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Abstract

A main signature of living systems is the high degree of spatiotemporal organization of their structures

that results in the emergence of functions across the cell, tissue and organ levels. Cellular heterogeneity,

which emerges from the effect of molecular variability to phenotype properties, is a main source of this

complex and structural organization of life. Current approaches in developmental biology also suggest

that cell-to-cell variability might be key to cell differentiation and investigate the underlying mechanisms.

However, the impact of internal regulatory mechanisms of individual cells on the global population behavior

and the role of the immanent stochasticity in cell-fate decision is still elusive.

This thesis applies complementary top-down and bottom-up systems biology approaches to investigate

mechanisms of cell decisions and their impact on biomedical relevant systems. For this purpose, state-of-

the-art single-cell data analysis approaches are combined with theoretical models and computational results

to assess the role of intrinsic noise at the transcriptional level on cellular differentiation processes. The data

driven top-down approaches revealed thereby previously unknown cellular heterogeneity in cell activation

and brain composition potentially linked to diverse brain disorders. The complementary mechanistic-

modeling and computational-based bottom-up approach provided new evidence for cell-fate decision as a

population-driven mechanism resulting in the emergent behavior of multicellularity. This approach gives a

new perspective on modeling cell fate commitment based on the interface between transcriptional variability

and external induction signals.

The first part of this thesis is dedicated to the analysis of experimental single-cell RNA-sequencing

(sc-RNAseq) data to quantify the effect of molecular fluctuations on the composition and dynamics of cell

populations. In particular, sc-RNAseq data analysis allowed to dissect subpopulations in microglia activation

and to identify disease associated molecular signatures. The importance of cell heterogeneity during brain

development and its relation to the development of epilepsy was further investigated in zebrafish larvae by

sc-RNAseq, which provided new insights into early mechanisms of epileptogenesis.

In the second part of this thesis, a mechanistic modeling-based approach was computationally developed
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to study the mechanisms of the interplay between molecular stochasticity and nonlinear interactions of a

genetic toggle-switch motif. The computational analyses of the model identified underlying mechanisms

of the emergence of cellular heterogeneity from molecular noise to cell-cell interactions and ensembles of

coupled stochastic entities.

Overall, the integrative approach of this thesis combining single-cell RNA sequencing data analysis

approaches and mechanistic modelling gives a new prospective in understanding cell commitment by con-

sidering the interplay between transcriptional variability, external induction signals and population coupling

between cells.
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Chapter 1

Introduction

Mankind has always been fascinated by life. The ways to address the essential reason for its existence

in form of microorganisms, animals, plants, human body and how it has been sustained by inanimate

matter like nutrients, sun and ultimately the universe, have been a focal point of life and natural sciences

for centuries. Piece by piece, the scientific community is reconstructing this puzzle of life and this thesis

intends to add a piece to our understanding of life. The main focus of this thesis is the cell differentiation

process, which is essential to many physiological processes like the development of organs and organisms,

cell reprogrammming or the onset of cancer.

1.1 Order-from-disorder organization of life

Life is sustained by a multi-layer structural organization composed of different spatiotemporal scales of

interactions connecting a plethora of entities that allows for fine-tuned regulatory processes. Living organism

has to consist of a large number of atoms to bring out a highly ordered state as a collective phenomenon at

large scale emerging from the randomness at small scales [1]. Each level of these local regulations can be

pictured as an open system and a self-controlling complex network. This abstract vision has been recently

investigated to study ecological systems [2], the organization of worldwide trade [3] and even in modelling

social interaction [4] in various contexts.The multi-layer network structure is also a simplified scheme to

understand the mechanisms underlying the biological organization of living matter [5]. This perspective

is based on the fact that biological systems are regulated by an incredible number of entities and the

interactions between them generate a network with high complexity. Specifically, biological complexity

include networks of biochemical reactions and signalling pathways which compose the metabolic network,
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the internal cell regulation by transcription and translation mechanisms, tissue and organism organization.

Furthermore, the close cooperation of some components can give rise to emergent phenomena at a different

length and/or timescale. These specialized spatial scale-depending levels communicate with each other to

ensure a sustainable life for a multi-cellular organism.

One of the major challenges of modern biology is to bridge these scales ranging from the subcellular

and cellular levels up to organs and tissues with the aim to discover hierarchical organization principles

by identifying relationships between structure and function at multiple levels [6, 7]. The relatively new

scientific approach of systems biology has the ambitious scope of explaining the basic mechanisms of

molecular interplay and cell communication by revealing targeted functions, identifying patterns and finally

elucidating the resulting multi-level complex structure from all those combined interactions.

1.2 Cellular heterogeneity and its role in differentiation

Cellular heterogeneity in complex living organisms is known to be one of the key element in biology to

create functional cell populations for supporting the multiscale regulations and to maintain homeostatic

states under different environmental conditions and against pertubations. A living cell, depending of its

morphology, location and function in the body, is characterized by a specific phenotype whereas all cell types

in our body share the same genetic code. It is really fascinating how nature assembles interacting cells to

organize them into structures of higher order and patterns during embryogenesis and development by using

a controlled spatial displacement [8, 9]. The basic mechanism which allows the multilayer arrangement

of interactions is the occurrence of multiple cellular differentiation processes. Each involved cell responds

dynamically to the external microenvironment and makes an adaptation decisions on its gene regulatory

network [10]. This adaptive cell fate commitment seems to be triggered by a switch mechanism leading

eventually to a desired cell state [11]. For many differentiation processes it is still unclear how the external

signals and internal regulatory factors modulate each other to drive the switch between cell fates towards a

specific cellular attractor [12]. Although some consequences of this targeted decision have been investigated

like in an oriented cell division during animal development [13], in a tumor-growth environment [14] and in

cellular reprogramming [15], a comprehensive understanding of the underlying mechanism is still lacking.

The connection between different scales of interactions, the stochastic nature of intracellular biochemical

reactions, the consequences for spatial cell organization and the generation of a wide-range of functional

cells, makes an extensive study of cellular differentiation complex to investigate from both modeling and

experimental points of view.
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1.3 Cellular differentiation as an emergent behavior of cellular het-

erogeneity

Cell-cell variability represents a main mechanism for increasing complexity in a directional and flexible

manner to assure on the on hand robustness an on the other hand adaptability in a cell population. The

biological tendency towards tissue formation from a homogeneous population is therefore regulated by the

graded differentiation of cells across spatiotemporal diversification and functional specification [16]. The

underlying single-cell implementation (such as secretion of molecules [17], symmetric and asymmetric cell

divisions [18], migration [4] and differentiation [19]) has an effect at the population level by generating

an overall driving force of self-controlled organization which allows the emergence of a new complex

architecture at the end. For the mechanistic understanding of this step, symmetry breaking is a key concept.

In particular, the symmetry-breaking event occurs when, despite all cells being exposed to a uniform

growth-promoting environment, only a fraction of cells becomes activated, differentiates and acquire new

functions. The process is called ’symmetry breaking’ because the transitions usually bring the system from

a symmetric, but disordered and variable state, into one or more defined, less variable and asymmetric

states (e.g. differentiated states) [20, 21].

This kind of collective behavior of several entities is investigated in diverse circumstances including

ecological population [22], self-propelled colloidal motors [23, 24, 25] and in cancer cell populations [26]

and is addressed by a large part of the scientific community due to its peculiarity in bridging different

spatiotemporal scales. Mathematical models are been recently introduced to disclose the basic mechan-

ism underlying this emergent phenomena. Statistical physics approach represent a powerful approach to

conceptualize and assemble all these evidences into general first principle mechanisms to dissect poten-

tially hidden heterogeneity dynamics [27]. Such concepts are particularly relevant in the context of cell

differentiation. In this theoretical perspective cellular heterogeneity is the biological key able to create

an adaptable environment where the interplay between dynamics and stochastic fluctuations becomes the

essential ingredients to manifest phenotype variability.

Consequently, the combination of self-controlling feedback response as an individual decision and a

collective behaviour resulting from cell-cell interactions might give a directionality towards a final stable

state at the population level. Although cell fate choice during a differentiated lineage has been studied

with different experimental [28, 29] and modelling approaches [30, 31], a broader perspective in which

general concepts in statistical physics are applied is not yet completely investigated.
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1.4 Context of this thesis

To validate and acquire a better understanding of the mechanism underlying cell differentiation, the thesis

first investigates cellular heterogeneity of brain cells by single-cell RNA-sequencing analysis (Chapters 4

and 5) and subsequently introduces a theoretical approach to further investigate the stochastic component

of phenotype variability in emergence of cellular heterogeneity at population level (Chapter 6).

The analyses of brain cell heterogeneity and its role in biomedical important systems focuses on (i) the

diversity of microglia response up to stimulation, which is supposed to have an effect on neurodegenerative

diseases Chapter 4, and (ii) brain development in zebrafish at single cell resolution for epileptogenesis study

(Chapter 5). These analyses exploit the recent advancements in single-cell RNA-sequencing and applied

state-of-the-art bioinformatic analysis tools to characterize cell fate dynamics in different conditions.

The starting point of the theoretical analysis in Chapter 6 is the widely studied regulatory motif of

the genetic toggle-switch model. This mechanism describes the behavior of a flipped multistability system

between stable states and reproduces the final choice of one of them [32]. A two-stage toggle switch

analysis representing the transcriptional and translational levels of cells has been presented by Strasser

et al. [33] in which the dynamics on discrete microstates has been investigated as an evolution of the

state occupation probability in a Master equation approach. Since the biochemical reactions involve few

molecules, the Gillespie’s algorithm [34] has been used to simulate the stochastic behavior of the system

based on its macroscopic mass action kinetics. The result was that the system evolves in the phase portrait

according to a probabilistic flux throughout the intermediate metastable basins to reach a given attractor.

In this thesis, I investigate the stochastic nature of cell fate. For this purpose, I first applied a top-

down approach by analysing single-cell RNA-sequencing data of the activation of microglia, which are

the immanent immune cell of the brain, and changes in brain composition during epilepsy establishment

in zebrafish. Both studies have revealed the stochastic nature of cell fate and identified key regulatory

processes. Based on these findings, I used a bottom-up approach in the second part of the thesis to

investigate mechanistically the effect of noise in a nonlinear dynamical system based on the toggle-switch

model to dissect the interplay between a deterministic dynamics of two coupled variables (corresponding to

two alternative phenotype specification) and noise. Performing computational simulations the probabilistic

dynamics has been investigated and the system was characterized by its properties at different levels.

This toggle-switch motif approach is not intended to explain the microscale molecular dynamics as an

induced mechanism for cellular decision between two competitive final states but investigates the role of

the stochasticity on the transcription level, the buffering effect of proteins on gene expression heterogeneity

and the dynamics of coupled populations to have a more comprehensive view into cellular differentiation
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and cell-fate decision.
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Chapter 2

Aims and structure of the thesis

2.1 Motivation to use biology distributions for investigating cell

differentiation

Molecular fluctuations operate in a mysterious and complex way. In the cellular differentiation process

they might be the key for its comprehensive underlying mechanisms. At single-cell level the noise that

acts predominantly on the transcription level might be minimized in order to strengthen specific molecular

profiles and lead to the phenotype manifestations of a cell state. However, the same noise might also be

part of the mechanism involved in the decision-making process in a proactive way [35]. These apparently

conflicting roles displayed by this noise might be resolved by considering the underpinning gene regulatory

network dynamics. The gene regulatory network is supposed to be subject to a rapid rearrangement when

it is perturbed enough to be pushed far from an unstable state. In other words, a core of a subnetwork

of genes might be activated by reinforcing specific pathways when the fate-decision occurs [36, 37, 38].

This state might correspond to an initial destabilization of the progenitor state. The cell is deemed to

explore all possible gene configurations, each of them potentially associated to just one specific lineage

attractor. When an external differentiation signal gives an instruction towards a particular phenotype,

the cell reacts intrinsically according to its temporary and sensitive microstate and finally selects one of

the predestined states. This supposed synergy between instruction (gene programs of differentiation) and

selection (individual cell choice) might be a mechanistic explanation of the experimental detection of

"rebellious cells" in the commitment of blood progenitors cells to erythroid or the myeloid lineage [39].

These cells follow the fate opposite to the one intended by the differentiation signal due to gene expression

fluctuations. Such fluctuations could unexpectedly overcome the bias signal and allow cells to enter the
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"non-intended" attractor basin. In the theoretical part of this thesis, I based my bottom-up approach

of modelling cellular differentiation process on the biology distributions framework. The models which

I introduce in Chapter 6 are addressed to give insights into the underlying mechanisms, involved during

cellular differentiation, by matching the dynamics into the supposed preexisting gene program and the

stochasticity into the gene expression variability. My idea of how the cellular differentiation is accomplished

in terms of biology distributions evolution is shown in Fig. 2.1.
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Figure 2.1: The preliminary stage associated to the progenitor destabilization state is characterized by a symmetric
probability distribution of two allowable cell states. This macroscopic description emerges at the population level
from the equal probabilistic repartition in two main sets of gene regulatory networks of all possible internal cell
microstates. This ambiguous state is prone to be rapidly rearranged by external signals. This transitory state,
triggered towards a predominant final cell state, is macroscopically dependent on the all individual cell-fate decisions,
which eventually define the final cell state probability distribution at larger scale.
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2.2 Specific aims of the thesis

This cumulative thesis addresses cellular heterogeneity in the context of differentiation by an interdisciplinary

approach and (i) performs state-of-the-art data analysis of single-cell RNA-sequencing data to reveal cellular

heterogeneity of brain cells and (ii) introduces a new generic model for cell fate induction to investigate

underlying mechanisms.

In particular, the thesis focuses on

1. Microglia diversity upon stimulation (Chapter 4).

Molecular variability was untangled in the study of the microglia phenotype diversity under an exper-

imental treatment, which induced microglia activation compared to a saline condition.

2. Cellular diversity in brain development of zebrafish and its impact during the establishment of epileptic

seizure (Chapter 5).

Biological heterogeneity dynamics during brain development was investigated in an epileptic zebrafish

model with a focus on molecular signatures of epileptogenesis .

3. Mechanistic modelling of cell differentiation with a focus on noise driven cell fate (Chapter 6).

Based on the sc-RNAseq data analysis approaches in Chapters 4 and 5, a generic model for cell fate

induction was established and comprehensively analyzed.

2.3 Structure of the thesis

Chapter 3 provides a general overview of the main concepts and tools applied in this thesis. The subsequent

two chapters present the published papers in collaboration with experimental groups addressing molecular

variability and cellular heterogeneity with direct clinical implications. My contribution to these studies was

mainly based on the analysis of single-cell RNA sequencing data, which was able to identify underlying

mechanisms of cell differentiation in health and disease conditions. Single-cell RNA-sequencing data ana-

lysis was applied as a first approach to the study of emergent phenomenon of cellular heterogeneity. It

allowed me to understand the several sources of molecular variability and how to infer reliable information

by pooling data from different conditions and time-points in microglia activation (Chapter 4 and brain

development during epilepsy establishment (Chapter 5). Remarkably, these two studies have highlighted

the relevance of single-cell experiments to be a valid support for acquiring more insights at the molecular

level and broaden the knowledge of intrinsic underlying mechanisms. Chapter 6 is entirely dedicated to my

extensive bottom-up study in developing suitable models for revealing mechanistic properties, that might

10



characterize the cellular differentiation process at its main stages. In Chapter 7, I recapitulate the key

points of the thesis and how this work is contextualized in the current challenges in System Biology.
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Chapter 3

Scientific Background

This chapter gives the scientific background of the thesis by introducing the main concepts of cellular

heterogeneity and experimental and theoretical approaches applied in an interdisciplinary manner in the

following chapters.

3.1 Bio-complexity in a multi-cellular organism

There are about 200 different type [40] of cells in the human body like neurons, red blood cells, skin cells,

astrocytes, immune cells and many more. The cell functions associated to them are diverse and include

structural support for tissues, immune response against pathogens and energetic support for metabolic

processes. The specification to carry out a specific function is characterized by a particular cell morphology

and molecular orchestration which typically depend on the location in the body. The cell variability is

organized by different levels of regulations and interactions, which are interconnected and modulated by

each other to sustain the survival of the organism as a whole.

The active maintenance of all biological tasks needed for survival relies on a complex stratified network

structure. The links between all the components are varying dynamically and have to be locally flexible

to allow for slight and sudden changes without compromising the system’s sustainability. The various

transporters and channels (voltage-gated, ionic, ligand-gated, mechanically-gated) and the corresponding

timing of these connections are key elements for communicating messages efficiently between specific

compartments, cells, organs and cellular systems. Therefore, a functional organism requires a huge number

of different entities operating in a orchestrated and cooperative way to rapidly exchange information by

using diverse communication mechanisms. An alteration of this dynamical equilibrium could dramatically
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lead to the onset of cell-growth related diseases such as cancer or to cell-type specific cell death as e.g.

in neurodegeneration. Although the initial defect can involve only one cell, the biological environment

and other structural modifications could spread the error over the entire local cell-type population and

potentially in other parts of the body. Thereby the physiological conditions, the spatial local structure and

the proficiency of cells to communicate with each other are the main factors affecting the self-sustained

micro-environment. In addition, biological complexity is also induced by the huge number of entities

assuring a persistent living state for a multicellular organism. For instance a human body is composed of

roughly 3 ×1013 cells and each of them is an open system which continuously cooperates and interacts

with its neighbors to maintain homeostatic condition under several conditions and perturbations.

3.2 System biology

To disentangle the biological complexity, systems biology was established as a new interdisciplinary approach

in the beginning of the millennium [41]. One of the current challenges in system biology is to tackle the

plethora of entities interacting over different spatiotemporal scales and to combine these efficiently into a

solid multi-scale framework from large collections of multi-omics and other data for mechanistic insights

into biomedical systems.

Figure 3.1: Schematic representation of the methods used in system biology to bridge biological scales and the
way to integrate them in a coherent framework.

To disentangle the interplay of the different spatiotemporal biological, systems biology follows to comple-
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mentary approaches in order to navigate between the different levels of descriptions, namely the bottom-up

and the top-down approaches as represented schematically in Fig. 3.1.

Intercellular interactions, which are at the heart of this thesis, can be used to exemplify these concepts.

Cell-cell communication can occur via many different intercellular signalling pathways depending on the

cell type or cell state, and the detailed chemical and/or physical mechanisms of a given pathway, which

are investigated by theoretical and experimental approaches [42]. Following a bottom-up approach, the

individual mechanisms can be combined in a model to examine the global behavior of a cell or a cell

population resulting from the different interactions. Alternatively, top-down approaches are based on

observed hallmarks of cell populations in order to gain insight into their working principles. In modeling-

based top-down approaches, very simplified mathematical models - also referred to as toy models - are used

to mimic the dynamics of the population and do not aim at reproducing specific molecular mechanisms.

These models are addressed to capture universal laws by linking phenomena of a different nature.

Therefore, many strategies are adopted to tackle biological complexity. To get reliable understanding

of a biological system, combined approaches have to be carefully selected according to the posed question.

The spatiotemporal scales of interest thus have to be chosen adequately, depending on the required level

of accuracy and the availability of experimental and/or theoretical tools. Complementary tools such as

statistical analyses [43] and machine learning techniques that allow to infer information from Omics big

data [44] are also commonly used by the theoretical scientific community to untangle the complexity of

biological systems. Depending on the complexity of the analysis describing a biological system, a complete

analytic description might need a large-scale integration over multi-layers omics data. This methodology

allows to cross-validate the results from several techniques and study the faithfulness of a mathematical

model in reflecting partially or globally the experimental evidence as well as its predictive power under

different conditions. On the other hand, it could be tricky to extrapolate reliable information and interpret

it correctly due to the huge amount of potentially inter-correlated data. The high-throughput data has to

be polished from inconsistencies and technical readouts before making inferences by the integration over

different scale levels.

3.3 Single-cell analysis and single-cell RNA-sequencing technology

Single-cell analysis has already widely demonstrated to be a powerful top-down approach to investigate

cellular dynamics and therefore discern populations of cells from their heterogeneity in function and fate

[45]. The gathered molecular knowledge of a biological process can then provide mechanistic insights into

individual cells and their interactions can be also inferred from the integration analysis over multi-omics
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data providing a more comprehensive understanding of the involved mechanisms [46, 47]. RNA-sequencing

(RNA-seq) is one of a recently developed approach that allows an unbiased inspection of the transcriptome

[48] [49] [50]. The phenotype information of each cell allows to identify previously uncharacterized molecular

heterogeneity at the cellular level and dissecting gene-function relationships. Basically, the monitoring of

the transcriptional activity in single cells by measuring directly messenger RNA levels, allows to identify

each cell in the high-dimensional gene space.

A major challenge in cell-to-cell variability analysis from sc-RNAseq data is the mix between the biolo-

gical stochastic transcriptional activity and the measurement noise. Indeed single-cell gene expression data

contain an abundance of dropouts that leads to zero expression measurements as well as other technical

errors that may confound distinctive transcription factor expression states [51, 52]. Advanced methods of

statistical inference are needed to first identify a reduced gene set (by basically exploiting co-expression

patterns) in order to lower the space dimensionality and facilitate data visualization. Secondly, the infer-

ence is required to interpret appropriately the variability of gene expression counts and produce reliable

outcomes [53]. This stochastic nature can be partially explained by noting that gene expression levels are

regulated by combinatorial interactions between numerous cellular components, where these interactions

involve random biochemical reactions [54, 55, 56].

Before the recently established methods for spatial transcriptomics [57], the limited amount of spatial

information in typical single-cell RNA-sequencing experiments is one reason why individual methods have

to be integrated to quantify the processes occurring in the cell from signal recognition to cell fate [45]. The

dynamic processes in living cells are schematically summarized in Fig. 3.2 (David G.Spiller et al. 2010).
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Figure 3.2: Different experimental tools are required to collect measurements from different stages in the regulation
of cell signaling, transcription, plasticity and fate in single cells (picture from [45]).

Even if all the relevant molecular measurements could be made, the complexity of the data makes it

difficult to approach systematically, integrate coherently and interpret correctly the hidden information. For

instance, cellular heterogeneity is a feature that is intrinsic to many cell-fate processes, including division,

apoptosis [35] and the generation of induced pluripotent stem (iPS) cells [58]. Furthermore, intrinsic

stochastic events which are caused by the small number of molecules and genes copies make cell signaling

and transcription governed by noise. In order to study the intrinsic heterogeneity of a process, the involved

cells have to be identified by their common time-depending gene level expressions like for example in

studies of the cell cycle [59], the cardiac clock [60], transcriptional cycles [61] and cell-signalling dynamics

[62]. Often, cell synchronization is neither possible to achieve nor a desired condition when studying

physiologically relevant processes. Indeed, the main mechanism of cell-to-cell variability emergence could

be inferred from the asynchronous dynamics of cells.

The inherent presence of random noise in single-cell RNA-seq data account also for different hidden

factors that might result in gene expression heterogeneity, and an appropriate computational analysis could

reveal hidden subpopulations of cells [63]. Characterizing quantitatively transcriptional dynamics would give

additional information of the change of gene expression programs over time, differentiation and development

and in response to stimuli [64]. Therefore, by studying temporal transcriptional regulation programs,
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transient cell states might be identified by the asynchronous cellular responses to either developmental

cues or environmental perturbations [65]. Transcriptional levels are a powerful indicator of the state of an

individual cell at a point in time because it is defined by the instantaneous gene-gene correlations. The

collection of few static snapshots of the dynamics renders the inference of causality difficult to achieve. The

recently established approach of RNA velocity addresses this challenge by providing additional information

to support the prediction of the future state of individual cells on a timescale of hours by introducing a

differential equation for the spliced mRNAs in relation with the unspliced molecules [66]. Hence, the high-

throughput single-cell RNA-seq data is a valid source for dynamically investigating molecular processes

that underlie cell-fate decision in single-cells, understanding cell plasticity under different stimulus and

elucidating developmental pathways [67].

3.4 The gene regulatory network and its relation to cellular differ-

entiation

The mRNA expression levels are indicative of the corresponding gene expressions and therefore can describe

the cell state. Gene regulatory network are logical models that partially reconstruct the most relevant

interactions between genes deduced from specific transcription factors and complementary experimental

data by computational modeling approaches [68]. In this context, single-cell transcriptomic data has

provided a huge basin of applications into reconstructing gene regulatory networks [69, 70, 71]. Since

underpinning the cellular phenotype, changes in the gene regulatory network describe the temporal evolution

of the cell state where changes in gene interactions over time occur due to internal regulatory mechanisms

and external stimulus. Hence, the heterogeneity could be dissected from data of different conditions

and time points based on the gene regulatory network. This analysis allows for a better understanding

of the basic variation that characterizes dysregulated cellular process and shedding new light on disease

mechanisms [72].

Computational methods have been developed to statistically characterize gene expression distribution

for understanding expression variation and for selecting marker genes for cell population identities [73,

74]. Statistical analysis based on cell similarity have contributed to identify cell types plugging into the

framework of a hierarchical clustering [75] as well as information theory based methods to detect genetic

interactions [76] and core regulatory circuits [77]. The dynamical reconstruction of the topology of inter-

actions in high-dimensional data has been also widely investigated [78] in order to uncover the underlying

non-linear dynamics and making accurate predictions based on time-series datasets [79].
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One of the major interests in the study of the evolution of gene regulatory networks is in inferring

direct pathways along cellular differentiation based on identifying stage-dependent cellular commitments

by causal connections between transcription factors. In this framework, hubs in gene regulatory network

provide information about the internal driving-force that moves the entire network into a stable config-

uration underlying a specific phenotype as a cell state. During this process, the gene regulatory network

evolves not by following only the signal transduction pathways of differentiation but also according to many

unpredictable and untraceable factors like the burst cellular reactions to sudden external stimulus [80, 81],

the mechanic random displacement of molecules and the opening of unexpected new pathways [82]. All

these contributions result in a heterogeneous cellular responses due to the individual activated mechanisms

and dynamical molecular behavior [83]. Consequently, the cascade of multiple changes in gene interaction

and the resulting cell state evolution is then hardly to be revealed. Despite these obvious limitations, single-

cell transcriptomics have provided detailed phenotypic information to predict lineage trajectories [84], to

perform a correlation analysis within and between datasets to discriminate lineage-specific genes [83] and

to reveal dynamic regulatory relationships finally conducting to the reconstruction of direct protein-protein

interaction network [85].

3.5 Modeling cellular heterogeneity

It has been widely demonstrated that cell-cell variability is deeply embedded in the inherently stochasticity

of the gene expression process [86, 87, 55, 88, 89]. The intrinsic molecular and cellular sources for such

variability [90] have been associated to either biophysical processes (e.g. the random partitioning during

mitosis [91]) or biochemical regulation (e.g. the dynamical functioning of the intracellular network [92]

or the chromatic dynamics [93]). In order to infer biological noise from complex high-dimensional data

sets, mathematical modeling and model-based data analysis are required to process, integrate and interpret

them properly. Models are fundamentally important to deduce the design principles characterizing complex

nonlinear behavior in space and time such that patterns, oscillations, switching and stochasticity. In

particular, since single-cell data are fundamentally noisy,stochastic methods need to be used in combination

with deterministic models to respect cell-to-cell variation and the immanent noise [45] in mechanistic

approaches to cellular heterogeneity [62]. The intrinsic noise that occurs in transcription [86] and translation

[94] is often incorporated in stochastic simulations by the Gillespie algorithm and its derivatives [95]. In

this approach, a simplified mechanistic description assumes individual molecular reactions occurs following

an exponentially distributed half-lives (waiting-times). Using stochastic differential equations (SDE) is also

a valid approach to investigate noise effect in case a minimum number of molecules is present and then
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applicable in real cellular systems. Data sets of time course of single-cell snapshot data have offered the

possibility to study stochastic transcriptional dynamics and validate stochastic models. Temporal dynamical

connections between discrete and static information might be a valid tool for inferring causality between

transcription factors, elucidating pathways for cell lineage specification and capturing the variation over

progression of cell-to-cell variability.

The final integration of experimental methodologies and modeling approaches across different spati-

otemporal levels is eventually the only conclusive way to elucidate biological processes by looking at it from

a comprehensive perspective. Combining information from several fields and trying to make coherent and

predictive conclusions is the ultimate challenge in biology systems [96, 97].

3.6 Models for cellular differentiation

Cellular differentiation is the fundamental biological process which drives the embryonic development from

the egg as single-cell to the multicellular organism by progressively allowing the creation of cells tailored

towards specific functions [98]. Hence, this process is the biological mean to increase phenotype variability

in order to produce and place specific cell-types.

The main features of cell differentiation have been identified in stability, directionality, branching,

exclusivity and promiscuous expression as Foster et al. (2009) have claimed to build their model of sequential

branching in hierarchical cell fate determination [99]. Stability is referred to the presence of multiple stable

states in a system dynamics description. Indeed, a specific cell type is thought to be established when a

stationary stable state is reached, which is also referred to as cellular attractor. Directionality is based on

experimental assessments of the progressive pluripotency reduction guiding the progression from progenitor

cells to more specialized cell types [100] that only rarely regain pluripotency by de-differentiating [101].

Subsequent binary cell-fate decisions ramify in alternative pathways on the developmental structure. Each

committed stage to a specific lineage excludes the possibility to access the other branch in the subsequent

stages. The multipotent progenitor cells co-express specific genes related to all their associated lineages.

The promiscuous gene expressions, before a strong core gene activation is accomplished, might be a

intermediate metastable state sensitive to perturbations. This minimal proposed model contains all the

key ingredients that seem to govern the cell phenotype development.

The most common systematic procedure to investigate the mechanism which control cell fate decisions

is to build a model with multistability in the dynamics based on ordinary differentiation equation describing

interaction between specific transcription factors in agreement with experimental observations [100, 102].

Therefore the dynamics is investigated according to the parameter choice that modulates the size of the
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region where monostability, bistability and in general multistability are localized. Since the choice of the

steady state is not only regulated by the initial condition but also by signalling, the model should take into

consideration secondary pathways controlled for instance by cell polarity, cell adhesion and cell division that

leads to a spatially organized arrangement of the cells. Indeed, stochastic spatial simulation indicate that

uneven repartitions of molecules at division are also able to break the symmetry and to prime specifica-

tion [96]. The noisy molecular fluctuations can be investigated by its contribution to affect robustness in a

multi-stable regime. A model taking into account these intercellular signaling and cross-signaling between

the cells has been developed by Joëlle De Caluwé et al. in [103]. Recently a computational model based on

cell intrinsic kinetics has revealed other possible hematopoietic lineage pathways even without considering

cell culture environment in which other factors like competition in space or growth factor might provide a

more complete description [104].

In a more mechanistic-based modeling approach for cellular differentiation, different models focusing

on the stochastic gene expression have been proposed. In a first model, stochasticity in gene expression is

caused by random displacement of regulators along the DNA. Phosphorylation and/or dephosphorylation of

transcriptional regulators are triggered by signal transduction between cells and responsible for the stabiliz-

ation of gene expression [98]. In another model, fluctuations in regulatory signals are also considered for the

increase of the population variability which is modulated by negative and positive feedback loops [55]. A

third model encourages the use of conceptual tools to explain emergent cell behavior from gene expression.

Indeed, a more extended view which jointly embraces the concepts of state space, high-dimensionality and

cellular heterogeneity could give a new view of explanations based on principles of statistical physics in a

mathematical framework [105].

3.7 Waddington landscape as an abstract framework to under-

stand cellular differentiation

Conrad Waddington introduced the notion of the ’epigenetic landscape’ as an abstract methaphor to

visualize and conceptualize the emergence of developmental choices [106, 107, 108].
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Figure 3.3: Waddington epigenetic landscape in its classical representation introduced by Conrad Waddington
(picture from [108]). A cell is represented by a ball, starts differentiation at the top of a hill and rolls down the
landscape through a series of branching points, that represent the cell decision event. Underpinning the landscape
the gene activity constructs the valleys.

In this vision, the landscape consists of a hill with a series of branching points where the cell as a pebble

rolls down and, according to the sequential binary directions taken, finally reaches a specific cell state as

a cellular attractor. In a modern interpretation of this representation, the gene activity is pictured as a

peg support underpinning the valleys and the hills which result in the quasi-potential landscape [109, 110].

The quasi-potential landscape is in principle built as an extra dimension on the multi-dimensional phase

space of the gene expression by evaluating at each point the vector field that governs the direction of the

instantaneous change of the state. Specifically the potential is the scalar quantity obtained by the physics
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relationship between forces and potential:

−→
F (x1,x2, ...,xN ) = −∇U(x1,x2, ...,xN ) . (3.1)

In the multi-dimensional system the vector field is often not the gradient of some function [111] and

genetic networks belong to these class of non-equilibrium systems in which the energy is not conserved

necessarily [110]. The attempt to construct a landscape in the approximation of quasi-steady state as-

sumption has given it the adjective of a ’quasi-potential’. This theoretical approximation is motivated by

the possibility to move the theoretical description into a more appealing framework of statistical mechanics

where a formulation in term of equilibrium probability distributions of the system states can be introduced.

However, living systems continuously operate in out-of-equilibrium conditions and a theoretical extension

in the thermodynamics notions of energy, work and dissipation is required to define new reliable quantities

in the description of non-equilibrium phenomena [112, 113].

Assuming that such potential is established, there are two means by which the cell might change its

state [102]. The first way is determined by stochastic fluctuations that allow cells for discrete random

displacements around the landscape and occasionally might show significant jumps into another attractor

basin, causing a spontaneous state-switching event. Biologically, this could happen due to a more effective

stochastic boost which promotes cell identity changes by overcoming a threshold level [114]. The landscape

geometry affects the probability according to the deep attractor basins or the barrier length between basins

making the probability of transition states dependent on the constrains defined by the underlying genetic

network and its directional regulatory pathways [110, 115].

Alternatively, the induction of a state change can be caused by structural modification of the landscape

due to the variation of some parameters of the system’s dynamics. They are associated to the extracellular

signalling that produce sudden qualitative change in the systematic behavior [116]. These abrupt parameter-

depending changes in the stability regime are related to the bifurcation phenomena in dynamical systems. In

both explanatory scenarios, the underlying assumption is that the cells are prone to follow a genetic programs

formalized by a multidimensional dynamics established at the beginning of the cellular differentiation stage.

The individual cell fate decision is therefore resolved either as a discontinuous, stochastic transition event

modulated by signals [117] or a dynamical "jump" in the cell activities between discrete cell fates in a

probabilistic matter[118].

Although this framework currently provides a rather general vision of cellular differentiation, the quasi-

steady state assumption of the epigenetic landscape and corresponding static potential simplifies the under-

lying self-organization of the biological processes. In this perspective, the intra-population communication
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of cells is discarded and consequently, one might loose the opportunity to study the cell-fate decision as an

individual random event able to generate a global response at the population level. To address this limit-

ations, I will focus in Chapter 6 on a slightly different perspective in which the quasi-potential landscape

might change dramatically over time to respect the fact that cells operate in a non-equilibrium regime

and actively shape the microenvironment determining the epigenetic landscape. Supposing a pre-existing

stochastic gene expression dynamics, at a certain point the internal configuration might be driven by ex-

ternal signals, and a heterogeneous response for cell commitment might arise. Specifically, I believe that the

phase which anticipates the cell decision is dominated by the stochastic nature of gene expression variability

which allows random navigation through the phase space determined by the admissible gene networks that

are equally likely at this stage. Subsequently, if an external signal creates a sufficiently strong stimulus in

this probabilistic spatial investigation, it might lead towards a final stationary probability distribution for

the phenotype expression. The corresponding shape would thereby depend on each individual single cell

selection of the predestined states [119, 120, 121, 122, 123].

3.8 Cellular heterogeneity description by distribution biology

A fundamental function of heterogeneity is to provide robustness to a biological system when respond-

ing promptly to environmental perturbations in order to maintain a homeostatic equilibrium. Referring

to microorganisms as a specific example, the spread of phenotypic traits within a population offers more

chances of survival as a whole organism and adapt to different conditions including competition for re-

sources. Although this adaptability might lead to the progressive disappearance of some traits due to their

contradicting co-existence and/or the inadequacy in being an advantage in this new stable configuration

of the population, some other mutations during this evolutionary process contribute to create a more sus-

tainable environment guaranteed by the diversity of different organisms. This central mechanism of life has

led to the general perception that "Nothing in Biology Makes Sense Except in the Light of Evolution" as

stated by Theodosius Dobzhansky in his landmark assay in 1973 [124]. This conclusion can be generalized

at the level of cell populations by making a correspondence between the biodiversity within ecosystem

communities and the multicellularity in a living multicellular organism. The mutation and the interplay of

induction and selection, which are the two major components underlying the life evolution mechanism, have

now become into the heterogeneity and intra- and extra-cellular signaling concepts, respectively. By this

association, the way to answer the fundamental question on how the multi-cellular organization emerges

from the same genome in a coordinated matter [125, 126] in one individual is fundamentally linked to the

life mechanism to increase complexity in a multi-particle interacting system. By balancing resilience [127]
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and flexibility [128] the final aim of biology is to increase survival probability in a multicellular organism.

Hence, understanding life across its different scales relies on investigating the cellular nanoevolution–that

is the dynamics of cellular heterogeneity [27]. The origin of cellular heterogeneity (even within clonal

populations) is originating through the multiscale organization of life as depicted in Fig. 3.4 taken from

[27].

Figure 3.4: Life-sustaining organization in multiple interactions at the same scale and across multi-layers commu-
nication. The biological information crosses over different spatiotemporal scales in a coordinated, synchronous and
targeted matter to generate tissues, organs and organisms (picture from [27]).

On the smallest relevant scales, the stochastic nature of molecular interactions induces individual

transcription profiles that are subsequently instructed and selected on the level of the cell populations by

intercellular signaling or cell-cell interactions leading to a coordinated generation of tissues, organs and

organisms [27]. This underlying noise-driven cellular heterogeneity is the mechanism to balance robustness

and adaptability [129].

In order to characterize cellular heterogeneity, I need to investigate biology at single-cell resolution. The

cell is a micro-information progressing entity that has to respond to extracellular signals and consequently

changes its internal state. A non-equilibrium condition is therefore a life-sustaining requirement, for in-

stance, in enabling active signal mechanisms by ion gradient dynamics. The complexity of a biological

system is encompassed by different nature of fluctuations that ranges from genetic heterogeneity [130],

noise induced cell-to-cell variability on the transcription and translation level [39] as well as the individual

behavior that may originate from specific subcellular organization [131]. To disentangle cellular heterogen-

eity over different sources of variability and uncover the underlying mechanisms that underpin biological

complexity, it is necessary to rely on experimental cell-targeted approaches and subsequent integrative

frameworks. Fortunately, the recent experimental technology in single-cell analysis allows to generate high-
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throughput data enabling the development of a distribution biology framework following non-equilibrium

statistical physics methods [129].
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Chapter 4

Microglia diversity

This chapter includes the manuscript "Single-cell transcriptomics reveals distinct inflamation-induced mi-

croglia signatures" published in collaboration with the Michelucci lab from the Luxembourg Institute of

Health in EMBO Reports [132] to which I contributed by advanced single cell RNA-seq analyses. The over-

arching aim of this study was to investigate the diversity of the activation response of microglia, which as

the immanent immune cells of the brain contribute to diverse brain disorders including neurodegeneration.

4.1 Microglia activation as cell-type specific example of phenotype

diversity

In the central nervous system (CNS) there are two broad classes of cells: neurons, which process diverse

phsiological information, and glia cells, which provide the neurons with mechanical and metabolic support

[133]. Microglia belong to the second type and are specialized in intervening promptly to the defence of

the neural environment. Dysfunctional behavior of microglia are thought to aggravate CNS diseases such

as Alzheimer’s [134] disease and Parkinson’s disease [135].

Microglia change rapidly and widely their gene expressions to modify their functional profiles accordingly

to the received signals from their CNS environment. The inflammatory response of microglia is worth to

be investigated deeply as they provide a primary, transient and self-limiting defence intervention by which

tissue damage is repaired and harmful stimuli are resolved . Moreover, alteration of this mechanism leads to

pathophysiological features present commonly in several neurodegenerative diseases. Identifying molecular

profiles associated to specific functional activities in response to different CNS perturbations might give rise

to more targeted therapeutic approaches to restore abnormal or detrimental microglial phenotypes found

26



in several CNS diseases.

In this work, LPS injection was used in a mouse model to mimic infectious condition and induce an

immune system response to elucidate microglia heterogeneity towards systematic inflammation. Our study

was based on a combination of single-cell RNA sequencing and multicolour flow cytometry techniques. My

specific contribution in single-cell data analysis has allowed to characterize distinct activated states from

their molecular profiles under acute inflammatory conditions. After having exploited qPCR approach to

select cells under steady state (saline condition) and LPS treatment, single-cell experiments were performed

by using the recently developed high-throughput droplet-based Drop-seq method [136]. The resulting

amount of data to be processed was 1247 cells (477 from the saline and 770 from LPS-injected mice) with

12,369 expressed genes.

For the comprehensive analysis, I followed the state-of.the-art analysis workflow for sc-RNAseq data

[137]. First, PCA was used for dimensionality reduction and clustering. Subsequently, I performed differen-

tial expressed gene (DEG) analysis to confirm the clustering procedure by identifying cell states based on

the expected transcriptional profiles for the up- and down-regulated genes in cells clustered in the "saline"

(cells in homeostatic condition) and in the " main LPS" (inflammatory condition). By a visual investig-

ation on the dimension-reduced t-SNE space reported in Fig.4A of the corresponding publication below,

an LPS subset assembled closer to the control condition highlighting the presence of a specific microglia

subpopulation under inflammatory conditions. Since the spatial vicinity indicated transcriptional similarity,

the LPS subgroup seemed to correspond to a less activated state associated to either less sensitive cells to

inflammatory stimuli or a cluster of already recovered cells following the acute pro-inflammatory response.

To investigate in detail the gene expression changes characterizing this "subset LPS", I applied branch-

ing analysis modelling (BEAM) and the corresponding pseudotime analysis implemented in Monocle 2

[138]. This approach was able to distinguish between 9 sub-states over the global "main LPS" cluster.

The previous identified LPS subpopulation corresponded to the yellow state with a core of cells indicating

a specific phenotype characterization that was lost progressively on the branch towards to more indicative

inflammatory states (Fig.5A in the paper below). The BEAM approach is a generalized regression model-

ling, which I applied to single-cell data to uncover transcriptional pathways activated within the different

subpopulations. The related pseudotime quantity was then referred to the single-cell asynchronous response

during inflammation, which has indicated that the "LPS subgroup" correspond to a delayed activation state

of microglia. Finally I analyzed gene-expression profile changes for some inflammatory and homeostatic

genes of cells in "LPS main" clustered ordered in respect to increasing pseudotime direction. This compar-

ison has characterized the intermediate state where the gene expression levels of the inflammatory genes

are increased while the homeostatic gene markers are not yet unexpressed (Fig.5C), confirming finally the
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unexpected molecular variability in the microglia activation states.

4.2 Paper related to heterogeneity of microglia signatures
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Abstract

Microglia are specialized parenchymal-resident phagocytes of the
central nervous system (CNS) that actively support, defend and
modulate the neural environment. Dysfunctional microglial
responses are thought to worsen CNS diseases; nevertheless, their
impact during neuroinflammatory processes remains largely
obscure. Here, using a combination of single-cell RNA sequencing
and multicolour flow cytometry, we comprehensively profile
microglia in the brain of lipopolysaccharide (LPS)-injected mice. By
excluding the contribution of other immune CNS-resident and
peripheral cells, we show that microglia isolated from LPS-injected
mice display a global downregulation of their homeostatic
signature together with an upregulation of inflammatory genes.
Notably, we identify distinct microglial activated profiles under
inflammatory conditions, which greatly differ from neurodegenera-
tive disease-associated profiles. These results provide insights
into microglial heterogeneity and establish a resource for the iden-
tification of specific phenotypes in CNS disorders, such as neuro-
inflammatory and neurodegenerative diseases.
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Introduction

The healthy brain hosts distinct and specialized populations

of tissue-resident macrophages strategically placed in the

parenchyma, perivascular spaces, meninges and choroid plexus

where they coordinate homeostatic and immune surveillance func-

tions [1]. As the only parenchymal-resident immune cells of the

central nervous system (CNS), microglia act as critical effectors

and regulators of changes in the CNS during development and

adult homeostasis. Their ontogeny, together with the absence of

turnover from the periphery and the exceptional environment of

the CNS, makes microglia a unique immune cell population [2]. By

sensing any disruption of CNS homeostasis, microglia rapidly

change their gene expression programmes and functional profiles.

Recent genome-wide transcriptional studies revealed a unique

molecular signature selectively expressed in homeostatic microglia

[3–6] that is lost in disease and during ageing [4,7–17]. Microglia

coordinate immune responses between the periphery and the CNS

as they perceive and propagate inflammatory signals initiated

outside the CNS [18]. A multitude of signals received from the

CNS environment as well as from the periphery induce microglial

responses towards phenotypes that ultimately may support or

harm neuronal health [2,19]. Although neuroinflammation and its

associated immune responses are often linked to neurodegenera-

tion, the inflammatory response per se provides a primary,

transient and self-limiting defence mechanism, by which harmful

stimuli are resolved and tissue damage is repaired [20]. Disruption

of CNS homeostasis, neuronal deterioration and inflammation are

common pathophysiological features of several neurodegenera-

tive diseases. In this context, chronic inflammation is likely to

be triggered by abnormal protein deposition, by signals elicited by

injured neurons and synapses or by impaired pro- and anti-inflam-

matory regulatory mechanisms that ultimately exacerbate the

neurodegenerative process [21]. Dysfunctional microglial responses

are believed to worsen CNS diseases [22]; nevertheless, their

impact during the neuroinflammatory processes remains largely

obscure.
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In recent years, single-cell RNA sequencing investigations have

emerged as a remarkable method to depict heterogeneous cell

populations and measure cell-to-cell expression variability of

thousands of genes [23–25]. In the murine and human brains,

single-cell RNA sequencing analyses have revealed neural and

glial cell heterogeneity [26–30]. Similarly, the complexity of

immune cell types has been recently unravelled [31]. However,

although recent studies have elucidated microglia signatures asso-

ciated with inflammatory conditions at the bulk level [4,16,32], it

is still not clear whether all microglial cells uniformly react to the

inflammatory stimuli.

To elucidate the heterogeneity of microglial responses towards

systemic inflammation, we here analysed the effect of a peripheral

injection of the Gram-negative bacterial endotoxin lipopolysaccha-

ride (LPS) in 3- to 4-month-old C57BL/6N mice using a combination

of multicolour flow cytometry and single-cell RNA sequencing anal-

yses. LPS is a well-known immunostimulant used to mimic

inflammatory and infectious conditions inducing immune responses

associated with sickness behaviour in mice and humans [33,34].

Notably, it has been shown that repeated peripheral injections of

LPS in mice induce neurodegeneration, while a single-dose injection

of LPS induces acute inflammatory, but not neurodegenerative

processes [35]. By our approach, we have identified distinct micro-

glial activated profiles under acute inflammatory conditions, which

differ from the recently described disease-associated phenotypes

[14].

Understanding the specific molecular triggers and the subsequent

genetic programmes defining microglia under homeostatic,

inflammatory and neurodegenerative conditions at the single-cell

level is a fundamental step to further uncover the multifaceted

nature of microglia, thus opening new windows to design novel

therapeutic strategies to restore, for example, efficient inflammatory

immune responses in CNS diseases.

Results and Discussion

Acutely isolated CD11b+CD45int cells express high levels of
microglial homeostatic genes and represent a specific resident
immune cell population

Cell-specific transcriptomic analyses are critically dependent on

isolation protocols to obtain pure populations resembling their phys-

iological profiles. To characterize microglia close to their proper

environment, mouse brains were mechanically dissociated into

single-cell suspension with all the steps performed at 4°C [36]. Since

microglia in the mouse brain represent only 10% of the cells,

CD11b+CD45int microglia were purified from other CNS and

immune cells, including CD11b+CD45high macrophages and

CD11b�CD45high lymphocytes, by FACS, as described previously

(Figs 1A and EV1) [37]. To verify accurate microglial enrichment,

we compared gene expression levels of specific CNS cell type mark-

ers between RNA extracted from unsorted total brain cells and

CD11b+CD45int sorted microglia (Fig 1B). We analysed the expres-

sion levels of microglial homeostatic genes (Olfml3, Fcrls,

Tmem119, Siglech, Gpr34, P2ry12) as well as astrocytic (Gfap, Gjb6,

Ntsr2, Aldh1l1), oligodendrocytic (Mobp, Mog, Cldn11) and

neuronal (Tubb3, Vglut1, NeuN) markers. As expected, microglial

markers were highly expressed in CD11b+CD45int sorted cells,

whereas astrocytic, oligodendrocytic and neuronal markers were

undetectable or detectable at background levels (Figs 1B and EV1).

We next investigated whether CD11b+CD45int population contained

resident non-parenchymal macrophages, such as perivascular

macrophages. This was inferred using CD206 as an additional

marker for resident macrophages [38]. Under homeostatic condi-

tions, CD11b+CD45int microglia contained only 0.04 � 0.02%

CD206+ cells, while CD11b+CD45high cells contained 24.7 � 3.8%

CD206+ resident macrophages (Fig 1C and D). Similar results were

obtained for the dendritic cell marker CD11c and the monocytic

markers Ly6C and CCR2 (Fig EV1). Taken together, these results

show that our approach highly discriminates pure and not activated

microglial populations from other resident CNS cells.

Microglia isolated from LPS-injected mice show a classical
activated pro-inflammatory profile accompanied by a decreased
homeostatic signature

The response of microglia towards specific pro- or anti-inflamma-

tory cues in vitro has been extensively studied [39]. Treatment of

primary microglial cells with TGF-b, LPS or IL-4 generates, respec-

tively, the so-called M0 homeostatic, M1 pro-inflammatory and M2

anti-inflammatory states defined by specific gene signatures [5,40].

However, our understanding towards the reaction of microglia

under inflammatory conditions in vivo is only starting to emerge. To

comprehensively investigate the effect of a systemic inflammatory

and/or infectious state on microglia, we peripherally injected mice

with LPS (4 lg/g body) 24 h prior analysis. It has been shown that

a single-dose injection of LPS induces acute inflammatory, but not

neurodegenerative processes [35]. We isolated CD11b+CD45int cells

from LPS-injected mice and compared mRNA levels of specific genes

▸Figure 1. Characterization of acutely isolated CD11b+CD45int cells.

A FACS gating strategy representative of five independent experiments adopted to sort CD11b+CD45int microglia distinctly from CD11b+CD45high resident macrophages
and CD11b�CD45high lymphocytes.

B Analysis of relative transcript levels of CD11b+CD45int FACS-sorted microglia compared with whole brain tissue by qPCR. Gene expression levels of microglia (Olfml3,
Fcrls, Tmem119, Siglech, Gpr34, P2ry12), astrocyte (Gfap, Gjb6, Ntsr2, Aldh1l1), oligodendrocyte (Mobp, Mog, Cldn1) and neuron (Tubb3, Vglut1, NeuN) markers. Bars
represent mean (n = 4; pool of one female and one male per biological replicate) of relative expression (Gapdh as housekeeping gene) � SEM (*P < 0.05; **P < 0.01
by two-tailed Student’s t-test). N.D., not detected.

C Representative quantification of CD206 expression in CD11b+CD45int microglia and CD11b+CD45high resident macrophages. Values denote the percentage of the
mean � SEM of five independent experiments.

D Representative images of two independent experiments showing microglia, resident macrophages and lymphocytes acquired with ImageStream imaging cytometer
(Amnis) based on CD45, CD11b and CD206 expression levels (scale bar represents 7 lm).
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to the corresponding cells isolated from saline-injected control mice

by qPCR. In agreement with previous studies [32,41], the expression

levels of homeostatic (e.g. Olfml3, Fcrls, Tmem119, Siglech, Gpr34,

P2ry12, Mef2c), phagocytic (Tyrobp and Trem2) and anti-inflamma-

tory genes (e.g. Mrc1 and Arg1) were highly decreased in microglia

isolated from LPS-injected mice compared to untreated mice, while

the classical pro-inflammatory genes (e.g. Il1b, Tnf and Ccl2) were

markedly increased (Figs 2A and EV2). Notably, it has been recently

shown that signals from the CNS microenvironment have consider-

able influence in shaping, maintaining and reinforcing microglial

identity by regulating expression and establishing distinct chromatin

landscapes surrounding enhancer regions [42–44]. Changes in chro-

matin remodelers associate with changes in the expression of

nearby genes. Specifically, MEF2C binding sites were shown to be

over-enriched in enhancer regions of microglial-specific genes [42]

and the loss of MEF2C was associated with priming of microglia

[45]. In line with these observations, Mef2c expression levels were

highly decreased in microglia isolated from LPS-injected mice

compared to naı̈ve mice.

We verified that this signature is microglia-specific, and it is not

affected by LPS-activated immune peripheral cells, such as lympho-

cytes (CD11b�CD45high cells) and peripheral monocytes/macro-

phages (CD11b+CD45high cells), as no significant differences were

detected between cellular populations present in brains of saline-

and LPS-injected mice (Figs 2B and EV2). Importantly,

CD11b+CD45int FACS-gated cells contained very rare (< 0.25%)

Ly6C+ putative monocytes and (< 0.1%) CD206+ putative resident

macrophages (Fig 2C). Also, the expression of monocytic markers

Ly6c1 and Ccr2 was very low in CD11b+CD45int microglia compared

to bone marrow-isolated monocytes with no significant differences

under LPS exposure (Figs 2D and EV2). In order to further assess

that the decrease in the homeostatic signature under inflammatory

conditions is not due to the presence of other immune cell types,

but it is an intrinsic property of microglial cells, we also analysed

the effect of LPS on cultivated microglial from adult and neonatal

mice. As expected, the expression level of the homeostatic genes

was markedly decreased in cultivated cells when compared to

acutely isolated microglia (Fig EV2) [5]. Thus, we cultivated adult

microglia in the presence of TGF-b (50 lg/ml) and M-CSF (10 ng/

ml) or neonatal cells with TGF-b 24 h prior treatment with LPS to

induce the expression of the homeostatic genes, although at a lower

extent than in ex vivo isolated cells (Fig EV2). Cells treated with LPS

(1 ng/ml) for 6 h showed a dramatic decrease of the expression

levels of the homeostatic gene markers, such as Olfml3, Tmem119

and Gpr34, accompanied by enhanced expression levels of

inflammatory marker genes, such as Il1b, Tnf and Ccl2 both in adult

and in neonatal microglia when compared to cells treated with

TGF-b only (Fig 2E). In the healthy brain, TGF-b is expressed at low

levels by both neurons and glial cells [46,47], while its expression is

increased upon injury [48,49], hypoxia–ischaemia [50] and

neurodegeneration [51,52]. SMAD and signal transducer and activa-

tor of transcription (STAT) proteins are key signal transducers and

transcription factors controlling TGF-b downstream signalling [53].

Specifically, STAT3 and suppressor of cytokine signalling 3 (SOCS3)

regulate inflammatory responses [54]. The binding of SOCS3 to both

JAK kinase and the cytokine receptor results in the inhibition of

STAT3 activation. In our analysis, microglial cells treated with LPS

showed increased amounts of STAT3 phosphorylation along with

upregulation of Socs3 expression levels compared to untreated cells

(Appendix Fig S1). Taking advantage of the “harmonizome” collec-

tion of databases [55], we attested that more than 1/3 of the top 100

sensome genes [4] possess STAT3-binding sites in their promoter

region. Hence, we hypothesized that the SOCS3-STAT3 antagonistic

signalling may be responsible for the suppression of the homeostatic

microglia signature and the concomitant shift towards the

inflammatory profile [56].

These results show that microglia isolated from LPS-injected

mice display a classical activated pro-inflammatory profile associ-

ated with a decrease in the expression of the homeostatic genes.

The decrease in the homeostatic signature under inflammatory

conditions is an inherent facet of microglial in vivo and in vitro.

Single-cell mRNA sequencing of CD11b+CD45int microglia isolated
from LPS-injected mice reveals a global transcriptional shift and
increased heterogeneity compared to steady state conditions

Based on the observed differences in the targeted qPCR approach

under steady state and LPS conditions, we next aimed to investigate

microglial states at the genome-wide level and infer their transcrip-

tomic heterogeneity at single-cell resolution, since studying a popu-

lation of cells masks the differences among individual cells. For this

purpose, FACS-sorted CD11b+CD45int cells from saline- or LPS-

injected mice were analysed using the recently developed high-

throughput droplet-based Drop-seq method [23]. In Drop-seq,

single cells and functionalized barcoded beads as cell identifiers

are co-encapsulated into droplets followed by cDNA synthesis,

▸Figure 2. LPS stimulation induces an intrinsic loss of the microglia homeostatic signature.

A–D Three- to four-month-old C57BL/6N mice were treated with an acute dose of LPS (4 lg/g body) or vehicle (saline). Microglia (pool of two mice per group per
replicate; one female and one male) were FACS-sorted 24 h later. (A) Gene expression levels of microglial homeostatic (Olfml3, Fcrls, Tmem119, Siglech, Gpr34,
P2ry12, Mef2c), phagocytic (Tyrobp, Trem2) and inflammatory (Il1b, Tnf, Ccl2, Mrc1, Arg1) markers were analysed by qPCR. Bars represent mean of relative expression
(% of saline; Gapdh as housekeeping gene) � SEM (*P < 0.05; **P < 0.01 by two-tailed Student’s t-test; n = 4). (B) Representative multicolour flow cytometry
analysis of five independent experiments showing CD11b- and CD45-positive populations in single viable cells in saline or LPS-injected mouse brains. (C)
Representative multicolour flow cytometry analysis showing the percentage of the mean � SEM of five independent experiments of Ly6C- and CD206-expressing
cells in CD11b+CD45int cells from saline or LPS-injected mice. (D) Gene expression levels of the monocytic markers Ly6c1 and Ccr2 in purified microglia (n = 4) and
isolated bone marrow monocytes (n = 2) by qPCR. Bars represent mean of relative expression (Gapdh as housekeeping gene) � SEM (**P < 0.01 by two-tailed
Student’s t-test).

E Primary adult microglia were cultivated in the presence of TGF-b (50 lg/ml) and M-CSF (10 ng/ml), while neonatal cells were stimulated for 24 h with TGF-b
(50 lg/ml) followed by 6 h of stimulation with LPS (1 ng/ml) or left untreated. Expression levels of microglial homeostatic (Olfml3, Tmem119, Gpr34) and
inflammatory (Il1b, Tnf, Ccl2) genes were analysed by qPCR. Bars represent mean of relative expression (Gapdh as housekeeping gene) � SEM (*P < 0.05; **P < 0.01
by two-tailed Student’s t-test).
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amplification, library preparation and next-generation sequencing.

First, we sought for differentially expressed genes between all LPS

and all naı̈ve/saline cells using MAST [57]. We identified 2,405 dif-

ferentially expressed genes between these two conditions with a

false discovery rate (FDR) cut-off of 5% (Dataset EV1) and exempli-

fied the top 100 differentially expressed genes in a heatmap

(Fig 3A). Second, principal component analysis followed by two-

dimensional t-distributed stochastic neighbour embedding (2D-

tSNE) of the overall gene expression data of 1,247 analysed cells

identified two main cell clusters that were independent of the 2D-

tSNE parameters and library sizes (Appendix Fig S2). Microglia

isolated from LPS-injected mice distinctly clustered from the corre-

sponding steady state microglia presenting discrete gene expression

signatures (Fig 3B; Dataset EV1). Intriguingly, we noticed from both

analyses that, although most of the activated cells clustered

together, a small group of cells assembled closer to the control cells,

thus highlighting the existence of potential subpopulations under

inflammatory conditions, which we characterized later. Gene set

enrichment analysis (GO) of upregulated genes in microglia isolated

from LPS-injected mice using DAVID [58,59] uncovered significant

involvement (P < 2.5 × 10�9) in “translation”, “protein folding”,

“ribosome biogenesis” and “immune system process”, thus

reflecting highly activated cells. On the other hand, GO of the corre-

sponding downregulated genes identified, among others, significant

enrichment (P < 4.9 × 10�5) in “regulation of transforming growth

factor beta receptor signalling pathway”, thus reflecting that TGF-b
signalling is among the most affected pathways in microglia exposed

to LPS (Appendix Fig S3). In line with gene expression results

obtained at the bulk level, microglial homeostatic genes (e.g.

Tmem119, Mef2c, P2ry13, P2ry12, Siglech) were among the top

downregulated genes and classical pro-inflammatory genes (e.g.

Ccl2, Gpr84, Nfkbia) were mainly upregulated also at the single-cell

level (Appendix Fig S2). We further investigated individual gene

expressions at single-cell level using 2D-tSNE to show specific

homeostatic and inflammatory gene expression levels. For example,

Tmem119, Siglech and P2ry12 genes were consistently expressed

under steady state, but were downregulated in microglia isolated

from LPS-injected mice, while Ccl2 and Gpr84 were largely upregu-

lated in most of the cells exposed to LPS compared to saline condi-

tions (Fig 3C; Appendix Fig S4). Notably, a prominent decrease in

TMEM119 and P2RY12 expression was further confirmed at the

protein level by flow cytometry (Fig 3D).

Although microglial activation is a common hallmark under

inflammatory and neurodegenerative conditions [22], microglia

transcriptional signatures have been shown to be different. For

example, Chiu et al [16] demonstrated that acutely isolated micro-

glia from the SOD1G93A mouse model of amyotrophic lateral sclero-

sis (ALS) differed from LPS-activated microglia, defining an ALS-

specific phenotype. Following the recent description of a novel

disease-associated microglial (DAM) phenotype identified under

neurodegenerative conditions at single-cell resolution [14], we here

compared our inflammatory-associated microglia (IAM) signature to

DAM. The scatterplot showing the fold change of genes between

microglia isolated from LPS-injected mice (2,405 genes; Dataset

EV1) versus DAM (1,660 genes; Dataset EV2) compared to homeo-

static microglia (FDR < 0.05) disclosed 1,826 unique genes affected

by the LPS treatment (e.g. Tnf, Irf1), 1,081 distinct genes in DAM

(e.g. Itgax, Axl) and 579 shared genes between the two populations

(e.g. Gpr84, Tmem119), thus highlighting that these cells mainly

display a unique expression profile (Fig EV3). Specifically, only

215 upregulated genes (12.1%) and 364 downregulated genes

(21.2%) were shared between the two groups (Fig EV3). Gene set

enrichment analysis (GO) and identification of key genes being

discriminative between inflammatory microglia and DAM revealed

a high inflammatory reactivity upon LPS treatment and a phago-

cytic/lysosomal gene signature in DAM (Fig EV3). For instances,

Trem2 and Tyrobp expression levels were highly decreased in

IAM, whereas an elevation of both genes was reported in DAM.

TREM2 associates with the immunoreceptor tyrosine-based activa-

tion motif (ITAM)-containing adaptor protein TYROBP (DAP12),

in which signalling involves the recruitment of tyrosine kinase

Syk that further phosphorylates downstream pathways inducing

cell activation. TREM2 is required for phagocytosis of apoptotic

neurons, microglial proliferation and survival [56,60–62]. These

subtle differences in perceiving different signals induced by CNS

perturbations support the microglial critical role in modulating

specific functional activities. In fact, it is intuitive to consider that

sensing inflammatory environments to maintain a homeostatic

neuronal network (e.g. through the expression of Clec4a and

Clec5a genes that are exclusively upregulated in our dataset) or

recognizing and clearing pathogenic factors (e.g. by expressing

Clec7a/Dectin-1 in DAM), such as b-amyloid aggregates in AD,

require distinct activated phenotypes. In a different context, it has

been recently shown that myelin pieces are gradually released

from ageing myelin sheaths and are subsequently cleared by

microglia [63]. Age-related myelin fragmentation is substantial,

leading to lysosomal storage and contributing to microglial senes-

cence and immune dysfunction in ageing [63]. It could be then

hypothesized that a similar accentuated mechanism may be

encountered by microglia surrounding b-amyloid plaques, which

become dystrophic at a late stage of the disease [64]. Interest-

ingly, genes described to be associated with neurological diseases,

such as Cd33, Cd9, Sod1, Ctsd, and Hif1a, were also downregu-

lated in our signature in comparison with DAM.

Taken together, these results suggest that microglia under acute

systemic inflammation present a highly activated state, which is

heterogeneous and distinct from neurodegenerative disease-

associated profiles.

Microglia present distinct activated signatures under
inflammatory conditions

Next, we aimed to elucidate whether the response to LPS was

heterogeneous across microglial cells. Based on our previous obser-

vation (Figs 3A and B), we further analysed the identified subclus-

ters by 2D-tSNE representation (Fig 4A). Based on the obtained 2D

representation, a specific LPS subgroup (“subset LPS”, in yellow)

distinct from the core LPS cluster (“main LPS”, in red) was identi-

fied closer to naı̈ve microglial cluster. Thus, we hypothesized that

these cells may correspond to a microglial subset that is less sensi-

tive to inflammatory stimuli or a cluster of cells which already partly

recovered from their activated state following the prominent pro-

inflammatory immune response. We obtained differentially

expressed genes between the “main LPS” (Dataset EV3) and the

“subset LPS” (Dataset EV4) clusters compared to the corresponding

control conditions (FDR < 0.05). We represented the top 100

6 of 17 EMBO reports 19: e46171 | 2018 ª 2018 The Authors

EMBO reports Single-cell inflammatory microglial Carole Sousa et al



A B

Saline
LPS

C

tS
N

E
di

m
2

tSNE dim1

Ccl2

-40  -20    0   20   40   60

Gpr84

-40  -20    0   20   40   60

Siglech

-40  -20    0   20   40   60

P2ry12

-40  -20    0   20   40   60

Tmem119

-1
00

   
   

   
-

05
0

05

-40  -20    0   20   40   60

Saline LPS

tSNE dim1

tS
N

E
di

m
2

-40   -20    0     20    40   60

-1
00

   
-5

0 
   

   
0 

   
   

50

P
2R

Y1
2

TM
E

M
11

9
Negative
Saline
LPS

-103 0 103 104 105

D

-103 0 103 104 105

B

Figure 3. Characterization of microglial activation at the single-cell level.

A Heatmap showing clustering analysis of 1,247 single cells, featuring 100 most variable genes (FDR < 0.05). Single-cell RNA-seq results are obtained from two mice
per group (one female and one male each). Values denote a score based on gene expression rank.

B 2D-tSNE representation of all single cells included in the study (n = 1,247) depicting the separation of microglia isolated from LPS-injected mice (770 cells in red) and
steady state (477 cells in blue) in two main clusters.

C Expression of specific homeostatic (Tmem119, P2ry12, Siglech) and inflammatory (Ccl2, Gpr84) genes overlaid on the 2D-tSNE space. Bars represent log2 (Count + 1).
D Representative multicolour flow cytometry analysis of two independent experiments showing TMEM119 and P2RY12 expression levels in CD11b+CD45int microglia of

saline or LPS-injected mouse brains. For the unconjugated TMEM119 antibody, negative stands for primary antibody without secondary antibody. For P2RY12
antibody, negative represents isotype PE control.
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differentially expressed genes among the identified clusters in a

heatmap (FDR < 0.05; Appendix Fig S5). To elucidate the transcrip-

tional signature of the LPS subgroups, we showed differentially

expressed genes between “main LPS” and “subset LPS” clusters

compared to the corresponding control conditions (FDR < 0.05). In

line with their activated state, the main pro-inflammatory genes

(e.g. Ccl2, Tnf, Irg1, Gpr84) were upregulated (Fig 4B) and the

microglial homeostatic genes (e.g. Siglech, P2ry12, Fcrls, Gpr34)

were downregulated in both populations (Fig 4C), although at a

lesser extent in “subset LPS”, compared to steady state conditions.

Investigation of the top differentially expressed genes unique to

“main LPS” or “subset LPS” compared to naı̈ve cells (FDR < 0.05;

Log2FC ≥ 3 or Log2FC ≤ �3; Table 1) identified, for example, Manf

(a growth factor that promotes neuroprotection and tissue repair

[65]) and C5ar1 among the top upregulated genes in “main LPS”

and Stab 1 as well as Ash1l (which suppresses the production of

pro-inflammatory mediators, such as IL-6 and TNF [66]), among the

enhanced genes in “subset LPS”. Downregulated genes were, for

example, the homeostatic gene marker Mef2c, which restrains the

microglial inflammatory response [45] in “main LPS” and genes

associated with endosomes/lysosomes in both “main LPS” (Maf)

and “subset LPS” (Lamp1) (Figs 4D and EV4), thus potentially

providing some mechanistic insights regarding the less activated

state of “subset LPS” compared to the “main LPS” cluster. Further

analysis of unique differentially expressed genes (FDR < 0.05) char-

acterizing the two LPS subpopulations based on microglial functions

and properties showed a dramatic increase in genes associated with

the major histocompatibility complex (e.g. H2-D1 and H2-K1) exclu-

sively in the “main LPS” group and a decrease in the complement

system (e.g. C1qa, C1qb and C1qc) in the “subset LPS” group when

compared to steady state (Table EV1).

Notably, we characterized membrane markers corresponding to

specific genes identified at single-cell resolution by flow cytometry

to analyse the expression levels of markers upregulated in both LPS

groups (e.g. CD44), only in “main LPS” (e.g. CD274) or only in

“subset LPS” (e.g. NOTCH4). Although three markers used simulta-

neously did not allow to clearly discriminate the “subset LPS” from

the “main LPS” population, changes in the proportion of marker-

positive cells were in line with the scRNA-seq data. Upon LPS treat-

ment, a smaller proportion of NOTCH4-positive cells (saline 5.4%;

LPS 18.9%) compared to CD44 (saline 65.2%; LPS 97.5%) and

CD274 (saline 48.7%; LPS 88.1%) were detected (Fig EV5). We con-

firmed this pattern by immunohistochemistry, showing that

NOTCH4-positive cells were evenly distributed throughout the

brain, thus indicating that these cells were not associated with a

specific brain region (Fig EV5).

Gene set enrichment analysis of downregulated genes character-

izing “subset LPS” compared to “main LPS” confirmed “innate

immune response” and “complement activation, classical pathway”

as decreased terms, thus highlighting a less pronounced activated

state of the “subset LPS”. Intriguingly, these cells revealed signifi-

cant over-representation (P < 0.05) of “covalent chromatin modifi-

cation” and “DNA repair” that may indicate cells recovering from

their acute activated state or a subset of cells with specific chro-

matin states and DNA repair properties conveying an attenuated

activated phenotype than the main population (Fig 4E). In order to

further corroborate the existence of the identified microglial subpop-

ulations under inflammatory conditions, the corresponding 770 cells

were subjected to the “SC3” method [67]. With two clusters, we

found a very high concordance between the subcluster obtained

with “SC3” and the LPS subset identified by 2D-tSNE, thus support-

ing the existence of the detected subpopulations. We represented

the top 50 differentially expressed genes driving the segregation of

cells into the two clusters in a heatmap (adjusted P-value < 0.05;

Appendix Fig S6).

◀ Figure 4. Identification of microglial subpopulations under inflammatory conditions.

A 2D-tSNE representation of 1,247 single cells isolated from naïve (blue)- and LPS-treated mice showing two distinct subpopulations among the 770 cells isolated from
LPS-injected mice (n = 703, red; n = 67, yellow).

B Venn diagram showing 732 genes uniquely upregulated in the “main LPS” cluster (red) and 241 genes exclusively increased in the “subset LPS” (yellow) compared to
their corresponding controls (blue) (FDR < 0.05). A total of 274 genes were shared between the two LPS populations.

C Venn diagram showing 1,055 genes uniquely downregulated in the “main LPS” cluster (red) and 29 genes exclusively decreased in the “subset LPS” (yellow) compared
to their corresponding controls (blue) (FDR < 0.05). A total of 87 genes were shared between the two LPS populations.

D Heatmap showing examples of specific genes mainly upregulated in “main LPS” (Manf) or “subset LPS” (Ash1l) and downregulated in “main LPS” (Mef2c) or “subset
LPS” (Lamp1) overlaid on the 2D-tSNE space. Bars represent log2 (Count + 1).

E Gene set enrichment analysis (GO, top 10 biological processes) of 99 downregulated and 397 upregulated genes distinguishing cells in “subset LPS” versus “main LPS”
(FDR < 0.05).

Table 1. List of top differentially expressed genes unique to “main
LPS” or “subset LPS” versus PBS (FDR < 0.05; upregulated genes,
Log2FC ≥ 3; downregulated genes, Log2FC ≤ �3).

Top upregulated genes Top downregulated genes

“Main LPS” “Subset LPS” “Main LPS” “Subset LPS”

Rplp0 Gm26924 Tanc2 Lamp1

Rps2 Golga4 Pde3b Gm17087

Cd52 Zfc3h1 Maf Cd68

Cd63 RP24-312B12.1 Rasgrp3 Rps14

Ctsl Stab 1 Zfhx3 C1qc

Manf Cacna1d 4632428N05Rik Itm2c

Pdia4 Ash1l Mef2c Eif1

Calm1 Ascc3 Qk H3f3b

Rps19 Atrx Ivns1abp Cd81

Fth1 Ptprc Pmepa1 Ubb

Rps5 Ttc14 Lrrc58

Pdia6 Chd7

C5ar1 Myo9a

Ptplb

Rpl32

Gnl3
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Lastly, we used Venn diagrams to show unique and common

upregulated and downregulated (Fig EV5) genes among “main LPS”

cluster, “subset LPS” and DAM (FDR < 0.05). Among the deregu-

lated genes, for example, Spp1, Il1b and Tlr2 were commonly upreg-

ulated, while Fcrls, Tgfbr1 and Siglech were downregulated in the

three groups. Intriguingly, genes of the complement system (e.g.

C1qa, C1qb and C1qc) were downregulated in both “subset LPS”

and DAM, but not in “main LPS”. Further analysis of the top

differentially expressed genes unique to the three groups compared

to naı̈ve cells (FDR < 0.05; Log2FC ≥ 3 or Log2FC ≤ �3;

Appendix Table S1) showed that the previously identified genes,

such as Manf and C5ar1 are uniquely upregulated in “main LPS”,

while Stab 1 as well as Ash1l is among the increased genes only in

“subset LPS”.

Overall, these results highlight the existence of specific microglial

subpopulations under inflammatory conditions, which are distinct

from neurodegenerative-associated phenotypes. These findings

emphasize heterogeneity of microglial activated states in vivo

reflecting specific functional activities related to their corresponding

environment.

Pseudotime analysis of LPS-activated microglia uncovers “subset
LPS” as an intermediate activated state

Although further analyses at different time points should be

performed in the future to resolve the dynamic process of activation,

to further investigate the activation process, the heterogeneity

within LPS-activated microglia and, specifically, the properties of

“subset LPS” compared to “main LPS”, we applied branch expres-

sion analysis modelling (BEAM) and corresponding pseudotime

analysis implemented in Monocle 2 [68]. Since the more subtle dif-

ferences during the activation process would be dominated by the

large differences between naı̈ve and LPS conditions, we applied the

branching analysis to the LPS-activated microglia only. This more

sensitive analysis revealed nine different states, with the largest dif-

ference of “subset LPS” to all others, in accordance with the previ-

ous tSNE and “SC3” analyses. Interestingly, cells assigned to

“subset LPS” exhibit a dense core, but also a significant number of

cells towards the other main clusters (Fig 5A). Given this more

sensitive clustering and corresponding pseudotime analysis, we then

investigated the characteristics of “subset LPS” with respect to their

activation state and their relation with the other states. For this

purpose, we plotted the estimated pseudotime of each cell in the

state space indicating a delayed activation pattern of “subset LPS”

(Fig 5B). Lastly, we investigated inflammatory (e.g. Ccl12, Ccl2,

Gpr84) and homeostatic (e.g. Mef2c, P2ry12, Siglech) gene expres-

sion profiles in dependence on pseudotime, further indicating the

delayed activation state of “subset LPS” by smaller pseudotimes

(Fig 5C). By comparing the dynamics of the inflammatory and

homeostatic genes along the activation process, we observed that

inflammatory genes were upregulated first, while the homeostatic

markers were only subsequently downregulated. Thus, “subset

LPS” may correspond to an intermediate state where the gene

expression levels of the inflammatory mediators are increased, but

the homeostatic gene markers, such as Mef2c, are still partly

preserved. In conclusion, from this analysis, we hypothesized that

these cells may correspond to a microglial subpopulation that is less

sensitive to inflammatory stimuli.

In summary, our work elucidated an extensive picture of micro-

glial profiles in steady state and upon inflammatory conditions,

including unforeseen heterogeneity in their states of activation. We

believe that our findings, together with the recent single-cell RNA

sequencing studies of microglia in Alzheimer’s disease [14], present

a comprehensive transcriptomic view of microglia under acute

inflammatory conditions and a comparison with neurodegenerative

processes. These results could then pave the way to design new

therapeutic approaches to restore abnormal or detrimental micro-

glial phenotypes found in several CNS disorders.

Materials and Methods

Animals

Three- to four-month-old C57BL/6N male and female mice were

obtained from Charles River Laboratories (France). Mice were

housed in 12-h light/dark cycle, with sterile food and water ad libi-

tum. All animal procedures were approved by the University of

Luxembourg Animal Experimentation Ethics Committee and by

appropriate government agencies. The animal work of the present

study has been conducted and reported in accordance with the

ARRIVE (Animal Research: Reporting of In Vivo Experiments) guide-

lines to improve the design, analysis and reporting of research using

animals, maximizing information published and minimizing unnec-

essary studies.

Acute microglial isolation and purification by multicolour
flow cytometry

Mice were treated with a single intraperitoneal injection of LPS

(4 lg LPS/g body weight) or with PBS (saline) as vehicle control.

Twenty-four hours later, mice were deeply anaesthetized with a

combination of ketamine (100 mg/ml; Nimatek Vet)–dorbene

(medetomidine hydrochloride; 1 mg/ml; Dorbene Vet) and perfused

transcardially with ice-cold PBS. Further processing was performed

at 4°C and no-break centrifugations. Brains were rapidly removed,

stored in ice-cold HBSS (Gibco/Life Technologies) with 1 M HEPES

(Gibco/Life Technologies) and 0.5% D-(+)-glucose (Sigma-Aldrich),

mechanically homogenized in a potter homogenizer and centrifuged

at 900 rpm for 10 min. Myelin was removed from cell suspension

with the Myelin Removal Kit (Miltenyi Biotec) according to the

manufacturer’s protocol. Prior to the FACS, the cell suspension was

◀ Figure 5. Pseudotime analysis.

A Branching analysis of LPS-activated microglia by Monocle 2 leads to nine distinct clusters in a two-dimensional state space inferred by generalized regression
modelling (see Materials and Methods) showing the major difference of “subset LPS” (in yellow) compared to the other clusters corresponding to “main LPS” (in red).

B Monocle estimated a pseudotime for each cell along the inferred cell trajectory within the state space showing a delayed activation pattern of “subset LPS” compared
to the other fractions.

C Pseudotime dynamics of inflammatory (Ccl12, Ccl2, Gpr84) and homeostatic (Mef2c, P2ry12, Siglech) genes in dependence on inferred cell states.
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resuspended in ice-cold HBSS with 2% FBS and 10 mM HEPES, pH

7.4 and filtered through a 70-lm nylon mesh (CellTrics). For multi-

colour staining, cells were incubated for 15 min with Fc receptor

binding inhibitor (anti-mouse CD16/CD32 monoclonal antibody;

1:100; eBioscience) to reduce binding of non-specific Fc-gamma

receptors, and then stained with fluorochrome-conjugated antibodies

(Appendix Table S2) or their corresponding isotopic controls for

45 min at 4°C in dark. After washing, cells were pelleted at 300 g for

10 min at 4°C and resuspended in 200 ll of the appropriated buffer.

Hoechst (0.1 lg/ml; Sigma) or Sytox Red (1:1,000; Thermo Fisher

Scientific) were added shortly before flow cytometry measurements

for dead cell discrimination. Cells were sorted with FACSAriaTM SORP

cytometer (BD Biosciences) fitted with a 640 nm (30 mW) red laser,

a 355 nm (60 mW) UV laser, a 405 nm (50 mW) violet laser, a

488 nm (100 mW) blue laser and a 561 nm (50 mW) yellow/green

laser. Data were analysed with FACSDiva software (Becton Dickin-

son) and FlowJo software (version 7.6.5; Tree Star). Imaging flow

cytometry was performed with an ImageStream imaging cytometer

(Amnis) fitted with a 375 UV laser, a 488 blue laser, a 561 yellow-

green laser, a 642 red laser and a 785 nm infrared laser. Acquisition

was performed with the INSPIRE� software, and analysis was

performed using IDEAS� image analysis software. Pictures were

taken at 60× magnification at low speed, high sensitivity mode.

Isolation of bone marrow monocytes

Monocytes were isolated from mouse bone marrow cells by using

the Monocyte Isolation Kit (Miltenyi Biotec) according to the manu-

facturer’s protocol.

Primary adult mouse microglial culture

Adult microglia were isolated from brains of C57BL/6N mice at age

6–10 weeks by magnetic separation. Mice were transcardially

perfused with ice-cold PBS under anaesthesia, and brains were

dissociated using the Neural Dissociation Kit P (MACS Miltenyi

Biotec) according to the manufacturer’s instruction. Microglia were

enriched by magnetic separation using CD11b+ beads (MACS

Miltenyi Biotec). Briefly, 1 × 107 cells were resuspended in 90 ll of
MACS buffer [Hank’s balanced salt solution (HBSS); Lonza] supple-

mented with 0.5% BSA (Sigma-Aldrich) and 2 mM EDTA and 10 ll
of CD11b MicroBeads (MACS Miltenyi Biotec). The cell suspension

was incubated at 4°C for 20 min, washed and pelleted in 500 ll of
MACS buffer at a density of 1 × 108 cells. The cell suspension was

applied into LS columns (MACS Miltenyi Biotec), and the CD11b+

fraction was eluted. Primary adult microglia were plated in 24-well

plates coated in poly-L-lysine (0.1 mg/ml solution; Sigma-Aldrich)

at a density of 2 × 105 cells/ml and grown in microglial culture

medium [Dulbecco’s modified Eagle’s medium (DMEM-F12 w/L-

glutamine w/15 mM HEPES; Biowest)] supplemented with 10%

foetal bovine serum (FBS; Gibco/Life Technologies), pen-strep

(100 U/ml/100 lg/ml; Gibco/Life Technologies), human recombi-

nant TGF-b (PeproTech) at a final concentration of 50 lg/ml and

mouse recombinant M-CSF (R&D Systems) at a final concentration

of 10 ng/ml. Cells were cultured for 5 days without changing

media. After 9 days of culture, cells were stimulated with

lipopolysaccharide (LPS from Escherichia coli 055:B5; Sigma-

Aldrich) at a final concentration of 1 ng/ml for 6 h.

Primary newborn mouse microglial culture

Murine primary microglial cells were isolated from newborn (P1–

P4) C57BL/6N mouse brains as previously described [69]. Brains

were dissected on ice. Subsequently, meninges and large blood

vessels were carefully removed and brains were pooled and minced

in cold Dulbecco’s phosphate buffered saline (PBS; Lonza). Tissue

dissociation was completed by 10 min of incubation in 2 mM EDTA

(Sigma-Aldrich). Cells were washed, centrifuged, seeded into six-

well plates coated with poly-L-lysine and allowed to attach and

grow in complete medium DMEM (Gibco/Life Technologies) supple-

mented with 10% FBS and pen-strep at 37°C in a water-saturated

atmosphere containing 5% CO2. The culture medium was renewed

after 3 days of culture. After 10 days, when cells reached conflu-

ence, the mixed glial monolayer was trypsinated (0.05% Trypsin–

EDTA; Gibco/Life Technologies) and microglial cells were purified

by magnetic cell sorting (MACS Miltenyi Biotec) following the

manufacturer’s instructions. Primary microglia were plated in 12-

well plates coated with poly-L-lysine (Sigma-Aldrich) at a density of

4 × 105 cells/ml. Twenty-four hours after plating, cells were acti-

vated with different compounds: LPS at a final concentration of

1 ng/ml, TGF-b at a final concentration of 50 lg/ml and M-CSF at a

final concentration of 10 ng/ml.

RNA isolation and RT–PCR

CD11b+CD45int cells were FACS-sorted directly to TRIzol� LS, and

total RNA was extracted according to the manufacturer’s protocol

(Life Technologies). RNA from primary cells was extracted using

the RNeasy Mini Kit (QIAGEN), according to the manufacturer’s

instructions. RNA concentration was quantified by NanoDrop

(NanoDrop Technologies) and the quality assessed by the quotient

of the 28S to 18S ribosomal RNA electropherogram peak using a

bioanalyser (Agilent 2100; Agilent Technologies) using a RNA Pico

Chip (Agilent Technologies; only samples with RIN ≥ 7 were further

analysed). For cDNA synthesis, RNA was reverse-transcribed using

SuperScriptTM III reverse transcriptase (10,000 U; Invitrogen/Life

Technologies) with 1 ll (50 lM)/reaction oligo(dT)20 (25 lM;

Invitrogen/Life Technologies) as primer according to the manufac-

turer’s instructions. Reverse transcription was performed at 50°C for

60 min. Gene expression reaction mixtures contained 2 ll of diluted
cDNA, 10 ll of Fast SYBR Green Master Mix (Applied Biosystems/

Thermo Fisher Scientific) and 0.5 ll of each 10 lM forward and

reverse primers. PCRs were carried out in 96-well plates on a ViiATM

7 real-time PCR system (Applied Biosystems/Thermo Fisher Scien-

tific) using the following programme: 95°C for 20 s, 40 cycles at

95°C for 1 s and 60°C for 20 s. The sequences of the primers

designed using Primer-Blast tool are listed in Appendix Table S3.

Samples were run in duplicates, and the mean Ct (threshold cycle)

values were used to calculate the relative amount of product by the

DDCt method using Gapdh as housekeeping gene.

Immunohistochemistry

Under deep ketamine–dorbene anaesthesia, mice were transcar-

dially perfused with ice-cold PBS, post-fixed in 4% paraformalde-

hyde (PFA) for 48 h and stored at 4°C in 0.02% sodium azide/PBS

as preservative. Serialized parasagittal free-floating 50-lm-thick
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sections were generated with a vibratome (Leica; VT-1000S) and

collected in cryoprotective medium [PBS containing 1-1 ethylene

glycol (Sigma-Aldrich) and 1% w/v polyvinylpyrrolidone (Sigma-

Aldrich)]. Sections were stored at �20°C in tubes, each containing a

series of every 4th section.

For immunofluorescence, a standard protocol was used with

minor modifications [70]. Briefly, sections were washed (PBS with

0.1% Triton X-100), permeabilized (PBS with 1.5% Triton X-100),

blocked (PBS with 5% BSA) and incubated with primary antibodies

(PBS with 0.3% Triton X-100 and 2% BSA): rabbit anti-Iba1

(1:1,000; Wako) and pre-conjugated PE anti-mouse Notch4 (1:80;

BioLegend). Iba1 antibody was visualized using goat anti-rabbit IgG

Molecular Probes Alexa Fluor 555 (Thermo Fisher Scientific)

secondary antibody. Cell nuclei were counterstained with Hoechst

(1 lg/ml; Sigma). Sections were mounted on glass slides cover-

slipped using FluoromountTM Aqueous Mounting Medium (Sigma).

Microscopic images were obtained using confocal microscopy (Zeiss

LSM880).

SDS–PAGE and Western Blotting analysis

Heat-denatured protein samples were separated on 4–12% BisTris–

polyacrylamide gel electrophoresis followed by transfer to nitrocel-

lulose membranes 0.2 lm (Bio-Rad). After blocking with 5% (wt/

vol) dry milk in TBST for STAT3 and 3% BSA in TBST for Phospho-

STAT3, respectively, the membrane was incubated overnight at 4°C

in primary anti-STAT3 antibody from mouse (Cell Signaling) diluted

1:1,000 in 5% (wt/vol) dry milk in TBST and in primary anti-

Phospho-STAT3 antibody (Cell Signaling) diluted 1:500 in 3% BSA

in TBST with constant shaking. After three washing steps with TBS

containing 0.1% Tween-20, the membrane was incubated with anti-

rabbit antibody or anti-mouse respectively, coupled to horseradish

peroxidase and revealed by chemoluminescence using the PierceTM

ECL detection reagents (Thermo Fisher Scientific).

Single-cell RNA sequencing using Drop-seq

Cell preparation

FACS-sorted CD11b+CD45int cells were collected in pre-cooled HBSS

and 0.5% BSA and transferred directly for subsequent Drop-seq

analysis. The cells were stored on ice until the start of the Drop-seq

experiment (tissue harvest to running of Drop-seq was < 1 h). Prior

to cell loading on the Drop-seq chips, the cell viability was verified

and the concentration was adjusted to ~150 cells/ll. This was opti-

mal based on Poissonian statistics to achieve single-cell encapsula-

tion within each droplet of ~800–900 pl droplet size. All samples

analysed in this work had a cell viability > 95%.

Microfluidics fabrication

Microfluidics devices were generated using a previously published

design [23]. Soft lithography was performed using SU-8 2050

photoresist (MicroChem) on 4” silicon substrate to obtain a feature

aspect depth of 100 lm. After overnight silanization (using

chlorotrimethylsilane; Sigma), the wafer masks were used for

microfluidics fabrication. Drop-seq chips were fabricated using sili-

con-based polymerization chemistry, with the previously published

protocol [71]. Briefly, polydimethylsiloxane (PDMS) base and cross-

linker (Dow Corning) were mixed at a 10:1 ratio, mixed and

degassed before pouring onto the Drop-seq master template. PDMS

was cured on the master template, at 80°C for 2 h. After incubation

and cooling, PDMS monoliths were cut and the inlet/outlet ports

were punched with 1.25-mm biopsy punchers (World Precision

Instruments). The PDMS monolith was plasma-bonded to a clean

microscopic glass slide using a Harrick plasma cleaner. Immediately

after pairing the plasma-treated surfaces of the PDMS monolith and

the glass slide, flow channels of the Drop-seq chip were subjected to

a hydrophobicity treatment using 1H,1H,2H,2H-perfluorodecyltri-

chlorosilane (in 2% v/v in FC-40 oil; Alfa Aesar/Sigma). After

5 min of treatment, excessive silane was blown through the inlet/

outlet ports. Chips were further incubated at 80°C for 15 min.

Single-cell droplet encapsulation

Experiments followed the original Drop-seq protocol [23] with

minor changes described below. Synthesized barcoded beads

(ChemGenes Corp., USA) were co-encapsulated with cells inside the

droplets containing lysis reagents using an optimal bead concentra-

tion of 200 beads/ll in Drop-seq Lysis buffer medium. Cellular

mRNA was captured on the beads via barcoded oligo (dT) handles

synthesized on the surface.

For cell encapsulation, bead suspensions and cell suspension

were loaded into 3-ml syringes (BD). To keep beads in homoge-

nous suspension, a micro-stirrer was used (VP Scientific). The

QX200 carrier oil (Bio-Rad) used as continuous phase in the

droplet generation was loaded into a 20-ml syringe (BD). For

droplet generation, 3.6 ml/h and 13 ml/h flowrates were used in

KD Scientific Legato Syringe Pumps for the dispersed and continu-

ous phase flows, respectively. After stabilization of droplet forma-

tion, the droplet suspension was collected into a 50-ml Falcon

tube. Collection of the emulsion was carried out until 1 ml of the

single-cell suspension was dispensed. Droplet consistency and

stability were evaluated by bright-field microscopy using INCYTO

C-Chip Disposable Hemacytometer (Thermo Fisher Scientific).

Bead occupancy within droplets was carefully monitored to avoid

multiple beads per droplet.

The subsequent steps of droplet breakage, bead harvesting,

reverse transcription and exonuclease treatment were carried out in

accordance with the Drop-seq method [23]. RT buffer contained 1×

Maxima RT buffer, 4% Ficoll PM-400 (Sigma), 1 lM dNTPs

(Thermo Fisher Scientific), 1 U/ml RNase Inhibitor (Lucigen),

2.5 lM Template Switch Oligo [23] and 10 U/ml Maxima H-RT

(Thermo Fisher Scientific). After Exo-I treatment, the bead counts

were estimated using INCYTO C-Chip Disposable Hemacytometer,

and 5,000–8,000 beads were aliquoted in 0.2 ml Eppendorf PCR

tubes. PCR mix was dispensed in a volume of 50 ll using 1× HiFi

HotStart ReadyMix (Kapa Biosystems) and 0.8 mM Template Switch

PCR primer. The thermocycling programme for the PCR amplifi-

cation was modified for the final PCR cycles by 95°C (3 min), four

cycles of 98°C (20 s), 65°C (45 s), 72°C (3 min) and 16 cycles of

98°C (20 s), 67°C (20 s), 72°C (3 min), followed by a final extension

step of 72°C for 5 min. After PCR amplification, libraries were puri-

fied with 0.6× Agencourt AMPure XP beads (Beckman Coulter),

according to the manufacturer’s protocol. Finally, the purified

libraries were eluted in 20 ll RNase/DNase-free Molecular Grade

Water. Quality and concentration of the sequencing libraries

were assessed using Bioanalyzer High Sensitivity Chip (Agilent

Technologies).
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NGS preparation for Drop-seq libraries

The 30 end enriched cDNA libraries were prepared by tagmentation

reaction of 600 pg cDNA library using the standard Nextera XT

tagmentation kit (Illumina). Reactions were performed according to

the manufacturer’s instructions. The PCR amplification cycling

programme used was 95°C 30 s, and fourteen cycles of 95°C (10 s),

55°C (30 s) and 72°C (30 s), followed by a final extension step of

72°C (5 min). Libraries were purified twice to reduce primers and

short DNA fragments with 0.6× and 1× Agencourt AMPure XP beads

(Beckman Coulter), respectively, in accordance with the manufac-

turer’s protocol. Finally, purified libraries were eluted in 15 ll Mole-

cular Grade Water. Quality and quantity of the tagmented cDNA

library were evaluated using Bioanalyzer High Sensitivity DNA

Chip. The average size of the tagmented libraries prior to sequenc-

ing was between 400 and 700 bps.

Purified Drop-seq cDNA libraries were sequenced using Illumina

NextSeq 500 with the recommended sequencing protocol except for

6pM of custom primer (GCCTGTCCGCGGAAGCAGTGGTATCAACG

CAGAGTAC) applied for priming of read 1. Paired-end sequencing

was performed for the read 1 of 20 bases (covering the random cell

barcode 1–12 bases and the rest 13–20 bases of random unique

molecular identifier (UMI) and for read 2 of 50 bases of the genes.

Bioinformatics processing and data analysis

The FASTQ files were assembled from the raw BCL files using Illu-

mina’s bcl2fastq converter and ran through the FASTQC codes

(Babraham bioinformatics; https://www.bioinformatics.babraham.

ac.uk/projects/fastqc/) to check for consistency in library qualities.

The monitored quality assessment parameters were (i) quality per

base sequence (especially for the read 2 of the gene), (ii) per base N

content, (iii) per base sequence content, and (iv) over-represented

sequences. Libraries that showed significant deviation were re-

sequenced. The FASTQ files were then merged and converted into

binaries using PICARD’s FastqToSam algorithm. The sequencing

reads were converted into a digital gene expression matrix using the

Drop-seq bioinformatics pipeline [23].

Data analysis was done in R. Cells with less than 1,000 counts and

genes with zero count in all cells were excluded from subsequent

analyses, resulting in 1,247 cells (477 from the saline control and 770

from LPS-injected mice) and 12,369 genes. PCA (prcomp function with

scaling) was used for dimensionality reduction, and PCA results were

projected onto a two-dimensional (2D) space using t-distributed

stochastic neighbour embedding (tSNE, tsne package, v.0.1-3). As the

first principal component was strongly correlated to the total number

of UMI (reads) per cell, it was not included in the 2D-tSNE analysis.

Differential expression analysis was performed with MAST [57]. P-

values were adjusted for multiple testing using false discovery rate

(FDR) [72]. Prior to MAST analysis, counts were converted into

counts per million and log2-transformed. For subpopulation identifi-

cation, two approaches were used: (i) based on visual inspection of

2D-tSNE plot, cells were divided into three clusters: one cluster

contained almost exclusively cells isolated from control mice, another

cluster contained mainly cells harvested from LPS-injected mice, and

the last cluster was constituted of a small subset of LPS-derived cells.

Clusters were pruned to keep only cells coming from the predominant

sample in the group. Comparisons of gene expression between dif-

ferent groups were done with the Kruskal–Wallis H-test. P-values were

corrected with FDR [72]; (ii) each condition was analysed separately

with the “SC3” package [67]. Branching analysis was performed by

Monocle 2.4.0 in R (version 3.4.4) with standard parameters [68,73].

The branching method orders cells along an estimated cell trajectory

within a gene expression state space based on gene expression simi-

larities estimated by generalized linear regression models.

Statistical analysis

Statistical analyses for qPCRs and FACS experiments were performed

using GraphPad Prism 7 software. Comparisons of two groups were

performed with a two-tailed Student’s t-test. Comparisons involving

more than two groups were performed using one-way ANOVA

followed by the Bonferroni correction for multiple testing. All dif-

ferences were considered significantly different at P < 0.05. Further

statistical analysis details are reported in the figure legends.

Data availability

Single-cell RNA sequencing data have been deposited in Gene

Expression Omnibus (GEO) database under the accession number

GSE115571 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE115571).

Expanded View for this article is available online.
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Chapter 5

Cellular heterogeneity in a zebrafish

model of epilepsy

This chapter includes the manuscript "New insigths into the early mechanisms of epileptogenesis in a

zebrafish model of Dravet syndrome" published in collaboration with the Esguerra lab (University Oslo,

Norway) in Epilepsia [139] where I ,as second author, contributed with the bioinformatics analysis of the

sc-RNAseq data and its interpretation. The overarching aim of this study was to identify underlying

mechanisms of seizure establishment in Dravet Syndrom (DS) an early-childhood form of epilepsy which

is so far not well pharmacological addressable.

5.1 Heterogeneity dynamics during brain development in zebrafish

In this work, new discoveries in identifying and characterizing cellular defects underlying seizure onset during

perinatal brain development in zebrafish has given insight into early mechanisms of the Dravet syndrome

(DS). The high phenotypic variability among patients makes DS an heterogeneous disease. In this study

was introduced a mutation into scn1lab, the zebrafish orthologue of SCN1A, whose dysfunctions would

lead to impairment in interneuron sodium channel activity. The subsequent neuronal hyperexcitability

causes seizures. Single-cell RNA-Seq data has widely corroborated and enriched the other complementary

analyses such as the electroencephalographic recordings and the pharmacological profiling of mutant lar-

vae. The synaptic activity is supposed to be impaired by an unbalance between excitatory and inhibitory

neurotransmitters.

In order to investigate the differences at the gene expression level between the zebrafish scn1labmut/mut
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loss-of-function model and zebrafish wild-type (WT), four- and 7 days postfertilization (dpf) brain larvae

were pooled and finally subject to brain dissections, cell dissociation, encapsulation of individual cell with

beads in accordance with the Drop-Seq protocol and subsequent sequencing. The sc-RNAseq data analysis

was carried out by Monocle in R [140]. Despite the high presence of noise in the data, based on the

t-SNE (T-distributed Stochastic Neighbor Embedding) clustering, I computed a literature based cell type

score. The individual score defined for each cell type and quantified by the marker gene expressions allowed

to associate each cluster to a specific cell type by the highest percentage of the corresponding score of

the cluster (in Fig. 2A,2B below). This single-cell cell-type inference unveiled the brain composition and

quantified relative changes of specific cell populations across condition and time-points. Interestingly,

zebrafish scn1labmut/mut larvae displayed dynamic neuronal and glial cell population changes in association

with the GABAergic neuronal loss and astrogliosis. In order to investigate the GABAergic and Glutamatergic

dynamic profiles and quantify the balance, I defined a score based on gene markers and divided the cells

in the neurons cluster into these two categories. The result was a distinct shift in the ration between

GABAergic and glutamatergic scores due to the decrease from 4 dpf to 7 dpf to GABAergic mean score in

scn1labmut/mut respect to the significant different increase in WT. Whereas a similar trend from 4 dpf to 7

dpf of glutamatergic markers was uncovered between scn1labmut/mut and WT (in Fig. 3A,3B,3C below).

Moreover, the increased number in reactive astrocytes in scn1lab mutant relative to WT fish, as resulted

from a gliosis score assignment, suggested the hypertrophy of astrocytes as a consequence of epileptic

events. Finally, the branching score for the neuronal subpopulation was in agreement with the reduction

in dendritic branching of GABAergic neurons prior to seizure onset postulating that structural deficits are

established well before the epileptic phenotype arises (in Fig. 3D below). Overall, this paper provide a

first in depth analysis of epileptogenesis in a medical relevant condition.

5.2 Paper related to heterogeneity dynamics in zebrafish brain

composition
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Abstract
Objective: To pinpoint the earliest cellular defects underlying seizure onset (epi-
leptogenic period) during perinatal brain development in a new zebrafish model of 
Dravet syndrome (DS) and to investigate potential disease-modifying activity of the 
5HT2 receptor agonist fenfluramine.
Methods: We used CRISPR/Cas9 mutagenesis to introduce a missense mutation, 
designed to perturb ion transport function in all channel isoforms, into scn1lab, the 
zebrafish orthologue of SCN1A (encoding voltage-gated sodium channel alpha subu-
nit 1). We performed behavioral analysis and electroencephalographic recordings 
to measure convulsions and epileptiform discharges, followed by single-cell RNA-
Seq, morphometric analysis of transgenic reporter-labeled γ-aminobutyric acidergic 
(GABAergic) neurons, and pharmacological profiling of mutant larvae.
Results: Homozygous mutant (scn1labmut/mut) larvae displayed spontaneous seizures 
with interictal, preictal, and ictal discharges (mean = 7.5 per 20-minute recording; 
P < .0001; one-way analysis of variance). Drop-Seq analysis revealed a 2:1 shift in 
the ratio of glutamatergic to GABAergic neurons in scn1labmut/mut larval brains versus 
wild type (WT), with dynamic changes in neuronal, glial, and progenitor cell popula-
tions. To explore disease pathophysiology further, we quantified dendritic arboriza-
tion in GABAergic neurons and observed a 40% reduction in arbor number compared 
to WT (P < .001; n = 15 mutant, n = 16 WT). We postulate that the significant re-
duction in inhibitory arbors causes an inhibitory to excitatory neurotransmitter imbal-
ance that contributes to seizures and enhanced electrical brain activity in scn1labmut/

mut larvae (high-frequency range), with subsequent GABAergic neuronal loss and 
astrogliosis. Chronic fenfluramine administration completely restored dendritic arbor 
numbers to normal in scn1labmut/mut larvae, whereas similar treatment with the ben-
zodiazepine diazepam attenuated seizures, but was ineffective in restoring neuronal 
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1 |  INTRODUCTION

Dravet syndrome (DS) is a severe, intractable, pediatric 
epileptic encephalopathy.1 Approximately 70%-80% of pa-
tients carry de novo mutations in SCN1A, which encodes the 
voltage-gated sodium channel α1 subunit (Nav1.1).2 Gene 
variants for SCN2A, SCN8A, GABRA1, or STXBP1 have also 
been implicated in DS-like epileptic encephalopathies, mak-
ing DS a heterologous disease, with high phenotypic vari-
ability among patients.3,4 Seizure onset is typically provoked 
by fever, usually within the first year of life.1 Patients ex-
hibit prolonged, frequent, and diverse types of seizures, from 
febrile or afebrile, to generalized myoclonic and/or absence 
seizures5 that are refractory to current antiseizure drugs.

Human and mouse Nav1.1 is predominantly expressed in 
parvalbumin-positive γ-aminobutyric acid (GABA) interneu-
rons,6 in brain structures playing a critical role in seizure gen-
eration and spread,7,8 such as the hippocampus or cortex.9,10 
Nav1.1 haploinsufficiency impairs Na+ currents and action 
potential firing of GABAergic interneurons, leading to an 
elevated excitation/inhibition ratio in forebrain structures.6 
Moreover, functional and structural dentate gyrus deficits in 
the hippocampal network parallel spontaneous seizure onset. 
In particular, dentate gyrus granule cells exhibited reduced 
dendritic arborization and increased spine density.11

In addition to stiripentol and cannabidiol, now approved 
by the US Food and Drug Administration as add-on therapy 
for DS, fenfluramine (FEN) has emerged as a promising ther-
apeutic candidate.12,13 FEN, an amphetaminelike drug initially 
introduced into the market as an appetite suppressant, acts as an 
serotonin (5-hydroxytryptamine [5-HT]) receptor type 2A, 2B, 
and 2C agonist and a strong inducer of 5-HT release. Recently, 
FEN was proposed to exert antiseizure activity through al-
losteric modulation of the sigma-1 receptor.14 An open-label 
clinical trial using a clinically confirmed cohort of DS pa-
tients indicated that seven of 10 patients taking FEN were sei-
zure-free for >1 year (mean = 6 years15). Results from phase 
3 clinical trials (FEN hydrochloride; Fintepla, ZX008) showed 
64% seizure reduction in children taking 0.8 mg/kg/d,15 which 
corroborates the report by Zhang et al,16 who demonstrated 
FEN efficacy in decreasing mean duration and frequency of 

epileptiform discharges in a zebrafish scn1a knockdown model. 
Due to concerns associated with FEN and its potential to induce 
cardiac valve disease and/or pulmonary hypertension,17 it was 
withdrawn from the market in 1997. However, the latest ret-
rospective study indicated that long-term treatment with FEN 
(27 years) did not increase risk of cardiac valvulopathy or pul-
monary hypertension.18

Zebrafish are now a recognized model of epilepsy, with 
genetic and chemically induced models able to recapitulate 
characteristic features of epileptiform activity.19,20 Here, we 
introduced an indel mutation into scn1lab, the zebrafish or-
thologue of SCN1A. We undertook a comprehensive analysis 
of scn1labmut/mut larvae to obtain insight into the earliest neu-
rodevelopmental and epileptogenic consequences of scn1lab 
dysfunction. Additionally, due to lack of knowledge about the 
early chronic effects of FEN usage in DS patients, we aimed 
to clarify whether and how FEN could counteract neurode-
velopmental changes in scn1labmut/mut brains.

2 |  MATERIALS AND METHODS

2.1 | Zebrafish husbandry

Wild-type (WT) adult zebrafish (Danio rerio; AB strain; 
ZIRC) were maintained at 28.5°C on a 14-h/10-h light/dark 
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cytoarchitecture. BrdU labeling revealed cell overproliferation in scn1labmut/mut larval 
brains that were rescued by fenfluramine but not diazepam.
Significance: Our findings provide novel insights into early mechanisms of DS 
pathogenesis, describe dynamic cell population changes in the scn1labmut/mut brain, 
and present first-time evidence for potential disease modification by fenfluramine.
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Key Points

• Zebrafish scn1labmut/mut larvae display dynamic 
neuronal and glial cell population changes, includ-
ing GABAergic neuronal loss and astrogliosis

• scn1labmut/mut larvae display strongly reduced den-
dritic arborization of GABAergic neurons and cell 
hyperproliferation

• Chronic fenfluramine treatment rescued the ob-
served arborization and cell hyperproliferation 
defects, whereas diazepam treatment did not
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cycle under standard aquaculture conditions, and fertilized 
eggs were collected via natural spawning. Embryos were 
raised in embryo medium (E3; 1.5 mmol/L HEPES, pH 7.6, 
17.4 mmol/L NaCl, 0.21 mmol/L KCl, 0.12 mmol/L MgSO4, 
and 0.18 mmol/L Ca[NO3]2), under the same conditions as 
adults. All experiments were approved by the Norwegian 
Food Safety Authority experimental animal administration's 
supervisory and application system (FOTS-18/106800-1).

2.2 | Zebrafish lines

The scn1lab (c.439_441delATG;443_445delCGC, 
p.M147_L149delinsI) line, hereafter scn1labmut/mut, was 

generated using CRISPR/Cas9 mutagenesis. The identi-
fied founder carried a 6-nucleotide deletion within exon 
4 (gRNA sequence: CTGCGCCTTCATGACGCTCAG, 
Figure S1A). This deletion produced a double amino acid 
(aa) deletion (Met, Leu) and a single aa change (Thr->Ile; 
Figure 1A). The aa sequence changed from FMTLSNP 
to FISNP and affects the ion transport domain (http://
www.ebi.ac.uk/inter pro/entry/ IPR00 5821; Figure S1B). 
Dlx5/6:Gal4-T2A-gfp were generated by coinjecting the 
iTol2_Dlx5/6:Gal4-T2A-gfp plasmid with transposase 
mRNA. This plasmid was obtained by cloning the dlx6a-
1.4kbdlx5a/dlx6a:GFP sequence into a pminiTol2 vec-
tor (Addgene #31829).21 The sequence was taken from 
the plasmid pcs-dlx6a-1.4kbdlx5a/dlx6a:GFP (gift, Mark 

F I G U R E  1  Development of scn1labmut/mut zebrafish model by CRISPR/Cas9 technique and its characterization. A, Amino acid and 
nucleotide sequence of scn1lab in zebrafish wild type (WT) and scn1labmut/mut, and orthologues in human (SCN1A) and mouse (Scn1a). Dots 
indicate identical nucleotides, dashes indicate deletions, and stars indicate identical nucleotides in all four sequences. B, WT and scn1labmut/mut 
larvae at 5 days postfertilization (dpf). Increased pigmentation is observed in mutants. Scale bars = 1 mm. C, Example of local field potential 
(LFP) recording obtained from the scn1labmut/mut tectum at 5 dpf, showing a seizure event with preictal and ictal phase. D, scn1labmut/mut larvae at 
5 dpf show an increased number of seizures over a 20-minute period compared to WT larvae or scn1labwt/mut siblings. A low number of seizures 
were observed in WT larvae, likely caused by needle insertion into the optic tectum. scn1labwt/mut displayed a larger number of seizures on average 
than WT larvae, but more interindividual variability was observed, with some larvae displaying no seizures, whereas others were affected to the 
same extent as homozygous larvae. No significant difference in the number of seizures was observed between WT larvae and scn1labmut/mut larvae 
treated with valproic acid (VPA), fenfluramine (FEN), or diazepam (DZP), indicating efficacy of these drugs in reducing the number of seizures to 
background levels. Significance was calculated using one-way analysis of variance with Tukey post hoc test (*P < .05, **P < .01, ***P < .001, 
****P < .0001) or unpaired, two-tailed t test (§P < .05). E, Power spectrum analyses of LFP recordings performed under dark conditions, or 
under a 10-Hz flashing light stimulus. The energy profile of scn1labmut/mut larvae differs significantly from WT and scn1labwt/mut siblings in both 
conditions. A Kolmogorov-Smirnov test was used to calculate significance
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Ekker). Subsequently, a polymerase chain reaction (PCR) 
fragment containing Gal4-T2A was inserted in-frame with 
green fluorescent protein by blunt end ligation into the 
final plasmid.

2.3 | Locomotor tracking

Locomotor activity was assessed as previously described,20 
with modifications. Four- and 7-days postfertilization 
(dpf) larvae were placed in 48-well plates (one larva/well) 
containing 300 µL medium and habituated for 15 minutes 
to the apparatus (ZebraBox, Viewpoint). Larvae were 
tracked for 60 minutes in light/dark phase, with 5-minute 
integration intervals. Measurements were performed at the 
same daytime period. Distance covered by each larva was 
recorded in millimeters. Two independent experiments 
were performed (n  =  44-48/group/phase), and the data 
were pooled.

2.4 | Local field potential recordings

Recordings were obtained from tecta at 4 and 5 dpf as de-
scribed.20 Seizure detection was performed through visual 
inspection and automated using a custom-written R script 
to minimize bias and artifacts due to muscle contractions. 
Recorded frequencies were categorized into three bands (1-
100, 100-250, and 250-500 Hz). If amplitude exceeded 3× 
background, the event was considered a seizure. This method 
was based on high-frequency oscillations (>100 Hz) as a re-
ported marker of epileptic activity.22 Power spectrum was 
analyzed using Clampfit 10.2 software (Molecular Devices). 
Four-minute-long recordings were used for computing the 
power spectrum from larvae at 5 dpf, and each condition 
was averaged per group. Light stimuli were generated with a 
custom-made device comprising an Arduino board sending a 
10-Hz sinusoidal wave to a transistor, which in turn powered 
a 2-W light-emitting diode emitting white light. Light was 
delivered via optic fiber to the recording stage.

2.5 | Real-time quantitative PCR

Heads of 6-dpf anesthetized larvae were collected in pools 
of 10 for RNA extraction. RNA was purified using TRIzol, 
and cDNA was synthesized using the SuperScript IV First-
Strand Synthesis System (Invitrogen). cDNA was ampli-
fied using PowerUp SYBR Green Master Mix (Applied 
Biosystems) according to the manufacturer's instructions. 
Relative enrichment was computed according to the 2−∆∆t 
method.23 Expression levels were normalized against 
β-actin. Primer sequences were actb2_f_5'TTCTCTTAA

GTCGACAACCCCC3', actb2_r_5'ACAATACCGTGCT
CGATGGG3'; elavl3_f_5'ATCAACACGCTCAACGGT
CT3', elavl3_r_5'TTACCAGGATGCGTGAGGTG3'; gad
67_f_5'TGTGTCCGATGGCTTGAGTC3', gad67_r_5'CA
CACGGAGGATGGTTCACA3'; and vglut1_f_5'CGGCT
CATTCTTCTGGGGTT3', vglut1_r_5'GACCATGATCA
CACACCCGT3'.

2.6 | Single-cell transcriptomics

Brain dissections, cell dissociations, encapsulation, and gen-
eration of microfluidic Drop-Seq chips were performed in ac-
cordance with the Drop-Seq protocol24 as described (detailed 
in Supplementary Methods in Data S1).

2.7 | Bioinformatics

Sequencing data were processed by the Drop-Seq bioin-
formatics pipeline (v1.13), and reads were mapped against 
genome version GRCz11.92, resulting in corresponding 
digital expression matrices. Data analysis was performed 
by Monocle (v2.4.0) in R (v3.4.4) following the standard 
workflow for quality control, dimension reduction, and dif-
ferential expression analysis (see Supplementary Methods 
in Data S1).

2.8 | Imaging and quantification of arbors

To visualize GABAergic neurons, scn1labwt/mut fish were 
crossed with Dlx5/6:Gal4-T2A-gfp/UAS:nfsb-mCherry 
reporter line. Adults were then in-crossed for generat-
ing scn1labmut/mut. For controls, Dlx5/6:Gal4-T2A-gfp/
UAS:nfsb-mCherry fish were crossed with WT. Larvae 
were treated from 1 dpf with 0.003% phenylthiourea, to 
prevent pigmentation. FEN (50  µmol/L) or diazepam 
(DZP; 10 µmol/L) was added to E3 medium at 3 dpf and 
replaced daily until 6 dpf. Larvae were anesthetized in 
0.001% tricaine (Sigma), fixed for 3  hours at room tem-
perature with 4% paraformaldehyde, mounted on glass 
slides, and imaged using confocal microscopy. A dorsal 
z-stack of the optic tectum was collected using a ×40 lens 
and a z-resolution of 0.44 μm. For Sholl analysis,25,26 im-
ages were filtered using the 3D-Median filter in ImageJ. A 
z-projection of the tectum was generated, and the resulting 
image was converted to a thresholded binary image. The 
extent of arborization was quantified using Sholl analysis 
(plug-in; http://imagej.net/Sholl_Analysis). The number of 
intersections was normalized against the number of neu-
rons quantified in the imaged area, and this value was used 
for statistical analysis.
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2.9 | BrdU immunohistochemistry

BrdU labeling was performed as described in Supplementary 
Methods (Data S1).

2.10 | Statistical analysis

Data were analyzed using GraphPad Prism 7.05. For multi-
ple comparisons, one-way analysis of variance followed by 
Tukey or Sidak post hoc test was used. Students unpaired t 
test or Kolmogorov-Smirnov test was performed if necessary. 
For single-cell RNA-Seq (scRNA-Seq) analysis, Bonferroni 
compensation for multiple testing was used when applicable.

3 |  RESULTS

3.1 | scn1labmut/mut larvae recapitulate 
features of DS

We generated a zebrafish line, using CRISPR/Cas9 mutagen-
esis, carrying a double aa deletion and single aa substitu-
tion in the first ion transport domain of scn1lab (Figure S1). 
Morphologically, scn1labmut/mut larvae phenocopied previ-
ously described zebrafish scn1lab loss-of-function models, 
displaying hyperpigmentation from 4 dpf and uninflated 

swim bladders.16,27 At 5 dpf, a "kink" posterior to the trunk 
became evident and larvae struggled to maintain an upright 
posture (Figure 1B). Homozygotes survive until 14 dpf, 
whereas heterozygotes breed well and remain healthy up to 
18  months. We assessed locomotor activity16,19,20 at 4 and 
7 dpf. scn1labmut/mut larvae were more active and traveled 
greater distances in light phase compared to WT. However, 
whereas WT siblings tested in dark phase increased locomo-
tor activity, scn1labmut/mut larvae displayed minimal increase 
in movement in dark conditions (Figure S2). Touch response 
in 5-dpf scn1labmut/mut larvae was comparable to WT, with 
delayed touch response in two of 24 mutant larvae versus 
one of 24 WT larvae (data not shown). Tectal field record-
ings indicated that both scn1labmut/mut and scn1labwt/mut lar-
vae displayed seizures starting from 4 dpf (Figure 1D, Figure 
S3). Five-days-postfertilization scn1labmut/mut larvae (n = 17) 
displayed spontaneous electrographic discharges with high 
amplitude and duration (Figure 1C,D), which were inhibited 
by acute administration of 100 µmol/L valproic acid (VPA; 
P <  .001; n = 3), 50 µmol/L FEN (P <  .0001; n = 9), or 
10 µmol/L DZP (P < .01; n = 8; Figure 1D). We then per-
formed electroencephalography (EEG) with alternating peri-
ods of stimulus deprivation or photostimulation, by recording 
larvae in the dark or delivering a 10-Hz sine wave flashing 
light. Spectral EEG analyses revealed that scn1labmut/mut lar-
val (n = 11) energy profiles differed significantly from het-
erozygous (n = 8) and WT counterparts (P < .0001; n = 11). 

F I G U R E  2  Single-cell RNA-Seq data reveals changes in brain composition. A, The 2508 clearly identified cells were clustered and cell 
identities inferred by cell type-specific scores (Figure S4) based on marker genes (Table S1). Interestingly, distinct astrocytic clusters were 
identified that indicate maturation of cells (Figure S4). OPC, oligodendrocyte progenitor cells. B, The brain composition exhibits an increase in 
radial glia at 7 days postfertilization (dpf) for both cell lines and a doubled percentage of reactive astrocytes in scn1labmut/mut cells. The strongly 
reduced number of oligodendrocytes at 7 dpf probably results from damage during cell isolation and corresponding leakage of mRNAs (Figure 
S5). Cell clusters presented here are from pooled larval brains derived from wild type or homozygotes. tSNE, T-distributed Stochastic Neighbor 
Embedding
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In particular, energy distribution at high frequencies (>100 
Hz) was greater (Figure 1E).

3.2 | Brain composition analysis

We performed scRNA-Seq analysis using our Drop-Seq 
pipeline (see Supplementary Methods in Data S1). Epithelial 
cells formed a distinct subpopulation (light red cluster), 
and neuronal- and glia-related clusters were separated well. 
Astrocytes formed subclusters, and radial glia exhibited a 
specialized expression profile leading to a distinct cluster 
(Figure 2A). Comparison of cell type matching with sam-
ple identity (Figure S5) did not indicate a scn1labmut/mut-
specific neuronal expression profile but reduced astrocytic 
maturation. Increased vascularization became apparent from 
the increased number of erythrocytes at 7 dpf (Figure 2B). 
Oligodendrocyte absence at 7 dpf for both conditions is 

related to the exclusion of leaking cells, as the majority of 
these were associated with 7-dpf samples and careful evalu-
ation of the corresponding expression profiles indicated their 
oligodendrocytic origin by the remaining her4.1 transcripts 
(Figure S5). The relative decrease in the neuronal subpopula-
tion was also caused by an increase in astrocytes in both lines 
where, in particular, radial glia appeared to be enriched in 
scn1labmut/mut larvae.

3.3 | Reduced GABAergic neurons and 
increased gliosis

We investigated GABAergic and glutamatergic neurons by 
calculating subtype-specific scores based on relative marker 
gene expression (Table S1, Figure S6). Glutamatergic 
scores were similar for scn1labmut/mut and WT, exhibit-
ing an increase from 4 to  7 dpf, where only the increase 

F I G U R E  3  Single-cell RNA-Seq data reveal changes in γ-aminobutyric acidergic (GABA) and glutamatergic profiles defined by 
corresponding marker genes during development and between conditions. A, The glutamatergic score indicates a stronger increase of glutamatergic 
profiles in wild-type (WT) than in scn1labmut/mut larvae from 4 to 7 days postfertilization (dpf). B, The GABA-related score indicates a significant 
decrease in neurons of scn1labmut/mut larvae and an increase in WT from 4 to 7 dpf, leading to a significant difference between the conditions. 
C, Combining these scores to investigate the balance between GABA- and glutamate-related neurons shows a dramatic change in scn1labmut/mut 
larvae, where the ratio between GABAergic and glutamatergic profiles is reduced by nearly 50% at 7 dpf compared to 4 dpf, whereas in WT only a 
minor reduction is observed. This results in a significant difference between scn1labmut/mut and WT larvae at 7 dpf and may indicate an underlying 
mechanism of epileptogenesis. D, The increased number of reactive astrocytes found in scn1labmut/mut do also exhibit an increased gliosis activity 
defined by corresponding marker genes (Table S1) at 7 dpf, as indicated by differentially expressed gene analysis. E, At 6 dpf, scn1labmut/mut larvae 
had an increased expression of glutamatergic (vglut1), GABAergic (gad67), and postmitotic (elavl3) neuronal markers compared to WT siblings, 
as measured by real-time quantitative polymerase chain reaction. F, Upregulation of the excitatory system (as observed by normalization of vglut1 
over elavl3), but not the inhibitory system (as observed by normalization of gad67 over elavl3), indicates a shift in the GABA/GLUT population 
ratios in the brain of scn1labmut/mut larvae. *P < .05, **P < .01. ns, not significant
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in WT was statistically significant (Figure 3A). In contrast, 
GABAergic scores revealed significant differences during 
development and between WT and mutant. Whereas the 
GABAergic score of scn1labmut/mut larvae showed a signifi-
cant reduction from 4 to 7 dpf, WT larvae exhibited a signif-
icant increase in GABAergic marker levels at 7 dpf (Figure 
3B). Consequently, scn1labmut/mut larvae had significantly 
reduced GABAergic marker expression at 7 dpf compared 
to WT. The similar expression of glutamatergic markers and 
the significant differences in the GABAergic score led to 
a distinct shift in the ratio between GABAergic and gluta-
matergic scores (Figure 3C). Whereas the ratio was slightly 
reduced in WT (10%), scn1labmut/mut larvae exhibited a re-
duction of 43% at 7 dpf and a significant decrease (19%) in 
WT at 7 dpf.

To investigate the increased number of reactive astro-
cytes in scn1labmut/mut larvae at 7 dpf further, we performed 

differentially expressed gene analysis and found an enrich-
ment of gliosis-related genes. We calculated a gliosis score 
based on marker genes (Table S1) and found a trend for 
higher gliosis activity in reactive astrocytes of scn1lab-
mut/mut larvae (Figure 3D, Figure S6). To test whether the 
decrease in GABAergic cells correlated with a change in 
neuronal morphology at the expression level, we targeted 
axonogenesis-related genes (Table S1) in the scRNA-Seq 
data. Although we could not find a significant effect on 
branching expression levels, we observed a trend toward 
downregulation of neuronal branching genes in the mutant 
(18%), whereas WT larvae exhibited a nonsignificant re-
duction of 6% (Figure S7).

To confirm that the distinct EEG energy profile of scn-
1labmut/mut is caused by increased synaptic activity due 
to reduced inhibitory tone, we used real-time quantita-
tive PCR to quantify glutamatergic (vglut1), GABAergic 

F I G U R E  4  Dendritic arborization in scn1labmut/mut larvae. A, scn1labmut/mut larvae show a reduced number of dendritic arbors at 3 days 
postfertilization (dpf). Significance of differences was calculated using an unpaired, two-tailed t test. *P < .05. B, Representative images of 
dendritic arbors in the neuropil of wild-type (WT) and scn1labmut/mut larvae at 3 dpf. Scale bars = 25 μm. C, Reduction in dendritic arborization 
in scn1labmut/mut larvae observed at 6 dpf can be rescued by the addition of 50 μmol/L of fenfluramine (FEN), but not 10 μmol/L of diazepam 
(DZP), from 3 dpf until 6 dpf. Significance of differences was calculated using one-way analysis of variance with Sidak post hoc test. *P < .05, 
***P < .001. D, Representative images of dendritic arbors in the neuropil of WT and scn1labmut/mut larvae at 6 dpf, with or without prior incubation 
in 50 μmol/L of FEN or 10 μM of DZP from 3 dpf onward. Scale bars = 25 μm
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(gad67), and postmitotic (elavl3) neuronal markers in lar-
val brains. Homozygous scn1labmut/mut had increased ex-
pression of all markers compared to WT (P < .001, elavl3/
actb2 and vglut1/actb2; P  <  .05, gad67/actb2; n  =  7; 
Figure 3E). However, normalization of vglut1 expression 
against elavl3 indicated upregulation of excitatory mark-
ers (P < .05), whereas normalization of gad67 expression 
against elavl3 showed no differences between scn1labmut/

mut and WT (P > .05; Figure 3F).

3.4 | Neuronal defects restored by FEN

The amplitude difference in the power spectrum observed 
between scn1labmut/mut and WT indicated possible alteration 
in optic tectum cytoarchitecture. We therefore quantified 
dendritic arborization in GABAergic neurons, as reduced 
branching would explain reduced inhibitory tone. Sholl 
analysis revealed a 30% decrease (P < .05; n = 16) in den-
dritic arborization of GABAergic tectal neurons of 3 dpf sc-
n1labmut/mut larvae compared to WT (n = 16; Figure 4A,B). 
By 6 dpf, dendritic arbors were reduced by 40% (P < .001; 
n = 15; Figure 4C,D). As acute FEN treatment effectively 
suppressed seizures in previously described zebrafish DS 
models,16,28 we tested whether chronic FEN administration 
might affect dendritic morphology. We administered 50 µM 
FEN chronically for 3 consecutive days, starting at 3 dpf, 

prior to seizure onset. Chronic treatment of scn1labmut/mut 
larvae with FEN significantly (P < .05; n = 15) abrogated 
the reduction in dendritic arborization, whereas chronic 
treatment of WT did not induce any changes (P  >  .05; 
n = 15; Figure 4C,D). Chronic treatment of scn1labmut/mut 
larvae with DZP attenuated seizures but showed no amelio-
ration of reduced arborization (Figure 4C,D).

We also evaluated changes in cell proliferation through 
BrdU labeling in scn1labmut/mut brains. We observed an increase 
(P < .01; n = 8) in BrdU-positive cells, compared to WT at 6 
dpf (n = 16; Figure 5). To test whether FEN might also regulate 
cell proliferation, we exposed scn1labmut/mut larvae to FEN as 
described above. FEN restored (P < .05; n = 9) the number of 
BrdU-positive tectal cells to untreated WT baseline. FEN treat-
ment of WT also increased (P < .0001; n = 7) BrdU-positive 
cells when compared to untreated WT controls (Figure 5).

4 |  DISCUSSION

4.1 | New zebrafish mutant to study DS 
epileptogenesis

The scn1lab mutant described here replicates classic features 
of DS and recapitulates both previously described pheno-
types for other zebrafish scn1lab loss-of-function models and 
Scn1a mouse mutants.4,6,27,28 didy homozygotes, however, 

F I G U R E  5  Proliferation of cells in the optic tectum of scn1labmut/mut larvae. A, At 6 days postfertilization (dpf), scn1labmut/mut larvae showed 
an increased number of proliferating cells in the optic tectum, as measured by BrdU-positive cells in 30-μm-thick optical sections. Incubation of 
larvae in 50 μmol/L of fenfluramine (FEN) from 3 dpf onward resulted in an increased number of BrdU-positive cells in wild-type (WT) larvae at 6 
dpf, while reducing the number to untreated WT levels in the scn1labmut/mut larvae. Statistical significance was calculated using multiple unpaired, 
two-tailed t tests. *P < .05, **P < .01, ****P < .0001. B, Cartoon representation of the head of a 6-dpf larva, indicating the position of the optic 
tectum where proliferation was measured. C, Representative z-slices of masked optic tecta with BrdU staining of WT and scn1labmut/mut larvae at 6 
dpf, with or without prior incubation in 50 μmol/L of FEN from 3 dpf onward. Squares indicate the location of the zoomed-in, split-channel images 
to the right. Scale bars = 50 μm



   | 557TIRABOSCHI eT Al.

survive until 10 dpf,28 whereas scn1labmut/mut larvae survive 
until 14 dpf. Moreover, seizures were only reported in didy 
homozygotes, whereas seizures were also observed in scn-
1labwt/mut heterozygotes, possibly attributable to differences 
in genetic background or the nature of the mutation (non-
sense vs missense).

4.2 | Increased brain excitability

The higher energy distribution observed in scn1labmut/mut 
brains, both after photostimulus and under dark conditions, 
indicated that the summation signal of dendritic potentials 
was excitatory. This is not surprising, given the development 
of spontaneous seizures, but the finding that this is mostly 
represented in the high-frequency gamma band was sugges-
tive not only of increased synaptic activity but possibly of 
decreased inhibitory tone. Neuronal hyperactivity, driven 
primarily by reduced background inhibition, can be caused 
by various mechanisms. For example, abnormal gamma-
band activity has been observed in schizophrenia patients 
and related animal disease models as a result of impaired 
GABAergic neurotransmission, particularly in parvalbumin-
expressing neurons.29 Regarding SCN1A-derived disorders, 
two mechanisms underlying neuronal hyperexcitability have 
been proposed: impaired interneuron sodium channel activ-
ity or increased pyramidal neuron excitability.30 With regard 
to the former, studies on mouse Scn1a mutants support the 
hypothesis of disinhibition resulting from decreased Nav1.1 
function in interneurons.9,31

4.3 | GABAergic neuron loss

There is sufficient evidence that loss of GABAergic neurons 
is a consistent finding among all models of acquired epilepsy 
including kindling, status epilepticus, and traumatic brain 
injury as well as a frequently observed hallmark of tempo-
ral lobe epilepsy (TLE).32‒37 Furthermore, selective loss of 
GABAergic neurons can also give rise to an epileptic state 
in genetic models. Mice with loss of Dlx1, which encodes 
a transcription factor regulating GABAergic interneuron de-
velopment, develop epilepsy as a result of a time-dependent 
reduction in the number of these neurons within the cerebral 
cortex and hippocampus.38

A previous study reported no evident loss of GABAergic 
neurons in the zebrafish scn1lab mutant didy.27 Possible ex-
planations for this discrepancy in cellular phenotype between 
the models are differences in mutation type and/or the genetic 
background. Another plausible explanation is that we ana-
lyzed GABAergic neuron population dynamics at a later de-
velopmental stage (7 dpf instead of 5 dpf as carried out in the 
didy study) and therefore after a longer period of spontaneous 

recurring seizures. Our data at 4 dpf corroborate with the didy 
study findings of no evident cell loss. Interestingly, our data 
indicate that there is a slight increase in GABAergic neurons 
at this earlier time point in the mutant, indicating changes 
in cell proliferation in the mutant during brain development. 
Furthermore, we found no difference in glutamatergic marker 
levels between the conditions but an increase from 4 to 7 dpf. 
Thus, by 7 dpf, the decrease in the GABAergic neuron sig-
nature and the increase in glutamatergic signature indicated a 
shift in the GABA/GLUT ratio in scn1labmut/mut larvae, pro-
viding additional evidence for decreased inhibitory tone.

Importantly, a proportion of GABAergic neurons still re-
main in mutant larvae, as has been observed in Scn1a mouse 
models, other models of acquired epilepsy, and human TLE. 
Alterations in the remaining GABAergic neurons of these 
mammalian models have been proposed as contributors to 
epileptogenesis. Critical changes resulting in the establish-
ment of an epileptic state include impaired function of re-
maining GABAergic neurons and morphological changes 
that eventually lead to aberrant circuitry.39

4.4 | Reduced dendritic arborization

The significant reduction in dendritic branching of 
GABAergic neurons prior to seizure onset in our DS model 
shows that structural deficits are established well before the 
epileptic phenotype arises. This indicates that seizures per 
se are not the primary cause of the observed arborization 
defects and that the converse may be true; reduced arbori-
zation is a possible primary mechanism underlying seizures 
in DS. Importantly, these defects arose when GABA was 
still excitatory, that is, prior to the GABA developmen-
tal switch, which occurs at 2.5 dpf in zebrafish. The early 
branching defects in GABAergic neurons are thus likely to 
be due to the inability of these neurons to propagate action 
potentials, which in turn impairs strengthening and pruning 
of synaptic connections. In general, dysfunctional voltage-
gated sodium channels would lead to impaired action po-
tentials and current in GABAergic inhibitory neurons,6,39 
lowering inhibitory tone and consequently increasing over-
all network excitability, which would dramatically alter 
plasticity, morphology, network dynamics, and functional 
topology of the neural circuitry. A similar mechanism was 
proposed for the zebrafish scn1lab mutant didy, originally 
described as displaying an abnormal optokinetic response 
due to its inability to sustain saccade eye movements when 
presented with a repeating visual stimulus pattern.40 The 
authors postulated that depleting scn1a channel function in 
didy could potentially reduce channel density, in turn re-
sulting in prolonged stimulation that would eventually de-
plete the pool of activatable channels and ultimately render 
neurons unexcitable.
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4.5 | FEN treatment rescues dendritic 
arborization defects

FEN, a serotonin 5-HT2A and 5-HT2C receptors agonist, is 
highly effective in diminishing seizures in reported zebrafish 
DS models. Surprisingly, there are no reports describing ef-
fects of chronic or acute FEN treatment in DS rodent mod-
els. A recent study that evaluated selective 5-HT2C agonists 
lorcaserin, CP809101, and FEN in multiple acute rodent sei-
zure models (maximum electroshock seizure [MES], MES 
threshold, 6-Hz electrical convulsive seizure, pentylenetetra-
zole, and amygdala kindling), showed that with the excep-
tion of FEN-mediated tonic seizure inhibition in the MES 
rat test, there was no antiseizure effect for all compounds in 
all other tests.41 The authors concluded that early develop-
mental genetic models might be more appropriate for study 
of certain drug leads, indicating a need to consider integrat-
ing additional animal models into preclinical drug discovery 
pipelines.

Chronic treatment with FEN prevents cell overprolif-
eration in scn1labmut/mut larvae. However, in WT larvae 
it increases cell proliferation. These results corroborate 
previous findings that showed neurogenesis-stimulating 
activity of antidepressants in the dentate gyrus.42 The 
role of serotonin in regulating interneuron morphol-
ogy has previously been shown. Inhibition of serotonin 
synthesis in rat embryos with para-chlorophenylalanine 
disrupted pyramidal neuron maturation within the so-
matosensory cortex by reducing dendritic arborization.43 
Benzodiazepines such as DZP and clobazam have been 
used to treat DS.18 Our data suggest that FEN activity 
is specific and not simply due to seizure inhibition, as 
chronic treatment using DZP did not restore dendritic 
arbor numbers to normal.

Dendritic arborization defects have also been reported 
for Scn1aE1099X/+ and Scn1bC121W/+ mice.11,44 Scn1aE1099X/+ 
mice display progressively reduced dendritic arborization 
and excessive spines in GABAergic hippocampal dentate 
gyrus neurons, whereas Scn1bC121W/+ mice exhibit reduced 
arborization in subicular pyramidal neurons. These mor-
phological abnormalities, however, were analyzed coin-
cident with (ie, not prior to) developmental spontaneous 
seizure onset. It is therefore unclear whether arborization 
defects in these models were a key trigger for epileptogen-
esis or a consequence thereof. Clearly, further investigation 
is warranted to determine the exact role of dendritic ar-
borization in DS pathogenesis. Such studies would require 
dendrite morphology analysis in our DS model at later de-
velopmental stages, to allow for sufficient drug washout 
after chronic FEN or DZP administration (to rule out acute 
seizure inhibition from residual drug), ideally resulting in 
significant seizure reduction or freedom in FEN-rescued 
but not DZP-treated larvae.

4.6 | Gliosis

Radial glial cells are more abundant in scn1lab mutants com-
pared to WT, with a doubling of reactive astrocytes in the 
mutant relative to WT, indicating a trend toward increased 
gliosis. Reactive astrocytes increase in number as a conse-
quence of epileptic events but are also suggested to play a 
functional role in the causation of seizures, for instance, after 
brain trauma.45 Our scRNA-Seq results are in line with a 
previous study that compared RNA-Seq data obtained from 
Scn1a± mice on two different strains. Half of differentially 
expressed genes shared between the two models were as-
sociated with astrogliosis, including genes upregulated in 
response to human and rodent seizures or traumatic brain 
injury.46

As mentioned, heterozygous scn1lab mutant larvae de-
scribed in this study also display frequent seizures yet are 
fertile and survive to adulthood. This could prove useful for 
analyzing Scn1a dysfunction during later stages of epilepto-
genesis for studying comorbid features and for testing dis-
ease-modifying activity of drugs in the context of a mature 
brain. The astrogliosis phenotype is also worth characterizing 
further. Notably, a study that performed electrophysiological 
recordings on acute brain slices from Scn1a± mice found 
that, at later developmental stages, parvalbumin-positive 
fast-spiking basket cell interneuron excitability normalized. 
The results of this study implied that impairing action poten-
tial generation by parvalbumin-positive fast-spiking basket 
cell interneurons contribute to the initial epilepsy phenotype 
but may not be the sole mechanism that drives later, chronic 
epilepsy in DS.47 It is equally important, however, to con-
sider that the variable severity and expressivity of the murine 
Scn1a± epilepsy phenotype is highly strain dependent.48,49 
Therefore, it will be interesting to explore whether stabiliza-
tion of interneuron activity can be recapitulated in the zebraf-
ish scn1labwt/mut.

This study describes a new zebrafish scn1a channelopathy 
model that recapitulates many aspects of DS and may prove 
useful in identifying other disease mechanisms such as the 
role of neuron-glia interaction and glutamatergic neurons in 
the process of epileptogenesis or the development of other 
associated comorbidities. These data illustrate the utility of 
zebrafish genetic epilepsy models in elucidating early mech-
anisms leading to an epileptogenic state. The remarkable ef-
ficacy of FEN in this DS model demonstrates the utility of 
zebrafish in uncovering potential disease-modifying activity 
of drug leads.
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Chapter 6

Mechanistic multiscale modelling of

cell fate

This chapter is based on my first author paper "The Constructive Role of Noise in Cell Fate Induction"

under consideration where I developed the models and performed the analytical and simulation-based

analysis. For readability and comprehensiveness, this chapter will not include the manuscript but gives a

comprehensive introduction to the theoretical development and the detailed analysis.

6.1 Motivation for bottom-up approaches

The top-down analyses of the previous two chapters have revealed the immanent presence of cellular

heterogeneity and indicated the importance also for clinical relevant systems. While these approaches

mainly relied on the identification of pathways and molecular interactions with the aim to consistently

increase knowledge in a specific context, the intrinsic mechanisms underlying cell fate dynamics as a

central biological processes remained elusive. In this chapter, I address this challenge by a complementary

bottom-up approach to investigate cellular heterogeneity emerging from the stochastic nature of cellular

differentiation. The aim of this study is thereby not to recapitulate the details of the complex interplay

of many interacting entities but to focus on a minimalist description of the underlying process to gain a

more universal understanding of mechanisms at play in life as done by others [141, 142]. In particular,

I investigate how the indispensable molecular noise of the gene transcription process can affect cell fate

dynamics and induce cellular heterogeneity from first principles.
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6.2 Overview of stochastic toggle-switch stochastic models

The starting point of my approach is the genetic toggle-switch scheme often used to describe the dy-

namics involved in cellular differentiation [143, 144]. The genetic toggle-switch is a simple and intuitive

scheme able to reflect the most important features associated to the transcriptional regulatory mechan-

ism of two competitive proteins. As a general idea, gene-regulatory circuits can be reconstructed from

networks of simple regulatory elements and virtually reflect any desired property to reproduce a specific

observed behavior [32, 145]. The toggle-switch model can be formulated by a set of Ordinary Differential

Equations (ODEs) to describe the concentration evolution of gene transcription products by a mesoscopic

description [146]. The corresponding stability analysis of the dynamical system allows then for the identi-

fication of steady states and the related bifurcation diagram quantifies how the nature and the number of

these fixed points change in dependence on parameter values. This framework enables to uncover critical

transitions in the dynamics, which are characterized by sudden changes of the steady state types pushing

the system towards another regime [147]. Such a quick state modification is often irreversible and the

system will typically never come back spontaneously to its initial state without benefiting from external

energy. These abrupt transitions can mimic a sudden change of cell states or a rapid shift from health to

disease conditions without the possibility to recover spontaneously. Therefore, the crucial property of a

dynamical system to exhibit critical transitions might be reflect the jumps between locally stable basins of

attraction representing multiple cell fates and scientific community generally call this dynamics property

multistability [32, 33] .

In this context, the investigation of bistability respects the changes in regulatory mechanisms which

may result in genetic switching of a bistable system. Although deterministic models have been studied

to analyze the bistability properties of one system under certain conditions, they are not able to capture

the cell-cell fluctuations during genetic switching. However, noise can impact the system’s behavior and

adding stochasticity to a deterministic model allows for investigating the role of intrinsic noise during

switching of a bistable system [148]. Synthetic genetic toggle-switches have been presented as a valid tool

to study the fundamental description of cellular function at DNA level in [149]. Stochastic mechanisms

have been also considered of primary importance in the intention to reproduce fluctuations in regulatory

signals involved into the function of transcriptional regulatory networks [55]. Specifically, the stochastic

mechanisms involve molecular signals that determine when and how a given gene is transcribed. Promoter

activity might also regulate the expression of other genes as schematically describe by the genetic toggle-

switch. These regulatory mechanisms are intrinsically noisy due to the stochastic nature of molecular

interactions of activation and inhibition, the bursts of fluctuating numbers of proteins occurring at random
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time intervals and other microscopic mechanisms. The combination of these random effects leads, for

instance, into phenotypic variations in isogenic population resulting in stochastic gene expression variability

[150]. The work of Arkin et al. [151] also suggested that one source of the randomness expressed in the

phenotype variations can be the random thermal fluctuations in the reaction rates of the chemical reactions

comprising the regulatory circuity. Cellular processes are therefore intrinsically dominated by stochasticity

and the deduction of key properties of cellular differentiation have also been elucidated by functional

genetic modules combined with a quantitative stochastic model to capture the overall phenotypic variation

by the study of noise in large-scale genetic regulatory network [152, 153]. This emergent variability is

conjectured to manifest cellular heterogeneity. Both stochasticity inherent in the biochemical process of

gene expression (intrinsic noise) and fluctuations in other cellular components (extrinsic noise) contribute

substantially to the overall variation [86]. Transcription rates, regulatory dynamics, and genetic factors

control the amplitude of noise [154]. Moreover, key properties of biochemical networks should be robust

in order to ensure their proper functioning [155, 156].The kinetics of biochemical reactions involve small

numbers of molecules and can be studied by exact stochastic simulation [157]. The starting point for

simulating the evolution of molecular numbers is assuming a well-stirred mixture of biochemical reactions

at constant temperature in a fixed volume Ω. The system contains N molecular species {S1, , ...,SN } that

chemically interact through M ≥ 1 reaction channels {R1, , ...,RM }. The dynamic state of the system is

denoted as X(t) ≡ (X1(t), ...XN (t))T = x where Xi (t) is the number of Si molecules in the system at time

t. For each reaction Rj , a propensity function aj (x) is defined in a given state and aj (x)dt represents the

probability that one reaction Rj will occur inside Ω in the infinitesimal time interval [t, t +dt). When that

reaction occurs, X(t) changes its state. The amount by which Xi changes is given by vji , the i-th element

of the state change vector vj which represents the change in the number of species Si due to reaction Rj .

In the discrete and stochastic case the X(t) is a discrete (jump) Markov process. As such it has a time

evolution equation which describes the probability P(x, t|x0, t0) that X(t) = x given X(t0) = x0 [158]. This

equation is called chemical master equation (CME) and it can be written as:

∂
∂t
P(x, t|x0, t0) =

M∑
j=1

(aj (x − vj )P(x − vj , t|x0, t0)− aj (x)P(x, t|x0, t0)) . (6.1)

In general, this discrete parabolic partial differential equation is too difficult to solve (either analytically

or numerically) and other techniques are needed to simulate the dynamic change state. This leads to the

so-called SSA of Gillespie (1977) [34], which is an statistically exact procedure for generating the time and

the index of the next occurring reaction in accordance with the current values of the propensity function.

There are several forms of this algorithm.
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These approaches are computationally inefficient for large numbers of molecules or for high values in the

propensity functions. Moreover, the reliability of these stochastic methods are based on detailed knowledge

of the involved biochemical reactions, the molecular numbers and kinetic rates. However, data availability

and regulatory information usually cannot provide a comprehensive picture of biological regulations [148].

In the context of cell differentiation, Strasser et al. [33] investigated gene expression stochasticity by

a master equation associated to the mass action kinetics from a two-stage toggle switch model. In this

approach the noise is intended to describe the intrinsic stochasticity associated to a microscopic description

of gene regulatory network. Given the above described challenges of the microscopic description of bio-

chemical networks, the detailed study of noise in large-scale genetic regulatory networks is not a realistic

common approach for studying kinetic dynamics on the macroscopic description in a stochastic setting

although methods have been proposed, such as stochastic Boolean models [159, 148] and probabilistic

hybrid approaches [160].

To respect these challenges, my mechanistic approach to study cellular differentiation from a macro-

scopic description is based on the genetic toggle-switch scheme with deterministic non-linear interactions to

encompass the multi-step and multi-agent interference between genotype and phenotype during molecular

concentration evolution. In my proposed models, the activation and inhibition processes are described by

Hill-function with coefficient equal to 1 for simplicity with the aim to reflect the biological mechanisms

of self-activation and cross-inhibition macroscopically. The immanent molecular fluctuations within the

cell associated to the transcription process require to consider the noise in the dynamical system. Its

contribution can modulate the binary choice of cell fate in accordance with the initial conditions and the

local dynamics. To investigate this phenomenon, I analyzed the model by stability analysis and investigate

the effect of Gaussian noise in the context of the cell fate mechanism within a computational probabilistic

framework. By using this approach, I aimed to capture the intrinsic mechanism which regulates the inter-

face between two competitive molecules (corresponding to two alternative cell fates and/or subnetworks

of genes involved in the activation of the final phenotype) and monitor the temporal evolution of protein

concentrations during the continuous "struggle" occurring before a final phenotype state is established.

This minimalist model approach allows for a focus on the generic mechanism also within an analytical

framework and clarification of parameter dependencies. Furthermore I believe that the study of cellular

differentiation in the context of a probabilistic multidimensional evolution is the appropriate choice to de-

scribe the evolution of the internal deterministic dynamics subjected to the intrinsic stochasticity and allow

to eventually understand how cellular heterogeneity establishes phenotype variability.
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6.3 Outline of the chapter

Throughout this chapter, I present the investigation of three versions of the model named (i) symmetric

one-stage toggle-switch (T.S.) model, (ii) two-stage symmetric T.S. model and (iii) asymmetric one-stage

T.S. model. In Section 6.4, I introduce a simple toggle-switch model exhibiting just one steady state

as a reference. In Section 6.5 and Section Section 6.6, the first version of the model for cell fate is

presented and analyzed by means of associated steady states in the general symmetric case and in its fully

symmetric simplified version. In Section 6.7, I introduce the stochastic version of the cell fate model.

In Section 6.8, I focused on the stationary probability distribution from a computational approach. This

investigation allowed to acquire more insights into the interplay between the noise strength and initial

condition and how the local proximity to other possible steady states could promote the system evolution

over the stability trajectory. In Section 6.10, I computationally investigated the phenotype distributions

in comparison between the one-stage T.S. model and its extension to a system with two regulatory levels

of transcription and translation. To investigate the emergent behavior on the population level and how

active intercellular signaling contributes to the epigenetic landscape, I added a population coupling effect

to the stochastic dynamics in Section 6.10.1, which results in a positive response of the particles to

the macroscopic average concentration. Finally, I present the asymmetric one-stage T.S. model as an

explanatory description of the cell-fate decision triggered by an external signal that pushes the system

towards a preferential attractor in Section 6.9.

6.4 A simplistic model as introduction

In this section, I introduce a simple dynamical system to describe the cross-interaction between two compet-

ing entities such as molecules or sets of genes. In this model, X and Y denote the molecular concentrations

that describe a continuous system state. The temporal macroscopic evolution of X and Y is governed by

the nonlinear ODEs


Ẋ = A

KX+Y
−γX

Ẏ = A
KY+X

−γY
(6.2)
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Figure 6.1: A simple one-stage toggle switch scheme describing mutual inhibition between two competitors X and
Y with degradation. The cross-inhibition terms are similar to the Hill function with coefficient equal to one.

Fig.6.1 shows the scheme of interactions with the associated parameters where the basal rate A is set

equal to the degradation rate γ for both X and Y . The non linear cross-interaction term is typically used

to describe the effect of inhibition. Intuitively, in the case KX>KY (KY>KX) the resulting steady state

would be characterized by Y0 > X0 (X0 > Y0).

Stability Analysis By putting Eq. 6.2 equal to zero, the obtained solutions correspond to the fix points

of the system. At these equilibrium concentrations, the state is classified as locally stable, unstable

or saddle-node in dependence on the tendency of the system to return to, depart from or manifest a

mixed direction-dependence behavior at the corresponding point in response to a local perturbation. The

identification of these points was performed by subtracting the following expressions from each other:


A−γX0 (KX +Y0) = 0

A−γY0 (KY +X0) = 0 ,
(6.3)

which led to the relation Y0 = KX
KY
X0. By inserting this expression into the second equation of Eqs. 6.3,

the resulting equation for Y0 exhibits only one physical solution. Hence, this minimal model obeys only

the fixed point


X0 =

KY
2

(√
1+ 4A

γKXKY
− 1

)
Y0 =

KX
2

(√
1+ 4A

γKXKY
− 1

) (6.4)

.

65



The nature of the state follows from the Jacobian Matrix at this point by the sign of the two corres-

ponding eigenvalues. If the real part of the biggest eigenvalue is negative, the state is defined as stable; if

the real part of the biggest eigenvalue is positive, the state is unstable, and in case one of them is zero then

the steady state is a saddle-node [161]. By using Mathematica, I verified that the steady state (X0,Y0) is a

stable state for all positive parameter values. Since this simple model has only one attractor state it is not

an appropriate model to describe the binary cell fate decision mechanism. A stem cell can potentially end

up at several different stable states which are equally likely at the beginning of the differentiation process.

During this process, the cells acquire more and more specificity by approaching in parallel one of the pos-

sible cell states. Thereby at least bistability is necessary to investigate the mechanism of switching between

two phenotypic traits. A toggle-switch genetic motif exhibiting multistability in the dynamics is therefore a

minimum request to be an explanatory model of the process [162]. For this purpose, I expanded the above

minimalist model by introducing a multiplicative term accounting for the interplay between self-activation

and cross-inhibition regulations in the following section.

6.5 Symmetric one-stage toggle switch model

The toggle-switch motif with its underlying dynamics for self-activation and cross-inhibition became a

popular approach to model binary cell-fate decisions as a balance of two lineage-affiliated transcription

factors [116]. In this respect, the model developed and analysed here is based on the gene-circuit scheme

in the attempt to capture basic mechanisms emerging from the interaction between non-linear dynamics

and stochasticity without intending to study specific activation and repression pathways. Here, the genetic

toggle switch is not intended in its classical application to model binary cell-decision. Typically, the toggle

switch is used in a configuration, which exhibits bistability or multistability to study the selection of steady

states and how stochasticity interferes with this process at the same scale of the involved biomolecular

reaction [148] by analysing the noise-triggered movement of the system on the phase space [33]. In the

perspective of this study, the toggle switch scheme is introduced to model a more general mechanism

of cell induction as a spontaneous appearance from the combined dynamical interfere between noise and

deterministic instruction.

The parameters A and γ in Fig. 6.2 indicate the rate of molecular production of e.g. protein or mRNAs,

and the parameters KX and KY modulate the swapping between X and Y according the underlying non-

linear dynamics. Thereby, the proposed dynamics is not intended to represent a preexisting gene program

that is adapted and subsequently adopted by the cells at the commitment event, but it is meant to

mechanistically describe (dynamically) distinct states preceding the final cell fate choice. Specifically, the
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symmetric one-stage toggle switch reflects the putative cell behavior in the transitory metastable state

and its asymmetric version addresses the fast and non-linear dynamical changes of the internal gene

rearrangement upon stimuli eventually conducting to the final stable state 2.1. In this perspective, the

external triggering signal towards a specific lineage specification is not modeled as a critical parameter,

which would induce a critical transition in the dynamics, but it modifies significantly the internal structural

gene dynamics. In the here presented model, the asymmetry between KX and KY describes the stage

where cells are forced to an immanent choice between two unexpected stable cell states due to a rapid and

definite change of the phase space structure. The main finding of this analysis is that the noise contribution

allows for a more reliable identification of the induced cell state and extends the deterministic dynamical

evolution within the biology distributions context 3.8.

In the model, a self-interaction term was added in form of a Hill activation function (with Hill coefficient

equal to 1) similar to other approaches in literature [163, 164]. The scheme of the model is shown in Fig. 6.2.

Figure 6.2: One-stage toggle switch scheme describing mutual inhibition between X and Y accompanied by
degradation and self-activation depending on the concentration according to the Hill function for the activators.
Analogously, the cross-inhibition terms are similar to the Hill function for repressors. For both contributions the
Hill coefficient is equal to one.

The resulting non-linear coupled differential equations read
Ẋ = A KX

KX+Y
X

KX+X
−γX

Ẏ = A KY
KY+X

Y
KY+Y

−γY ,
(6.5)

where A is the maximum production rate, KX and KY correspond to the activation and mutual repression

coefficients of X and Y , respectively. Hence, the concentrations of the two competitive molecules decrease

with the increase of the other one by respecting the Hill function for a repressor. I decided to insert a

non-linear term as a product between activation and inhibition contribution to macroscopically enclose the
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intrinsic non-linear molecular response to opposite activation signals of transcription factors. Moreover, for

simplicity I chose the same degradation rate γ for both variables.

6.5.1 Steady state classification

The steady states were identified by evaluating the dynamics given by Eq. 6.5 when the concentrations are

locally constant under a small perturbation in analogy to Section 6.4. The stationary concentrations X(0)

and Y (0) follow the solution of the system


AKXX

(0) −γX (0)
(
KX +X(0)

)(
KX +Y (0)

)
= 0

AKYY
(0) −γY (0)

(
KY +Y (0)

)(
KY +X(0)

)
= 0 .

(6.6)

The trivial solution is the steady state X̄1=(0,0). The first not-trivial steady state was found by imposing

X(0) = 0 and Y (0) , 0 leading to X̄4 =
(
0, Aγ − KY

)
. Another possible steady state is equivalently X̄5 =(

A
γ −KX ,0

)
. To ensure that both points are physical solution, the inequality A

γ ≥ max{KX ,KY } has to be

hold. The properties that X(0) , 0 and Y (0) , 0 allowed to divide both equations respectively by X(0) and

Y (0) and by subtracting from the first equation the second one, the following relation occurs

A
(
KX −KY

)
−γ

((
KX +KY

)(
KX −KY

)
+
(
X(0) +Y (0)

)(
KX −KY

))
= 0 . (6.7)

By defining ϵ ≡ KX−KY and dividing Eq. 6.7 by ϵ, the dependency on the difference KX−KY disappears

and lead to a linear relation between X(0) and Y (0):

X(0) =
A
γ
−KX −KY −Y (0) , (6.8)

which has to be positive for a physical solution and eventually leads to the maximum concentration for

Y (0) as

Y (0) ≤ Ymax ≡
A
γ
−KX −KY . (6.9)

By substituting Eq. 6.8 into the first equation in Eqs. 6.6, we obtain a second order equation for Y (0) as

Y (0)2 +
(
KX +KY −

A
γ

)
Y (0) +KXKY = 0. (6.10)

The solutions for this stationary Y concentrations referring to the two steady states X̄2 and X̄3 obey the
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relation

Y
(0)
± =

Ymax
2
±

√
Y 2
max − 4KXKY

2
(6.11)

=
1
2

(
A
γ
−KX −KY

)
±1
2

√(
KY +KX −

A
γ

)2
−4KXKY ,

and the corresponding stationary X concentrations are given by

X
(0)
∓ =

Ymax
2
∓

√
Y 2
max − 4KXKY

2
(6.12a)

=
1
2

(
A
γ
−KX −KY

)
∓1
2

√(
KY +KX −

A
γ

)2
−4KXKY (6.12b)

≡Y (0)
∓ . (6.12c)

The steady state configuration is therefore given by a specific concentrations pair (X,Y ) with X̄2 ≡(
Y
(0)
+ ,Y (0)

−
)

and X̄3 ≡
(
Y (0)
− ,Y

(0)
+

)
where Y (0)

+ + Y (0)
− = Ymax holds. Note that the steady solutions are

invariant under the exchange between KX and KY , meaning that the steady states remain the same. It

confirms the equivalent role of X and Y as expected for the symmetric configuration dynamics. I further

simplified the model by setting KX = KY without loosing generality since both variables level out the

antagonistic effect of the other variable by the self-activation action.

6.6 Deterministic analysis of the fully symmetric model

To further investigate the model properties, I next investigated analytically the dynamics of the fully

symmetric version of the one-stage symmetric T.S. model by putting KX = KY = K . By choosing the

equivalence between KX and KY parameter, I focused on the intrinsic mechanism that regulates the

interaction between X and Y with the same strength in regulating the self-activation and cross-inhibition

activity. The corresponding scheme is shown in Fig. 6.3.
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Figure 6.3: One-stage toggle switch scheme describing mutual inhibition between X and Y accompanied by
protein degradation and self-activation. This scheme is a fully symmetric description of the symmetric one-stage
T.S. model since X and Y operate with the same parameter setting.

The steady states for this fully symmetric model are given by

X̄1 = (0,0) (6.13a)

X̄2 =

12
(
A
γ
− 2K

)
+
1
2
A
γ

√
1−

4Kγ
A

,
1
2

(
A
γ
− 2K

)
−1
2
A
γ

√
1−

4Kγ
A

 (6.13b)

X̄3 =

12
(
A
γ
− 2K

)
−1
2
A
γ

√
1−

4Kγ
A

,
1
2

(
A
γ
− 2K

)
+
1
2
A
γ

√
1−

4Kγ
A

 (6.13c)

X̄4 =
(
0,
A
γ
−K

)
(6.13d)

X̄5 =
(
A
γ
−K, 0

)
. (6.13e)

The physical solutions with the constrain for the concentrations being always a positive real number,

imposes a maximum value for K . Specifically, the existence of a real square root in X̄2 and X̄3 requires

the condition K ≤ A
4γ ≡ Kmax and positive values for the non-null component of X̄4 and X̄5 concentrations

imposes the condition K ≤ A
γ = 4Kmax ≡ K

(2)
max . Thus, the steady states can be expressed in term of Kmax
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as

X̄1 = (0,0) (6.14a)

X̄2 =

2Kmax1− K
2Kmax

+

√
1− K

Kmax

, 2Kmax1− K
2Kmax

−
√
1− K

Kmax

 (6.14b)

X̄3 =

2Kmax1− K
2Kmax

−
√
1− K

Kmax

, 2Kmax1− K
2Kmax

+

√
1− K

Kmax

 (6.14c)

X̄4 =
(
0,4Kmax −K

)
(6.14d)

X̄5 =
(
4Kmax −K,0

)
. (6.14e)

To characterize in more detail the non-linear dynamics and to verify the presence of the obtained steady

state solutions, I investigated the vector field of the phase space where each point corresponds to the fixed

initial conditions leading to a 2-dimensional vector of the finite increments (∆X ,∆Y ) at any point on the

underlying grid. The resulting arrows indicate the instantaneous direction of the concentration changes in

the phase space as shown for K = 20, K = 25, K = 30, K = 50 and K = 80 in Fig. 6.4. The result for

K = 20 (Fig. 6.4a) confirms the presence of all the identified steady states where X̄1 is the trivial unstable

state, X̄2 corresponds to the pink point and X̄3 to the red point, respectively, and the blue and green point

indicate the steady states X̄4 and X̄5. Interestingly, the arrow flow converge to a line of steady points. On

this trajectory in the phase space, the system is in a stationary condition. The points X̄2 and X̄3 are on

the extreme value of the two parts of the trajectory that is highlighted by the orange and pink lines. These

two parts of the steady points can be analytically found by analyzing the relation between X̄2 and X̄3.

Indeed, they emerge from the X̄2 and X̄3 formulas (Eqs. 6.14 and 6.12a), evaluated for 20 < K < Kmax , in

the following way:

Y
(0)
+ −Y (0)

− = 2Kmax

√
1− K

Kmax
, (6.15)

which is the analytical hyperbolic curve corresponding to the drawn dashed line on the vector fields. The

degeneration of these steady states is explainable by the symmetry of the dynamics as the X (Y ) molecular

concentration component for the X̄1 corresponds to Y (X) component for X̄2.

The steady states X̄4 and X̄5 are not on the stability line but are very close to it. This might be a result

of the specific symmetric case in the regime K < Kmax which encloses the presence of another stability

configuration of the system. In the Fig. 6.4b, the vector field for K = Kmax = 25 is shown. In this case,

the stationary concentrations X̄2 and X̄3 coincide and have the component X and Y equal each other.

Although this extreme case is characterized by three steady states, the trajectory (dashed line) remains as
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the stability manifold of the system corresponding to the collection of steady states X̄2 and X̄2 evaluated

for 0 < K ≤ Kmax .

For the regime K > Kmax , the stationary trajectory is expected to disappear but in Figure 6.4c the

corresponding vector field for K = 30 still indicates a stationary trajectory of the system. The dashed

line corresponds to the stability trajectory in the regime K < Kmax . The analysis for K = 50 in Fig. 6.4d

exhibits more clearly how the system changes its stability line. The dashed line is still referred to the

previous stability trajectory to highlight the completely disappearance of the previous line of steady points.

In this configuration, the system was found to have again a stability line going through the steady states X̄4

and X̄5. Therefore the choice of K = 50 puts the system in another stability regime, which is imposed by

the full symmetry in the molecular concentrations of the alternative possible steady states. The vicinity of

the steady states around K = Kmax masks these distinct regimes since both co-exists during the transition

from one stable phase to the other one, appearing as a degeneration of the fully symmetric regime.
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(a) Vector field of the dynamics for K = 20 (b) Vector field of the dynamics for K = Kmax = 25

(c) Vector field of the dynamics for K = 30 (d) Vector field of the dynamics for K = 50

Figure 6.4: Stationary points and vector field for the fully symmetric model. The colored points denote the steady
states:X̄2, X̄3,X̄4 and X̄5 by the pink, red, blue and green dots, respectively. In Fig. 6.4b the steady points X̄2,
X̄3 coincide at the red point. The dashed line connects all the other possible X̄2 and X̄3 obtainable in the regime
0 < K < 25. In Fig. 6.4c, X̄2, X̄3 are not physically acceptable since we are in the regime K > Kmax but the entire
stationary trajectory is still accessible from the system. The steady points X̄4 and X̄5 are just slightly diverging from
the stability trajectory defined by Eq. 6.15. Fig.6.4d highlights further the existence of a steady state trajectory,
which connects X̄4 with X̄5.

Finally, by increasing K to 80, the associated vector field is shown in Fig.6.5 and the alternative stability

line is more evident and corresponds to the straight line that crosses X̄4 and X̄5. It might correspond to

the degeneration of the hyperbolic curve since in this new regime the two steady states are well-defined

but still equally preferred from the system.
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Figure 6.5: Vector field of the dynamics of the fully symmetric case KX = KY = 80. The stability trajectory is
degenerate into a linear line which connects the two steady points X̄4 and X̄5.

For a systematic analysis of the potential steady states, the corresponding bifurcation diagram was

calculated with K as control parameter. For this purpose, Fig. 6.6 shows the stationary X and Y concen-

trations as function of K where the full symmetry of the dynamics induces the switch within the pair X̄2

and X̄3 and the pair X̄4 and X̄5 (see color code switching in Figs. 6.6a and 6.6b). The analysis shows also

that Kmax is the maximum value to have distinguishable steady points associated to X̄2 and X̄3.

(a) X-concentration defining state (b) Y-concentration defining state

Figure 6.6: Bifurcation diagrams with control parameter K as a collection of all accessible steady states for the
system identified by X and Y concentrations in the left and right panel,respectively. Note that the full symmetry
induce the swapping of steady states for X and Y indicated by the colors.
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This analysis indicates that the fully symmetric case KX = KY = K is associated to a degeneration

of the stable manifold where the final steady states of the system depends on the initial conditions due

to non-linearity of the dynamics. Thus, the system is able to reach potentially any possible steady state

configuration established by any K parameter in a defined regime. Furthermore, in the vicinity of the fixed

points in the phase space X̄4 and X̄5, the stationary trajectory does not avoid the system to reach the

degenerated steady states. Therefore, the system exhibits a sort of adaptability in its dynamical behaviour

to e.g. react to external signals. Since this is an essential property for the robustness of cell fate dynamics,

we further investigated the nature of these steady states.

6.6.1 Steady state classification

The nature of the identified fixed points in Section 6.14 has been uncovered systematically by evaluating the

sign of the two associated eigenvalues of the Jacobian matrix of the dynamical system at the corresponding

steady states. The Jacobian matrix takes the general form

J(A,γ,K }) =


AK2

(K+Y )(K+X)2 −γ
−AKX

(K+X)(K+Y )2

−AKY
(K+Y )(K+X)2

AK2

(K+X)(K+Y )2 −γ


At X̄1, the eigenvalues are identical and both positive or null in the allowed regime K ≤ A

γ . Hence,

this point is an unstable state for any K except for K = A
γ with zero eigenvalues where the point changes

into a limit cycle. For X̄4 and X̄5, one eigenvalue is always zero and the other is always negative in the

stable regime, except at K = A
γ where again the points become a limit cycle because both eigenvalues are

vanishing. On the eigenspace associated to the eigenvalue equal to zero, the solutions are therefore time

independent due to vanishing Lyapunov exponents indicating the independence on external perturbations

and therefore the eigenspace is a line of equilibria. The presence of the attractive line of equilibria makes

the point stable but not asymptotically stable for K , A
γ .

The analytical solution for the eigenvalues of the points X̄2 and X̄3 are not straight forward, and

therefore a Python script was used to evaluate the nature of the points for K across the range between 0

and K (2)
max defining the region of stability as shown in Fig. 6.7.
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Figure 6.7: Bifurcation diagram for the steady states related to one-stage toggle-switch model in the fully symmetric
case KX = KY = K .

The result shown in Figure 6.7 indicates that for all K the steady states associated to X̄2 ,X̄3 and

X̄5 are (not asymptotically) stable states because of the presence of one vanishing eigenvalue. The state

X̄0 is always an unstable point. For K ≈ K (2)
max the steady states become null cycles, characterized by the

vanishing of both eigenvalues. The steady states X̄2 and X̄3 collapse to one when K ≡ Kmax corresponding

to
(
A
4γ ,

A
4γ

)
concentration values (6.14b,6.14c) . This point is the extreme value corresponding to the

boundary of the fully symmetric case and it might be illuminating to investigate its peculiar role in the

separation of two distinct regimes in detail. For this purpose, I specifically analyzed the interplay between

non-linear dynamics and stochastic effects around this point to investigate the system’s dynamics including

the appearance of potential transitions.

6.7 Stochastic analysis of the model

In this section, I present the stochastic study of the one stage symmetric toggle-switch model by compu-

tational results.
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Figure 6.8: Representation of the stochastic one-stage toggle switch model describing mutual inhibition between
X and Y accompanied by degradation and self-activation depending on the corresponding concentrations by the
Hill function for activators. Equivalently, the cross-inhibition terms are similar to the Hill function for repressors.
For both contributions, the Hill coefficient is set to one.

The stochastic version of the ODEs system 6.5 takes the form


Ẋ = AKX

KX+Y
X

KX+X
−γX + ηX (t)

Ẏ = AKY
KY+X

Y
KY+Y

−γY + ηY (t)
(6.16)

where ηX and ηY denote the random forces representing the effect of the intracellular active processes.

These forces have a Gaussian probability distribution with correlation function:

⟨ηi (t)ηj (t′)⟩ = 2Diδijδ(t − t′) (6.17)

where Di with i = (X,Y ) is the diffusion coefficient. The stochastic terms contribute to the concentration

changes during a time interval bigger than the temporal variation associated to the dynamics itself. Indeed,

the X and Y molecular concentration, which define the cell state in our model, are slow variables since they

require more time to relax to equilibrium compared to the local stochastic fluctuations. In the following

analysis, computational simulations have been performed to get insights into the interplay between the

non-linearity and the diffusive effect interfere.
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A mathematical approach to study the probabilistic evolution of the system is by writing the correspond-

ing Fokker-Plank equation (FPE) [165] describing the temporal evolution of the X and Y concentrations

as random variables subjected to a drift term and the Gaussian white noise. While the general analytical

solution of FPEs are often not achievable, computational study provide important insights into the property

of stochastic systems.

6.8 Stationary solution of FPE

The stationary solution of the corresponding FPE has been computationally analyzed. Specifically, in

this section, computational investigations of the stationary probability distributions allowed to study the

interplay between noise and the deterministic non-linear dynamics. The stationary probability distribution of

a system is defined locally as temporally stable and is in principle strictly independent on the initial condition

of the dynamics. In this section, the stationary solution of the FPE describing the fully symmetric toggle-

switch model is studied in several regions of the phase space. The stability manifold, which is composed

by all admissible steady states is supposed to be the domain of the corresponding stationary probability

distribution (DX =DY is hold for simplicity in the computational simulations). Note that the points on the

stability manifold can be found by evaluating the stationary molecular concentrations for any values of K .

Moreover, by focusing on the regime K ⩽ Kmax , the steady states solutions define two distinct branches

on the bifurcation diagram as shown in Fig. 6.6.

In order to visualize the probability distribution at the stationary profile in detail, corresponding

stochastic simulations were performed in the Julia programming environment. The system was simu-

lated with parameters set as K = 20, A = 0.5, γ = 0.005, D = 0.0001 for a total simulation time period

of T = 10000 (T = 8000 is roughly the required time from the system to reach a stationary configuration

starting at the chosen initial condition) with a time step of dt = 0.1. To respect the stochastic dynamics,

a number of M = 70,000 trajectories was modelled with the initial position in phase space defined by

X0 = 50 and Y0 = 9. The result of the simulation is visualized as a 2-dimensional histogram on the (X,Y )

phase space and shows the concentrations at the final time T in Fig.6.9a where the color map indicates

the graded normalized value of the trajectories density in the (X,Y ) space of molecular concentrations.
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(a) (X,Y) space representation (b) (κ,ζ) space representation

Figure 6.9: Probability distribution for an ensemble of 70,000 cells starting from the initial condition (X0,Y0) =
(50,9). 2-dimensional histograms of the probability distribution for an ensemble of 70,000 cells starting from the
initial condition (X0,Y0) = (50,9) and gathered at the final time T=10000, when the system is in a stationary
configuration, with dynamical parameters K = 20, A = 0.5, γ = 0.005 and D = 0.0001.

To computationally investigate the property of the stationary probability distribution, a non-linear

variable change was performed in the representation space of the 2-dimensional histogram of the probability

distribution. By exploiting the X−Y
2 quantity from Eq. 6.14b, a new variable κ is introduced for stationary

concentrations of the steady state X̄2. The variable change in the representation space of the computed

probability distribution is defined by

κ = Kmax −
(X −Y )2

16Kmax
, (6.18)

which can subsequently be used for a new set of variables (κ,X) ≡ (κ,ζ) to visualize the result of the

stationary probability distribution of the computational simulations shown in Fig. 6.9b.

Interestingly, the probability distribution in this new representative space was found to be mainly

concentrated on the stability manifold. Indeed, the branch referred to the steady states X̄2 emerges as the

domain of the stationary probability in the (ζ,κ) space. Hence, the new set of variables is therefore an

appropriate representation for the stationary molecular distributions. The shown stationary distribution is

located along the stability line and peaked around (X,Y ) = (20.5,49). By investigating the the vector field

in Fig. 6.4a, it becomes evident that the system is following the dynamics for the specific initial condition

towards the corresponding final steady state on the branch. This might indicate that the effect of the

noise on the dynamics is to spread the stationary probability distribution along the stationary manifold and

locates at the final point defined by the vector flux.

To support this hypothesis, another configuration was simulated for which the other branch of the
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stability trajectory was expected as the domain of the resulting stationary probability distribution in the

(ζ,κ) space. For the same parameter setting with A = 0.5, γ = 0.005 and D = 0.0001, the initial

condition for the ensemble was set to (X0,Y0) = (7,52). The resulting dynamics is plotted on the molecular

concentration space in Fig. 6.10a.

(a) (X,Y) space representation (b) (κ,ζ) space representation

Figure 6.10: Stationary probability distribution for an ensemble of 70,000 samples starting from the initial condition
(X0,Y0) = (7,52). 2-dimensional histograms of the stationary probability distribution for an ensemble of 10,000
samples starting from the initial condition (X0,Y0) = (7,52) and gathered at the final time T=10,000. The system
has the dynamical parameters: K = 20, A = 0.5, γ = 0.005 and D = 0.0001.

After the change from the (X,Y ) space into the new space of (κ,ζ), the 2-dimensional histogram reflects

the general behavior of the system to end up at a precise steady state on the stability manifold specified

by its initial condition as shown in Fig. 6.10b. Thereby the noise diffuses the probability distribution on a

region around the alternative branch of the stability trajectory as expected. As another case, the extreme

configuration with K = Kmax was investigated to confirm that the stationary probability distribution is

likely to be centered at (X,Y ) = (Kmax ,Kmax) and to quantify the spreading around this point. Based on

the vector field analysis in Fig. 6.4b, the initial condition was set to X0 = Y0 as the preferential direction

towards the extreme point. The results of the computational simulation are shown in Figs. 6.11 and 6.12,

respectively.
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(a) T=3000 (b) T=10,000

Figure 6.11: Probability distributions at the intermediate simulation time T=3000 and the final time T=10,000
which corresponds to the stationary probability profile. The probability distributions are represented as a 2-
dimensional histogram on the (X,Y ) space from a statistical ensemble of 70,000 samples. The used parameters are
A = 0.5, γ = 0.005, K = 25 and D = 0.0001 with the initial condition (X0,Y0) = (50,50).

(a) T=3000 (b) T=10,000

Figure 6.12: Probability distributions at the intermediate simulation time T=3000 and the final time T=8000
which corresponds to reaching a stationary probability profile. The probability distributions are represented as a
2-dimensional histogram on the in the (κ,ζ) space from a statistical ensemble of 70,000 samples. The parameters
were set to A = 0.5, γ = 0.005, K = 25 and D = 0.0001 with the initial condition (X0,Y0) = (50,50).

For the extreme case with K = Kmax , the appearance of the two branches of the stability trajectory is

clearly visible in the (κ,ζ) space similar to the regime for K ≤ 25. The noise is here the key element to give

to the system the ability to explore a portion of the stability trajectory according to the initial condition.

The system can explore other possible steady states only due to the stochastic nature of the dynamics.

Moreover, the peak of the distribution in Fig.6.12 corresponds to κ = 25 and is in agreement with the
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vector field analysis in Fig. 6.4b. Indeed, the system will end up to reach the steady state (Kmax ,Kmax)

for any initial points on the X0 = Y0 line. This is a particular point since from there the noise spreads

the stationary probability distribution on both branches. To complete the investigation, one configuration

in the regime K > 25 was studied by setting K = 80 and the initial condition to (25,15) based on the

vector field analysis in Fig. 6.5. The result highlights again the way of the probability distribution to

asymptotically reach a precise steady state according to the initial condition as shown in Fig.6.13a. In

this case, the stability line connects the steady state points defined by Eqs. 6.14d and 6.14e in agreement

with the stability analysis in Section 6.6. Since for these states varying K leads to a movement along the

lines X = 0 and Y = 0, respectively, the linear dependency cannot be recovered in contrast to the regime

K ≤ Kmax .

(a) (X,Y) space representation (b) (X,Y’) space representation

Figure 6.13: 2-dimensional histogram of the stationary probability distribution for an ensemble of 70,000 samples
starting from the initial condition (X0,Y0) = (25,15) and simulated until the final time T=10,000, where the system
has reached its stationary profile. The system obeys the dynamical parameters K = 80, A = 0.5, γ = 0.005 and
D = 0.0001.

To identify the analytical relation of these points on the stability line, the mathematical relation for the

straight connecting the steady states X̄4 and X̄5 defined by Eqs. 6.14d and 6.14e in the (X,Y ) space was

imposed leading to

X +Y = 4Kmax −K. (6.19)

Next, another variable change from (X,Y ) to (X,Y ′) was applied with Y ′ = 4Kmax −K −X to investigate if

the stationary probability distribution is spread along this new relation with the lowest possible variance. The

result confirms the general behavior of the system to navigate under noise perturbation along this stability

trajectory defined by the deterministic dynamics as shown in Fig.6.13b. The mean of the distribution
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corresponds to the final points predicted by the vector field in Fig. 6.5.

6.8.1 Overview of the stationary behavior from computational simulations

From a computational perspective, for each bin on the κ direction, the data was averaged over the

corresponding binning in the ζ direction resulting in mean values ζ̄. The result describes the trend of

stationary probability distribution in dependence on D (Fig.6.14). As expected, by decreasing D, the

samples are progressively more concentrated around the initial position (Kmax ,Kmax) as a stable point.

Consequently, the stationary probability is spread more uniformly by moving away from this point for larger

noise strengths. In Fig. 6.14, the resulting behaviors were obtained by using the same number of bins to

create the grid on which the histograms were calculated where for the case D = 0.001 an increase in the bin

length would improve the resolution since the most samples occupy only the last bin. Overall, this analysis

enabled to qualitatively study the behavior of the stationary probability distribution towards κ → Kmax ,

which corresponds with the initial point on the stability manifold in the configuration with K = 25 and

by changing the noise strength D. Obviously, the noise forces the system to move away from the steady

state, which coincides with the initial condition, confirming the role of stochasticity in making the system

aware of its alternative steady state configurations.

Figure 6.14: Asymptotic limit of the stationary probability distribution on the manifold when κ is approaching
Kmax . K was fixed at Kmax and the other parameters are: A = 0.5, γ = 0.005 and (X0,Y0)=(25,25). The time
simulation is T=8000 and the ensemble size is 40000.

To further characterize the system’s dynamics, I next qualitatively investigated stationary probability
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distributions for an initial condition not too close to the critical point Kmax . For this purpose, computational

simulations were performed by varying the noise strength to investigate how these distributions are modified

particularly by the underlying stochasticity when the system reaches a steady state. The initial condition

was set to (X0,Y0) = (36,16) corresponding to K = 24 in the formula for the steady state concentrations on

the stability manifold given by Eq. 6.14b. The dynamical parameter K was set to Kmax and the ensemble

size to 40,000 particles representing cells. To allow comparisons between different configurations, the

number of bins was fixed for any configuration considered.

(a) Large bins length (b) Small bins length

Figure 6.15: Computational results of the stationary probability distributions on the stability manifold for an
statistical ensemble of M = 40,000 trajectories starting from (X0,Y0) = (36,16) with K = Kmax and the usual
parameter set.

The results highlight how the noise affects the shape of the stationary distribution in proximity to the

extreme value κ = Kmax (Fig. 6.15). As shown in Fig. 6.15 for D = 0.001, the distribution maintains

its expected deterministic mean at κ = 24 with high fluctuations due to the tight binning condition with

most of the samples localized in this region. Interestingly, by increasing the noise intensity, the stationary

probability distribution gradually looses its preferential steady state in favour of the attractor point at

κ = 25. At D = 0.003, the noise strength is able to displace the particles towards a region in the phase

space that corresponds to steady state concentrations associated to K similar to Kmax . This might mean

that, when particles by chance move close to Kmax , they definitively remain trapped within this region

of the stationary manifold. Without the driving noise force, this extreme attractive region would remain

unexplored.

To verify the hypothesis that noise has an effect in destabilizing the probability distributions when the

system is close enough to the extreme point, the stochastic dynamics around another initial position on the
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stability trajectory was investigated. For stochastic ensemble simulations with K = 25 up to a simulation

time of 8000 and with an initial condition defined by (X0,Y0) = (52.3,7.6) that corresponds to a K = 20

in accordance to Eq. 6.14b, the results indicate again how noise affects the dynamics of the distributions

by exploring the local available space with a referential direction towards Kmax (Fig. 6.16).

(a) T=1000 (b) T=3000

(c) T=8000

Figure 6.16: Noise-depending shapes of the stationary probability distribution resulting from an ensemble simu-
lation of 40,000 particles with initial position (X0,Y0) = (52.3,7.6). It is clearly visible how by increasing the noise
strength, the particles are located with larger probability far from the initial point and more directed towards κ = 25.

As a final analysis of this section, the effect of noise with strength D = 0.0001 for an ensemble starting

from (52.3,7.6) was studied as above. I simulated the systems by varying the total time simulation and

considering K = 20 and K = 25. The results are shown in Fig.6.17. The probability distributions change

over time until a stationary profile is established around T = 15,000 with a specific variance and with

the mean corresponding to the the initial steady condition. The stationary localization of the probability
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distribution around the initial point was confirmed by longer simulation until the time T = 25000. Moreover,

the profiles corresponding to K = 25 do not show a significant difference compared to those referring to

K = 20. Taken together, the analyses demonstrated that in the dynamical evolution of the system with

a moderate noise level, the starting condition determines the steady state corresponding to the mean

of the stationary probability distribution. The choice of K in the deterministic dynamics is irrelevant

in determining the stationary profile. Moreover, the noise has thereby the power to spread locally the

distributions along the stationary manifold according to the parameter D, demonstrating the adaptability

property of the stochastic dynamics.

Figure 6.17: Computational results of the stationary probability distributions over several total times simulation for
a stochastic ensemble of 40,000 trajectories starting from (52.3,7.6) on the stability manifold. The noise strength
was D = 0.0001. The profiles are clearly independent on the parameter K .

6.8.2 Final remarks on the stationary probability analysis

In this section, computational analysis of the stationary behavior associated to the stochastic one-stage

T.S. system in Eq. 6.16 provided insights into the interplay between noise and the deterministic non-

linear dynamics. In the regime K < Kmax , the results in Section 6.5 showed that the stability trajectory

is traceable by connecting all possible steady states of the dynamics. This was the starting point to

understand how the stationary probability distribution are localized on this specific domain in the phase

space. The corresponding analysis revealed that stationary concentrations are potentially reachable by the
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system in a way strictly dependent on the initial condition and the noise strength.

Indeed, noise allows for tiny displacements over time while the underlying deterministic dynamics occurs.

Therefore these random re-locations can conduct the particles (whose states is described by the variable

pair (X,Y ) to a final state close to the one determined by the deterministic dynamics. Collectively, the

continuous noise impact on the dynamics over multiple particles generates probability distributions on the

stability manifold. Hence, these results provide mechanistic insights of cell behavior at the first stage of

the differentiation process which corresponds to the progenitor destabilization state. The ability to explore

the available microstates defined by internal gene regulatory networks is understood by the crucial role of

noise that offers alternative local steady states. Moreover, the noise changes significantly the stationary

probability distribution for initial condition sufficiently close on the stability manifold. Then the noise

induces the system to leave its local stable configuration towards the extreme state with κ = Kmax of the

fully symmetry regime. As shown comprehensively in Section 6.8.1, this tendency is linearly dependent

on the noise strength that progressively changes the stationary probability distribution from an initially

established unimodal, centered distribution to a more decentralized uniform distribution.

6.9 Asymmetric one-stage toggle-switch model

In the previous section, the symmetric case of the toggle-switch model was analysed in detail and revealed

how the noisy dynamics can explore the underlying stability manifold. While this symmetric approach

identified interesting dynamical behavior which may reflect the induction of cell fate through progenitor

state destabilization, the symmetry assumption might only hold in specific biological circumstances or

limited time periods. To investigate how the more general case of an asymmetric relation between the

genes X and Y affect the dynamics, this section is focusing on the stage of the cellular differentiation process

in which an asymmetry is locally well-established in the metastable state arising from the progenitor state

destabilization when the cell is driven towards its closest stable state. For this process, I assume that the

resulting stochastic dynamics evolves according to the poised internal gene configuration and the asymmetry

of the underlying deterministic dynamics which can be imposed by considering different value for KX and

KY in the one-stage model. With this assumptions, the deterministic dynamics takes the form
Ẋ = A KY

KY+Y
X

KX+X
−γX

Ẏ = A KX
KX+X

Y
KY+Y

−γY
(6.20)

with its representative scheme shown in Fig. 6.18.
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Figure 6.18: Asymmetric interactions in the one-stage T.S. model where KX and KY regulate the strength of
self-activation and cross-inhibition terms.

The corresponding stability analysis allows for the identification of the following three fixed points:

X̄0 = (0,0), X̄1 =
(
A
γ −KX ,0

)
and X̄2 =

(
0, Aγ −KY

)
. To investigate the nature of these states, the Jacobian

matrix of the system and its eigenvalues for each point is evaluated in analogy to Section 6.6. The Jacobian

matrix reads

J({A,γ,KX ,KY }) =


AKXKY

(KY+Y )(KX+X)2
−γ −AKYX

(KX+X)(KY+Y )2

−AKXY
(KY+Y )(KX+X)2

AKXKY
(KX+X)(KY+Y )2

−γ


where the inequality A

γ ≥ KX ,KY must hold for positive concentrations. The fixed point X̄0 is an unstable

state for any feasible positive parameter setting. The Jacobian matrix evaluated at X̄1 can be written as

J({A,γ,KX ,KY })|X̄1
=

γψX A
KY
ψX

0 γπX


with ψX ≡ KX

Kmax
− 1, πX ≡ KX

KY
− 1 and Kmax = A

γ . With these identifications, the eigenvalues are given by

λ1 = γψX , which is always negative since KX ≤ Kmax and λ1 = γπX whose sign depends on KX and KY .

If KX ≤ KY , X̄1 is stable otherwise it is unstable. Analogously, for the fixed point X̄2 the corresponding

Jacobian matrix is given by

J({A,γ,KX ,KY })|X̄2
=

 γπY 0
A
KX
ψY γψY


where ψY ≡ KY

Kmax
−1 and πY ≡ KY

KX
−1. Hence, if KY < KX , X̄2 is a stable state and X̄1 is unstable otherwise

X̄2 is the unstable state and X̄1 is the stable one. In the case KX = KY , one eigenvalue is zero and the

other is negative. In analogy to the symmetric case in Section 6.6, the vector field is visualized by the

tangent vector at each point on a grid. In this way, the instantaneous tendency of the dynamics for any

initial condition fixed on the grid can be observed. The results confirm the analytic derivation of the steady
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states as shown in Fig.6.20. The graphs contain the dashed line describing the straight line through X̄1

and X̄2 given by

X(Kmax −KY ) +Y (Kmax −KX )− (Kmax −KX )(Kmax −KY ) = 0. (6.21)

For KX = KY , the relation between the steady states X̄4 and X̄5 of the symmetric case is recovered

(see Eq. 6.19) as shown in Fig. 6.5. Thereby the cells might be subjected to a structural change of the

phase space due to an underlying evolutionary dynamics from a symmetric through a slight asymmetry

configuration that changes abruptly the nature of the steady states.

Figure 6.19: The vector field for KX = KY = 80 is the same obtained for the symmetric case in Fig. 6.5 as expected.

(a) KX > KY (b) KY > KX

Figure 6.20: The vector field of the asymmetric one-stage T.S. model underline the existence of one stable state
and one unstable state. The dashed lines correspond to the straight line through X̄1 and X̄2.

89



By generating an asymmetry in the interaction strengths, the nature of the steady states changes and

consequently the underlying dynamics. The vector fields show a preferential direction which connects the

stable to the unstable state equivalently to the symmetric case in the regime K ≥ Kmax . Hence, the system

is pushed faster towards the stable state on this trajectory.

6.9.1 Stochastic analysis of the asymmetric model in the Fokker-Planck formu-

lation

With the analogous goal as in the previous FPE analysis, I studied the bivariate Langevin Equations with

white noise for the asymmetric case. In this formulation, the noise might contribute to an addiction driving

force in the system by accelerating or restraining its deterministic dynamics over the phase space. The

SDEs in the asymmetric reads


Ẋ = AKY

KY+Y
X

KX+X
−γX + ηX (t)

Ẏ = AKX
KX+X

Y
KY+Y

−γY + ηY (t) ,
(6.22)

with ηX (t) and ηY (t) being random forces with the same statistical properties as in Eq. 6.17.

Figure 6.21: Asymmetric interactions in the noisy one-stage T.S. model. KX and KY regulate the strength of
self-activation and cross-inhibition terms. The dynamics is perturbed by white noise at each time step.

Here, I exploited computational simulations to qualitatively investigate Eqs. 6.22 over time and by

varying the diffusion coefficient D, which was put equal for X and Y for simplicity.

First, I studied the configuration with the initial condition (X0,Y0) = (0.1,18) and D = 0001 for an

ensemble of M = 40,000 particles and a total simulation time T of 4000 (Fig. 6.20a). To visualize the
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dynamics, 2-dimensional histogram of all X and Y concentrations at time points T = 250, T = 750,

T = 1000, T = 1500, T = 2500 and T = 4000 where generated (Fig. 6.22a). For this configuration with

an initial condition close to the unstable state, the system approaches first this unstable state and then

follows the straight line (corresponding to dashed line in Fig. 6.20a) to finally reach the stable state X̄2.

Given the analytical expression of that trajectory in Eq. 6.21, Y can be expressed by means of X and vice

versa leading to

Y = Kmax −KY −X
(
Kmax −KY
Kmax −KX

)
≡ Y ′ , (6.23)

X = Kmax −KX −Y
(
Kmax −KX
Kmax −KY

)
≡ X ′ . (6.24)

By heuristically finding this domain of the probability distributions on the phase space (Figs. 6.20a

and 6.20b), this line can reduce the degrees of freedom of the stochastic dynamics to one and allow to

study the variability of X and Y as independent variables. Eq. 6.23 can be rewritten as Y ′ and Eq. 6.24

as X ′ to highlight that Y ′ (X ′) expresses the variability of X (Y ) restricted on a domain defined by the

relationship with Y (X). These dependencies can be used to separately represent the X and Y concentration

probability distributions over the trajectory in Eq. 6.21 during the temporal evolution as shown in Fig. 6.22.
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(a) Temporal evolution of the 2-dimensional probability distribution on the phase space.

(b) X-component probability distribution (c) Y -component probability distribution

Figure 6.22: Approximation of temporal evolution of the joint probability distribution as an 2-dimensional histogram
on the phase space in Fig. 6.22a and the corresponding marginal probability for X (in Fig. 6.22b) and Y (in Fig. 6.22c)
on the straight line connecting X̄1 and X̄2. The initial condition is (X0,Y0) = (10,0.1) for an ensemble of 40,000
cells and dynamics parameters A = 0.5, γ = 0.005, KX = 80, KY = 50 and D = 0.0001.

Since the noise strength was set to a rather small value (D = 0.0001), the probability distribution

follows the deterministic dynamics imposed by the initial condition since the mean is mainly moving along

the corresponding vector flux and specifically on the line defined in Eq. 6.21. Therefore, the noise affection

on the deterministic dynamics emphasizes the intrinsic variability of the system generated by the continuous

interplay with a stochastic source. Next, the same system was investigated with a stronger diffusion

coefficient of D = 0.1 (Fig. 6.23). As expected, the distribution evolves faster compared to the previous

case but the corresponding variances are also larger. Moreover, the noise pushes the system to follow a
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direction faster towards the stable state since it can jump to other lines of the vector field without crossing

the unstable state.

(a) Temporal evolution of the 2-dimensional probability distribution on the phase space.

(b) X-component probability distribution (c) Y -component probability distribution

Figure 6.23: Approximation of temporal evolution of the joint probability distribution as an 2-dimensional histogram
on the phase space in Fig. 6.23a and the corresponding marginal probability for X (in Fig. 6.23b) and Y (in Fig. 6.23c)
on the straight line in Eq. 6.21 connecting X̄1 and X̄2. The initial condition is (X0,Y0) = (10,0.1) for an ensemble
of 40,000 cells and dynamics parameters A = 0.5, γ = 0.005, KX = 80, KY = 50 and D = 0.1.

In Fig. 6.24, the dynamics of the deterministic molecular concentrations are plotted to appreciate the

noise-induced acceleration in pushing the system faster to the stable state.
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Figure 6.24: Deterministic behavior of the asymmetric one-stage T.S. with the same parameters used above:A = 0.5,
γ = 0.005, KX = 80, KY = 50 with initial condition (X0,Y0) = (10,0.1).

These computational evidences of the asymmetric toggle-switch demonstrate how the induction of cell

fate commitment by progenitor destabilization and subsequent is affected by noise. In particular, initial

conditions closer to the unstable steady state have the tendency to first approach this unstable state before

eventually ending up in the stable state in the case when noise is not so strong to deviate the system respect

the deterministic trajectory as shown in Fig. 6.22. From a population perspective, this mechanism might

be an explanation for the observation of "rebellious" cells [39], where progenitor cells are first destabilized

and randomly distributed at low X and Y concentrations. In dependence on the induced stable steady

states, cells with an initial condition closer to the unstable state will first approach the unstable attractor

before eventually move towards the stable state along the connecting line.

6.10 Symmetric two-stage toggle switch model

As mentioned in the Introduction and Chapter 3, cell fate and heterogeneity originate form the hierarchical

biological organization across different layers Fig. 3.4. In this section, I present a more comprehensive

version of the symmetric toggle-switch model characterized by a four-dimensional ODEs system which

reflects the biological levels of transcription and translation and their interplay in line with the central

dogma of molecular biology [166] . In this respect, the approach is similar to previous work [33] but uses

an alternative methodology as detailed in Section 6.5. Basically, the stochasticity is here introduced as

a continuous modification of molecular concentrations in a mesoscopic description and not considered as

intrinsic fluctuations of low copy numbers of molecules for which the Master equation [167] of the system

would correspond to the probabilistic associated description [33].

The mRNAs production is based on the assumption that DNA is always available for the transcription.
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Its change in concentration evolves by following a mechanism of regulation which involves both protein

concentrations in a term defined by the product between non-linear cross-inhibition and self-activation

factors. Specifically, the model I proposed is schematically and mathematically described in Figure 6.25

and as follows:



Ẋ = αx −γX

Ẏ = αy −γY

ẋ = A X
K+X

K
K+Y −K

dx

ẏ = A Y
K+Y

K
K+X −K

dy

(6.25)

Figure 6.25: Scheme of the two-stage symmetric toggle switch model in which the transcription and translation
dynamics are distinguished into two interacting regulatory levels. The protein production rate is linearly dependent
on the associated mRNA and itself-concentrations. Whereas mRNAs production is regulated by the product of
non-linear terms representing self-activation and cross-inhibition acted by the protein concentrations.

The splitting into the two interacting regulatory mechanisms is firstly motivated by the biological

mechanism that cell dynamics is internally tuned by the interactions between the genotype and phenotype

by different layers of regulation ( 3.4,[27]). Secondly, the aim is to investigate the role of an additional

level of regulation under a noisy faster time-scale dynamics in stabilizing and maintaining a steady state

configuration for the whole system. Since the protein production is a slower [168] process compared to

the mRNA transcription, it can operate as a buffer by reducing noise effects of the more stochastic mRNA

dynamics. To investigate general mechanisms underlying cell fate commitment during the differentiation

process, this two-stage model aims at discovering how the final phenotype choice is triggered at the protein
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level in presence of gene expression variability.

In agreement with the hypothesis that the cell explores its own local available space by assuming

intermediate possible configurations, the choice of symmetric interaction between the competitive cell

fates is an appropriate assumption to describe this transitory state based on the previous analysis of the

one-stage toggle switch model above. In order to evaluate analytically the degenerate steady states of a

corresponding dynamical system, I start from a generic two-stage dynamics in which the evolution of the

mRNA dynamics denoted by x and y, respectively, is modulated by the same parameter for self-activation

and cross-inhibition through KX and KY . While in the one-stage model (Sections 6.5-6.6) these interactions

were more globally defined, the two-stage model allows for a more biological interpretation where the mRNA

dynamics is regulated by the protein or transcription factor level. A generic ODEs system of the two-stage

model can be written as



Ẋ = αx −γX

Ẏ = αy −γY

ẋ = A X
KX+X

KX
KX+Y

−Kdx

ẏ = A Y
KY+Y

KY
KY+X

−Kdy .

(6.26)

By substituting the first two linear relationships at equilibrium x = γ
αX and y = γ

αY into the mRNA

dynamics of x and y, the trivial equilibrium state (0,0) and the two extreme cases X̄4 =
(
0,0, Aα

Kdγ
−KY , AKd −

γKY
α

)
corresponding to a zero concentration for X and X̄5 =

(
Aα
Kdγ
−KX , AKd −

γKX
α ,0,0

)
corresponding to a

zero concentration for Y can be identified. The other fix points are obtained by imposing non-vanishing

concentrations for both molecules and by following the same calculations performed in the reduced one-

stage model in Section 6.6 leading to similar equilibrium concentrations as in the one-stage dynamics. The

slight difference is in the parameter rearrangement of Ymax ≡ Aα
γKd
−KX −KY expression which was found

from the relationship X(0) + Y (0) = Kmax and leading to the same two steady-state concentrations as in

one-stage model given by

Y
(0)
± = X(0)

± =
Ymax
2
±

√
Y 2
max − 4KXKY

2
. (6.27)

The steady states can then be rearranged by
X̄2 ≡

(
Y
(0)
+ , y

(0)
+ ,Y (0)

− , y(0)−
)

X̄3 ≡
(
Y (0)
− , y(0)− ,Y

(0)
+ , y

(0)
+

)
,

(6.28)
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where y(0)± = γ
αY

0
± . The explicit solution for the symmetric case can be recovered by putting KX = KY = K

leading to

Y
(0)
± =

1
2

(
−2K +

Aα

Kdγ

)
±1
2

√(
Aα

Kdγ

)2
−4AαK
Kdγ

. (6.29)

By imposing the existence of physical meaningful solutions in the steady states X̄2 and X̄3, an upper

limit for K is given by K ≤ Aα
4Kdγ

≡ Kmax . A second extreme value related to the positive concentrations of

molecules in the other two states X̄4 and X̄5 given by Aα
Kdγ

.

In analogy to Section 6.6, the nature of the steady states in dependence on K as a bifurcation parameter

was assessed by a corresponding Python script. The analysis shows that the eigenvalue of the Jacobian

matrix evaluated at the steady points with the biggest real part is zero. To characterize the dynamics in

the phase space, the local dynamics can be considered in a quasi steady-state approximation exploiting the

different time scale of transcription and translation by assuming that the faster mRNA dynamics reaches

immediately a steady states associated to instantaneous protein concentrations under the dynamics of X

and Y . With this assumption, the ODEs system is describing the evolution of the protein concentrations

under a quasi-steady state assumption for the mRNAs production reduced to
Ẋ = AαK

Kd
X

(K+X)(K+Y ) −γX

Ẏ = AαK
Kd

Y
(K+X)(K+Y ) −γY .

(6.30)

With this approximation, the vector field in the regions of the phase space around X̄2 and X̄3 can be

visualized in 2 dimensions as show in Fig. 6.26 with parameters A = α = 0.05, Kd = 0.005, γ = 0.0005 for

configuration Kmax = 250. A comparison with the configuration of K = 220 shown in Fig. 6.26 shows that

the behavior of the system around the points is the same reflecting the symmetry of the system in X and

Y . Te points X̄2 and X̄3 in the plots are the coordinates found by the analytic computation.
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Figure 6.26: Local vector field of the protein dynamics in the quasi-steady state approximation around X̄2 (on
the left) and X̄3 (on the right) in the case K = 220.

Next, I investigated the instantaneous changes of the system with K close to the extreme value Kmax =

250 (Fig.6.27).

Figure 6.27: Local vector field of the protein dynamics in the quasi-steady state approximation around X̄2 (on
the left) and X̄3 (on the right) in the case K = 249.9.

Interestingly, the system behavior around the steady states X̄2 and X̄3 changes by varying K . I com-

putationally evaluated the signs of the real part of the eigenvalues for the Jacobian matrix at these points

and observed that one eigenvalue is zero and one is negative for any K ≤ Kmax . In order to confirm these

trends I simulated the dynamics over a time window starting from different initial conditions (Fig.6.28)

indicating the presence of a line of steady states. It seems that by increasing the vicinity of the two possible

steady states, meaning for K approaching Kmax , the vector flux of the system highlights its tendency to

approach rapidly a steady state configuration by changing the curved slow trend to a more straightforward
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direction to the multiple steady states on a vertical line in the phase space. This is in agreement with the

findings for the fully symmetric one-stage toggle switch in Section 6.6 since the system is in a similar fully

symmetric configuration.

Figure 6.28: Protein concentration trends depending on the initial conditions for K = 249.9.

In the vicinity of X̄2 and X̄3 the manifold of the system seems to be modified allowing to create

phenotype variability on a stability line. Therefore the system seems to be able to adjust its steady state

configurations when two regions of stability approach each other. To investigate the effect of noise on the

local deformation, a Gaussian white noise was added to the transcriptional level for both variables leading

to the corresponding stochastic differential equations of the system



Ẋ = αx −γX

Ẏ = αy −γY

ẋ = A X
KX+X

KX
KX+Y

−Kdx + ηX (t)

ẏ = A Y
KY+Y

KY
KY+X

−Kdy + ηY (t) ,

(6.31)

with ηX (t) and ηY (t) being random forces with the same statistical properties as in Eq. 6.17. In order to
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investigate the noisy interfere between the two levels of regulation, a stochastic ensemble was simulated and

compared with the noisy one-stage toggle switch. As a first configuration, the parameters were chosen as

A = 0.5,α = 0.05,γ = 0.0005,Kd = 0.005 and K = 2500 for the two-stage system and A = 0.5, γ = 0.005

and K = 25 for the one-stage system. For both systems, the noise strength was set to D = 0.01 and an

ensemble of M = 40,000 cells were simulated for a simulation time of T = 1000. The initial conditions

for the corresponding two-stage system were set to X0 = 2650, Y0 = 2450, x0 = 26.5 and y0 = 24.5 and

for the one-stage to X0 = 26.5 and Y0 = 24.5. These initial conditions are close to the stable states for

both systems and the deterministic dynamics is able to reach the steady point within the time simulation

for both systems. The aim of this investigation is to characterize how the phenotype distributions evolve

over time and quantify differences induced by the noisy dynamics between the one-stage and two stage

toggle switch models. For this purpose, the distributions were overlapped by dividing the concentrations

respect to their corresponding average values to allow for quantitative comparisons. The results show how

the variability on the protein level is decreased compared to the mRNA level and lead to a stabilization of

the corresponding phenotype Fig. 6.29. This indicates that the feedback loop dynamics at different time

scales is necessary for the system to moderate the effect of gene variability.
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(a) T=200 (b) T=500

(c) T=1000 (d) T=3000

Figure 6.29: Time evolution of the phenotype distributions of the 1-dimensional random variable x∗/µ referred
to the protein concentration in two-stage toggle switch model (in cyan), for the mRNAs concentration at two-
stage model (in light pink) and the lumped level of both (in light green). The parameter setting is given by
A = 0.5,α = 0.05,γ = 0.0005,Kd = 0.005 and K = 2500 for the two-stage system and A = 0.5, γ = 0.005 and
K = 25 for the one-stage system. For both system the noise strength was set to D = 0.01, the ensemble size to
M = 40,000 and simulation time to T = 1000. The initial condition is sufficiently close to the steady state.

To demonstrate the time scale separation as a requirement for the buffering effect of the protein

level, the phenotype distributions were next investigated for the case where the basal transcription and

translation rate are identical. Indeed, this seems to contradict the biological need of slowing down the

dynamics to maintain adaptability and gene-variability without loosing robustness and directionality. For

these simulations, A = α = 0.05 was used and the other parameters are unchanged. The initial condition

was adapted consequently to maintain the vicinity to the steady state. The resulting distribution highlight

how the protein distribution of the two-stage system progressively sense the downstream noisy level of

transcription and increase its intrinsic variability without the time scale separation (in Fig. 6.30). At the
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steady state it exactly overlaps with the stationary phenotype distribution of the one-stage models whereas

the mRNAs distributions look like Gaussian noise with a variance that increases over time.

(a) T=200 (b) T=500

(c) T=1000 (d) T=3000

Figure 6.30: Time evolution of the phenotype distributions of the 1-dimensional random variable x∗/µ referred to
the protein concentration at two-stage T.S. (in cyan), for the mRNAs concentration at two-stage T.S. (in light
pink) and the lumped level of both (in light green). The only difference to the previous analysis shown in Fig. 6.29
is the equality of A = α = 0.05 and the corresponding time scales of the mRNA and protein level.

Thus, the transcription level is purely dominated by the stochastic part of the dynamics and the

consequent intrinsic dynamics variability generated from this noisy internal level is transferred to the

phenotype level of regulation. All these results are in line with the biological evidence that the transcription

level is dominated by molecular noise and the system is diffusive according to its gene dynamics and explores

its isotropic local micro-state configurations [117]. This navigation is buffered by the translation level which

modulates the mainly noisy-driven behavior of the transcription level. By tuning the noise, the system can

perform an anisotropic exploration on the available space and make an biased tendency towards a specific
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lineage in cell differentiation. Biologically speaking, this asymmetric noise might be placed by external

input in the idea to represent the differentiation signals and drives the system towards one of its predefined

attractors.

6.10.1 Population coupling effect on two-stage T.S. ensemble dynamics

Robustness and adaptability are the key processes to ensure biological survival [169]. Indeed, extra-cellular

signaling can induce the cell to change its internal micro-state as a reaction to environmental perturbations.

In other words, the cellular mechanisms, operating in a functional cell, make adaptive changes in the internal

configuration as an active response to a multitude of factors. At the same time, the cell communicates

to the outside by diverse mechanisms including the opening of ion channels, releasing membrane proteins,

coupling to other receptors and releasing cytokines, microRNAs and transcription factors. Therefore,

multicellular feedback loops can play a central role in cellular regulations.

Cells compose an inter-communicating colony that exchange nutrients, molecules and send out signals.

Therefore the single action of one cell as a open system has to be understood in term of an individual

reaction to a circulating flux of information at the population level. In this perspective, it is misleading, even

in principle, to model biological systems by ignoring an information-based approach as a complementary

analysis to address biological complexity [170, 171]. In particular, these intercellular mechanisms are

further challenging the Waddington landscape as a quasi-equilibrium approach with a pre-defined potential

which is actually originating from the dynamic multicellular self-organizing process. To incorporate this

feedback loop control at the population level, I computationally studied a coupled ensemble of stochastic

entities reflecting the two-stage T.S. model leading to a set of SDEs of the form



Ẋ = αx −γX +Xef f

Ẏ = αy −γY +Yef f

ẋ = A
X+Xef f

KX+X+Xef f
KX

KX+Y+Yef f
−Kdx + ηX (t)

ẏ = A
Y+Yef f

KY+Y+Yef f
KY

KY+X+Xef f
−Kdy + ηY (t) ,

(6.32)

with ηX (t) and ηY (t) being random forces with the same statistical properties in analogy to Eq. 6.17 and

the additional population meanfield coupling
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Figure 6.31: Temporal evolution of the cell state X(t) in a coupled dynamics with the entire population. The
individual concentration is sent out at the population level and an average concentration signaling is received by
each cell as an external global driving force.


Xef f = C(⟨X⟩ −X)

Yef f = C(⟨Y ⟩ −Y ) ,
(6.33)

where C denotes the coupling strength of the individual concentrations with the population average over

time by a signaling loop (see Fig.6.31). When C is bigger than 1, the mean value sensed by each cell is

amplified at the same way as the single concentration is communicated at the population level. This way

of rearranging statistical information in a loop mechanism across scales, maintains the total mass invariant

since ⟨Xef f (t)⟩ = 0 and ⟨Yef f (t)⟩ = 0 at any time over simulation.

In order to study how the phenotype distributions would change under a population coupling, a

stochastic ensemble was simulated with the parameter setting α = 0.05, γ = 0.0005, A = 0.5, Kd = 0.005

and D = 0.01. As a first approach, I studied the symmetric case KX = KY = 2500 with initial conditions

X0 = 2650,Y0 = 2450, x0 = 26.5 and y0 = 24.5. The ensemble size was set to 4,000 and simulation time

corresponded to T=8000. This computational study has the aim to study the evolution of the phenotype

distributions until the system reaches a steady state. The result in Fig. 6.32 shows that in the uncoupled

case (C=0) the standard deviations increase over time when the system is approaching a steady state

configuration. Indeed, in Fig. 6.32a the phenotype distributions are overlapped and indistinguishable

due to the protein concentration variability increasing over time. The dashed line indicates the steady

protein concentration in respect to the initial condition. The dotted line indicates the mean of protein

104



concentration at time T = 500 for the phenotype distribution. In Fig. 6.32b the computational simulation

result for a coupled population with C=0.05 is shown. Interestingly, the coupling effect at the population

level is to stabilize the standard deviation over time. The phenotype distributions are narrowed around the

mean, which changes over time by following the deterministic dynamics. This behavior becomes even more

prominent by increasing C as shown in Fig. 6.32c where the standard deviation is stabilizing around 0.7.

(a) Dynamics for an uncoupled population. (b) Dynamics for a coupled population with C = 0.05.

(c) Dynamics for a coupled population with C = 0.1.

Figure 6.32: Dynamics of phenotype distributions, referred to X protein level, towards a steady state for a simulated
ensemble of uncoupled ( 6.32a) and coupled ( 6.32b, 6.32c) cells. The particles starts from the concentrations
X0 = 2650,Y0 = 2450, x0 = 26.5 and y0 = 24.5 and evolve under the SDEs in the symmetric two-stage S.T. with
parameter setting: α = 0.05, γ = 0.0005, A = 0.5, Kd = 0.005 and D = 0.01.

In order to investigate the standard deviation behaviour in more detail, I studied its trends over time and

across different C. The result is shown in Fig. 6.33 and corroborates the previous evidence of the decrease in

variability of the phenotype distributions when a population coupling is introduced. The standard deviation
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Figure 6.33: Standard deviation trends over time in dependence on population coupling strength C.

reaches a constant level after a period of time simulation depending on the coupling parameter C. Even

with values rather small, such as 10−5, the parameter C amplifies the additional information from the

entire population to the single cell concentration over time. Therefore, the results in Figs. 6.32 and 6.33

indicates a self-adapted variability and directionality at the population level of the phenotype distribution

in response to the meanfield interactions.

As a follow-up analysis, the uncoupled and coupled stochastic system dynamics on the stability manifold

was studied. As the system reaches a steady state around T = 8000, I decided to evaluate the mean signal

over a simulation until a final time T = 40,000. The result is shown in Fig. 6.34. When the system is

approaching a steady state, the X protein concentration averaged over samples follows the deterministic

trend independently on C. After an approximated time of T = 8000 when the system can be considered

to be localized on the stability manifold, the mean signal of the X protein concentration starts to fluctuate

in an apparently random matter in dependence on C.
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Figure 6.34: Time evolution of the mean of the protein X concentration in dependence on coupling strengthe C.

I finally characterized these fluctuations by averaging the standard deviation over time in comparison

with averaging over the statistical ensemble. The aim is to study the effect of coupling on the ergodicity

of the system [172] when it can freely move over a restricted phase space region associated to the stability

manifold. Ergodicity refers to the idea that a point of a moving system, either driven by a deterministic or

a stochastic process, will eventually visit all parts of the space that the system moves in, in an uniform and

random sense. This implies, that the average behavior of the system can be deduced from the trajectory

of a typical point. Referring to this specific analysis, the system holds the ergodic hypothesis if all the

stochastic trajectories over the stationary manifold remain uniformly distributed at all the times. In order

to verify this assessment, the standard deviation of the mean is chosen as a parameter of the system

to evaluate the combined effect of statistical and temporal fluctuations. In the ergodic condition, the

exchange between these two source of variability has to lead at the same outcome. I considered a long

time window between T = 8000 and T = 40000 to study the statistical properties of the system that I

quantified by (i)
⟨
σ
(
X

(t)
M

)⟩
T

and (ii) σ
(⟨
X(m)

⟩
T

)
M

. The first quantity was evaluated by computing the

standard deviation of the protein concentration over the statistical ensemble at any time and subsequently

averaging the temporal signal over the time window. The second one was evaluated by performing the

temporal mean of the protein concentration for any trajectory and consequently by computing the standard

deviation of these values over the statistical ensemble. The result is on the Table 6.1.

To study the decreasing trend between the two evaluations across C, I introduced the quantity δ as
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Coupling parameters
⟨
σ
(
X

(t)
M

)⟩
T

σ
(⟨
X(m)

⟩
T

)
M

0 161 169
0.00005 86.1 98
0.0005 17 35.4
0.0007 13 30.3
0.005 2.20 9.54
0.05 0.231 1.34
0.1 0.11 0.688
0.3 0.038 0.23
0.5 0.023 0.140

Table 6.1: Standard deviation of the mean related to the X protein concentration evaluated by averaging on statistical and
temporal fluctuations across several population couplings.

the ratio between σ
(⟨
X(m)

⟩
T

)
M

and
⟨
σ
(
X

(t)
M

)⟩
T

. Finally, I plotted δ values over C.

Figure 6.35: Ratio between σ
(⟨
X(m)

⟩
T

)
M

and
⟨
σ
(
X
(t)
M

)⟩
T

over C.

The outcome is reported in the Fig. 6.35 and indicates that δ becomes constant at a saturation level.

At C = 0, σ
(⟨
X(m)

⟩
T

)
M

=
⟨
σ
(
X

(t)
M

)⟩
T

is hold under statistical fluctuations. By increasing the population

coupling C, the deviation from equality increases until a constant level is reached. Therefore the system

deviates from the ergodic hypothesis upon modifying the statistical ensemble dynamics by adding a mean-

interaction coupling at the protein level.

In his work [173], Boltzmann set up a more formal definition of the statistical ensembles as collections

108



of "monodes", i.e. probability distributions on phase space invariant under time evolution in a thermody-

namic analogy. The main examples that are described are: the "holode", the two parameters collection

(temperature and volume) of canonical distributions, and the "ergode", the two parameters (energy and

volume) collection of microcanonical distributions. The ensembles are connected via equivalence properties

and the ergodic hypothesis implies that the microcanonical distributions describe the statistics controlling

the physics of a system modeled by given Hamiltonian microscopic equations. The hypothesis establishes

the connection between physics and the thermodynamic analogies. Indeed "the ergodic hypothesis" in the

sense of Boltzmann is that for a confined Hamiltonian system, "a phase space point evolves in time and

eventually visit other points with the same energy" [174, 175]. In this prespectives, my final results might

indicate that the system moves out-of-equilibrium driven by a meanfield coupling at the population level.

The population coupling dynamics proposed above is a first naive attempt to model a stochastic dynamics

driven by the population’s signal. Therefore, further investigations with other coupling interactions are still

necessary.

6.10.2 Conclusion on the symmetric two-stage toggle switch model

The extension of the model to the two regulatory levels of transcription and translation allowed for the

analysis of the multi-level relation at the interface between genotype and phenotype. In particular, our

analysis confirmed the essential role of the translation level to modulate the internal noise on the gene

expression level. The buffer effect emerges at the slower time scale of the protein concentration compared

to the mRNA production level. Overall, the dynamics is less dominated by noise leading to narrower

phenotype distributions as shown in Fig. 6.29. This finding links to the general perspective that this

internal mechanism of gene variability might provide cells with a self-regulation control mechanism upon

stimuli and directionality during the cellular differentiation processes.

The coupling at the population level reduced even more the phenotype variability confirming that a

positive feedback loop might produce an additional driving force towards one of the final stable states.

Since the multi-particle meanfield interactions at the faster time scale affects the single-cell dynamics

according to its microstate configuration, a predefined unique dynamics for all cells as supposed in the

Waddington landascape framework is neglecting this self-organizational aspect of cell differentiation on

the level of the population. Finally, I found that the statistical coupled ensemble does not respect the

Boltzmann’s ergodicity hypothesis [176] on the stability manifold and might indicate that the system is not

equilibrating on the stationary manifold. This result indicates that the coupled cell population evolution,

which describes a continuous cell-cell interactions over a stochastic meanfield-coupling dynamics, might

induce a system in an out-of-equilibrium condition [177, 178, 179, 175].
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6.11 Implications of a new perspective into modelling cell-fate de-

cision

This chapter was dedicated to a bottom-up approach on cell fate dynamics. Based on the experimental

results presented in Chapters 4 and 5 which indicated the importance of cellular diversity in cell inductions,

I focused here on a mathematical framework and computational analysis to explore potential underlying

mechanisms in toy models of differentiation. In Sections 6.6, 6.7, I introduced and studied for this purpose

a model based on a one-stage genetic toggle switch scheme in a symmetric parameter setting. This

analysis was performed from a deterministic and computational stochastic point of view to investigate the

global and local properties of the systems dynamics. The model describes the stage of cellular differentiation

characterized by a destabilization of the progenitor state that might correspond to a promiscuous metastable

state poised between two possible alternative choices in the imminent cell-fate decision. The stability

analysis combined with a stochastic investigation of the system allowed to reveal how the synergistic

combination of deterministic dynamics and noise effects established peculiar heterogeneity for the molecular

concentration probability distribution. Specifically, the noise accomplished that by allowing the system to

reach neighboring steady states accordingly to the initial condition and its strength. Since the simulation

analysis revealed that, accordingly to initial condition, the stationary probability distribution is localized on

specific part of the stationary trajectory, the parameter K plays an interesting role as exploratory parameter

on this restricted manifold. This property indicates the way of the system to loose partially its deterministic

character and to gain a moderate flexibility in exploring other local configurations. This mechanistic

behavior might reproduce the cellular tendency to assume diverse gene regulatory configurations during

different stages of differentiation. Each of them is connected and/or referred to one of the two alternative

lineages. Hence, in the assumption that the system can potentially explore other alternative steady states,

in analogy to cells which investigate the possible internal microstates. Finally, the analysis shows that the

noise allows the system to be aware of its overall dynamic properties even if a parameter choice was fixed.

External signals could break down this internal symmetry and direct the system towards a preferential

stable state. This imbalance is implemented by structurally modifying the gene regulatory network and

consequently cells are abruptly constrained to modify their internal configuration. Probabilistically, the

external signal strengthens offers the possibility to visit those gene network configurations that are mainly

affiliated to the differentiation phenotype profile. Accordingly, the inherent presence of noise and the

instantaneous microstate configuration drive the cell-fate commitment. This aspect was investigated by

studying the asymmetric one-stage toggle switch model (Section 6.9) again in the framework of distribution

biology [27]. The noise is involved in determining the variation of the probability distribution evolution

110



over time. The results showed how the cellular heterogeneity might be emerged from the wide range

of possibilities for each cells to reach the steady state. Indeed, the population dynamics indicates that,

according to the initial molecular configurations, a characteristic variability over time is created by the

coupling between noise and the asymmetric dynamics. From this perspective, a cell state distribution

emerges from this mechanism of induction and selection at the population level.

A cell is also sensitive to external signals at larger scales of interactions as the macroscopic global be-

havior demonstrates e.g. in the local organization for tissue formation [180]. These long-range connections

have to be considered in the modeling for cellular differentiation to respect multicellular signal propagation.

An explicit analysis was performed in Section 6.10.1 demonstrating how an emerging behavior is originating

by informing each cell about the instantaneous average from the entire population.

All these concepts have to be combined to improve the modeling description of cellular processes. The

here presented modeling approaches, which are based on the symmetric and asymmetric toggle switch, can

be directly applied to explore the mechanisms underlying the presence of "rebellious" cells during a cell fate

induction process [39] as explained in Section 3.8. Note that the mechanistic model is not yet meant to

provide a tool for direct applications in (sc-RNAseq) data integration but aims to open a new perspective

in modelling cell fate decisions in a distribution biology framework.
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Chapter 7

Conclusion and Outlook

This thesis is the result of my PhD study investigating cellular heterogeneity by a combined top-down ana-

lysis and bottom-up approach in the spirit of systems biology introduced in Fig. 3.1. This multidisciplinary

study allowed me to acquire a broad knowledge of the available cutting-edge technologies and integrative

frameworks tailored to address molecular and cellular variability. In the first part of the thesis, I applied an

extended state-of-the-art data analysis tools [140] for single cell RNA-seq data to support the investigation

of quantitative experiments dissecting and characterizing cellular heterogeneity and variable responses of

the cells under different conditions and time courses. In this context, I focused on brain cell diversity and

its relation to biomedical relevant systems. In the first study presented in Chapter 4 I investigated, in a

collaborative project, the immune response of microglia as the immune cells of the brain to an activation

stimulus. In the other interdisciplinary study of Chapter 5, I characterized the brain development in zebrafish

during epileptic seizure establishment. These approaches are further discussed below in Section 7.1.

In the second part of the thesis (Chapter 6), I complemented the brain specific top-down approaches

of the first part with a complementary and more generic bottom-up approach to investigate potential

underlying mechanisms of cellular heterogeneity and cell fate. Thereby my gathered experience with the

current challenges in biology and biomedicine, led me to the conclusion that coarse-grained models are

essential to provide a complementary bottom-up perspective to understand cellular heterogeneity as an

emergent property of underlying mechanisms which combine intrinsic gene expression variability and cell-

cell interactions. For this purpose, I started from established theoretical approaches to describe cell fate

[100] (in Sections 6.5,6.6), extended the framework and focused on a detailed analysis on the interplay

between non-linear regulation and effects of the inherent molecular noise (Sections 6.7, ??, 6.8 and 6.9).

The impact and relation of this work to the first part of the thesis is discussed in more detail in Section 7.2.
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7.1 Brain characterization at single cell resolution

The brain is the most complex organ in the body which involves billions of neurons for sending and receiv-

ing chemical and electrical signals throughout the body. Due to its high level of organization, many open

questions still remain elusive and tricky to address. A major scientific interest in this context are clinical

studies aiming at untangling brain disorders including neurodegeneration and epilepsy. The advancements

in experimental approaches with single cell resolution like the single-cell RNA-sequencing technology (Sec-

tion 3.3) have provided a complementary molecular-targeting approach to investigate biological processes.

In particular in the study presented in Chapter 5, a detailed cell-population dissection of zebrafish brain

development was performed by single-cell data analysis using specific gene markers. This detailed invest-

igation confirmed the effect single mutations can have on differentiation processes and gave more insights

into the current knowledge of epileptogenesis. In particular, a potential onset mechanism was hypothesised

in accordance with the increase of reactive astrocytes [181] as a consequence for seizures and by structural

modification of dendrites [182] observed in the fishline carrying the scn1a mutation.

In the more cell-type specific approach of Chapter 4, we investigated heterogeneity of cellular responses

of microglia as the immune cells of the brain upon stimulation. This study is directly related to cell fate

induction where external signals trigger a cellular adaptation in terms of physiological functions. In the

case of microglia, this adaptation and potential hyper-activation is currently investigated in the context

of different brain disorders where particularly for neurodegeneration such as in Parkinson’s disease and

Alzheimer’s disease increasing evidence suggests that microglia can play a key role for neuronal death.

From this perspective, our results on the induction of disease associated microglia (DAM) expression

profiles and their heterogeneous appearance after stimulation may open new insights in underlying disease

mechanisms. In particular, the detection of a delayed subpopulation provided molecular signatures for

identifying possible defects in the microglia activation state. The elucidation of its heterogeneity might be

also essential when considering its direct connections with neuronal cells [183] and its broad functions in

the brain [184] including its role in neurodegeneration.

7.2 Mechanistic approaches to cell fate

Cellular differentiation and its intrinsic mechanism based on cell fate decision-making have been deeply

studied from several perspectives [12, 185, 186, 187]). The most complete approaches are those that

combine qualitative and quantitative investigations and attempt to integrate them across different time

and spatial scales [11, 33]. The need for bridging these levels originate from the phenomenological evidence
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of the complex multi-layers structure of multi-cellular organisms. Specifically, in the study of cellular

differentiation, the cascade of events which regulates progressively cell specifications is modulated by both

signal transduction pathways and cell-cell interactions. Zooming out from the detailed molecular behavior

at small scales to a more extensive vision of multi-cellular dynamics, the Waddington epigenetic landscape

laid the foundation for an abstract framework to globally capture cellular differentiation mechanisms [102].

Its way to look at the process as a dynamics evolving over subsequent quasi-static potentials, that are

underpinned by gene regulatory network, has triggered fresh and innovative ideas.

Like any kind of models, also the Waddington potential landscape in its modern representation, has its

own limitations and approximations. Indeed, this formulation is practically based on the hypothesis that

a unique underlying deterministic dynamics governs the process from the beginning. It assumes that the

system is somehow aware of preferential directions to be taken along the process and its abrupt changes

are justified by a time-dependent parameter of the dynamics which establishes critical transitions that

eventually put the system in another stability regime. I consider this as a strong basic assumption in the

model. From my perspective, the internal changes of gene interactions might occur in many unpredictable

ways depending on a plethora of factors. This consideration led me to the conclusion that a more flexible

modelling approach for cell fate induction is necessary. Moreover, due to the persistent out-of-equilibrium

condition of cells, they are continuously stimulated and in exchange with their environment to adapt

themselves to diverse stimuli. Hence, the quasi-potential approximation might be conceptually too far

from representing reality.

Here, I proposed a more general viewpoint to model cellular differentiation by introducing a symmetric

one stage toggle-switch model in Section 6.6 and its asymmetric version in Section 6.9 to mechanistically

link together the two distinct stages of the process which conduct the cell system towards a final cell

state configuration (Fig. 2.1). I assume that cell commitment is deemed as an individual choice performed

by induction-selection mechanism between the internal gene expression and external signals in terms of a

cellular nano-evolution [27]. I extended this concept inside the biology distribution framework (Section 3.8)

where gene expression variability is the intrinsic stochastic source to create cellular heterogeneity as a

macroscopic manifestation of a stochastic multicellular dynamics as described in Sections 6.8 and 6.9).

Furthermore, the Waddington landscape’s perspective does not consider the cell-cell interactions, which

play a central role during cell commitment and consequently in the final cell state at the population level

as an emergent phenomenon. In Section 6.10.1, I added a population coupling in a two stage toggle-switch

model and by qualitatively studying the stochastic dynamics, where a collective effect could be identified.

That demonstrates that a feedback control mechanism is able to create an additional driving force at the

population level in the context of an independent stochastic dynamics, which pushed the cells towards
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their final phenotype distribution. This finding convinces me about the stringent requirement to consider

a larger scale phenomena as a global manifestation of many-interacting interactions at smaller scales. For

model validation and fine-tuning, it is urgent to collect and combine data from different levels by diverse

complementary approaches. This information flux and integrative knowledge is the way to guide theoretical

approaches to fill experimental gaps and potentially provide a more universal understanding of nature.

7.3 Interdisciplinary approaches to address the urgent challenges

Although inferring specific information from data and comparing qualitative and quantitative measurements

is the correct approach to acquire reliable clues, a systematic way to integrate multi-omics data is still

lacking [7]. One reason for this gap is the huge amount of information to be cross-validated. With the aim

to provide a complementary approach to address this challenge by System Biology, theoretical bottom-up

investigations have to be posed to facilitate the bridging over different scales to describe how biological

information is propagated from the genotype to phenotype level to sustain the organism as a whole.

Therefore, a better understanding for the general concept of co-existence of robustness and adaptability

in regulated biological system is needed [188]. I attempted to put all these main concepts into a simple

but generic model for studying cellular differentiation with the idea to understand the basic mechanisms

as emergent behavior from internal variability combined with direct instructions [20].

Based on its basic and general features, the model has to be adapted for the analysis of specific binary

cell fates by validating its corresponding predictions and identifying its limitations. During this process and

tuned modifications, the model might provide insights into analysing and interpreting specific sc-RNAseq

data based on the identified proposed underlying mechanisms for the emergence of cellular heterogeneity

as a manifestation of dynamic phenotype distributions.

Overall, the experience during my PhD period has strengthened my believe that interdisciplinarity as a

collaboration of different expertise is the only way to achieve a comprehensive and deep understanding of

any natural and social phenomenon and to address the urgent challenges of our society. In this regard, I have

actively been part of the Research Luxembourg COVID-19 Task force, which was founded to support the

Luxembourg government in managing the pandemic crisis. This interdisciplinary group of medical doctors,

virologists, epidemiologists, mathematicians, physicists and other researchers has demonstrated how solid

interdisciplinary scientific approaches can initiated fact-based discussions and decisions to eventually support

the society.
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