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Abstract
Every second, thousands of credit or debit card transactions are processed in financial institutions. This extensive amount of
data and its sequential nature make the problem of fraud detection particularly challenging. Most analytical strategies used in
production are still based on batch learning, which is inadequate for two reasons:Models quickly become outdated and require
sensitive data storage. The evolving nature of bank fraud enshrines the importance of having up-to-date models, and sensitive
data retention makes companies vulnerable to infringements of the European General Data Protection Regulation. For these
reasons, evaluating incremental learning strategies is recommended. This paper designs and evaluates incremental learning
solutions for real-world fraud detection systems. The aim is to demonstrate the competitiveness of incremental learning over
conventional batch approaches and, consequently, improve its accuracy employing ensemble learning, diversity and transfer
learning. An experimental analysis is conducted on a full-scale case study including five months of e-commerce transactions
and made available by our industry partner, Worldline.

Keywords Fraud detection · Incremental learning · Transfer Learning · Fintech

1 Introduction

Credit card fraud jeopardizes the trust of customers in e-
commerce transactions. This led in recent years to major
advances in the design of fraud detection systems (FDS) to
detect fraudulent transactions within a short time and with
high precision. Thanks to those improvements, the fraud loss
is expected to decrease for the first time in decades [1]. Nev-
ertheless, FDS need continual improvements to keep pace
with fraudsters.

Streams of credit card transactions are processed by FDS
by using both expert-based and data-driven detection mod-
els. Training a data-driven model is challenging because
of unbalancedness [2] (frauds represent less than 1% of
all transactions), concept drift (due to seasonal aspects and
evolving fraudster strategies), large size (millions of transac-
tions per day) and the streaming nature of the data. Because
of the three first challenges, models actually used in pro-
duction are often trained with batch learning [3], leading to
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suboptimal solutions in sequential settings. Batch learning
indeed needs frequent retraining steps to cope with sequen-
tial data. However, a batch retrainingwith all available data is
typically unfeasible because of technical, temporal and data
storage limitations. For this reason sliding window mecha-
nisms [4] are used as an intermediate solution by focusing
the retraining on a fraction of recent samples.

Once the retraining rate coincides with the arrival rate,
we are in an incremental learning setting. Online learning
deals with sequential incoming data by returning a prediction
after each single instance observation. Once the true class
is made known (e.g., by an oracle), the model is updated in
order tominimize a given regret function.Well-known online
algorithms are online gradient descent [5] and onlineNewton
step [6].

The efficiency of a learning approach in a sequential set-
ting depends on the stationarity (or not) of the distribution
underlying the observations. In the stationary case, the more
the samples are considered, the more the accurate is the
estimation of the underlying distribution. Also, stationary
settings favor batch learning approaches for their conver-
gence properties (to local or global optima).At the same time,
those propertiesmay be detrimental if we are confrontedwith
nonstationarity or concept drift. It is well known that concept
drift makes fraud detection a difficult task but the real chal-
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lenge remains how to find the appropriate trade-off between
adaptation and learning or between forgetting and memory.
In this paper, we propose to tackle concept drift using both
the sliding window and the incremental strategy.

In [7], we introduced the use of an ensemble of classifiers
trained on different windows of transactions to deal with con-
cept drift. Ensemble methods are based on the idea that the
more we combine decorrelated models the more we may
reduce variance and ensure stability. The notion of diversity
plays then a major role within an ensemble [8]. Moreover, a
diversity-based ensemble allows safeguarding different con-
cepts, ensuring both greater adaptability in case of recurring
concepts and a reduced impact by negative historical models
that would otherwise have a greater weight.

Another recent interesting approach for incremental learn-
ing has been proposed by [9]. DTEL (diversity- and transfer-
based ensemble learning) combines sliding window [4],
transfer learning [10] and ensemble methods. [11,12].

The DTEL procedure is the following: Each time a new
chunk of data is available, a new decision tree classifier is
trained from this chunk. Then the historical trees (built from
previous data chunks) are transferred to fit the current chunk.
(Two transfer learning mechanisms are allowed: Reset the
class of the leaves and grow subtrees according to the current
chunk.) The set of historical trees is constrained to a fixed
size: The removed tree is the one leading to the largest diver-
sity in the ensemble. (The Yules Q-statistic is used.) Finally,
this ensemble votes, for each sample, with each tree being
weighted by its own prediction error on the current chunk.

The rationale of transfer learning is to fill the gap between
two supervised learning tasks by reusing what was learned
from the former (called source) to better address the latter
(referred to as target) [10]. In this sense, transfer learning
may be useful to deal with concept drift if we assume that
different concepts are somewhat related [10].

This paper aims to assess the interest of adopting incre-
mental strategies to detect fraudulent credit card transactions
in a real-world FDS setting. We aim to answer two main
questions:

1. Is incremental learning competitive with conventional
batch and retraining approaches?

2. Is aDTEL-like approach, combining incremental, ensem-
ble and transfer learning robust with respect to concept
drift?

In order to provide an answer, we designed and implemented
16 different approaches to deal with sequential streams of
transactions. The comparative assessment is based on a
five-month dataset (more than 50 million e-commerce trans-
actions) provided by our industrial partner. For the sake
of comparison, all the approaches rely on a dense neural
net (NN), whose architecture had been defined by previ-

ous research. NNs are often used in fraud detection [13,14]
and play a major role in continuous lifelong learning [15].
Also, there were a lots of recent work on fraud detection in
the neural network community. It includes works on con-
volutional neural networks [16], autoencoder [17,18], long
short-term memory and gated recurrent units GRU [19–21],
resampling [19] and ensemble [21] of neural networks.

As far as the DTEL-like approach is concerned, we extend
the DTEL [9] in three directions: (i) we move from decision
trees to (GPU-trained) neural networks. This makes possible
to test the approach in a more realistic and complex set-
ting (original paper mostly includes shorter and synthetic
streams); (ii) we assess several diversity criteria; and (iii) we
adopt a transfer learning strategy designed on the purpose of
fraud detection.

Note that our approach to deal with concept drift can be
defined as passive according to the active/passive distinction
made in [22]. Active adaptation, which requires a specific
test to detect a distribution change [23], is suitable when a
small number of major changes occur in time. This is not the
case of fraud detection, where several drifts occur on a daily
basis.

The rest of this paper is structured as follows: Sect. 2 intro-
duces background and notation. Sections 3 and 4 analyze
the two questions addressed in the paper, respectively. Sec-
tion 5 proposes an additional assessment on a public dataset.
Finally, Sect. 6 concludes the paper with some perspectives
about the future.

2 Background and notation

Let us consider a FDS ingesting a stream of n credit card
transactions Tr1, Tr2, ..., Trn . Streaming processing sys-
tems (e.g., Spark [24]) typically group them into batches (or
chunks of data) according to specific criteria, like the maxi-
mum size of the batch or time interval (daily transactions).

Once the FDS raises an alert, the transaction is checked
by investigators before deciding the relevant action (e.g., cus-
tomer contact, block of the card, etc.) [7]. Given the limited
number of investigators, it is crucial for a FDS to return
the most accurate ranking (e.g., in terms of a conditional
probability score) within the budget k of alerts that can be
investigated (typically 100). Such accuracy is measured in
termsofprecisionwithin thefirst k alerts, here denotedPr@k.
A measure of the accuracy of the entire ranking is the area
under the precision–recall curve (AUPRC) known to bemore
suited for unbalanced classification than the area under the
ROC curve [25,26]).

A peculiarity of real FDS is the delayed feedback [7], due
to the fact that transaction labels are made available only sev-
eral days later, once customers have reported unauthorized
transactions. The delay in obtaining accurate labels and the
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Fig. 1 Real-life FDS scenario with three sets of data. It takes several
days to inspect all transactions, mainly because it is sometimes the card
holder who reports undetected frauds. Hence, in practice, the fraud tags

of the gap set are unknown. This scenario is repeated each day, with
the sliding window approach, as the parameter τ is incremented

interaction between alerts and supervised information has
to be carefully taken into consideration when learning in a
concept-drifting environment: It is represented by the “gap
set” (also simply called gap) of Fig. 1 for a batch learning
perspective. The gap set is the part of the data which cannot
be considered as annotated yet. In our experiment, in accor-
dance with field experts, the gap is seven days long.

Notice that in Fig. 1, τ refers to the testing day (and there-
fore the whole sliding window) and that models are built on
15 previous days, taken after the gap set. By changing τ , we
get different testing days. Some strategies to incorporate the
gap set data can be found here [27,28]. In our case, gap set
data are just discarded.

2.1 Data and code

The database is made up of about 50M e-commerce transac-
tions occurred during 153 days (61 for model initialization,
7 gap days, 15 validation days, to set the hyperparameters,
and 70 test days). The fraud ratio is 0.201%, and each trans-
action is described by 23 features. All data are standardized.
Validation days are used to tune the hyperparameters intro-
duced in the methodological section and detailed in Table 3.
Though data cannot be made available for confidential rea-
sons, consider that the data distribution is similar to the one of
the Kaggle dataset [29], an older, two-day long, anonymized
extract from the same database. Section 5 shows the repli-
cation of the main findings of this paper on this widely used
dataset.

Note that several choices in our approach are due to
the fact that, in data provided by the industrial partner, the
time-related information is featurized into time-based aggre-
gates [28]. This reduces the potential of techniques like
time-based CNN [16] or LSTM, recently adopted to detect
frauds [30] in sequence of transactions (e.g., at card holder
level).

All experiments were carried on a server with 10 cores,
256 GB RAM and an Asus GTX 1080 TI. Keras [31] was
used for the NNs implementation and training. The code is
not made publicly available as some of the content would
disclose some of the industrial secret of our industrial partner.

3 Batch, retraining or incremental?

This section addresses the first methodological question of
the paper, relative to the impact of the learning strategy
(batch, retrained or incremental) on the detection accuracy.
For this reason, we designed four algorithms to deal with the
sequential setting:

1. Batch (Algorithm 1): the classifier is built once, never
updated and applied to the testing set.

2. Retrain(F) (Algorithm 2): the classifier is retrained
each F days, using two latest months and used to predict
the incoming one. It is then discarded and a new one is
built with the same procedure.

3. Incremental(F) (Algorithm3): the classifier is updated
(but not discarded) each F days, using two latest months
and used to predict the incoming one.

4. IncrementalEA(F): this is an unsupervised approach
based on an anomaly detection autoencoder [32].

Each batch Bi is made of the transactions of the i th day. In
the pseudo-codes, batchcl and onlinecl refer to the batch and
online neural network (NN) implementation of the classifier.

To avoid biases related to the classifier structure, all NNs
used in this paper share the same topology. This NN topology
is the one currently used in production by our industrial part-
ner Worldline. It is a dense neural network, selected after an
extensive parameter tuning addressing the unbalancedness
issue. In internal production setting, this NN was shown to
outperform other state-of-the-art approaches for unbalanced
data, like focal loss [33], class-balanced loss [34] and classi-
cal resampling strategies [35]. For the sake of confidentiality,
no more details may be disclosed. For a wider discussion on
unbalancedness in the specific case of fraud detection, please
refer to [7].

The instances in Table 1 have been assessed in the first
experimental session whose results are in Table 2.

The first conclusion of those experiments is that batch
approaches (Batch, Retrain(30) and Retrain(1))
are outperformed by their incremental counterparts (Fig. 2).
Batch and Retrain(30) are significantly less accurate
than all incremental approaches. Retrain(1) is statisti-
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cally equivalent to Incremental(1) but its training time
is 180 times longer (see Table 2).

Our second conclusion is that the frequency of update of
the incremental approaches (Incremental(30),Incremental(7),
Incremental(1)) can be tuned to boost the performance,
but the effect is limited. Overall, adopting an incremen-
tal approach increases the average AUPRC accuracy from
around 6.7 to 10.3%.

As far as IncrementalEA(1) is concerned, the results
are not encouraging. This is pretty much in line with results
in our previous research [7,36] showing the inadequacy of
pure unsupervised methods in fraud detection.

Figure 2 summarizes the previous results in the form of
a Friedman/Nemenyi (F/N) test ([37]). All Friedman null
hypotheses were rejected with α = 0.05. For the Nemenyi
post hoc test, a method is considered as significantly better
than another if its mean rank is more than the critical differ-
enceCD higher (the higher, the better). Results for additional
metrics are given in Appendix A.

Algorithm 1: Batch
initialize batchcl using classical batch (2 months of
data);

lg ← length of the gap set (in days);
for each new testing day i do

rank all transactions of Bi according to batchcl;
compute Pr@100 and AUPRC;

end

Algorithm 2: Retrain (F )
Input: F : the frequency of update (in days)
initialize retraincl using classical batch (2 months of
data);

lg ← length of the gap set (in days);
for each new testing day i do

if F==1 or F days since last update then
% retrain the model, ignoring the gap set
B ← gather data Bi−lg−1 to Bi−lg−61 (2
months of data);

delete retraincl;
train retraincl from scratch with B;

end
rank all transactions of Bi according to onlinecl;
compute Pr@100 and AUPRC;

end

Fig. 2 Friedman–Nemenyi test based on the card-based AUPRC (70
days with one score per day). The plot compares batch approaches
versus incremental approaches. Notice that the a priori fraud ratio based
on cards is 0.201%. Each 70 results is averaged over five runs. The
averages over the 5x70 individual results are reported on Table 2

Algorithm 3: Incremental (F )
Input: F : the frequency of update (in days)
initialize onlinecl using classical batch learning (2
months of data);

lg ← length of the gap set (in days);
for each new testing day i do

if F==1 or F days since last update then
% update the model, ignoring the gap set
B ← gather newly available data from last
update to now;

update onlinecl with B as a new epoch;
end
rank all transactions of Bi according to onlinecl;
compute Pr@100 and AUPRC;

end

4 DTEL-like improvement of incremental
learning

This section implements a DTEL-like enhancement of the
incremental strategy used in the previous section. Some
changes with respect to original DTEL are made:

1. Given the importance of ranking in the AUPRC and
Pr@100 assessment, to compute diversity we replace the
Yule’s Q-statisticswith Spearman’s rank correlation and
other correlation measures (e.g., negative correlation).

2. We change the transfer learning strategy according to
our recent work on transfer learning for fraud detec-
tion [38] (Algorithm 4). Our transfer process is a nonlin-
ear monotonous transformation1 of the new data batch
cumulative distribution (the source domain) into the
cumulative distribution of the data used to initialize the
incremental model (the target domain). It can be easily
achieved by modifying the percentile normalization. (To
make the paper self-contained, a short description is pro-
vided in Appendix B.)

1 Though this applies to continuous features, discrete features may be
re-encoded to get continuous features, see [39] for details.
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Table 1 This table summarizes
the considered approaches for
the first part of this paper. More
details about the strategies and
hyperparameters can be found in
Sect. 3

Setting Frequency c classifier Diversity Transfer Hyper param.

Batch Batch None 1 no no –

Retrain(30) Retrain 30 days 1 no no –

Retrain(1) Retrain 1 day 1 no no –

Incremental(30) Update 30 days 1 no no –

Incremental(7) Update 7 days 1 no no –

Incremental(1) Update 1 day 1 no no –

Table 2 This table summarizes the results for the first part of this
paper. Update time is an indicative execution time to update the model
after each new data batch arrives. Each result is averaged over five
runs. Notice that since the NN training is performed on GPU and data

manipulation on CPU, the training part is not necessarily the most time-
consuming part of the update. * Model is only updated each month or
week. ** Model is never updated

Mean AUPRC Std AUPRC Mean Pr@100 Std Pr@100 Update time

Batch 6.71 % 2.18 % 20.44 % 6.12 % 00.00 s **

Retrain(30) 6.53 % 2.25 % 20.18 % 6.21 % 91.48 s *

Retrain(1) 10.03 % 2.83 % 22.76 % 6.39 % 95.45 s

Incremental(30) 9.70 % 2.92 % 23.32 % 6.92 % 41.82 s *

Incremental(7) 10.29 % 2.81 % 23.00 % 6.18 % 09.64 s *

Incremental(1) 10.20 % 2.90 % 23.18 % 6.43 % 00.50 s

IncrementalAE(1) 2.62 % 1.01 % 9.24 % 3.8 % 00.38 s

3. Ensemble relies on the simple average of probability
scores of 10 independently trained NN.

Algorithm 4: Incremental approach with
transfer

Binit ← 2 months of data for model initialization;
initialize onlinecl using classical batch learning and
Binit;

g ← length of the gap set (in days);
for each feature f do

CDFtargetf ← the CDF of feature f from
Binit;

end
for each new testing day i do

% update the model, with transfer, ignoring the
gap set

gather the newly available data Bi−g−1;
% transfer Bi−g−1 to match the distribution of
onlinecl;

for each feature f do
CDFsourcef ← the CDF of feature f from
Bi−g−1;

transfer by matching CDFsourcef on
CDFtargetf ;

end
if F==1 or F days since last update then

update online clf with Bi−g−1 as a new
epoch;

end
rank all transactions of Bi according to onlinecl;
compute Pr@100 ;

end

We implemented several variants of the incremental algo-
rithm (Algorithm 3) (see Table 3)2 by combining different
ensemble, diversity and transfer learning aspects:

– E: Ensemble version of Algorithm 3.
– EDR : variant of E where each NN of the ensemble is

independently updated with probability p (hyperparam-
eter calibrated by means of the validation set). After a
few days, each NN has therefore trained on a different
subset of days.

– EDRT: variant ofEDR including the transfer learning step
discussed above.

– EDSp: variant of E, but when the model is in the ranking
phase, Spearman’s correlations are computed among all
the NN predictions and the more correlated NN is re-
initialized at the endof the for loop.Avariation consisting
in re-initializing nr NN(s) per day was considered. nr
must be tuned.

– EDSpT: variant of EDSp enhanced with transfer learning.
– EDcos : variant of EDSp, using cosine similarity instead of

Spearman’s correlation
– EDELM : variant of E where the extreme learning [40]
is considered as a source of diversity. Each of the NN
is extended with nl (to be tuned) layer(s) between the
input andfirst dense, trainable, layer. The added layers are

2 Acronyms in Table 3 follow this convention: “E” stands for ensemble
of NNs, “D” for diversity criterion and “T” indicates we used transfer
learning.
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Table 3 This table summarizes
the considered approaches of
this paper. More details about
the strategies and
hyperparameters can be found in
the main text

Setting Frequency c classifier Diversity Transfer Hyper param.

E Update 1 day 10 No No –

EDR Update 1 day 10 Random No p

EDRT Update 1 day 10 Random Yes p

EDSp Update 1 day 10 ρSpearman No nr

EDSpT Update 1 day 10 ρSpearman Yes nr

EDcos Update 1 day 10 Cosine No nr

EDELM Update 1 day 10 Extreme LM No nl

EDNC Update 1 day 10 Neg. Correl. No λ

EDNCT Update 1 day 10 Neg. Correl. Yes λ

Table 4 This table summarizes
the results for the second part of
this paper. Update time is an
indicative execution time to
update the model after each new
data batch arrives. Each result is
averaged over five runs. Notice
that since the NN training is
performed on GPU and data
manipulation on CPU, the
training part is not necessarily
the most time-consuming part of
the update

Mean AUPRC Std AUPRC Mean Pr@100 Std Pr@100 Update time

E 11.07 % 3.21 % 24.40 % 7.17 % 14.78 s

EDR 11.15 % 3.13 % 24.65 % 7.03 % 10.79 s

EDRT 11.13 % 3.20 % 24.69 % 7.12 % 13.46 s

EDSpT 7.70 % 2.30 % 19.46 % 5.51 % 47.07 s

EDSpT 7.63 % 2.31 % 19.26 % 5.45 % 42.86 s

EDcos 8.31 % 2.58 % 20.06 % 5.76 % 48.00 s

EDELM 9.41 % 2.94 % 21.28 % 6.30 % 65.65 s

EDNC 11.61 % 3.52 % 26.22 % 8.11 % 21.34 s

EDNCT 11.63 % 3.51 % 26.20 % 8.24 % 20.09 s

randomly initialized, untrainable and share the same size
as the largest layer of Worldline’s industrial NN. Linear
activation function was selected, by trial and error.

– EDNC : variant of E with a negative correlation (NC)
loss function containing a term promoting the diversity
in the ensemble.
Negative correlation (NC) learning [41] introduces a
penalty term into the loss function of each NN in the
ensemble so that all the NNs can be trained simulta-
neously and interactively on the same data. The error
function Ei for NN i in NC learning is defined by:

Ei = 1

N

N∑

n=1

1

2
(Fi (n) − t(n))2 + λ

N

N∑

n=1

pi (n) (1)

where Fi (n) is the output of NN i for sample n, t(n)

is the target value for sample n and N is the number
of NN in the ensemble. The first term is the empirical
risk function of NN i . The second term with pi (n) =
(Fi (n) − F(n))

∑
i �= j (Fj (n) − F(n)) is a correlation

penalty function, with F(n) the output of ensemble of
NNs.

– EDNCT: variant of EDNC with a transfer learning step.

Note that transfer learning can be added to all possible
approaches. To avoid to report and analyze every approach

twice,we choose to include only the transfer learning variants
for a subset of the approaches of this study.

Table 4 is used to summarize the 70 evaluations (one per
test day) of the metric for each approach. We report the mean
and standard deviation for the AUPRC and the Pr@100.
To avoid variability in the NN training, each result is the
mean of five different initializations. Most of the approaches
are already stabilized as they imply ensembles of classifiers.
Notice that the variability is still high in practice: This is due
to the number of frauds to detect which can be very different
each day and is not due to the initialization of the NNs. A
calibrated version of the AUPRC, which removes the effect
of the varying proportion of fraud to detect, is presented in
Appendix A.

Table 4 also reports the mean execution time for updating
the models. Notice that most models are updated daily, but
some are updated less frequently. Also, since the NN training
is performed on GPU and data manipulation on CPU, the
training part is not necessarily the most time-consuming part
of the update.

Figure 3 summarizes the results in the form of a Fried-
man/Nemenyi (F/N) test ([37]). From this figure, it appears
that:
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Fig. 3 Friedman–Nemenyi test based on the card-based AUPRC (70
days with one score per day). The plot compares various ensembles
and baseline approaches. Notice that the a priori fraud ratio based on
cards is 0.201%. Each of the 70 results is averaged over five runs. The
averages over the 5x70 individual results are reported on Table 4

Fig. 4 The two sets of experiments show an increase in performance
from around 6.7% average AUPRC to 11.6% average AUPRC

– The ensemble approach E significantly outperforms
Incremental(1), yet at the price of a longer training
time.

– Adding diversity is sometimes beneficial (EDR ,EDNC )
and sometimes not (ED,EDELM ,EDcos). In the beneficial
case, the gain is limited but the training time is not really
impacted.

– Considering transfer learning does not make a big dif-
ference. Consider EDSp vs. EDSpT, EDR vs. EDRT and
EDNC vs. EDNCT. The mean ranks are really close and
the F/N test concludes it is a draw in the three cases (this
was the case even for unreported pairs). Our conclusion is
to use either EDR or EDNC with no transfer, except if the
transfer is justified by a lack of source data (as in [39]).

This second set of experiments allows us to increase the
performance from around 10.3% average AUPRC (at the end
of the first set of experiments) to 11.6% average AUPRC (see
Fig. 4 to visualize the results as a function of time).

Fig. 5 Friedman–Nemenyi test based on the ROC AUC (24 hours with
one score per hour). The plot compares the main approaches on the
public dataset. Each of the 24 results is averaged over ten runs; average
over the 10x24 individual results is reported besides the method name

5 Assessment on public data

Given the confidential nature of the dataset, it is interesting
to assess the quality of our approach on a public dataset. In
this section we make use of the Kaggle “Credit Card Fraud
Detection” dataset [29], made available some years ago by
our research group to support the reproducibility efforts in
the fraud detection community [32]. Note that this is one of
the few fraud detection datasets publicly available and one of
themost accessed datasets on theKaggle platform (more than
seven million views so far). This dataset is a two-day long,
anonymized extract from the same process underlying the
private dataset. Because of the limited time window, we have
to adapt the time frames: The first day is used for training and
each chunk of data refers to one hour of transactions. Also,
since no card holder information is available, we may only
report accuracy in terms of area under the ROC curve.

Figure 5 reports the outcome of the Friedman/Nemenyi
test. For simplicity, and to ensure sufficient statistical power
to the test, we limit ourselves to report the most important
methods and baselines from previous sections. In spite of the
smaller time frame, the trend of Figs. 2 and 4 is confirmed.

6 Conclusion

Incremental learning is one of the oldest learning strategies in
AI.However, fewevidence exists about the current utilization
of this strategy in fraud detection production environments.
Nowadays, the interest in adopting incremental approaches is
raising also for nonanalytical reasons, e.g., the wish to avoid
storing sensitive data and being exposed to infringements of
the European GDP Regulation.

This paper shows that incremental learning is a compet-
itive alternative to conventional batch learning settings for
fraud detection in real-world transactions streams. Though
the case study is limited to fivemonths of data on e-commerce
transactions, we believe that other fintech domains can ben-
efit from our findings.

Thepaper discusses, implements and assesses 16 approaches
(on private and public data) and answers to two questions:
(i) Is incremental learning viable for fraud detection? and
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(ii) Are there variants of incremental learning (notably based
on ensemble learning, diversity and transfer learning) which
may still improve its accuracy?

The answer to the first question is affirmative. The second
is more mitigated, though the adoption of proper diversity
measures in ensembles (notably negative correlation) appears
to improve the accuracy.

Future work will focus on extending the set of consid-
ered approaches (alternative transfer learning and diversity
measures). Also we intend to study the risk of catastrophic
forgetting in the adoption of techniques to counter concept
drift.
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A Appendix: Additional metrics

As explained in Sect. 2, taking into account the Pr@100 can
be more relevant because of the limited number of investi-
gators or investigations per day. Figures 6 and 7 summarize
the results in the form of F/N tests ([37]).

Another interesting indicator can be obtained by calibrat-
ing the AUPRC. Indeed, the number of fraud to detect per
day ranges from 0.095 to 0.335% (the coefficient of variation
is 21%.). The AUPRC is calibrated in such a way that it is
invariant to the fraud prior (see [42] for details). Figures 8
and 9 summarize the results in the form of F/N tests ([37]).

The purpose of those two additional metrics is to be exten-
sive on the results and to provide different points of view for
the evaluation. For the sake of conciseness, we will not com-
ment all the results once again. This appendix shows that the
conclusions are the same, in terms of statistical tests, regard-
less of the metric used: Pr@100, uncalibrated AUPRC and
calibratedAUPRC.However, since those threemetrics do not
measure exactly the same quantities, there are small varia-
tions in the actual ordering of themethods in terms of average
results.

Fig. 6 F/N test based on the metric Pr@100. See caption of Fig. 2 for
details

Fig. 7 F/N test based on the metric Pr@100. See caption of Fig. 3 for
details

Fig. 8 F/N test based on the metric calibrated AUPRC. See caption of
Fig. 2 for details

Fig. 9 F/N test based on the metric calibrated AUPRC. See caption of
Fig. 3 for details

B Appendix: Transfer learning in details

This description is based on [38] and is here to make the
paper self-contained. Algorithm 4 details how transfer learn-
ing is embedded into the continuous approach. In our case,
the target domain is the data used to initialize the incremental
NN model and the source domain is the new batch of data.
We consider here only the univariate case where each feature
is transferred independently of the others.

The transfer process is a nonlinear monotonous transfor-
mation of the values of a continuous random variable X (the
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source data), such that the cumulative distribution function
(CDF) of X after transformationmatches a given CDF F (the
target data).

First, we compute the value of the empirical CDF of X
(noted F̂) at each observed value xi , i = 1, . . . , n. The trans-
ferred value x ′

i is then chosen such that F(x ′
i ) = F̂(xi ). We

denote source examples by x (s)
i , i = 1, . . . , n(s) and target

examples by x (t)
j , j = 1, . . . , n(t), with n(s) and n(t), respec-

tively, the number of source and target examples. We also
note the value of the empirical CDF as p(s)

i = F̂ (s)(x (s)
i ) and

p(t)
j = F̂ (t)(x (t)

j ).

The source examples x (s)
i are transformed to a CDF that

matches the empirical CDF F̂ (t) of the target examples. The
target examples are left unmodified. For each source example
x (s)
i and the corresponding empirical CDF value p(s)

i , we

find the two consecutive empirical CDF values p(t)
j1

and p(t)
j2

framing p(s)
i in the target domain:

p(t)
j1

≤ p(s)
i < p(t)

j2

with j1 + 1 = j2. x
(s)′
i is then computed as the linear inter-

polation between the values x (t)
j1

and x (t)
j2
.
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