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Summary:  
The planimetric accuracy of old maps can be calculated using cartometric methods like 
Helmert transformations. As the choice of control points for these transformations is 
somewhat arbitrary, this may cause stochastic variations in the results. This paper addresses 
these stochastic variations and proposes to apply Bayesian data analysis methods to quantify 
the uncertainty of the cartometric calculations. The paper shows that the Bayesian data 
analysis is consistent with the deterministic calculations, and it provides safe statistical 
bounds for the results. 

 

Introduction 

Cartometric analysis of old maps is a standard tool in historical cartography research. Researchers 
use it to calculate the scale of an old map, to estimate its accuracy, or to detect dependencies between 
maps. Since many old maps were copied from previous maps, map historians use quantitative 
methods to detect how “errors” in maps were generated and propagated. Such methods help to 
understand how and when historical information, like the change of borders, was reflected in maps. 
Moreover, they can build map “genealogies”, i.e. sequences of maps depending on each other, by 
using cartometric methods. This is valuable for historians who want to understand how certain 
historical developments or new geographical information are reflected in old maps for the first time.  
 
“Errors” on old maps can have various sources (Blakemore und Harley, 1980). Three sources of 
error, in particular, can be distinguished. Firstly, topographical errors which refer to what is shown 
on the map, secondly geodetic errors related to the projection of the 3D earth surface to the 2D 
paper. Finally, planimetric errors describe how exact the position of an object is on the map. In this 
paper, we focus on the latter, ignoring the geodetic effects which are typically small on regional 
scales. Furthermore, we will not consider methodological errors e.g. how exact can we measure a 
position of a location, although we acknowledge that measurement errors may contribute to the 
variability of the data. 
The most common method for comparing two maps is a bidimensional linear transformation: For 
this method control points (CPs) are defined, these can be town centres, bridges, river estuaries, etc. 
Then the positions of the CPs on both maps are measured. In a last step, the coordinates of the CPs 
on one map are transformed to the second map while minimizing the resulting “gaps” or residuals. 
The average residual is a measure for the “distance” of the two maps. 
Typically, the residuals are not homogeneous: some CPs may align well, while other outlier CPs 
show large gaps. The average residual as a single number hides such inhomogeneities. Also, the 
value of the residual may depend on the selection of the CPs which adds a stochastic component to 
the process.  
The goal of this paper is to investigate how Bayesian data analysis methods can be used to capture 
the stochastic effects inherent in the transformation between two maps. It is designed as a small 
case study with a focus on the methods, not on the results of the map comparisons. The paper 
describes an initial attempt to apply Bayesian data analysis to the field of cartometry of old maps, 
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it is not meant to be conclusive. Rather than calculating a single number with no statistical 
validation, Bayesian data analysis provides a distribution for the distance value with safe statistical 
bounds. Finally, this will increase the trust in cartometric calculations. 
 

State-of-the-art 

Cartometric methods are frequently used in accuracy analyses of old maps, for an overview see 
(Livieratos, 2006). Conformal transformations are the most commonly applied method, like the 4-
parameter Helmert transformation. A good description of the various algorithms can be found in 
Beineke’s dissertation (Beineke, 2001). In order to calculate the Helmert transformation and to 
visualize the results, many map historians use the public domain tool MapAnalyst (Jenny und Hurni, 
2011). Depending on the nature and quality of data, outliers are possible and require special 
treatment, since they can “spoil” the results. Researchers are exploring different methods to control 
outliers by applying statistical approaches (Jongepier et al., 2016), alternative transformations based 
on kernel methods (Herrault et al., 2013), or evolutionary algorithms (Manzano-Agugliaro et al., 
2013). To the author’s knowledge, the use of Bayesian methods as evaluated in this paper has not 
been published in the literature so far.  
 

Test cases 

As test cases we look at two old maps of the region between the Meuse and Rhine rivers, including 
the Grand-Duchy of Luxemburg and the greater region, with parts of Belgium, France and 
Germany. 

 The Luxemburg map of Gerhard Mercator, published in his atlas from 1585 on. 
 The Luxemburg published in Ortelius’ Theatrum Orbis Terrarum from 1579 on. 

Both maps are well-known iconic examples for maps in the region (van der Vekene, 1980, 1.02 and 
1.05), they are based on previous land surveys and have been copied many times. 
Both maps will be compared to a modern map and as well among themselves using standard 
cartometric methods. The focus of the paper will be to understand and validate the statistical aspects 
of these methods. 
 

Figure 1: Mercator map of Luxemburg and Trier (left) and the Luxemburg map in Ortelius’ Theatrum Orbis Terrarum. The 
cities of Trier and Luxemburg are marked by orange and blue arrows. 

 
  



Methods 

The Helmert Transformation 

The classical 4-parameter Helmert transformation consists of the following steps: 
1. Define n topographic CPs (town centers, other landmarks) which are present on both maps 

and have not changed their geographic position over time. 
2. Measure coordinates (xi,yi) and (Xi,Yi) of the CPs on both maps (i=1, …, n). This can be 

done by a digitizer (unit: pixels), a ruler for paper maps (unit: cm), or direct reading of 
Gauss-Krueger or UTM coordinates (unit: km). 

3. Determine 4 parameters aj, j=1,…,4 for the transformation of the (xi,yi) coordinates to the 
(Xi,Yi) coordinates. The parameters of this affine transformation describe the x- and y-offset, 
the scaling factor, and the rotation angle. In order to compute the best fit for these 
parameters an overdetermined system of equations has to be solved, this is described in 
more detail below. 

4. Transform (xi,yi)  (x̂i,ŷi) using the parameters aj 
5. Calculate the residual vector r with ri = ((x̂i - Xi)2 + (ŷi - Yi)2)1/2 as the local point errors. The 

mean value of ri (i=1,…,n) is a measure for distance between the two maps. 
 
The equations for this transformation in steps 2. and 3. are (following Beineke, 2001, p. 12–16) 
 

X = X0 + mcos()x  -  msin()y 
Y = Y0 + mcos()y  +  msin()x 

 
x,y denote the coordinates for the CPs on the old map, X,Y the coordinates of the CPs on the target 
map (modern map or another old map). X0 and Y0 are the offsets in x- and y-direction, m is the 
relative scale between the maps, and  the angle between the orientation of the maps (old maps are 

not necessarily aligned to the north).  
With a1 = X0, a2 = Y0, a3 = mcos(), a4 = msin() the equations become linear for the 
parameters aj 
 Xi = a1 + a3xi – a4yi (1) 
 Yi = a2 + a3yi + a4xi  

 
or in matrix notation with the Helmert matrix H, and the right hand side l. 
  

Ha = l 

with  

 
Since the system has 2n equations for 4 unknowns it is overdetermined, and an approximate solution 
â minimizing the remaining residuals is calculated from 



 
â = (HTH)-1HT l 

With the back substitution X0 = a1, Y0 = a2,  = arctan(a4 / a3), m  = (a3
2

 + a4
2)1/2  we can compute the 

offsets, the scale and the rotation angle between the two maps. Applying transformation (1) to the 
CPs (xi,yi) results in (x̂i,ŷi), these points are close to the target CPs (Xi,Yi). The remaining difference 
is the local point error, the arithmetic mean over all CPs is the distance between the two maps. 
The Helmert transformation was implemented in R, to have full control over the algorithms and the 
statistical effects. These transformations can also be performed with the program MapAnalyst.  
 

The Mercator Map of the Duchy of Luxemburg and the Electorate of Trier 

For the comparison of the Mercator map and the modern map we selected 55 CPs, mostly towns in 
Luxemburg, Southern Belgium, Eastern France and Western Germany. The point errors are given 
in the unit of the target map (here in km), the distance (i.e. the mean value of the point errors) is 
5.77 km, see Table 1. For the comparison of the Ortelius map with the modern map 34 CPs were 
used, the distance is 7.67 km. The relative distance is the distance in relation to the longest side of 
the rectangle represented by the map. Both maps are facing north with a small deviation, the 
computed scales are consistent with data in the literature: 1:525.000 for the Mercator map (Hellwig, 
1985) and 1:400.000 for the Ortelius map (van der Vekene, 1980). 
 

Map 1 Map 2 
Control 
points 
(CPs) 

Distance 
Angle Scale 

km relative 

Mercator Modern 55 5.77 2.9% -1,05° 1:482,000 

Ortelius Modern 34 7.67 5.1% -4,95° 1:415,500 

Table 1: Comparison of old vs modern maps 

 
Figure 2 shows the point errors for each CP. Obviously, there is a large variation in the point errors 
between the CPs, for the Mercator map ranging from 0.2 km (at CP #4) to 12.9 km (at CP #11), for 
the Ortelius map ranging from 1.3 km (at CP#20) to 19.0 km (at CP#27). 
 

Figure 2: Distribution of point errors, (a) left for the Mercator map, (b) right for the Ortelius map 

 

Given this large variation in the point errors, the question arises how sensitive the cartometric 
calculation reacts on the selection of the CPs. Had we chosen other CPs, would the distance have 
been different, and by how much? 



In order to understand this better, we cyclically remove one CP from the set of points and run the 
Helmert transformation for the remaining n-1 CPs.  
 

 
Figure 3: Variation of point errors if one CP is removed from the calculation 

 
We observe a considerable variation of the calculated distance, depending which CP is removed. In 
particular, when the outlier CPs are not included in the analysis, the distance decreases from 5.77 
to 5.62 km (Mercator map) and from 7.67 to 7.16 km (Ortelius map). Not unexpected, the variation 
of the distance measure is even larger when we remove 2 CPs.  

 

Map 1 Map 2 
Control 

points (CPs) 

Distance in km when 1 CP is 
removed (circular over all CPs) 

Distance in km when 2 CPs are 
removed (randomly over all CPs) 

min max mean min max mean 

Mercator Modern 55 5.62 5.87 5.77 5.48 5.98 5.77 

Ortelius Modern 34 7.16 7,86 7.66 6.70 8.06 7.64 

Mercator Ortelius 33 5.34 5.78 5.65 5.02 5.89 5.64 

Table 2: Sensitivity of results when one or two CPs are removed from the calculation 

 
For example, if we had selected only 32 CPs (instead of 34) in the Ortelius map the calculated 
distance to the modern map could have varied between 6.70 and 8.06 km. The direct comparison of 
the two old maps (last row) shows a similar interval of uncertainty (between 5.02 and 5.89 km). 
Although the Helmert transformation is a deterministic algorithm, the choice of CPs is somewhat 
arbitrary and the data in Table 2 indicate that the distance calculation is inherently stochastic and 
uncertain. Apparently, a different choice of a few CPs may lead to different results. This observation 
is the motivation to investigate the possibilities of Bayesian data analysis to capture the stochastic 
effects.  
 

Bayesian data analysis 

Bayesian inference is the process of fitting a probability model to a set of data and summarizing the 
result by a probability distribution on the parameters of the model and on unobserved quantities 
(Gelman et al., 2014). If the model parameter space is too large, the computation of the posterior 
distribution uses a simulation method, typically a Markov Chain Monte Carlo (MCMC) iteration 
algorithm. Details of Bayesian data analysis and the MCMC method are given in (Gelman et al., 
2014) and (Kruschke, 2015).  
 



For our analysis the Helmert transformation algorithm is mapped to a Bayesian model. Assuming a 
statistical distribution of the CP coordinates, Bayesian regression delivers a distribution for the 
parameters a1, …, a4. These are then used to calculate the transformed coordinates (x̂i,ŷi), also as 
distributions. Finally, we obtain the distance, the angle and the scale between the two maps as 
distributions, not as single numbers. 
We make only weak assumptions about the initial distributions (“prior knowledge” in Bayesian 
terms), we let them follow a normal distribution, with a uniformly distributed standard deviation.  
The model was implemented in R as Markov Chain Monte Carlo (MCMC) iteration process, using 
the JAGS package and a modified version of the module Jags-Ymet-XmetMulti-Mrobust (Kruschke, 
2015, p. 509–525).  
The result of the simulation is expressed as a 95% Highest Density Interval (HDI) which contains 
the most credible values of the posterior distribution of the distance, the angle and the scale. For 
both maps, the data calculated directly with the deterministic Helmert transformation lie in the 
interval and are close to the modes of the Bayesian statistical model (see Table 3).  
 

Map 1 Map 2 Algorithm Distance (km) Angle (°) 
Scale 

 (x 100,000) 

Mercator Modern 

Deterministic 5.77 -1.05 4.82 

Bayesian 

   

Ortelius Modern 

Deterministic 7.67 -4.95 4.16 

Bayesian 

   

Mercator Ortelius 

Deterministic 1.36 cm ≙ 5.65 km 2.68 n/a 

Bayesian 

  

 

Table 3: Comparison of direct (deterministic) and Bayesian calculation of distance, angle and scale. The histograms of the 
Bayesian distributions show the minimum and maximum of the 95% HDI and the mode (most frequent value). 

 

Conclusion 

To compare maps with cartometric methods, the coordinates of control points are measured on both 
maps, followed by a 4-parameter Helmert transformation. The parameters of the transformation (x-
offset, y-offset, angle and scale) are chosen in order to minimize the resulting mean residual (point 
errors) which defines what we call distance between the two maps. The results of this process may 



depend significantly on the choice of control points. To capture the variability in the data, statistical 
approaches are required. 
We developed a Bayesian model for the Helmert transformation and implemented it as a Markov 
Chain Monte Carlo (MCMC) iteration using the JAGS package. Two old maps (Mercator “Trier 
and Luxemburg” from 1585 and Ortelius “Luxemburg” from 1579) were selected as examples. 
They were compared with a modern map and between each other, using the usual deterministic 
calculation and the new statistical Bayesian model. 
The results of the Bayesian analysis are consistent with the data obtained with the deterministic 
method. Rather than a single number, the Bayesian simulation provides safe (95%) statistical 
bounds for the distance, the angle and the scale. 
The present study shows that the Bayesian analysis is useful to estimate and to control stochastic 
effects in cartometric map analysis and may contribute to future research. 
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