
decreases when increasing the distance. This means GNN models cannot capture
latent information for user pairs of large distances. In contrast, node2vec behaves
in an opposite way: it achieves higher accuracy when increasing the distance, and
it does not perform well when the distance is small. The reason might be that
(long) random walks can capture long-distance information. However, NeuLP gets
the most balanced performances, this demonstrates that it successfully uses both
linearity and non-linearity user interactions to improve the performance of GNN-
based models for link prediction.

8.5. Conclusion and Future Work 127

8.5 Conclusion and Future Work

In this chapter, we have presented NeuLP as an end-to-end deep learning model for
link prediction in OSNs. NeuLP incorporates linearity and non-linearity user inter-
actions to overcome the limitations of current GNN-based link prediction methods.
Compared with the state-of-the-art methods, NeuLP can not only achieve signifi-
cant performance improvements but also have the flexibility of utilising different
types of user attributes for link prediction. We then perform in-depth analyses
to verify the advantage of our model compared with baselines formally. In fu-
ture, we plan to extend NeuLP for link prediction in temporal (or time-varying)
graphs [LCWL18].

129

Chapter 9

Concluding Remarks

9.1 Contribution

The main contribution of this thesis is the integration of advanced graph machine
learning (GML) with online social network (OSN) analysis in the context of artificial
intelligence. On the one hand, our focus lies in overcoming flat message-passing
graph neural networks (GNNs) (Chapters 3 and 4) and extending GML to heterophilous
graphs (Chapters 5 and 6) in the light of inspiring observations in OSNs. We fur-
ther presented two practical OSN analysis projects to illustrate the possibility of
employing GML in practice (Chapters 7 and 8).

Having introduced the background and necessary prior knowledge in Chapter 2,
and presented the main work of this thesis in Parts I–III. Here we conclude our
contributions by answering our research questions posed in Chapter 1.

Research Question 1: Can we develop graph machine learning models that overcome the
limitations of flat message-passing mechanism to learn more comprehensive representations?

The hierarchical message-passing graph neural networks (HMGNNs) (Chapter 3) pro-
vide an ingenious first step towards resolving this question. HMGNNs re-formulate
the message-passing pipeline of GNNs with hierarchical relations of the graph and
design flexible propagation manners to realise the information aggregation over
long-range and enhance node representations with meso- and macro-level seman-
tics. Following the idea of HMGNNs, we proposed practical and effective imple-
mentations, i.e., hierarchical community-aware graph neural network (HC-GNN) (Chap-
ter 3), by constructing the hierarchical structure with the assistance of hierarchical
community detection algorithms. Our theoretical analysis showed the convenience
of HC-GNN in capturing informative interactions between any node pairs of a
graph and the acceptable overall model complexity. The following comprehensive
empirical evaluation parts further demonstrated the effectiveness of HC-GNN on
node-level and edge-level analysis tasks on transductive settings.

Research Question 2: Can we realise the hierarchical message-passing idea without any
manual preprocessing?

130 Chapter 9. Concluding Remarks

The adaptive multi-grained graph neural networks (AdamGNN) (Chapter 4), proposed
a differentiable pooling operator to adaptively generate a multi-grained structure
that involves meso- and macro-level semantic information in the graph, that can be
used for hierarchical message-passing. It provides an interactive schema to learn
node and graph representations in a mutual-optimisation manner. That said, node
representations are enhanced with meso/macro-level semantic information, and the
ameliorated node representations further form better graph representation. Exper-
imental results revealed the effectiveness of AdamGNN on node-level, edge-level
and graph-level tasks, and the ablation and empirical studies confirmed the effec-
tiveness and flexibility of different components in AdamGNN.

Research Question 3: Can graph machine learning models be efficiently applied on het-
erophilous graphs?

The compatible label propagation (CLP) was proposed as a simple and strong adaption
of label propagation algorithm for supervised graph learning tasks with challeng-
ing heterophily settings. It smooths the prior predictions across neighbour nodes
weighted by the compatibility matrix. On a wide variety of benchmarks, we showed
that our approach achieves the top performance on graphs with various levels of
homophily. Meanwhile, it has orders of magnitude fewer parameters and requires
less execution time. Empirical evaluations demonstrated that simple adaptations
of LP can be competitive in semi-supervised node classification in both homophily
and heterophily regimes.

Research Question 4: Can graph machine learning models be utilised for unsupervised
node representation learning on heterophilous graphs?

This is a challenging yet essential problem, and we made a first step towards re-
solving this problem in this thesis. In Chapter 6, we first performed a large-scale
empirical study on the performance of existing unsupervised graph representation
learning (GRL) models on graphs with different homophily ratios and revealed the
deficiency that they fall short on graphs with low-homophily. Then, we introduced
self-supervised network embedding (Selene) framework to address the challenging task
by solving three research challenges. Compared with earlier unsupervised GRL
models, Selene holds neither homophily nor heterophily assumptions but only
learns to discriminate r-ego networks of each node. We can conclude that unsu-
pervised GRL tasks are possible by defining similarity/dissimilarity measurement
among nodes and designing a model to learn representations to distinguish them.

Research Question 5: Can online social networks be used for image classification?

People perform a multitude of various activities in OSNs, and they often post con-
tent associated with a special OSN language, i.e., hashtags. In Chapter 7, we verified
and quantified the relationship between image contents and its associated hashtags.
After, we proposed a new graph-based approach semantic image graph embedding (SI-
Graph) [ZZP19], to capture the correlation between image contents and hashtags.

9.2. Limitations and Future Directions 131

We then applied the explored relationship to improve online image classification
tasks.

Research Question 6: Can graph neural networks be utilised for link prediction in online
social networks?

We have introduced the neural link prediction (NeuLP) model (Chapter 8 [ZZP22]) to
address this question. NeuLP adopts GNN encoders to capture node’s local infor-
mation: iteratively aggregate neighbour information for each user in ego-network
with a few layers. After, apply a neural collaborative filtering module to simu-
late matrix factorisation to learn global interactions among users. Following this,
NeuLP well fuse local and global information to make better link predictions.

9.2 Limitations and Future Directions

Despite many graph machine learning (GML) techniques being developed to facilitate
complex system study, i.e., social network analysis, there are still several promising
directions that need further exploration.

9.2.1 Scalability

The GML approaches, particularly graph neural networks, have achieved substan-
tial performances due to prior capacity. However, they still suffer from the prob-
lem of memory and computation efficiency due to the dense network architecture
and the large-scale graphs in real-world [XSY+21]. Such a drawback significantly
restrict graph machine learning models’ applicability. In this thesis, we have at-
tempted to improve this issue by introducing additional message-passing pipelines
(Chapter 3), simplifying model architecture under specific cases (Chapter 5) and
maintaining the local algorithm characteristics (Chapters 4 and 6). Nevertheless,
scalability is still a pending issue that we have not provided a unified method to
solve this problem. Thus, we argue that designing scalable GML approaches is a
driving direction.

9.2.2 Interpretability

GML approaches are not only designed to be effective but also to be built for reli-
ability and safety. Interpretability, meaning that the model can provide reasonable
and reliable interpretations in terms of how and why it makes certain predictions
or actions, is of great importance to achieving real credible and safe ground ap-
plications [ZCH+20]. Some work has attempted to give technical in terms of the
model execution process, we further wonder if it is possible to provide vivid inter-
pretations under quotidian scenes [YBY+19, YTHJ20].

132 Chapter 9. Concluding Remarks

9.2.3 GML Driven Medicine Discovery and Development

The traditional process from drug discovery and development to market costs,
generally well over billions of dollars and can span more than decade years or
more [GDJ+20]. Such a long and expensive rigorous scientific process can be sum-
marised as 4 main stages: (1) target identification and hit discovery, (2) molecule
identification and candidate medicine design, (3) clinical trial and (4) FDA (Food
and Drug Administration) approval. One key characteristic of biomedical data that
is produced and used in the drug discovery process is its interconnected nature,
which can be represented as a graph. GML techniques can be naturally applied
on these biomedical graph data, particularly the stages (1) and (2), to accelerate the
medicine discovery and development [HFG+21]. In specific, one promising proceed
is exporting human knowledge as Knowledge Graphs [WMWG17] to assist biologists
by generating a set of interpretable candidate medicine designs.

9.3 Conclusion

This thesis was motivated by the idea of developing graph machine learning tech-
niques and understanding complex human social activity systems around us, i.e.,
social networks. This theme has taken us on a journey through the jungle of graph
neural networks and the fun of understanding human online behaviours. In this
thesis, we studied graph machine learning and proposed several contributions for
processing, understanding and analysing online social network data. However, our
proposed models and approaches are hardly perfect, and we tried to remain crit-
ical in stating shortcomings in each chapter and listed several promising future
directions to explore.

133

Bibliography

[AL20] Waïss Azizian and Marc Lelarge. Characterizing the expressive
power of invariant and equivariant graph neural networks. CoRR,
abs/2006.15646, 2020.

[APK+19] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipour-
fard, Kristina Lerman, Hrayr Harutyunyan, Greg Ver Steeg, and Aram
Galstyan. Mixhop: Higher-order graph convolutional architectures via
sparsified neighborhood mixing. In Proceedings of the 2019 International
Conference on Machine Learning (ICML), pages 21–29. JMLR, 2019.

[ARW+15] Zeynep Akata, Scott Reed, Daniel Walter, Honglak Lee, and Bernt
Schiele. Evaluation of output embeddings for fine-grained image clas-
sification. In Proceedings of the 2015 Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2927–2936. IEEE, 2015.

[AY21] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks
and its practical implications. In Proceedings of the 2021 International
Conference on Learning Representations (ICLR). OpenReview.net, 2021.

[BBCV21] Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Velick-
ovic. Geometric deep learning: Grids, groups, graphs, geodesics, and
gauges. CoRR, abs/2104.13478, 2021.

[BCM11] Smriti Bhagat, Graham Cormode, and S. Muthukrishnan. Node clas-
sification in social networks. In Social Network Data Analytics, pages
115–148. Springer, 2011.

[BDVJ03] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jan-
vin. A neural probabilistic language model. J. Mach. Learn. Res.,
3:1137–1155, 2003.

[BGLL08] Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and
Etienne Lefebvre. Fast unfolding of communities in large networks.
Journal of Statistical Mechanics: Theory and Experiment, 2008(10):P10008,
2008.

[BGW11] Prantik Bhattacharyya, Ankush Garg, and Shyhtsun Felix Wu. Analy-
sis of user keyword similarity in online social networks. Social Networl
Analysis Mining, 1:143–158, 2011.

[BHB+18] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-
Gonzalez, Vinícius Flores Zambaldi, Mateusz Malinowski, Andrea

134 BIBLIOGRAPHY

Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, Çaglar
Gülçehre, H. Francis Song, Andrew J. Ballard, Justin Gilmer, George E.
Dahl, Ashish Vaswani, Kelsey R. Allen, Charles Nash, Victoria
Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli,
Matthew Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Re-
lational inductive biases, deep learning, and graph networks. CoRR,
abs/1806.01261, 2018.

[BHPZ17] Michael Backes, Mathias Humbert, Jun Pang, and Yang Zhang.
walk2friends: Inferring social links from mobility profiles. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS), pages 1943–1957. ACM, 2017.

[BKC21] Piotr Bielak, Tomasz Kajdanowicz, and Nitesh V. Chawla. Graph bar-
low twins: A self-supervised representation learning framework for
graphs. CoRR, abs/2106.02466, 2021.

[BKT13] Ronald S Burt, Martin Kilduff, and Stefano Tasselli. Social network
analysis: Foundations and frontiers on advantage. Annual review of
psychology, 64:527–547, 2013.

[BM21] Debanjan Banerjee and K. S. Meena. COVID-19 as an "Infodemic"
in public health: Critical role of the social media. Frontiers in Public
Health, 9:231–238, 2021.

[BMD+20] Ayan Kumar Bhowmick, Koushik Meneni, Maximilien Danisch, Jean-
Loup Guillaume, and Bivas Mitra. Louvainne: Hierarchical louvain
method for high quality and scalable network embedding. In Proceed-
ings of the 2020 ACM International Conference on Web Search and Data
Mining (WSDM), pages 43–51. ACM, 2020.

[BOS+05] Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer, S. V. N.
Vishwanathan, Alexander J. Smola, and Hans-Peter Kriegel. Protein
function prediction via graph kernels. Bioinformatics, 21(suppl_1):i47–
i56, 2005.

[BWS+20] Deyu Bo, Xiao Wang, Chuan Shi, Meiqi Zhu, Emiao Lu, and Peng
Cui. Structural deep clustering network. In Proceedings of the 2020
International Conference on World Wide Web (WWW), pages 1400–1410.
ACM, 2020.

[BWSS21] Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-
frequency information in graph convolutional networks. In Proceedings
of the 2021 AAAI Conference on Artificial Intelligence (AAAI), pages 3950–
3957. AAAI, 2021.

[CCB+20] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and
Petar Velickovic. Principal neighbourhood aggregation for graph nets.
In Proceedings of the 2020 Annual Conference on Neural Information Pro-
cessing Systems (NeurIPS). NeurIPS, 2020.

BIBLIOGRAPHY 135

[CCZP21] Ninghan Chen, Xihui Chen, Zhiqiang Zhong, and Jun Pang. From
#jobsearch to #mask: improving COVID-19 cascade prediction with
spillover effects. In Proceedings of the 2021 IEEE/ACM International Con-
ference on Advances in Social Networks Analysis and Mining (ASONAM),
pages 455–462. ACM, 2021.

[CCZP22] Ninghan Chen, Xihui Chen, Zhiqiang Zhong, and Jun Pang. Exploring
spillover effects for covid-19 cascade prediction. Entropy, 24(2), 2022.

[CGK+11] Alan Chia-Lung Chen, Shang Gao, Panagiotis Karampelas, Reda Al-
hajj, and Jon G. Rokne. Finding hidden links in terrorist networks by
checking indirect links of different sub-networks. In Counterterrorism
and Open Source Intelligence, pages 143–158. Springer, 2011.

[CLB19] Zhengdao Chen, Lisha Li, and Joan Bruna. Supervised community de-
tection with line graph neural networks. In Proceedings of the 2019 Inter-
national Conference on Learning Representations (ICLR). OpenReview.net,
2019.

[CLL+20] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Mea-
suring and relieving the over-smoothing problem for graph neural
networks from the topological view. In Proceedings of the 2020 AAAI
Conference on Artificial Intelligence (AAAI). AAAI, 2020.

[CPHS18] Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena. HARP:
Hierarchical representation learning for networks. In Proceedings of the
2018 AAAI Conference on Artificial Intelligence (AAAI). AAAI, 2018.

[CPLM21] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive
universal generalized pagerank graph neural network. In Proceedings
of the 2021 International Conference on Learning Representations (ICLR).
OpenReview.net, 2021.

[CTH+09] Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhiping Luo,
and Yantao Zheng. Nus-wide: a real-world web image database from
national university of singapore. In Proceedings of the 2009 International
Conference on Image and Video Retrieval (CIVR). ACM, 2009.

[CVJ+18] Catalina Cangea, Petar Velickovic, Nikola Jovanovic, Thomas Kipf,
and Pietro Liò. Towards sparse hierarchical graph classifiers. CoRR,
abs/1811.01287, 2018.

[CWH+20] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang
Li. Simple and deep graph convolutional networks. In Proceedings
of the 2020 International Conference on Machine Learning (ICML). JMLR,
2020.

[CWPZ19] Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. A survey on net-
work embedding. IEEE Transactions on Knowledge and Data Engineering,
31(5):833–852, 2019.

136 BIBLIOGRAPHY

[CZC18] HongYun Cai, Vincent W. Zheng, and Kevin Chen-Chuan Chang. A
comprehensive survey of graph embedding: Problems, techniques,
and applications. IEEE Transactions on Knowledge and Data Engineer-
ing, 30(9):1616–1637, 2018.

[CZP21] Ninghan Chen, Zhiqiang Zhong, and Jun Pang. An exploratory study
of COVID-19 information on twitter in the greater region. Big Data
Cogn. Comput., 5(1):5, 2021.

[DBV16] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Con-
volutional neural networks on graphs with fast localized spectral fil-
tering. In Proceedings of the 2016 Annual Conference on Neural Information
Processing Systems (NIPS), pages 3837–3845. NIPS, 2016.

[DCG+89] Peter J. Denning, Douglas Comer, David Gries, Michael C. Mulder,
Allen B. Tucker, A. Joe Turner, and Paul R. Young. Computing as a
discipline. Computer, 22(2):63–70, 1989.

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In Proceedings of
the 2009 Conference on Computer Vision and Pattern Recognition (CVPR),
pages 248–255. IEEE, 2009.

[DHS+19] Simon S. Du, Kangcheng Hou, Ruslan Salakhutdinov, Barnabás Póc-
zos, Ruosong Wang, and Keyulu Xu. Graph neural tangent kernel:
Fusing graph neural networks with graph kernels. In Proceedings
of the 2019 Annual Conference on Neural Information Processing Systems
(NeurIPS). NeurIPS, 2019.

[DHW+20] Yuxiao Dong, Ziniu Hu, Kuansan Wang, Yizhou Sun, and Jie Tang.
Heterogeneous network representation learning. In Proceedings of the
2020 International Joint Conferences on Artifical Intelligence (IJCAI), pages
4861–4867. IJCAI, 2020.

[DTSS10] Cora I Dăniasă, Vasile Tomiţă, Dragoş Stuparu, and Marieta Stanciu.
The mechanisms of the influence of viral marketing in social media.
Economics, Management & Financial Markets, 5(3):278–282, 2010.

[DWP+15] Emily Denton, Jason Weston, Manohar Paluri, Lubomir D. Bourdev,
and Rob Fergus. User conditional hashtag prediction for images. In
Proceedings of the 2015 ACM Conference on Knowledge Discovery and Data
Mining (KDD), pages 1731–1740. ACM, 2015.

[DYKC18] Amandeep Dhir, Yossiri Yossatorn, Puneet Kaur, and Sufen Chen.
Online social media fatigue and psychological wellbeing—a study of
compulsive use, fear of missing out, fatigue, anxiety and depression.
International Journal of Information Management, 40:141–152, 2018.

[EGF+17] Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos, Disha
Makhija, and Mohit Kumar. Zoobp: Belief propagation for hetero-
geneous networks. Proc. VLDB Endow., 10(5):625–636, 2017.

BIBLIOGRAPHY 137

[FZD+20] Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian
Xu, Qiang Yang, Evgeny Kharlamov, and Jie Tang. Graph random neu-
ral networks for semi-supervised learning on graphs. In Proceedings
of the 2020 Annual Conference on Neural Information Processing Systems
(NeurIPS). NeurIPS, 2020.

[FZMK20] Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. MAGNN: meta-
path aggregated graph neural network for heterogeneous graph em-
bedding. In Proceedings of the 2020 International Conference on World
Wide Web (WWW), pages 2331–2341. ACM, 2020.

[Gat14] Wolfgang Gatterbauer. Semi-supervised learning with heterophily.
CoRR, abs/1412.3100, 2014.

[Gat17] Wolfgang Gatterbauer. The linearization of belief propagation on pair-
wise markov random fields. In Proceedings of the 2017 AAAI Conference
on Artificial Intelligence (AAAI), pages 3747–3753. AAAI, 2017.

[GDJ+20] Thomas Gaudelet, Ben Day, Arian R. Jamasb, Jyothish Soman, Cristian
Regep, Gertrude Liu, Jeremy B. R. Hayter, Richard Vickers, Charles
Roberts, Jian Tang, David Roblin, Tom L. Blundell, Michael M. Bron-
stein, and Jake P. Taylor-King. Utilising graph machine learning within
drug discovery and development. CoRR, abs/2012.05716, 2020.

[GGKF15] Wolfgang Gatterbauer, Stephan Günnemann, Danai Koutra, and
Christos Faloutsos. Linearized and single-pass belief propagation.
Proc. VLDB Endow., 8(5):581–592, 2015.

[GJ19] Hongyang Gao and Shuiwang Ji. Graph u-nets. In Proceedings of the
2019 International Conference on Machine Learning (ICML). JMLR, 2019.

[GKRT04] Ramanathan V. Guha, Ravi Kumar, Prabhakar Raghavan, and Andrew
Tomkins. Propagation of trust and distrust. In Proceedings of the 2004
International Conference on World Wide Web (WWW), pages 403–412.
ACM, 2004.

[GL16] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning
for networks. In Proceedings of the 2016 ACM Conference on Knowledge
Discovery and Data Mining (KDD), pages 855–864. ACM, 2016.

[GMS05] Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model
for learning in graph domains. In 2005. Proceedings of the 2005 IEEE In-
ternational Joint Conference on Neural Networks (IJCNN), volume 2, pages
729–734, 2005.

[GN02] Michelle Girvan and Mark E. J. Newman. Community structure in
social and biological networks. Proceedings of the National Academy of
Sciences, 99:7821–7826, 2002.

[GSN+13] Fréderic Godin, Viktor Slavkovikj, Wesley De Neve, Benjamin
Schrauwen, and Rik Van de Walle. Using topic models for twitter

138 BIBLIOGRAPHY

hashtag recommendation. In Proceedings of the 2013 International Con-
ference on World Wide Web (WWW), pages 593–596. ACM, 2013.

[GSR+17] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals,
and George E. Dahl. Neural message passing for quantum chemistry.
In Proceedings of the 2017 International Conference on Machine Learning
(ICML). JMLR, 2017.

[HFG+21] Kexin Huang, Tianfan Fu, Wenhao Gao, Yue Zhao, Yusuf Roohani,
Jure Leskovec, Connor W Coley, Cao Xiao, Jimeng Sun, and Marinka
Zitnik. Therapeutics data commons: Machine learning datasets and
tasks for drug discovery and development. In Proceedings of the 2021
Annual Conference on Neural Information Processing Systems (NeurIPS).
NeurIPS, 2021.

[HFZ+20] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu
Ren, Bowen Liu, Michele Catasta, and Jure Leskovec. Open graph
benchmark: Datasets for machine learning on graphs. In Proceedings
of the 2020 Annual Conference on Neural Information Processing Systems
(NeurIPS). NeurIPS, 2020.

[HHS+21] Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R.
Benson. Combining label propagation and simple models out-
performs graph neural networks. In Proceedings of the 2021 International
Conference on Learning Representations (ICLR). OpenReview.net, 2021.

[HLL+19] Jingjia Huang, Zhangheng Li, Nannan Li, Shan Liu, and Ge Li.
Attpool: Towards hierarchical feature representation in graph convo-
lutional networks via attention mechanism. In Proceedings of the 2019
IEEE International Conference on Computer Vision (ICCV), pages 6480–
6489. IEEE, 2019.

[HLZ+17] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and
Tat-Seng Chua. Neural collaborative filtering. In Proceedings of the
2017 International Conference on World Wide Web (WWW), pages 173–
182. ACM, 2017.

[HM95] Jun Han and Claudio Moraga. The influence of the sigmoid function
parameters on the speed of backpropagation learning. In Proceedings of
the 1995 International Workshop on Artificial Neural Networks (IWANN),
pages 195–201. Springer, 1995.

[Hoc98] Sepp Hochreiter. The vanishing gradient problem during learning
recurrent neural nets and problem solutions. Int. J. Uncertain. Fuzziness
Knowl. Based Syst., 6(2):107–116, 1998.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 1997.

[HS06] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimen-
sionality of data with neural networks. Science, 313:504–507, 2006.

BIBLIOGRAPHY 139

[HSLH19] Xiao Huang, Qingquan Song, Yuening Li, and Xia Hu. Graph recur-
rent networks with attributed random walks. In Proceedings of the 2019
ACM Conference on Knowledge Discovery and Data Mining (KDD), pages
732–740. ACM, 2019.

[HVH81] S. R. Searle H. V. Henderson. The vec-permutation matrix, the vec
operator and kronecker products: A review. Linear and multilinear
algebra, 9(4):271–288, 1981.

[HW79] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means
clustering algorithm. Journal of the Royal Statistical Society. Series C
(Applied Statistics), 28(1):100–108, 1979.

[HYL17a] William L Hamilton, Rex Ying, and Jure Leskovec. Representation
learning on graphs: Methods and applications. IEEE Data Engineering
Bulletin, 40:52–74, 2017.

[HYL17b] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive rep-
resentation learning on large graphs. In Proceedings of the 2017 Annual
Conference on Neural Information Processing Systems (NIPS), pages 1025–
1035. NIPS, 2017.

[HZRS15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving
deep into rectifiers: Surpassing human-level performance on imagenet
classification. In Proceedings of the 2015 IEEE International Conference on
Computer Vision (ICCV), pages 1026–1034. IEEE, 2015.

[IP21] Sergei Ivanov and Liudmila Prokhorenkova. Boost then convolve:
Gradient boosting meets graph neural networks. In Proceedings of the
2021 International Conference on Learning Representations (ICLR). Open-
Review.net, 2021.

[JE10] Mohsen Jamali and Martin Ester. A matrix factorization technique
with trust propagation for recommendation in social networks. In Pro-
ceedings of the 2010 Conference on Recommender Systems (RecSys), pages
135–142. ACM, 2010.

[JM15] M. I. Jordan and T. M. Mitchell. Machine learning: Trends, perspec-
tives, and prospects. Science, 349(6245):255–260, 2015.

[JT21] Longlong Jing and Yingli Tian. Self-supervised visual feature learning
with deep neural networks: A survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 43(11):4037–4058, 2021.

[JXZZ19] Yizhu Jiao, Yun Xiong, Jiawei Zhang, and Yangyong Zhu. Collective
link prediction oriented network embedding with hierarchical graph
attention. In Proceedings of the 2019 ACM International Conference on
Information and Knowledge Management (CIKM), pages 419–428. ACM,
2019.

140 BIBLIOGRAPHY

[KB15] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochas-
tic optimization. In Proceedings of the 2015 International Conference on
Learning Representations (ICLR). OpenReview.net, 2015.

[KGW+18] Fariba Karimi, Mathieu Génois, Claudia Wagner, Philipp Singer, and
Markus Strohmaier. Homophily influences ranking of minorities in
social networks. Scientific Reports, 8:1–12, 2018.

[KKK+11] Danai Koutra, Tai-You Ke, U Kang, Duen Horng Chau, Hsing-
Kuo Kenneth Pao, and Christos Faloutsos. Unifying guilt-by-
association approaches: Theorems and fast algorithms. In Machine
Learning and Knowledge Discovery in Databases - European Conference
(ECMLPKDD), volume 6912, pages 437–452. Springer, 2011.

[KO21] Dongkwan Kim and Alice Oh. How to find your friendly neighbor-
hood: Graph attention design with self-supervision. In Proceedings
of the 2021 International Conference on Learning Representations (ICLR).
OpenReview.net, 2021.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet
classification with deep convolutional neural networks. In Proceedings
of the 2012 Annual Conference on Neural Information Processing Systems
(NIPS), pages 1106–1114, 2012.

[KSO+21] Tim Kaler, Nickolas Stathas, Anne Ouyang, Alexandros-Stavros Il-
iopoulos, Tao B. Schardl, Charles E. Leiserson, and Jie Chen. Ac-
celerating training and inference of graph neural networks with fast
sampling and pipelining. CoRR, 2021. abs/2110.08450.

[KW16] Thomas N. Kipf and Max Welling. Variational graph auto-encoders.
CoRR, abs/1611.07308, 2016.

[KW17] Thomas N. Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. In Proceedings of the 2017 International
Conference on Learning Representations (ICLR). OpenReview.net, 2017.

[LBBH98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[LBD+89] Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Hender-
son, Richard E. Howard, Wayne E. Hubbard, and Lawrence D. Jackel.
Handwritten digit recognition with a back-propagation network. In
Proceedings of the 1989 Annual Conference on Neural Information Process-
ing Systems (NIPS), pages 396–404. Morgan Kaufmann, 1989.

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. Deep learning.
Nature, 521(7553):436–444, 2015.

[LCWL18] Jundong Li, Kewei Cheng, Liang Wu, and Huan Liu. Streaming link
prediction on dynamic attributed networks. In Proceedings of the 2018

BIBLIOGRAPHY 141

ACM International Conference on Web Search and Data Mining (WSDM),
pages 369–377. ACM, 2018.

[LHL+21] Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi
Gupta, Omkar Bhalerao, and Ser-Nam Lim. Large scale learning on
non-homophilous graphs: New benchmarks and strong simple meth-
ods. In Proceedings of the 2021 Annual Conference on Neural Information
Processing Systems (NeurIPS). NeurIPS, 2021.

[LHW18] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into
graph convolutional networks for semi-supervised learning. In Pro-
ceedings of the 2018 AAAI Conference on Artificial Intelligence (AAAI),
pages 3538–3545. AAAI, 2018.

[LK07] David Liben-Nowell and Jon M. Kleinberg. The link-prediction prob-
lem for social networks. Journal of the American Society for Information
Science and Technology, 58(7):1019–1031, 2007.

[LK14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large net-
work dataset collection. http://snap.stanford.edu/data, June 2014.

[LKB+17] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud
Arindra Adiyoso Setio, Francesco Ciompi, Mohsen Ghafoorian, Jeroen
A. W. M. van der Laak, Bram van Ginneken, and Clara I. Sánchez. A
survey on deep learning in medical image analysis. Medical Image
Analysis, 42:60–88, 2017.

[LLC10] Ryan N. Lichtenwalter, Jake T. Lussier, and Nitesh V. Chawla. New
perspectives and methods in link prediction. In Proceedings of the 2010
ACM International Conference on Knowledge Discovery and Data Mining
(SIGKDD), pages 243–252. ACM, 2010.

[LLK19] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pool-
ing. In Proceedings of the 2019 International Conference on Machine Learn-
ing (ICML). JMLR, 2019.

[LMBB17] Ron Levie, Federico Monti, Xavier Bresson, and Michael M. Bronstein.
Cayleynets: Graph convolutional neural networks with complex ra-
tional spectral filters. IEEE Signal Processing Magazine, 67(1):97–109,
2017.

[LMK+19] Xin Liu, Tsuyoshi Murata, Kyoung-Sook Kim, Chatchawan Kotarasu,
and Chenyi Zhuang. A general view for network embedding as matrix
factorization. In Proceedings of the 2019 ACM International Conference on
Web Search and Data Mining (WSDM), pages 375–383. ACM, 2019.

[LMQ+19] Guohao Li, Matthias Müller, Guocheng Qian, Itzel C. Delgadillo, Ab-
dulellah Abualshour, Ali K. Thabet, and Bernard Ghanem. Deepgcns:
Can gcns go as deep as cnns? In Proceedings of the 2019 IEEE Inter-
national Conference on Computer Vision (ICCV), pages 9267–9276. IEEE,
2019.

http://snap.stanford.edu/data

142 BIBLIOGRAPHY

[LPJ+21] Yixin Liu, Shirui Pan, Ming Jin, Chuan Zhou, Feng Xia, and
Philip S. Yu. Graph self-supervised learning: A survey. CoRR, 2021.
abs/2103.00111.

[LR12] Chengwei Lei and Jianhua Ruan. A novel link prediction algorithm
for reconstructing protein–protein interaction networks by topological
similarity. Bioinformatics, 29(3):355–364, 2012.

[LvdH13] Nelly Litvak and Remco van der Hofstad. Uncovering disassortativity
in large scale-free networks. Physical review E, 87(2):022801, 2013.

[LWWL20] Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance
encoding - design provably more powerful graph neural networks for
structural representation learning. In Proceedings of the 2020 Annual
Conference on Neural Information Processing Systems (NeurIPS). NeurIPS,
2020.

[LZH+21] Xiao Liu, Fanjin Zhang, Zhenyu Hou, Zhaoyu Wang, Li Mian, Jing
Zhang, and Jie Tang. Self-supervised learning: Generative or con-
trastive. CoRR, 2021. abs/2006.08218.

[MBSL19] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lip-
man. Provably powerful graph networks. In Proceedings of the 2019
Annual Conference on Neural Information Processing Systems (NeurIPS),
pages 2153–2164. NeurIPS, 2019.

[MCCD13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. In Proceedings of the
2013 International Conference on Learning Representations (ICLR). Open-
Review.net, 2013.

[ME11] Aditya Krishna Menon and Charles Elkan. Link prediction via matrix
factorization. In Machine Learning and Knowledge Discovery in Databases
- European Conference (ECMLPKDD), pages 437–452. Springer, 2011.

[Mil95] George A. Miller. WordNet: A lexical database for english. Communi-
cations of the ACM, 38(11):39–41, 1995.

[MKS+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu,
Joel Veness, Marc G. Bellemare, Alex Graves, Martin A. Riedmiller,
Andreas Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control
through deep reinforcement learning. Nature, 518:529–533, 2015.

[ML10] Rohan Miller and Natalie Lammas. Social media and its implications
for viral marketing. Asia Pacific Public Relations Journal, 11(1):1–9, 2010.

[ML12] Julian J. McAuley and Jure Leskovec. Learning to discover social
circles in ego networks. In Proceedings of the 2012 Annual Conference
on Neural Information Processing Systems (NIPS), pages 548–556. NIPS,
2012.

BIBLIOGRAPHY 143

[MMCS11] Jonathan Masci, Ueli Meier, Dan C. Ciresan, and Jürgen Schmidhu-
ber. Stacked convolutional auto-encoders for hierarchical feature ex-
traction. In Proceedings of the 2011 International Conference on Artificial
Neural Networks (ICANN), pages 52–59. Springer, 2011.

[MO19] Ece C. Mutlu and Toktam A. Oghaz. Review on graph feature learn-
ing and feature extraction techniques for link prediction. CoRR, 2019.
abs/1901.03425.

[MRA+16] Pankaj Malhotra, Anusha Ramakrishnan, Gaurangi Anand, Lovekesh
Vig, Puneet Agarwal, and Gautam Shroff. Lstm-based encoder-
decoder for multi-sensor anomaly detection. CoRR, abs/1607.00148,
2016.

[MSC+13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeffrey
Dean. Distributed representations of words and phrases and their
compositionally. In Proceedings of the 2013 Annual Conference on Neural
Information Processing Systems (NIPS), pages 3111–3119. NIPS, 2013.

[MSJG15] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, and Ian J. Good-
fellow. Lstm-based encoder-decoder for multi-sensor anomaly detec-
tion. CoRR, abs/1511.05644, 2015.

[MWAT19] Yao Ma, Suhang Wang, Charu C. Aggarwal, and Jiliang Tang. Graph
convolutional networks with eigenpooling. In Proceedings of the 2019
ACM Conference on Knowledge Discovery and Data Mining (KDD), pages
723–731. ACM, 2019.

[MWW20] Yimeng Min, Frederik Wenkel, and Guy Wolf. Scattering GCN: over-
coming oversmoothness in graph convolutional networks. In Proceed-
ings of the 2020 Annual Conference on Neural Information Processing Sys-
tems (NeurIPS). NeurIPS, 2020.

[NH10] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 2010 International
Conference on Machine Learning (ICML), pages 807–814. JMLR, 2010.

[NHGT14] Zhenxing Niu, Gang Hua, Xinbo Gao, and Qi Tian. Semi-supervised
relational topic model for weakly annotated image recognition in so-
cial media. In Proceedings of the 2014 Conference on Computer Vision and
Pattern Recognition (CVPR), pages 4233–4240. IEEE, 2014.

[NJW01] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clus-
tering: Analysis and an algorithm. In Proceedings of the 2001 Annual
Conference on Neural Information Processing Systems (NIPS). NIPS, 2001.

[NLGH12] Galileo Namata, Ben London, Lise Getoor, and Bert Huang. Query-
driven active surveying for collective classification. In Proceedings of the
2012 International Workshop on Mining and Learning with Graphs, page 8,
2012.

144 BIBLIOGRAPHY

[NN12] Raj Rao Nadakuditi and M. E. J. Newman. Graph spectra and the de-
tectability of community structure in networks. Physical Review Letters,
108(18):188701, 2012.

[NSJ12] Seema Nagar, Aaditeshwar Seth, and Anupam Joshi. Characteriza-
tion of social media response to natural disasters. In Proceedings of the
2012 International Conference on World Wide Web (WWW), pages 671–
674. ACM, 2012.

[ÖE12] Fatih Özgül and Zeki Erdem. Detecting criminal networks using social
similarity. In Proceedings of the 2012 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining (ASONAM), pages
581–585. IEEE, 2012.

[PARS14] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online
learning of social representations. In Proceedings of the 2014 ACM Con-
ference on Knowledge Discovery and Data Mining (KDD), pages 701–710.
ACM, 2014.

[Pee17] Leto Peel. Graph-based semi-supervised learning for relational net-
works. In Proceedings of the 2017 SIAM International Conference on Data
Mining, pages 435–443. SIAM, 2017.

[PHL+20] Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong,
Tingyang Xu, and Junzhou Huang. Graph representation learning
via graphical mutual information maximization. In Proceedings of the
2020 International Conference on World Wide Web (WWW), pages 259–
270. ACM, 2020.

[PLG20] Krishna Kumar P., Paul Langton, and Wolfgang Gatterbauer. Factor-
ized graph representations for semi-supervised learning from sparse
data. In Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data (SIGMOD), pages 1383–1398. ACM, 2020.

[PSY+19] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao,
Maria E. Presa Reyes, Mei-Ling Shyu, Shu-Ching Chen, and S. S. Iyen-
gar. A survey on deep learning: Algorithms, techniques, and applica-
tions. ACM Computing Surveys, 51(5):92:1–92:36, 2019.

[PWC+20] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and
Bo Yang. Geom-gcn: Geometric graph convolutional networks. In
Proceedings of the 2020 International Conference on Learning Representa-
tions (ICLR). OpenReview.net, 2020.

[QCD+20] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang,
Ming Ding, Kuansan Wang, and Jie Tang. GCC: graph contrastive
coding for graph neural network pre-training. In Proceedings of the
2020 ACM Conference on Knowledge Discovery and Data Mining (KDD),
pages 1150–1160. ACM, 2020.

BIBLIOGRAPHY 145

[QDM+18] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie
Tang. Network embedding as matrix factorization: Unifying deep-
walk, line, pte, and node2vec. In Proceedings of the 2018 ACM In-
ternational Conference on Web Search and Data Mining (WSDM), pages
459–467. ACM, 2018.

[QDM+19] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Chi Wang, Kuansan
Wang, and Jie Tang. Netsmf: Large-scale network embedding as
sparse matrix factorization. In Proceedings of the 2019 International Con-
ference on World Wide Web (WWW), pages 1509–1520. ACM, 2019.

[RAS21] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale at-
tributed node embedding. Journal of Complex Networks, 9(2), 2021.

[RFB15] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convo-
lutional networks for biomedical image segmentation. In Proceedings
of the 2015 Medical Image Computing and Computer-Assisted Intervention
(MICCAI), volume 9351 of Lecture Notes in Computer Science, pages 234–
241. Springer, 2015.

[RFC+20] Emanuele Rossi, Fabrizio Frasca, Ben Chamberlain, Davide Eynard,
Michael M. Bronstein, and Federico Monti. Sign: Scalable inception
graph neural networks. CoRR, abs/2004.11198, 2020.

[RGP+15] Giulio Rossetti, Riccardo Guidotti, Diego Pennacchioli, Dino Pe-
dreschi, and Fosca Giannotti. Interaction prediction in dynamic net-
works exploiting community discovery. In Proceedings of the 2015
IEEE/ACM International Conference on Advances in Social Networks Anal-
ysis and Mining (ASONAM), pages 553–558. ACM, 2015.

[RN20] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach (4th Edition). Pearson, 2020.

[Ros61] Frank Rosenblatt. Principles of neurodynamics. perceptrons and the
theory of brain mechanisms. Technical report, Cornell Aeronautical
Lab Inc Buffalo NY, 1961.

[ŘS10] Radim Řehůřek and Petr Sojka. Software framework for topic mod-
elling with large corpora. In Proceedings of the LREC 2010 Workshop on
New Challenges for NLP Frameworks, pages 45–50. ELRA, 2010.

[RS20] Benedek Rozemberczki and Rik Sarkar. Characteristic functions on
graphs: Birds of a feather, from statistical descriptors to parametric
models. In Proceedings of the 2020 ACM International Conference on In-
formation and Knowledge Management (CIKM), pages 1325–1334. ACM,
2020.

[RSF17] Leonardo Filipe Rodrigues Ribeiro, Pedro H. P. Saverese, and Daniel R.
Figueiredo. struc2vec: Learning node representations from structural
identity. In Proceedings of the 2017 ACM Conference on Knowledge Dis-
covery and Data Mining (KDD), pages 385–394. ACM, 2017.

146 BIBLIOGRAPHY

[RST20] Ekagra Ranjan, Soumya Sanyal, and Partha Pratim Talukdar. ASAP:
adaptive structure aware pooling for learning hierarchical graph rep-
resentations. In Proceedings of the 2020 AAAI Conference on Artificial
Intelligence (AAAI). AAAI, 2020.

[RT18] Daniel R. Richards and Bige Tunçer. Using image recognition to au-
tomate assessment of cultural ecosystem services from social media
photographs. Ecosystem Services, 31:318–325, 2018.

[Saa81] Yousef Saad. Iterative methods for sparse linear systems. SIAM, 1981.

[SC14] Jieying She and Lei Chen. Tomoha: Topic model-based hashtag recom-
mendation on twitter. In Proceedings of the 2014 International Conference
on World Wide Web (WWW), pages 371–372. ACM, 2014.

[SGT+09] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner,
and Gabriele Monfardini. The graph neural network model. IEEE
Transactions on Neural Networks, 20(1):61–80, 2009.

[SH12] Yizhou Sun and Jiawei Han. Mining heterogeneous information net-
works: a structural analysis approach. ACM SIGKDD Explorations
Newsletter, 2012.

[SK67] Richard Sinkhorn and Paul Knopp. Concerning nonnegative ma-
trices and doubly stochastic matrices. Pacific Journal of Mathematics,
21(2):343–348, 1967.

[SKP15] Florian Schroff, Dmitry Kalenichenko, and James Philbin. FaceNet:
A unified embedding for face recognition and clustering. In Proceed-
ings of the 2015 Conference on Computer Vision and Pattern Recognition
(CVPR), pages 815–823. IEEE, 2015.

[SNB+08] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gal-
ligher, and Tina Eliassi-Rad. Collective classification in network data.
AI magazine, 29(3):93–93, 2008.

[SSS+17] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis
Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker,
Matthew Lai, Adrian Bolton, Yutian Chen, Timothy P. Lillicrap, Fan
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and
Demis Hassabis. Mastering the game of go without human knowl-
edge. Nature, 550(7676):354–359, 2017.

[SZ15] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. In Proceedings of the 2015
International Conference on Learning Representations (ICLR). OpenRe-
view.net, 2015.

[Ten16] Shang-Hua Teng. Scalable algorithms for data and network analy-
sis. Foundations and Trends in Theoretical Computer Science, 12(1-2):1–274,
2016.

BIBLIOGRAPHY 147

[TQM15] Jian Tang, Meng Qu, and Qiaozhu Mei. Pte: Predictive text embedding
through large-scale heterogeneous text networks. In Proceedings of the
2015 ACM Conference on Knowledge Discovery and Data Mining (KDD),
pages 1165–1174. ACM, 2015.

[TQW+15] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and
Qiaozhu Mei. Line: Large-scale information network embedding.
In Proceedings of the 2015 International Conference on World Wide Web
(WWW), pages 1067–1077. ACM, 2015.

[TR12] Oren Tsur and Ari Rappoport. What’s in a hashtag? content based
prediction of the spread of ideas in microblogging communities. In
Proceedings of the 2012 ACM International Conference on Web Search and
Data Mining (WSDM), pages 643–652. ACM, 2012.

[Tra15] V.A. Traag. Faster unfolding of communities: Speeding up the louvain
algorithm. Physical Review E, 92(3):032801, 2015.

[TY12] Xuning Tang and Christopher C Yang. Ranking user influence in
healthcare social media. ACM Transactions on Intelligent Systems and
Technology (TIST), 3(4):1–21, 2012.

[TZ15] Naftali Tishby and Noga Zaslavsky. Deep learning and the informa-
tion bottleneck principle. In 2015 IEEE Information Theory Workshop
(ITW), pages 1–5. IEEE, 2015.

[TZPM19] Yu Tian, Long Zhao, Xi Peng, and Dimitris N. Metaxas. Rethinking
kernel methods for node representation learning on graphs. In Pro-
ceedings of the 2019 Annual Conference on Neural Information Processing
Systems (NeurIPS), pages 11681–11692. NeurIPS, 2019.

[TZY+08] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su.
Arnetminer: extraction and mining of academic social networks. In
Proceedings of the 2008 ACM Conference on Knowledge Discovery and Data
Mining (KDD), pages 990–998. ACM, 2008.

[VCC+18] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Lio, and Yoshua Bengio. Graph attention networks.
In Proceedings of the 2018 International Conference on Learning Represen-
tations (ICLR). OpenReview.net, 2018.

[vdMH08] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using
t-sne. In Eurographics Conference on Visualization (EuroVis), pages 2579–
2605. Eurographics Association, 2008.

[VFH+19] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò,
Yoshua Bengio, and R. Devon Hjelm. Deep graph infomax. In Pro-
ceedings of the 2019 International Conference on Learning Representations
(ICLR). OpenReview.net, 2019.

148 BIBLIOGRAPHY

[VSKB10] S. V. N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, and
Karsten M. Borgwardt. Graph kernels. Journal of Machine Learning
Research, 11:1201–1242, 2010.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Atten-
tion is all you need. In Proceedings of the 2017 Annual Conference on
Neural Information Processing Systems (NIPS), pages 5998–6008. NIPS,
2017.

[WCW+17] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang
Yang. Community preserving network embedding. In Proceedings of
the 2017 AAAI Conference on Artificial Intelligence (AAAI). AAAI, 2017.

[Wei03] Eric W Weisstein. Gershgorin circle theorem. https://mathworld. wol-
fram. com/, 2003.

[WMWG17] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge
graph embedding: A survey of approaches and applications. IEEE
Transactions on Knowledge and Data Engineering, 29(12):2724–2743, 2017.

[WPC+21] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi
Zhang, and Philip S. Yu. A comprehensive survey on graph neural
networks. IEEE Transactions on Neural Networks and Learning Systems,
32(1):4–24, 2021.

[WPL14] Jun Wang, Jiaxu Peng, and Ou Liu. An approach for hesitant node
classification in overlapping community detection. In Processings of
the 2014 Pacific Asia Conference on Information Systems (PACIS), page 47,
2014.

[WRLL20] Tailin Wu, Hongyu Ren, Pan Li, and Jure Leskovec. Graph informa-
tion bottleneck. In Proceedings of the 2020 Annual Conference on Neural
Information Processing Systems (NeurIPS). NeurIPS, 2020.

[WS98] D. J. Watts and Steven H. Strogatz. Collective dynamics of small-world
networks. Nature, 393:440, 1998.

[WWL+11] Xiaolong Wang, Furu Wei, Xiaohua Liu, Ming Zhou, and Ming Zhang.
Topic sentiment analysis in twitter: A graph-based hashtag sentiment
classification approach. In Proceedings of the 2011 ACM International
Conference on Information and Knowledge Management (CIKM), pages
1031–1040. ACM, 2011.

[WYG18] Xiaolong Wang, Yufei Ye, and Abhinav Gupta. Zero-shot recognition
via semantic embeddings and knowledge graphs. In Proceedings of
the 2018 Conference on Computer Vision and Pattern Recognition (CVPR),
pages 6857–6866. IEEE, 2018.

BIBLIOGRAPHY 149

[WYHY15] Jiajun Wu, Yinan Yu, Chang Huang, and Kai Yu. Deep multiple in-
stance learning for image classification and auto-annotation. In Pro-
ceedings of the 2015 Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3460–3469. IEEE, 2015.

[WYM+16] Jiang Wang, Yi Yang, Junhua Mao, Zhiheng Huang, Chang Huang,
and Wei Xu. Cnn-rnn: A unified framework for multi-label image
classification. In Proceedings of the 2016 Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2285–2294. IEEE, 2016.

[XGF16] Junyuan Xie, Ross B. Girshick, and Ali Farhadi. Unsupervised deep
embedding for clustering analysis. In Proceedings of the 2016 Interna-
tional Conference on Machine Learning (ICML), pages 478–487. JMLR,
2016.

[XHLJ19] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How
powerful are graph neural networks? In Proceedings of the 2019 Inter-
national Conference on Machine Learning (ICML). JMLR, 2019.

[XSC+19] Bingbing Xu, Huawei Shen, Qi Cao, Yunqi Qiu, and Xueqi Cheng.
Graph wavelet neural network. In Proceedings of the 2019 International
Conference on Learning Representations (ICLR). OpenReview.net, 2019.

[XSY+21] Feng Xia, Ke Sun, Shuo Yu, Abdul Aziz, Liangtian Wan, Shirui Pan,
and Huan Liu. Graph learning: A survey. IEEE Transactions on Artificial
Intelligence, 2(2):109–127, 2021.

[YBY+19] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure
Leskovec. Gnnexplainer: Generating explanations for graph neural
networks. In Proceedings of the 2019 Annual Conference on Neural Infor-
mation Processing Systems (NeurIPS), pages 9240–9251. NeurIPS, 2019.

[YCS+20] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang
Wang, and Yang Shen. Graph contrastive learning with augmenta-
tions. In Proceedings of the 2020 Annual Conference on Neural Information
Processing Systems (NeurIPS). NeurIPS, 2020.

[YHS+21] Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai
Koutra. Two sides of the same coin: Heterophily and oversmoothing
in graph convolutional neural networks. abs/2102.06462, 2021.

[YJ20] Hao Yuan and Shuiwang Ji. Structpool: Structured graph pooling
via conditional random fields. In Proceedings of the 2020 International
Conference on Learning Representations (ICLR). OpenReview.net, 2020.

[YLZ+15] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y.
Chang. Network representation learning with rich text information.
In Proceedings of the 2015 International Joint Conferences on Artifical Intel-
ligence (IJCAI), pages 2111–2117. IJCAI, 2015.

150 BIBLIOGRAPHY

[YTHJ20] Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. XGNN: towards
model-level explanations of graph neural networks. In Proceedings
of the 2020 ACM Conference on Knowledge Discovery and Data Mining
(KDD), pages 430–438. ACM, 2020.

[YYL19] Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neu-
ral networks. In Proceedings of the 2019 International Conference on Ma-
chine Learning (ICML). JMLR, 2019.

[YYM+18] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L.
Hamilton, and Jure Leskovec. Hierarchical graph representation learn-
ing with differentiable pooling. In Proceedings of the 2018 Annual Con-
ference on Neural Information Processing Systems (NeurIPS), pages 4805–
4815. NeurIPS, 2018.

[ZA20] Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmooth-
ing in gnns. In Proceedings of the 2020 International Conference on Learn-
ing Representations (ICLR). OpenReview.net, 2020.

[Zac77] Wayne W Zachary. An information flow model for conflict and fission
in small groups. Journal of Anthropological Research, 1977.

[ZAG18] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adver-
sarial attacks on neural networks for graph data. In Proceedings of the
2018 ACM Conference on Knowledge Discovery and Data Mining (KDD),
pages 2847–2856. ACM, 2018.

[ZAL18] Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling
polypharmacy side effects with graph convolutional networks. Bioin-
formatics, 34(13):i457–i466, 2018.

[ZBL+03] Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston,
and Bernhard Schölkopf. Learning with local and global consistency.
In Proceedings of the 2003 Annual Conference on Neural Information Pro-
cessing Systems (NIPS), pages 321–328. NIPS, 2003.

[ZC18] Muhan Zhang and Yixin Chen. Link prediction based on graph neural
networks. In Proceedings of the 2018 Annual Conference on Neural Infor-
mation Processing Systems (NeurIPS), pages 5171–5181. NeurIPS, 2018.

[ZCH+20] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang,
Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. Graph
neural networks: A review of methods and applications. AI Open,
1:57–81, 2020.

[ZCNC18] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An
end-to-end deep learning architecture for graph classification. In Pro-
ceedings of the 2018 AAAI Conference on Artificial Intelligence (AAAI).
AAAI, 2018.

BIBLIOGRAPHY 151

[ZCZ20] Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs:
A survey. IEEE Transactions on Knowledge and Data Engineering, 2020.

[ZG09] Elena Zheleva and Lise Getoor. To join or not to join: the illusion of
privacy in social networks with mixed public and private user profiles.
In Proceedings of the 2009 International Conference on World Wide Web
(WWW), pages 531–540. ACM, 2009.

[Zha19] Yang Zhang. Language in our time: An empirical analysis of hashtags.
In Proceedings of the 2019 International Conference on World Wide Web
(WWW), pages 2378–2389. ACM, 2019.

[ZHR+18] Yang Zhang, Mathias Humbert, Tahleen Rahman, Cheng-Te Li, Jun
Pang, and Michael Backes. Tagvisor: A privacy advisor for sharing
hashtags. In Proceedings of the 2018 International Conference on World
Wide Web (WWW), pages 287–296. ACM, 2018.

[Zhu05] Xiaojin Zhu. Semi-supervised learning literature survey. Technical re-
port, University of Wisconsin-Madison Department of Computer Sciences,
2005.

[ZJM+21] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny.
Barlow twins: Self-supervised learning via redundancy reduction.
In Proceedings of the 2021 International Conference on Machine Learning
(ICML), pages 12310–12320. JMLR, 2021.

[ZL17] Marinka Zitnik and Jure Leskovec. Predicting multicellular function
through multi-layer tissue networks. Bioinformatics, 33:i190–i198, 2017.

[ZLK+18] Bolei Zhou, Àgata Lapedriza, Aditya Khosla, Aude Oliva, and Anto-
nio Torralba. Places: A 10 million image database for scene recog-
nition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
40(6):1452–1464, 2018.

[ZLLW19] Xiaotong Zhang, Han Liu, Qimai Li, and Xiao-Ming Wu. Attributed
graph clustering via adaptive graph convolution. In Proceedings of the
2019 International Joint Conferences on Artifical Intelligence (IJCAI), pages
4327–4333. IJCAI, 2019.

[ZLP20a] Zhiqiang Zhong, Cheng-Te Li, and Jun Pang. Adaptive multi-grained
graph neural networks. CoRR, abs/2010.00238, 2020.

[ZLP20b] Zhiqiang Zhong, Cheng-Te Li, and Jun Pang. Hierarchical message-
passing graph neural networks. CoRR, abs/2009.03717, 2020.

[ZLP22] Zhiqiang Zhong, Cheng-Te Li, and Jun Pang. Personalised meta-
path generation for heterogeneous graph neural networks. Data Min.
Knowl. Discov., 2022.

[ZRR+21] Jiong Zhu, Ryan A. Rossi, Anup B. Rao, Tung Mai, Nedim Lipka,
Nesreen K. Ahmed, and Danai Koutra. Graph neural networks with

152 BIBLIOGRAPHY

heterophily. In Proceedings of the 2021 AAAI Conference on Artificial
Intelligence (AAAI), pages 11168–11176. AAAI, 2021.

[ZYZ+20] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,
and Danai Koutra. Beyond homophily in graph neural networks: Cur-
rent limitations and effective designs. In Proceedings of the 2020 Annual
Conference on Neural Information Processing Systems (NeurIPS). NeurIPS,
2020.

[ZZP19] Zhiqiang Zhong, Yang Zhang, and Jun Pang. A graph-based approach
to explore relationship between hashtags and images. In Proceedings of
the 2019 International Conference on Web Information Systems Engineering
(WISE), volume 11881, pages 473–488. Springer, 2019.

[ZZP22] Zhiqiang Zhong, Yang Zhang, and Jun Pang. NeuLP: An end-to-end
deep-learning model for link prediction. In Proceedings of the 2020
International Conference on Web Information Systems Engineering (WISE),
pages 96–108. Springer, 2022.

153

Curriculum Vitae

2018 – 2022 Ph.D. student, University of Luxembourg, Luxembourg
2016 – 2017 Master in Finance, Paris Dauphine University, France.
2015 – 2017 Master Degree in Data Science, EISTI, France.
2011 – 2015 Bachelor in Mathematics, China University of Petroleum, China

Born on July 19, 1993, Anhui, China.

	ZZQ-page de garde thèse modele apsoutenance-EN
	PhD-FSTM-2022-36
	DISSERTATION
	EN INFORMATIQUE
	Zhiqiang ZHONG
	Dr. Jun Pang, dissertation supervisor
	Dr. Sjouke Mauw, Chairman
	Dr. Martin Theobald, Vice Chairman
	Dr. Cheng-Te Li
	Dr. Davide Mottin

	PhD_Thesis_ZhiqiangZHONG

