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Theoretical details and simulation workflow

Ground state properties. In our theoretical description, we first calculate the ground state

properties of a free-standing MoS2 monolayer using density functional theory (DFT) as
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Figure S1: Workflow of the simulations.

implemented in the pwscf-codeS1,S2 (Quantum Espresso package). We use fully relativistic

pseudopotentials taking into account the spin-orbit coupling that leads to the spin-split A-

and B-exciton. The electron-phonon matrix elements are obtained using density functional

perturbation theory (DFPT).

Pump-pulse interaction. Starting from the DFT ground state, we solve the equation of

motion for the time-diagonal lesser Green’s function, i.e., the density matrix ρl(τ), in an

external electric field F(τ). By incorporating the variation of the self-energy ∆ΣHxc , we can

correctly describe the electron-hole interaction which the photoexcited carriers experience.

This part describes the coherent dynamics of the system ∂ρl(τ)
∂τ
|coh and, in the limit of linear

response, is equivalent to the Bethe-Salpeter equation (BSE),S3 which has been used very

successfully to describe the optical spectra in monolayer TMDs. The equation of motion

reads

∂ρl(τ)

∂τ
= ∆ε̃lρl(τ) + [Upump(τ), ρ]l +

[
∆ΣHxc(τ), ρ

]
l︸ ︷︷ ︸

∂ρl(τ)

∂τ
|
coh

+
∂ρl(τ)

∂τ
|coll . (1)

Here, l = {nmk} is a generalized index of the band and k-point where {n,m} run through

all bands included in the real-time simulation, ∆ε̃l = εKSnk − εKSmk + ∆scissor is the difference
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between quasi-particle energies where we add a scissor operator ∆scissor = 0.991 eV making

up for the underestimation of the band gap in DFT and Upump = −r̂ ·F(τ) is the interaction

with the external field.

∂ρl(τ)
∂τ
|coll

S4,S5 is the collisions term in the equations of motion. It contains the scattering

mechanisms. Here, we take into account first-principles electron-phonon scattering which

causes the excited state population to thermalize. For the relaxation to the ground state,

we use a phenomenological decay time Tdecay = 670 fs which causes the excited population

to decay exponentially. We extract this time by fitting an exponential to the experimental

data between 100 fs-200 fs [see Fig. S4], i.e., after the pulse and the associated signal buildup

are already over. Consequently, it is not a free parameter and it is not fitted to reproduce

any specific feature of the short-time buildup. Similar decay times have previously been

attributed to defect scattering.S6

Simulation of the probe. The probe spectra are simulated based on the time-dependent

carriers ρnnk(τ) = fnk(τ) obtained from the solution of Eq. (1). First we obtain the

excitation- and time-dependent static screening εs(q, τ) of the material.S7 The screening

is calculated within the random phase approximation (RPA)

ε−1
GG′(q; τ) = δGG′ + V t

GG′(q)χRPAGG′ (q; τ) , (2)

where V t(q) is the truncated Coulomb interaction introduced to avoid spurious interactions

between periodic images from the supercell calculation.S8 χRPA(q; τ) is the RPA polarization

function we get from solving the Dyson equation

χRPAGG′ (q; τ) = χ0
GG′(q; τ) +

∑
G1G2

χ0
GG1

(q; τ)V t
G1G2

(q)δG1,G2χ
RPA
G2G′(q; τ) . (3)

The time-dependent occupations enter the calculation of the independent particle polariza-
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tion function χ0
GG′(q, ; τ)

χ0
GG′(q; τ)

ω→0
= 2

∑
n,m

∫
BZ

dk

(2π)3
D∗nm(k,q,G)Dnm(k,q,G′)fnk−q(τ)(1− fmk(τ))×

×
[

1

ω + εmk−q − εnk + i0+
− 1

ω + εnk − εmk−q − i0+

]
,

(4)

where n,m run over all bands and Dnm(k,q,G) = 〈nk| ei(q+G)·r |mk− q〉 are the screening

matrix elements. Note that Deh(k,q) in the main text is Dn=e,m=h(k,q,G = 0). This

altered screening together with the direct influence of the excited carriers is used to obtain the

change of the electronic energy levels in the Coulomb hole plus screened exchange (COHSEX)

approximation. Then, the optical properties of the material are calculated using the BSE

with a now time-dependent kernel, see Eq. (2) in the Methods section of the main text. This

description contains the BGR, the reduction of the EBR as well as Pauli blocking by excited

carriers. The workflow of the simulations is depicted in Fig. S1.

Convergence parameters

Ground state and phonon modes. We use norm-conserving, fully relativistic pseudo-

potentials for Mo and S. Only the symmorphic subset of the symmetries is employed by

setting force symmorphic=.true. The monolayer is simulated using a supercell approach

with a layer spacing of 25 Bohr in the out-of-plane direction. The ground state is converged

on an 18 × 18 × 1 grid with a plane wave cutoff of 120 Ry. The nine phonon modes of

monolayer MoS2 are calculated on a non-self-consistent 30× 30× 1 k-grid.

Real-time calculations. The real-time simulations are performed on the same 30×30×1

k-grid where the phonon modes have been calculated. For better convergence, we resort to a

double-grid technique on a 61×61×1 grid.S9 We propagate two valence and eight conduction

bands of MoS2 where a scissor operator of 0.991 eV is introduced to shift the absorption

onset of the A-exciton to 1.90 eV. To avoid spurious interactions between periodic images
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of the monolayer, we employ a Coulomb interaction truncation of 23 Bohr (integration of

the relevant integrals is done on a random q-grid of 1000000 points).S8,S10 The time step

for the time evolution of the density matrix is ∆t = 10 as and the scattering time step

is ∆tscatt = 1 fs. The decay time of the excited population is set to Tdecay = 670 fs and

the off-diagonal matrix elements are dephased with a state-dependent dephasing rate of

Γnk = [0.02 + 0.03 · (Enk − Eref)] eV where Eref is set to the edge onset of the conduction

(valence) band for electrons (holes). The interaction potentials are represented in Fourier

space with a cutoff for the transition matrix elements (30 Ry), the Hartree potential (15 Ry),

the exchange (25 Ry) and the correlation (3500 mRy). We use 70 bands for the screening

matrix which is cut off at 3500 mRy. The parameters for the real time simulations were

carefully converged w.r.t. change of the excited carrier density.

Probe-pulse: energy renormalization and optical properties. The carrier-induced

changes to the probe spectrum are calculated on the real-time 30 × 30 × 1 k-grid for two

valence and two conduction bands. We employ the same Coulomb interaction truncation

already used in the time-evolution. We use 70 bands for the screening matrix which is cut

off at 4000 mRy and a cutoff for the transition matrix elements of 40 Ry. The reciprocal

lattice vectors used for the exchange energy in the COHSEX calculation are cut off at

40 Ry. In the calculation of the Bethe-Salpeter equation we use the same scissor operator

of 0.991 eV as in the real-time simulations and an energy-dependent broadening of Γ(ω) =

[0.039 + 0.095 · (ω − 1.7)] eV which was fit to the width of the experimental absorption

spectrum.
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Extended data

Carrier dynamics

(a)

(b)

Figure S2: (a) Pump-energy-dependent contribution of fK and of fΩ to the total number
of excited holes right after the pump (solid line) and at a 200 fs delay time (dashed line).
Already during the pump, there is a fast redistribution of excited holes from the Active
Excitonic Regions to states around the Γ-point which is energetically close and has a larger
density of states. Already at 200 fs, there is a quasi–equilibrium between Γ and K. (b)
Time–dependent dynamics of electrons e and holes h for fK and of fΩ.
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Transient reflection and ∆ε

(a)

(b)

Figure S3: (a) Transient reflection spectrum from the SiO2/Si stack at τ0 = 200 fs for a
pump with ωpump = 2.80 eV. (b) Probe-energy-dependent change of the optical absorption
∆A(ω, τ0) ∝ ∆Im [ε(ω, τ0)] at τ0 = 200 fs for a pump with ωpump = 2.80 eV. The solid vertical
lines denote the position of the A- and B-exciton. ω0 is the constant energy used for Fig. 5
in the main text.
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Figure S4: Experimental transient reflectivity data between 100 fs–200 fs together with the

exponential fit. The average decay time of the signal at the A-exciton is T
A

decay = 724 fs and

at the B-exciton is T
B

decay = 610 fs.
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Transient reflection without decay

When we neglect the decay of the excited population, we see a clear two-stage behavior of

the time–dependent constant energy cuts through the transient reflection, see Fig. S5.

A-exciton B-exciton

Figure S5: Time–dependent constant energy cuts of the transient reflection at the A- and
B- excitonic resonance without decay. The markers are the simulated data points while
the solid lines give the fit. Different pump energies are normalized to the total number
of excited carriers ftot(ωpump) which varies due to the energy–dependent optical absorption
cross section.

This behavior can be modeled in terms of occupation residing in the Active Excitonic

Regions fK(τ) and in the rest of the BZ fΩ(τ). The total excited population ftot(τ) is given

by the sum of the two

ftot(τ) = fΩ(τ) + fK(τ) . (5)

Its dynamics follows the intensity of the pulse I(τ) = e−τ
2/σ2

.

∂ftot(τ)

∂τ
= f0 ×

I(τ)√
πσ2

, (6)

where f0 is the maximum occupation, with the solution

ftot(τ) =
f0

2

[
1− erf

(
−τ
σ

)]
. (7)

The excitation by the pump pulse is followed by an excitation-conserving dynamics from

fΩ(τ) to the minimum of the excited system fK with a mean time constant Tel−ph.
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∂fΩ(τ)

∂τ
= (1− ν)

∂ftot(τ)

∂τ︸ ︷︷ ︸
resonant

− fΩ(τ)

Tel−ph︸ ︷︷ ︸
relaxation

. (8)

Here, (1− ν) is the fraction of the occupation which is resonantly excited into fΩ.

We can obtain the occupation at the Active Excitonic Regions by substituting into the

conservation of excited carriers

fK(τ) = ftot(τ)− fΩ(τ) . (9)

This model for fK fits the time-dependent transient reflection curves, Fig. S5, very well.
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