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Abstract

The main goal of this thesis was to explore the possibility that ferroelectric materials, char-

acterized by a spontaneous and switchable electric polarization, may present topologically

non-trivial structures akin to the skyrmions that occur in their ferromagnetic counterparts.

The main tool used in the investigation was atomistic simulation based of first-principles

effective models (“second-principles methods”), applied to two model systems: ferroelec-

tric PbTiO3 and ferroelectric/paraelectric superlattices made of PbTiO3 and SrTiO3. More

precisely, the simulations were used to analyze multidomain configurations in these com-

pounds, motivated by previous reports that they may present non-trivial structural features.

The main finding of the thesis is that, indeed, a simple multidomain configuration in PbTiO3

– namely, a columnar nanodomain with polarization opposed to that of its surrounding matrix

– is sufficient to generate a dipole texture – associated to the rotation of the polarization at

the domain wall between nanodomain and matrix – with the topology of a skyrmion. This

constitutes the first prediction of an electric skyrmion in a simple ferroelectric material. Fur-

ther, it is shown that the properties and topology of this skyrmion can be tuned by external

electric and elastic fields, as well as by temperature, obtaining novel effects such as topo-

logical and iso-topological phase transitions. Finally, the investigation of the PbTiO3/SrTiO3

superlattices reveals that the skyrmion structures can be obtained as the ground state so-

lution for such systems. This latter study was developed in the context of a collaboration

with experimental groups at UC Berkeley and elsewhere, which led to the first experimental

confirmation of electric skyrmions. Hence, in conclusion, the theoretical work in this thesis

has been an integral part of the discovery of electric skyrmions in ferroelectric materials.
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(Exy = E î+E ĵ) and asub; The green and blue regions show the electric fields

and asub where the configurations NDW-skyrmion and NDW-polar are more

stable, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Calculated probability distribution of the topological charge as a function of

temperature. The color scale represents the probability to obtain a given topo-

logical charge Q. The background colors show the different phases identified;

white for the skyrmion phase; red for the coexistence phase; grey background

the monodomain phase. The circles appear in the temperature range in which

the configuration of the nanodomain exists and the squares indicate that the

nanodomain has already been destroyed. . . . . . . . . . . . . . . . . . . . . 58

4.2 The polarization maps for snapshots obtained at different temperatures (T =

160 K, T = 220 K, T = 250 K and T = 260 K); the color scale gives the out-

of-plane Pz component, while the arrows correspond to the in-plane Px and

Py. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Calculated components of the average polarization (green circles represent

the out-of-plane component |Pz| and the red circles show the in-plane com-

ponent of the polarization |Px| = |Py|). In panels [(a) and (b)] is presented the

polarization at constant temperature, respectively T = 12.5 K and T = 250

K. The panels [(c)–(e)] we show the evolution of the polarization components

for different in-plane lattices, respectively asub = 3.933 Å, asub = 3.983 Å and
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Chapter 1

Introduction

The focus of this thesis will be exotic topological structures in ferroelectric materials. To

introduce the topic let me review the basics of ferroelectricity and ferroelectric perovskite

oxides and how we can tune their properties.

1.1 Perovskite oxides ABO3

1.1.1 The structure

The perovskite structure is a simple cubic structure, whose chemical formula is ABO3. In

this structure, atoms A and B are the cations and the atoms of O form an octahedron around

the B atom. As we can see in Fig. 1.1 (a), the A atoms occupy the vertices of the cubic

structure and atom B is in the center of the unit cell. The atoms of O appear in the center of

each face of the unit cell.

This structure, despite being quite simple, presents a wide range of properties depending

on the atoms A and B, used for different applications, for example, energy harvesting [9,

10], high-frequency tunable dielectrics [10, 11] or ferroelectric or multiferroic memories [12,

13, 14]. This variety of applications is a consequence of the diversity of deformations to

which some of these perovskite oxides may be subject, such as the ferroelectric instability

or antiferrodistortive instabilities presented in Fig. 1.1.
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In this thesis we will focus on two perovskite materials: PbTiO3 and SrTiO3.

1.1.2 Ferroelectric Perovskite oxides

Some of these perovskites are ferroelectric materials with a spontaneous polarization [15,

16]. In such materials, collective distortions from the ideal perovskite structure are observed

involving the relative displacement of the cations (atoms A and B) with respect to the sub-

lattice formed by the O atoms (deformation presented in Fig. 1.1 (b)). This distortion is

associated with a phase transition, shown in Fig. 1.2 (a), from a high temperature paraelec-

tric phase with an ideal perovskite structure to a low temperature ferroelectric phase. As

previously mentioned, in this phase the relative displacement of cations with respect to the

O octahedra give rise to a polarization.

In addition to the observed polarization, these ferroelectric perovskites have three more

characteristics that are important to mention. The first is related to the dielectric susceptibility

around the ferroelectric transition. The susceptibility measures the polarization variation P

Figure 1.1: Sketch of the most relevant configurations in ABO3 perovskite oxides. Panel (a)
shows the ideal cubic structure of the ABO3 perovskite; Panel (b) shows the ferroelectric
instability (FEz); Panels (c) and (d) present the antiferrodistortive instabilities with the O6

octahedra rotation along z in-phase, AFDi
z (c), and in antiphase, AFDa

z (d). The arrows
represent the atomic displacements.
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Figure 1.2: Sketch of the ferroelectric transition of a perovskite (a) and the characteristic
ferroelectric hysteresis loop of the polarization as a function of electric field (b).

when we apply an external electric field Eext according to the expression:

χαβ =
1

ε0

∂Pα
∂Eextβ

, (1.1)

where ε0 is the vacuum permittivity, and α and β label the spatial components of polarization

and electric field. Near the ferroelectric transition, a small electric field produces a huge

variation in polarization and therefore a peak is observed in the susceptibility.

As in any other material that is ferroelectric, ferroelectric perovskite must be switchable

upon application of an external electric field. In Fig. 1.2 (b) we show the P–E hysteresis

loop, consequence of this property. This loop is obtained by applying a positive electric field,

increasing the polarization to its maximum (saturation of the polarization). Then we reduce

the electric field until it is null and, at this point, we obtain the remnant polarization Pr. Then,

we apply negative fields with increasing magnitude until we reach the negative saturation

polarization. During this part of the cycle there is a point where the polarization is zero.

The magnitude of the electric field at this point is called the coercive field, Ec. Finally, we

complete the cycle by increasing the external electric field again.

Finally, all ferroelectric perovskites are also piezoelectric, which implies that when subject

to an external electric field, the material undergoes a strain variation. The piezoelectric
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coefficients dαγ are the key quantity in piezoelectric materials and it is given by:

dαγ =

(
∂ηγ
∂Eextα

)∣∣∣∣∣
σ

, (1.2)

where ηγ is the strain component in Voigt notation where γ = 1, ..., 6, α labels the spatial

component of the electric field and σ is the external stress.

Several examples of ferroelectric perovskites can be found in the literature showing dif-

ferent competing instabilities and different transition sequences.

BaTiO3

One of the most studied perovskites at the experimental and theoretical level is BaTiO3

[17, 18], which at high temperatures has a cubic structure, but when decreasing the tem-

perature a series of transitions is observed. The first phase obtained is a tetragonal phase

where the polarization points along a 〈001〉 direction. When the temperature decreases,

the polarization rotates now pointing along a 〈011〉 direction which corresponds to a new

transformation from a tetragonal to an orthorhombic phase. Finally, at very low tempera-

tures BaTiO3 presents a final transition to a rhombohedral phase in which the polarization

rotates towards a 〈111〉 direction. In this material, the polarization direction is dominated

by the Ti displacements and the obtained polarizations are 33 µC/cm2, 36 µC/cm2 and 27

µC/cm2 for the tetragonal, orthorhombic and rhombohedral phases, respectively [19, 20].

Other perovskites such as KNbO3 present the same sequence of transitions.

PbTiO3

Another widely studied perovskite is PbTiO3, which presents only a paraelectric-ferroelectric

transition, in which at low temperatures a ferroelectric tetragonal phase with a polarization of

75 µC/cm2 was observed [21, 22]. The polarization in PbTiO3 is dominated by the displace-

ments of Ti and Pb atoms with respect to the O atom sub-lattice. Therefore, the polarization

obtained for PbTiO3 is much higher than that obtained in the different phases of BaTiO3.
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SrTiO3

In the case of SrTiO3, it presents not only a ferroelectric instability but also antiferrodistortive

instabilities. In this material, at low temperatures, an antiferrodistortive transition was ob-

served [23, 24], with the rotation of the oxygen octahedra. Because the antiferrodistortive

and ferroelectric instabilities compete, the condensation of the former suppresses the fer-

roelectric instability, which is never observed. For this reason, SrTiO3 is sometimes called

an incipient ferroelectric. Perovskites like CaTiO3, GdFeO3 or DyScO3 are other examples

of materials in which the oxygen octahedra rotations are observed, even if some of these

materials present different rotation patterns.

Applications

Now that we have shown some of the main properties of ferroelectric materials, we will show

how they are used in different applications. In the case of non-volatile ferroelectric random

access memories [12, 13, 14], these are based on the ability of ferroelectric materials to

change their direction of polarization between two stable states to which values 0 or 1 are

associated. Then, applying a short voltage pulse, it is possible to write new information by

changing the polarization. The fact that ferroelectric materials present their polarized state

even in the absence of a voltage makes these ferroelectric memories non-volatile.

Ferroelectric-based actuators, sensors and transducers [10, 11] take advantage of the

piezoelectricity of ferroelectric materials. Thus, ferroelectric sensors are widely used to de-

tect voltages in the system by measuring the electric displacement field. The actuators are

used to alter or impose a state on the system using piezoelectricity. In this case, high voltage

conditions with high force are required, for example to start engines or control fuel injection.

1.1.3 Structural domain walls

Ferroelectric perovskite oxides offer another possibility for the construction of new technolo-

gies at the nanoscale, the structural domain walls [25, 26, 27].
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Figure 1.3: Sketch of the ferroelectric multidomain configuration, in which the green and
magenta regions represent the domains with polarization up and down respectively, and the
black region is the domain wall.

As mentioned above, ferroelectric perovskite oxides are characterized by a break in sym-

metry due to a structural distortion (which we presented earlier in Fig. 1.1 (b)) that deforms

the ideal cubic perovskite phase and this deformation can be switched applying an external

electrical field as illustrated in Fig. 1.2 (b).

Thus, in these ferroelectric materials, structural distortions can be oriented differently in

distinct regions of the material creating what we call domains with different polarizations. As

we show in Fig. 1.3, separating these domains there is a region called domain wall. These

walls of the ferroelectric domains tend to be almost two-dimensional objects with a width of

few unit cells [26]. These domain walls are generally produced spontaneously in ferroelectric

materials during a ferroelectric transition or during the switching process of the polarization.

In addition, in several cases the domain walls can be created, moved, erased and even

injected [28, 29, 30, 31] using different strategies and means thus allowing devices to be

controlled and manipulated.

Until now we have not discussed the intrinsic properties of the domain walls. Since it is

an almost two-dimensional object confined between two domains with different properties

and subject to different stress conditions, the domain walls in many cases have different

properties than those observed in the domains. One of the most interesting examples was

observed in WO3 – which is not a perovskite – in which the domain walls are superconduct-

ing, which is not the case in the domains [32]. BiFeO3 domain walls are one of the systems

that has attracted the most attention. In this perovskite the domains are insulating, however,

it was demonstrated that in the domain walls high conductivity is observed at room tempera-
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Figure 1.4: Sketch of the possible characters of 180◦ domain walls, in which we show the
evolution of the polarization inside the wall. In panel (a) we show Ising domain walls; panel
(b) we have the Néel domain wall; In panel (c) we present the Bloch domain wall.

ture [33, 34]. In the case of SrTiO3, as described above, the domains do not have any polar

order, however their domain walls are ferroelectric [35, 36, 37, 38].

Domain walls in PbTiO3

PbTiO3’s domain walls are still among the most studied and play an important role in the

work developed in this thesis. Therefore, we will focus on the main advances reported in the

literature in the study of these walls concerning: (i) what is their internal structure? and (ii)

how does the order parameter (polarization) evolve along the domain wall?

In the beginning of the century, two studies were published defining the guidelines for the

study of the structure of domain walls [39, 40], more specifically the ideal and neutral 180◦

domain walls of PbTiO3. Both studies used first-principles methods to study these structures

and they concluded that: (i) these walls are very thin objects with a thickness of about one

unit cell and (ii) these walls are centered on the Pb-O planes (the walls centered on the Ti-O

planes are unstable).

However, these studies differed in the predicted character of the domain walls. In Fig. 1.4

we show the three different characters that 180◦ domain walls can present. Fig. 1.4 (a) is an
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Figure 1.5: (a) Sketch of the supercell used in the simulations with the distortions in the
domains and domain walls. Panel (b) shows two views of the atomic structure of our multi-
domain configuration. Panels (c) and (d) show the temperature dependent polarization and
diagonal components of the dielectric permittivity tensor for the domains and domain walls.
The blue circles represent the polarization obtained in the center of the domains and the red
triangles are the results at the center of the domain walls. In the case of the dielectric per-
mittivity the circles represent the response of the domains and the triangles are the results
of the domain walls. Figure taken from [1]

Ising wall in which the polarization only changes along one direction and is zero within the

domain wall between the domains with opposite polarization. In the case of the Néel domain

wall, shown in Fig. 1.4 (b), the polarization rotates in a plane perpendicular to the plane of

the domain wall. In Fig. 1.4 (c) we show the Bloch domain wall, in which the polarization

inside the domain wall is perpendicular to the polarization in the domains and parallel to the

domain wall plane. Meyer and Vanderbilt [40] obtained that the domain walls have an Ising

character, while Pöykkö and Chadi [39] predicted that the walls have a Bloch character.

More recently in 2014 Wojdeł and Íñiguez [1] studied the same system using first-principles

methods and effective potentials, confirming the Bloch character of the domain walls as we

can see in Fig. 1.5 (a) and (b). The character of the wall of domains in PbTiO3 has been

confirmed experimentally in several works [7, 8].

In addition, in the work of Wojdeł and Íñiguez [1] the behavior of the multidomain con-

figuration was also studied as a function of temperature, suggesting the existence of two

transitions, presented in Fig. 1.5 (c) and (d). The first is associated with the ferroelectric
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transition in the domains previously described. And around T = 320 K they identified a sec-

ond transition due to the appearance of a polarization confined to the domain wall and the

respective peak in the dielectric response.

1.2 Optimization of ferroelectric perovskites

As we mentioned above ferroelectric perovskites are very sensitive to external perturbations,

which we can use to our advantage because it allows us to optimize their properties. Here

we will discuss some of the basic ways of doing this, in particular the most relevant to this

thesis.

1.2.1 Hydrostatic pressure

Perovskite oxides are materials that are very sensitive to deformations or external stresses.

In this section we will analyze the effect of hydrostatic pressure (the same pressure is applied

across all directions).

When applying positive hydrostatic pressure, the volume of the unit cell and the inter-

atomic distances are reduced and therefore different instabilities are observed in the mate-

rial.

In the case of PbTiO3, when the hydrostatic pressure is increased at low-temperatures

the following sequence of phases was obtained Tetragonal-Monoclinic-Rhombohedral-Cubic,

in which the cubic phase is stabilized for pressures above 22 GPa [41]. This result suggests

that the increase in hydrostatic pressure suppresses the ferroelectric instability, however,

studies at higher pressures [42, 43] revealed the stabilization of an antiferrodistortive dis-

tortion accompanied by the rotation of the oxygen octahedra. With the stabilization of this

phase, the appearance of a polar distortion was verified, giving rise to a new ferroelectric

phase at high pressures.

Íñiguez and Vanderbilt studied the behavior of BaTiO3 when increasing the pressure

using a first-principles-based effective potential [44]. The results at low temperatures sug-
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gest that the increase in hydrostatic pressure gives rise to the sequence of Rhombohedral-

Orthorhombic-Tetragonal-Cubic phases, consistent with experimental determinations.

The effects of negative hydrostatic pressure have also been studied. In the case of

PbTiO3 [45] an abrupt transition is found for pressures around −5 GPa, with the observation

of a supertetragonal structure with a ratio c/a = 1.21 and an increase in polarization. The

same behavior was observed in the case of BaTiO3, but in this case the transition was

observed for pressure values around −11 GPa.

1.2.2 Thin films and epitaxial strain

With the recent advances in the synthesis and oxide deposition techniques, in the last

decade, the interest of the scientific community in the study of thin films has increased.

As we have shown in the section above, perovskite oxides are extremely susceptible

to external stresses or strains. The same can be seen in thin films. These structures are

formed by a very thin layer of a material deposited on top of a substrate with a much greater

thickness than the film. In this way, in epitaxial thin films, the substrate imposes its in-plane

lattice constant on the film, changing its properties [46, 47]. Note that in these epitaxial thin

films the strain is applied only in-plane, unlike what happens with the hydrostatic pressure,

which is the same across all directions.

Using the appropriate substrate it is possible to obtain ferroelectric SrTiO3 at room tem-

perature [48]. In the cases of PbTiO3 [49, 50] or BaTiO3 [51] using different subtractes it

was possible to increase and manipulate the polarization and transition temperatures. In ad-

dition, it was also possible to stabilize new phases that are not observed in the bulk material.

In addition to the effect of epitaxial strain, it is important to take into account three more

factors, especially important in ultra-thin films: (i) the effect of surfaces where the chemical

environment is different; (ii) the electrostatic effect that can be very important when the

polarization in the film is perpendicular to the surface leading to the depolarization fields

that can in some cases suppress the polarization or force the material to break in domains

in order to minimize the associated energy penalty; (iii) the effect of the interface between

the substrate and the film in which the symmetry break can lead to the appearance of new
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properties or the appearance of depolarization fields.

1.2.3 Superlattices

Another way to control the properties of perovskites is by building superlattices. These

structures are built by depositing layers of two or more materials periodically on top of a

substrate. As in the case of thin films, in superlattices the substrate imposes its in-plane

lattice parameters on the different layers. In addition to the effect of epitaxial tension, in

superlattices with thin layers the effects of interfaces and electrostatic interaction between

the different materials become more relevant to define the final state of the heterostructure.

In the literature several studies show unexpected behaviors in superlattices. For example

in BaCuO2/SrCuO2 superlattices, superconductivity was observed, even though none of the

materials is itself superconductor [52], or in superlattices of SrZrO3 and SrTiO3 that show

ferroelectricity when none of these materials is ferroelectric [53] and in LaAlO3/SrTiO3 su-

perlattices, at the interface a two-dimensional electron gas was observed, even though both

materials that form the interface are insulators [54]. BaTiO3/SrTiO3 superlattices show an in-

crease of more than 50% in the polarization magnitude (compared to the polarization of bulk

BaTiO3) due to the epitaxial strain constraints and when constructed with the appropriated

thickness of the different layers.

PbTiO3/SrTiO3 superlattices have been widely studied at the theoretical and experimen-

tal level with the discovery of 180◦ stripe domains with polarization vortices around the do-

main walls [3, 4, 55, 56, 57].

In Chapter 5 we give a more detailed explanation of the different factors to consider in

order to understand the behavior of different superlattices.

1.2.4 Nanoparticles

So far, we have mentioned heterostructures formed by almost two-dimensional materials,

but in this section we will briefly describe the studies and some advances in ferroelectric

nanoparticles.
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Figure 1.6: Sketches of a typical Bloch-like (a) and Néel-like (b) skyrmions. The arrows
represent the normalized magnetization or local electric dipoles.

The size effects were studied in PbTiO3 nanoparticles [58, 59]. The formation of 90◦

domains in particles larger than 20 nm was predicted. When the size of the nanoparticles is

reduced, they undergo a transition to a monodomain phase and finally, for particles smaller

than 10 nm, the ferroelectric state is unstable. These results reveal that the effects of size

play a fundamental role in the ground state of ferroelectric nanoparticles.

Theoretical studies using first-principles-based effective potentials revealed the formation

of polarization vortices in BaTiO3 [60] and Pb(Zr,Ti)O3 [61] isolated nanoparticles. These

studies show that these polarization patterns can be manipulated by applying electric fields.

The authors suggest that these nanoparticles can be used for storage of information taking

into account that the polarization vortices can rotate clockwise or counterclockwise.

1.3 Skyrmions

Skyrmions were initially proposed by Tony Skyrme in an attempt to explain the stability of

subatomic particles [62]. In the last few decades, skyrmions have become one of the most

relevant and exciting subjects in Condensed Matter Physics, due to their potential for future

applications in magnetic systems (so far) [63, 64, 65, 66]. A skyrmion behaves like a particle

with a nanometric size and therefore it can be created, moved or annihilated. In Fig. 1.6
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we show the typical arrangements of skyrmions, in which in the center of the skyrmions the

vectors point up and it is surrounded by vectors pointing down. Between these two regions

the vectors rotate forming either Bloch or Néel skyrmions as we show in Fig. 1.6.

These objects are characterized by an integer topological charge (also called Pontryagin

invariant) given by:

Q =
1

4π

∫
u · (∂xu× ∂yu)dxdy , (1.3)

where u is the normalized vector field – is given by u = v/|v| and v can be the magnetiza-

tion in magnetic systems or the polarization in ferroelectric materials as we will see in the

next sections. When the topological charge is an integer charge and is different from zero

the vector field is topologically protected, which implies that these arrangements are local

minima of the energy, and a barrier must be overcome to destroy the skyrmion.

1.3.1 Skyrmions in magnetic materials

Magnetic skyrmions have been discovered in materials where the competition between

Dzyaloshinskii-Moriya interactions and ferromagnetic exchange is observed [67, 68, 69].

The Dzyaloshinskii-Moriya interaction favors the rotation of the magnetization (with an an-

gle of 90◦), while the interaction of ferromagnetic exchange favors the parallel alignment of

the spins. As result of this competition and with the application of external magnetic fields,

magnetic skyrmions were stabilized with a size between 3 and 100 nm.

In other materials with competition between magnetic dipole interaction and easy-axis

anisotropy the formation of magnetic skyrmions was also observed [69, 70]. These skyrmions

were stabilized in thin films, in which the ferromagnetic material is subject to perpendicular

anisotropy with an easy axis, which favors magnetization perpendicular to the direction of

the film, while the magnetic dipole interaction favors in-plane magnetization. Finally, by com-

bining this frustration with an external magnetic field normal to the thin film plane, skyrmions

were obtained. However, these skyrmions tend to be much larger with dimensions that can

vary from 3 to 100 µm.
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1.3.2 Skyrmions in ferroelectric materials

In the last few decades, the search for an electronic analogue of magnetic skyrmions has at-

tracted the attention of the scientific community working with ferroelectric perovskites, since

these materials are rich in competing interactions [15, 16]. However electric skyrmions in

single-phase ferroelectrics have not yet been discovered.

To understand the absence of an electronic analogue of magnetic skyrmions, we must

identify the main differences between the spins and electric dipoles that will form the electric

skyrmion. When we look at its origin, in the case of electric dipoles, as we discussed earlier,

they are the result of a polar distortion of the lattice. The amplitude of this distortion can

vary continuously and consequently the electric dipoles can be reduced continuously until

they are destroyed. In the case of spins, these are the consequence of unpaired electrons,

such that the total spin is different from zero. In this way spins can change their direction

by forming vortices or skyrmions as we mentioned earlier, but their amplitude cannot be

continuously reduced until it is null.

In addition to these differences between the nature of spins and electronic dipoles, an-

other factor may also have hindered the discovery of electric skyrmions. As mentioned

earlier, in magnetic skyrmions of smaller dimensions, the Dzyaloshinskii-Moriya interaction

has a fundamental role, however, there is no analogous electrical interaction in ferroelectric

materials.

This way, Nahas and coworkers [2] opted for a different approach that allowed them to

predict an electric skyrmion in complex artificial nanostructures. They studied the polariza-

tion behavior on a BaTiO3 ferroelectric nanowire with a radius of 7 unit cells within a SrTiO3

paraelectric matrix, as shown in Fig. 1.7 (a). In these nanostructures the two materials will

exhibit two very different behaviors, on the one hand the energy of BaTiO3 decreases when

developing a polarization, while SrTiO3 prefers to remain with a zero polarization. As a con-

sequence of this frustration inside BaTiO3 they identified a non-zero polarization component

parallel to the infinite direction of the nanowire, combined with a vortex structure in the plane

formed by four 90◦ domains (Fig. 1.7 (b)). These 90◦ domains in-plane ensure that the total

polarization in-plane is zero or very close to zero and therefore the depolarization fields and
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Figure 1.7: Sketches of BaTiO3 nanowire in a SrTiO3 (a) matrix; Electric dipoles (b) and
Topological charge density (c) obtained in a xy plane. In the panel (b) the arrows show the
polarization in the plane and the black lines show the different domain walls; In the panel (c)
the arrows show the vector field obtained from the electric dipoles obtained. These figures
were taken from the reference [2].

the electrostatic costs are minimized.

In Fig. 1.7 (c) we show the results that they obtained for the topological charge density

along the nanowire configuration where a set of peaks were identified in the center of the

different vortices of the in-plane polarization and four more peaks the interface between

BaTiO3 and SrTiO3. They obtained a topological charge of Q = +1 and thus they predicted

the first electric skyrmion in a nanowire configuration combining a ferroelectric material and

a paraelectric material [2].

However, until now this prediction has not been proven experimentally, especially due

to the difficulty in producing these nanowires with the necessary precision. Furthermore,

although these results are encouraging in the search for electric skyrmions, in this case

they are based on complex nanostructures, which limit the properties of skyrmions for future
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Figure 1.8: Panel (a) shows a cross-sectional HR-STEM image with an overlap of the atomic
polar displacements (yellow arrows) for a superlattice of PbTiO3/SrTiO3, with the first exper-
imental evidence of a multidomain structure formed by vortex-antivortex pairs inside the
PbTiO3 layers. Panel (b) presents the local polarization profile of the multidomain structures
in PbTiO3/SrTiO3 superlattices obtained from first-principles calculations with vortices of po-
larization around the domain walls and with the rotation of the polarization at the interface.
In panel (c) we present the local out of plane polarization in the middle of the PbTiO3 layer in
a PbTiO3/SrTiO3 superlattice, obtained using second-principles calculations for a snapshots
at 240 K. The figure gathers several results in the literature presented in references [3, 4, 5]

applications.

Another approach can be followed in the search for electric skyrmions taking advantage

of recent discoveries in the study of structure and polarization arrangement within domain

walls [1] and the tendency of some ferroelectric materials to break down into small domains

when subject to appropriate electrostatic conditions.

Recent studies suggest where to find these conditions, for example, mediating nucle-

ation [71] or alternating [72] of ferroelectric domains. In addition, as mentioned above, fer-
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roelectric vortex and other exotic behaviors were predicted and observed experimentally in

superlattices formed by PbTiO3 or PbZr1−xTixO3 and SrTiO3 [3, 4, 5, 55, 73] as we can see

in Fig 1.8, suggesting that exotic structures such as skyrmions may be stabilized.

In this thesis we will follow this approach in an attempt to stabilize and study electrical

skyrmions in ferroelectric materials.

1.4 Goals and structure of this thesis

Bearing in mind the general vision that we have presented throughout this chapter, we will

now define the main objectives that we intend to achieve with this work and the way in which

this thesis is organized.

Our main goal is to investigate if we can have topological structures in simple ferro-

electrics using atomistic simulations.

In case we are able to predict such topological structures, our second objective is to

understand their behavior and how we can tune them using external fields such as electric

fields or strains. Finally, our last goal is to try to predict how they can be achieved in practice

in realistic conditions.

This thesis is organized as follows. In Chapter 2, we briefly describe some of the main

theoretical approaches that have been used in the study of materials and multidomain con-

figurations, identifying their main advantages and disadvantages. Subsequently, we de-

scribe the second-principles methods (implemented in the SCALE-UP package [6, 74]) and

the main results achieved using this method. Throughout this thesis we will use the second-

principles methods to achieve the different objectives previously described.

In Chapter 3, we show the study of the low temperature nanodomain configuration in

PbTiO3, presenting in detail the polarization arrangement and demonstrating that this con-

figuration corresponds to an electric skyrmion. In a second part, we show how to manipulate

and optimize the properties of this configuration considering different epitaxial constraints

and the effect of applying external electric fields.

In Chapter 4, we present the study of the stability of the nanodomain configuration when
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we heat the system. In addition, we carry out the study of the dielectric responses identifying

the different transitions in this system, in order to approximate our studies to the type of

measurements that can be more easily performed experimentally.

Finally, in Chapter 5, we study the topological properties of the bubble domains in

PbTiO3/ SrTiO3 superlattices. These results are further compared with the experimental

results obtained in parallel to ours.
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Chapter 2

Second-principles methods

In this chapter, we present second-principles methods with parameters obtained from first-

principles, in which the energetics of a material is described by expanding in a Taylor series

of the total energy around a reference structure taking into account all the atomic degrees of

freedom. In this chapter, we start by reviewing several theoretical approaches with their

advantages and disadvantages. After, we describe the second-principles methods, im-

plemented in the SCALE-UP package [6, 74]. First, we describe the reference structure

and the appropriate variables for the models. In the second part, we describe the differ-

ent terms of the Taylor expansion of the energy and the main approximations applied to

construct the models. Finally, we present the main results reported in literature using the

second-principles methods in the study of PbTiO3, SrTiO3 and complex superlattices of

PbTiO3/SrTiO3.

2.1 Theoretical approaches

Traditionally, theoretical methods have been used to predict and understand the different

properties of material in order to complement the experimental techniques or overcome their

limitations. Thus, we want a method that allows us to investigate the different properties of

interest under realistic conditions, which can be used to study new materials, obtaining not

only the global properties, but also the details on the atomic scale relevant to investigate in
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detail multidomain configurations, domain walls or interfaces, which are very difficult to study

experimentally.

2.1.1 First-principles methods

In this context, first-principles methods (like density functional theory DFT) are one of the

most widely applied methods in the study of materials. This method describes the properties

of a material, applying quantum mechanical theory to determine the total energy associated

with its electrons and nuclei. The total energy is minimized with respect to the nuclei and

electrons coordinates. This consists in a complex many-body problem of interacting parti-

cles. Then, in practice several approximations are used to simplify this problem. The first

is the Born-Oppenheimer approximation, in which is performed the separation between the

nucleus and the electron wave functions taking into account the difference in mass between

them. The implementation of this simplification reduces the complexity of the many-body

problem, to the study of interacting electrons moving in a configuration of frozen nuclei. So,

we can write the Schrödinger equation as:

Eψ(r1, ..., rN ) =
∑
i

(
− ~2∇2

i

2m
+ vext(ri) +

∑
i<j

vee(ri, rj)
)
ψ(r1, ..., rN ) (2.1)

where ψ(r1, ..., rN ) is the electronic wavefunction, N is the number of electrons, m is the

electron mass. The term h∇2
i

2m is the kinetic energy operator, vext is the external potential

created by the configuration of frozen nuclei and external electric fields and the term vee

correspond to the electron-electron Coulombic interaction. However, even with this simpli-

fication, the interacting electron system remains a very complex problem. Thus, density

functional theory was proposed by Hohenberg, Kohn [75] and Kohn, Sham [76] providing

a simpler method of treating the interactions between the electrons. In DFT the energy of

the electron gas is a unique functional of the electronic density. So the total energy can be

written as

E[n] = T [n] + Tc[n] + U [n] + Ux[n] + Vext[n] (2.2)
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where n is the electronic density, T [n] is the sum of kinetic energy of the single particles,

Tc[n] is the correlation energy, U [n] is the sum of the electron-electron Coulombic interac-

tions, Ux[n] is the exchange energy and Vext[n] is the external potential created by the con-

figuration of nuclei and external electric fields. Finally, Kohn and Sham introduced another

simplification by proving that the interacting electronic system can be solved as a system of

non-interacting electrons moving in an external potential, obtaining the same ground-state

electronic density. Then, the Schrödinger equation for a non-interacting electron is given by:

Eψ(r) =
(
− ~2∇2

2m
+ vext + vee + vxc

)
ψ(r) (2.3)

where vxc is the exchange-correlation potential. This way, the complex problem of many-

bodies can be solved as a set of one-particle equations describing the behavior of each

electron in an effective external potential. However, none of these theorems give any infor-

mation about the explicit form of the functional. In practice, to approach such functionalities,

several strategies have been developed such as Local-density approximations (LDA) [76]

and generalized gradient approximations (GGA) [77].

These methods have been very successfully applied in the study of different materials

with high accuracy in the determination of the properties. In addition, being a method based

on the fundamental equations of quantum mechanics, it can be applied in the study of new

materials showing a high predictive power and provides an understanding of the system at

the atomic scale.

However, even with all the simplifications in DFT, this method continues to present a

prohibitive computational cost to compute the time and scale length relevant to study some

properties of interest at realistic conditions. Moreover, as shown in the Chapter 1 the ferro-

electric properties depend strongly on temperature presenting structural phase transitions.

Then, to study these materials and compare with the experimental results it is important to

study the different properties at finite temperature, which is not accessible using DFT, since

random thermal fluctuations require large simulation boxes to obtain realistic results.
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2.1.2 Effective Hamiltonian methods

During the 1990’s another approach called effective Hamiltonian was applied in the study of

BaTiO3 [18, 78], a prototype ferroelectric perovskite.

The effective Hamiltonian method is based on a drastic simplification of the material

retaining only the main degrees of freedom to describe the properties and the phase transi-

tions. After identifying the relevant degrees of freedom, it is performed the expansion of the

energy of the material. The coefficients of the expansion are computed from first-principles

calculations and the precision can be improved in a well-defined way.

In the case of ferroelectric perovskites like BaTiO3 [18, 78], PbTiO3 [79] or BiFeO3

[80, 81], a good approximation to describe the phase transition is to consider only the ionic

degrees of freedom of the soft-mode responsible for the ferroelectric transition (with the

displacement of the cations with respect to the oxygen sub-lattice) defined as a 3D vector

associated to each perovskite unit cell, as shown in Fig. 2.1. The amplitude of this fer-

roelectric distortion is relatively small, therefore the energy can be expanded around the

high-symmetry cubic perovskite structure in terms of local dipole ξi associated to the unit

cell i and homogeneous strains η, according to

H({ξi},η) = Hions({ξi}) +Helast(η) +Hint({ξi},η) (2.4)

The first term Hions({ξi}) describes the energy changes due to the variation of the local

mode. The term includes the short-range interactions and the long-range dipole-dipole in-

teractions. The short-range part also includes the fourth-order anharmonic terms required to

properly describe the potential energy surface of the materials . The second term Helast(η)

is the elastic energy of the material and describes the energy changes as a function of the

homogeneous strain. Finally, the last term Hint({ξi},η) is the energy coupling between the

ξi and η.

This method was successfully applied in the study of ferroelectric perovskites. In the

cases of BaTiO3 [18, 78] or PbTiO3 [79] or BiFeO3 [80, 81] these models were able to

reproduce the experimental sequence of phase transitions and the main properties of the
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Figure 2.1: Sketch of the coarse-graining step. The FE distortion on the left with the dis-
placement of the cations (A and B atoms) with respect to the oxygen sub-lattice. The arrows
represent the atomic displacements. On the right we present the local mode representing
the simplified system.

material.

2.2 Second-principles model potential

In this thesis we use another approach called second-principle methods, implemented in

the SCALE-UP code [6, 74]. This strategy takes advantage of the work developed using

effective-Hamiltonian methods in ferroelectric perovskites avoiding the limitations that these

models present.

The drastic simplification of the system performed in the effective-Hamiltonian approach

can bring problems with the accuracy of the results if not all instabilities and atomic degrees

of freedom of the reference structure are included in the model, since even the high energy

modes can be important in the final results of the properties at a quantitative level. Moreover,

in some systems such as PbTiO3/SrTiO3 superlattices with a short periodicity or in domain

walls it can be difficult to identify the relevant degrees of freedom. And given the complexity
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of these cases would have to be included more degrees of freedom that would make the

effective-Hamiltonian models very complex.

In the case of the second-principles methods, we follow the same approach used in

effective hamiltonians but removing the coarse graining step. In other words, the energy

of the material is expanded in a Taylor series around a reference structure, as well as, in

the effective hamiltonians models, but we take into account all atomic degrees of freedom

without any drastic simplification. This way, as we will see in the following sections, using

this approach, the second-principles models can be built for any material in which all the

parameters involved have an obvious physical meaning and they are obtained mostly from

first-principles calculations using small simulation boxes.

2.2.1 Reference structure and model variables

The construction of our Second-principles potentials starts with the definition of the reference

structure. For the sake of simplicity, the reference structure should be a minimum or a saddle

point of the potential energy surface of the material. In the perovskite such as PbTiO3

or SrTiO3 the choice for reference structure is the ideal cubic perovskite structure, with

space group Pm3̄m. We assume a three-dimensional infinite crystal formed by periodically

repeated supercell. Then, the positions of all atoms can be defined by the lattice vectors Rl,

where l labels the unit cell inside the supercell, and the τ k position of the atom k inside the

unit cell. We can define all accessible configurations as distortions of the reference structure

where the position of each atom is defined by the position vector, given by

rlkα =
∑
β

(δαβ + ηαβ)(Rlβ + τkβ) + ulkα (2.5)

where α and β are the Cartesian directions and the distortions of the system are given by

the homogeneous strain η and the atomic displacements ulk.

The individual atomic displacements ulk describe the displacement of a specific atom k

in the unit cell l with respect to the strained reference structure (shown in Fig. 2.2(a)). In

order to simplify the notation, we can contract the pair of index lk ↔ i where the index i
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Figure 2.2: Sketch of the model variable with the associated distortions of the reference
structure; Panel (a) shows the individual atomic displacements ui of an atom in a unstrained
reference structure; Panel (b) shows the effect of the homogeneous strain ηαα in the absence
of any individual atomic displacement; Panel (c) shows the effect of the off-diagonal strain
ηαβ (where α 6= β) in the absence of individual atomic displacement

runs over both cells and atoms within each cell. The homogeneous strain η redefines the

reference position of all atoms changing the Rl and τ k as we can see in the Eq. 2.5 and in

Fig. 2.2 (b). The homogeneous strain ηαβ in our model is given by

η =


η11 η12 η13

η21 η22 η23

η31 η32 η33

 (2.6)

We can rewrite the homogeneous strain using Voigt notation obtaining η = (η1, η2, η3, η4, η5, η6)

in which the diagonal elements ηα = ηαα (for α = 1, 2 and 3). In the case off-diagonal el-

ements defined as ηα′ = ηαβ + ηβα. The strain components introduce the homogeneous

shear deformation as we show in Fig. 2.2(c).

2.2.2 Taylor expansion of the energy

The energy can be written as a Taylor expansion in terms of atomic displacements ({ui})

and homogenous strain (η) around the cubic reference perovskite structure, as

E({ui},η) = E0 + Ep({ui}) + Es(η) + Esp({ui},η) (2.7)
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where E0 is the energy of the reference structure, Ep is the (phonon) energy involving only

atomic displacements, Es is the bare elastic energy, and Esp is the interaction between

phonons and strains. Lets us describe in more detail the different terms in the Taylor expan-

sion in the next sections.

The phonon contribution, Ep

The energy changes due to the atomic displacements ({ui}) can be expressed as a Taylor

expansion around the reference structure as

Ep({ui}) =
1

2

∑
iαjβ

K
(2)
iαjβuiαujβ +

1

6

∑
iαjβkγ

K
(3)
iαjβkγuiαujβukγ + ... (2.8)

where the first term corresponds to the harmonic part and the higher orders contain the

anharmonic part. The tensor K(n) is formed by the derivatives of the energy given by

K
(n)
iαjβ... =

∂nE

∂uiα∂ujβ...

∣∣∣∣
RS

(2.9)

where the first derivatives K(1) are zero once the chosen reference structure is a minimum

or a saddle point of the potential energy surface.

In order to guarantee that a rigid translation of the material does not change the energy

and does not induce forces on the atoms, the coefficients K(n) have to satisfy the acoustic

sum rules (ASRs). In fact, we can rewrite the Ep, and satisfy automatically the ASRs for all

orders, if we expand the energy as a function of displacement differences as

Ep({ui}) =
1

2

∑
ijkhαβ

K̃
(2)
ijαkhβ(uiα − ujα)(ukβ − uhβ)+

1

6

∑
ijkhrtαβγ

K̃
(3)
ijαkhβrtγ(uiα − ujα)(ukβ − uhβ)(urγ − utγ) + ...

(2.10)

and this way in the case of a rigid translation of the material the differences of the displace-

ments will be zero and there are no induced forces on the atoms.
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The strain contribution, Es

The Es gives us the energy variation when we homogeneously strain the reference structure.

As well as in the previous case, the Es can be expanded in a Taylor series as

Es(η) =
N

2

∑
ab

C
(2)
ab ηaηb +

N

6

∑
abc

C
(3)
abcηaηbηc + ... (2.11)

where N is the number of cells in the supercell and the coefficients of the expansion are

given by

C
(n)
ab... =

1

N

∂nE

∂ηa∂ηb...

∣∣∣∣
RS

(2.12)

As well as in the previous section, there are no linear terms because we choose a reference

structure that is a minimum or a saddle point of the potential energy surface. The harmonic

terms in the expansion are known as the elastic constants that define the elastic response

of the material in the reference structure.

The coupling between phonons and strain, Esp

The last term in the Eq. 2.7 refers to the coupling between the atomic displacements ({ui})

and homogenous strain (η). This term is given by

Esp({ui},η) =
1

2

∑
a

∑
ijα

Λ̃
(1,1)
aijαηa(uiα − ujα)+

+
1

6

∑
a

∑
ijhkαβ

Λ̃
(1,2)
aijαkhβηa(uiα − ujα)(ukβ − uhβ)+

+
1

6

∑
ab

∑
ijα

Λ̃
(2,1)
abijαηaηb(uiα − ujα) + ...

(2.13)

where coefficients of the expansion are Λ̃
(n,m)

, where n and m define the order of the ex-

pansion for the strains and the atomic displacements, respectively. The coefficients Λ̃
(1,1)

are called force response internal strain tensor, that gives the forces on the atoms as a

consequence of the homogeneous strain.
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Symmetry adapted terms

Associated to the reference structure we have a set of lattice-translational and point sym-

metries. When we introduce the symmetries in second-principles models we can reduce the

number of independent parameters.

Then, the symmetry related products can be gathered together and associated to the

same coefficients of the Taylor expansion. Such groups of the symmetry related terms are

called symmetry-adapted terms.

One example, in the case of the cubic system is associated with the three diagonal strain

terms. The energy contributions associated with these terms are given by:

N

2

(
C11η

2
1 + C22η

2
2 + C33η

2
3

)
=
NC11

2

(
η21 + η22 + η23

)
(2.14)

where the cubic symmetry implies C11 = C22 = C33 and the symmetry-adapted terms

formed by the η21, η22 and η23.

External electric fields

Let us also note that local electric dipoles diα are computed, within a linear approximation,

as

diα =
∑
β

Z∗iβαuiβ , (2.15)

where Z∗iβα is the Born effective-charge tensor of atom i; here, i runs over all atoms in the

material and α, β = x, y, z label spatial directions.

Then, the effect of an external electric field Eext is incorporated in our second-principles

simulations by including in the the coupling term in Eq. 2.7 [6]

E({ui},η;Eext) = E({ui},η)−
∑
iα

diαEextα , (2.16)

This way we have the possibility to control different materials by applying external electric

fields.
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Long-range electrostatic interactions

Until now, we describe the interatomic interactions without making any considerations about

the spatial range. Then, in theory our models should be able to include the interatomic

interactions between all atoms. However, in practice due to computational limitations, we

need to truncate the spatial extend of these interactions defining the terms that we will

include in our model.

In the case of metals, such approach is supposed to work well, since the free charges will

screen the long-range interactions. Nonetheless, in the case of insulators, the long-range

Coulomb interactions cannot be neglected. These interactions are a consequence of the

interaction between the local electric dipoles di (defined in Eq. A.1) that appear due to the

ions distortions with respect to the reference structure.

Then, we can split the terms that involve the atomic displacements ui into long- and

short-range contributions:

Kn = Kn,sr + Kn,lr (2.17)

and

Λ(m,n) = Λ(m,n),sr + Λ(m,n),lr (2.18)

where the separation between these two parts can be made for all orders n of the Taylor

expansion.

The short-range interactions are treated according to the strategy described previously,

however in the case of the long-range interactions there are an analytic expression in the

limit of long separations. Therefore, in the second-principles models were used the strategy

presented by Gonze and Lee [82], writing the long-range coefficients as

K
(2),lr
iαjβ =

∑
γδ

Z∗iαγZ
∗
jβδ

((ε−1∞ )γδ
D3

− 3∆γ∆δ

D5

)
(det ε∞)−1/2 (2.19)

where

∆α =
∑
β

(ε−1∞ )αβ∆rβ (2.20)
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in which
D =

√
∆ ·∆r

∆r = Rj + τ j −Ri − τ i

(2.21)

The ε∞ is the high-frequency dielectric permittivity tensor. In this work, we consider the long-

range dipole-dipole interaction at the harmonic level. Besides that, in the second-principles

calculations, we use a periodic repeated simulation box (supercell) and so the infinite range

couplings are computed by performing the Ewald summation.

2.2.3 Calculating the parameters and precision

The models described previously are constructed with parameters computed directly from

first-principles. In practice, to construct the model several approximations were done [6].

First, the spatially truncation to define the short-range limit and as a consequence defining

the interactions included. Second, Wojdeł and coworkers [6] truncated the number of bodies

included in the different terms presented in the previous sections. The models we will use in

this thesis were constructed considering only two bodies terms. Third, they have to define

the maximum order of Taylor expansion. In this case, they expand up to the fourth-order, the

minimum order to obtain a model able to produce a defined energy minimum.

The lower-order terms (the harmonic part) are obtained from density-functional pertur-

bation theory calculations and the models are constructed in order to include an exact de-

scription of the harmonic energy of the studied materials.

Regarding the anharmonic part, the different coefficients are fitted in order to create

a model which are able to reproduce a first-principle results of a training set formed by

the reference structure and the most relevant low-energy configurations (in Fig. 2.3). This

fitting procedure is based in three goal functions. The first one implemented in order to

guarantee that the model reproduces the set of energies obtained from the training set.

The second goal function imposes a zero-gradient conditions for the different configuration

included in the training set. Note that all the configurations in the training set are minima or

saddle points in the potential energy surface obtained at very low temperature, hence the

gradient of the energy should be zero. In addition, the third goal function associated with the
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Figure 2.3: Sketch of the most low-energy configurations in ABO3 perovskite oxides.
Panel (a) shows the ferroelectric instability (FEz); Panels (b) and(c) present the antiferrodis-
tortive instabilities with the O6 octahedra rotation along z in-phase AFDi

z (b) and in antiphase
AFDa

z(c). The arrows represent the atomic displacements.

second derivative of the energy. The second-principles models obtained can be improved

systematically depending on the precision required.

2.2.4 Models for superlattices

The PbTiO3/SrTiO3 superlattice models [5] were constructed from the models of the indi-

vidual materials (PbTiO3 and SrTiO3) [6]. The different interactions within each layer are

defined as in the bulk potentials. In the interface the different Ti-O interactions are obtained

as an average of the same interactions in two materials, PbTiO3 and SrTiO3. Likewise the

interactions involving Pb and Sr atoms are given by the average between the interactions of

Sr–Sr and Pb–Pb pairs in the respective bulk materials.

The main effect in the stacking in the superlattice is the electrostatic interactions, in

which the long-range dipole-dipole interactions are controlled by the Z∗ of the bulk mate-

rials and the weighted average of the ε∞ obtained from the first-principles results for each

material(6.2ε0 for SrTiO3 and 8.5ε0 for the PbTiO3). Finally, the Z∗ of the atoms inside the
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layers of the two different materials are normalized according to
√
ε∞/ε

ATiO3
∞ , where A is

the Pb or Sr atom. In the case of the atoms at the interface the Z∗ were kept as the orig-

inal bulk values. Regarding the epitaxial constraints, it was assumed an in-plane lattice of

a = b = 3.901 Å and was imposed an external expansive hydrostatic pressure of 11.2 GPa

to correct the underestimation of the cubic-lattice constant obtained within the local density

approximation.

Applying all approximations, Wojdeł and coworkers were able to construct different PbTiO3/SrTiO3

superlattice second-principles models with different thickness of PbTiO3 and SrTiO3.

2.3 Main results obtained with second-principles methods

The strategy described in the previous sections was implemented to construct second-

principles models to tackle specific problems, which until now were inaccessible or com-

putationally very expensive using first principles.

First of all, it was demonstrated that the models constructed for PbTiO3 and SrTiO3

reproduce the first-principles results at low temperature [6]. This test showed that second-

principles models reproduce very well the structural parameters and the energetics of all low

temperature equilibrium phases of PbTiO3 and SrTiO3.

Then, the models were used to study the temperature behavior of PbTiO3 and SrTiO3.

In the first case, PbTiO3 showed a phase transition from a high temperature cubic phase

to a low temperature phase with a tetragonal structure in which one of the components of

the polarization becomes nonzero [6]. The results as a function of temperature showed

a qualitatively good description of PbTiO3 (in Fig. 2.4), when compared with the polariza-

tion and strains obtained experimentally. However the transition was obtained at Tc ≈ 510

K, while the experimental value is Tc ≈ 760 K [83]. In the case of SrTiO3 a similar struc-

tural transition was observed at Tc = 160 K, from a high temperature cubic phase to a low

temperature tetragonal structure accompanied by rotation of the oxygen octahedra in anti-

phase (as showed in Fig. 2.3 (c)). Experimental results indicate that this transition occurs at

Tc = 105 K [15]. The disagreement between the predicted and experimental values of Tc is a
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Figure 2.4: Polarization (a) and strains (b) of PbTiO3 as a function of the temperature.
Two different situations were considered: (i) under zero external pressure and (ii) under
an external hydrostatic pressure of −13.9 GPa, that compensates the underestimation of the
cubic lattice constant obtained using LDA. The figure was obtained from [6].

relevant evidence in both cases. To explain this discrepancy, one of the possible causes can

be attributed to the approximations that are made in the models, for example the number of

bodies involved or in the order of expansion considered. To compute several properties, the

model is enough to obtain results according to the experimental ones, however it is possible

that in the calculation of Tc, more detail in PES is necessary. In addition, another possi-

bility may arise from the fact that DFT underestimating the energy difference between the

ground state and the reference structure which may explain why the values of the transition

temperature are lower than those observed experimentally.

Furthermore, to the study of the monodomain properties, the second-principles meth-

ods allowed the authors to study multidomain configurations, looking in detail at the domain

walls. In the case of PbTiO3, Wojdeł and Íñiguez [1] studied the 180◦ domain walls in PbTiO3

detailing the structure and atomic distortions at the domain walls as a function of temper-

ature. In the 180◦ domain walls configuration was observed an extra phase transition at

TDWc ≈ 320 K from a high temperature disordered domain walls with a null thermal aver-

age polarization to a low temperature polarized domain wall. This polarization is confined

within very narrow domain walls (less than one unit cell of thickness) and is normal to the

polarization in the domains with a Bloch-like character, as we show in Fig. 1.5.

The second-principles methods also allowed the study of PbTiO3/SrTiO3 superlattices,
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in which the combination of ferroelectric and paraelectric layers forms the favorable system

for the appearance of complex multidomain configurations. A. K. Yadav and coworkers [3]

reported the observation of polar vortices in the ferroelectric layers of the superlattices,

as we showed in Fig. 1.8 (a). Using second-principles calculations the chiral character

of the vortices [8] was explained by a helical rotation of local polarization. Note that the

second-principles results reported in the literature are in agreement with the results obtained

in an independent way using first-principles calculations presented by Aguado-Puente and

Junquera [4] (see Fig. 1.8 (b)). Beyond that, in similar superlattices and taking advantage

of the ability of the second-principles to describe the different configurations at atomic scale

was reported negative capacitance across a wide range of temperatures [5]. This negative

capacitance was observed mainly in the interface between the paraelectric and ferroelectric

layers and at the domain walls due to their motion.
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Chapter 3

Low-temperature electric skyrmions

In this chapter we study the columnar nanodomain configuration in order to create and tune

an electric skyrmion equivalent of a typical magnetic skyrmion. We study a columnar nan-

odomain in a single-phase prototype ferroelectric material PbTiO3 at low-temperature using

second-principles simulations described in Chapter 2. We discuss the different instabilities

of the nanodomain wall, taking into account the size and shape of the ferroelectric nan-

odomains. The topological properties of the different states of the ferroelectric nanodomain

were characterized. Finally, we consider the effect of the epitaxial strain and the response

of our system to different external electric fields in order to tune and enhance the properties

of the ferroelectric nanodomain.

3.1 Ferroelectric columnar nanodomain

We consider a ferroelectric columnar nanodomain (ND) with positive polarization embedded

in a matrix with opposite polarization and between these two domains the nanodomain wall

(NDW) forming a close surface around the ND as shown as in Fig. 3.1(a).

Wojdeł and Íñiguez [1] showed that the planar 180◦ domain walls (DWs) of PbTiO3 (PTO)

at low-temperature have a Bloch-like character with a spontaneous polarization confined

within the DW plane with a thickness of less than one unit cell (Fig. 3.1(b)). As in the previous

case, in the ND configuration (shown in Fig. 3.1(a)) the NDW is also a 180◦ domain wall that

35



Figure 3.1: Sketches of (a) ND within a matrix of opposite polarization investigated in this
chapter; (b) structure of the 180◦ FE planar DW of PTO at low temperature as predicted in
Ref. [1].

forms a closed surface around the ND. Here, we will show how we can take advantage of

the Bloch character of the polarization in the NDW to create and tune a variety of complex

arrangements with unique properties.

It is important to stress that the ND is a robust and stable configuration at 0 K and

survives up to 260 K (as we will show in the next Chapter) even if we consider a small

domain with 6×6 unit cells, and even if we take into account that the boundary conditions

assumed in the simulations (short circuit) favor the monodomain state (since there is no

depolarization field) and not a multidomain configuration.

3.1.1 Nanodomain wall instabilities

In order to study the possible polarization arrangements within the NDW, we consider a ND

configuration in which we constrained all the atoms to move only along z (parallel to the

ND direction) during the relaxation. The resulting constrained equilibrium configuration is

presented in Fig. 3.2(a). We identify the two different domains, with nonzero out-of-plane

polarization – positive in the ND and negative in the matrix. Between these two domains

we have the NDW with zero polarization. In order to identify the possible arrangements of

the polarization within the NDW, we study the main instabilities of the system computing the

Hessian matrix implemented in SCALEUP code.

The potential energy of the constrained equilibrium configuration can be expanded in a
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Taylor series in terms of small atomic displacements u, according to

E(r1, ..., rN ) = E0 +
∑
iα

∂E

∂uiα
uiα +

1

2

∑
iαjβ

∂2E

∂uiα∂ujβ
uiαujβ + ... (3.1)

where N is the number of atoms in the supercell, α and β denote the Cartesian directions.

The ri is the position vector of the atom i in the equilibrium configuration.

The first term E0 corresponds to the equilibrium configuration energy. The second term

gives us the first derivatives of the energy. Since our constrained configuration is a minimum

or saddle point of the potential energy surface, all the linear terms will be zero.

In the third term, the second derivatives of the energy are the elements of the Hessian

matrix (or the force constants) and they give us information regarding the energy curvatures.

Then, for a supercell with N atoms we compute the energy variation caused by the 3N

atomic displacements along the three Cartesian components. The Hessian matrix obtained

is a 3N × 3N matrix. From the diagonalization of this matrix we compute the different

eigenvalues λa and the associated eigenvectors {vaj } where j runs over all the N atoms in

the supercell give us the pattern of the atomic displacements associated to the eigenvalue

λa. From all eigenvalues of the system, the ones that are negative show the instabilities of

the equilibrium configuration considered.

In Figs. 3.2 [(b)–(e)], we present the eigenvectors arrangement for the four instabilities

of the constrained ND configuration with the most negative eigenvalues. In the regions with

polarization only out-of-plane, i.e. the ND and the matrix, the eigenvectors are almost zero.

In the NDW, we have the eigenvectors associated with the different instabilities, forming

different arrangements in the xy plane. The most negative eigenvalue λ1, we identify a

closed loop of distortions forming a vortex-like arrangement as we can see in Fig. 3.2 (b).

In the second eigenvalue λ2, the average of the distortions in-plane is different from zero

and points in the direction [1̄1̄0], presented in Fig. 3.2 (c). The eigenvector associated to the

λ3 form an antivortex-like arrangement in the NDW (Fig. 3.2 (d)). The fourth eigenvector λ4

presents a more complex arrangement with vortices-like structures in the corners of the ND,

as shown in the Fig. 3.2 (e).
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Figure 3.2: Calculated polarization map (a) of the ND constrained configuration where the
color scale gives the out-of-plane Pz component, while the arrows correspond to the in-
plane Px and Py; Panels [(b)–(e)] show the eigenvectors associated to each Pb atom in
the supercell. The color scale gives the out-of-plane component vajz, while the arrows are
the in-plane vajx and vajy of the eigenvalue λa. The panels [(b)–(e)] correspond to the main
instabilities with eigenvalues of λ1 = −1.14 eVÅ−2, λ2 = −0.92 eVÅ−2, λ3 = −0.67 eVÅ−2

and λ4 = −0.48 eVÅ−2.

In order to study the atomic configurations corresponding to the different instabilities,

we condense the respective atomic displacement patterns. Then, we construct the initial
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Figure 3.3: Calculated polarization maps of the different NDW configuration regarding the
main instabilities λa. The color scale gives the out-of-plane Pz component, while the arrows
are the in-plane component Px and Py.

configurations, where we include the set of atomic displacements of the constrained ND

configuration {uresj } and the eigenvectors associated to each eigenvalue λa. Therefore, the

initial displacement uaj of each atom j for each eigenvalue λa is constructed according to

uaj = uresj + ξvaj , (3.2)

where ξ is a factor to resize the eigenvectors according to the usual values of the atomic

displacements in PbTiO3.

Using standard Monte Carlo method we perform the annealing and structural relaxation

of the different initial configurations associated to the different λa. The different polarization
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maps obtained are presented in Fig. 3.3. The first state of the NDW obtained for the insta-

bility λ1 is presented in Fig. 3.3 (a). The result obtained shows a closed loop of polarization

in the xy plane confined in the NDW forming a vortex-like structure. In the second insta-

bility in Fig. 3.3 (b), the NDW obtained is polarized in-plane with a dipole moment of about

1.4 × 1028 Cm pointing in the [1̄1̄0]. The third mode presented in Fig. 3.3 (c) shows an anti-

vortex like structure within the NDW with a null dipole moment in the xy plane. In the case of

the instability λ4 the displacement pattern (Fig. 3.2 (e)) leads us to a saddle point or a very

shallow minimum of the energy. Then, during the relaxation and annealing the four vortices

in the corners of the ND are destroyed and the energy is reduced by forming a closed loop

of polarization within the NDW, which coincides with the result obtained for the instability λ1.

In Table 3.1, we present the energy of the NDW ENDW obtained from the difference

between the energy of different ND states END and the energy of ferroelectric monodomain

EMD defined as

ENDW =
END − EMD

#NDWu.c.
, (3.3)

where the # NDW u.c. is the number of unit cells of the domain wall (for a ND with 6×6 u.c.

we have 6×4 u.c. of NDW). Besides that, we also present the energy difference∆E given by

the difference between the END and the energy of the restricted configuration ERes in which

we constrained all the atoms to move only along z (in Fig. 3.2(a)). This energy difference is

given by

∆E =
END − ERes
#NDWu.c.

, (3.4)

where the energies are normalized by the number of unit cells of the domain wall.

The Table 3.1 shows the results obtained for the different NDW states. When we inspect

the results obtained for the ∆E we verify that the unconstrained configurations with in-plane

polarization along the NDW present ∆E < 0. Therefore, the system prefers to develop

a polarization confined in the NDW, in agreement with the result reported for the planar

180◦ domain walls (DWs) of PbTiO3 where was observed at low-temperature a spontaneous

polarization confined within the DW and normal to the polarization at the domains [1].

Comparing the ENDW of the unconstrained configurations, we verify that the conden-
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Table 3.1: Energies and polarizations in xy plane of the different states of the ferroelectric
nanodomain. The ENDW is given in eV and is computed using the Equation 3.3; ∆E in eV
and obtained according to Equation 3.4; The average polarization in the xy plane is given in
Cm−2. The results presented were obtained for a supercell of 16×16×1 unit cells with a ND
of 6×6×1 unit cells.

ENDW ∆E PNDWxy

Restricted 0.144 – –
λ1 0.116 -0.029 0.00
λ2 0.121 -0.023 0.08
λ3 0.132 -0.013 0.00

sation of the state λ1 results in the NDW with lower energy. Thus, the ground-state of the

ND configuration presents a closed loop of polarization in the xy plane along the NDW. The

ENDW is always positive, as the monodomain is the ground-state of an infinite crystal of

PbTiO3. However, the different NDW configurations presented are metastable solutions and

robust even for small ND of 6×6×1 unit cells.

3.1.2 Shape and size of the nanodomain

In order to understand how robust the ND configuration is we studied several shapes and

sizes. In the previous section we showed the results obtained for a square ND with 180◦

DWs perpendicular to [100] and [010] directions (Fig. 3.3). Other possible shapes of the ND

are presented in Fig. 3.4 in which we present the polarization maps obtained for a circular

ND and for a rotated square ND in with the NDW is perpendicular to [110], [11̄0], [1̄1̄0] and

[1̄10] directions.

In Figs. 3.4, the panels (a), (c) and (e) show polarization maps of the circular ND with

the different polarization arrangements in the NDW, which are obtained following the strategy

used in the previous section. Likewise, for the rotated square ND it was possible to condense

the instabilities of the NDW associated with the three most negative eigenvalues, as we can

see in Figs. 3.4 (b) (d) and (f). These results show that both the ND and the different

arrangements in the NDW are stable solutions, regardless of the different shapes of the ND.

In addition, we also consider NDs with a rectangular shape, in which we increase the

length of the ND only along y and we keep fixed along x. Fig. 3.5 shows the different
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Figure 3.4: Polarization maps of the different instabilities λ1 [(a) and (b)], λ2 [(c) and (d)] and
λ3 [(e) and (f)]; Panels [(a), (c) and (e)] show the results obtained for a circular ND and the
panels [(b), (d) and (f)] for a rotated square ND; The color scale gives the out-of-plane Pz
component, while the arrows correspond to the in-plane Px and Py.

rectangular NDs with 6×8, 6×12 and 6×14 unit cells. In the first two cases, the rectangular

NDs allow us to stabilize different polarization arrangements in the NDW, as we can see in

Fig. 3.5 [(a)–(c)] where we present the results obtained for a NDs of 6 × 8 unit cells and in
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Figure 3.5: Polarization maps of rectangular ND with the different NDW instabilities λ1 [(a),
(d) and (g)], λ2 [(b), (e) and (h)] and λ3 [(c), (f) and (i)]; Panels [(a)–(c)] show the rectangular
ND with 6 × 8 u.c.; Panels [(d)–(f)] show the rectangular ND with 6 × 12 u.c.; Panels [(g)–
(i)] show the rectangular ND with 6 × 14 u.c.; The color scale gives the out-of-plane Pz
component, while the arrows correspond to the in-plane Px and Py.

the panels [(d)–(f)] for the nanodomain with 6× 12 unit cells.

In the case of 6 × 14 unit cells, the initial configurations constructed using the Eq. 3.2

present only two unit cells of separation between the two sides of the NDW (up and down

sides along y). As a consequence, during the relaxation and annealing of these configura-

tions the two sides merge and we obtain a stripe configuration as shown in Figs. 3.5[(g)–(i)]

with two planar 180◦ DWs.

This way the different arrangements of the in-plane polarization confined in the NDW
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are robust enough to remain unchanged, in the limit of very low temperatures, even for

big changes of the shape or dimensions of the ND. Therefore, the result obtained for the

NDW configuration is a consequence of the presence of the domain, regardless of its shape

or size. A relevant result for future experimental demonstrations taking into account the

difficulties to write experimentally a perfect square domain or to control the exact size of the

domain at nanoscale.

3.2 Topological properties

The NDW instabilities obtained in the previous section are similar to skyrmion and anti-

skyrmion configurations introduced in Chapter 1. To demonstrate, we need to compute the

topological charge Q =
∫
q(x, y)dxdy, where q(x, y) is the topological charge density given

by:

q(x, y) =
1

4π
u · (∂xu× ∂yu) . (3.5)

where u is the normalized polarization field. The topological charge density q(x, y) is com-

puted following the strategy presented in Appendix D. Fig. 3.6 shows the topological charge

density q(x, y) for each NDW configuration.

The first instability in Fig. 3.3 (a) shows a closed loop of polarization around the ND. Such

polarization texture is very similar to a skyrmion as described in the Chapter 1. Fig. 3.6(a)

shows the q(x, y) which presents local maxima at the NDW corners and a total topological

charge of Q = +1. Therefore, the ground state of the ND configuration – in which we

obtained a closed loop of polarization within the NDW – correspond to an electrical skyrmion

in a single phase material, the NDW-skyrmion.

The second instability in Fig. 3.3 (b) presents a polarized NDW. Fig. 3.6 (b) shows the

q(x, y) which presents two local maxima and two local minima at the NDW corners. As

a consequence, the total topological charge obtained is Q = 0. This ND configuration

corresponds to a trivial topological texture, the NDW-polar.

The instability λ3 presented in Fig. 3.3 (c) shows a texture like an antivortex in the NDW.

Fig. 3.6 (c) shows the q(x, y) which presents local minima at the NDW corners, like the
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Figure 3.6: Calculated Pontryagin density of the polarization arrangements associated to
the different NDW instabilities λ1 (a), λ2 (b) and λ3(c); The color scale gives the Pontryagin
density q(x, y), while the arrows correspond to the in-plane normalized polarization Px and
Py.

peaks obtained in the NDW-skyrmion but with opposite sign. The total topological charge

obtained is Q = −1. Then, the third state obtained is an electrical antiskyrmion, the NDW-

antiskyrmion.

Likewise, the strategy for computing the topological charge was implemented in the dif-

ferent NDs with different shapes, sizes and separations presented in Section 3.1.2. The

results obtained show that the topological charge is independent of the shapes, sizes or

separations of the NDs.
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3.3 Epitaxial strain effect

The epitaxial strain is a key factor to tune and enhance ferroelectric properties of perovskites

(as described in the Chapter 1). Let us consider the effect of the epitaxial strain in the

ferroelectric ND, which can be imposed by growing PbTiO3 on different substrates. The

epitaxial strain forces the in-plane lattice parameters of our PbTiO3 to be equal to the lattice

parameters of the substrate asub, imposing a square substrate with lattice constants a = b =

asub and γ = γsub = 90◦. The free parameters were annealed and relaxed using Monte Carlo

simulations.

In the case of PbTiO3 monodomain (in Fig. 3.7(a)) we identify two different regions. In

the first region for asub < 3.945 Å the polarization points only along z. For tensile strains

when asub > 3.945 Å the polarization rotates, developing an in-plane polarization Px = Py

(comparison with the results of previous works in literature is discussed in Chapter 4).

The results obtained in Fig. 3.7(b) show the behavior of the polarization in-plane of the

NDW-polar state that follows the monodomain behavior with an increment due to the polar-

ized character of its NDW. In the case of the NDW-skyrmion state, the results of the in-plane

polarization presented in Fig. 3.7(b) reveal a continuous transition similar to the transition

obtained in the case of the PbTiO3 monodomain.

Besides that, the NDW-skyrmion state undergoes a continuous transition with the break-

ing of the material in 90◦ domains in-plane, as shown in the Fig. 3.7(d), which explains how

we obtain a smaller average Px,y.

The new NDW-skyrmion arrangement with the 90◦ DWs presents a topological charge

of Q = +1 obtained from the topological charge density presented in Fig. 3.8(c). Therefore,

the NDW-skyrmion undergoes a transition from a high-symmetric skyrmion to a polarized

skyrmion, keeping constant the topological charge (always equal to +1).

The tensile epitaxial strain forces the NDW-skyrmion to adapt, breaking the symmetry

in-plane due to the Skyrmion center Sskyr (defined in Appendix D) that moves away from

the midpoint of the ND. Fig. 3.8 (a) shows the movement of the Sskyr as a function of the

asub. In order to understand this transition, we introduce a new quantity, the skyrmion center
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Figure 3.7: Polarization [(a), (b)] and energy difference between the NDW-states and the
monodomain (c) as a function of the epitaxial constraint asub; Polarization maps [(d) and
(e)] of the NDW-skyrmion and NDW-polar configurations obtained for asub > 3.95 Å. In
panel (a) we show the results of the polarization for the monodomain state in which black-
filled squares give |Pz| and the green squares are the Px = Py; In panel (b) black-filled circles
give |Pz| as obtained at the middle of either matrix or ND, blue and orange circles give the
Px = Py components of the NDW-skyrmion and NDW-polar configurations, obtained from a
supercell average and normalized to the supercell volume; In panel (c) the blue, orange and
green-filled circles give the ∆E of the NDW-skyrmion, dipolar and antiskyrmion taking the
result for the ferroelectric monodomain of as the zero of energy. Black vertical dashed lines
show the asub values of the two different transitions.

susceptibility defined as

χαβ =
∂Sα
∂Eβ

, (3.6)

where Eβ is the β component of an applied electric field. Fig. 3.8(b) shows the skyrmion

center susceptibility along the directions xx and xy. Around the asub = 3.950 Å, where we

observed the skyrmion-skyrmion transition, the component of our susceptibility χxy nearly

diverges, which seems to indicate that we are facing a transition with a second-order char-
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Figure 3.8: The displacement (a) and the susceptibility components (b) of the skyrmion
center as a function of asub. Calculated Pontryagin density map (c) where the color scale
gives the q(x, y), while the arrows correspond to the in-plane normalized Px and Py. In the
panel (a), the dashed line marks the regime where the NDW-polar becomes the ground state
and the NDW-skyrmion is a metastable solution.

acter. The component of the skyrmion center susceptibility that diverges is the χxy, which

implies that applying an external electric field along y the center moves along x, the direc-

tion normal to the field applied. In this region where χxy diverges the center of the skyrmion

is very mobile, which opens up the possibility of controlling the NDW-skyrmion, moving its

center between the four symmetry-equivalent states, applying small electric fields as we will

show in the section 3.4.1.

The 90◦ DWs in the matrix bring with them an extra cost on the energy, however such

DWs are not present in the NDW-polar, as we can see in Fig. 3.7(e), where we observe a

monodomain in the Px,y. Such intrinsic difference between the two NDW-states can be seen

in their energies (in Fig. 3.7(c)). For asub = 3.983 Å the energies cross and the NDW-polar

becomes the most stable configuration of the ferroelectric ND, which implies a discontinuous

transition to a trivial topological texture with Q = 0. In Fig. 3.7(c) we also present the ∆E of

the NDW-antiskyrmion and we verify that this is the highest-energy NDW state.
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Figure 3.9: Polarization (a) and energy difference between the NDW-states and mon-
odomain (b) and the skyrmion center displacement (c) as a function of the external elec-
tric field applied along [110] direction. In panel (a) we show the results of the polarization
in which black and green squares give |Pz| and Px = Py of the monodomain, respectively.
The blue and orange circles are the Px = Py of the NDW-skyrmion and NDW-dipolar states,
obtained from a supercell average and normalized to the supercell volume. In this panel (a)
the green squares that represent the Px = Py of the monodomain are not visible since they
coincide with the Px = Py of the NDW-skyrmion (blue squares); In panel (b) the blue and or-
ange circles give the ∆E of the NDW-skyrmion and dipolar configurations, taking the result
for the ferroelectric monodomain as the zero of energy; Panel (c) shows the movement of
the skyrmion center in the direction parallel (yellow-filled circles) and the normal (blue-filled
circles) to the applied electric field; Black vertical dashed line shows the asub value of the
transitions.

3.4 Response to external electric fields

The electrical skyrmion is a non-trivial topological arrangement of electrical dipoles, thus

the application of an external electric field is an obvious choice to control it. By applying an

external electric field along [110] direction, PbTiO3 monodomain polarized along z develops

a polarization in the xy plane, Px = Py.

As discussed in previous sections, when E = 0 kV/cm and asub = abulk of PbTiO3 the
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average in-plane polarization of NDW-skyrmion is zero, which indicates a high symmetry

skyrmion and in this case the Sskyr coincide with the geometrical center of the ND.

In this section, we will study how the skyrmion reacts to different external electric fields,

keeping a = b = asub and γ = γsub = 90◦ fixed. This allows us to separate the effect of the

external electric field from the effect of strain, studied in the previous section.

Increasing the external electric field the average polarization of our NDW-states in-plane

increases as shown in Fig. 3.9(a) following the behavior of the PbTiO3 monodomain. More-

over, the NDW-skyrmion deforms to adapt to the external electric field. The consequence of

this field-induced deformation is the displacement of the skyrmion center. Fig. 3.9(c) shows

the position of the skyrmion center Sskyr moving mainly along the direction perpendicular to

the applied field.

Fig. 3.10 shows the rearrangement of the NDW-skyrmion polarization and Pontryagin

density when subjected to an external electric field < 200 kV/cm applied along the [110]

direction. The figure shows how the closed loop of the NDW-skyrmion reacts to the external

electric field. The local electric dipoles tend to align with the direction of the electric field to

minimize the energy. This way, the electric field tries to rotate the polarization on two sides

of the NDW, the sides with a component of the polarization against the applied field. As

a consequence, for an external electric field around 200 kV/cm the energies of the NDW-

skyrmion and NDW-polar configurations cross (as we can see in Fig. 3.9(b)) and the NDW-

polar becomes the configuration most stable ND configuration.

Moreover, when we increase more the electric field the metastable NDW-skyrmion reaches

a critical electric field of about 650 kV/cm where the NDW-skyrmion becomes unstable. So,

for these high external electric fields, only the NDW-dipolar is stable.

3.4.1 Control electric skyrmion using electric fields

As discussed in Section 3.3 the epitaxial strain induces a symmetry breaking with the move-

ment of the skyrmion center along one of the four equivalent directions and as a conse-

quence we have four equivalent states.

Besides that, for in-plane lattices around asub = 3.950 Å the skyrmion center is very mo-
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Figure 3.10: Calculated polarization (a) Pontryagin density (b) maps for our ND within a
matrix in its NDW-skyrmion ground state subject to an in-plane electric field along [110]
direction (the field is indicated by a shadowed arrow). In panel (a) the color scale gives
the out-of-plane Pz component, while the arrows correspond to the in-plane Px and Py;
In panel (b) the color scale gives the q(x, y), while the arrows correspond to the in-plane
normalized Px and Py.

bile, which opens the possibility of control the NDW-skyrmion using smaller external electric

fields.

Then combining the effect of the epitaxial strain with the control of the center using

an external electric field, we are able to favor one of the four equivalent states. Using the

strategy applied before to study the effect of the electric field, we apply a sequence of electric

fields presented in Fig. 3.11(a). The response of the polarization in-plane (Fig. 3.11(b)) and

movement of the skyrmion center (Fig. 3.11(c)).

As discussed previously, the movement of the skyrmion implies a change in the average

polarization in-plane, given us a way to observe the response of the NDW-skyrmion when

switching between the four equivalent states.

3.5 Electric field V s Epitaxial strain

Previously we studied the effect of the epitaxial stain, keeping the external electric field off

and the ferroelectric columnar ND response to the external electric field for a asub = abulk.
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Figure 3.11: Sketch of our concept to control skyrmion center. The external electric field
applied (a) the polarization in-plane Px and Py (b) and the position of the skyrmion center
(c) as a function of MC time. The polarization maps (d) under different electric fields and
the black dots represent the corner where the center of the skyrmion goes; Panels [(a)–(c)]
the green-filled circle correspond to the x components and the blue-filled circles are the y
components.

In the case of the epitaxial stain using different substrates we impose a compressive or

tensile strain. As we showed in Section 3.3, depending on the strain constraints imposed,

we can stabilize the NDW-skyrmion or NDW-polar states. Applying an external electric field

in xy plane, we showed in Section 3.4 a transition from a NDW-skyrmion to NDW-polar

configuration.
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Figure 3.12: Phase diagram of our ferroelectric columnar ND considering the NDW-skyrmion
and NDW-polar configurations as a function of the electric field in the xy plane (Exy =
E î + E ĵ) and asub; The green and blue regions show the electric fields and asub where the
configurations NDW-skyrmion and NDW-polar are more stable, respectively.

Thus, in this section, the phase diagram of the ferroelectric columnar ND, considering

the NDW-skyrmion and NDW-polar configurations as a function of the Exy (applied along

[110] direction) and asub.

Fig. 3.12 shows the phase diagram obtained, where we observe the regions where the

NDW-skyrmion (green region) or NDW-polar (blue region) are more stable. These different

regions are obtained monitoring the energy difference between NDW-skyrmion and NDW-

polar configurations.

As expected taking into account previous results presented in section 3.3 when the asub

value is bigger than asub = 3.983 Å, the NDW-polar is the most stable state, even without the

application of any external electric field.

For in-plane lattices asub < 3.983 Å we stabilize the NDW-skyrmion at zero electric field.
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In this region, we define the critical electrical field from which the NDW-polar configuration

becomes the most stable state. Decreasing the in-plane lattice constants the critical field of

the NDW-skyrmion increases, until Exy ≈ 500 kV/cm for the biggest value of asub considered

in this phase diagram.

3.6 Summary

In this chapter, we have presented guidelines for stabilizing an electric skyrmion in a nan-

odomain configuration in PbTiO3 at low temperatures. Thus, we demonstrate that it is pos-

sible to stabilize topological structures in simple ferroelectrics using atomistic simulations.

The electric skyrmion proved to be a polarization arrangement robust enough to be sta-

bilized on nanodomains with different shapes or sizes. This fact is important for future ex-

perimental studies since the writing of the nanodomain does not require a specific shape to

obtain an electric skyrmion.

The application of external electric fields allows us to induce a series of transitions in the

configuration of the nanodomain. For small electric fields the electric skyrmion is the most

stable configuration. However, by increasing the electric field, Skyrmion develops a polariza-

tion in the plane. This polarization is a consequence of the displacement of the center of the

skyrmion, which moves in a direction perpendicular to the direction of the applied external

field. Thus, we conclude that the movement of the skyrmion can be controlled by the direc-

tion of the applied field. By increasing the electric field, the electric skyrmion is destroyed

and we obtain a new trivial state with Q = 0.

When applying different epitaxial constraints, we observe a spontaneous transition from

a high symmetry skyrmion to a polarized skyrmion with the formation of 90◦ domains in-

plane. For higher values of in-plane lattice constant, this polarized skyrmion undergoes a

second transition to a trivial state destroying the in-plane 90◦ domains in-plane. A peak in

the susceptibility was identified near the transition of the skyrmion center, showing that the

application of small electric fields in this region induces large displacements of the skyrmion

center, which may be interesting for future applications that rely on the movement of the
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skyrmion center.

55



Chapter 4

Electric skyrmion phase diagram of

temperature and strain

In this chapter, we will study the stability of the skyrmion considering the effect of temper-

ature and epitaxial strain. For that, we will have to pay attention not only to the different

transitions associated with the polarization and its direction, but also to the different topo-

logical transitions destroying or transforming our electric skyrmion. Firstly, we will study the

effect of temperature when the electric skyrmion is in bulk conditions, and thereby minimizing

the effect of epitaxial strain. Finally, we will build the phase diagram of the electric skyrmion

considering the effect of temperature and the constraints imposed by different substrates.

Before that, it was necessary to study the behavior of the PbTiO3 monodomain, thus identify

the different phases of polarization in this material and, its impact on the electric skyrmion

multidomain configuration.

4.1 Skyrmion stability and transitions in bulk PbTiO3

Temperature is a key factor in the study of the different properties of materials. Besides

that, the introduction of temperature in our simulations allows us to have a more accurate

understanding of our system in conditions closer to the experimental conditions.
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In the previous Chapter 3, we studied a ferroelectric nanodomain in pure PbTiO3 and

we found that the ground state of this multi-domain configuration corresponds to an electric

skyrmion. However, all the results previously presented were obtained at very low temper-

atures. Then, in this section, we will study the effect of temperature trying to answer two

fundamental questions: (i) is the electric skyrmion stable at finite temperatures? and (ii)

what kind of transition will we have in case we destroy the electric skyrmion?

Therefore, using the second-principles model constructed for PbTiO3 (presented in Chap-

ter 2) we study the effect of temperature in the electric skyrmion. We solve this model

using Metropolis Monte Carlo methods with a periodically repeated supercell made up of

16×16×10 unit cells (12800 atoms) in which we write a nanodomain with 6×6×10 unit cells.

For each temperature we ran 20,000 sweeps for thermalization and extra 20,000 sweeps (or

100,000 sweeps close to transitions) to compute thermal averages. To identify any topo-

logical transition associated with changes in the polarization arrangement on the domain

wall, we start by computing the topological charge Q (following the strategy presented in

Appendix D) for a thermalized configuration, computing the polarization maps u(x, y) and

topological densities q(x, y) of a 16×16×1 slice of 16×16×10 supercell. For each temper-

ature, we calculate the topological charge every 100 steps, thus we obtained a collection

of Q values for each temperature. Note that, the different simulations of the nanodomain

configuration were performed by imposing the PbTiO3 bulk lattice parameters, considering

their variation with temperature.

The results obtained are summarized in Fig. 4.1 where we show the evolution of the

topological charge as a function of the temperature in the form of a histogram, in which we

identify three different regions with different topological properties. In a first region between

0 and 150 K the topological charge is constant and always equal to +1. In this region, we

obtain the answer to our first question, and then we can say that the electric skyrmion is

stable below a critical temperature Tskyr = 150 K, in which the NDW presents an in-plane

polarization that forms a closed loop around the nanodomain.

In the second region we have a distribution of different Q values coexisting. This re-

gion is observed between Tskyr and TND, in which TND defines the temperature at which
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Figure 4.1: Calculated probability distribution of the topological charge as a function of tem-
perature. The color scale represents the probability to obtain a given topological charge Q.
The background colors show the different phases identified; white for the skyrmion phase;
red for the coexistence phase; grey background the monodomain phase. The circles ap-
pear in the temperature range in which the configuration of the nanodomain exists and the
squares indicate that the nanodomain has already been destroyed.

the nanodomain is destroyed and is equal to 260 K. So, we called this phase the coex-

istence phase where the most probable values of Q are −1, 0 and +1 that correspond to

NDW-antiskyrmion, NDW-polar and NDW-skyrmion respectively (arrangements described

in Chapter 3). So we answer the second question previously posed, since this second re-

gion shows how the NDW-skyrmion state is destroyed in an intermediate phase in which the

topological charge goes from Q = +1 to a Q that fluctuates between different values.

Finally, in the third region for temperatures above TND the topological charge is always

zero once the nanodomain has been destroyed. To analyze this transition, we must consider

the polarization arrangement and how it evolves as a function of temperature. In Fig. 4.2 we

show some snapshots and we verify that between 220 K and 260 K the nanodomain reduces

its size until T = 260 K where the thermal fluctuations are sufficient to destroy completely

the nanodomain (it is important to note that, at temperatures below 220 K, we observe some

fluctuations in the form of the nanodomain in its corners, but the appreciable reduction in the

size of the nanodomain starts at 220 K).

Thus, for a nanodomain with 6 × 6 unit cells in-plane, the transition from the coexistent

phase to a trivial phase is a consequence of the complete destruction of the nanodomain.

The TND depends on the size of the ND. In our case we consider a nanodomain with 6×6
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Figure 4.2: The polarization maps for snapshots obtained at different temperatures (T =
160 K, T = 220 K, T = 250 K and T = 260 K); the color scale gives the out-of-plane Pz
component, while the arrows correspond to the in-plane Px and Py.

unit cells in the plane, however if we increase the size of the nanodomain it will disappear at

higher temperatures. In addition, our simulations are carried out under short-circuit bound-

ary conditions that do not favor our nanodomain. So if we consider the appropriate electrical

boundary conditions such as the condition in some ferroelectric/dielectric superlattices (as

we will see in next Chapter) we favor the formation of domains and we will increase the TND.

This way we show the behavior of the nanodomain configuration when we increase the

temperature, and how it affects the polarization arrangement and therefore the topology

giving rise to three distinct phases.

4.2 Structural and topological phase diagram in thin films

We will now introduce the effect of epitaxial strain together with temperature. Let us start by

studying the behavior of PbTiO3 monodomain grown on different substrates. Then, we study

the structural and topological behavior of the electric skyrmion as a function of temperature

and for different epitaxial constraints.

4.2.1 Monodomain

In this section, we present the phase diagram of the PbTiO3 monodomain as a function of

temperature and epitaxial strain obtained using the second-principles methods. This way we
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can understand the behavior of PbTiO3 monodomain without the effects of the ferroelectric

nanodomain.

Previous literature

In a previous work, the behavior of PbTiO3 in bulk was studied as a function of the tempera-

ture using second-principles [6]. Such study showed a phase transition from a ferroelectric

phase with polarization parallel to the z direction at low temperature to a paraelectric phase

with an average null polarization.

In addition, Diéguez et al. [84] studied the behavior of PbTiO3 and other perovskite ox-

ides when varying the in-plane epitaxial constraints using Effective Hamiltonian methods.

The results obtained indicate that PbTiO3 at low-temperature presents a polarization par-

allel to the z direction for compressive strains, called c-phase. For the tensile stress, they

obtained an aa-phase in which the polarization points only in the plane xy, according to

Px = Py 6= 0 and Pz = 0. Between these two phases they predict a multidomain structure,

mixing domains from both phases.

Another study of the effect of the epitaxial strain on PbTiO3 at 0 K was carried out using

first-principles methods [85], in which the existence of only two phases was predicted. The

phase with polarization parallel to the z direction for compressive epitaxial strains and a

polarization only in-plane with Px = Py for bigger values of the in-plane lattice and between

these phases was observed and abrupt transition. It is important to note that, in this study the

angles α = β = 90◦ (α and β are the angles of the c axis with the a and b axis respectively)

are held fixed.

Present work

We used second-principles methods to carry out several Monte Carlo simulations for differ-

ent in-plane lattice parameters at very low temperatures. Subsequently, for each of these

in-plane lattice parameters, several Monte Carlo simulations are made at different finite tem-

peratures with a periodically repeated supercell made up of 16×16×16 unit cells (in which
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we consider 10,000 sweeps for thermalization and 40,000 sweeps to compute thermal av-

erages). Regarding the application of the epitaxial restrictions, we impose a substrate with

square symmetry defined by an in-plane lattice constants asub = bsub and with γsub = 90◦. All

these parameters define the epitaxial constraints and they are held fixed during the Monte

Carlo simulation.

At low-temperature T = 12.5 K, we obtain two different phases as shown in Fig. 4.3 (a).

The first phase called c-phase, with asub values around the abulk = 3.933 Å of PbTiO3 and

for compressive strains, in which the polarization point in the [001] direction. When applied

tensile strain we obtain another phase called r-phase, in which the polarization rotates, de-

veloping a polarization in-plane with Px = Py 6= 0. For asub > 4.014 Å we observe a change

of the polarization components, in which the Px,y increases while the out of plane compo-

nent decreases. Such change seems to correspond to the beginning of a transition from the

r- to aa-phase.

At higher temperature T = 250 K (in Fig. 4.3 (b)) two phases are observed. First a

c-phase, which we also observe at low temperatures, and when we increase the in-plane

lattice parameter we have a transition in which the polarization rotates fully in-plane, pointing

in the [110] direction, so called aa-phase.

In the Fig. 4.3 (c)–(e) we present the behavior of the polarization for three different in-

plane lattice parameters asub. In the panel (c) the polarization always remains parallel to z

and almost constant over the temperature range considered. In the case of panels (d) and

(e) at low temperatures was obtained a r-phase. When the temperature increases the r-

phase is destabilized and undergoes two different phase transitions to c-phase (asub = 3.983

Å) and aa-phase (asub = 4.014 Å).

All this information is gathered together in the phase diagram of PbTiO3 presented in the

Fig. 4.4 (a) in which we can identify the three different phases previously described. When

the in-plane lattice constant is increased, the temperature range in which r-phase is the most

stable increases. For asub > 4.01 Å the aa-phase is favored at higher temperatures.

It is important to note that our results showed the formation of a r-phase. Such results

are partially in disagreement with the results obtained by Diéguez et al. [84] in which was
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Figure 4.3: Calculated components of the average polarization (green circles represent the
out-of-plane component |Pz| and the red circles show the in-plane component of the polar-
ization |Px| = |Py|). In panels [(a) and (b)] is presented the polarization at constant temper-
ature, respectively T = 12.5 K and T = 250 K. The panels [(c)–(e)] we show the evolution
of the polarization components for different in-plane lattices, respectively asub = 3.933 Å,
asub = 3.983 Å and asub = 4.014 Å.

predicted an intermediate phase at low temperature the formation of mixed domains of c and

aa-phase without explicitly taking into account the additional cost of creating domain walls.

So, we performed additional calculations of multidomain configurations at low-temperature

and our results predict that these multidomain phases present a higher energy than the

obtained for the r-phase.
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Figure 4.4: Structural phase diagram of PbTiO3 monodomain (a) and ferroelectric nan-
odomain (b), where the colors green, blue and red represent the three different phases,
respectively r-phase, c-phase and aa-phase. The red arrows are a sketch of the polarization
direction in each phase observed. The red dashed line shows the critical temperature in
which the nanodomain is destroyed.

4.2.2 Nanodomain and Electric skyrmion

In this section we present the structural phase diagram of the ferroelectric nanodomain con-

figuration, applying a strategy similar to that presented in Section 4.2.1. In this case, the

initial configurations considered are the results obtained at very low temperatures for the dif-

ferent epitaxial constraints presented previously in Chapter 3. Using second-principles meth-

ods we performed Metropolis Monte Carlo running 20,000 sweeps for thermalization and

additional 80,000 sweeps to compute thermal averages. We used a periodically repeated

supercell formed by 16×16×16 unit cells in which we have a nanodomain of 6×6×16.

Structural phase diagram

As we observed in the previous Section 4.2.1, the temperature and epitaxial strain play a

main role in the direction and amplitude of the polar distortions. So to build the phase dia-
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gram of the electric skyrmion configuration we calculate the thermal average of the polariza-

tion for each temperature and asub. From the second-principles simulations, we obtain a set

of thermalized configurations that allow us to calculate the average configuration. From this

configuration, we calculate the thermal average of the local polarization centered at several

Pb atoms in the middle of the matrix.

The results obtained using this strategy are shown in Fig. 4.4 (b) where we present the

structural phase diagram of the skyrmion configuration with the same three phases dis-

cussed in the phase diagram of PbTiO3 monodomain (in Fig. 4.4 (a)). The presence of the

nanodomain gives rise to minor changes in the boundaries between the different phases.

In addition to information about the stability of the different phases, we also include TND,

which indicates the temperature at which the nanodomain disappears completely, as defined

previously in Section 4.1. Note that this temperature is a characteristic of the nanodomain

considered in this case. Thus, increasing or decreasing the size of this nanodomain, its

destruction temperature should vary accordingly.

In the phase diagram, we do not have information about the polarization arrangement

at the atomic level. In Fig. 4.5 (a) and (b) we show the average configuration obtained for

two different points in the phase diagram. In Fig. 4.5 the panel (a) shows the nanodomain

configuration in the r-phase where the polarization in-plane points along the four equivalent

〈110〉 directions breaking in 90◦ domains in-plane. In the c-phase (shown in Fig. 4.5 (b)) the

polarization in the matrix and in the nanodomain points only along z and the only polarization

in-plane appears in the NDW.

In short, the result obtained in the structural phase diagram is like that obtained in the

case of the monodomain, showing that the presence of the nanodomain does not affect the

obtained direction of the polarization inside the matrix.

Topological phase diagram

Temperature plays an important role in the topological character as shown in previous Sec-

tion 4.1 with the results obtained for asub = abulk. When upon heating the electric skyrmion

configuration, with a topological charge Q = +1, it undergoes several transitions involving
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Figure 4.5: The polarization maps for two different in-plane lattices of asub = 3.983 Å (a) and
asub = 3.933 Å (b) both at T = 40 K; the color scale gives the out-of-plane Pz component,
while the arrows correspond to the in-plane Px and Py.

configurations with an unusual topology and trivial structures with a Q = 0. Such transitions

allow us to define a critical temperature of skyrmion, Tskyr as defined in Section 4.1. Fig. 4.6

shows the topological charge evolution upon heating for several different in-plane lattice con-

stants. In the Fig. 4.6 (a), we observe an abrupt transition from a skyrmionic state (Q = +1)

to a trivial arrangement (Q = 0) at Tskyr ∼ 200 K, obtaining a very narrow coexistence phase.

Decreasing the in-plane lattice for asub = 3.958 Å, presented in Fig. 4.6 (b), the transition

between skyrmionic state (Q = +1) and normal (Q = 0) nanodomain states is intermediate

by a broader coexistence phase. In the coexistence phase, red region, we observe a dis-

tribution of different Qs obtained from our simulations, in which the most probable Q states

are +1 and 0. However, we were able to identify in this phase Qs in the interval Q ∈ [−1, 3].

Then, the evolution of Q as a function of temperature let us identify two different transitions.

The first transition from a skyrmionic phase to a coexistence phase at Tskyr ∼ 180 K and a

second transition from the coexistence to a monodomain configuration at TND ∼ 220 K.

Fig. 4.6 (c) presents the distribution of Qs for asub = 3.920 Å, where the nanodomain

undergoes in the same sequence of transitions from skyrmionic state to a coexistence phase

and finally to a monodomain configuration with the respective temperatures Tskyr ∼ 140 K

and TND ∼ 280 K. On the coexistence phase, we obtained a broader distribution of Qs in an

interval of Q ∈ [−3, 4] where the Q = −1, 0,+1 are the most probable states of the ND.
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Figure 4.6: Probability distribution for Q as a function of T for three different in-plane lattices
of asub = 3.983 Å, asub = 3.958 Å and asub = 3.920 Å, respectively shown in the different
panels [(a)–(c)]. The background colors show the different phases identified; white for the
skyrmion phase; red for the coexistence phase; grey background the monodomain phase.
The circles appear in the temperature range in which the configuration of the nanodomain
exists and the squares indicate that the nanodomain has already been destroyed.

Therefore, we found that by decreasing the in-plane lattice parameter, we increased the

temperature range of the coexistence phase. This result shows that using different sub-

strates we have a tunable sequence of topological transitions - with or without a coexistence

phase. This behavior can be understood when we think about the effect of the restrictions

imposed by the substrate in the polarization. In the case of tensile strain, a big component

of the polarization in the xy plane is not only confined to the NDW, but also along the ma-

trix and nanodomain forming the 90◦ domains. So, the thermal fluctuations must disorder

this whole arrangement in-plane to destroy the Q = +1 skyrmion. On the other hand, the

polarization out-of-plane decreases for tensile strains and therefore it is easier to destroy

the nanodomain than to destroy the pattern of domains in-plane. So, for tensile strain the

coexistence phase is very narrow.

When applying a compressive stress, we verify that the polarization in the nanodomain

and in the matrix is parallel to z in c-phase. When we decrease the in-plane lattice param-
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Figure 4.7: Sketches of (a) the histograms of the skyrmion center as a function of tempera-
ture and epitaxial strain in-plane, where the horizontal dash line represents Sx = 0 and the
vertical the Sy = 0; Panels (b)–(d) the average of the position of the skyrmion center, |〈Sxy〉|,
for three different in-plane lattices of asub = 3.983 Å, asub = 3.958 Å and asub = 3.933 Å,
respectively.

eter, Pz increases and this explains why the temperature of destruction of the nanodomain

increases. However, for these epitaxial restrictions, only in the NDW the polarization is in-

plane. By decreasing the in-plane lattice parameter this polarization in the NDW decreases

67



in magnitude. This way, thermal fluctuations can disorder the confined polarization con-

fined in the NDW, giving rise to the coexistence phase at lower temperatures. Therefore,

by decreasing the in-plane lattice parameter, simultaneously, we increase the stability of the

nanodomain and at the same time we decrease the stability of the ordered closed loop of

polarization in the NDW giving rise to a broader coexistence phase in temperature.

In addition, another important property of the electric skyrmion configuration is the po-

sition of the skyrmion center. The previous study regarding the center of the skyrmion at

low-temperature in Chapter 3 showed a symmetry-breaking skyrmion-skyrmion transition

driven by epitaxial strain, due to the off-centering of the skyrmion.

Fig. 4.7(a) shows the histograms of the center of the skyrmion. Applying compres-

sive strain in-plane xy the center moves around the zero which implies a high-symmetric

skyrmion. When applied a tensile epitaxial strain the distribution of the center moves off-

center.

The effect of the temperature on the movement of the skyrmion center is more evident in

Fig. 4.7 (b) in which we show the average of the position of the skyrmion center, |〈Sxy〉|, for

asub = 3.983 Å. We can identify a first region with non-zero |〈Sxy〉| below TS = 80 K, where

TS is the temperature associated with this transition. When heated up, the thermal fluctua-

tions induce a topological transition to a high-symmetric skyrmion (|〈Sxy〉| ≈ 0). Fig. 4.7 (c)

shows the Sxy for asub = 3.958 Å. We observe a similar behavior, but the critical temperature

associated with the transition regarding the movement of the center is reduced to TS = 20

K. As expected for a compressive epitaxial strain the movement of the skyrmion is more

costly, such can be seen in Fig. 4.7 (d) where the Sxy = 0 all over the skyrmion phase. It

is important to emphasize that for all in-plane lattice constants studied; the increase of the

temperature leads to wider distributions of the skyrmion center.

Considering all the information regarding the different topological phases presented in

Fig. 4.6 together with the transition of the skyrmion center, Fig. 4.7, we can construct the

topological phase diagram of the skyrmion, taking into account the structural phase diagram

described in Section 4.2.2. Fig. 4.8 assembles all the details about the topological transi-

tions. At low temperatures, we identified two different phases. A first region for asub < 3, 983
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Figure 4.8: Topological phase diagram of ferroelectric ND; colors green, light blue, red
and grey representing the different topological phases, respectively skyrmion phase, dipole
phase, coexistence phase and trivial phase. The grey dashed lines show the structural tran-
sitions, red dashed line represents the critical temperature of the ND, the orange solid line
shows the transition of the position of the skyrmion center and the orange dashed line rep-
resents the same transition in the region where skyrmion is a stable solution but it is not
the most stable state of the ND state. To define the different phases, we had introduced a
tolerance factor of 2% defining the minimum % where we consider such state. Regarding
the transition of the position of the skyrmion center we consider the movement only when it
is > 0.05u.c.

Å where the skyrmion is the stable solution and a second region when asub > 3, 983 Å, where

the polar state NDW is the most stable solution of the ND configuration. Nevertheless, in our

simulations, we did not observe any spontaneous transition from a NDW-skyrmion state to

NDW-polar state, which indicates that between these states we have a large energy barrier.
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4.3 Macroscopic signatures of structural and topological tran-

sitions

In the phase diagrams previously discussed we reported several transitions regarding rota-

tions of the polarization and topology that should have associated signatures in the dielectric

response. These signatures assigned to the different transitions should be possible to ob-

serve experimentally.

4.3.1 Monodomain

The results obtained for PbTiO3 are presented in Fig. 4.9 (a) and (b). In the panel (a)

we show the dielectric response in-plane, χxx = χyy, where we observed a maximum for

tensile epitaxial strain in-plane that coincide with the transition between the c-phase and

r-phase. Combining the almost divergence of the dielectric response with the polarization

profile previously shown in the Fig. 4.3 (a), we have the indication that this transition presents

a second-order character.

Besides that, the χxx also presents smaller peaks in the c- to aa-phase transition and

in the r- to aa-phase (more difficult to identify in the logarithmic scale). Such transitions are

most easily observed in Fig. 4.9 (b) in which we present χzz. Taking into account the polar-

ization profile in these transitions – shown in Fig. 4.3 (e) with the c- to aa-phase transition

– it seems to be an abrupt transition, which indicates that this transition is more similar to a

first-order transition.

4.3.2 Nanodomain and Electric skyrmion

In the phase diagrams discussed before, we report several transitions related to the struc-

tural changes and the associated signatures in the dielectric response. In this section, we

will focus on the different topological transitions and identify their macroscopic dielectric sig-

natures.

Let us first compute the macroscopic dielectric response of the nanodomain configura-
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Figure 4.9: Calculated dielectric response diagram of the PbTiO3 monodomain [(a)–(b)] and
nanodomain [(c)–(d)] as a function of temperature and asub (obtained using the strategy
presented in Appendix B); The panels (a) and (c) correspond to the dielectric response in-
plane, χxx = χyy; (b) and (d) are the dielectric responses out-plane, χzz. The color scale
represents the log10 of the respective dielectric responses. The dashed lines represent the
limits of the different structural phases. In the panels (c) and (d) the black lines represent
the limits of topological phases; the green dashed line represents the destruction of the ND
and the blue dashed line corresponds to the transition of the skyrmion center.

tion in bulk PbTiO3, simplifying the problem by eliminating the effect of the epitaxial strain.

In Section 4.1 we showed how temperature induces several transitions.
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Figure 4.10: Calculated diagonal dielectric response of the electric skyrmion in bulk PbTiO3

as a function of temperature. The magenta circles represent the χxx and the green circles
are χzz.

In Fig. 4.10 we show the macroscopic dielectric response of the nanodomain configura-

tion. The component in plane χxx remains almost constant and does not allow us to identify

any dielectric anomaly as well as we obtained for the monodomain case (in Fig. 4.9 (a)).

However, when we consider the other component χzz, we identified three different anoma-

lies. The first at T ∼ 160 K where we observe a peak in the dielectric response in the

proximity of Tskyr. Two other peaks were obtained, first in the middle of the coexistence

phase (T = 210 K) and the second closest to TND. This last peak is associated with the

transition from the coexistence phase to a monodomain phase. Finally, the peak obtained at

T = 210 K appears in the coexistence region. This peak is located close to the temperature

at which the shape of the nanodomain begins to be distorted (T = 220 K). This seems to be

the explanation for this peak obtained in the middle of the coexistence phase.

The situation is more complex when we consider the effect of the epitaxial strain. As we

discussed in Section 4.2.2, there are three regions where we identified topological transi-

tions associated to: i) coexistence to skyrmionic phase (Tskyr), (ii) the skyrmion center (TS),

and iii) destruction of the nanodomain (TND). Therefore, let us analyze each of these re-

gions and their respective dielectric responses and compare with the results of the PbTiO3

monodomain.
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Coexistence to skyrmionic phase (Tskyr)

In this topological transition, the different components of the dielectric response exhibit dif-

ferent behaviors. With regard to the χxx (in Fig. 4.9 (c)) we verify that the transformation

in the topology does not have any anomaly in the dielectric response. On the other hand,

the χzz (presented in Fig. 4.9 (d)) presents a maximum, that does not appear in the mon-

odomain dielectric response. In this region, the peak in the response follows the Tskyr line,

although it is shifted to lower temperatures. Interestingly, the local dielectric response χzz

(obtained using the strategy presented in Appendix C), in Fig. 4.11 (c), presents a maximum

in the NDW. This result is consistent with an order-disorder transition in the NDW. Note that

huge peaks of χzz are observed in three corners of the nanodomain. Such a response ap-

pears due the fact that in this region of the phase diagram the external electric field is strong

enough to flip the polarization of the nanodomain corners, turning the polarization along z

from positive to negative (now part of the matrix).

Thus, we identified a signature in the dielectric response seems to be related to the

topological transition within the NDW. The relationship is not fully established, as the peak

in χzz occurs at temperatures lower than the observed Tskyr. Nevertheless, while we still

lack a more detailed understanding, it seems that the connection between these two fea-

tures is clear. Hence, we believe that this dielectric anomaly may allow the experimental

identification of the presence of skyrmions.

The skyrmion center (TS):

Fig. 4.9 (c) and (d) show the different components of the dielectric response of the electric

skyrmion. When we investigate the results obtained in the region – where we observe the

skyrmion-skyrmion transition due to the off-centering of the skyrmion center – we verify that

these are like those obtained in the monodomain case. This is because, as we discussed

earlier in Chapter 3, the off-centering of the skyrmion center is driven by the rotation of

the polarization in the transition from c- to r-phase. Thus, the dielectric signature of the

nanodomain in this region is mainly defined by the structural transition.
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Figure 4.11: Calculated polarization [(a) and (b)] and local electric susceptibility maps χzz
[(c) and (d)] and χxx [(e) and (f)] for two different points in the phase diagram; transition of
the center of the skyrmion (asub = 3.970 Å, T = 40 K) (a),(c) and (e); transition from skyrmion
phase to coexistence phase (asub = 3.933 Å, T = 160 K) (b),(d) and (f). In panels [(a) and
(b)] the color scale gives the out-of-plane Pz component, while the arrows correspond to the
in-plane Px and Py. In panels [(c)–(f)] the color scale gives the χzz(x, y) or χxx(x, y) while
the arrows correspond to the in-plane Px and Py.

Even knowing that in this region the dielectric response is dominated by structural trans-

formation, the study of the local response of the nanodomain configuration can reveal unique

characteristics of the nanodomain configuration. Fig. 4.11 (b), (d) and (f) show the polar-

ization arrangement and the components of the local dielectric response. Focusing on χzz

results we can identify two regions with different responses. The first region is at the matrix

and nanodomain, where the biggest component of the polarization is Pz, and this component
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is hard to change and therefore we obtain a small χzz. The second is in the NDW formed

by polarization in-plane, in which we observe the maximum of the χzz, showing that NDW is

the most reactive part of the nanodomain configuration.

The panel (f) show the response of the same region of the phase diagram when applied

an external field along x. In these conditions the center of the skyrmion moves perpendicular

to the direction of the electric fields as we showed previously in Chapter 3. Fig. 4.11 (f)

presents the local electric susceptibility in which we observe the maximum in the part of the

NDW with local polarization along y, in the vortices of polarization in the matrix and in the

center of the ND.

Destruction of the nanodomain (TND)

When comparing the dielectric response of the monodomain and the nanodomain config-

uration in this region, it is easy to identify a clear difference in the χzz (Fig. 4.9 (b) and

(d)). In this region we observe the destruction of the nanodomain and the transition from a

monodomain phase to the coexistence phase. This anomaly in the dielectric response is a

consequence of the variation of the average polarization over z due to the destruction of the

nano domain.

4.4 Summary

In this chapter, we studied the stability of the electric skyrmion obtained in the nanodomain

configuration, considering the temperature effect. We predicted that at high temperatures

the nanodomain is destroyed and, consequently, we obtain a trivial arrangement. At lower

temperatures, the nanodomain is stable and we observe that thermal fluctuations give rise to

a phase in which several values of Q coexist. Finally, we observed the transition from a co-

existence phase to the skyrmionic phase. We show evidence that this topological transition

is associated to an anomaly in the macroscopic dielectric response. Considering different

substrates, the results showed that the phase sequence is tunable, with or without the coex-

istence phase, which disappears for tensile epitaxial strains.
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Chapter 5

Electric skyrmions in superlattices of

PbTiO3/SrTiO3

In this chapter, we report the discovery of electric skyrmion bubbles in lead titanate layer

confined by strontium-titanate layers. We start by introducing the concept of superlattices

and the different factors that define their properties, illustrated with several examples from

the literature specifically for PbTiO3/SrTiO3 superlattices. Focusing on our objective, then

we briefly describe the different experimental results that allowed to prove the existence of

electric skyrmions at room temperature in PbTiO3/SrTiO3 superlattices. Finally, we describe

the theoretical study carried out using the second-principles and how they allowed us to de-

scribe and understand more better the electronic skyrmions at the structural and topological

level.

5.1 Ferroelectric-Paraelectric superlattices

In recent years, experimental developments in the growth of complex heterostructures with

high quality have created the possibility of studying these new complex materials. Through-

out this chapter, we will focus on a specific type of heterostructures, the superlattices that are

formed by a periodic structure with two materials, which are alternately layered, as shown in
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Figure 5.1: Sketch of a superlattice formed by two different materials represented by the
green and blue layers where n and m are the thickness of layers in unit cells. The black
material is the substrate of the superlattice

Fig. 5.1. Usually, these layers are very thin with few unit cells.

These heterostructures can not only allow the possibilities to improve or control the prop-

erties of one of the materials present in the superlattices, but also give rise to new properties

that we do not observe in the materials individually. For example, in the case of superlattices

formed by BaCuO2 and SrCuO2, superconductivity was observed, even though none of the

materials present superconductivity in itself [52], or in superlattices SrZrO3 and SrTiO3 that

exhibit ferroelectricity when none of these materials is ferroelectric [53].

In this work, we will focus on superlattices where we combine a ferroelectric and a di-

electric material. In these superlattices the main factors defining the ground state are: (i) the

epitaxial stress imposed by the substrate, (ii) the interface and how the atoms relax in this

region, and (iii) the electrostatic interactions between the different materials.

Neaton and Rabe [86] showed the importance of epitaxial strain in the study of BaTiO3/SrTiO3

superlattices grown epitaxially on a SrTiO3 substrate. They found that for very thin layers of

BaTiO3 and SrTiO3, the entire superlattice is homogeneously polarized – including SrTiO3
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an incipient ferroelectric – as a result of electrostatic interactions between different materi-

als. In addition, due to the compressive stress applied in-plane – in the BaTiO3 layers - the

superlattices (BaTiO3)2/(SrTiO3)3 (the indexes define the thickness of the different layers in

unit cells) show an increase of more than 50% in the polarization magnitude when compar-

ing with the value obtained for the bulk of BaTiO3. These results have been demonstrated

experimentally with an enhancement in polarization in BaTiO3 [87, 88].

In the case of the PbTiO3/SrTiO3 superlattices – in which we will focus on throughout

this chapter – the electrostatic interactions between the different layers is one of the most

important factors to define the final polarization state. PbTiO3 presents a ferroelectric phase

with a tetragonal structure. In the case of SrTiO3, it has a non-polar phase at low tempera-

tures with a tetragonal structure. In addition, the in-plane lattices of these materials in their

tetragonal phases are very similar, which facilitates the experimental construction of these

superlattices and allows us to minimize the effect of epitaxial strain choosing SrTiO3 as a

substrate. With these epitaxial constraints PbTiO3 layers are compressed in-plane and as a

consequence they develop a polarization only out of plane, parallel to the stacking direction.

The effect of electrostatic interaction can be understood using a simple model introduced

by Junquera and Ghosez [89]. This model was used to study the critical thickness of fer-

roelectricity in ultra thin films, however, it can be easily generalized to study superlattices.

Thus, considering a superlattice formed by ferroelectric layers with n unit cells, and a layer of

a paraelectric material with m unit cells. The total thickness of the bilayers formed by these

two materials is given by tFE + tPE = ncFE + mcPE in which cFE and cPE are the lattice

parameters of the materials. In the absence of an external electric field the total energy of

the superlattice is given by:

E(PFE , PPE) = U(PFE , PPE) + Eelec (5.1)

The first term corresponds to the internal energy of the superlattice in the absence of any

electric field and the second term is the electrostatic energy due to the interaction between

the different layers. So we can write the first term as a sum of the energies of each of
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the materials when calculated under the same conditions of epitaxial strain. In addition, it

is important to bear in mind that in this model we will neglect the impact of the interface

on the problem, assuming that it is much smaller than the electrostatic interaction. Thus

U(PFE , PPE) can be rewritten as:

U(PFE , PPE) ≈ nU(PFE) +mU(PPE) (5.2)

In the superlattice in the absence of free charges, the development of a polarization PFE in

the ferroelectric material gives rise to an electric field EFE – a depolarization field. Taking

into account that in our problem the superlattice is in a short circuit condition, then the

paraelectric layer will have to develop a depolarization field EPE in order to keep the total

variation of the electric potential null, and therefore we can write:

tFEEFE = −tPEEPE (5.3)

In addition, in the absence of free charges the condition ∇ ·D = 0 is imposed and from this

we obtain that:

PFE + ε0EFE = PPE + ε0EPE (5.4)

Combining these two equations we obtain the depolarization field given by:

EFE = − tPE
ε0(tFE + tPE)

(PFE − PPE),

EPE = +
tFE

ε0(tFE + tPE)
(PFE − PPE)

(5.5)

As shown in the previous equations if the polarizations in the two materials are different, two

electric fields with opposite signs appear in each material and their magnitude will depend

on the relative thickness of each of the materials and the difference of the polarizations

PFE − PPE .

Taking this result into account, we can calculate the electrostatic energy due to the inter-

action between the different layers which is given by Eelec = −
∑

i tiEi · Pi where i runs over
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all the layers in the superlattice. So we obtain

Eelec =
tFEtPE

ε0(tFE + tPE)
(PFE − PPE)2 (5.6)

Finally, replacing the results obtained for each of the terms in Eq. 5.1 the total energy of

the superlattice is given by:

E(PFE , PPE) = nU(PFE) +mU(PPE) +
tFEtPE

ε0(tFE + tPE)
(PFE − PPE)2 (5.7)

Therefore, according to this simple model, we have three key factors to define the final po-

larization state of the superlattice. First, the ferroelectric material minimizes its energy by

developing a spontaneous polarization. Second, the energy cost of polarizing the paraelec-

tric material. And finally, the electrostatic cost of having different polarization in each of the

materials. The balance of the different factors is defined by the relative thickness of the

different materials in the superlattice.

From the literature on PbTiO3/SrTiO3 superlattice, we verify that its behavior can be

understood taking into account the previous model with reasonable agreement. When the

paraelectric layer is very thin the superlattice develops a uniform polarization in both mate-

rials. As we can see from Eq. 5.7, this way the depolarization fields are eliminated with the

additional cost of polarizing the layers of SrTiO3 [86, 90, 91].

When we increase the thickness of the paraelectric layer, the cost of polarizing this mate-

rial increases. So in these superlattices, when the SrTiO3 layer is sufficiently thick, the PSTO

will be null. If we consider the cases where the layers of PbTiO3 has a uniform polarization

inside – as we show in Fig. 5.2 (a) – we will obtain large depolarization fields as shown by

Eq. 5.5.

In order to minimize the depolarization fields, the polarization inside each PbTiO3 layer

would prefer to break into different domains with polarization pointing up and down, as shown

in Fig. 5.2. This solution allows to obtain a total PPTO that is zero. This way, the difference

PPTO − PSTO = 0 and therefore the total depolarization fields given by Eq. 5.5 are null in

both materials. However, when the material breaks in domains, other factors must be taken
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Figure 5.2: Sketch of the PbTiO3/SrTiO3 superlattices with a (a) monodomain polarization
inside the PbTiO3 layer and (b) with the multidomain configuration inside the PbTiO3 layer.
The green and magenta arrows represent the polarization and the red arrows represent the
depolarization fields created for each polarization state.

into account, first is the energy of the domain walls and second the width of the domains.

The balance between these factors depends on the thickness of the layers and leads to a

configuration that follows Kittel’s law initially applied to ferromagnetic domains [92] and later

applied to ferroelectric domains [93, 94].

Aguado-Puente and Junquera [4] studied the properties of the 180◦ stripe domains in

superlattices of PbTiO3/SrTiO3 using first-principles calculations (shown in Fig. 1.8 (b)). Un-

der these epitaxial constraints, PbTiO3 would present a tetragonal structure with polarization

only along z. So as discussed previously in this section, to avoid depolarization fields, the

polarization in PbTiO3 breaks in domains up and down. The result obtained presents a com-

plex structure with different domains. Between them polarization vortices are formed around

the domain walls as shown in Fig. 1.8 (b). In addition, to avoid creating depolarization fields

at the interface, the polarization rotates continuously in-plane. In order to accommodate

such rotation around domain walls and interface the material develops large strain gradi-

ents.
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5.2 Experimental studies of the structure of PbTiO3/SrTiO3 su-

perlattices

Previous works

Experimentally, the existence of ordered ferroelectric nanodomains in the superlattices of

PbTiO3/SrTiO3 grown on a SrTiO3 substrate was verified, using X-ray diffraction and trans-

mission electron microscopy [55, 56, 57] in Fig. 1.8 (a). The analysis of tetragonality along

the superlattice and the comparison with the theoretical results predicted the complex struc-

ture of the nanodomains with the continuous rotation of the polarization at the interface and

around the domain walls [4].

In the sequence of these studies, it was verified experimentally that in these superlat-

tices of (PbTiO3)5/(SrTiO3)n different domain structures like ferroelectric stripes formed in

the layer of PbTiO3 [5]. Along with the experimental studies, second-principle methods were

also used to study these domain structures that we present in the Fig. 1.8 (c). This figure

shows the planar-view of the stripe configuration from above. The different local properties

presented in this study, such as polarization, susceptibility and dielectric response, were ob-

tained using second-principles methods applied for the first time in the study of superlattices.

In the next sections the theoretical results presented were obtained using the same model,

described in more detail in Chapter 2.

In a similar structure with superlattices PbTiO3/SrTiO3 grown on a substrate of DyScO3

the existence of polar vortices confined in the layers of PbTiO3 was discovered [3]. Using

cross-sectional high-resolution scanning transmission electron microscopy (HR-STEM), a

structure composed of pairs of left and right handed vortices was observed as we show in

Fig. 1.8 (a). Besides that, using resonant soft X-ray diffraction and second-principle simula-

tions, a strong circular dichroism was observed, due to the interaction of the polar vortices

with the circularly polarized light, showing that these structures are chiral [8].

Later studies, the coexistence at room temperature of the polar vortices phase and the

ferroelectric phase with domains a1/a2 was observed [95]. Applying electric fields in the

mixed phase it is possible to favor one of the phases, abruptly changing the properties of the
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superlattices.

In the following sections we will study the possibility of stabilizing electric skyrmions in

superlattices of PbTiO3/SrTiO3 that present themselves as strong candidates.

Observation of electric skyrmion in PbTiO3/SrTiO3 superlattices

As we showed in the previous section, the PbTiO3/SrTiO3 superlattices are structures able

to stabilize complex multidomains arrangements. Therefore, they are a strong candidate for

stabilizing structures such as electrical skyrmions. Then by combining the new experimental

resources with theoretical predictions, electrical skyrmions were observed experimentally at

room temperature in PbTiO3/SrTiO3 superlattices grown on a substrate of SrTiO3 [7]. In this

section, we will show the different experimental results that indicate the existence of electric

skyrmions.

The first evidence comes from the dark-field transmission electron microscopy (DF-TEM)

images, showing the cross-sectional and planar view of the circular nanodomains confined

in the PbTiO3 layers (in Fig. 5.3). Using three-dimensional reciprocal space mapping was

identified a peak associated to the superlattice periodicity demonstrating the high quality of

the superlattices used. The observed satellite peaks were assigned to the in-plane period-

icity of about 8 nm, consequence of the ordered arrangement of ferroelectric nanodomains

confined in the PbTiO3 layers.

Fig 5.4 shows the displacement vectors of the Ti atoms. These results show the converg-

ing and diverging polarization arrangements observed at top and bottom interfaces. Such

arrangements of the polarization prove the existence of electric Néel skyrmion (described in

Chapter 1) in the superlattice interfaces between the PbTiO3 and SrTiO3 layers.

However, in the middle layers of PbTiO3 there was no evidence of the Bloch component

of the polarization in the domain wall. Without this component of the polarization forming a

closed surface of polarization around the nanodomains, the middle planes of PbTiO3 layers

are trivial topological textures with a topological charge of Q = 0. On the other hand, using

second-principles simulations we were able to describe in detail the structure of the domain

walls – as we showed in Chapter 3 – identifying the closed surface of polarization around
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the nanodomains (these results will be discussed in the next section). Based on our theo-

retical predictions that describe the displacements of different atoms in the superlattice, the

group of D.A. Muller in Cornell determined that it should be possible to observe such po-

larization pattern by combining high-angle annular dark-field scanning transmission electron

microscopy (HAADF-STEM) images and four-dimensional scanning transmission electron

microscopy (4D-STEM). Fig 5.4(c)–(f) show the 4D-STEM images demonstrating the exis-

tence of such component of the polarization. Another indication of the Bloch polarization

confined in the domain walls was obtained using resonant soft X-ray diffraction experiments

showing circular dichroism confirming chirality. Such result only appears in the nanodomain

configuration if the domain wall polarization forms a closed loop of polarization around the

nanodomain.

Figure 5.3: Ordered nanodomains arrangements observed using Cross-sectional DF-TEM
images in (SrTiO3)16/(PbTiO3)16 superlattices, showing an in-plane modulation of about 8
nm. Planar-view DF-STEM imaging shows the circular nanodomains. Figure adapted from
reference [7].
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Figure 5.4: Reversed Ti displacement vector maps (top) based on atomic resolved plan-view
HAADF-STEM image (bottom) of a circular nanodomain in (SrTiO3)16/(PbTiO3)16/(SrTiO3)16
trilayer, form a structure like a Néel skyrmion structure. Panel (b) presents the Ti-
displacement vector map (front) obtained from the atomically resolved cross-sectional
HAADF-STEM image (back), showing the circular nanodomain and the matrix with the up
and down polarization. The 4D-STEM image of a (SrTiO3)16/(PbTiO3)16 superlattice gives
the ADF image (c) and maps of polar order using the probability current flow (d), which were
reconstructed from the same 4D dataset. Panels (e) and (f) are Multi slice simulations of
the beam propagation through the structure. The ADF image (e) and the probability current
flow (f). The signals are not simple projections, but weighted by electron beam channelling
towards the middle of the skyrmion bubble, where the polarization exhibits a Bloch-like char-
acter. Figure adapted from reference [7].

This experimental result proves the existence of a stable electric skyrmion in (PbTiO3)/(SrTiO3)

superlattices obtained at room temperature.

5.3 Theoretical study of electric skyrmion in PbTiO3/SrTiO3 su-

perlattices

In parallel with the experimental investigation presented in the previous section, we began

the study of these superlattices of PbTiO3/SrTiO3 in order to understand and complement

the experimental results with the detailed description of the structure at the atomic level. We
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Figure 5.5: Sketch of (PbTiO3)n/(SrTiO3)m superlattice in which we write the (a) nan-
odomain(green region) confined in the PbTiO3 layer with positive polarization within a matrix
(magenta region) of opposite polarization and the (b) 180◦ stripe domains. The SrTiO3 layer
is the blue region.

focus especially on the topological properties of the bubble arrangement and the polarization

behavior in the domain walls and in the interface that proved to be the most challenging

regions to study at an experimental level.

5.3.1 Stripes domains Vs bubble domains

As we described in the previous section, on PbTiO3/SrTiO3 superlattices grown on a sub-

strate of SrTiO3, ferroelectric bubbles can be stabilized inside the PbTiO3 layers, with a

positive polarization along z surrounded by a matrix with opposite polarization [7], repre-

sented in a simplified version in the Fig. 5.5 (a). On the other side, in these superlattices

other polarization arrangements can be obtained, such as 180◦ stripe domains as shown in

Fig. 5.5 (b). Yadav et al. [3] reported the experimental observation of 180◦ stripe domains

in PbTiO3/SrTiO3 superlattices grown on a substrate of DyScO3. The polar vortices were

formed around the domain walls, as shown in Fig. 5.6 with the polarization maps reproducing

the results presented in the literature [3, 8].

So the question that arises is, which of these configurations are more stable when we

vary the epitaxial constraints. In order to investigate the two different configurations we used

the second-principles methods to perform the annealing and relaxation of the initial config-

urations presented in Fig. 5.5 (a) and (b), changing the epitaxial constraints in the plane
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Figure 5.6: Calculated polarization maps in which we observe the vortex-antivortex pairs
in the (PbTiO3)/(SrTiO3) superlattices. Panel (a) show the plane normal to the superlattice
layers (zy plane) in order to identify the vortex-antivortex configuration. Panel (b) is the plane
in the middle of the PbTiO3 layer parallel to the superlattice layers. The color scale gives the
out-of-plane component, while the arrows correspond to the in-plane. The figure reproduce
the results published by Yadav et al. [3] and Shafer et al. [8].

xy. In Fig. 5.7 we present the energy difference between these configurations computed

for PbTiO3/SrTiO3 superlattice with a thickness of 10 unit cells of PbTiO3 and 4 unit cells of

SrTiO3 as a function of the epitaxial constraints. This energy difference ∆E is defined as

∆E =
EBub − EStr
#PbT iO3f.u

(5.8)

where EBub and EStr are the energies of the bubbles and stripes configurations and #

PbTiO3 f.u is the number of the formula units of PbTiO3 in the superlattice.

This choice for the thickness of the layers allows us to realistically capture the behavior

of the PbTiO3/SrTiO3 superlattices, using the same thickness for the PbTiO3 layer that was

used experimentally and the minimum thickness of SrTiO3 to break the system into up and

down domains. Regarding the in-plane dimensions of the supercells used, in the case of the

ferroelectric bubbles the experimental results obtained using three-dimensional reciprocal

space mapping showed satellite peaks revealing an in-plane periodicity of about 8 nm (≈ 20

unit cells). Thus, we use a supercell with 20 × 20 unit cells in-plane, consistent with the

experimental results. On the other hand, in the case of the 180◦ stripe domains configuration
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Figure 5.7: The energy difference between the ferroelectric bubble configuration and the
180◦ stripe domains as a function of the substrate lattice parameter, asub. This results were
obtained using a superlattice of (PbTiO3)10/(SrTiO3)10. The energy difference is computed
using the Eq. 5.8.

the experimental results revealed a modulation of 20 unit cells along x and infinity along y

[3]. Then we used a supercell of 20× 1 unit cells in-plane.

These results show two different regions. In the first region for asub < 3.901 Å the electric

skyrmion bubble is the most stable configuration. For the second region when asub > 3.901

Å the 180◦ stripes configuration reduces its energy and becomes the most stable configura-

tion. The crossing point of the energies for the two configurations that we take into account

occurs for an asub = 3.901 Å, which corresponds to the value used for the calculations in

which we consider a substrate of SrTiO3. The results show that the energy difference be-

tween the two configurations is very small, regardless of the epitaxial restrictions considered

in this section. However, despite the small difference in energy, we identified a clear trend

(expansive tension favors stripes and compressive favors bubbles) and both metastable min-

ima are robust – or in other words, it is not easy to go from one state to the other).
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Figure 5.8: Calculated polarization maps of the nanodomain in PbTiO3/SrTiO3 superlattices
where the color scale gives the out-of-plane component, while the arrows correspond to the
in-plane; Panels [(a)–(c)] are the xy planes along the superlattice. The panel (a) is a plane
in the middle of the PbTiO3 layer and the panels (b) and (c) are respectively the planes at
the top and bottom interface between the PbTiO3 and the SrTiO3 layers. In the panel (d)
shows the polarization of the xz plane that passes in the middle of the nanodomain.

5.3.2 Structure and stability of ferroelectric bubbles

In order to investigate the polarization arrangement of the ferroelectric bubble in the PbTiO3/SrTiO3

superlattice grown on a substrate of SrTiO3 we used the same strategy (as before in Chap-

ter 3), starting with an initial configuration presented in Fig. 5.5 (a). The results obtained

are presented in the Fig. 5.8 where we show the polarization maps in the different planes of

the ferroelectric bubble configuration. The polarization map of the middle layer of PbTiO3 is

presented in panel (a) where we observe the two different domains, the bubble with positive

polarization surrounded by the matrix with opposite polarization. Between these two do-
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Figure 5.9: Average polarization along z (a) and energy difference (b) for nanodomain with
a different radius (presented in unit cells); The energy difference is given by ∆E = (E −
ERef )/(#PbT iO3f.u) where the E is the energy of the relaxed nanodomain configuration
and ERef is the energy of the reference structure of the superlattice. The reference structure
is the ideal perovskite structure of PbTiO3 and SrTiO3. We imposed an epitaxial constraint
corresponding to having a SrTiO3 (001)-oriented square substrate; we assume in-plane
lattice constants a = b = 3.901 Å.

mains the nanodomain wall presents a closed loop of polarization in-plane with a Bloch-like

character. This result obtained is similar to the result obtained for the nanodomain in pure

PbTiO3 presented in Chapter 3. At the top and bottom interfaces between the layers, the

polarization maps shown in Fig. 5.8(b) and (c) reveal a different arrangement of the in-plane

polarization. At the top interface the polarization in-plane is normal to the domain wall plane

and points to the center of the nanodomain. At the bottom interface the same behavior is ob-

served, however, in this case the polarization in-plane points outwards of the nanodomain.

Then in both interfaces we have Néel-like domain wall (described in Chapter 1) with po-

larization pointing normal to the domain wall plane. The cross-sectional view presented in

Fig. 5.8 (d) (xz plane) shows the two vortices of polarization around the domain walls in the

PbTiO3 layer. The arrangement of polarization that we obtained is in agreement with the

experimental results discussed in the Section 5.2.

Varying the radius of the ferroelectric bubble we change the volume of PbTiO3 with po-

larization up (nanodomain) and down (matrix). As a consequence, we change the average

polarization and energy of our configuration. In Fig. 5.9(a) shows the average polarization
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Figure 5.10: Polarization profile along the direction normal to the layers computed in the
center of the nanodomain for different superlattices (PbTiO3)n/(SrTiO3)m varying the SrTiO3

layer thickness m = 4, 10, 15 and 20 unit cells; The blue region corresponds to the SrTiO3

layer; The Pz was computed from the atomic displacements in a unit cell centered in the A
cation (Sr and Pb atoms).

along z inside the PbTiO3 layer as a function of the bubble radius. For a R = 7 and 8 unit

cells the volume of PbTiO3 polarized up and down are similar, minimizing the global po-

larization along z. As a consequence, in Fig. 5.9(b) we verify that for these radius of the

nanodomain (R = 7 and 8 unit cells) we obtained the ferroelectric bubbles with lower energy.

Finally, we study the effect of the SrTiO3 layer thickness that we define as m (as well

as defined in Fig. 5.5 (a)) and how it affects the ferroelectric bubble polarization along the

PbTiO3 and SrTiO3 layers and at the interface between them. Fig. 5.10 shows the results

of Pz obtained in the center of the ferroelectric bubble for different superlattices in which

the thickness of the PbTiO3 layers is kept fixed (with 10 unit cells) and the thickness of the

SrTiO3 layers m = 4, 10, 15 and 20 unit cells. The main difference in the results obtained for

different superlattices is observed in the SrTiO3 layers. Fig. 5.10(a) and (b) shows a SrTiO3

layer clearly polarized, even in the central planes. On the other hand, for superlattices with

SrTiO3 thickness of 15 to 20 unit cells Fig. 5.10(c) and (d) show an unpolarized region in
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the center of the SrTiO3 layers. In the PbTiO3 layers we observe that the magnitude of the

polarization decrease when thickness of SrTiO3 layer is increased. These results seem to

indicate that by increasing the thickness of the SrTiO3 layers, we build superlattices in which

the ferroelectric bubbles will be electrostatically decoupled along the z direction.

5.4 Topological properties of ferroelectric bubbles

The Pontryagin density associated to the different arrangements of the polarization obtained

along the PbTiO3 layers was computed following the strategy presented in the Appendix D.

However, in this case the polarization arrangement is not periodic along z, as we verified

when we analyzed the structure of the ferroelectric bubble, with different arrangements in

the interfaces and in the planes in the middle of the PbTiO3 layers. Therefore, to study

the topological properties of ferroelectric bubbles we break it down into a collection of xy

planes and for each we compute the Pontryagin density. Fig. 5.11 shows the peaks of the

Pontryagin density along the domain walls in the three different regions of the superlattice

(in the middle of the PbTiO3 layer and the top and bottom interfaces but the materials).

Computing the total topological charge from these distributions we obtained a Q = +1 for all

the planes in the PbTiO3 layer.

Then, in the middle PbTiO3 layer (Fig. 5.8 (a)) we have a Bloch-like domain wall similar to

the results presented in Chapter 3, whereas in the polarization texture at the top and bottom

interfaces between PbTiO3 and SrTiO3 (Fig. 5.8 (b) and (c)) we have Néel-like domain wall

(as shown in Chapter 1).

This way, the polarization texture in the PbTiO3 layer can be seen as an evolution of

two-dimensional skyrmions with different characters along z. Such complex arrangement of

the polarization are formed by different skyrmions arises from the presence of SrTiO3 layers

and as a consequence the polarization at the interfaces rotates in the xy plane.

Then the ferroelectric bubbles in the PbTiO3/SrTiO3 superlattices grown on a substrate

of SrTiO3 are formed by a column of electric skyrmion – confined inside the PbTiO3 layers –

with different characters. These results obtained from second-principles calculations are in
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Figure 5.11: Calculated Pontryagin density of the different regions PbTiO3 layer; The
panel (a) is a plane in the middle of the PbTiO3 layer and the panels (b) and (c) are re-
spectively the planes at the top and bottom interface between the PbTiO3 and the SrTiO3

layers.

agreement with the experimental results.

5.5 Summary

The investigation of ferroelectric bubbles in PbTiO3/SrTiO3 superlattices led us to conclude

that electric skyrmions could be stabilized in realistic materials. These ferroelectric bubbles

confined in the PbTiO3 layers are formed by a column of electric skyrmions with different

characters. Bloch skyrmions in the central layers and Néel Skyrmions in the interfaces

between PbTiO3 and SrTiO3. These results were demonstrated experimentally with the

observation of electric skyrmions at room temperature.
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Chapter 6

Summary and conclusions

The study of ferroelectric materials in the last decades has led to the observation of var-

ious exotic polarization behaviors in complex multidomain structures in which polarization

vortices have been observed. These discoveries raised the possibility of stabilizing topolog-

ical structures such as skyrmions in simple ferroelectric materials, analogous to the widely

studied magnetic skyrmions.

In this context, in the thesis I present, a strategy for stabilizing electric skyrmions in

a single-phase ferroelectric material was predicted for the first time, taking advantage of

the Bloch character of polarization in the domain walls. Applying external electric fields or

simulating the effect of different substrates, it has been shown that electric skyrmions can be

controlled or even destroyed. The studies of the electric skyrmions in conditions closer to the

realistic ones allowed to demonstrate that these topological arrangements are stable at finite

temperatures and that they can be observed experimentally in PbTiO3/ SrTiO3 superlattices

at room temperature.

We present a basic characterization of electric skyrmions in ferroelectric materials, how-

ever, some questions remain open for a deeper understanding of the behavior and properties

of these topological objects, such as:

• As we discussed earlier in superlattices, similar to those that were studied in this work,

the polarization inside the PbTiO3 layer has an anomalous dielectric response (effec-

94



tively mimicking a ”negative capacitance” [5, 96, 97]) . Thus, with regard this nega-

tive capacitance, the electrical skyrmions observed in the PbTiO3/SrTiO3 superlattices

were studied and it was demonstrated that these also have local negative capacitance

especially in the domain walls and at the interfaces between PbTiO3 and SrTiO3. This

work, to which I have contribute second-principles simulations and analysis, is cur-

rently under review in Nature Materials [98].

• Another question that I would like to raise is related to the interaction of electric skyrmions

with polarized light due to their chirality. Resonant soft-X-ray diffraction experiments

show circular dichroism, confirming chirality [7]. However, a strategy to control the chi-

rality of the electric skyrmions by changing the direction of rotation of the polarization

in the NDW remains unclear.

• In the first part of this study, it was always considered a nanodomain periodically re-

peated and thus the different interactions between nanodomains with the same or dif-

ferent topologies (such as skyrmions and anti-skyrmions) or the formation of different

lattices of these objects were not evaluated.

• Under certain conditions the domain walls can move almost freely as predicted in

PbTiO3/SrTiO3 superlattices [5] .The free movement of the domain walls, the possi-

bility of moving the electric skyrmions and controlling their dynamics by moving the

nanodomain in a controlled manner without destroying the skyrmion remains an open

question.

In this work, we start by looking for the electric analog to a magnetic skyrmion. When

comparing them, we find that electric skyrmions can be smaller than magnetic ones, and

electric skyrmions can be controlled or manipulated using electric fields instead of magnetic

fields. For future applications this is a fundamental point since electric fields are cheaper

and do not involve the application of electric currents that can be a problem in nanoscale

devices. However, since electric skyrmions have only just been discovered, the investigation

of magnetic skyrmions is much more advanced and already in a phase of application in
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devices [69, 99]. This was achieved with the very intense study not only of how to create

magnetic skyrmions but also with the investigation of how to destroy, detect or move them.

This led to the development of Skyrmion-Based Racetrack Memory and Skyrmion-Based

Logic Gates in which skyrmions are moved along a nanowire and the presence of a skyrmion

or its absence is associated with values 1 or 0 [99]. Inspired by the evolution we saw in

magnetic skyrmions the study of electric skyrmions must follow a similar evolution attempting

(as we mentioned earlier) to find practical strategies to move and quickly detach electric

skyrmions so that they can be considered as a strong possibility in memory devices or

nanoscale devices taking into account their small size.
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Appendix A

Local polarization

One of the main properties computed from the second-principles simulations is the local

polarization. As we shown in Chapter 2 from the second-principles calculation we the ho-

mogeneous strain η and all the atomic displacements {ui}. Let us start by computing the

atomic local electric dipoles within a linear approximation, as

diα =
∑
β

Z∗iβαuiβ , (A.1)

where Z∗iβα is the Born effective-charge tensor of atom i; here, i runs over all atoms in the

material (i.e., it runs over both cells and atoms within each cell), and α, β = x, y, z label the

spatial directions.

Let us note that, for example in PbTiO3, the off-centering of the Pb cations constitutes

the greatest contribution to the spontaneous polarization. Hence, we introduce A-centered

local modes vl at every cell l, defined as a weighted sum of the dipoles di associated to the

A atom at cell l and its nearest neighbors (8 B’s and 12 O’s; see Fig. A.1). Then, we define

the A-centered local polarization Pl as

Pl =
vl
Ω
, (A.2)

where Ω is the approximate unit cell volume computed as Ω = V/N , V being the volume of
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Figure A.1: Sketches of (a) a typical representation of the ideal ABO3 perovskite structure
with the A atoms in the corners of the unit cell and the B atom in the center surrounded by
an O’s octahedra; (b) is the A-centered unit cell with the nearest neighbors (8 B’s and 12
O’s). The arrows represent the atomic local dipoles obtained from Eq. A.1.

the simulation supercell (computed taking into account the homogeneous strain) and N is

the number of elemental 5-atom unit cells in our supercell. The A-centered local polarization

can be presented in a grid when l ↔ (x, y, z) where the (x, y, z) point coincides with the

position of the A atom in the l cell.
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Appendix B

Macroscopic dielectric response

The dielectric response describes the linear change of the macroscopic polarization P due

to an external electric field Eext. So, the elements of the dielectric response tensor are

defined by

χαβ =
1

ε0

∂〈Pα〉
∂Eextβ

, (B.1)

where ε0 is the vacuum permittivity, and α and β label the spatial components of polarization

and electric field.

In our Monte Carlo simulations described below, the linear dielectric susceptibility can

be obtained from polarization fluctuations of the material at equilibrium, with no electric field

applied [100, 101, 102, 103, 104]. The thermal average of 〈Pα〉 at a temperature T is given

by:

〈Pα〉 =

∑
s P

s
αe
−βEs∑

s e
−βEs , (B.2)

where β = 1
kBT

with kB being Boltzmann’s constant. Es and P sα are, respectively, the en-

ergy and the polarization of a specific configuration s and the sum runs over all possible

configurations of the material.

Taking the first derivative of 〈Pα〉 with respect to the external electric field, we obtain

∂〈Pα〉
∂Eextβ

= −β
[〈
Pα

∂E

∂Eextβ

〉
− 〈Pα〉

〈
∂E

∂Eextβ

〉]
. (B.3)
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The electric field dependence of the energy in our models is given in Chapter 2. Then, the

derivative of the energy with respect to the external electric fields is given by

∂E

∂Eextβ

= −V ∂(P · Eext)

∂Eextβ

= −V Pβ . (B.4)

where V is the volume of the simulation supercell. This way, using the Eq. B.3 and Eq. B.4

we can write

χαβ =
V β

ε0
[〈PαPβ〉 − 〈Pα〉〈Pβ〉] . (B.5)

Thus, we obtain that the dielectric response components χαβ are proportional to mean-

square averages of the polarization fluctuations.
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Appendix C

Local dielectric response

In order to understand the local response of the different regions in the multidomain config-

uration (domains and NDW), we compute the local dielectric response. In analogy with the

definition of the macroscopic dielectric susceptibility Eq. (B.1), we define the local response

χαβ(l) as

χαβ(l) =
1

ε0

∂〈Pα(l)〉
∂Eextβ

, (C.1)

where P(l) is local polarization of cell l, computed according to the strategy presented in

Appendix A.

In principle, the local susceptibility χαβ(l) can be computed from a linear-response fluctu-

ation formula analogous to Eq. (B.5). However, Pl being a local quantity, collecting sufficient

statistics for is very costly computationally, and thus we adopt a different approach. However,

since Pl is a local quantity, collecting sufficient statistics is very expensivecomputationally

and therefore, we take a different approach. To compute the local response, it is more prac-

tical to perform additional calculations in which the action of a small external electric field

Eext is explicitly simulated. Within the linear regime, we approximate the χαβ(l) as

χαβ(l) ≈ 1

ε0

〈Pα(l; +Eextβ )〉 − 〈Pα(l;−Eextβ )〉
2Eextβ

, (C.2)

where we compare the result of applying small positive and negative fields to better extract
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the linear part of the response.
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Appendix D

Topological properties

The topological character of the dipole order in the ND multidomain configuration can be

characterized by a so-called topological charge given by [66, 69]

Q =

∫
q(x, y)dxdy , (D.1)

where the Pontryagin density q(x, y) is given by

q(x, y) =
1

4π
u · (∂xu× ∂yu) . (D.2)

Here u = u(x, y) is the normalized polarization field in a plane.

To obtain u(x, y) from our simulations, we compute the local polarization centered in the

A atom following the strategy presented in Appendix A. Then, we define u(x, y) = Pl/|Pl|,

where the (x, y) point coincides with the position of the A atom in the l cell. Thus, we

effectively coarse-grain the ideally continuum field u(x, y). Finally, for the calculation of the

derivatives in Eq. (D.2), and the integral in Eq. (D.1) itself, we find it useful to employ the

numerical interpolation scheme proposed in Refs. [105, 106].

Finally, to better characterize our topological solutions with Q = +1, we introduce the

quantity

Sα =
1

Q

∫
rαq(x, y)dxdy , (D.3)
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designed to track the skyrmion center [107, 108]. Here, α = x, y and rx = x, ry = y.
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