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Preface:

The Robotix-Academy Conference for
Industrial Robotics (RACIR) is held on
September 22, 2021 at Trier University of
Applied Sciences, Environmental Campus
Birkenfeld, Germany as a hybrid conference.

The Environmental Campus Birkenfeld was
founded in 1996 and is the greenest
university in Germany. Currently, around
2,300 Bachelor and Master students from
more than 80 countries are studying on
campus in the fields of environmental
planning/environmental ~ technology and
environmental economy/environmental law.

The campus is internationally networked,
with the strength of strong, regional roots.
The students come from all over the world to
Hoppstiadten-Weiersbach - due to the
groundbreaking and future-oriented edu-
cation.

RACIR was moderated by Prof. Dr.-Ing.
Matthias Vette-Steinkamp and accompanied
by a roadshow of various manufacturers of
robots and related equipment.

The topics concerned by RACIR are: robot
design, robot kinematics/dynamics/control,
system  integration, sensor/ actuator
networks, distributed and cloud robotics,
bioinspired  systems, service robots,
robotics in  automation, biomedical
applications, autonomous vehicles (land,
sea and air), robot perception, manipulation
with  multifinger  hands, micro/nano
systems, sensor information, robot vision,
multimodal interface and human-robot
interaction.
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An approach to overcome challenges prior to the
actual peg-in-hole problem for the lithium-ion
battery pack assembly

Boker, Moritz Emanuel
Faculty of Mechanics and Electronics
Heilbronn University
Heilbronn, Germany
moboeker @stud.hs-heilbronn.de

Abstract—Lithium-ion battery packs based on the 18065 cell
power countless electronic devices. These battery packs consist
of cell holders containing holes where the batteries are inserted
into. Each battery pack has its own shape, size and geometric
constraints. Mostly these injection molded parts were designed
to be assembled manually and not autonomously. This paper
introduces an advanced human-inspired compliant approach to
solve the lithium-ion battery based peg-in-hole problem. The here
presented methods do not focus on how to center and lower the
peg into the hole but rather on bringing the peg to the hole
if there are displacement errors of up to several millimeters.
Also additional challenges arising in the battery pack assembly
are overcome: Despite a reduced number of mounting directions
for a tilted peg and pins protruding from the hole surface the
battery cell is guided to the edge of the hole. When it has
arrived there, common peg-in-hole strategies explained in other
publications can be applied to center and lower the peg and thus
complete the assembly. All algorithms are force and geometric
constraint based only - no vision system is needed! They were
implemented and tested on a specially developed industrial robot
plant in cooperation with the German battery pack manufacturer
ANSMANN AG with a URSe collaborative robot it is able to
assemble a variety of battery packs differing in size, shape and
other parameters. The inbuilt coarse force torque sensors of the
URS5e are sufficient. The industrial plant has been tested for
several month while mounting thousands of battery cells with a
success rate of more than 99.5%.

I. INTRODUCTION

Since the end of the last century until the very day, lithium-
ion battery packs power a variety of not only handheld devices
but also larger consumer goods. Their use and comfort is
indispensable in our daily life: from our phones and laptops
being the constant companion during the work day, until the
electric car, bicycle or the vacuum cleaner we use at other
times. Many but not all of these applications use the 18065
lithium-ion battery cells, which are connected in series and
parallel yielding a powerful battery pack.

There are two strategies to design portable and thus battery-
based products: The first one is to involve an already developed
standard battery pack and to engineer the product around that
battery. While the fixed specifications of the standard battery
pack reduce the flexibility of the product design, they facilitate

Joos, Markus
Faculty of Mechanics and Electronics
Heilbronn University
Heilbronn, Germany
joos_markus @t-online.de

Prof. Dr.-Ing. Timo Hufnagel
Faculty of Mechanics and Electronics
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mass production because of their widespread application.
They are designed to support autonomous assembly by e.g.
incorporating chamfered edges.

The second strategy is to develop a product and have its battery
designed specifically for it. Thus there are less restrictions
during the design phase and the battery seemingly integrates
to the product. But the downside is that this battery can only be
used in that specific application. If it is not a widespread con-
sumer product it probably will not be manufactured in highly
automated mass production plants but still by hand. But how
can different small series battery packs originally designed for
manual assembly be put together autonomously by one and the
same production plant? This industrial plant would need to be
highly adaptive and thus be able to solve the well researched
peg-in-hole problem in a variety of environmental settings.
This is exactly what this paper is about.

II. STATE OF THE ART

Solving the peg-in-hole problem is one of the classical
disciplines exercised in modern assembly processes involving
industrial robots. Especially when it comes to fit a round
peg into a round hole with a certain clearance between
them, there are various successful approaches already applied
in many industries throughout the globe. When there is a
huge misalignment of the peg and the hole in addition to a
vast search region caused by an extremely small clearance,
[CBO1] proposes “blind searching strategies” without the aid
of visual assistance. Several approaches define a trajectory
to be travelled by the end effector (eef), covering the entire
discretized search region:

The search region can be covered by joining the discretized
points resulting in a zig-zag trajectory, or by using concentric
circles with a spacing of double the clearance or a spiral path.
[CBO1] points out that an even more effective way is to tilt
the peg into the hole to infer the direction of misalignment”
as humans naturally do when inserting a peg into a hole. A
prerequisite is that for the starting position the peg and the
hole need to have an initial overlap. In more than 60 trials
the success rate was 100 % with an average assembly time of
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7.1s, almost seven times faster than a worst-case spiral search.
Another approach is done by [Li+17]. Their human-inspired
compliant peg-in-hole strategy is also based on a tilted peg
and uses a coarse force sensor. According to [Li+17] a human
hand and arm is superior to industrial robots: While a human
has a much lower precision and stiffness than industrial
manipulators, he still can assemble a peg into a hole even
with the smallest clearance. This is because of his compliance
caused by the muscles and tensions which can be adapted to
an industrial robot.

There are three contact types of a tilted round peg with a
round hole: a one, two and three points contact. When the
peg contacts the hole at one or two points, the force acting on
it can be measured with a coarse force sensor. While moving
downwards the horizontal force direction “helps to slide the
peg to achieve a three points contact” [Li+17].

While there a many possibilities for one point and two points
contacts, the three points contact exists only once. It is
established when the tilted peg has reached the lowest point
within the hole. The three-dimensional clearance of the tilted
peg within the hole is called the “constraint region”. When the
minimum of the constraint region is reached, the peg can be
tilted back so that its longitudinal axis aligns with the center
axis of the hole. Then it can be inserted completely into the
hole [Li+17].

The human-inspired method by [Li+17] even works without
jamming, when the clearance of the peg and the hole is smaller
than the repeatabilty of the robot. The downsides are the low
speed (about 40s for one assembly) and the prerequisite that
the starting position must lie in the constraint region. The here
presented methods however concentrate on how to bring the
peg to the constraint region in the first place.

[JPV17] deals with the autonomous assembly of flexible
rubber pegs with a force-guided robot. By using a Gaussian
mixture model the measured wrench (force and torque) acting
on the peg can be analyzed and the discrete contact states
of the peg and the hole being classified. In [JP13] each
contact state is evaluated by using a Takagi-Sugeno fuzzy
inference system that takes the wrench and pose (position
and orientation) as an input and returns the model type as
an output.

In general flexible parts are more challenging to handle as
they exhibit smoother force transitions when a contact is
established. Lithium-ion batteries in contrast are rather stiff,
while the injection molded cell holders may deform more
easily.

The peg-in-hole problem can also be solved by reinforcement
learning (RL) algorithms [Ino+17; Bel+20], penalizing the
robot for wrong actions or rewarding it for good ones. [Ino+17]
trains and deploys two RL neural networks, one doing the
search (bringing the peg to the hole until their centers coincide)
and the other one the final insertion. These RL algorithms have
been tested on a robot having an accuracy of 60 um and a peg-
in-hole clearance as low as 6 um. The average assembly time
is less than 55 at 100 % success rate.

III. SCIENTIFIC GAP

At first glance the peg-in-hole problem described in this
section resembles the standard peg-in-hole problem for a
cylindrical peg and hole. But eventually it will become obvious
that further challenges increase its complexity and that the
previously mentioned solutions are not sufficient alone to
overcome them.

A. The peg

The cylindrical 18065 lithium-ion battery cell (see figure
la) is the peg, having the following specifications:

« Diameter: dpe, = 18.3 & 0.2mm

o Edge: chamfered (chamfer radius: 0.6 4+ 0.1 mm)

o Purchased standard part — cannot be modified

B. The hole

The battery cells are inserted into various-shaped battery
cell holders. They may be rectangular (see figure 1b), round
or arbitrarily shaped and have a different numbers of holes to
insert the batteries into. The specifications of the holes are:

e Diameter: dpoe = 18.7 £ 0.2 mm

« Edge: sharp

« Injection molded part — cannot be modified

Therefore the clearance between the peg and the hole results
in: ¢ = 0.4 4+ 0.4mm.

C. The UR5e robot arm

In order to solve this peg-in-hole problem, a UR5e industrial
collaborative robot arm from Universal Robotics was chosen
which has coarse force torque sensors built into its joints.
Their specifications are [Rob]:

H Sensor type ‘ Range ‘ Resolution | Accuracy H

50N 25N 4.0N
10Nm | 0.04 Nm 0.30 Nm

Force x, y, z
Torque x, y, z

D. Further challenges

The battery cells must be assembled in a certain order into
the cell holder. They are inserted into the holes from the inside
to the outside. If instead the outer holes were loaded first, there
would be no chance anymore to reach the inner holes with a
tilt-based search strategy. But even when the cell holder is
assembled from the inside to the outside, the already mounted
cells prohibit the cells to come to be assembled from certain
tilt directions. This is called “occlusion by cells” from now
on.

The battery pack consists of two interlocking cell holders: one
being used to assemble the battery cells and one to be put on
top of the mounted batteries afterwards to fasten them from
the other side as well. The connection between the two cell
holders is established by interlocking pins protruding from
the hole surface of the cell holder in between the gaps left out
by the inserted batteries (see figure 1b). As before with the
occlusion by cells, these pins also restrict the tilt directions
the neighboring battery cells could be mounted with. This is
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referred to as “occlusion by pins”.

While the cell holder is assembled, the tension within this
injection molded part is rising, causing it to deform slightly
and reduce the peg-in-hole clearance.

Last but not least, lithium-ion battery cells must be handled
with extreme care, as they can catch fire if deformed, short-
circuited or heated. Damage to the cells must therefore be
prevented in any case.

Thus, the following requirements for a peg-in-hole solution in
the battery pack assembly are derived::

1) The tilt direction a battery is assembled with must be
adjustable for each battery individually to overcome the
occlusion by cells.

2) Pins protruding from the battery holder surface must be
detected and avoided in order to cope with the occlusion
by pins.

3) The battery must be handled with great care throughout
“from pick to place”.

4) The assembly must be both as fast and as reliable as
possible. A human is able to mount one cell in about
three seconds in average.

The authors of this paper propose the hypothesis, that there is
a human-inspired method that mostly fulfills the requirements
defined above. As every human is capable of inserting a round
peg into a hole blindfolded - just by having a force-feedback
in its finger tips and geometric assumptions of the environment
- a robot can be trained to do the same with a force torque
sensor in its joints and by knowing some key parameters of the
peg and hole scenario. Even when large displacement errors
are present and no camera system is deployed.

The remaining of this paper is on how to solve the peg-in-
hole problem in a human-inspired way taking the requirements
mentioned above into account.

(a) The 18065 lithium-
ion battery cell

(b) The battery cell holder
Fig. 1: The peg-in-hole setup

IV. OVERALL PEG-IN-HOLE PROCEDURE

The robot picks up a lithium-ion cell from the stack and
moves to the calculated position of the desired hole. This
predetermined and thus theoretical position deviates from the
actual hole position of the cell holder by a few tenths up to a
few millimeters.

a) Going-down-until-collision procedure: The robot then
tilts the gripped cell by a tilt angle of By, = 22.5° away
from the vertical z-axis and moves downwards with respect

to the cell holder coordinate system. Eventually it collides
with the cell holder. The force acting in the vertical upward
(-z) direction on the tool center point (TCP) of the robot
is measured. The TCP lies at the concentric bottom of the
gripped battery (see figure 2a). If the force rises above a given
threshold, a collision will be detected.

This procedure is referred to by “going-down-until-collision
procedure” from now on. A threshold of 2.5N has proven
well in practice.

thresholdyreey = 2.5 N

collision = force, > thresholdsorce(-z)

By now the robot does not know whether it has collided with
the inner edge of the desired hole, the surface of the cell holder
or a pin protruding from the cell holder. The different collision
types are called "hole collision”, ”surface collision” and ”pin
collision”, respectively (see figure 2). Each of them demand
a specific procedure to eventually assemble the battery. Thus,
the robot needs to distinguish between the collision types.
This classification is done by comparing the height Aoy of the
TCP, at the time the collision has occurred, with a reference
height: To determine the reference height h., it is assumed
that the tilted battery is touching the cell holder surface with
its lower edge (see figure 2c). h.r is now the sum of the height
hen of the cell holder from its bottom to its surface and the
vertical distance hy, of the lower edge of the tilted battery up
to the TCP (see figure 2c). This is expressed by the following
relation

. d
hiiye = Sln(ﬁpeg ' %)

Pret = heh + Tuie )]
If a collision occurs, the current height h., of the TCP is
compared to the reference height h,s and the collision is
classified thereby:
hol = 2mm
collisionnele, if heoll < Rref — Rrol
collisionpin, if heon > hret + Riol 2

collisiongyrtace, €lse

collisioniype =

(a) hole collision  (b) pin collision (c) surface collision

Fig. 2: The different collision types and their reference height

Depending on the type of the collision, a different reaction
of the robot is demanded:
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b) Avoiding-pin procedure: When a pin collision has
taken place (see figure 2b), the robot has to avoid the pin
as much as possible in the direction that leads to the actual
hole . This avoidance maneuver is called “avoiding-pin
procedure” and dealt with in chapter V. A collision with a
pin is an indicator that the theoretical hole position deviates
significantly from the actual one, resulting in a planar distance
dholezhole between the theoretical and actual hole of up to
several millimeters. After the avoiding-pin procedure, the
going-down-until-collision procedure (see chapter IV-Oa)
starts again.

c) Sliding-on-surface procedure: The second case is a
surface collision (see figure 2c). This also means that dyojenole
amounts up to several millimeters. The robot then has to
slide the lower edge of the battery on the cell holder surface
in the direction that leads to the actual hole. This is called
”sliding-on-surface procedure” and is explained in detail in
chapter VL If it registers a drop in the vertical force force(.
acting upwards on the TCP, it will be assumed that the lower
edge of the battery has reached the edge of the desired hole. If
its transition criterion is fulfilled, a going-down-until-collision
procedure is undertaken again.

d) Centering-lowering procedure: When a hole collision
has occurred (see figure 2a), the calculated hole position
matches well with the actual hole, caused by dhgjeanole being
just a few tenth of a millimeter. The robot is then centering
and lowering the battery within the hole achieving a three
points contact which is the desired destination. This procedure
is therefore called “centering-lowering procedure” from now
on and described in chapter VII.

If the hole has been found successfully at the end of
the centering-lowering procedure, the cell will be tilted back
into the vertical position. Then it is finally inserted into the
cell holder by a specified force. The whole procedure is
illustrated in figure 3. The following chapters will concentrate
on the avoiding-pin and sliding-on-surface procedure as they
show how to approach the peg to the hole. The centering-
lowering procedure will be discussed only briefly, since many
publications have already dealt with it.

V. AVOIDING-PIN PROCEDURE

Due to process fluctuations, a positional displacement
dholezhole Of Up to several millimeters between the calculated
and actual hole position has to be expected. In such a case
it may occur that the bottom or the edge of the tilted battery
collides with one of the pins. The pins are protruding from the
cell holder surface and are adjacent to the hole. It is pointed at
by the tip of the battery which is also floating roughly above
the actual hole. So practically speaking the battery is tilted
away from the pin (see figure 2b). Before the battery can be
inserted into the hole, the TCP has to avoid the pin first. How
it does so will be explained in this chapter.

Fig. 3: The overall advanced peg-in-hole procedure

When a pin collision has occurred, the planar (xy) direction of
the force caused by the pin acting on the TCP is determined.

Oforce = atan2( forcey, forcey) 3)

If the TCP is moving in the direction of Oy, it reduces the
force acting on itself by increasing the distance between the
TCP and the pin. Because of the pins lying tangentially at the
hole, 6¢ce may already point to the actual hole. But these force
readings are not always reliable: The TCP lies in the concentric
bottom of the gripped battery. If the collision location of the
pin and the battery coincides with the TCP, the lever arm of the
force acting on the TCP will be infinitesimally small. Then the
values of the forces in x- and y-direction will be close to zero
and lead to a rather random force direction fsyree. So in short:
Ororce can point to the actual hole but is not reliable. Because
of that there is a need of a second direction, stabilizing the
avoiding-pin procedure:

Since the tip of the tilted battery points in the direction of
the pin, the TCP has to move to the opposite direction away
from the pin in order to come closer to the actual hole (see
figure 2b). This direction is called ”positive tilt direction” and
is expressed by the following relation:

Tpos-tilt-dir = Sign(ﬂpeg) : COS('Ypeg)
Ypos-tilt-dir = Sign(ﬁpeg) ) Sin('Ypeg)

epos—tilt—dir = atanz(ypos—tilt—diry mpos—lilt—clir)a “4)

where (¢, is the angle the battery is pitched or tilted by from
the vertical axis. 7y, is the the direction the tilt is applied to
around the vertical axis of the cell holder coordinate system.
If the TCP is moving into the direction implied by Opos-ii-dir, it
is eventually leaving the pin behind but not necessarily going
straight to the actual hole. So in short, Oy i-gir may not
always point to the actual hole, but is a constant and thus
extremely stable.

In order to improve the avoiding-pin procedure, O and
Opos-tili-air are combined, yielding a resulting angle that ideally
has the advantages of both inputs: leading away from the pin
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to the actual hole and being robust. This is done by distributing
a trust x onto both directions according to

eavoid-pin = K- epos—tilt—dir + (1 - “) : aforce (5)

Because Oorce and Opos-siie-air are angles within [—m, +7], equa-
tion 5 has to be slightly modified. The algorithm 1 shows
how to merge two angles al and a2 lying within the range of
[—7, +7], which are trusted with x and (1 — k) respectively,
into a single angle which lies again in a range of [—, +7].

Algorithm 1 Merging two angles al and a2 with input and
output range of [—, 47|

angle = trust = al + (1 - trust) x a2
# 1f condition fulfilled: cond = True
# else: cond = False

condl = abs(al) + abs(a2) > pi

cond2 = sign(al) *» sign(a2) < 0

cond3 = trust < 1.0

if condl and cond2 and cond3:
angle = angle + trust * 2 * pi
endif

In order to avoid the pin and move closer to the actual
hole, the TCP moves in direction of &,yiapin for a distance
of stepaoia on the horizonal plane. In practice it has proven
that step,voia = 1 mm is a good approach. It can be increased
further to leave the pin behind even more quickly but should
not be chosen to large, as it easily would lead the peg to
overleap the hole. After that the robot proceeds with a going-
down-until-collision procedure again. At his point the reader
may ask what value to assign to the trust . This question can
be answered as follows:

If the calculated hole position is far off the actual hole and
extends into a protruding pin (dholeonole Of SOome millimeters),
several avoiding-pin procedures may be necessary to avoid
the interfering pin completely. The force direction will not be
meaningful, if the collision location of the pin and the battery
coincides with the TCP, yielding a lever arm close to zero
(compare figure 2b with 4a). But if the location of the collision
is closer to the upper edge of the battery and therefore further
away from the TCP, the lever arm is longer and the force
direction will be more accurate.

The first time an avoiding-pin procedure is executed, the robot
does not know whether the pin collision occurred with the
center or the edge of the battery. But the more times a pin
collision is registered and thus an avoiding-pin procedure is
undertaken, the more it can be assumed that the pin collision
is taking place with the edge and not the center of the battery
as the robot already has tried to avoid the pin. So the lever
arm of the force acting on the TCP rises and the more trust
((1—k) 1) can be put in the force direction g, and the less
trust (k J.) is put in the positive tilt direction Gposil-dir-

The number of avoiding-pin procedures is counted by ctryyeig-
As a reference value the maximum number of avoiding-pin
procedures allowed before cancelling the mounting process

and doing a complete retry is set by maxayeig. An initial trust
of kK = 0.55 is given to the positive tilt direction Oposiic-dir
and thus the force direction gy is entrusted the remaining
(1 — k) = 0.45. As ctrywia is increasing, « decreases. These
relations are defined in the following equations and illustrated
in figure 4b:

Rinit = 0.55
slope = —Kinit/ MaTavoid

k = slope - ctrayoid + Kinit 6)

This is to help the robot not only avoiding the interfering pin
but also going already in the direction of the actual hole in one
and the same step. Once the robot has successfully avoided an
interfering contour, it continues descending downwards until
another collision occurs, which may be a surface collision
which the next chapter is about.

(a) pin collision at
TCP

(b) The relationship of trust x and number of
avoiding-pin procedures ctrqvoid

Fig. 4: Graphics illustrating the avoiding-pin procedure

VI. SLIDING-ON-SURFACE PROCEDURE

If the lower edge of the battery has collided with the surface
of the cell holder in proximity around the actual hole (see
figure 2c), the collision height h.y is within the tolerance
band of the reference height hyes:

href - hlol S hcoll Z href + hlol

So there is a positional displacement dpgjeonole Of some mil-
limeters. Now the battery should slide on the surface until the
actual hole is found. But how to find the actual hole if there
is no vision system deployed?

The tip of the tilted battery points in the direction of the pin
protruding from the cell holder (see figure 2c). So its lower
edge can only come into contact with the cell holder surface
where there is no pin. Practically speaking this is either on
the left or right side, or in front of the hole. But not behind
the hole, as there lies the pin. So if the battery follows the
direction its tip is pointing to on the horizontal plane, there
will be a chance of approaching the hole. This direction is
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the opposite of the positive tilt direction Opes-gi-gir and is thus
called negative tilt direction:

Lneg-tilt-dir = Sign(ﬁpeg) : COS('Ypeg)
Yneg-tilt-dir = Sign(ﬂpeg) : Sin(’}/peg)

eneg-tilt-dir = —atan2 (yneg-tilt—dira xneg—lilt—dir) , (7N

There are two cases that need to be dealt with when trying
to find the actual hole: The first one is that no pin collision
has occurred before the surface collision. This means that
the position of the TCP coincides with the precomputed hole
position on the horizontal plane (drcpanole =~ 0mm). But
the precomputed hole position is displaced from the actual
hole position (dpoleznole €an amount up to several millimeters).
Otherwise the battery would already touch the hole edges and
not the surface of the cell holder. This case is called ’no-pin-
avoided case”.

The second case is entered when one or several pin col-
lisions have taken place before the surface collision. This
time however, the TCP and the precomputed hole position do
not coincide due to the avoiding-pin procedures which have
moved the TCP away from the precomputed hole position
(drcpanole can amount up to several millimeters). Again, the
precomputed hole position is displaced from the actual hole
position (dpoleznole an amount up to several millimeters). This
case is the pin-avoided case”.

As for the no-pin-avoided case it is hard to extract even more
information from the environment apart from Opeg.icdir that
would help finding the actual hole. While the forces acting
on the TCP when the battery is sliding on the surface help to
indicate when the hole itself is reached, they are not profitable
in finding the direction to the hole. Therefore nothing else is
left but moving the TCP along 6cg-tiic-air- Therefore,

eslide—surface = eneg—till—dir ¥

Now a transition criterion is needed which indicates when
the actual hole has been found and the sliding-on-surface
procedure is finished. During the sliding on the surface, a force
is acting on the TCP in the vertical direction upwards. But if
a hole is reached this force will drop to approximately zero
because the lower edge of the battery crosses the edge of the
hole and is now hovering above it. A threshold of 1.5N has
proven practical.

thresholdsorce, = 1.5 N
holegouna = force, < thresholdorce, ©)]

When this is happening, the sliding-on-surface procedure
is finished and the centering-lowering procedure can be
activated in order to achieve a three points contact with the
hole (see chapter VII).

If instead the pin-avoided case has occurred, it will be
possible to gain more information from the current status.
Here, the TCP and the calculated hole position differ from
each other. Thus the horizontal distance between the two is

Fig. 5: The planar distance between the TCP to the computed
hole

determined as follows:

postce = (Trcp, Yrep, Zcp)

POShole = (xholey Yhole Zhole)

drcpanote = V/ (Thote — 21cP)2 + (Ynole — Yrcp)? (10)

This relation is also depicted in figure 5.
Furthermore, the angle from the TCP to the theoretical hole
position is:

(In

If the distance of the TCP to the theoretical hole is far
greater than the distance between the theoretical and actual
hole (dhole2hole >> drcP2nole)s OTCP2nole DOt only points to
the theoretical hole but also roughly to the actual hole from
a distant point of view. This effect decreases as the TCP
approaches the actual hole.

Therefore the smaller drcponole 1S, the less Orcponole Can be
trusted. Thus, the negative-tilt direction Opeg.ii-air becomes
more important while the TCP is coming closer to the theoret-
ical hole (and drcponole is decreasing). Therefore, both angles
Oneg-titedir and Orcponole are fused into a single direction by
involving again a trust value :

Orcponotle = atan2(Ynole — Y1CP, Thole — LTCP)

Oslide-surface = K - O1CP2h0Ie + (1 - H) : eneg—till—dir (12)

At this point the reader may ask again what value to assign
to the trust . In the avoiding-pin procedure the maximum
permitted number maxayoiq Of avoiding-pin procedures and the
length step,yoiq Of a single avoiding-pin maneuver, are given.
Based on them the maximum distance the TCP could ever
have to the theoretical hole when entering the sliding-surface
procedure can be computed by multiplying the two. This is
necessary in order to normalize the actual distance drcponole
of the TCP and the theoretical hole, yielding drcpanole-

dTCPZhole—max = MATavoid * StEPayoid

- d
drcPohole = ——aele (13)

dTcPanole-max
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Fig. 6: Top-down view of the battery’s trajectory overcoming
a displacement error and being centered in the hole.

drcpanole — 1, when a pin has been avoided several times.
Then Ortcponole is trusted more than Opeg.ii-dir- In the same
manner drcpanole — 0, when the TCP has come closer to the
theoretical hole and thus Opeg.i-gir Should be trusted more.
Therefore drcpanole can be used as the trust value k, involved
in equation 12:

K = drcpahole (14)
Figure 6 depicts real measurements of the peg’s trajectory
while sliding on the surface of the cell holder and then being
centered and lowered within the hole. As for the no-pin-
avoided case the pin-avoided case is terminated when the
condition in equation 9 is true.

It may happen that while sliding on the cell holder surface
towards the actual hole the tilted battery collides with a
protruding pin. This may occur in both cases, the no-pin-
avoided case and the pin-avoided case. It is indicated by the
horizontal force rising above a certain threshold, e.g. 10.0 N:

forcexy =/ forcei + forced

thresholdﬁ,rcexy =10.0N

collisionpin-noriz = forcexy > thr’esholdfmex'v

If the condition collisionpin-noriz 1S true, the robot should not
continue pressing the gripped battery into the pin as this could
damage the battery. Instead it should move horizontally around
the pin while still trying to find the actual hole. Thus, the
direction of the horizontal force vector of the pin acting on
the TCP is evaluated:

Otorce,, = atan2(forcey, forcey) (15)

The previous determined angle Ogjige-surface 1S then merged with
Oforce,, by trusting both directions equally. This new direction

allows the robot to do both: circumnavigating the pin and
approaching the actual hole.

k=0.5

eslide—around—pin = K - Oforce + (1 - /‘3) - Oslide-surface

(16)
a7

Eventually the actual hole is found and the sliding-on-surface
procedure is finished and the centering-lowering procedure is
executed, as described in the next chapter. If nevertheless the
hole cannot be found, a retry of the whole mounting process
is launched.

VII. CENTERING-LOWERING PROCEDURE

While the avoiding-pin and sliding-on-surface procedures

are helping the robot to overcome larger displacement errors
and guiding the peg to the constraint region of the hole, the
centering-lowering procedure is about inserting the tilted peg
into the hole until a three points contact is established. If done
so, the peg will be oriented back into the vertical in order to
align its axis with the hole axis.
The centering-lowering procedure is entered, when the surface
of the peg collides with the edge of the hole (see figure 2a)
and a one point contact or two points contact is reached.
Practically this is indicated by the collision height falling
below the reference height:

hcoll < href - htol (18)

When the precomputed hole position matches the actual
hole position well (dholeonole =~ 0mm, or a few tenth of a
millimeter), the centering-lowering procedure is entered right
away without the need of an avoiding-pin or sliding-surface
procedure. The three points contact can be achieved by using
the direction of the contact force vector as described in
[Li+17], deploying RL algorithms as in [Ino+17; Bel+20]
or by implementing other strategies presented in numerous
peg-in-hole publications.

VIII. RESULTS

During a several months period of testing in a real industrial
production, the URSe robot assembled more than 13,500
batteries with a success rate of greater than 99.54 % by using
the methods presented in this paper. It took approximately
11s to pick up and fully assembly a single battery. The
time needed for the assembly process itself depends on the
positional deviation between the precomputed and actual hole
dholezhole: the greater it is, the longer it takes to find the hole and
assemble the battery. It may vary from 4s to up to 20s for a
single try. Experiments have shown, that positional deviations
up to 4 mm millimeters can be overcome. However when is
dhole2nole inCreasing, the error rate rises as well.

The following listing highlights the key parameters of the
presented method:

o Success rate: 13557/13619 ~ 99.54 %

¢ Cycle time of cell assembly: ~ 11s

« Of which the peg-in-hole takes: ~ 4s to 20s

« Maximum displacement error to be overcome: ~ 4 mm
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IX. INDUSTRIAL VALIDATION AND OUTLOOK

In collaboration with the German battery pack manufacturer
ANSMANN AG a fully functioning robot plant (see figure
7) has been developed and tested for several months in real
production, assembling thousands of battery cells. A URSe
robot arm is stationed at its center picking up a battery supplied
by the trays on the left and right side. They contain batteries
either with their positive or negative pole upwards. The robot
chooses the polarity of a battery depending on the current
position in the assembly sequence of the battery pack.

While having a battery gripped, the robot moves slightly above
the hole position it is been given and tilts the battery. Then
the peg-in-hole procedure described in this paper begins. After
finding the hole at the end of the centering-lowering procedure,
the robot tilts the battery back into the vertical axis in order to
insert it completely into the hole by a specified force. If a cell
cannot be mounted on the first run, there will be some more
retries to find the hole. If the mounting still fails, maybe due
to positional deviations too large for the robot to overcome,
the gripped battery is sorted out and the robot continues with
the next battery in the assembly sequence.

The current plant design has two major downsides: The first
one is that the trays containing the batteries still must be filled
manually. Secondly, the robot wastes valuable time picking up
the batteries and bringing them to the cell holders. Therefore
more research is invested into smart grippers: A new gripper
is under development that sucks out the batteries directly
out of the very box they are delivered and stored in. This
would significantly reduce the time for equipping the robot
plant with the batteries it needs for the battery pack assembly.
Another approach is also investigated, that aims to feed the
robot directly with batteries so it just can concentrate on
inserting them into the cell holders. This approach would not
only reduce but eliminate the time wasted for the movements
from picking to placing. The robot would only need to move
from one hole to another and insert the batteries by the hereby
described method.

X. CONCLUSION

At the beginning it was shown that the lihtium-ion battery-

based peg-in-hole problem dealt with in this paper is a lot
more challenging than the general round peg-in-hole problems:
A battery cannot be mounted from certain directions due to
already mounted battery cells (occlusion by cells) and pins
protruding from the cell holders surface (occlusion by pins).
The cell holders containing the holes are not static but deform
when they are assembled. Additionally lithium-ion batteries
have to be handled with extreme care, proposing a compliant
assembly strategy.
For each case, avoiding protruding pins during the hole search
and approaching the hole while the battery is sliding on the
cell holder surface, intelligent and yet simple strategies were
presented: the avoiding-pin and sliding-on-surface procedure,
respectively. Their only goal is to guide the peg into the
constraint region where the actual peg-in-hole problem is
solved.

Fig. 7: The complete robot plant

Within the constraint region, the peg is simultaneously cen-
tered and lowered by using common peg-in-hole strategies
published in other papers.

The explained methods have been implemented on a URSe
collaborative robot with inbuilt force torque sensors being
the heart of a complete industrial robot assembly plant. No
vision system was used for the peg-in-hole assembly. The
robot plant is able to mount a variety of different shaped cell
holders being given a very limited number of environmental
constraints. Over a period of several months more than 13,500
batteries have been assembled with a success rate of greater
than 99.54 %.

Lastly an outlook over ongoing research was given, overcom-
ing the downsides of the current plant design: reducing the
time the robot plant needs to stop for being equipped with
new batteries and eliminating the time it takes to pick up and
move a battery from the tray to the cell holder.
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Abstract—Counteracting the labour shortage, improving
ergonomics in combination with increasing productivity, easy
integration and programming are some of the benefits that
Human-Robot Collaboration (HRC) offers. The innovative
technology combines the strengths of humans and robots and
helps to enable the Industry 4.0 approach. However, despite the
many advantages, the widespread use of the production
technology has still not been achieved. Reasons for the inhibited
use include large knowledge and know-how gaps in the area of
implementation and planning, the low economic efficiency due to
low cycle times and the high safety requirements. In this paper, a
study is presented that addresses the state of the art of HRC and
in particular the implementation of risk assessment. The study
includes two surveys with a total of 57 participants, the results of
which are presented and discussed in this work.

Keywords—Human-Robot Collaboration, Survey, State of the
Art, Risk Assessment, Safety

I. INTRODUCTION

Due to the increasing demand for customized products that
are available within a short period of time, combined with
decreasing product life cycles, the requirements for fast response
times in production are growing. This requires flexible and
adaptable production technologies capable of handling the
expanding range of variants and making it possible to introduce
new products rapidly [1]. Furthermore, in order to maintain
competitiveness in the long term, both new and innovative
production systems and digital production strategies must be
used [2], capable of linking people and technologies with
advanced information and communication technologies [3].
According to [4] Human-Robot Collaboration (HRC) is one of
such important cyber-physical technology that supports and
enables the Industry 4.0 approach.

Through HRC it is possible to use the capabilities of humans
and combine them with the strengths of robots [5]. The
interaction of the robot's repeatability, accuracy and strength
with the human's cognitive abilities makes the production
technology very flexible and adaptable, solving the needs and
requirements of the industry [6], [7]. The advantages of HRC are
manifold: increased productivity, improved product quality and
ergonomics, and the elimination of protective fences enables
optimized use of factory space [6], [7]. HRC also has a positive
effect on the employee structure in the company. According to
[8], the use of HRC helps to counteract the shortage of skilled
workers on the one hand, as the production systems can close
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the skill gaps. On the other hand, the use of new innovative
technologies makes the company more attractive and thus
attracts the younger generations and skilled workers.

But despite the numerous advantages, the sales volume of
collaborative robots is barely 5 per cent compared to the total
volume of robots sold in 2019 [9]. According to [10], the full
potential of HRC has not yet been exploited as many HRC
applications are limited to the same operations that a fully
automated robotic application would perform. This is one of the
reasons for the low sales volume of collaborative robots.
References [10], [11] and [6] believe that the barriers to the use
of collaborative robotics lie in the high safety requirements and
resulting high costs for risk mitigation measures. These
statements are supported by a study that identified conducting
risk assessments for specific HRC applications as one of the
main challenges in HRC implementation [12]. Other challenges
that emerged from the study were the identification of
appropriate HRC applications and the application of safety
standards.

In order to obtain a comprehensive overview of the state of
the art in the field of HRC, a two-part online study was
conducted, targeting experts and end users. The study consisted
of two independent surveys, one providing a general overview
of HRC and the second specifically addressing one of the main
challenges: risk assessment for HRC applications and its
supporting tools.

The paper is structured as follows: first, Section II describes
the research methodology, which includes the research
approach, the structure of the questionnaire and the composition
of the survey participants. Sections III and IV present and
discuss specific parts of the results of the General Overview
Survey and the Risk Assessment Survey. The paper ends with a
conclusion in Section V.

II. RESEARCH METHODOLOGY

A. Research Approach

The study aimed to provide a comprehensive overview of the
state of the art in HRC, reflecting the current situation of HRC
in the industry. The focus was on the opinions and experiences
of users, integrators and service providers who apply HRC in
industry, and in particular the hardware installed, suitability of
processes, benefits and hurdles of HRC.
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By conducting two independent surveys, the objective was
to reach different groups of experts and thereby obtain an
unbiased general overview of the topic area in the first step and
specifically address one of the main hurdles for the introduction
of HRC in depth in the second step. In this way, a broad scope
of data and information was collected. The survey on the topic
of risk assessment dealt with the requirements of experts for
software tools and in general, their advantages and
disadvantages and in specific with desirable enhancements for
HRC.

The standardized survey was chosen as the data collection
method and the type of survey adopted was an online survey.
The standardized survey ensures that different answers to a
question are in fact due to different characteristics, attitudes and
behavior of the persons and not to varying conditions during the
survey situation. The prerequisites are (1) a uniform formulation
of the questions, the answer options and the order of the
questions, (2) standardized framework conditions and (3)
standardized implementation of the survey [13].

In order to meet requirement (1), the general outline of the
questionnaires were built according to the structure defined by
[14] and the question phrasing followed the /0 rules of question
phrasing according to [13].

To comply with (2) and (3), the survey type online survey
was selected. This has several advantages [15]: (a) the answers
are more thoughtful as there is no time pressure, (b) the answers
are more "honest" as the survey is anonymous, (c) completing
the survey is possible in a short time and (d) there is the
possibility to give hints (e.g. in case of incomplete questions). In
addition, a broad spectrum of experts can be reached through an
online survey.

The surveys were designed using the web portals
UmfrageOnline® and EUSurvey®, published via LinkedIn and
email and conducted between January and March 2021.

B. Questionnaire

The General Overview Survey consisted of four thematic
blocks with a total of 32 questions:

e (Collaborative robotics basics,

e  Process suitability,

e Training and

e Safety requirements and standards

Whereas the Risk Assessment Survey consisted of three
thematic blocks with a total of 19 questions:

e Tools for conducting risk assessments,
e Risk assessment method and
e Requests for improvement with regard to HRC

C. Structure of the Survey Participants

A total of 29 participants participated in the General
Overview Survey and a total of 28 in the Risk Assessment Survey.
The characteristics of the participants are presented in TABLE

 https://www.umfrageonline.com/

I. respectively in TABLE II. The left column contains the
parameter of the characteristic and the right column lists the
number of participants exhibiting this characteristic. In TABLE
IL. the level of experience is defined as follows:

e Expert knowledge: participant mainly engages in
the subject area of risk assessment and has
comprehensive know-how.

e  Advanced knowledge: participant has already
carried out several risk assessments.

e  Basic knowledge: participant has already carried
out one risk assessment.

All participants with experience in the field of HRC also had
experience in the field of industrial robotics.

TABLE L GENERAL OVERVIEW SURVEY: CHARACTERISTICS OF THE
PARTICIPANTS
Occupation No. Industry Sector No.
Integrator 12 Mechanical Engineering 18
Manufacturer 3 Automobile 3
Entrepreneur 3 Electro industry 3
Consulting 2 Different sector 5
Service Provider HRC 2
Different Occupation 7
Experience in HRC No. Number of fIRC m No.
operation
<1 year 1 none 14
1 -5 years 22 1 2
> 5 years 6 >1 13
Experience in planning No Number of implemented No
HRC i HRC i
yes 24 1 2
no 5 1-5 13
>5 8
TABLE II. RISK ASSESSMENT SURVEY: CHARACTERISTICS OF THE
PARTICIPANTS
Occupation No. Experience in Risk No.
Assessment
Consulting 17 <5 years 18
CE Representative 6 5—10 years 3
Integrator 3 11— 15 years 3
End user 2 > 15 years 5
Researcher 1
Level of Experience No. Experience in Robotics No.
Expert knowledge 19 Industrial robotics 24
Advanced knowledge 8 HRC 16

b hitps://ec.europa.eu/eusurvey/
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Experience in Risk

Occupation
P Assessment

Basic knowledge 1 none 1

III. GENERAL OVERVIEW SURVEY RESULTS

The questions in the thematic blocks were not formulated as
compulsory questions, resulting in the consequence of not every
participant having answered every question. A response rate
(RR) is thus specified for the interpretation of the results:

number of participants answering the question

RR = (1)

total number of participants

The questionnaire consisted of the question types multiple
choice (MC), single choice (SC), free question (FQ), ranking
question (RQ) and applies/does not apply (A/DA). In the
following subsections, the results are supplemented by a tuple
consisting of RR and the question type. The results are given as
absolute values on the number of participants.

In the following, a portion of the results of the General
Overview Survey results is presented and discussed. The report
on the entire survey can be found in [16].

A. Collaborative Robotics Basics

The thematic block of questions focused on the areas of
collaboration types/protection principles, the types of robots
used and the gripping techniques employed.

The protection principles applied by the experts in the HRCs
implemented and planned so far are shown in Fig. 1 in
descending priority (RR=93%;MC). The experts primarily use
the protection principle power and power limitation (PFL),
followed by safety-rated monitored stop and speed and
separation monitoring (SSM). The protection principle manual
guidance is used the least.

Fig. 1. Mainly applied protection principles in HRC applications.

The ranking of the collaboration types according to which
the HRC applications are most commonly operated is assessed
by the experts as follows (RR=93%;RQ):

1. Coexistence — Safety-rated monitored stop

2. Coexistence — SSM

3. Cooperation — Safety-rated monitored stop
4. Cooperation — SSM

5. Collaboration — PFL

6

Collaboration — Hand guiding

12

According to the experts' opinions, HRC applications are
predominantly operated in the collaboration type coexistence,
using either the protection principle safety-rated monitored stop
or SSM. Although the protection principle PFL is most
frequently used by the experts to safeguard HRC applications,
HRC applications are barely operated in the collaboration type
collaboration, even though this protection principle enables
direct and close contact with humans [17].

In most applications, not only one protection principle is
implemented, but a combination of several. HRC applications
are often implemented as coexistence and protected by SSM. If
a human approaches at a certain distance, the robot switches to
another protection principle (e.g. PFL or safety-rated monitored
stop). The flexible transition between protection principles
enables efficient operation of the HRC application, as the robot
can operate at full speed and handle dangerous components
when the human is outside the protection zone.

In addition to the collaboration types/protection principles,
the questionnaire covered the types of robots (RR=100%;MC)
and gripper technologies (RR=97%;MC) employed in HRC
applications. The results are shown in Fig. 2 a) and b). In
addition to the robot types listed, Yaskawa, Mitsubishi, Stiubli,
Doosan, Kawasaki, Rethink - Sawyer were each mentioned
once. Similarly, servo grippers and passive gripping systems
were each mentioned once corresponding the gripping
technologies in use.

a) Types of Robots in Use b) Preferred Gripping Technology

Specific HRC gripper systems 20

[Universal Robots — UR-Series 22
KUKA —iiwa

Standard industrial robot
Vacuum gripper
ABB - Yumi

Franka Emika — Panda e

Self-developed gripper systems 16

FANUC Series 6

Omron - TM Series 1] 4

H2

Mechanical gripper 13

10

Boseh Apas

i 10 20 30 0 20

Fig. 2. a) Types of robots and b) Gripping technologies used in HRC.

Besides the market leader Universal Robot and KUKA iiwa,
conventional industrial robots are also increasingly utilized in
HRC applications. With today's state of the art, it is possible to
equip conventional industrial robots with safety technology
enabling them to be used in collaborative workplaces. Through
safe interaction between humans and conventional industrial
robots, the advantages of both, HRC and full automation,
become available. In shared workspaces, the robot acts at low
speed and ensures the safety of the human. In areas that are not
accessible to humans, the robot can operate at full speed and
power, counteracting the hurdle of the lack of economic
efficiency.

Furthermore, the results show that special HRC gripping
systems or vacuum gripping technology are predominantly
employed. Both technologies have a low risk of injury compared
to conventional gripping systems due to the design, energy
supply and special sensitive functions. The gripper as a
component is safe and HRC suitable and does not need to be
safeguarded by additional risk reduction measures. Preferred
gripper manufacturers are Zimmer Group GmbH (9 mentions),
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SCHUNK GmbH & Co. KG (6 mentions), OnRobot A/S (6
mentions), RobotiQ (5 mentions), WEISS ROBOTICS GMBH
& CO. KG (1 mention), Schmalz (I mention) and own 3D
printing (1 mention).

B. Process Suitability

The thematic block concerned suitable processed for HRC,
the process characteristics a process should have in order to be
suitable for HRC, the reasons for implementing HRC and the
current hurdles.

Regarding suitable processes for HRC, the experts evaluate
the process types Handling/Pick and Place (26 mentions),
Assembly (23 mentions), Quality Assurance (21 mentions),
Palletizing (19 mentions), Screwing applications (17 mentions),
Packing (16 mentions), Positioning aid (16 mentions), Lifting
aid (12 mentions), Welding applications (6 mentions), Gluing
processes (3 mentions), Grinding/Polishing (1 mention) as more
or less suitable for the implementation of HRC
(RR=100%;MC). For the implementation of Handling/Pick and
Place, Assembly, Quality Assurance and Palletizing tasks in
HRC, a large number of sample applications, best practices and
comprehensive experience exist as well as sensor systems and
other HRC-capable hardware, enabling a safe implementation
and efficient employment. The implementation of those
processes using HRC offers the advantages of reducing
monotonous activities, a low-effort adaptation to different
products and an optimized use of factory space.

Processes involving hazardous tools or materials, such as
welding, gluing or polishing tasks, are not suitable for HRC
applications, or only to a limited extent. Due to the process-
related hazards, safe application planning and ensuring the
safety of humans is linked to a very high expenditure of time and
costs, resulting in the possibility of high residual risks that
cannot be mitigated. The experts disagree about welding
applications in particular. There are already solutions on the
market that enable welding in HRC, but the results show a
critical attitude on behalf of the experts. In this context, the high
approval of screw applications is striking. In screwing
applications, a screwing tool is required which, due to its small
surface area and rotating movements, poses a great risk to
humans. The availability of HRC screwdrivers, which enable
safe operation of screwing applications in HRC, is a possible
reason for the high level of approval, despite the high process-
related risks.

Ergonomically stressful process steps 28
Monotonous process Steps  m— 5 23
Stressful process steps  me—— 18
Presence of complic ! 8 18
17
11 7

Short product life cycles n ——— |3 15

Processes requiring high flexibility

Low guantities with high variance  — | ] 15

Processes that require human skills  se— 314
Increase in productivity  — (2 1+

High proportion of ndary steps H

Demand for transferability to other 12 15

Heavy process steps 17
Improvement of cycle time a1

High proportion of pe r - 23

0 5 10 15 20 25 30
Applies ® Does not apply

Fig. 3. Characteristics for HRC suitability.

The experts agree that processes that are (ergonomically)
stressful, include monotonous process steps or complicated sub-

process steps, offer great potential for optimization through the
use of HRC (see Fig. 3). On the other hand, processes that
require a high number of peripherals or processes for which the
primary goal is to improve the cycle time or that involve heavy
work steps are rather unsuitable for the use of HRC
(RR=97%;A/DA). For some characteristics, experts disagree on
whether the use of HRC is beneficial or not. These aspects
depend on the expert's perspective, e.g. an existing characteristic
may be beneficial through the use of HRC compared to manual
operations, but disadvantageous for HRC compared to full
automation.

Detailed information on areas where HRC provides an
advantage or disadvantage compared to manual activity or full
automation is provided in TABLE III. (RR=90%;MC). In
TABLE III. (1) is advantage of HRC compared to manual
process, (2) disadvantage of HRC compared to manual process,
(3) advantage HRC compared to full automation and (4) is
disadvantage HRC compared to full automation. The values
refer to the number of experts who support the corresponding
position.

TABLE IIL HRC COMPARED TO MANUAL ACTIVITY AND FULL
AUTOMATION

Characteristics 0] ) 3) “@
Counteracting the shortage of manpower 21 2 10 6
Repeatability 21 1 5 14
Low error rate/High quality 20 2 1 18
Precision 18 6 3 14
Increase in productivity 17 4 4 19
Economic efficiency 14 8 9 9
Compliance with low tolerances 14 6 2 15
Sensitivity 12 7 18 3
Improvement of cycle time 11 11 2 23
Easy to learn/operate/use 11 9 18 3
Collision detection 11 6 18 2
Fast amortization 9 10 12 7
Fast reprogramming 8 10 19 1
Elimination of time consuming training 8 10 17 3
Low investment 8 15 14 5
Response to uncertainties 8 13 12 5
High variance 7 13 19 2
Fast adaptability to changing conditions 7 1 20 13
Speed 7 13 1 21
Fast installation 6 15 17 4
Small quantities/single-piece production 4 16 17 1
Low space requirements 2 14 16 6
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Advantages that HRC offers compared to manual work are
considered by the experts to be disadvantages compared to full
automation for the majority of the aspects and vice versa. But
HRC offers advantages over manual activities as well as full
automation in terms of counteracting labour shortages,
sensitivity, ease of learning and collision detection, and
disadvantages in terms of process speed. The experts'
assessment reflects and confirms current knowledge and
research results. In a specific application, the objectives must
therefore be clearly defined and the optimal implementation
strategy must be selected for the application in order to utilize
the advantages of HRC and achieve the best possible design of
the process.

Other findings of the survey are the results regarding the
main reasons for implementing HRC applications
(RR=100%;SC) as well as the reasons for the hesitant adoption
of HRC applications (RR=100%;MC). Improving ergonomics is
the most frequently cited reason for implementation with 11
mentions, followed by saving labour/counteracting the labour
shortage and (partial) automation with low investment with 9
mentions each. The reasons given are in line with the findings
on the advantages of HRC over manual activities and full
automation from the previous analysis. The reasons for the
hesitant adoption of HRC applications are listed in Fig. 4. The
experts agreed that the lack of HRC know-how, experience and
skills, the economic inefficiency and the high safety
requirements to be fulfilled inhibit the use of HRC. These results
indicate that there is a need for action, particularly in the area of
know-how development and training, in order to accelerate the
introduction of HRC into the industry. Economic production is
directly related to the speed of the robot, which must be kept low
due to the high safety requirements and the risk of collision. A
higher movement speed leads to shorter cycle times and thus to
an increase in economic efficiency. The results show that there
is potential for optimization and a need for research, especially
in the area of safety.

Fig. 4. Reasons for the hesitant adoption of HRC application.

IV. RISK ASSESSMENT SURVEY RESULTS

According to the General Overview Survey, the questions in
the Risk Assessment Survey were not mandatory and were
developed using the question types SC, MC, A/DA. The RR is
also used to interpret the results and the presentation of the
results is also supplemented by a tuple consisting of RR and
question type. The results are given as absolute values on the
number of participants.
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In the following, a portion of the results of the Risk
Assessment Survey results is presented and discussed. The report
on the entire survey can be found in [18].

A. Risk Assessment Tools and Methods

This section presents the results regarding the risk
assessment tools used by the experts, the methodology and
general aspects of the topic of risk assessment. 700!/ is defined
as the totality of documentation tools for risk assessment and
includes both MS Office templates and software.

For the documentation of the risk assessment
(RR=96%;MC), the experts predominantly prefer MS Office
templates (25 mentions), though the most frequently used are
self-created Excel templates (11 mentions). In contrast, software
solutions are utilized less (11 mentions). The most frequently
used software is Safexpert with 7 mentions (RR=54%;MC). The
tools in use are listed in Fig. 5 a). MS Office templates offer the
advantage of being easily and flexibly adapted to individual
needs. This allows the user to design the risk assessment
documentation according to individual preferences and the type
of machinery under consideration. Software provides a
relatively rigid structure and therefore offers little scope for
individual adaptations, but offers the advantage of
standardization across all risk assessments conducted.

Fig. 5. a) Risk assessment tools used by the experts and b)

For the identification of hazards (RR=96%;SC), the majority
of experts use the checklist procedure according to DIN EN ISO
12100 Annex B (17 mentions) and apply a combination of top-
down and Dbottom-up methodology (11  mentions)
(RR=100%;SC) (see Fig. 5 b)). An important question that
needs to be addressed in the risk assessment is the completeness
of the identified hazards. The use of the checklist method
ensures each hazard listed in DIN EN ISO 12100 Annex B has
been considered and, in conjunction with the combination of
top-down and bottom-up, a high completeness of the identified
hazards can be achieved.

The survey also included general statements on the
conduction of risk assessments, assessed accordingly TABLE
IV. by the experts (RR=93%;A/DA). The results highlight the
importance of the experience and know-how of the person
conducting the risk assessment in order to achieve a successful
and high-quality risk assessment. A tool can only support the
implementation and serves as documentation, but experience
cannot (yet) be replaced by a software.

TABLE IV. STATEMENTS ON RISK ASSESSMENT
Statement No.
The quality of the risk assessment depends on the know-how, 25
experience and accuracy of the user
The software available on the market is not a substitute for 3
experience and expert knowledge.
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Statement No.

The risk assessment should be started already in the
L 23

development phase of a product/application.
Checklists of potential hazard causes or consequences are
helpful and should be used in the hazard identification phase of | 21
the risk assessment.
The most important aspect of risk assessment is the experience 21
of the user.
A risk assessment should be carried out in a group. 18
A risk assessment should be conducted by an external service 3
provider or system integrator.

A need for assistance in conducting the risk assessment
(RR=86%;MC) exists in deciding if a hazard is acceptable (16
mentions), which hazards are reasonably foreseeable and
where the boundary to gross negligence lies (14 mentions),
which hazards need to be considered (12 mentions) and the
automatic transfer of hazards from application-specific
standards into the vrisk assessment (12 mentions). Risk
assessment is partially a subjective process. In particular, risk
estimation and evaluation are mainly based on the subjective
opinion of the person conducting the risk assessment, and thus
also the decision on the acceptable residual risk. The results of
the survey indicate a need for support, especially in the
subjective aspects of risk assessment, and that there are still
uncertainties in these areas. An experienced user has less
difficulties in assessing risks and deciding if the residual risk is
acceptable. For an inexperienced user who wants to implement
HRC applications in the production line and therefore needs to
conduct a risk assessment, these processes represent a major
hurdle. In order to facilitate the introduction of HRC and to
simplify the process of risk assessment of HRC for
inexperienced users, it is necessary to increase the objectivity of
subjective processes.

B. Enhancements for Risk Assessment Tools for HRC

The requests for improvements and support to facilitate risk
assessment for HRC are grouped into two categories. The first
category describes possible HRC-specific additions to risk
assessment tools such as guidelines, good practice examples or
other assistance and support and the second category includes
new functionalities by automating parts of the risk assessment
process.

Regarding the first category, the results of the survey are
listed in TABLE V. (RR=79%; A/DA). The majority of experts
agree that there should be more guidance on risk assessment for
HRC. In particular, matching specific hazards with appropriate
risk reduction measures is considered promising with a total of
19 mentions, closely followed by support in deciding when a
significant change exists with 18 mentions. In risk reduction
according to the 3-stage procedure, the hazard is safeguarded in
the first stage by design measures, in the second stage by
technical measures and the third stage covers user information
[19]. Due to the absence of the protective fence at HRC, the
hazards must be secured in particular by stages 1 and 2. As the
number of designed and implemented HRC applications
increases, the experience and the range of possibilities for
safeguarding certain hazards also rises. This experience should
be shared among users, designers and safety engineers, and new
users in particular can benefit from catalogues containing
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possible risk-reducing measures for specific hazards and the
experience of experts. The availability of support and
guidelines, assistance in deciding on significant changes and in
performing the necessary collision measurements can counteract
the uncertainties and challenges related to risk assessment and
thus advance the adoption of HRC applications.

TABLE V. DESIRABLE ADDITIONS TO RISK ASSESSMENT TOOLS
Does
Statement Applies not

apply

For certain hazards, a catalogue of possible applicable 3 19

safety measures.

Assistance in deciding whether changes to HRC

applications are significant enough to require a 4 18

renewed risk assessment.

More help and guidance on HRC-specific issues in

general (e.g. more instructions, application examples, 5 17

exemplary safety measures, instructions on how to

conduct collision measurements, etc.).

More precise instructions on how to conduct collision 6 16

force/pressure measurements.

Concretisation of ISO TS 15066. 6 16

The experts also consider the automation of sub-processes in
risk assessment to offer great potential for support (see TABLE
VL. ) (RR=68%; A/DA). The visualization of paths and work
areas of humans and robots as well as the development of
standard modules for recurring sub-processes with 16 mentions
each are seen as the most promising by the experts. Visualization
enables the simple detection of overlapping paths or work areas,
which facilitates the definition of hazardous areas and supports
the fast detection of collision points. The use of standardized
templates for certain (sub-)processes also leads to a considerable
facilitation of the process, since first, all hazards, assessments,
evaluations and mitigation of the specific process are pre-
determined and second, the documentation effort can be
significantly reduced. Yet, the development of standard
templates proves to be difficult, as a multitude of parameters
have to be considered influencing the hazards and their severity
(e.g. workpiece, tool, gripping technique, working environment,
etc.). In general, the automation of sub-areas of risk assessment
is considered promising and facilitating by the experts. The
experts are divided solely on the automation of hazard
identification using simulations or artificial intelligence and the
automated detection of critical geometries.

TABLE VL DESIRABLE NEW FUNCTIONALITIES
Does
Statement Applies not

apply

Visualization of the path and working areas of the
16 3

robot and the human.
Standard templates / modules for risk assessment of
frequently recurring (sub-) processes (e.g. safety 16 3
functions for specific activities).
Automatic detection of collisions and comparison
with parameters for compliance with biomechanical 15 4
limit values.
Simulation of human behaviour in certain situations /
Inclusion of human behaviour in certain situations in 14 5
the risk assessment (e.g. on which parts of the body a
collision can occur).




Robotix-Academy Conference for Industrial Robotics RACIR 2021 at UCB during September 22nd, 2021

Does
Statement Applies not
apply
Automatically calculate safety distances and speeds 3 6
with the help of simulations / CAD data.
Automatic hazard identification using simulations or
e e . 12 7
artificial intelligence.
Automatically detect critical geometries (sharp edges,
sharp corners, etc.) with the help of simulations / CAD 13 7
data.

Despite the significant number of opposing opinions, the
experts were positive about the usefulness of a (partially)
automatic identification of hazards with a total of 18 mentions
(RR=93%:;SC).

Automation of hazard identification based on simulations or
artificial intelligence and automated detection of critical
geometries are currently research-based and methodologies
proven and tested in industry are not yet available. This fact
explains the differentiated and contradictory opinions of the
experts. The statement is supported by the question about the
awareness of the methodologies developed in research
(RR=75%;MC), the result of which is shown in Fig. 6. With the
exception of the combination of HAZOP and UML, the experts
are either unaware of most of the methods or consider them to
be unpromising.

Fig. 6. Novel methods to facilitate hazard identification.

Another important aspect is the expert opinion regarding the
calculation of the biomechanical limits on a simulation basis
(RR=82%;A/AD). The results are shown in TABLE VII. The
experts agree that collision measurements on a simulation basis
significantly help risk assessment of HRC applications and if the
quality of the simulation is high enough, the measurements
could even be reduced. However, the majority of experts believe
that simulations cannot completely replace measurements. The
high effort required to develop a simulation meeting the
requirements for quality and accuracy in order to be able to
simulate collisions in detail is offset by the effort required to
perform measurements in reality. In order to be able to obtain
detailed and reliable statements through simulations, the
simulations must be as close to reality as possible, including the
modelling of the worker's behavior. One possibility to reduce the
effort of model creation would be the use of virtual reality,
eliminating the need for human modelling.

16

TABLE VIL SIMULATION-BASED DETERMINATION OF BIOMECHANICAL
LiMITS
Does
Statement Applies not
apply
Simulation-based estimation of collision
force/pressure could significantly help risk 20 2
assessment of HRC applications.
With a detailed, high-quality simulation, it would be
possible to significantly reduce the number of 19 3
required collision force/pressure measurements.
With a detailed, high-quality simulation, it would be
possible to significantly reduce the number of 9 13
required collision force/pressure measurements.

V. CONCLUSION

As part of the study on the current state of the art of HRC,
two independent surveys (General Overview Survey and Risk
Assessment Survey) were conducted, the results of which were
presented and discussed in this paper.

Coexistent implementations of HRC applications are the
most common, whereas collaborative applications are only
implemented to a small extent. In addition to the market leader
Universal Robots and KUKA iiwa, conventional industrial
robots equipped with appropriate safety technology are
increasingly being used. With regard to gripping technology, the
experts are focusing on the safe solutions and predominantly use
HRC-capable gripping systems or vacuum gripping technology.
For HRC applications, processes that have low process-related
hazards are classified as HRC suitable. The biggest obstacle to
the introduction of HRC applications is the large knowledge and
know-how gap as well as the non-economical operation of HRC
applications due to too high cycle times.

A key finding of the Risk Assessment Survey is the
dependence of the quality of the risk assessment on the
experience and know-how of the person conducting the risk
assessment. For the documentation of the risk assessment,
experts prefer MS Office templates instead of software
solutions. If software solutions are applied, Safexpert is chosen
most frequently.

A need for support in risk assessment for HRC in the form
of general assistance, examples and guidelines as well as
standard catalogues containing the suitable risk-reducing
measures for specific hazards or in deciding when a significant
change occurs, is considered useful and necessary. The survey
also identified a need for (partial) automation of risk assessment,
especially in the area of hazard identification. In research, there
are already methodologies and procedures that simplify the
identification of hazards, but these are not known or are not
considered promising by the experts. Further support is needed
in the area of measuring biomechanical limits. The study
concluded that the measurements can be reduced with a detailed,
high-quality and realistic simulation.

In conclusion, HRC should be employed in areas where the
benefits of HRC can be optimally exploited. In terms of safety
and risk assessment, there are a number of shortcomings that
need to be addressed through research and development in order
to further advance the technology.
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Collaborative or Industrial Robot? An Economic Calculation
Scheme to Determine the Optimal Robot Technology in Fenceless
Machine Tending

Christopher Schneider, Martina Hutter-Mironovova, Michael Klos, Mohamad Bdiwi, Matthias Putz

Abstract— Current Human-Robot Interaction (HRI)
evaluation methods deal primarily with multi-criteria target
systems to identify the optimal possible robot cell. Those
possibilities are often limited exclusively to either collaborative
robots (cobots) or industrial ones. A methodological gap exists in
the comparison of both robot technologies regarding their
economic advantages. Therefore, we present a planning tool to
determine the optimal fenceless robot-based machine tending
system, strongly incorporating financial factors and the
influence of human presence on the robot's operating speeds.

1. INTRODUCTION

The market introduction of the first cobots ignited a huge
Industry 4.0 hype around this new technology, mainly
amplified by opening up robotization to small and medium-
sized companies (SMEs) by providing higher usability and
flexibility [1]. Due to lacking truly collaborative use cases,
this euphory subsided increasingly over the last years. Most
applications considered as collaborative were either
coexistent, cooperative or ended up behind a safety fence [2].
This contradiction reveals a methodological gap in
determining the required HRI technology, especially when
comparing industrial robots with external safety devices as a
suitable fenceless alternative. Furthermore, planning
methodologies for cobot systems are still insufficient and
cover only selected parts of the planning entities. Despite the
promises of cobots to guarantee easy implementation and
commissioning, it turns out that planning such a system
includes even more parameters of uncertain data than a
fenced-in robot system [2]. Obstacles can be traced back to
the requirements that have been defined in ISO/TS 15066,
especially regarding application-specific force and pressure
measurements and the respective allowed operating speed in
collaborative mode [3]. In fact, switching between industrial
and collaborative speed by applying external safety devices
enlarges the calculation complexity even more. Hence, the
traditional generation of industrial robotics and the new
generation of cobotics clash: while the cobot world claims
that a cobot is the easiest and most profitable solution, the
industrial world prefers fenceless industrial robots in many
cases. Higher operation speeds, increasing usability, and
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decreasing prices of industrial robots challenge the stated
benefits.

The traditional automation field of machine tending
utilizes robot technologies for decades, usually focusing on
high volumes of mainly automotive companies in partially or
fully fenced in operating areas [4, 5]. Automation optimizes
CNC manufacturing regarding motions and defects (see Lean
Management and seven types of waste) [6]. On the one hand,
robotized movements are faster due to the robot’s operating
speed and the utilization of double grippers and improve
ergonomics by unburdening the operator. On the other hand,
the higher accuracy and consistent workpiece positioning of
robots eliminate defects occurring from clamping deviations.
Within the last years, cobot installations increased rapidly in
machine tending with growing potential to become one of the
main cobot applications [7]. Especially SMEs face the
challenge of recruiting CNC professionals due to
demographic change while managing the needs for flexibility,
automation, and digitization [8, 9]. Cobots pick up low in-
house experience in automation planning and implementation
of SMEs with easy programming, plug&play, and online-
based training and configuration.

This paper shows how to strategically derive an economic-
oriented calculation scheme for HRI based on the current
workflow in CNC lathe machine tending. The proposed
scheme can support the user in identifying the most efficient
robot solution. It is based on the following four steps:

1) Deriving a process pipeline for CNC lathe
machine tending from user surveys

2) Choosing the typical use case and defining its
constraints

3) Parametrization of the relevant factors and their
relations to each other

4) Illustrating the relationship between economic

profitability and human-robot-interaction grade.

II.

For a comprehensive understanding of the stated problem, the
implicated disciplinary fields Human-Robot Interaction,

LITERATURE REVIEW

Dr.-Ing. Mohamad Bdiwi and Prof. Dr.-Ing. Matthias Putz are with the
Fraunhofer Institute for Machine Tools and Forming Technology,
Reichenhainer Str. 88, 09126 Chemnitz, email:
mohamad.bdiwi@iwu.fraunhofer.de, matthias.putz@zv.fraunhofer.de



Robotix-Academy Conference for Industrial Robotics RACIR 2021 at UCB during September 22nd, 2021

Flexible Manufacturing Systems, Machine Tending, and
Planning Methodologies are outlined in the following.

For Human-Robot Collaboration (HRC), various
classification approaches have been developed in research
within the last years [2, 10-12]. While ISO 10218-1:2012
defines the term collaborative operation, ISO TS 15066
differentiates the operation modes (1) Safety rated Monitored
Stop (SRMS), (2) Hand Guiding (HG), (3) Speed and
Separation Monitoring (SSM) as well as (4) Power and Force
Limiting (PFL) [3, 13]. Fenceless production concepts can be
achieved with both industrial and collaborative robots by
combining different modes. Industrial robots require an
additional safety device (i.e., safety scanner) mandatorily to
switch between modes 1 and 3. Due to their onboard
technology (i.e., torque sensors), cobots can be operated
either as standalone (mode 4) or in hybrid mode with external
safety (mode 3 and 4) [3, 14-16].

Research in HRC planning implies, among others, the
main fields task allocation, resource selection and layout
development, mainly focusing on assembly operations. Task
division algorithms, based on individual strengths, have been
described by [17], [18], and [19]. Although these models
consider various evaluation criteria, economic comparisons of
different robot system alternatives are not observed. For the
planning of HRC applications, different methods have been
developed, such as [20], [21], and [22]. In [23], the process
is analyzed and described regarding output and ergonomics.
A multicriterial pairwise comparison scale evaluates the
advantageousness of the alternatives manual execution and
HRC. Another approach is a search method and tool for
resource selection, layout development, and task assignment
in the rough planning phase based on economic and technical
criteria [24]. The planning of human-industrial robot
cooperation (HIRC) is described in [25] and [26]. In [27], a
software planning tool has been developed, which utilizes
digital human modeling and industrial robot simulation for
evaluation. In [28], multi-criterial evaluation of manual and
hybrid workstations has been undertaken, mainly focusing on
the economic figures of each alternative.

Different approaches to Flexible Manufacturing System
(FMS) planning and design can be found in [16], [29], and
[30]. Due to the high automation grade and the predominant
fence utilization, those concepts lack transferability to
fenceless manufacturing. Besides customized machine
tending systems, standard solutions have been developed and
are offered at the market. Until today, those systems exist
mainly with a partially fenced-in industrial robot equipped
with an additional laser scanner. Cobot systems are mostly
individual solutions and, therefore, not comparable. In [31], a
cycle timed-based method for layout determination of
robotized machine cells is presented. A practical planning
approach for machine tending with collaborative robots can
be found in [32], utilizing the Return on Investment [ROI] as
the target figure.

In the current research, machine tending as a potential
application field for HRI has not been analyzed in much detail
yet. Furthermore, most models lack in the comparison of
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multiple robot technologies as well as in considering the
impact of the hybrid operation on cycle times.

Sophisticated methods, as well as multi-criteria target
systems, increase the methodological complexity. A lack of
simplicity can be noted for rapid resource suitability
evaluation in the rough planning stage, hindering a broad
application and acceptance in both research and industry.

III. METHODOLOGY

A. Process Pipeline for CNC Lathe Machine Tending

The fundament of process automation forms a solid
understanding of the manual process. Therefore, existing
customer projects have been compared to each other, and
expert interviews with various CNC turning professionals
have been conducted. As a result, the following process
pipeline for lathe machine operation has been derived (Fig.1).

Fig. 1 Process Pipeline for CNC Lathe Machine Tending (own figure)

As can be seen, the processes are distinguished between
cognitively challenging and repetitive tasks, which are
executed either exclusively manually by the operator (M) or
automated with an industrial (IR) or collaborative (CR) robot.
While the industrial robot either operates at full speed (FS) or
stops, the collaborative robot is usually moving in full speed
(FS) and reduces to collaborative speed (CS), as soon as an
operator approaches (hybrid mode). Another option is the
exclusive operation in collaborative mode at the respective
collaborative speed level (CS). Suitable methods to determine
the execution times for the alternatives are Methods-Time
Measurement (MTM) for the manual tasks and offline
simulation studies for the robotized execution [33, 34].
Furthermore, there are lathe machine-based processes (L),
which are neutral to the execution form. For both automated
process chains, the manual process “robot program
adjustment” (P3) is added, including tasks such as reteaching
points or tool center point (TCP) calibration.
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B. Use Case Description and Constraints

Due to the process complexity of milling operations and the
respective geometrical variety of the workpieces, the research
object has been narrowed to lathe machines and machining
centers. According to state-of-the-art, chuck parts are mainly
handled with robots, which qualifies them as the workpiece
representative for this research.

CR, PFL
PFL
CR,HM
FS
SSM
PFL
IR
FS
SSM

Fig. 2 Exemplary Technical Automation Alternatives (own figure)
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It is assumed that the doors stand open at the beginning and
are operated by an actuation system. Furthermore, the
automated process chains include only those manual
processes that must remain in that execution form to pursue a
maximum automation level. A collaborative and an industrial
robot with comparable technical specifications are used as
technology representatives.

Please note that the maximum operating speeds of both
robots differ due to kinematic individualities. Cash-out flow
relevant factors (i.e., space occupation, maintenance effort,
energy consumption) are presumed equal. Double grippers
are assumed to handle raw and machine parts simultaneously
for cycle time optimization. Based on the illustrated
protection field configuration, floor-installed safety laser
scanners with a 275 © scanning angle enable the robot system
to switch between operation modes. For this research, only
full-speed operation (white zone), SRMS (red zone), and PFL
(green zone) are considered. SSM (yellow zone) is excluded
to limit this paper's scope and ensure the simplicity of the
presented calculation scheme. This gap must be closed in
future research by considering the required distances and
allowed speeds regarding the robot’s stopping times. Figure 2
illustrates the three concluded technical alternatives: 1)
collaborative robot in exclusive PFL operation (CR, PFL), 2)
collaborative robot in hybrid mode (CR, HM), and 3)
industrial robot (IR).

C. Planning Algorithm

For this paper, the economic feasibility is emphasized
using the net present value NPV [€] as the target figure. In its
simplified form, it consists of the initial net investment /; [€],
the periodical cash-in flows CIF [€] and cash-out flows COF
[€], the discount factor g, the time index t [year] and the
observed time period T [years] [35].

NPV = —I, + X1_o(CIF(t) — COF(®)) e q™t (1)

The values for [y and CIF show vast differences when
comparing robot systems, while those for COF' can be cut
down due to the previously defined assumptions.

ANPV =—Iy+ XI_(CIF(t) e q* )

Consequently, only cash-in flow determination is
emphasized. To evaluate the single alternatives, the process
times P [h] of each process module p must be identified,
leading to the following variables: Py, Ppirrs, PpcrFs and
Ppcrcs as well as P,;. For better understanding, the
calculation of the execution time (ET) [h] in the manual state
is demonstrated first. Therefore, the production order is
subdivided to single batches B,, which includes a specific
number of workpieces per batch n: the batch size S,
[workpieces]. Before a batch can be produced in the loop
phase (LOOP), the enclosing preparation (PREP) and
initialization (INIT) phase take place before and after. The
sum of all three steps delivers the execution time.

3)

_\"
ETprepgnm = 2up=1Ppum
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5

ETinirgnm = 2 % 2ip=a Py + 2% Pg 4)

ET o0pnm = 2% Pgy + Pyy + Pry (%)

ETgom = ETprepnm + ETinir pnm + ©)
(ET Loop gy T Par) * Sn)

When calculating the execution times for one batch, the
total number of batches N can be concluded. The available
annual working time W [h] is defined as plain working time,
while breaks are taken additionally.

v

Ny = (7)

ETgnMm

,N,, € N*

The available rest capacity R is equivalent to the time that
is left over after subtracting the ETs of all executed lots ET .

Ry=W-—=Ny-e ETBn,M (8

Within this remaining time (R), a batch share can be
produced in the loop phase. Therefore, the PREP and INIT
phases need to be executed first. The leftover capacity can be

used to manufacture a specific output Oy. As a result, either
no or one batch share N can be produced.

RM - (ETPREP,Bn,M + ETINIT,Bn,M)
(ETLOOP,Bn,M + P8,L)

Opm €N,= N, {0; 1}

Opy =

)

By adding up the batch sizes S,, of the single batches B,
with the remaining lot share O, the total annual output O, is
determined.

OA,M =S, Ny + OR,M (10)

As a calculation base for the labor release grade LRG, the
manual annual execution time is determined, delivering the
temporal binding of the operator to the machine. In manual
operation, this factor is relatively high because all operations
are executed by hand. Only when the machine is processing,
the operator is relieved.

AETy = (ETprepgnm + ETinirgnm) © (Ny +
Nim) + ETo0pgnm ® (Sn ® Ny + Ogpy)

To calculate the robotized execution times, mixed
operations at different speed levels must be considered.
Therefore, the human-robot interaction grade a is introduced
to cover the time slice, in which the operator stays within the
robot's working space for potential interaction. For
simplification, it is assumed that the operator stays either out
of the robot’s operating space (white area) or within (red or
green area). Passing through the yellow area and the
associated speed reduction in terms of SSM are not
considered. Zone violation events are either planned activities
(e.g., setup, programming) or unplanned ones (e.g.,

an
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troubleshooting, in-process workpiece measurements). The
behavior of the human-robot interaction grade and its
influence on the robot’s performance depends on the used
technology and assumed consideration period. For cobots, a
linear interaction-speed relation is noted because the robot is
gradually decreasing from full to collaborative speed.
Consequently, the execution times of both modes are set in
relation to each other for mixed operation calculations.

ET preppncr = 22:1 Pp,CR (12)
ET\nirgncrar = 2 * P, (13)
5
ET ni7 pncraFs = 2 * Zp=4- Py crFs (14)
5
ET niTpncracs = 2 * Zp=4— Py cres (15)
ETinirgnck = ETivir ncras + ETiNT ncRars (16)
(1-a)+ ETniTpncRacs ® @
ET 00pBncrax = 2 * P (17)
ET 00p pncrars = Pacrrs + P7crrs (18)
ET 00pncracs = Pacres + Prcres (19)
ET 00panck = ETLo0p pncRax T
ETLOOP,Bn,CR,a,FS ° (1 - a) + ETLOOP,Bn,CR,a,CS ° (20)
a
ETgncr = ETprepancr + ETiniT pncr T @
(ETLo0pBncr T Pgr)) ® Sn
—W *
Negp = yNcr €N (22)
ETgncr
Rep =W — Ngg © ETpy, cr (23)
Rep — (E Tpreppncr + E TINIT,Bn,CR)
OR,CR =
(ETLOOP,Bn,CR +P 8,L) (24)
Ogcr €N = N o {0; 1}
Opcr = Sp* Negp + Oger (25)

To observe cash-flows, the annual output deviation, and the
labor release grade between the automated and the manual
execution is utilized.

A OA,CR,M = OA,CR - OA,M (26)

AET ¢ = ETpreppncr ® (Ncr + Ny cr) (27)
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LRGpr =1— m

(28)

Finally, the overall cash-in flow CIF is calculated by
multiplying the LRG with the annual labor cost of the
operator C on the one side and the A 0, with the value
creation per workpiece VC on the other.

Then, the CIF and I, values for each automation alternative
are inserted into the NPV equation.

NPVep = —locp + Dieo CIFcr(t)  q7* (30)

For the technical variant “CR, PFL”, the calculations can
be strongly simplified since the allocation of the a-affected
ET’s can be neglected. Consequently, the same calculations
can be used by cutting out the allocations.

On the other side, industrial robots, stop in the event of
safety zone penetration. As a counterpart for the execution
time in 100% full speed, the actual value in a 100% stop
situation cannot be calculated, hindering time estimation in
mixed operation. In theory, the order would never be
completed in the 100% stop scenario and the execution time
converges to infinity with the expression:

Pp IRFS

Pyir =

(€2))

1-a

Exemplary calculations verify this exponential behavior.
With an increasing share of stopping periods, the robot must
subsequently compensate. Hence, the entire operating time
(e.g., one year) is assumed, in which stopping events occur
irregularly and need to be compensated for finishing the
batch. By considering a short period of time (e.g., one shift)
with regular stopping times (planned activities), the expected
waiting times of the next cycle are not included. Instead, the
execution time results from adding the unproductive time
slice to the theoretical ideal execution time at full speed:

Poir = Ppirps ® (1+a)

However, this calculation is theoretically correct and an
idealistic assumption that is not transferrable to the
unpredictable character of production. Therefore, equation
(31) is used for the following calculations.

(32)

ET prepgnir = 22:1 P DR (33)
ET\nirBniras = 2% Pgy (34)

ET Nt Brirars = 2 * ZZ=4 P irEs (3%)
ETinirgnir = ETinirBniras T+ W (36)
ET 00p,Bnirax = 2 * Psy (37)
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ET 1 00pnirars = Pairrs + P7irFs (38)
_ ET100p,Bn,IRaFS
ETLOOP,Bn,IR = ETLOOP,Bn,IR,a* + T (39)
ETgnir = ETprepgnir + ETiniTsnir + (40)
(ETLo0p,pnir + Pg1) * Sy
N, = —— N, € N*
w =g Nin (41)
Rp=W—=Npe ETBn,IR 42)
Rig — (E Tprep nir + ETIN[T,Bn,IR)
Opir =
(ETLOOP,Bn,IR + P 8,L) 43)
Ogrir €N > N {0;1}
Opir = Sp* Nig + Og g (44)
A OA,IR,M = OA,IR - OA,M (45)
AET g = ETpgepgnir ® (Njg + Ny jg) (46)
LRG,, = 1 — 2218 47
w=1-0 (47)
CIF(t)IR = LRG]R o C +A OA,IR,M o VC (48)
NPV = =lgp + Do CIF p(£) e q7* 49)

As a result, three net present values can be calculated, one
for each technical alternative. By comparing these variants to
each other, the relative advantageousness can be concluded as
decision assistance.

NPV, > (50)
NPV . Industrial Robot preferable
NPV < 51)

NPV p: Collaborative Robot preferable

D. Relationship between Economic Profitability and
Human-Robot-Interaction Grade

To illustrate the application of the proposed calculation
scheme, an example with realistic values is given. The HRI
grade a is used as the sensitivity target figure, progressing in
steps of 0,1 from 0 to 0,9. By this, the influence of this factor
a on the overall decision is illustrated (see Fig. 3). The
industrial robot (IR) is the preferred solution up to an
interaction grade of 20 % since this robot has the highest
velocity and stops occasionally. With increasing interaction
grade, the IR profitability decreases exponentially because the
stopping time slices are getting higher, making this alternative



Robotix-Academy Conference for Industrial Robotics RACIR 2021 at UCB during September 22nd, 2021

increasingly undesirable in dynamic environments. Up to an
alpha value of 84 %, the NPV is absolutely advantageous
(NPV > 0). Between 20 % and 50 % interaction grade, the
collaborative robot in hybrid mode (CR, HM) is relatively
advantageous because the robot can switch between full- and
collaborative speed due to external laser scanners. With
increasing interaction grade, the net present value decreases
linearly and gets closer to the collaborative robot in exclusive
PFL operation (CR, PFL) because the operating speeds
increasingly converge to those in the PFL operation. The CR,
PFL variant is the dominant solution at an interaction grade
of 50 % or higher. If the robot operates most of the time at
collaborative speed, the additional investment of the CR, HM
is no longer beneficial since the operating speeds between FS
and PFL operations are very small during the main times.
Consequently, the decision-maker can make a sound
investment decision based on the expected interaction grade.

—
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Fig. 3 Sensitivity analysis of the HRI grade o (own figure)
IV. RESULTS AND DISCUSSION

The results of this paper are intended to help to manage the
decision complexity in the early automation planning stage.
With the mathematical model, a substantial discussion base
about the practicability of collaborative robots has been
presented to stimulate reconsiderations of the cobot hype
while simultaneously encouraging traditional automation
enthusiasts for this new technology. The focus of this work is
the systematic categorization of the economic structure of
fenceless robot cells. The financial framework for classic
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automation was adopted to cobots until now, without the
precise exposure of the cobot-specific factors, such as the HRI
grade. Particular interest lies in the behavior individualities
for both robot types regarding their linearity and
advantageousness, which has also been plausibly illustrated
in the example. Innovative is the identification of an absolute
unprofitable zone and the subdivision in different decision
areas. Therefore, an economically justified assertation about
the fitness of cobots as a credible automation alternative can
be made, especially for low-volume production with various
setups and process interventions. Limitations occur in the
transferability to other use cases due to the strict application
characterization. Partial fencing and SSM, as it is usual in
machine tending, were excluded from consideration leading
to mismatches with reality. Due to the strong focus on a, the
decision is highly sensitive to the estimation uncertainties of
this factor. For counterbalancing, a sensitivity analysis similar
to figure 3 can assist in defining realistic solution spaces. A
practical solution for accurate o-value estimation can be
achieved by tracking the operator behavior in the manual state
over a relevant period of time. State-of-the-art laser scanners
provide a data collection interface to create heat maps of the
violated safety zones.
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Abstract—Assembly tasks often require high level of
perception, skill and logical thinking, which is challenging for
automation. Increased customization and shortening product
life cycles are further inhibiting automation. Monitoring the
fluid level in gluing processes in assembly of highly
individualized products is one of such tasks. To automate the
task, an Al-based model is proposed in this paper. Target is the
automation of a gluing process in a final assembly. A
convolutional neural network is applied to extract features of
images taken of a gluing process. A support vector machine
classifier is trained with these features and used to identify the
level of liquid in bores. A Monte-Carlo-simulation is applied to
validate the model. Overall, the proposed model achieves 98%
accuracy in classifying liquid level. Testing the model on a
technology demonstrator showcases similar results.

Keywords—Iliquid detection, convolutional neural network,
artificial intelligence, assembly automation

I. INTRODUCTION

The automation of a pick and place and gluing process in
a high variance low volume assembly scenario is in focus of
the authors’ research. In this assembly, parts are inserted into
carrier workpieces and then bonded with glue. A standard
volumetric control of the gluing process it not possible due to
the specific properties of the carrier workpiece and the in
consequence unknown required glue volume. A model to
detect the glue in order to start, monitor, and stop the gluing
process is presented in this paper. Since there are different
sensing tasks in the overall process which can be covered with
an optical sensor, an industrial grade fixed lens camera is
applied.

A brief overview of related work is given in the next
chapter followed by the applied methodology, experimental
setup, results, and conclusion in subsequent chapters. An
elaborated version of this paper was presented on APMS
conference 2021 [1].

II. RELATED WORK

To detect specific features, objects, parts, etc. in
manufacturing automation. Existing detection problems are
solved differently depending on the exact task. In the area of
glue, liquid, and fluid detection in production environment,
most solutions are proposed in the context of bottle filling and
electronics manufacturing [2]—[8]. The majority of reviewed
publications applies a static edge detection algorithm in order
to identify the surface or the silhouette of the liquid [2]-[4].

Atal A. Kumar
Department of Engineering
University of Luxembourg

Luxembourg

Peter Plapper
Department of Engineering
University of Luxembourg

Luxembourg

Once the boarder of the liquid is detected it is compared to a
predefined position or threshold in order to measure the width
of an applied glue line [2] or to determine the upper filling
level of a bottle [3], [4]. Another method is the image
segmentation based on colour. In [5] the dark liquid inside the
monitored bottle is separated from the image background
solely based on colour values and the contour of the identified
area is taken to estimate the filling level. A less complex
algorithm based on changes in histogram is applied in [6] to
measure the volume of a liquid and a bubble phase in
translucent cylindric vessels. Key of this method is the
experimental setup with special light source and background,
which amplifies the liquid and bubble phase. In [7] the
authors compare a conventional detection approach to
identify liquid and bubble phase in bottles via mean filters
with convolutional neural network (CNN) based approach.
The classification results are slightly improved with the
CNN, despite its very simple structure (three layers). To
detect variation in a dispensed glue drop on a workpiece, the
authors of [8] selected principal component analysis. Target
is to identify whether a fault in the dispensing system exists.

Most of the introduced methods by other researchers
apply conventional models to identify the surface, silhouette
or colour of a liquid and compare it against predefined
thresholds or references. Further they are depending on a
constant environment with specific settings for each feature
to be detected. In order to start, monitor, and stop a gluing
process in a constantly changing production environment,
e.g., high difference between products, robot mounted
system, more robust and flexible detection algorithms are
necessary.

III. METHODOLOGY

25

The authors present in this paper an Al-based model for
the robust detection of fluid in bores in a workpiece as part of
the automation of an industrial gluing process. The model was
developed following the in workflow for supervised and
unsupervised learning [9]. The glue detection problem is
reduced to a binary problem with the two classes “full” and
“empty”, i.e., sufficient and insufficient amount of glue. An
initial data set is generated by taking images and labelling
these as “full” or “empty”. In order to increase the amount of
data, the initial data set is augmented according to the method
of importance sampling [10]. Focus of augmentation are data
points, which are expected to be more influential as data points
close to the label change. The data set is split in the subsequent
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step into training and test set randomly. The model is trained
on the training set. In the developed model a pre-trained CNN
is applied to extract image features, which are used for
classification. Using a pre-trained CNN is usually
significantly faster and simpler than designing a new network
[11]. A machine learning algorithm is trained on the extracted
image features by the CNN and used to classify the test set.
The achieved performance and accuracy of machine learning
algorithms is similar to deep learning classifiers by reducing
complexity and computational effort [12]. In contrast to the
initial publication [1], the less complex eight layer deep CNN
AlexNet and a support vector machine (SVM) image classifier
are applied in the proposed model.

Fig. 1. Workflow for supervised and unsupervised learning [9, p. 22]

To analyse the impact of the randomly selected training
and test set on the outcome, a Monto-Carlo-Simulation is
conducted [13]. This cross-validation is conducted, since the
learned interdependencies by training the model with the
training set are highly depending on the random drawing of
the data.

The model is then utilized in a live gluing process. New
images are captured during gluing and are classified by the
developed model. Based on the classification result the gluing
process is automatically stopped.

IV. EXPERIMENTAL SET-UP

A. Generation of data sets

The initial data set is created on a test stand by recording
manually conducted gluing trials. As depicted in Fig. 2. a), a
smartphone cradle is mounted on a horizontal aluminium
profile above the workpiece in order to capture the gluing
process. Via a fixed nozzle, glue is filled trough an inlet hole
of the inserted part into the workpiece. The process is
recorded and the region of interest (ROI), the outlet hole of
the inserted workpiece, is cropped out of the video frames.
The resulting images of 41x41x3 pixels are labelled into the
categories (labels) “full” and “empty” and transformed into
the required image format of the AlexNet input layer, which
is 227x227x3 pixels. 605 initial images are obtained via the
described procedure, which are later used for data set
optimization. In TABLE I sample images of the two labels
are given in row “Label”.

Fig. 2. a): Designed test stand. b): Demonstrator. Source: [1]

B. Optimization of data set

Enough data is required to train the developed model. The
size of the data set is increased by augmentation of the
existing data. A selection of created images is rotated and
mirrored according to the importance sampling method. It is
expected that images labelled as “empty” but close to the
label “full” and vice versa have a high impact on the decision
rule. Thus, these images are augmented. On overview of the
final data set is given in TABLE I. The total data set size is
increased from 605 to 3,000 images via augmentation of
selected images following importance sampling.

TABLE L. GENERATED AND OPTIMIZED DATA SET
Data Frames from videos taken on test stand
Empty (380 images) Full (225 images)
Label
abe Divide into more and less influential
data for “importance sampling”’
Clearly Close to Sufficiently Overfull
empty full full
Sublabel
augment augment
Data set 1830 images 1170images

C. Validation

To balance the size of the classes 1170 images are
randomly selected from the label “empty”. The resulting data
set is randomly split in the ratio 70:30 into training data and
test data. The model is trained on the training set. L.e., the
image features of the images in the test set are extracted by
the CNN and used to train the SVM image classifier. The
model is then used to classify the test set. The result of the
classification is compared to the original label. The whole
process is repeated 500 times in an MCS. Each epoch has a
different random selection of the label “empty”, training set,
and test set.

After training and testing the model with images created
on the test stand, the model is applied on a technology
demonstrator. Here, new images are taken by a fixed lens
camera mounted on a robot. The camera is held perpendicular
above the carrier workpiece so that the ROI, i.e., the outlet
hole, can be monitored. Glue is pumped automatically
through a nozzle into the inlet hole of the inserted part. The
scenery is illuminated with a red LED ring light with the
target to reduce environmental impacts. The whole setup is
depicted in Fig. 2. b).

The ROI is cropped out of the red image plane of the taken
images of the live gluing process and the image patch is
transformed into the required input size of the CNN. The
image features are extracted by the CNN and classified by the
trained SVM image classifier. The gluing process is stopped
once an image is classified as “full”. The trials are conducted
in bright and dark environmental conditions.

V. RESULTS

With the developed model an overall prediction accuracy
of >97% is achieved. 500 different, randomly selected
configurations of the class “empty”, training set, and test set
are calculated in the cross validation with an MCS. The
prediction accuracy varies in an interval from 90-99% over
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the 500 simulations (s. Fig. 3). Each wrongly classified image
is analysed. It is found that these images are directly at
boarder to the other label. Considering the whole video from
where the images frames are grabbed, each of the wrongly
classified images is either the last image, which is labelled as
“empty” or the fist image of a video, which is labelled as
“full” (cf. TABLE I).

Accuracy distribution
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Fig. 3. Results of overall classifier performance with AlexNet feature

extraction based on MCS

On a technology demonstrator the proposed model
achieved similar results during gluing trials, where it is used
to stop a gluing process based on the classification of the glue
level. In total 35 gluing trials are conducted on the
demonstrator using the developed model. In all cases, the
gluing process was stopped correctly based on the glue level
classification. The differences of the images used for training
and the images taken on the demonstrator are significantly
different. Further, the trials are conducted in a daylight and
night scenario. A selection of images classified as “full” on
the demonstrator is given in TABLE II.

TABLE II.  ”FULL” IMAGES FROM DEMONSTRATOR VALIDATION

Scenario Sample images

NOODO(
GIDE

VI. CONCLUSION AND FUTURE WORK

Daylight scenario

Night scenario

A new model to robustly detect glue level in workpieces
is proposed in this paper. The authors present a hybrid
detection model consisting of the pre-trained neural network
AlexNet and a support vector machine image classifier. The
convolutional neural network is applied to extract image
features of images taken with a smartphone camera from a
gluing process on a designed test stand. After training of the
image classifier with the extracted image features, the
classifier is used to classify new images. The classification is
reduced to a binary classification problem and the generated
data set is labelled into the two classed “full” and “empty”.

The overall achieved average accuracy of the proposed
model in classification of the test set images is >97%. The
result is cross-validated with a Monte-Carlo-Simulation — 500
random distributions of training and test set data of the initial
data set are simulated. The application of the developed
detection model on a technology demonstrator indicated
similar results. In all conducted gluing trials on the
demonstrator, the model stopped the gluing process correctly
based on glue level classification. The application of the
detection model in a real gluing process has a huge impact on
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the boundary conditions. Especially the lighting situation and
the image resolution is significantly different to the initial data
set, which highlights the robustness of the Al-based detection
model. In ongoing experiments, the proposed model is
compared to other approaches from both computer science
and production perspective.
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Abstract—With the deployment of Industrial Robots in the
last decades, picking objects from scattered environments has
become inevitable. Human hand-eye coordination allows humans
to recognize and sort different objects. But the engagement is
vastly cumbersome and pestilent as they have to do the identical
task monotonously. For this particular reason, bin picking
tasks have enormous development potential per effectiveness
and efficiency comparing humans. The robot is a potential
candidate to automate the picking process, but it still has
deficiencies in detecting objects in different environments. The
limited deployment of AI algorithms in existing solutions restricts
the integration of automated picking applications. Moreover,
existing solutions require expensive equipment and additional
development time. In this paper, we are portraying a method to
detect objects in heterogeneous environments using a 2D camera
and Al algorithms. Thereby, the position and orientation of the
object are determined. Moreover, the proper gripping pose of
the object is calculated concerning the robot coordinate system.
This method is executed and evaluated in detecting complete
assembled nut-bolts on a plane surface.

Index Terms—Bin Picking, Image Processing, Deep Learning,
CNN, YOLO.

I. INTRODUCTION

Over the last decades, the subject of picking up objects
from specified locations or boxes is a research part in the
field of automation technology. In ordered picking or machine
tending, each of the scenarios needs inspection for picking
objects. Predominantly, this task was perpetually performed
by humans with much efficiency and quality. Human has
extraordinary hand-eye coordination to recognize and pick
up objects without any prior knowledge. But they are error-
prone, and the fatigue or boredom effect can influence their
efficiency. With the industrial revolution, this task seeks for
more productivity along with more momentum of execution.
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For instance, picking up objects in an ordered environment in
a typical warehouse burns 50% - 75% of the total operating
cost [4]. Thus, the robotic solution for bin picking became
inevitable. Industrial robots are manoeuvred in the production
and assembly lines to generate high flexibility for the high
level of automation. These robots are freely programmable
and there are some common ways to do this which are more
or less involved in the problem that they are not flexible and
adaptive regarding changes in the environment. The use of
robotic automation means an effective and efficient solution to
the bin picking problem with reduced cost. Notwithstanding,
the necessity of automated bin picking solution is implacable,
robust use of Al-based solutions is still an extensive quest.
Existing research has produced a wide variation and dimension
of the described enigma. These methods are often expensive
and utilized for individual solutions. High costs are thereby
incurred, for example, for equipment such as cameras.

In this paper, we are presenting a solution for detecting objects
and gripping pose estimation in bin picking scenario. Our
approach consists of a camera mounted on the robot flange
equipped with an OnRobot RG2 gripper [13]]. With the camera,
we observe the environment straight below the robot flange
to detect the desired object. Beforehand, we modify a pre-
trained model to append our desired object. We can use this
appended pre-trained model for different objects in the future.
Afterward, we utilize the OpenCV [1] [[7] contour to figure
out the object area of our intended object and process the best
gripping pose for the object for 2 finger gripper. Eventually,
we have transformed this gripping pose from pixel to robot-
base coordinate system and convey the output to achieve our
bin-picking task. For demonstration, we have implemented the
system with the Kuka KR6 industrial robot.
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II. RELATED WORK

Zeng et. al [18] have illustrated a method for grasping
and recognizing both known and unknown objects in a
cluttered environment without requiring any task-specific
training model. Initially, it uses a diagnostic target retrieval
frame to map visual observations to actions that derive dense
pixel probability maps of the possibilities of four different
primitive retrieval actions. It then performs the action at its
highest retention and recognizes the selected objects using
a cross-domain image classification framework that matches
observed images with product images. Since product images
are available for a large number of objects (e.g., from the
web), the system works out-of-the-box for intended objects
without additional data acquisition or retraining. But it has a
complex and expensive setup with four cameras and multiple
fundamental setups. Petersen et. al [14] presented a more
complete scenario focusing on three process decisions of
picking, storing and routing of ordered picking scenario. This
method leans more towards the best routing planning outline
with a specific object in the current time frame. Moreover,
Kraft et al [8] has introduced an approach that is capable of
automatically generating good grips using a dynamic grip
simulator and post-processing methods, along with an offline
learning approach that can adjust grip priorities based on past
performance. Our work is most aligned with Holz et. al [6].
Here authors have proposed a detecting method after picking
up objects in the different unordered piles with compounds
of simple shape and contour primitives. This method can
give proper object grasping planning and afterward detect the
grasped object to sort properly.

Primarily, we focused on detecting objects, and then we attain
the best gripping position to act with and proceed for the
path planning to grip and place our intended object.

III. OBJECT DETECTION
A. Camera Calibration

The aim of camera calibration is to determine the
transformation between the camera unit pixel and a physical
unit of length (e.g., millimeter). The result can then basically
be used to convert pixels of the camera into world coordinates,
and vice versa. One of the most commonly used camera
models to describe a mapping from three-dimensional to
two-dimensional space is the pinhole camera model [see fig|T]l.

The coordinates of the projection of the point P onto the
image plane in the coordinate system ¢ can be described with
the help of the second intercept theorem from mathematics.
From the length relations between the camera focal length
[ and the ©Z,-coordinate as well as between the ‘X, -
coordinate and ©X,-coordinate respectively “Y,-coordinate
and °Y)-coordinate follows [7]:

c

C-Xp

‘X, = fx 7, and 'Y, = f x CZZ (1)
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Fig. 1: Pinhole Camera Mode

With the parameters ug and v first the displacement of the
coordinate system ¢ with respect to the coordinate system B in
the corner of the image plane is described. Furthermore, two
factors s, and s, (unit pixel/mm) are introduced, which define
the pixel density along the respective image axis in relation to
a physical unit of length. The pixel coordinates ‘u,, and u,, of
the point P result then in accordance with the equations (1):

. °X
“up fe 0 wg EZZ
| =10 fy wo CZP ()
1 0 0 1 ¥
camera matrix
with fp =5, X f and f, =5, x f
CP, 1
CP, J= 0 wup Bup a
=+ =0 fu w Po, | =10 &
% 0 0 1 1 1

The identification of the parameters listed here can be done
using the Python library OpenCV and a chessboard pattern.
Using several images of the chessboard pattern from different
poses, the camera matrix can be calculated. In addition to this,
the transformation between camera coordinate system C' and
chessboard coordinate system C'B is obtained as a result of
the calibration.

‘Xp di1 dip diz ty °BX,
Yo | |dor doa daz ty CBy, )
Zy ds1 dso dsz t, 0

1 0 0 0 1 1

B. Camera-Flange calibration

In order to make the data from the camera calibration
described above available for the robot, the camera must be
calibrated with respect to the robot flange. For this purpose, a
method developed at ZeMA [[11]] [[12] is used. The prerequisite
for this calculation is a camera calibration that has already
been carried out with the camera mounted on the flange.
The extrinsic parameters, i.e., the transformation from the
chessboard coordinate system C'B to the camera coordinate
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system C, are used for different positions and orientations of
the camera above a stationary checkerboard pattern. Matching
the camera position over the chessboard pattern, the respective
poses of the robot flange with respect to the robot base
coordinate system B have to be acquired. With this data, a
system of equations of the form AX = XB can be set up,
where X represents the transformation matrix T, that must
be identified.

C. Introduction to Al

Artificial Intelligence (Al) leverages computer systems and
machines to imitate the problem-fixing and decision-making
abilities of the human mind. Machine Learning (ML) is a
branch of AI where the use and development of computer
systems that are able to learn and adapt without following
explicit instructions, by using algorithms and statistical models
to analyze and draw inferences from patterns in data. Deep
learning is a subset of machine learning, which is essentially a
neural network multiple layer. These neural networks attempt
to simulate the behavior of the human brain (but far from
matching human brain’s ability) allowing it to “learn” from
large amounts of data.

D. Convolutional Neural Network[ CNN]

One of the most popular Deep Neural Networks for object
detection is the Convolutional Neural Network (CNN) [9].
It takes this name from the mathematical linear operation
between matrices called convolution. CNN’s efficiency lies
in decreasing the Artificial Neural Network Parameters and
its ability to handle a huge amount of data. Depending on
this reasoning, researchers have used it in various spheres
like Computer Vision, Natural Language Processing, Pattern
Recognition, and other instances. First, we will go through the
base of CNN [2].

1) Convolution Layer: In the case of Image processing,
usually, we get color images with height x width x color
shape. For instance, fig. 2] has 4 x 4 x 1 image as input
examples. But in real-life scenarios images can be enormous.
For instance, with an 8k image, the size can be 7680 x 4320 x 3.
Hence, reducing these huge sizes is essential. The convolu-
tional layer reduces the images into a form that is easier to
process, without losing features that are critical for getting
a good prediction. In the beginning, the hidden neuron of
the next layer only get inputs from the corresponding part
of the previous layer (output of the previous layer) rather
than the full connectivity where the connection is extremely
high. Another simplification way is to keep weight constant
throughout all neurons which makes sure that the next layer
connection remains smooth. By doing this, a lot of weight
update is controlled. With these two assumptions, it provides
an opportunity to detect and recognize features regardless
of their positions in the image. These weights are given
as matrices to find specific features from the image. These

IThe word “hidden” implies that they are not visible to the external systems
and are “private” to the neural network.
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Fig. 2: Convolution Layer

matrices are also called a filter because they act like the
classic filters in the image processing. However, these filters
are initialized in the CNN, followed by the training procedure
shape filters, which are more suitable for the given task.
These filters strides through the whole image. Controlling
these strides can decrease the parameters more and more, and
at the same time reduce some of the side effects. Usually,
filters move through the image grid with one jump at a time.
This is known as Stride. The assumption is that the successive
layer’s node overlaps with their neighbors by gazing at the
regions. Stride manipulates this overlapping condition. If we
provide a stride of two, the filter will jump two grid lines as a
stride which will reduce the size. If we have an image N x N
and F' x F' filter, then the output O would be:
24+ N-—-F
5 (5)
Where N = input size, F = filter size and S = stride. But
convolution has a drawback. As the filter moves forward with
strides, it gives more emphasis on the middle parts of an image
than in the corner. But corners can have important information
which we are giving less emphasis. We can use 0 padding to
recoup this situation. 0 Padding means adding an extra row and
column of the outside of an image to get through the corners
more. But adding an extra part will decrease the reduction size
of the image but it captures more information about the image
[see fig. [2]l. With O padding the output would be:

1+N+2P-F
S

O:

0= (6)

Where P is padding.

2) Pooling Layer: The pooling layer is responsible for
reducing the spatial size of the convolved feature. It reduces
the computing power required to process the data by reducing
the dimensions to effectively train the model. There are two
types of pooling. Max pooling and Average pooling. Max
Pooling returns the maximum value of the portion of the
image covered by the kernel. Average Pooling, on the other
hand, returns the average of all the values of the part of the
image covered by the kernel. Max Pooling also acts as a noise
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Fig. 3: Max Pooling

canceller. Completely discard noisy triggers and perform noise
suppression along with dimensionality reduction [see fig. [3]|.

3) Fully Connected Layer: Fully Connected Layers form
the last few layers in the network are just like feed forward
network of ANN (see fig ). In feed-forward network, every
point is counted as feature. By verifying series of epochs,
the model can differentiate between predominating and low-
level features in images and classify applying the Softmax
Classification technique.

exp(x;)

> exp(x;))

The flattened output is fed to a feed-forward neural network
and backpropagation applied to every iteration of training for
validation for object detection decision. Output of pooling is
flattened into a column vector so that we can feed it to feed-
forward network. Each input, g(Wx + b) is calculated for
each of the hidden layer neuron (g = activation function, x
= input, W = weight, b = bias). The weights are essentially
reflecting how important an input is. Positive weights increase
the output while negative decreases the output. The bias is used
to shift the result of activation function towards the positive
or negative side. Usually ReLU is used for the activation
function, which is ReLU(z) = max(0, z). There can be
n-number of hidden layers depending on the accuracy we
need and computational power we have. For each neuron of
the hidden layer, the weighted sum of inputs and weights is
Y = zjwy + 2w +....... + xpwy, + b. After passing through
all the hidden layer with same calculation, each class will get
a predicted value using softmax function from each of the
neuron. Then each output’s error is calculated.

softmax(z); =

)

FError = actual value — predicted value ®)

The goal is to minimize this error for same class and
increase for different classes, this error minimization is done
by Stochastic gradient descent which is derivative of loss in
respect to weight.

Wnew = Wold — 7 Z V loss (’LU) 9)
i=1

Where, n = learningrate Hioher the 1, more it learns.
step size

But with higher 7, there is risk of over fitting and lower 7

Fig. 4: Fully Connected Layers

gives underfitting. So, we need provide a moderate learning
rate. Each weight is updated to minimize the error for same
class and increase for different classes. Thus, each class
gets a value of training. While detection, same procedure
is followed to decide the new object class which has least
error with respect to class values. Fig [5] represents full CNN
structure.

4) YOLO: The abbreviation YOLO [15] [17] stands for
the expression ‘You Only Look Once’. It is an algorithm
to detects and recognizes objects in images or video feeds.
YOLO considers object detection as a regression problem
and renders the class probabilities of the detected images.
YOLO is based on CNN. It requires only a single forward
propagation through CNN to detect objects. It yields that
prediction in the entire image is done in a single algorithm
run. CNN permits to prediction of different class probabilities
and bounding boxes simultaneously. In this section, we will
describe the YOLO in general. We have implemented YOLO
version 3 over the YOLO version 2 which is described in
section IV.

YOLO is crucial due to the fact of:

o Speed: This algorithm improves the rate of detection due
to the fact it can predict the object in real-time.

o High Accuracy: YOLO is a predictive method that gives
correct outcomes with minimum background errors.

o Learning Capability: It has amazing insight-gaining
abilities that allow it to analyze the representations of
objects and employ them in object detection.

YOLO works in 3 steps [17]:

« Residual blocks: In the beginning, an image is divided
into S'x.S grids (see fig[6)). In the grid, there are numerous
grid cells of identical dimensions. Every grid unit will
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Fig. 5: Convolutional Neural Network[CNN]

locate items that seem inside of it. For instance, if an
item middle seems inside a sure grid unit, then this unit
could be liable for detecting it.

Bounding box regression: A bounding box is an outline to
highlight an object in an image. Each bounding box have
width (b,,), height (b;,) and class (e.g. person, car, traffic
light, etc.) where ¢ = Classes and box center (b;,b,) [see
fig [7]l. The yellow outline is the bounding box. YOLO
algorithm utilizes a single bounding box regression to
predict the height, width, center, and class.

Intersection Over Union (IOU): IOU is the description of
how the boxes overlap. YOLO employs IOU to render a
yield box that encircles the objects ideally. Each grid unit
is accountable for divining the bounding boxes and their
confidence scores. The IOU is equal to 1 if the predicted

Fig. 6: Residual Blocks
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bounding box is the same as the real box. This mechanism
eliminates bounding boxes that are not equal to the real
box. In fig|8| there are two bounding boxes, the blue box
which is the predicted box while the green box is the
real box. YOLO ensures that the two bounding boxes are
equal.

IV. EXPERIMENT

To validate the concept, we implemented the object detec-
tion for demonstrative use case with bolts, nuts and washers.
They are randomly placed on a flat surface with black back-
ground in the workspace of the used Kuka Kr6 robot (see fig.
O). A two finger gripper (OnRobot RG2 gripper [13]]) and a
3d camera (Intel Realsense D435) are attached to the robot
flange. The target is to detect and grip these objects and drop
them at a predefined place.

A. Model Training

For the experiment, we have captured 365 photos of our
object assembled nuts, unassembled nuts, bolts, and washers.
Each picture can have multiple items from upper mentioned.
We have used Labellmg [[10] to label our images into two

Fig. 7: Bounding Box
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Fig. 8: Intersection Over Union (I0OU)

classes. All properly assembled nuts, bolts and washers to-
gether are assigned to the ”Assembled” class and all that are
not properly connected are assigned as "Not assembled”. Thus,
we have around 700+ labels. Moreover, we also changed the
shape of the images (rotate, flip, but do not resize) and were
able to create some additional images.

For model training and object detection we have imple-
mented YOLOvV3 [16]. In comparison, YOLOvV2 [[19] has
darknet-19 which is a custom deep architecture of a 19-layer
network extended with 11 layers. YOLOV2 often grapples
to detect diminutive objects because it downsampled the
input which attribute to the loss of the fine-grained features.
YOLOV2 uses identity mapping, concatenating feature maps
from a previous layer to capture low-level features to coup
up with the difficulty. However, YOLOV2’s architecture has
obstacles like no residual blocks, no skip connections and no

Fig. 9: System Setup
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Fig. 10: Detected Objects

upsampling. YOLOV3 solves these obstacles. YOLOv3 has 53-
layer network trained on Imagenet [S[]. For detection, YOLOv3
has 53 layers stacked up. Overall YOLOV3 has 106 layers of
convolutional architecture. But v3 is slower than v2 as it boasts
of residual skip connections, and upsampling. The standout
feature of v3 is that it makes detections at three different
scales. YOLO is a fully convolutional network, and its eventual
output is generated by applying a 1x1 kernel on a feature map.
In YOLOvV3, 1 x 1 detection kernels are applied on feature
maps of three different sizes at three different places in the
network. The shape of the detection kernel is 1 x 1 x (B x
(5 + ©)). Here B is the number of bounding boxes a cell on
the feature map can predict and C is the number of classes.
YOLOV3 trained on COCO dataset as pre-trained model.
After detecting the object [Figure [I0]], we crop the detected
part from the video feed which is “assembled” and apply
the OpenCV contour function to find the object area. It is
important to know that we are only interested in detected
object and we need to find out a proper gripping point for
the object to grip and change it’s location. Applying OpenCV
contour appears with it’s challenges because before applying
contour, we are required to crop the detected image and
transformed it into a grayscale image. In this grayscale image,
we solicit contour detection to get the definitive (only) object
area. But grayscale transformation depends distinctly on the
proper lighting condition. Thus, contour is variable with the
lighting setup. With the contour from the object, we can
perceive the contour center which is the center of the density
of the contour. But we discovered that the contour center is not
a gripping position as the assembled object has more density
towards its nut-bolt connection position which is not up to
the mark for gripping. So, we adopted the highest distanced
points from the contour center point to create reference points
distanced from the contour center point to produce a straight
line using these reference points. Meanwhile, this straight line
served to shift the center point along towards the bottom of
the assembled object, so the gripper gets a proper gripping

2Feature map is finding edges for each smallest grid where currently the
filter is going through.



Robotix-Academy Conference for Industrial Robotics RACIR 2021 at UCB during September 22nd, 2021

Fig. 11: Calculated gripping point (blue) for the assembled object. Upper left
[red] is contour center and also one of the reference point and down right
[red] point is another reference point which is adopted the highest distanced
points from the contour center point.

point [Figure [LT]].
B. Path Planning

To finally pick up the assembled screws the gripping point
P, identified in the image (see fig. [[T)), has to be transferred
to the robot. Furthermore, the gripping position has to be
extended by an orientation. The transformation from image
coordinates system ¢ to the robot base coordinate system
B can be accomplished using the parameters of the camera
calibration and the camera flange calibration. In the first step,
converting the gripping position from pixel coordinates to the
camera coordinate system C is calculated with aid of the
equations (3) and (4). Merging the two equations yields the
following system of equations from which the © Z,-value for
the sought pixel can be extracted.

-1

°BX, —di1 —di2 a te
CBY, | = [ —dor —dox b ty (10)
©z, —d31 —dz 1 i,

Substitution of ¢Z, into equation el then also provides
the corresponding © X, and “Y,, coordinates of the gripping
point regarding the camera coordinate system C. For the
following calculation these coordinates are extended with a
one to homogeneous coordinates of the form

C © C C
o=[#]-x

The now missing transformation to the base coordinate
system B can be expressed as a chain of transformations
consisting of the transformation matrix “T- from camera
coordinate system C' to the flange coordinate system F' and
the transformation matrix ZTp derived from the flange pose
during image acquisition.

B, o
sz( 11)) =BTy 1. Ip

In this equation pr describes the displacement vector of
the gripping point P regarding the robot base coordinate
system B. For a suitable orientation to gripping position the

Tp

1 Y,

C T
P Zp’l)

(1)

B (12)

34

Fig. 12: Object Gripping.

estimation is done, that an alignment of the gripper parallel
to the normal vector of the table meets the requirements of
the gripping process. This normal vector is obtained from
the chessboard coordinate system C'B. A second axis to
determine the orientation is then given by the straight line,
calculated to shift the gripping point towards the bottom of
the screw (section IV.A). Two points P;; and P on this
straight line inserted into equation (9) provide the position of
the straight line regarding the chessboard coordinate system.
The orientation of the screw with respect to the chessboard
coordinate system can now be described as a simple rotation
around the z-axis of C'B. The angle of rotation is given by

— Yiz—y
o = atan (2241 (13)
The resulting rotation matrix is then:
cosae —sina 0
“Bp, = |sina cosa 0 (14)
0 0 1

The final orientation of the screw with respect to the base co-
ordinate system can be composed of several rotation matrices
similar to the position transformation.

Bp, =B Dr Do - Dop-“P D, (15)

Where BD g and FD¢ can be extracted from the transfor-
mation matrices 2T and ¥ T. Furthermore, “Dg originates
from the transformation matrix ©T¢p, which was calculated
in equation (4) during camera calibration. Finally the ro-
tation matrix BDp has to be expressed in the Roll-Pitch-
Yaw convention [3]], to provide 6D pose vector of the form
w, = (Tp,Yp, 2p, ap.bp, ¢p)" to the robot. Here ap, bp and
cp describe the three euler angles. An example of the gripping

pose that occurs can be seen in fig.

V. EVALUATION

With the specified training method and parameters, we have
achieved more than 90% accuracy for the object detection
on our specified class of “Assembled” and “Not Assembled”.
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Moreover, for the contour detection we have obtained exceed-
ingly satisfactory results. Nevertheless, finding the contour
could be influenced by changing lighting conditions. For
industrial implementation this stipulation should be taken
into account. Another issue is the contour detection with
different background colors. This is why we installed a black
background to generate a high contrast to the objects. After
acquiring an acceptable gripping position described in section
IV.B, we transformed the gripping position in the robot base
coordinate system. In this transformation, we have around 4-
6mm accuracy error depending on the camera calibration and
camera-flange calibration error. This is sufficient for our evalu-
ation process of gripping the “assembled” bolts. Furthermore,
our use case does not contain high requirements for the drop
off position, thus minor errors don’t influence our outcome.

VI. DISCUSSION & FUTURE WORK

As we described in evaluation, we have achieved satisfac-
tory results. For instance, we were able to minimize the cost
with a less expensive camera. Our object detection is also
quite economical. But as we are using contour, we required
to set the object background black to differentiate between
our object (which is bright) and background. To solve this
problem, one future approach could be better training of our
model with OpenCV Rectangle function as we can manipulate
the image cropped from the video feed. Towards the bin
picking, the objection detection should also be able to handle
stacked bolts or more general stacked objects. Moreover,
the localization is performed in a 2D scenario and thereby
restricted to pre-calibrated planes. Our future work will look
towards the use of a 3D camera to solve the upper mentioned
problem. Coordinate transformation will then be possible for
any position and orientation of the objects. Another focus
point could be the improvement of the calibration errors and
therefore make it feasible to implement for higher precision
applications.
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Abstract— In this paper, we propose to robotize wire and cable
stripping using an external position/force control developed on the
ABB IRB14000 robot called "YuMi". This command aims at
controlling the external force applied on the robot and
consequently the one applied on the wire to be stripped, which
allows both to improve the robot behavior and to robotize an
application currently not robotized. The first results of robotic
stripping are presented.

Keywords— Robot control, External position/force control,
Robotic stripping, YuMi

I. INTRODUCTION

The stripping of electrical cables is a widespread process in
the world and its importance extends to many areas. It is used
for example in the industrial world, in the home for the
connection of electrical installations, and in crimping for the
preparation of cables. The concept of stripping is similar to that
of degaussing in some areas where cables are stripped to
recover the copper conductors. Degaussing can also be
considered as the stripping of cables with a cross-sectional area
greater than 16 mm? [1]. This technique was introduced during
the second industrial revolution, which began in 1870. Indeed,
the use of electricity in industrial production will make men
rush to invent electrical machines [2]. Thus, from then on, in
order to make the connections between machines, operators
would need to strip the electrical cables.

Stripping an electrical cable means removing the protective
layer called "insulation" from the conductive layer over a
certain length of cable. It also exposes the core of the cable.
Over time and with a growing market, the demand for
innovative stripping techniques has continued to increase [3].
A number of companies have specialized in this process,
offering ever more innovative techniques. A large number of
patents support this. Nowadays, there are many special tools
and machines created as a result of the various industrial
revolutions.
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A. What are the properties of the stripping process?

Stripping techniques and tools have continued to develop
and evolve over the years, to the point where there are now a
large number of them. To strip an electrical wire, a certain
number of parameters must be taken into account for the
stripping to be done correctly. According to the NF EN 2812
standard [4], stripping is correctly performed when:

e The insulation or shielding does not show any signs of
deterioration that could cause short circuits in electrical
installations

e The conductive core does not show any cracks or
alterations that could cause the wire to break and cause
an electric shock

e The original performance of the wire or cable as defined
in the technical specifications is not reduced after the
stripping operation.

In addition, this standard also identifies defects that may
appear after the stripping operation [4] [5]. These defects
include:

A lack of torsion and discarding of the core

Marks on the insulation (nick, burn, visible wire, etc.)
Residual insulation

Cut wires or strands

Surface contamination (burnt insulation, glue residue,
dust, etc.)

B. Stripping concepts and techniques

To strip an electrical cable, several techniques can be
distinguished. Four main stripping methods are presented in the
NF EN 2812 standard. They are based on mechanical tools
made according to different and varied technologies. For this
purpose, there are:
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Manual stripping: this practice is performed with a scalpel,
razor blade or any other sharp object (cutting pliers,
scissors, etc.). This practice is most often used when users
do not have the proper tools to perform the stripping. This
leads in the vast majority of cases to numerous stripping
defects and for applications such as aeronautics; the use of
manual cable stripping is prohibited when another
stripping process can be used.

Mechanical stripping: This method of stripping is the most
common and most used by professionals to strip individual
wires. It includes many tools of different strengths adapted
to given cable sections. The special feature of these tools is
their simplicity, which makes them ideal for use in a wide
range of applications.

Thermal stripping: it encompasses all devices powered by
a voltage and composed of two parts: a voltage generator
to control the temperature and a manual part consisting of
two wires with clamps at their end. The two wires are
powered by a current and heated to a temperature between
0° and 99°. The stripping is then done by pressing the
clamps on the cable. The advantage of this device is that it
does not require very strong pressure on the electrical
cable. On the other hand, its design remains complex.
Laser stripping: Laser is a process used by professionals
for its precision, repeatability and robustness [6]. It is also
used for applications where the presence of the slightest
defect on the conductive core is not acceptable and when
the external geometry of the cable to be stripped is
incompatible with a mechanical process.

Mechanical = stripping is the most widespread
technique in the industrial world today. In the context of
the project, it is the easiest to adapt. Moreover, in terms of
cost, it is the one with the least financial requirements. We
have therefore chosen in our project the mechanical
stripping technologies for their feasibility and ease of
implementation on the YuMi robot (Fig. 1) and also to
allow us to validate the external control law we seek to
apply on the robot.

Fig. 1 Robot IRBI4000 from ABB (in LCFC lab)

The first part of this paper presents a state of the art on
wire stripping, its properties and existing methods on the
market to strip a wire. In the second part, we briefly present
the control law developed on the robot to robotize the wire
stripping application. In the third part, we present the
technique adopted for this purpose. In the fourth part, we
exploit the experiments carried out to test and validate this
stripping. Finally, in the last part, the results obtained and
the perspectives of this study are discussed.

II.  CONTROL LAW

The external control of the position/force is
implemented by using the dynamic model of the robot
without using external sensors. This consists in organizing
beforehand the force control loop on the position control
loop and not in organizing these two loops simultaneously
like the classical hybrid control [8]. Fig. 2 shows the
schematic diagram for a single arm of YuMi.

Fig. 2 Proposed control principle for a single YuMi arm
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The desired external forces Fa and the calculated
forces Fea applied to the robot end effector are used to
calculate a position deviation X and then added to the
desired position set point Xa to form the new position set
point X transmitted to the robot. Thanks to this, a constant
desired force is imposed and then, with the selection matrix
S, a diagonal matrix composed of 1 or 0 is chosen, the
directions to be controlled in force; if this one is equal to 1,
the servo-control of this direction is carried out. The
position variation AX resulting from the difference (Fa -
Feal) is obtained from a force control law LCF to be defined
according to the task to be performed and the desired
results. Indeed, contrary to the hybrid control, the force
constraints do not act directly on the joint torque of the
actuators but on the operational position of the robot. A
great advantage of this control is that it can be applied to
relatively "closed" controller architectures, as in the case
of our YuMi robot, which already has its own position
controller and which is not suitable for implementing
another position control either.

This allows us to take advantage of the robot controller
as well as the new external control. The complexity of this
law can thus be particularly high depending on the
identified dynamic model of the robot; see our detailed
work on this part in reference [9]. It also depends on the
filtering of the data and the frequency of the measurements,
i.e. the real-time communication with the robot; also refer
to our detailed work on this topic in reference [10].

III. STRIPPING TECHNIQUE ADOPTED

In order to strip an electrical wire, it is necessary to
perform an adequate technique beforehand in order to respect
certain constraints. For example, it is important not to damage
the conductive core, which could then break during handling
and cause defects, and not to damage the protective sheath on
the remaining length of the cable to avoid causing short circuits.
This being the case, the stripping is spread over several steps
[7], namely:

e Step 1: Setting the gauge, this is the first step of the
stripping operation, which consists in adapting the tool or
the machine to the wire to be stripped. The important
characteristic to take into account here is most often the
wire section.

e Step 2: Wire clamping, this step is relatively simple as it
consists of placing the wire between the clamps of the
stripping tool. During this step, it is also important to
ensure that the clamping force does not damage the
protective cover

e  Step 3: Application of force to segment the insulation,
this is an important step, as it is here that all parameters
must be taken into account. The space left between the
tool's clamps must be sufficient and precise so that the
cut does not damage the conductive core. In addition, the
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segmentation obtained must be sufficient to facilitate the
removal of the insulation in the next step.

e Step 4: Removal of the protective sheath is the last step
of the stripping operation, which consists in removing the
insulation from a given portion of wire. Automatic
stripping tools and industrial machines allow to remove
the insulation on the concerned part directly after the
segmentation in a single action. For manual tools, it must
be done by pulling on the wire or by separating the wire
from its sheath (stripping).

Fig. 3 Proposed CAD model of the clamp with identical V-shaped blades V

As part of our project, we have designed a tooling for the
YuMi robot to strip electrical cables using a suitable technology
that takes into account the constraints encountered in the
execution of the stripping by the robot and that respects the
required technical specifications. It consists of a pair of pliers
with identical V-shaped blades (Fig. 3), a solution inspired by
the classic stripping pliers that have V-shaped jaws and a locking
screw to adjust the section of the cable to be cut.

A groove is made in each finger of the YuMi to
accommodate the base of each blade. This groove has a radius
r = 0.8mm which is twice the minimum value imposed by 3D
printing. A smooth hole is also drilled in each finger and in each
blade. A FHC M3 x8 screw and a M3 nut ensure the holding in
position. This type of screw was preferred for space reasons
because this screw can be completely embedded in the blade
without causing problems to the overall design.

On each finger, roundings of r > 0.4 mm have been created
on all the ribs in order to support the forces. An M3 x20 knurled
screw and an M3 knurled nut can also be seen on one finger
while on the other, an extension was created in order to reduce
the length of the knurled screw used and to comply with the
standards for knurled screws. The hole created, which rests on a
vertex of the finger for stability and bearing surface, has a thread
of pitch p = 0.25 mm and diameter d = 2.5 mm. The knurled
locking system is explained here by the choice of manual
adjustment, which has been taken into account.
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The blades are made by folding a sheet of characteristics
L x1xe=25x20x2mm. A chamfer was created on the base
of the blade to facilitate its retention in position in the finger
groove. A 120° chamfered notch was also made in the blade to
create the cutting portion. The two blades were designed to be
mounted back to back. With this in mind, chamfers of length
1 mm x 60° were added on the ends of the blades to provide a
backlash free overlap of the blades and their adjustment into a
self-contained position. This backlash-free overlap is useful
because it enhances the cutting operation of the blades. Fig. 4
shows the proposed solution mounted on the robot.

Fig. 4 Proposed clamp mounted on the robot

IV. EXPERIMENTATION

Before presenting the first results of stripping with the
control law, it is worth mentioning that we tried, with the same
experiments, to strip wire only with the robot control. This
means with a simple RAPID program that commands the robot
to go from one position to another holding the cable between the
clamps, but it turned out that the robot was not able to strip and
it stopped because it considered itself to be in collision and,
therefore, it deactivates the motors and displays the message
"Motion Monitoring". In addition, we also noted that the robot
was able to sustain much more than the external force on its
arms, up to 40 N in a single direction, which confirms that the
performance of a robot can be significantly improved by adding
additional controls.

We now turn to the first results obtained during the stripping
process. These results are based on an experiment carried out
with a | mm diameter wire that we stripped with the right arm
of the robot and a clamping tool that allows to hold the wire
without any risk of slipping. Contrary to what happens when we
use the other arm since we have not yet developed a tool that
allows to hold the wire and to strip it well. Moreover, by
changing each time the clamping force and the traction force
controlled by the control law developed on the robot. We
considered for these tests the same length to strip of 5 mm.

In the first result, we applied a maximum clamping force
achievable by the robot of 20 N and commanded the robot to 30
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N for the pulling force. It can be seen in Fig. 5 that the robot
reached the desired force i.e. 30 N, and experimentally we found
that the segmentation step was done at 15 s and the sheath
removal takes place 3 s right after which explains the decrease
in force from 15 s.

On the other hand, in the second case, we reduced the pulling
force to 23N and the clamping force to 18 N because we noticed
that the stripping could be done with less force and Fig. 6 proves
it because the stripping is clearly better done than in the previous
example. For Fig. 7 and Fig. 8, we have therefore maintained
the same clamping forces and we have modified the tensile force
to know its influence on the stripping. With a force of 35 N, the
robot could not reach the force and it stripped before with a force
of 30 N and for segmentation it needed a force between 15 N
and 17 N to finalize the stripping operation.

In the last test, we decreased both forces. The stripping was
perfectly performed with 20 N and 8 N of segmentation and
clamping respectively, Fig. 9 shows the results. In this test, the
stripping is performed in one-step with less force to be applied.

Fig. 5 Stripping results with 20 N clamping force and 30 N controlled force

Fig. 6 Stripping results with 18 N clamping force and 25 N controlled force
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Fig. 7 Stripping results with clamping force 15 N and controlled force 35 N

Fig. 8 Stripping results with 15 N clamping force and 25 N controlled force

Fig. 9 Stripping results with 8 N clamping force and 20 N controlled force
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Fig. 10 Stripping steps with YuMi

V. CONCLUSION

The first results of robotic stripping with external
position/force control with the robot confirm the
applicability of robotic stripping and its steps are presented
in Fig. 10; we have a defect-free stripped electrical cable
respecting all the properties of manual stripping. These
results also allow us to see that it is necessary to know in
advance the force pattern to be applied for a specific length
and diameter of the cable. We propose and take into
consideration as a perspective of this work the
identification of a force model from the experimental
results allowing to know in advance the two forces to be
applied on a cable to achieve a successful stripping
respecting all the defined standards.
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Abstract—A Cable-Driven Parallel Robot (CDPR) uses wires
instead of rigid links to move the end-effector of the mechanism.
It has the advantages of a simple model, large workspace and low
price, and has gained the attention of many researchers in recent
years. Additionally, with the increase in labor costs, it has become
a trend to replace manual labor with automation technology.
Various robots have been widely used in manufacturing industry,
service industry, and medical industry. Therefore, the
combination of parallel robots and visual inspection technology
has become an exciting development trend. This article is
dedicated to the evaluation of the feasibility of using camera and
Aruco markers for position feedback on a 4 cable-driven parallel
robot.

Keywords—Cable-Driven Parallel Robot, Vision, Depth Camera,
Aruco.

I. INTRODUCTION

Cable-driven parallel robot (CDPR) have been studied by an
increasing number of researchers as an important type of
mechanism. CDPRs have the advantages of simple design, large
working area and low price. In recent years, they have been
increasingly used in lifting, machining, port cargo handling,
shipbuilding, subsea exploration, debris removal, etc. The study
of the CDPR end-effectors is an important indicator of the
motion state of the mechanism and provides a baseline for
simplifying the mechanism and diagnosing faults. Its detection
accuracy is an important aspect of measuring the structural
performance of the mechanism and it is necessary to ensure that
the end effector achieves the intended state of motion. Therefore,
the study of the detection of the final trajectory of the CDPR is
of great importance [1].
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This article is dedicated to evaluation of the feasibility of
using camera and Aruco for position feedback on a 4 cable-
driven parallel robot.

A CDPR is composed of four basic components. A platform
or end-effector, which is positioned within a workspace to fulfill
a specific task, cables to control and move the platform, winches
which change the cable length, and a frame upon which these
cables are fixed (Figure 1) [2].

To position the robot, an Intel® RealSense™ Depth Camera
D435 and an Aruco are used. The depth camera is fixed to the
ceiling and the Aruco is pasted to the center of the platform (The
end effector of the robot.). It can measure the relative pose of the
platform by identifying the Aruco. The camera is connected to
the PC and sends the measurement data to the PC. The
experimental setup is shown in Figure 2. The operational flow
of the system is shown in Figure 3.
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Figure 2: Measurement systems in the laboratory

Figure 3: System flow chart
II. POSITIONING PLATFORM

The depth technology used in the camera is active
stereoscopic projection. An active stereo display is a projector
that projects an image, one moment projecting the signal seen
by the left imager and the next moment projecting the signal
seen by the right imager. At the moment when the signal is
projected to the left imager, a control signal is sent from the
workstation to control the left imager of the active stereoscope
so that it opens, when the right imager is closed; conversely,
when the image is projected to the right imager, the left imager
is closed. At the same time, the independent IR projector on the
camera sends a synchronisation message to the imagers.

The Aruco is used to determine the position and pose of
the robot with respect to the camera_in real-time. The Aruco
tag was originally developed by S. Garrido-Jurado et al.in
2014 [3]. The Aruco library is a two-dimensional code tag
library [4], which can be used for image recognition, graph
localization and three-
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dimensional problem solving. The frame and four corners are
mainly used for tag positioning The Hamming internal code [5]
is mainly used for identity recognition, information validation

and error correction. The detection of the Aruco code consists of
two main parts: one part is the detection of the four corners of
the Aruco code and the second part is the detection of the
identification of the 2D code representing the numbers. Figure 6
illustrates the process of detecting Aruco codes.

As the Aruco ID is unique, the depth camera is programmed
to recognize the code to detect the platform's position in real

Figure 6: The process of detecting Aruco codes[6]

time. This method is much faster than monitoring by other
Sensors.

III. CAMERA PRECISION

The precision of the camera needs to be measured before the
end-effector’s precision can be improved. Precision
measurement experiments with Intel® RealSense™ Depth
Camera D435 were carried out on a serial robot /RB1200.
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The depth camera measures six parameters, three
translational parameters X, y, z and three rotational parameters
RV1, RV2, RV3.

A. Stability of the camera

The first step is to measure the stability of the camera. Each
path consists of multiple poses and each pose is measured three
times to obtain the standard deviation of the three data. The
stability of the camera when measuring the path is then obtained
by calculating the average of the standard deviations of the poses
on each path. A total of six paths are measured: translation along
the x-axis, y-axis and z-axis, and rotation along the x-axis, y-
axis and z-axis.

X(m) | Y(m) |Z(m) | RVl |Rv2 |Rv3

Trans-X 0.0002 | 00002 | 0.0006 | 0.3140 | 0.0048 | 0.0302
Trans-Y 0.0000 | 0.0000 | 0.0002 | 0.1146 | 0.0018 | 0.0077
Trans-Z 0.0000 | 0.0000 | 0.0001 | 0.1664 | 0.0026 | 0.0117
Rotation- | 0.0001 | 0.0001 | 0.0005 | 0.4361 | 0.0089 | 0.0549
X

Rotation- | 0.0000 | 0.0000 | 0.0002 | 0.0015 | 0.0007 | 0.0033
Y

Rotation- | 0.0000 | 0.0001 | 0.0003 | 0.1627 | 0.0370 | 0.0271
z

As can be seen from Table 1, the mean standard deviation of
the translation parameters for all paths is less than 0.001m. This
means that the camera is very stable in measuring the translation
vectors.

Whereas for the rotation vector, the rotation vector RV1 has
a large error, for the other two vectors, it is less than 0.01.

When the camera is measured multiple times in the same
pose, the translation parameters are almost constant, while the
measured rotation vectors have a large error.

B. Translation and Rotation along x-axis, y-axis and z-axis

The motion of an object in space has six degrees of freedom,
they are: translation along the x-axis, y-axis and z-axis, and
rotation along the x-axis, y-axis and z-axis. In order to measure
the precision of the camera_in each degree of freedom, this
experiment uses the control variable method: each path moves
along only one degree of freedom. Since there is an error
between the camera's measured pose and the initial input pose,
this experiment yielded both the error in percentage with

camera—Robot
———— and the the
Robot

with|Camera — Robot| for error analysis. The results of the
experiment are shown in Table 2.

difference  between two
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Result

An error in
average 38% and
in average 0.05m
for a depth 5cm
of +03m is
obtained.

An error in
average 17% and
in average
0.0152m for a
depth 5cm of
1+0.18m is
obtained.

An error in
average 6% and
in average
0.0208m for a
depth 5cm of
0.15m-0.65m is
obtained.

An error in
average 2% and
in average
3.4816 degforan
angle of -25deg
to 25deg is
obtained.

An error in
average 58% and
in average
6.9487 deg for an
angle of -30deg
to 15deg is
obtained.

An error in
average 6% and
in average
2.1444 deg for an
angle of -15deg
to 35deg is
obtained.

Trajectory
Translation X

Translation Y

Translation Z

Rotation X

Rotation Y

Rotation Z

In conclusion, the precision of the camera for translation
along the X-axis is smaller than the other two with an error of
0.0515m between the input position and the real position, and
the precision along the Y-axis and Z-axis are with an error of
0.0152m and 0.0208m between the input position and the real
position.
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And the precision of the camera along Y-axis rotation is
smaller than the other two with an error of 6.9487deg between
the input angle and the actual angle, and the precision along the
X-axis and Z-axis are with an error of 3.4816deg and 2.1444deg
between the input position and the actual position.

IV. TRANSLATION ALONG Z-AXIS ON THE CABLE-DRIVEN
PARALLEL ROBOT

After the camera precision measurements, the vertical
translation along the Z-axis of the CDPR was studied and the
transfer function was calculated. This experiment had three
variables: different speeds of movement, different distances of
movement and the presence or absence of buffer times. After a
total of eight sets of experiments, the_dataset with the best
experimental results (buffer time = 5s, movement distance =
15¢cm and movement speed = 0.05m/s) was chosen to calculate
the transfer function. Figure 8 shows the platform movement for
the test. During the movement of the platform, the depth camera
feeds the measured relative poses (Z_camera) to the computer
and the robot also calculates the real-time poses (Z rebuilt) of
the platform from the cable length detected by the sensors and
feeds it to the computer.

m Buffer time

Maximum height

Final state
Platform
Platform
Initial stat v=0.05m/s ) B
nitial state Distance=15cm
Platform

Floor

Figure 8: Platform movement process

Using MATLAB, here are the 2 transfer functions and the
respective figures. In the figure 9, the three curves are: the height

Figure 9: Z camera, Z_input, Output of model
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of the platform entered by the program over time_(Z input), the
height of the platform measured by the camera over time_(Z
camera) and the trajectory of the platform obtained by the
calculated transfer function (Output model).

The transfer function between the input and output of camera
is:
12.62
52+49.933%s+11.92

Z camera(s) __

1
Zinput(s) ( )

With Static Gain: K= 12.62/11.92 = 1.0587 ; Natural
frequency :wy = v11.92 = 3.45 rad/s; Damping: & = 0.5 *
3.45%9.933/11.92 = 1.4374.

In the figure 10, the three curves are: the height of the
platform entered by the program over time (Z input), the height
of the platform measured by the sensors over time_(Z rebuilt)
and the trajectory of the platform obtained by the calculated
transfer function_ (Output model).

Figure 10: Z_rebuilt, Z_input, Output of model
The transfer function between the input and output of sensor
is:
6.433
52+4.199+5+6.155

Zrebuilt(s) _

2
Z input(s) ( )

With Static Gain: K= 6.433/6.155 = 1.0452 ; Natural
frequency: wy = v6.155 = 2.48 rad /s ; Damping: & = 0.5 *
2.48 ¥ 4.199/6.155 = 0.8459.

V. CONCLUSION

Both, the camera measurements and sensor calculations can
be used to obtain a curve that approximates the input trajectory.
The advantage of the camera is that it is more responsive and
less subjected to external influences, as the cable's elasticity
causes the wire winding to be slightly dependent to force and
affects the sensor's calculations. The advantage of the sensor
calculation is the greater detection range. The combination of
the two can be used to improve the accuracy of monitoring to a
greater extent.
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Abstract—The generation of electricity through renewable
energies is an important component of the German electricity mix.
Photovoltaic and solar power systems have an important position
among these green energies. Due to the exposed location of these
systems to weather and environmental conditions, large efficiency
losses can occur due to surface impurities. Even though cleaning
solar plants can make sense from the point of view of increasing
efficiency, this is not always the case from an economic point of view.
In particular, small or difficult-to-access plants have a disadvantage
here due to the high manpower requirements. So far, no mobile and
autonomously acting systems can be found on the market. Either
they have to be mounted on the plant or be controlled by operators.
In addition, these robots must always be supplied with energy and
operating materials via a pipeline. This problem was addressed here.
The result of this work is a prototype of an autonomous cleaning
robot that is independent of supply lines.

Keywords—autonomous Robot, solar, photovoltaic, cleaning

I. INTRODUCTION

The generation of green energy is an important factor in
today's power generation. Solar and photovoltaic plants play a
leading role in the process. The percentage of these plants,
together with wind energy, bioenergy and hydropower, in
German electricity generation is 50.6% [1]. Photovoltaic (PV)
installations alone accounted for 10.5% of the German
electricity mix, according to data from the transmission system
operators. This share corresponds roughly to 51.4 TWh of
electrical energy [1].

Photovoltaic systems are mostly found as rooftop systems or
as large solar farms on open spaces. In Germany, around 90% of
all PV systems are roof systems with a nominal output of up to
30 kWp (kilowatt peak). In 2020, for example, they generated a
total output of 18.4 GWp [1]. A kilowatt peak is the unit of
maximum output of solar modules. One kWp can generate about
1000 kWh of electricity per year, which requires about seven to
ten square metres of solar surface [2].
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Solar installations are exposed to external weather

conditions all throughout the year, which is why dirt appears
after a certain period of time. This can consist of dust, moss or
bird droppings, for an example, and can lead to the performance
being impaired [3].

A 2018 research study by Milk the Sun GmbH showed that
solar installations with a tilt angle below 35° are particularly
sensitive to soiling and that the effects of regular cleaning are
the most significant [4]. Depending on the location of the PV
systems, efficiency losses can vary. A measurement of a solar
surface at the edge of a forest, for example, showed a loss in
efficiency of up to 17% due to soiling by dust and moss [5]. The
feed-in tariff for photovoltaic systems in April 2021 was 5.36
cents/kWh for systems up to 750 kWp [6]. For a PV system with
an output of 500 kWp, which is a solar surface of about 5000
m?, the average kWh production is about 500,000 kWh or 500
MWh per year. This would result in a feed-in tariff of 26,800 €.
With an efficiency loss of 17%, the energy production would
only be 415 MWh, i.e. a feed-in tariff of 22,244 € and a loss of
4556 €. Regular cleaning is therefore very important.

However, cleaning the solar surfaces is very difficult. Due to
the fact that the PV systems are mostly found on roofs, there is
an increased risk of injury from falling. The size of the surfaces
and the slippery surface also make cleaning complicated.
Incorrect cleaning can also damage the surface [7].

So far, the cleaning can only be carried out manually, which
is often very expensive. Depending on the accessibility of the
system, average costs of approximately 1.00 to 2.50 euros per
m?, additionally travel costs, are charged for photovoltaic
cleaning. The photovoltaic cleaning prices are made up of the
size of the system, the type and severity of the soiling, the access
to the system and the technology used for cleaning [8].

Another reason why the conventional methods are limited is
that the cleaning industry has a very high staffing requirement
and therefore a shortage of skilled workers, which is why
cutbacks make sense [9].
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Possible solutions are autonomous robotic systems for
cleaning PV and solar plants. Regular cleaning can prevent
heavy soiling and therefore significantly reduce efficiency
losses.

Due to the autonomous operation, no complex cleaning
measures by external service providers are necessary. In
addition, the robot system with an optimised concept enables
more efficient, water-saving and thus more economical
cleaning.

The automatic cleaning systems already available on the
market can be divided into two categories. The first category are
autonomous systems that use rainwater for cleaning, but are
stationary, i.e. mounted on the PV system [10]. The second
category are remote-controlled robots, which are placed on the
PV system [11, 12]. In this case, at least one person is always
necessary to control the robot and guide the supply cables along
the system. These robots usually require an external power and
water supply. Depending on the model and cleaning principle,
demineralised water is used here [11]. Depending on the type of
movement, an additional pneumatic supply is required [11]. The
movement on the PV systems, i.e. an angled and slippery
surface, is a problem that has already been solved, which many
manufacturers and suppliers demonstrate with different
solutions. Rubber tracks [13] or pneumatically operated types of
movement are used for this purpose, for example [11, 12].

Partially automated systems, in contrast, are only used for
large solar farms. Systems that work hand-operated are also
used. Water (sometimes with detergent) is fed from a supply line
and the modules are then cleaned with sponges or brushes. This
type of cleaning is very resource-intensive, as cleaning is often
done with a lot of water [11].

II. CHALLENGES

A. Structure of a solar module

The materials used inside a solar module make it very
sensitive. Therefore, PV systems require a certain cleaning.

Fig. 1: Structure of a solar cell [14]

Solar modules consist of several layers. Figure 1 shows that
the upper layer is usually tempered glass. Underneath, there is
an anti-reflective film, metal and silicon, which convert the sun's
radiation into usable energy [14]. On the one hand, the tempered
glass serves as a protective layer, but it should also ensure that
the solar radiation can be transmitted reliably. Depending on the
manufacturer of the solar modules, other transparent materials
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can also be used as top layers. However, the material of the top
layer is sensitive and requires special cleaning. Chemical
cleaning products are usually not permitted, according to the
manufacturers. Water and gentle brushes are recommended for
cleaning so that the surface is neither damaged nor attacked by
harsh cleaning products [15].

Several solar modules are lined up on roof surfaces or solar
farms. They are attached by using frames, which are mounted
on a base construction. There are gaps between the individual
modules, which vary in size depending on the manufacturer.
This is illustrated in Figure 2.

Fig. 2: Gap between the solar modules [1]

This fact plays a major role in the implementation of the path
planning and the design of the sensors. The robot must be able
to overcome the gaps as well as recognise that it is only a gap
and not an outer edge.

B. Requirements for an autonomous robot system

The robot system must be able to navigate and move
autonomously on the roof. The key is to build a suitable sensor
system that can reliably detect the outer edges and distinguish
them from the gaps between the solar panels. Reliable detection
of the edges is made more difficult by the weather conditions
and the smooth surface. No other obstacles are expected on the
PV surface besides the outer edges. PV systems that have a
distance of less than 5 cm to skylights, chimneys, antennas or
other obstacles are not considered by the presented solution.
The problem of robot control and path planning is considered to
be minor, as corresponding applications are already available on
the market in the field of service robots. Vacuum cleaning robots
that can recognise steps are a good example.

The robot system has several weight-limiting factors, such
as the maximum payload of the module and the worker. A safe
snow load of 5400 Pascal per module is given by manufacturers
[16]. With a module size of 1.64 m?, this corresponds to a total
load of 8856 N, which is equivalent to up to 903 kg with
appropriate distribution on the solar panel [16]. Transporting the
robotic system to the PV plant can take place under non-
ergonomic conditions. The following options are considered
here:

e Putting down at the ground level up to 1.80 m without

any aids
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Putting down from a lifting platform onto the roof
surface

Putting down from a skylight onto the PV system

e Putting down from a ladder onto the roof surface

According to German labour law, a regular load may weigh
a maximum of 10 kg, for pregnant persons only 5 kg [17].

The robot needs its own power supply, which shall be
provided by a rechargeable battery. This is necessary because
with a wired power supply, the cable would have to be guided
by a worker or at least checked so that it does not get tangled.
This would make autonomous operation impossible.

Water is needed for cleaning, but the robot will clean without
a water supply. Only rainwater, which rains off before, during
and after driving, is used.

Some robot solutions for PV systems use demineralised
water. The reason for this is that, in contrast to water containing
minerals, no lime stains can occur when drying. However, this
danger only exists in direct sunlight or if the water evaporates in
a short time [7]. If the cleaning process takes place during a
rainfall, demineralised water is therefore not required. This is
also demonstrated by the "SolarProtec" cleaning system from
Osborn International GmbH [10]. Water volumes of more than
12 1/min are recommended for cleaning [18]. Even with a small
area that would be cleaned within one minute, this would mean
that the water to be transported would already require a load of
about 12 kg. A robot of this size would no longer comply with
the above-mentioned weight restrictions.

The robot must have a waterproof housing. This must keep
out two types of water: Firstly, splashing water from the wet
panels and the track drive, and rainwater. The housing must
contain the battery, the on-board electronics and the electric
motors. The sensors must also be installed waterproof, but
outside the central housing. Special attention must be paid to the
transitions between the electric motors and their shafts, as well
as the cables leaving the housing. The housing must also have a
removable lid, which must be closed watertight. The lid is
needed to reach the battery and the on-board electronics.

III. ROBOT CONSTRUCTION

A. Cleaning concept development

Based on the previous conditions for cleaning solar
installations, an optimized cleaning concept was developed with
which the autonomous robot system can clean PV installations.
For the tests, different cleaning tools were used and tested on
glass surfaces. The cleaning tools used are shown in Figure 3.

The glass surfaces showed a medium degree of soiling. They
were then cleaned with normal tap water using different cleaning
tools. The cleaning was carried out in wiping and rotating
movements. The result was that rough dirt, such as bird
droppings, should be loosened first. The easiest way to do this
was with a combination of water and a silicone sponge (5).

Loose dirt, such as dust and pollen, could be removed with
all tools in combination with water. When it came to drying,
however, there were big differences between the cleaning
methods. The common household sponge (2) did not pick up the
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dirt, but spread it over the surface, which is why there were
strong streaks. Other sponge structures, such as the bottle brush
(4) and the microfibre cloth (3), also did not leave a clean result.
The microfibre cover (1), on the other hand, cleaned the surface
sufficiently and absorbed the dirt completely. Due to the
structure of the cover, the wet glass surface was polished
afterwards and no water residues or streaks were left.

Fig. 3: used cleaning tools

The final cleaning concept has now been put together from
a combination of the tools. The dirt is loosened with the help of
rotating silicone sponges. The loosened dirt is then picked up by
a microfibre cover and the glass surface is polished with it.
Figure 4 shows the cleaned glass surface.

Fig. 4: dirty vs. cleaned glass surface

B. Description of the robot construction

The main components of the robot are mostly made of 3D
printed parts. Manufacturing by 3D printing has the advantage
that the components are light, cheap as well as quick and easy to
produce. Figure 5 shows the CAD model of the developed robot.
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Fig. 5: CAD-model of the cleaning robot

At the front end of the robot are two sensor arms (1) in which
the sensors for navigation are integrated.

The cleaning mechanisms are also located at the front and
back of the robot. At the front end there are two rotating silicone
sponges (2) that can loosen the rough dirt. At the rear end there
is a rotating mechanism with a microfibre cover (5). In this way,
the surface is polished and the dirt is picked up.

The housing (3) should also be waterproof, which is why all
unprotected openings are shielded from moisture caused by
rainwater with a rubber membrane or sealing compound.

To ensure reliable traction and movement on the slippery
solar modules, there are several possibilities. Since the robot is
supposed to move autonomously, drives for which an additional
supply line would be necessary are excluded. This is the case,
for example, with vacuum feet or pneumatic nubs. A reliable
possibility is a chain wheel drive with rubber tracks (4). These
are already present in other systems on the market and can
negotiate a slope of up to 30° without any problems, even on wet
surfaces [19].

Inside the housing there are various electronic components.
On the right and left, there is a DC motor to drive the chain wheel
drive. These motors are controlled by a motor control unit. A
program on a microcontroller defines when and in which way
the motors are controlled in order to let the robot move on the
desired path. The cleaning mechanisms are each driven by a DC
motor. With the help of bevel gears, the momentums are
transmitted to the corresponding shafts.

50

IV. SENSORS AND PATH PLANNING

A. Placement of the sensors

Fig. 6: Sensor placement on robot

Fig. 7: Sensor placement over solar modules

The outer edges of the solar modules play a major role in
path planning. There are four sensors on the front of the robot,
two on the left and two on the right (see figure 6). Using the
circuit diagram in Table 1, the robot drives left, right, straight
ahead or turns. Their signal is switched binary between 1 or 0
depending on whether the PV system is detected below them or
not. The sensors measure the distance between the sensor and
the ground. The distance between the sensor and the PV module
is defined by the height of the mounts, which is 7 cm (see Figure
7). If the distance is 10 cm or more, it is a gap between two solar
modules or an outer edge of the modules; then the sensor value
is switched to 0, otherwise it is 1 (Figure 7). If both sensors on
one side are set to 0, the robot will move in the opposite
direction, as there must be an outer edge there. If all 4 sensors
are set to 0, the robot turns because it has reached the end of a
path. If it switches individual sensors to 0 in between, this is a
gap, as these are 1-3 cm apart, depending on the design [20].

The direction of travel, or deviations from it, are measured
with an acceleration sensor. The "Joy-it MPU 6050" was used
here [21]. With the help of this sensor, deviations are detected
and counterbalanced when driving straight ahead. Furthermore,
the sensor is used to detect how far the robot has rotated during
the turning manoeuvre.

The ultrasonic sensors used cover the required measuring
range with a measuring distance of 2 cm to 4 m [22]. During the
measurement, the condition and moisture of the surface have no
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significant influence on the measurement result. This is
important because both the moisture of the solar system and the
roof covering can differ and they can also be made of different
materials.

TABLE L SENSOR SIGNAL SCHEDULE

Direction of travel based on sensor signal

Driving direction DEC FL BL FR BR
Forward 15 1 1 1 1
Forward 14 1 1 1 0
Forward 13 1 1 0 1
Rotation left 12 1 1 0 0
Forward 11 1 0 1 1
Forward 10 1 0 1 0
Forward 9 1 0 0 1
Rotation left 8 1 0 0 0
Forward 7 1 1 1 1
Forward 6 0 1 1 0
Forward 5 0 1 0 1
Rotation left 4 0 1 0 0
Rotation right 3 0 0 1 1
Rotation right 2 0 0 1 0
Rotation right 1 0 0 0 1
Turnaround 0 0 0 0 0

The microcontroller "Elegoo Mega2560" was used to
process the sensor signals in order to control the electric motors
of the drive and cleaning system [23]. The "Saberthooth Dual"
motor driver was connected between the drives and the
microcontroller [24]. The "AZDelivery L293D" motor driver
was installed between the microcontroller and the cleaning
system [25].

B. Description of the path planning

Fig. 8: Path development
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Figure 8 shows the path that the robot follows in six steps.

Step 1: The robot is placed on the PV system and moves
forward. When putting it down, it must be ensured that it reaches
the upper edge of the roof.

Step 2: The robot reaches the upper edge. This is detected
because two sensors on one side now switch to 0.

Step 3: The robot aligns its position and orientation parallel
to the upper edge.

Step 4: The robot starts the cleaning unit and drives to the
end of the roof.

Step 5: Once it reaches the end of the roof, it turns backwards
and returns to the first track.

Step 6: The robot now drives along the tracks. It moves
horizontally from one side of the plant to the other. Each lane is
offset by 15 cm, so that each lane is offset by half. This
guarantees that all dirt is removed with both the brushes and the
microfibre cloth. The effective cleaning width per lane is
therefore 15 cm.

The dirt on the system is loosened from the top down and
can be rinsed off by the rain.

V. RESULTS
The completed prototype of the robot is shown in Figure 9.

Fig. 9: Robot prototype

Simplifications were made for the construction of the
prototype, as the focus was on testing the sensor technology and
path planning as well as the cleaning system. The energy supply
was provided by cable, which means that no battery was needed
during the tests and the required energy demand of the system
could be measured. It must be considered that the weight of the
battery will lead to an increase in the total energy requirements.

The robot has a total weight (without battery) of 2.25 kg,
which corresponds to 22.1 N. The tracks have a contact area of
about 0.02 m?. Thus, the robot applies a pressure of 1103.06 Pa.
This is less than the specified 5400 Pa of a solar module [16]. In
this calculation, the contact surface of the cleaning system was
not taken into account, as there is almost no load there.

The robot has a cleaning speed of 0.5 m/s. The exact cleaning
time for a PV system could not be tested experimentally, so the
time for cleaning a roof can only be estimated. The following
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formula can be used to calculate the time required to clean a
roof.

Tk is the overall cleaning time

Ts is the starting time until the first rotation

N are the number of lanes, which is calculated below

L is the length of the roof
Vr is the speed of the robot

_ _Br
Berf

2

Berr is the effective cleaning width per lane
Br is the width of the PV system

For a large private PV system of 60 m?, the robot needs about
630 seconds, or 10.5 minutes [26]. The calculation was based on
the assumption that the PV system is rectangular and has a width
of 6 m and a length of 10 m. The robot was put down at the
bottom right corner so that it first had to drive 15 m to the top
right edge, which takes 30 seconds travel time. For one turn, 5
seconds were needed.

A battery of 500g would already cover the energy demand
for 2 hours and 12 minutes. An average battery has an energy
density of 200 Wh/kg [27]. The robot requires a measured power
of 453 W at an operating voltage of 12 V. For the
microcontroller, the voltage must be regulated to 5 V.

VI. CONCLUSION

Within the paper, a new cleaning system was developed in
combination with an autonomously driving robot. For this
concept and the result, new applications in the cleaning of PV
and solar plants are considered conceivable and possible.

In addition to the already mentioned possibilities to bring the
robot to elevated positions, such as roofs, transport with a drone
would also be conceivable. This would offer further advantages
for the PV system cleaning business model. The advantage
could be that the robot could be brought to the roof with little
time effort. There, the drone would drop the robot off and pick
it up after cleaning. This extension is a complicated task, but
would revolutionise the entire concept and could make the
cleaning market for hard-to-reach and relatively small PV
modules attainable.

Another possibility as an alternative to cleaning during
rainfall would be the external supply of water with the help of
heavy-duty drones. This would make the robot autonomous, but
still ensure a reliable water supply.
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Abstract—Within the InStent project, project partners are
working on a solution to automate the quality assurance process
and thus increase process efficiency, as well as minimize the risk
of an undetected defect. Therefore, an automated optical
inspection is to take place by means of a robot. In this context,
problems with the handling of the stents, the image acquisition and
the classification of the images have to be solved. [1]

To inspect the stents for cuts, one of the possible defect classes,
the application of Convolutional Neural Networks will be
investigated. Conventional image processing methods, such as
corner detection and various point operators, are used to
preprocess the images to achieve the best possible result in
classification. The chosen inductive learning approach assumes
the existence of training data. Following this, a dataset of 932
images is generated. The results from the test data set show that
the method promises sufficient accuracy to be used in production
as an assistance system in quality assurance. However, in order to
achieve this, it is still necessary to extend the training data set and,
if required, to adjust the sensitivity of the test procedure.

Keywords—Convolutional Neural Network, InStent, Vascular
Stent, Cut Detection, Image Classification, Image Preprocessing,
Transmitted Lighting

I. INTRODUCTION

According to the German Society of Angiology, vascular
disease is one of the most common diseases. A common method
of treating vascular disease is the usually minimally invasive
insertion of a vascular stent. Stents are medical implants that are
inserted into narrowed vessels to widen them and thus ensure
continued normal blood flow.

In addition to the already high demands on product quality
within the medical technology industry, errors in production
pose a serious risk to patients. These special quality expectations
require the highest standards of quality assurance methods on
the part of the manufacturer. At the same time, in a high-wage
country like Germany, production costs play an essential role in
order to be competitive on the international market. Manual
inspection of the stents is a time-consuming but also tiring task
for the employees. Even partial automation of the inspection
process would have the potential to not only significantly
improve the effort required and the associated costs, but also the

University of Applied Science,
Envivronmental Campus Birkenfeld
Campusallee, 55761 Birkenfeld
m.vette-steinkamp@umwelt-campus.de

54

University of Applied Science,
Envivronmental Campus Birkenfeld
Campusallee, 55761 Birkenfeld
w.gerke@umwelt-campus.de

quality of work. This is to be achieved by a robot-guided optical
inspection system in which image acquisition and evaluation are
automated.

For the evaluation of the acquired images, conventional
methods and modern approaches from the field of computer
vision are available. Since both the geometries of the individual
stent types and their defects can vary greatly, inspection using
only conventional methods of image processing proves to be
difficult, but the application of these methods is not ruled out.
Using conventional methods, it has already been possible to
detect braiding defects on stents [2]. As a counterpart, artificial
intelligence methods, on the other hand, have already proven to
be powerful in similar tasks in other fields (cf. with case study
on the classification of defects in solar cells) [3]. This suggests
that such methods may also be suitable for stent inspection.
Since these Al methods are less demanding in terms of image
acquisition compared to conventional methods, they could
represent a simpler and more flexibly applicable solution option.
Therefore, it is investigated how machine learning methods,
supported by classical image processing methods, can be applied
to combine the advantages of both disciplines and thus ensure
reliable quality assurance.

II. STATE OF THE ART IMAGE CLASSIFICATION WITH METHODS
OF MACHINE LEARNING

Machine learning training algorithms usually fall into the
following three categories:

e  Supervised Learning
e  Unsupervised Learning
e Reinforcement Learning

For classification tasks, an inductive learning approach is
usually chosen (supervised learning). This learning approach
assumes a set of examples that can be learned from, i.e. whose
correct result is already known [4, p. 19 f], [5, p. 15 f.] The
regularity derived from the training data is used to assign similar
data to a class that is not already covered in the same form by
the examples.
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Commonly used learning models of supervised learning are
support vector machines, decision trees and artificial neural
networks. The latter have proven to be particularly well suited
for the classification of image data [6], since the huge number
of attributes (in this case the values of all pixels of an image) can
be processed comparatively efficiently with them by
convolution and pooling operations.

Support Vector Machines try to separate an n-dimensional
point cloud from each other by a hyperplane for classification
[5, pp. 19-20]. Decision trees, on the other hand, take the
approach of breaking down a complex problem into a finite
number of easy-to-make distinctions, which can then be
assigned to a class [7, pp. 217-219]. In contrast, the structure of
artificial neural networks is based on the biological functioning
of the brain [7, p. 275]. This structure essentially consists of
neurons and weighted connections between the neurons. The
quality of a neural network is not proportional to its size and
complexity. For many problems, comparatively simple
structures are already sufficient [8]. The learning process in an
artificial neural network is done by adjusting the weights, which
establishes a relationship between a characteristic input and the
corresponding output. The adjustment of the weights within the
neural network is done by a gradient descent procedure in which
the error, that is, the deviation of the value predicted by the
neural network from the actual value, is minimized [9].

For neural networks there are a variety of possible
architectures, for the respective application purposes [10]. For
processing image data, Convolutional Neural Networks have
proven to be particularly powerful [6]. In this architecture, so-
called convolutional and pooling layers are used to highlight
features on images while drastically reducing the number of
pixels. In a convolutional layer, a convolution operation is
performed as known from classical image processing [11, p. 33].
Here, a convolution kernel is applied to a section of the image,
and the result of this operation is a scalar. By shifting the section
pixel by pixel by a defined step size (stride), a new image is
created pixel by pixel, the so-called feature map. Different
strategies (padding) can be used for the edge areas, which
expand the image in different ways to ensure a constant number
of pixels. Alternatively, no expansion can be done. In this case,
the reduced number of pixels must be considered in the
following layers. This procedure is called valid padding.

In a pooling layer, the number of pixels is reduced by
combining an image section (usually 2x2 pixels) into just one
pixel. One of the most commonly used methods is MaxPooling,
where the highest value of the matrix is selected and written into
a new feature map. [12, p. 9]

III. GENERATION OF A TRAINING/TEST DATA SET AND
CLASSICAL IMAGE PROCESSING TO PREPARE THE IMAGE DATA
FOR THE NEURAL NETWORK.

Due to the project being in its early stages, no functional
inspection station existed over its duration. Nevertheless, in
order to generate image data for training and testing the
Convolutional Neural Network, it was necessary to set up a
provisional camera setup, in which one limits oneself to the
available resources of the later inspection station.
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As shown in Fig. 1 the setup used an RGB matrix camera to
capture the image sections. The stent is placed in a holder on a
luminescent plate, which diffusely illuminates the stent from
the underside.

Fig. 1. Diagram of the camera setup

With the appropriate aperture setting, the illumination resulting
from the transmitted light causes the wire to appear nearly black
in the image, while the background disappears into an
overexposed area. Thus, the contour of the stent, over which the
stent can be examined for a tear site, is clearly visible.

Training a neural network directly with the original images
would be feasible, but not recommended, since the error region
is too small with respect to the acquisition area. By detecting
the vertices, it is possible to define a region of interest starting
from the wire intersection points. Fig. 2 shows a flowchart of
this process, including the sorting into the predefined classes.

Fig. 2. Flowchart of the segmentation and labeling process

Following this, the extracted image areas are converted to
grayscale and a thresholding procedure is applied to remove the
background. In addition, the image area is inverted so that the
irrelevant area receives the pixel value 0 (See Fig. 3).



Robotix-Academy Conference for Industrial Robotics RACIR 2021 at UCB during September 22nd, 2021

Fig. 3. Flowchart of image pre-processing following Error! Reference source
not found.

The generated dataset, minus the images unsuitable for the
training process, comprises 932 image sections (691 training /
241 validation). Since this is a relatively small size for a dataset
in the deep learning domain, it can be artificially enlarged by
transposing and rotating the original image section several
times. This process is depicted in Fig. 4 and is known as data
augmentation. It allows increased performance without
manually acquiring more data [13].

Fig. 4. Transpose and rotate the preprocessed data to enlarge the data set
following Error! Reference source not found.

IV. NEURAL NETWORK FOR CUT DETECTION

The architecture of the applied Convolutional Neural
Network consists of four alternating Convolutional and
MaxPooling layers followed by three fully connected layers and
the output layer. (See Fig. 5)

When traversing the feature learning section, the number of
pixels reduces from 130 x 130 to 5 x 5 pixels in 8 feature maps.
Accordingly, the layers of the Classification section have 200
neurons in each layer. The output layer has two neurons for the
classes "good" and "cut". The framework employed here is
Keras from Tensorflow.
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Fig. 5. Architecture of the used CNN with designation of the layers as well as
the respective tensor size

By considering the feature maps, a number of 32, 32, 16 and
8 feature maps have been found to be suitable for the different
convolutional layers. This involves initially extracting larger
features (7x7 pixels) in the first two layers, following which
increasingly smaller features (5x5 and 3x3 pixels) are extracted
as the image size decreases. A stride of 1 and valid padding is
used. For the training process, the Adam Optimizer is used with
a dynamic learning rate, 100 epochs and a batch size of 10
images. Since this is a classification problem, an accuracy-based
optimization is performed.

V. RESULTS

During the training process, the learning curve characteristic
for machine learning algorithms emerges, in which the accuracy
asymptotically approaches a steady-state value. After about 60
epochs, this value is 98%. However, this value is not very
meaningful because there are numerous, slightly modified
copies of the original image sections in the training data set due
to data augmentation.

Since this is a typical test procedure with the possible results
being positive or negative, a four-field table can be used to
evaluate the test data set. The specific results are shown in
TABLE 1.

TABLE I FOUR-FIELD TABLE OF THE DISTRIBUTION OF RESULTS

Good Cut Sum:
154 10
Good 164
(True Negative) (False Positive)
14 63
Cut 77
(False Negative) (True Positive)

Sum: 168 73 241
Sensitivity: 81,82%
Specificity: 93,90%

Positive Predictive Value: 86,30%
Negative Predictive Value: 91,67%
Hit rate: 90,04%
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When looking at the incorrectly classified images, it is
noticeable that a significant proportion of them consists of
images that cannot be explicitly classified. This is the case, for
example, when the location of a cut leads to a distortion of the
braiding pattern of the surrounding image areas. Although these
image areas indicate the occurrence of a cut in the immediate
vicinity, they do not show it directly.

To avoid distortion of the results by these types of images,
all images that cannot be explicitly classified are removed from
the test data set. The corrected data can be seen in TABLE /.

TABLE II. FOUR-FIELD TABLE WITH CORRECTED RESULT
DISTRIBUTION AFTER SUBTRACTION OF THE AMBIGUOUSLY DEFINED IMAGE

SECTIONS
Good Cut Sum:
139 5
Good 144
(True Negative) (False Positive)
10 62
Cut 72
(False Negative) (True Positive)

Sum: 149 67 216
Sensitivity: 86,11%
Specificity: 96,53%

Positive Predictive Value: 92,54%
Negative Predictive Value: 93,29%
Hit rate: 93,06%

VI. CONCLUSION AND OUTLOOK

Although the achieved accuracy values do not yet
correspond to a production-ready result, they prove that it is
possible to detect cracks in stents by combining classical image
processing and machine learning. Since the dataset used is still
very small compared to other popular deep learning databases
(e.g. MNIST), an extension of the dataset holds a promising
opportunity to further improve the accuracy. By shifting the
sensitivity of the testing procedure, the rate of false negative
classifications could be reduced to the point where the procedure
provides sufficient confidence for the particularly high
demands. However, the possibility of this procedure completely
replacing humans at this point is unlikely. For reasons of
economy, image sections classified as cut should still be
checked by humans for false positives. It is therefore not so
much a fully autonomous inspection procedure, but rather an
assistance system designed to direct the employee's attention to
potential fault points. The latter then makes the decision as to
whether it really is a faulty stent. The amount of work required
to inspect a stent is thus considerably reduced.
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Abstract—Human Robot Collaboration (HRC) applications
face challenges in implementing a central system that controls the
flow of the tasks set to achieve a certain goal as well as the safety
measures to avoid unnecessary overlaps between the human
and the robot that may lead either to injuries or to technical
malfunctions. This paper presents an observation system bases
on 3D camera system and the robot controller. Therefore, an
optimization of the work flow is achieved while maintaining the
safety measures. The camera system detects and observes the 3D
pose of LEGO part, while the robot controller is responsible for
the execution of the robot tasks and the commands set by the
observation system.

I. INTRODUCTION

Smart manufacturing is a main concept that the fourth
industrial revolution is built upon [If] [2]], as well as the
introduction of three features: horizontal integration through
value networks, end-to-end digital integration of engineering,
and vertical integration [3]. This integration is dependent
on advances and breakthroughs in digital technologies and
automation. One of the main features of this integration into a
smarter manufacturing and production system is human robot
collaboration, where humans and robots can work together
and create a shared workspace. Simultaneously, the system
benefits from the advantages of robots in terms of accuracy
and speed, as well as the flexibility and skills of a human. For
example, a robot observes a human in an assembly operation
to learn the assembly tasks sequence [4]]. However, there are
some challenges that need to be targeted to provide an efficient
collaborative solution [5]: safe measures must be provided by
a observation system to avoid any robot human collisions, as
well as techniques that benefit from the cognitive skills of the
human such as understanding gestures expressed by the body
or the hand of a human.

This paper attempts to apply a validation scenario for body
tracking, hand pose estimation, and 3D position estimation
concepts, which are integrated into an observation system. A
convolutional neural network is used to track body motion
by building the body nodes and connecting them to simplify
the body structure [6]]. Moreover, the hand pose estimation is
developed to recognise the numbers that different gestures are
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trying to express [[7]. Body tracking and hand pose estimation
are used to track the human body movement and understand
the hand pose expression. The Azure Kinect camera integrates
two interesting sensors: a depth camera that supports time-of-
flight (ToF) technology, and a color camera of 12 megapixels
with a maximum resolution of 3840x2160. Furthermore, the
experimental data show that the depth of the Azure Kinect
Camera is highly correlated with the color of the LEGO part.
Delta X and Delta Y (the difference between the desired X
and Y coordinates and the actual X and Y coordinates) show a
significant correlation with the image pixel coordinate system.
This paper discusses the different mathematical methods to
reduce the error of the 3D position calculation.

A simple use case will verify the practicability of the
observation system. The robot arm is configured with a camera
to observe whether the LEGO components are placed in areas
of the same color. In the event of detecting a human, the
system will automatically recognise the human body and send
a command to stop the robot from working. After the human
interaction such as swapping, removing, adding, and changing
position, the workspace is scanned again and the LEGO parts
are sorted by the robot to the correct area.

II. STATE OF THE ART

Real-time observation systems (or surveillance systems) can
have different deployments. For example, in [8] a real-time
observation system is implemented where a robot continuously
observes the behaviour of a human for it to be able to
recognize gestures from people and turn this robot to a social
robot. Likewise, [9] a real time face re-identification system
is developed to achieve effective interactions between robots
and humans, i.e. to be able to build and update the run-time
user database in a low latency model where it should get high
recognition accuracy. Moreover, [[10] implements a real-time
collision avoidance system that is composed by three parts:
perception of the environment, collision avoidance algorithm,
and robot control. An approach is developed to calculate the
respective distances between the robot and the obstacles in
the workspace from the depth data of the Microsoft Kinect
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Fig. 1. Overview of the observation system

Camera. The distances between the robot and the obstacles
(humans included) are required to generate repulsive com-
mands for the robot to avoid collisions.

There are different approaches for body tracking, especially
regarding whether the algorithm follows a top-down or a
buttom-up approach, i.e. whether the algorithm detects the
humans in the image and then start predicting the body parts
of each human or it detects a body part and then predicts the
other body parts to get the whole human. [[11]] builds on the
pictorial structure model (PSM) [12]] and extends it with a
“mixture of trees” model by partitioning the space of human
pose into clusters, which can be modeled and analyzed in a
simpler manner. A top-down approach is used by modelling
a Mask R-CNN, where first humans are detected and then
K masks are predicted, one for each body keypoint, e.g. left
shoulder or neck [13]]. On the other hand, [|6] takes a bottom-
up method that uses part affinity fields to associate between
the different body parts belonging to the same human.

In [14]), the hand pose estimation problem is presented as an
image database indexing problem, i.e. the database is searched
for the closest match for an input hand image. On the other
hand, [15]] uses the depth data of the Kinect Camera to segment
the hand region. After building a 3D hand model that gives
the hand a 21 part representation, a random decision forest is
trained on depth images. Each pixel is classified to a hand part
and then this classification is passed to a local mode finding
algorithm that estimates the joint locations of the hand. [7]]
uses the depth data of the Kinect Camera to extract the hand
region out of the frame and then with the help of functions that
output specific contours and values, the number of extended
fingers are estimated.

Techniques to find the 3D position of an object vary ac-
cording to the system used, e.g. a single RGB camera, a depth
camera, a stereo camera system, or an industrial camera. [|16[]
proposes a method to find the 3D position of a flying ball
using triangular geometric relations, thus following a sequence
where at first they compute the projection matrix and then
detect the object of interest and finally estimate the 3D position
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of that object. [17] uses two deep learning models, one that
extracts the images information, and another that extracts the
temporal information for better prediction. Building a pipeline
for both neural networks where the input of the “temporal
network™ is the output of 25 “image networks”. This pipeline
is able to predict the 3D position of an object that may be in
trajectory.

III. CONCEPT
A. Overview

The observation system is implemented to communicate be-
tween the camera system and the robot control system in a way
where the observation system sends commands and triggers to
either systems and in return receives feedback from them. As
demonstrated in “Fig. [I]", the observation system consists of
two phases, when “Watchdog” mode is activated and when
not activated. When the “Watchdog” mode is not activated,
the system starts by triggering the camera system to scan the
environment. The camera system then detects the LEGO parts
and their 3D position as well as it keeps monitoring if any
hand or body is present near to the workspace. Afterward
the observation system sends a command to the robot control
system, e.g. to grip the LEGO parts to a certain position. At
the moment a hand or body is detected by the camera system,
the observation system moves into the "Watchdog” mode and
the observation system sends a STOP command to the robot
control system and waits its feedback that it stopped. After the
hand or body leave the environment, the ”Watchdog” mode is
deactivated and the camera system is again triggered to scan
the environment and update the database.

B. Body Tracking

OpenPose (Realtime Multi-Person 2D Pose Estimation us-
ing Part Affinity Fields) [6] adopts a buttom-up system that
in return achieves high accuracy and real-time performance.
The method first estimates the body locations and then with
each stage it refines the part affinity fields (PAFs) which
are needed to be able to learn to associate body parts with
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individuals in the image. The input of the model is an image
of size w*h and the output is a 2D locations of keypoints for
each individual in the image. This process goes through three
stages: First, the first ten layers of the VGGNet (VGGNet
is a Convolutional Neural Network architecture) are used to
generate feature maps F for the input image.

Fig. 2. Example of a confidence map and part affinities [6]

Then, a two branched CNN is used, the first branch is
responsible for the prediction of a set of 2D confidence maps
S of body part locations, e.g. neck, elbow, shoulder, etc.. The
second branch is responsible for the prediction of a set of 2D
vector fields L of part affinities which encode the degree of
association between the body parts. Set S has J confidence
maps and set L has C vector fields. An example of confidence
maps and part affinities is shown in “Fig. [2]’. Finally, the
confidence maps and the vector fields are parsed to output
the 2D keypoints for the people present in the image. Since
this method relies on confidence maps to detect the body parts
and then for vector fields to associate between them, it is able
to detect body parts even the whole body is not visible in the
image. The trained Tensorflow model E] used in this project
outputs the 2D keypoints for a single individual. Moreover,
this model uses Tesnorflow Mobilenet Model instead of the
CaffeModel which reduces its size from 200MB to 7MB.

C. Hand Pose Estimation

The hand pose estimation approach used in this project is
inspired by [7]. The algorithm is based on three stages: hand
region segmentation, hand shape analysis and hand gesture
recognition. With the hand region segmentation, the human’s
hand region will be extracted in every frame with the help of
the depth map output of the Kinect sensor. Then, the shape
of the segmented hand region is analyzed by getting contours,
convex hull and convexity defects. Finally, by analyzing the
convexity defects, the number of extended fingers is deter-
mined.

In this project the PY4KA [ is needed to deploy the
Azure Kinect Camera sensors and functions. The first step is
performed by a function that takes in the depth map and returns
the segment of the hand region. In the second step we get the
largest contour found in the segment as well as the convexity

Uhttps://github.com/quanhua92/human- pose-estimation-opencv
Zhttps://github.com/etiennedub/pyk4a
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defects in it if any are detected. To get the max contour within
the segment, the OpenCV function findContours() is used, also
to get the convex hull that envelopes the contour area, the
OpenCV function convexHull() that takes in the max contour
and gives back the convex hull. Finally, the OpenCV function
convexityDefects() that takes in both the max contour and the
convex hull to give back the convexity defects, i.e. the points
farthest away from the convex hull and logically caused by
the wrist and the fingers.

Fig. 3. Values to analyze hand region [7]]

A convexity defect is an array of four integers. Relative
to us are three of these four integers, namely the start_index
(the index of the point at the beginning of the defect), the
end_index (the index of the point at the end of the defect),
and the farthest_pt_index (the point with the farthest distance
away from the convex hull within the defect). The tip to find
the number of extended fingers now is two form an angle
within each defect between the farthest pt index and both
the start_index and the end_index. These values are shown

in “Fig. 3]

Fig. 4. Estimation of extended fingers

As shown in “Fig. {]’, if the angle within each defect is
smaller than a predefined threshold angle (we set it at 80°),
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then we assume that this convexity defect is located between
two fingers, otherwise it is not. There are two special cases:
when the number of defects is less or equal to 2, we predict
that we are showing a closed fist and thus we get a 0 back.
If the number of defects is greater than 2 and the none of the
angles satisfy the condition, we predict that we are showing
number 1. Then with each angle that satisfies the condition
we add 1 to the number of extended fingers, with a maximum
number of 5.

D. 3D Position Estimation

1) Experiment: The experiment consists of setting 15
LEGO parts of a certain color at 15 specific locations on the
workspace. Then we move the robot to the center of each
LEGO part to save the 3D position of the each LEGO part in
the robot coordinate system.

Fig. 5. The layout of the experiment.

Then we capture the scene with the Azure Kinect Camera
in order to save the depth values in a JSON file and the
color image in PNG format. The color image is of resolution
1280x720 and the depth image is of 640x576. The field of
view of the depth sensor is different than that of the RGB
sensor. That means that a pixel coordinate of the same point
varies between the two sensors. In order to align the depth
values to the RGB field of view, we use a function called
transformed_depth from the PYK4A library. The color image
is used to get the pixels of the center of each LEGO part,
and the depth values are used to get the depth of that exact
location. [[7]]

Up f= 0 g CXP/CZP
uy | =10 f, wo|x*| Y/, (D)
1 0 0 1 1

The matrix in “(I)” is called the camera matrix and we
obtain it by calibrating the camera with a chessboard. We
set a 9x7 chessboard at 21 different poses and we capture
these different scenes with the camera set at a 1280x720
resolution then we input these images as well as the chessboard
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dimension and the edge length of a square in the chessboard
into the camera calibration program. The program then outputs
the aforementioned camera matrix, the distortion coefficients,
the translational vector, and the rotational matrix. We assume
that CZp is exactly the depth value captured by the depth
sensor, and since we already have w, and u, from the color
image, the only unknowns left are “X, and ©Y,. After
calculating the unknowns and in order to verify the accuracy
of our calculations we transform the robot coordinates to
the camera coordinate system by multiplying them by the
transformation matrix Tz as shown in “(@)”.

Fig. 6. Plot of Delta Zs

CcX” iXp
Y;? _C P
cg | = Tox|sy 6)
1 1

We assume that these transformed coordinates are the target
values and that the calculated coordinates through “(2)” are the
actual values in order to check the difference and understand
how accurate is our approach.

From data in “Fig. [6]", it is obviously clear how depth is
highly dependent on the color. In each position the lowest
Delta Z is between -15mm and -21mm and it belongs to blue
LEGO parts. The sequence of the increase of Delta Z then
goes as follows: blue — green — lightgreen — white —
lightblue — orange — yellow — red. The highest error in
Z direction varies between -35mm and -40mm and belongs to
red LEGO parts. This indicates the necessity for finding an
approach to minimize Delta Z.

The general reasons for the inaccuracy of the depth sensor
is the noise from the environment. For example, if the pixels
are not located in the IR illumination mask, then the pixels are
invalidated and have zero depth values. Moreover, if a pixel
contains a saturated infrared signal then it also gets invalidated
since the phase information is lost. In the same logic, if the
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Fig. 7. Reasons for the inaccuracy of the depth sensor [18]] [[19]

strength of the infrared signal is not strong enough to generate
depth, then the pixels at these positions are also invalidated.
In addition to the factor of reflectivity, since the depth sensor
follows the technology of flight then the reflectivity of the
object is critical to the depth estimation.

The main reasons for the inaccuracy of the position estima-
tion:

o Depth sensor and RGB sensor have different coordinates

systems.

« Depth sensor and RGB sensor have different resolutions,
which will influence the conversion from the depth image
to RGB image.

o Depth sensor and RGB sensor have blink spots when
converted to each other.

2) Weight Function: To minimize Delta Z, we use a weight
function where the previous values of Delta Zs are saved in
our database and the Z value of any new LEGO part is fixed
with the weight function. First, we get the pixels of the center
of the LEGO part as well as the color of that part. Second,
we get the depth value of the center of the LEGO part.

Fig. 8. Weights proportional to the distances

Then, we search our database for the four nearest neighbors
and we set a weight for the Delta Z of each neighbor depending
on how close is it to the new LEGO part.

AZ = wl-AZl + U)Q-AZQ + ngZ3 + IU4-AZ4 (3)

Using “(3)” we calculate the Delta Z that in return corrects
the Z value of the new LEGO part. We set the new LEGO
part at 5 different locations (See “Fig. [§]"): [1: TOPLEFT, 2:
TOPRIGHT, 3: CENTER, 4: LOWLEFT, 5: LOWRIGHT].
With this approach we minimize Delta Z from 15mm-40mm
to -3.08mm-4.69mm.

3) Correction by Trendline: The plots of both Delta X and
Delta Y show a possibility to calculate a trendline for the
values of these Deltas for each color in each row. (see “Fig. @’)
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Fig. 9. Plots of Delta X and Delta Y

Fig. 10. Trendlines of Delta X in row 1

“Fig. [I0] shows the trendlines of Delta X for ev-
ery color in the first row (see “Fig. E]’). First, we
assume that the ratio ©X,/“Z, is equal to a vari-
able a, where aiqrget CXp_nget/CZp_nget and
Cactual CXp_actual/CZ _actual- @) is dissected from
the first row of “(I))”.

U
X, _ (1 uo> . up 4)
- v
CZp f:v fm 1
Then with some mathematical operations we arrive at:
C CXp_actual - ACXp
Zp_target = (5)
atarget

“@)” shows that the target Z value is equal to the corrected X
value divided by the a¢qrge:. This approach did not succeed to
minimize Delta Z at all. Reasons were that a general trendline
that combines the three rows for each color was not found and
with each capture the trendline would have a slight change that
deviates the actual value away from the desired value [19]. So
regarding the general trendline obstacle, we had an idea where
we cover each possible row in the workspace, in a way that
eliminates the necessity for a general trendline. However, the
results were still far away from the target.
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E. Image Processing

Fig. 11. Contour extraction process

1) Contour Detection: As shown in “Fig. @’, the color
image is converted to the HSV colormap (Hue Satura-
tion Value). The HSV parameters are manually set so that
the colors: blue, green, yellow, red, orange, light blue,
and light green are detected. The findContours() function
of OpenCV with these two modes RETR_EXTERNAL and
CHAIN_APPROX_SIMPLE gets the contours by extracting the
corner points of the image.

2) Shape Detection: An erosion mask of 5x5 kernel is used
to reduce noise from the image. Then, to detect the shape
and size of the LEGO part the width and height values of
the bounding box of the contours are used to decide if the
following contour is a square or medium rectangle or a big
rectangle to get a good estimation for the midpoint of the
contour.

E. Database

The database model is implemented with SQLite. A “LE-
GOS” table is created with the following entries: [ID, x, y, z,
a, b, ¢, ColorOfTheSortArea, IsSorted]. ID is the primary key
to each LEGO part, ’x,y,z’ are the 3D position values of the
LEGO part, ’a,b,c’ represent the orientation parameters (roll,
pitch, and yaw) of the LEGO part, ColorOfTheSortedArea
specifies which area should the LEGO part be at and IsSorted
is whether the LEGO part is already sorted at the correct
color area or not. As mentioned before, the observation system
updates upon triggering the camera system the database with
the changes.

IV. APPLICATION

A. Experimental Setup

Fig. 12. Experimental setup of the Kinect Camera, KUKA KR6 Robot, and
LEGO parts
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The Azure Kinect Camera is set on the side bar as shown
in “Fig.[12]" and the LEGO parts are placed in the workspace.
A flexible two finger gripper is used to grip LEGO parts and
set them into desired positions. A human can appear from the
left side of the robotic arm.

B. Body Tracking

Fig. 13. Body tracking keypoints

Facing the camera, the body tracking approach is tested.
First, to check if all body keypoints are detected when the
whole body is visible, and second to check if visible body
keypoints are detected when part of the body is only available
in the image. As shown in “Fig. [I3]", both scenarios are
validated since the in the left image the full set of body
keypoints is shown. On the right side and even though only
about 50% of the body is visible, the keypoints are still
correctly detected.

Fig. 14. Body keypoints at close range

C. Hand Pose Estimation

The hand pose estimation approach is tested by showing
the camera different representations of different numbers and
checking if they are correctly predicted. The method yields
good results as shown in “Fig. [T5]".

D. Observation System

The previous approaches are combined with the 3D position
estimation approach in one program. At the beginning, the
camera detects the LEGO parts and then if a body is detected
the system starts tracking the body. If the body keypoints
visible become less than 11, we assume that the body is too
close to the workspace and that the human wills to show a hand
gesture, so the system moves to detect the number of extended
fingers. In “Fig. [I4]", it is seen that when a human is close
enough to the workspace to give a hand gesture that in fact
less than 11 keypoints will be visible. Then after the human
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Fig. 15. Hand pose estimations

leaves the workspace, the camera then detects the LEGO parts
again and saves the data in the database. We have four sort area
colors: red, blue, yellow, and green. Red and orange LEGO
parts should be sorted to the red sort area, blue and light blue
to the blue sort area, yellow to the yellow sort area, and green
and light green to the green sort area. These sort areas are seen
in “Fig. [I2]” with the appropriate LEGO parts positioned on
them. The 3D position of the midpoint of each LEGO part is
calculated and then corrected with the weight function. Since
the contours are a bit smaller than the actual LEGO parts and
since they do not possess the same sharp edges, the midpoint
calculated in pixels may not be exactly at the middle of the
LEGO part. Moreover, the algorithm was able to correctly save
the LEGO parts in the SQLite database and was able to detect
the color of the LEGO part and to sort it at the correct sort
area.

V. SUMMARY

The paper represents a real time observation system, which
consists of body tracking, hand pose tracking, and 3D position
estimation. The camera system detects 3D positions of objects
of interest in the workspace and at the same time observes
body or hand presence in the workspace. Upon the presence
of a body or hand, the observation system asks the robot to
stop if it is performing a task. When the human leaves the
workspace, the camera system updates the database in real
time. The observation system specifies the required tasks from
the robot. The depth data of the Azure Kinect Camera are
used in this paper in the methods to estimate hand poses and
to estimate 3D positions of objects of interest.

Points of weakness and limitations will be addressed in
future work. The 3D position estimation accuracy of the
different coordinates between the RGB sensor and the depth
sensor is still limited. The transformed depth image that
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transforms the depth values to the RGB camera point of view
should be improved. Additionally, more work will be put on
getting a more accurate estimation of the midpoints of the
LEGO parts. Moreover, the body tracking and hand poses will
be converted to commands that the observation system then
sends them either to the camera system or to the robot control
system.

In the future the observation system will be used in a use
case and will be combined with the digital twin tools with Al
to build an intelligent robotic system. The intelligent robotic
system will focus on how the robot understands an existing
malfunction and adapts itself to the environment to solve the
problem based on the existing condition.
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Abstract—The availability of open-source as well as cost-
effective solutions is ever increasing as time progresses. MaRIO, a
robot capable of human-robot interaction, was initially intended
for the purpose of adherence to COVID-19 measures regarding the
wearing of masks in closed spaces. However, the system can also be
seen as an example of how a robot can be constructed within a very
tight budget and still perform a variety of tasks. This paper also
aims to describe how the developmental process of MaRIO can be
implemented using open-source tools, while shedding further light
on the current state of the project and further objectives. These
objectives are aimed at further developing the platform while also
ensuring that the robot remains a cost-effective solution for tasks
that it would be later capable of handling.

Keywords—Human-robot interaction,
processing, machine learning, deep learning

open-source, image

I. INTRODUCTION
The subject of robotics has taken great strides in recent decades
and continues to hold a high degree of relevance. Today, that
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same subject has been the focus of research in a variety of fields,
with one of these, namely human-robot interaction, also
garnering considerable attention [1, 2].

Human-robot interaction (HRI) may be defined as a field of
robotics dedicated towards robot systems that are directly used
by or work alongside humans. Such a purpose thereby also
requires communication between human and robot, which can
be achieved either through remote (such as robots for explosive
ordnance removal or EOD [3]) or proximate (such as the well-
known Pepper from Softbank Robotics [4]) means [1]. This
communication also includes understanding whose turn it would
be to respond to a stimulus [5]. Effective communication, being
a must in the case of HRI, can take place through a number of
methods which include verbal cues, gestures, prosody and gaze
among others [2, 5-7].

The term "open-source" is widely used in today's day and age,
and for good reason. The existence of open-source solutions has
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enabled even the average human being to access, design,
develop and implement important information and technologies
[8]. Furthermore, it also enables the dissemination of
information among a greater community of individuals working
together on a specific topic. This results in a wider availability
of solutions and greater participation in discussion towards a
working solution [9]. Open-source products see application in a
variety of applications and continue to hold relevance due to
their numerous advantages [8].

The robot for Mask Recognition and Interaction for Order
(MaRIO) is a result of the integration of the concept of human-
robot interaction with open-source solutions. Through the use of
hardware such as the Raspberry Pi and Arduino as well as image
processing software such as OpenCV in combination with
Python libraries and a deep learning algorithm for mask
detection, MaRIO was built with the initial idea of adherence to
COVID-19 measures concerning the wearing of masks [10-13],
which continue to be in effect as of the time of publishing this
paper. Through this idea, the goal of creating a robot capable of
autonomous movement within a closed environment while
ensuring that people in front of it in close proximity are wearing
their masks was conceived.

This paper intends to document a useful example of human-
robot interaction and open-source products that can be put
together to create a low-cost system that can be further
developed for a variety of other tasks not specific to the original
goal. This project was created due to the Trinatronics 2021
competition, organized by the TriRhenaTech, an alliance of
universities for applied sciences at the Upper Rhine region [14].

II. STATE OF THE ART
MaRIO’s development covers a wide range of topics whose
relevant literature is described within this section.

A. The Open-Source Approach

OpenCV and Python have been used in scientific work
pertaining to human-robot interaction [7, 15—17]. The Raspberry
Pi, being a cost-effective computing device, is also an often-used
solution within the open-source ecosystem [15-17]. Arduino
boards and the tools used alongside are also well-known for their
role in the above mentioned ecosystem [17-19]. These devices
are typically used with compatible hardware either from their
respective producers [15, 18] or from third-party producers [16].

B. Human-Robot Interaction (HRI)

There exists a growing market in robots capable of interaction
with humans. Pepper and Nao are well-known humanoid robot
examples in this case, which are also capable of autonomous
movement [20-22]. Given the close proximity of many HRI
methods, robots with HRI features must also come equipped
with the necessary safety standards and flexibility of movement
and communication while also exhibiting an appearance that
makes them desirable enough to interact with, besides other
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factors [20-23]. HRI is an integral part of human-robot
collaboration (HRC) and the list of possible applications extends
across a wide range of fields besides industrial applications, with
education, public services and healthcare being examples [20—
22,24].

C. Mask detection using image processing and machine
learning

The use of facemasks is currently a major topic in society.
According to the World Health Organisation (WHO), face
masks are a very effective way to reduce the spread of the Covid-
19 pandemic [13]. In the last year, many measures have been
developed to counter Covid-19 through the methods of Artificial
Intelligence (AI), more specifically Machine Learning (ML) and
Deep Learning (DL) [25]. One possible use of DL is the
development of facemask recognition software. Such DL
models have been published in scientific papers [26] or on the
developmental platform GitHub, in which case the latter was
used to fulfil the objectives of the project [27].

D. Autonomous Platforms

Classic industrial robots currently lack flexibility. They
traditionally perform pre-programmed, repetitive tasks in a
highly constrained workspace. They are also unable to adapt to
new environments or situations [28].

The development of autonomous robots has increased their
range of tasks significantly in recent years. Autonomous robots
can, for example, build an intelligent logistics network [29, 30]
or investigate in areas that are too dangerous for humans to enter
such as mine shafts or nuclear power plants [31, 32]. However,
autonomous robots can also assist humans with everyday tasks.
For example, many households already have autonomously
driven lawn mowing or vacuum cleaning robots [33, 34]. Robot
autonomy is also an important part of HRI, as can be seen in the
previously mentioned examples of Pepper and Nao [22].

The difficulty of such systems lies in safe movement and
navigation in free space. To recognise all obstacles and not
present a danger to the surroundings and itself, a multitude of
sensors and intelligent software is necessary [35].

1II. METHODS
The developmental process of MaRIO is subdivided into the
categories listed below. A vast majority of the system was
designed from the ground up, the exception being applied to
some aspects of the software in order to complete the project
within the given time constraints.

A. Construction

The assembly of the robot was conceived and visualized with
the help of the computer-aided-design (CAD) package Siemens
NX. Figure 1 illustrates the robot with the parts of its
construction labelled. The chassis, mask holder and head are
comprised of 5 cm thick wooden plates that were processed
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using a laser machine and the open-source vector graphics
editing software, Inkscape. The cutting pattern is produced with
help of the open-source box generator Boxes.py, which provides
a variety of patterns that can be flexibly tailored as per
requirements. The chassis is separated into two parts, so as to
separate the motors and a majority of the cabling from the
electronics. A wooden plate protects the underbelly of the robot,
while a plexiglass roof shields the electronics from the external
environment, while also providing a brief visual of the system
setup. The head, which houses the display as well as the
Raspberry Pi, comprises a slot for concealed positioning of the
camera as well as additional slots for a speaker and for any quick
work required while working on the software and electronics. A
PVC rod was chosen for the neck of the robot, with the mask
holder placed high enough within arm's reach.

Touch
— .
Head — Display
Ultrasonic
Sensors
Mask //
holder Lidar
Sensor
PVC_ /
Pipe Infrared
/ Sensors
Chassis Mecanum
Wheels

Figure 1: 4 side view of MaRIO with all visible parts labelled

A number of 3D-printed parts, constructed using NX, were
employed in order to attach and reinforce specific components,
such as the mask holder, head, neck and battery. The head is also
inclined at an angle of 25° using 3D-printed parts. An additional
attachment is positioned at the front of the robot for an
ultraviolet sensor. This attachment is constructed in order to be
long enough to give the robot time to respond to the sensor as
required (see Section 4.2). All 3D parts were created using PLA
filament.

It is important to note here that while Siemens NX is not open-
source software, it need not be a necessary tool for visualizing
the design of a system like MaRIO. If required, CAD
alternatives also exist, among many others, depending on the
needs and understanding of potential users [36].

B. Implementation of Electronic and Electrical Parts
a) Main controlling components. The latest version of the
Raspberry Pi computers, being a tried, tested and
proven solution for a large variety of applications, has
proven itself worthy in being the main coordinating

68

b)

¢

unit of MaRIO. The Raspberry Pi 4 features 8 GB of
RAM and a 1.5 GHz Broadcom BCM2711, quad-core
Cortex-A72 64-bit SoC and uses an OpenGL® ES 3.1
graphics APl for GPU (graphics processing unit)
computing, which in most cases satisfies the
requirements for the average university robotics
project.

Combining a Raspberry Pi computer with an Arduino
Mega board via USB enhances the flexibility of the
system to control sensors and actuators. An
ATmega328P microcontroller developed by the Atmel
Corporation (now acquired by Microchip Technology)
powers the Arduino Mega. The division of labor was
implemented in such a way that the Arduino Mega,
alongside another Arduino Mega would be used to
control as many sensors and actuators as possible. This
would leave the Raspberry Pi with the objectives of
communicating with the Arduino UNO and, more
importantly, directly operating the mask recognition
algorithm as well as the LiDAR (light detection and
ranging) sensor, both of which are the most resource-
intensive tasks in this system. Due to the latter two
operations demanding so much computing power, a
combination of active and passive cooling through a
heat sink fitted with fans had to be used to keep the
temperatures from going too high. Without cooling, the
Raspberry Pi would reach a temperature beyond 80°
Celsius, which would not only lead to a shutdown and
failure of the Pi, but also reduce its lifetime.

A further division of labor takes place between both
Arduino Mega boards. Directly connected to one of
these are an SD card reader and an amplifier, which in
turn leads to a speaker. The SD card loads audio output
commands that are used in the mask recognition
software (see section 4.3). The second board assumes
control of the motors for robot motion.

Image Processing: The task of image processing for the
purpose of recognizing masks is performed using a 5
MP camera module powered by an OmniVision
0OV5647 CMOS sensor and an aperture of f/1.8. Video
data is fed to the Raspberry Pi, which differentiates
between faces that do not wear a mask and those
wearing a mask using an externally developed
machine-learning algorithm [insert GitHub reference
here]. The entire process of mask recognition is
explained in further detail in section 4.4.

Motion: The movement of the robot would be
coordinated via the Arduino using 4 Mecanum wheels,
each powered by a single motor. Mecanum wheels
possess the ability of turning the device to which they
are equipped left and right while rotating about a single
axis [37, 38]. This is accomplished through tiny mini
wheels that comprise the contact surface of the wheel,
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which rotate about their own position in order to "turn"
the device to which the wheels are equipped. This
movement would be additionally guided by a
YDLIDAR X2 sensor and an Ultrasonic sensor. The
YDLIDAR X2 sensor, as can be noticed in the name, is
the sole LiDAR sensor in the robot system and is
positioned right above the robot chassis in front of the
neck. It is tasked with detecting any objects that could
lie in front of the robot's intended movement path. The
ultrasonic sensor is positioned under the mask holder
and is attached to a servo motor such that it rotates only
within a specific angle while also facing the frontal side
of the robot. The rotation enables the sensor to detect
any obstacles placed within the height of the robot. In
the event that the robot encounters a lower floor
surface, such as the next step of a staircase from the top
end, an ultraviolet sensor is positioned at the front of
the robot, giving it enough time to stop moving.

The robot motion is currently so programmed, that the
robot only moves forward, stopping only to turn about
its position depending on the input received from the
obstacle detection sensorics before resuming forward
motion.

Power supply: A 15000 mAh Li-ion battery pack was
developed in-house, using a pack of 2 parallel sets of 5
batteries connected in series. The batteries are of the
type ICR 18650, each possessing a voltage of 3.7V.
The Pi and the robot display are connected to the
battery pack via step-down transformers.

d)

C. Software

Figure 2: MaRIO's display showing the programmed environmental coverage
from the LiDAR sensor

The vast majority of the software aspect of the system has been
written using Python. The code for motor control was however,
for obvious reasons, implemented in C++ via the Arduino IDE.
A program written specifically for the LiDAR sensor
communicates with the Arduino UNO based on the input
received from the robot's external environment, which then
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adjusts the movement of the 4 motors that influence the motion
of the robot. An optional graphical interface has also been
designed to better visualize how the LiIDAR sensor interprets its
surroundings.

Figure 3 (from top left clockwise): Home screen for the mask detection
interface, a screen indicating that the system does not recognise a mask on the
individual standing in front of the camera and a screen indicating that the
individual in front of the camera is wearing a mask

The interface for human-robot interaction is controlled by a deep
learning algorithm developed externally and shared over GitHub
[27]. The deep learning algorithm was developed in Python
using OpenCV, Keras and TensorFlow libraries, all of which are
open-source programs for image processing and Al respectively.
The data set used for this algorithm comprised 4095 images,
which were divided into individuals wearing a mask and
individuals not wearing a mask. The algorithm also makes use
of the MobileNetV2 convolutional neural network architecture,
which is designed for use on mobile devices [39].

Figure 5: Arrangement of convolutional blocks for the MobileNetV2
architecture. More information regarding the architecture can be found in the
publication from Sandler et al [39].

The theoretical accuracy after training via version 2.5.0 of the
TensorFlow GPU was recorded at 98%. Considering an
individual standing in front of a camera, an accurate result can
be generated within 2 meters of distance between the camera and
the individual. The detection accuracy reduces when considering
a moving individual and may result in errors in correctly
recognizing a face wearing a mask. Although the algorithm is
capable of detecting several faces at a given time, the human-
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robot interface has currently only been designed to read one face
at a time.

D. Human-Robot Interaction

Abbildung 4: A4 still depicting the results of the applied HRI algorithm

The HRI feature of the robot is described in this section. All
necessary programs for the complete functioning of the system
are run on startup, this including the program for mask
recognition. In order to elicit a response from the system, a
single individual is required to pose within arm-distance of the
robot. Following this, an image of a face with a green or red
mask will be displayed, with green indicating that the individual
is wearing a mask and red indicating that the individual is not
wearing one. At the same time, audio messages are played based
on the outcome, either acknowledging the person wearing a
mask or requesting an individual not wearing a mask to either
wear one or take one from the mask holder. In the case of the
latter, the individual is requested to stay where they are until the
robot is able to recognize a mask on their face.

IV. RESULTS

Figure 5: Front-facing view of MaRIO
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As of the status of the project, the robot currently exists in a
partially finished condition. Two versions of the robot were built
under consideration of the conditions specified for the
Trinatronics 2021 competition as well as the budget limit of 600
EUR per robot. While common issues between both builds were
experienced and solved, a number of tasks and features could
have been useful for the system but could not be fully
implemented within the small time-frame of approximately two
months. The most notable of these as well as the project
accomplishments will be mentioned here.

Additional programming is required for some parts that have not
been fitted but not programmed yet, such as the rotating
ultrasonic sensor at the mask holder. An extremely important
point to consider is the lack of sensors for obstacle detection. As
it stands, only the frontal region of the robot is partially protected
with the help of the LIDAR sensor, which is barely sufficient
considering that the robot does not move backwards. The
LiDAR sensor has been proven to do a good job at detecting
walls and large obstacles. However, these tests were still in their
early stages and it is clear that more sensors need to be integrated
around the robot.

While the current motors responsible for robot motion appear to
respond well to all tests conducted so far, it would still be safer
to upgrade to ones that are more powerful. The current motors
are designed with much smaller and lighter robot kits in mind
and the combined weight of the robot platform goes much
beyond the weight of the average mini-robot kit, which is
usually less than a kilogram. However, while autonomous robot
motion still requires more work, the robot does a somewhat
decent job of moving about its environment with the current
equipment under consideration.

The human-robot interaction, designed with regard to mask
detection, provides accurate and desirable results. Lowering the
response time and improving the look of the interface may
definitely be a task for future work, although not as great a
priority as the above-mentioned tasks. Although the Raspberry
Pi 4 possesses the ability to perform compute intensive
operations such as running image processing and machine
learning algorithms, the response time is greatly reduced. Active
and passive cooling is also necessary considering how quickly
the Pi tends to heat up to the point of automatic shutdown
without a sufficient cooling apparatus. Further experiments
involving the use of additional hardware to accompany the Pi
with such operations have not been conducted and may be
investigated in future developments of the robot platform.

V. CONCLUSION
Although a complete and fully functioning system is difficult to
implement from the ground up within a span of two and half
months, it can definitely be proven from the work done so far,
that a well-built robot with software specialized for human-robot
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interaction can definitely be a reality. This is especially true as
long as costs are kept at a minimum and with the help of open-
source software. Additional resources and tests are definitely
required in order to understand better how to manage the
resources of the Raspberry Pi 4, while also placing focus on
upgrading various aspects of the entire robot system for better
results. With the required effort, MaRIO can be further
developed into a system that can do much more than mask
recognition. Examples of possible cases of application could be
at old-age homes and at demonstrations in schools to generate
additional interest among younger generations. This paper
marks only the end of the beginning of a project that will
continue to be worked on as time passes.
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