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September 22, 2021 at Trier University of 
Applied Sciences, Environmental Campus 
Birkenfeld, Germany as a hybrid conference.  

The Environmental Campus Birkenfeld was 
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university in Germany. Currently, around 
2,300 Bachelor and Master students from 
more than 80 countries are studying on 
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planning/environmental technology and 
environmental economy/environmental law.  

The campus is internationally networked, 
with the strength of strong, regional roots. 
The students come from all over the world to 
Hoppstädten-Weiersbach - due to the 
groundbreaking and future-oriented edu-
cation. 

RACIR was moderated by Prof. Dr.-Ing. 
Matthias Vette-Steinkamp and accompanied 
by a roadshow of various manufacturers of 
robots and related equipment. 

 

The topics concerned by RACIR are: robot 
design, robot kinematics/dynamics/control, 
system integration, sensor/ actuator 
networks, distributed and cloud robotics, 
bioinspired systems, service robots, 
robotics in automation, biomedical 
applications, autonomous vehicles (land, 
sea and air), robot perception, manipulation 
with multifinger hands, micro/nano 
systems, sensor information, robot vision, 
multimodal interface  and human-robot  
interaction. 
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Abstract—Lithium-ion battery packs based on the 18065 cell
power countless electronic devices. These battery packs consist
of cell holders containing holes where the batteries are inserted
into. Each battery pack has its own shape, size and geometric
constraints. Mostly these injection molded parts were designed
to be assembled manually and not autonomously. This paper
introduces an advanced human-inspired compliant approach to
solve the lithium-ion battery based peg-in-hole problem. The here
presented methods do not focus on how to center and lower the
peg into the hole but rather on bringing the peg to the hole
if there are displacement errors of up to several millimeters.
Also additional challenges arising in the battery pack assembly
are overcome: Despite a reduced number of mounting directions
for a tilted peg and pins protruding from the hole surface the
battery cell is guided to the edge of the hole. When it has
arrived there, common peg-in-hole strategies explained in other
publications can be applied to center and lower the peg and thus
complete the assembly. All algorithms are force and geometric
constraint based only - no vision system is needed! They were
implemented and tested on a specially developed industrial robot
plant in cooperation with the German battery pack manufacturer
ANSMANN AG with a UR5e collaborative robot it is able to
assemble a variety of battery packs differing in size, shape and
other parameters. The inbuilt coarse force torque sensors of the
UR5e are sufficient. The industrial plant has been tested for
several month while mounting thousands of battery cells with a
success rate of more than 99.5%.

I. INTRODUCTION

Since the end of the last century until the very day, lithium-
ion battery packs power a variety of not only handheld devices
but also larger consumer goods. Their use and comfort is
indispensable in our daily life: from our phones and laptops
being the constant companion during the work day, until the
electric car, bicycle or the vacuum cleaner we use at other
times. Many but not all of these applications use the 18065
lithium-ion battery cells, which are connected in series and
parallel yielding a powerful battery pack.
There are two strategies to design portable and thus battery-
based products: The first one is to involve an already developed
standard battery pack and to engineer the product around that
battery. While the fixed specifications of the standard battery
pack reduce the flexibility of the product design, they facilitate

mass production because of their widespread application.
They are designed to support autonomous assembly by e.g.
incorporating chamfered edges.
The second strategy is to develop a product and have its battery
designed specifically for it. Thus there are less restrictions
during the design phase and the battery seemingly integrates
to the product. But the downside is that this battery can only be
used in that specific application. If it is not a widespread con-
sumer product it probably will not be manufactured in highly
automated mass production plants but still by hand. But how
can different small series battery packs originally designed for
manual assembly be put together autonomously by one and the
same production plant? This industrial plant would need to be
highly adaptive and thus be able to solve the well researched
peg-in-hole problem in a variety of environmental settings.
This is exactly what this paper is about.

II. STATE OF THE ART

Solving the peg-in-hole problem is one of the classical
disciplines exercised in modern assembly processes involving
industrial robots. Especially when it comes to fit a round
peg into a round hole with a certain clearance between
them, there are various successful approaches already applied
in many industries throughout the globe. When there is a
huge misalignment of the peg and the hole in addition to a
vast search region caused by an extremely small clearance,
[CB01] proposes ”blind searching strategies” without the aid
of visual assistance. Several approaches define a trajectory
to be travelled by the end effector (eef), covering the entire
discretized search region:
The search region can be covered by joining the discretized
points resulting in a zig-zag trajectory, or by using concentric
circles with a spacing of double the clearance or a spiral path.
[CB01] points out that an even more effective way is to tilt
the peg ”into the hole to infer the direction of misalignment”
as humans naturally do when inserting a peg into a hole. A
prerequisite is that for the starting position the peg and the
hole need to have an initial overlap. In more than 60 trials
the success rate was 100% with an average assembly time of
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7.1 s, almost seven times faster than a worst-case spiral search.
Another approach is done by [Li+17]. Their human-inspired
compliant peg-in-hole strategy is also based on a tilted peg
and uses a coarse force sensor. According to [Li+17] a human
hand and arm is superior to industrial robots: While a human
has a much lower precision and stiffness than industrial
manipulators, he still can assemble a peg into a hole even
with the smallest clearance. This is because of his compliance
caused by the muscles and tensions which can be adapted to
an industrial robot.
There are three contact types of a tilted round peg with a
round hole: a one, two and three points contact. When the
peg contacts the hole at one or two points, the force acting on
it can be measured with a coarse force sensor. While moving
downwards the horizontal force direction ”helps to slide the
peg to achieve a three points contact” [Li+17].
While there a many possibilities for one point and two points
contacts, the three points contact exists only once. It is
established when the tilted peg has reached the lowest point
within the hole. The three-dimensional clearance of the tilted
peg within the hole is called the ”constraint region”. When the
minimum of the constraint region is reached, the peg can be
tilted back so that its longitudinal axis aligns with the center
axis of the hole. Then it can be inserted completely into the
hole [Li+17].
The human-inspired method by [Li+17] even works without
jamming, when the clearance of the peg and the hole is smaller
than the repeatabilty of the robot. The downsides are the low
speed (about 40 s for one assembly) and the prerequisite that
the starting position must lie in the constraint region. The here
presented methods however concentrate on how to bring the
peg to the constraint region in the first place.
[JPV17] deals with the autonomous assembly of flexible
rubber pegs with a force-guided robot. By using a Gaussian
mixture model the measured wrench (force and torque) acting
on the peg can be analyzed and the discrete contact states
of the peg and the hole being classified. In [JP13] each
contact state is evaluated by using a Takagi-Sugeno fuzzy
inference system that takes the wrench and pose (position
and orientation) as an input and returns the model type as
an output.
In general flexible parts are more challenging to handle as
they exhibit smoother force transitions when a contact is
established. Lithium-ion batteries in contrast are rather stiff,
while the injection molded cell holders may deform more
easily.
The peg-in-hole problem can also be solved by reinforcement
learning (RL) algorithms [Ino+17; Bel+20], penalizing the
robot for wrong actions or rewarding it for good ones. [Ino+17]
trains and deploys two RL neural networks, one doing the
search (bringing the peg to the hole until their centers coincide)
and the other one the final insertion. These RL algorithms have
been tested on a robot having an accuracy of 60 µm and a peg-
in-hole clearance as low as 6 µm. The average assembly time
is less than 5 s at 100% success rate.

III. SCIENTIFIC GAP

At first glance the peg-in-hole problem described in this
section resembles the standard peg-in-hole problem for a
cylindrical peg and hole. But eventually it will become obvious
that further challenges increase its complexity and that the
previously mentioned solutions are not sufficient alone to
overcome them.

A. The peg

The cylindrical 18065 lithium-ion battery cell (see figure
1a) is the peg, having the following specifications:

• Diameter: dpeg = 18.3± 0.2mm
• Edge: chamfered (chamfer radius: 0.6± 0.1mm)
• Purchased standard part – cannot be modified

B. The hole

The battery cells are inserted into various-shaped battery
cell holders. They may be rectangular (see figure 1b), round
or arbitrarily shaped and have a different numbers of holes to
insert the batteries into. The specifications of the holes are:

• Diameter: dhole = 18.7± 0.2mm
• Edge: sharp
• Injection molded part – cannot be modified

Therefore the clearance between the peg and the hole results
in: c = 0.4± 0.4mm.

C. The UR5e robot arm

In order to solve this peg-in-hole problem, a UR5e industrial
collaborative robot arm from Universal Robotics was chosen
which has coarse force torque sensors built into its joints.
Their specifications are [Rob]:

Sensor type Range Resolution Accuracy

Force x, y, z 50N 2.5N 4.0N
Torque x, y, z 10Nm 0.04Nm 0.30Nm

D. Further challenges

The battery cells must be assembled in a certain order into
the cell holder. They are inserted into the holes from the inside
to the outside. If instead the outer holes were loaded first, there
would be no chance anymore to reach the inner holes with a
tilt-based search strategy. But even when the cell holder is
assembled from the inside to the outside, the already mounted
cells prohibit the cells to come to be assembled from certain
tilt directions. This is called ”occlusion by cells” from now
on.
The battery pack consists of two interlocking cell holders: one
being used to assemble the battery cells and one to be put on
top of the mounted batteries afterwards to fasten them from
the other side as well. The connection between the two cell
holders is established by interlocking pins protruding from
the hole surface of the cell holder in between the gaps left out
by the inserted batteries (see figure 1b). As before with the
occlusion by cells, these pins also restrict the tilt directions
the neighboring battery cells could be mounted with. This is

Robotix-Academy Conference for Industrial Robotics RACIR 2021 at UCB during September 22nd, 2021

2



referred to as ”occlusion by pins”.
While the cell holder is assembled, the tension within this
injection molded part is rising, causing it to deform slightly
and reduce the peg-in-hole clearance.
Last but not least, lithium-ion battery cells must be handled
with extreme care, as they can catch fire if deformed, short-
circuited or heated. Damage to the cells must therefore be
prevented in any case.
Thus, the following requirements for a peg-in-hole solution in
the battery pack assembly are derived::

1) The tilt direction a battery is assembled with must be
adjustable for each battery individually to overcome the
occlusion by cells.

2) Pins protruding from the battery holder surface must be
detected and avoided in order to cope with the occlusion
by pins.

3) The battery must be handled with great care throughout
”from pick to place”.

4) The assembly must be both as fast and as reliable as
possible. A human is able to mount one cell in about
three seconds in average.

The authors of this paper propose the hypothesis, that there is
a human-inspired method that mostly fulfills the requirements
defined above. As every human is capable of inserting a round
peg into a hole blindfolded - just by having a force-feedback
in its finger tips and geometric assumptions of the environment
- a robot can be trained to do the same with a force torque
sensor in its joints and by knowing some key parameters of the
peg and hole scenario. Even when large displacement errors
are present and no camera system is deployed.
The remaining of this paper is on how to solve the peg-in-
hole problem in a human-inspired way taking the requirements
mentioned above into account.

(a) The 18065 lithium-
ion battery cell

(b) The battery cell holder

Fig. 1: The peg-in-hole setup

IV. OVERALL PEG-IN-HOLE PROCEDURE

The robot picks up a lithium-ion cell from the stack and
moves to the calculated position of the desired hole. This
predetermined and thus theoretical position deviates from the
actual hole position of the cell holder by a few tenths up to a
few millimeters.

a) Going-down-until-collision procedure: The robot then
tilts the gripped cell by a tilt angle of βpeg = 22.5° away
from the vertical z-axis and moves downwards with respect

to the cell holder coordinate system. Eventually it collides
with the cell holder. The force acting in the vertical upward
(-z) direction on the tool center point (TCP) of the robot
is measured. The TCP lies at the concentric bottom of the
gripped battery (see figure 2a). If the force rises above a given
threshold, a collision will be detected.
This procedure is referred to by ”going-down-until-collision
procedure” from now on. A threshold of 2.5N has proven
well in practice.

thresholdforce(-z) = 2.5N

collision = force(-z) > thresholdforce(-z)

By now the robot does not know whether it has collided with
the inner edge of the desired hole, the surface of the cell holder
or a pin protruding from the cell holder. The different collision
types are called ”hole collision”, ”surface collision” and ”pin
collision”, respectively (see figure 2). Each of them demand
a specific procedure to eventually assemble the battery. Thus,
the robot needs to distinguish between the collision types.
This classification is done by comparing the height hcoll of the
TCP, at the time the collision has occurred, with a reference
height: To determine the reference height href, it is assumed
that the tilted battery is touching the cell holder surface with
its lower edge (see figure 2c). href is now the sum of the height
hch of the cell holder from its bottom to its surface and the
vertical distance htilt of the lower edge of the tilted battery up
to the TCP (see figure 2c). This is expressed by the following
relation

htilt = sin(βpeg ·
dpeg

2
)

href = hch + htilt (1)

If a collision occurs, the current height hcoll of the TCP is
compared to the reference height href and the collision is
classified thereby:

htol = 2mm

collisiontype =


collisionhole, if hcoll < href − htol

collisionpin, if hcoll > href + htol

collisionsurface, else
(2)

(a) hole collision (b) pin collision (c) surface collision

Fig. 2: The different collision types and their reference height

Depending on the type of the collision, a different reaction
of the robot is demanded:
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b) Avoiding-pin procedure: When a pin collision has
taken place (see figure 2b), the robot has to avoid the pin
as much as possible in the direction that leads to the actual
hole . This avoidance maneuver is called ”avoiding-pin
procedure” and dealt with in chapter V. A collision with a
pin is an indicator that the theoretical hole position deviates
significantly from the actual one, resulting in a planar distance
dhole2hole between the theoretical and actual hole of up to
several millimeters. After the avoiding-pin procedure, the
going-down-until-collision procedure (see chapter IV-0a)
starts again.

c) Sliding-on-surface procedure: The second case is a
surface collision (see figure 2c). This also means that dhole2hole
amounts up to several millimeters. The robot then has to
slide the lower edge of the battery on the cell holder surface
in the direction that leads to the actual hole. This is called
”sliding-on-surface procedure” and is explained in detail in
chapter VI. If it registers a drop in the vertical force force(-z)
acting upwards on the TCP, it will be assumed that the lower
edge of the battery has reached the edge of the desired hole. If
its transition criterion is fulfilled, a going-down-until-collision
procedure is undertaken again.

d) Centering-lowering procedure: When a hole collision
has occurred (see figure 2a), the calculated hole position
matches well with the actual hole, caused by dhole2hole being
just a few tenth of a millimeter. The robot is then centering
and lowering the battery within the hole achieving a three
points contact which is the desired destination. This procedure
is therefore called ”centering-lowering procedure” from now
on and described in chapter VII.

If the hole has been found successfully at the end of
the centering-lowering procedure, the cell will be tilted back
into the vertical position. Then it is finally inserted into the
cell holder by a specified force. The whole procedure is
illustrated in figure 3. The following chapters will concentrate
on the avoiding-pin and sliding-on-surface procedure as they
show how to approach the peg to the hole. The centering-
lowering procedure will be discussed only briefly, since many
publications have already dealt with it.

V. AVOIDING-PIN PROCEDURE

Due to process fluctuations, a positional displacement
dhole2hole of up to several millimeters between the calculated
and actual hole position has to be expected. In such a case
it may occur that the bottom or the edge of the tilted battery
collides with one of the pins. The pins are protruding from the
cell holder surface and are adjacent to the hole. It is pointed at
by the tip of the battery which is also floating roughly above
the actual hole. So practically speaking the battery is tilted
away from the pin (see figure 2b). Before the battery can be
inserted into the hole, the TCP has to avoid the pin first. How
it does so will be explained in this chapter.

Fig. 3: The overall advanced peg-in-hole procedure

When a pin collision has occurred, the planar (xy) direction of
the force caused by the pin acting on the TCP is determined.

θforce = atan2(forcey, forcex) (3)

If the TCP is moving in the direction of θforce, it reduces the
force acting on itself by increasing the distance between the
TCP and the pin. Because of the pins lying tangentially at the
hole, θforce may already point to the actual hole. But these force
readings are not always reliable: The TCP lies in the concentric
bottom of the gripped battery. If the collision location of the
pin and the battery coincides with the TCP, the lever arm of the
force acting on the TCP will be infinitesimally small. Then the
values of the forces in x- and y-direction will be close to zero
and lead to a rather random force direction θforce. So in short:
θforce can point to the actual hole but is not reliable. Because
of that there is a need of a second direction, stabilizing the
avoiding-pin procedure:
Since the tip of the tilted battery points in the direction of
the pin, the TCP has to move to the opposite direction away
from the pin in order to come closer to the actual hole (see
figure 2b). This direction is called ”positive tilt direction” and
is expressed by the following relation:

xpos-tilt-dir = sign(βpeg) · cos(γpeg)

ypos-tilt-dir = sign(βpeg) · sin(γpeg)

θpos-tilt-dir = atan2(ypos-tilt-dir, xpos-tilt-dir), (4)

where βpeg is the angle the battery is pitched or tilted by from
the vertical axis. γpeg is the the direction the tilt is applied to
around the vertical axis of the cell holder coordinate system.
If the TCP is moving into the direction implied by θpos-tilt-dir, it
is eventually leaving the pin behind but not necessarily going
straight to the actual hole. So in short, θpos-tilt-dir may not
always point to the actual hole, but is a constant and thus
extremely stable.
In order to improve the avoiding-pin procedure, θforce and
θpos-tilt-dir are combined, yielding a resulting angle that ideally
has the advantages of both inputs: leading away from the pin
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to the actual hole and being robust. This is done by distributing
a trust κ onto both directions according to

θavoid-pin = κ · θpos-tilt-dir + (1− κ) · θforce (5)

Because θforce and θpos-tilt-dir are angles within [−π,+π], equa-
tion 5 has to be slightly modified. The algorithm 1 shows
how to merge two angles a1 and a2 lying within the range of
[−π,+π], which are trusted with κ and (1 − κ) respectively,
into a single angle which lies again in a range of [−π,+π].

Algorithm 1 Merging two angles a1 and a2 with input and
output range of [−π,+π]

angle = trust * a1 + (1 - trust) * a2
# if condition fulfilled: cond = True
# else: cond = False
cond1 = abs(a1) + abs(a2) > pi
cond2 = sign(a1) * sign(a2) < 0
cond3 = trust < 1.0
if cond1 and cond2 and cond3:

angle = angle + trust * 2 * pi
endif

In order to avoid the pin and move closer to the actual
hole, the TCP moves in direction of θavoid-pin for a distance
of stepavoid on the horizonal plane. In practice it has proven
that stepavoid = 1mm is a good approach. It can be increased
further to leave the pin behind even more quickly but should
not be chosen to large, as it easily would lead the peg to
overleap the hole. After that the robot proceeds with a going-
down-until-collision procedure again. At his point the reader
may ask what value to assign to the trust κ. This question can
be answered as follows:
If the calculated hole position is far off the actual hole and
extends into a protruding pin (dhole2hole of some millimeters),
several avoiding-pin procedures may be necessary to avoid
the interfering pin completely. The force direction will not be
meaningful, if the collision location of the pin and the battery
coincides with the TCP, yielding a lever arm close to zero
(compare figure 2b with 4a). But if the location of the collision
is closer to the upper edge of the battery and therefore further
away from the TCP, the lever arm is longer and the force
direction will be more accurate.
The first time an avoiding-pin procedure is executed, the robot
does not know whether the pin collision occurred with the
center or the edge of the battery. But the more times a pin
collision is registered and thus an avoiding-pin procedure is
undertaken, the more it can be assumed that the pin collision
is taking place with the edge and not the center of the battery
as the robot already has tried to avoid the pin. So the lever
arm of the force acting on the TCP rises and the more trust
((1−κ) ↑) can be put in the force direction θforce and the less
trust (κ ↓) is put in the positive tilt direction θpos-tilt-dir.
The number of avoiding-pin procedures is counted by ctravoid.
As a reference value the maximum number of avoiding-pin
procedures allowed before cancelling the mounting process

and doing a complete retry is set by maxavoid. An initial trust
of κ = 0.55 is given to the positive tilt direction θpos-tilt-dir
and thus the force direction θforce is entrusted the remaining
(1 − κ) = 0.45. As ctravoid is increasing, κ decreases. These
relations are defined in the following equations and illustrated
in figure 4b:

κinit = 0.55

slope = −κinit/maxavoid

κ = slope · ctravoid + κinit (6)

This is to help the robot not only avoiding the interfering pin
but also going already in the direction of the actual hole in one
and the same step. Once the robot has successfully avoided an
interfering contour, it continues descending downwards until
another collision occurs, which may be a surface collision
which the next chapter is about.

(a) pin collision at
TCP

(b) The relationship of trust κ and number of
avoiding-pin procedures ctravoid

Fig. 4: Graphics illustrating the avoiding-pin procedure

VI. SLIDING-ON-SURFACE PROCEDURE

If the lower edge of the battery has collided with the surface
of the cell holder in proximity around the actual hole (see
figure 2c), the collision height hcoll is within the tolerance
band of the reference height href:

href − htol ≤ hcoll ≥ href + htol

So there is a positional displacement dhole2hole of some mil-
limeters. Now the battery should slide on the surface until the
actual hole is found. But how to find the actual hole if there
is no vision system deployed?
The tip of the tilted battery points in the direction of the pin
protruding from the cell holder (see figure 2c). So its lower
edge can only come into contact with the cell holder surface
where there is no pin. Practically speaking this is either on
the left or right side, or in front of the hole. But not behind
the hole, as there lies the pin. So if the battery follows the
direction its tip is pointing to on the horizontal plane, there
will be a chance of approaching the hole. This direction is
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the opposite of the positive tilt direction θpos-tilt-dir and is thus
called negative tilt direction:

xneg-tilt-dir = sign(βpeg) · cos(γpeg)

yneg-tilt-dir = sign(βpeg) · sin(γpeg)

θneg-tilt-dir = −atan2(yneg-tilt-dir, xneg-tilt-dir), (7)

There are two cases that need to be dealt with when trying
to find the actual hole: The first one is that no pin collision
has occurred before the surface collision. This means that
the position of the TCP coincides with the precomputed hole
position on the horizontal plane (dTCP2hole ≈ 0mm). But
the precomputed hole position is displaced from the actual
hole position (dhole2hole can amount up to several millimeters).
Otherwise the battery would already touch the hole edges and
not the surface of the cell holder. This case is called ”no-pin-
avoided case”.
The second case is entered when one or several pin col-
lisions have taken place before the surface collision. This
time however, the TCP and the precomputed hole position do
not coincide due to the avoiding-pin procedures which have
moved the TCP away from the precomputed hole position
(dTCP2hole can amount up to several millimeters). Again, the
precomputed hole position is displaced from the actual hole
position (dhole2hole can amount up to several millimeters). This
case is the ”pin-avoided case”.
As for the no-pin-avoided case it is hard to extract even more
information from the environment apart from θneg-tilt-dir that
would help finding the actual hole. While the forces acting
on the TCP when the battery is sliding on the surface help to
indicate when the hole itself is reached, they are not profitable
in finding the direction to the hole. Therefore nothing else is
left but moving the TCP along θneg-tilt-dir. Therefore,

θslide-surface = θneg-tilt-dir (8)

Now a transition criterion is needed which indicates when
the actual hole has been found and the sliding-on-surface
procedure is finished. During the sliding on the surface, a force
is acting on the TCP in the vertical direction upwards. But if
a hole is reached this force will drop to approximately zero
because the lower edge of the battery crosses the edge of the
hole and is now hovering above it. A threshold of 1.5N has
proven practical.

thresholdforcez = 1.5N

holefound = forcez < thresholdforcez (9)

When this is happening, the sliding-on-surface procedure
is finished and the centering-lowering procedure can be
activated in order to achieve a three points contact with the
hole (see chapter VII).

If instead the pin-avoided case has occurred, it will be
possible to gain more information from the current status.
Here, the TCP and the calculated hole position differ from
each other. Thus the horizontal distance between the two is

Fig. 5: The planar distance between the TCP to the computed
hole

determined as follows:

posTCP = (xTCP, yTCP, zTCP)

poshole = (xhole, yhole, zhole)

dTCP2hole =
√
(xhole − xTCP)2 + (yhole − yTCP)2 (10)

This relation is also depicted in figure 5.
Furthermore, the angle from the TCP to the theoretical hole
position is:

θTCP2hole = atan2(yhole − yTCP, xhole − xTCP) (11)

If the distance of the TCP to the theoretical hole is far
greater than the distance between the theoretical and actual
hole (dhole2hole >> dTCP2hole), θTCP2hole not only points to
the theoretical hole but also roughly to the actual hole from
a distant point of view. This effect decreases as the TCP
approaches the actual hole.
Therefore the smaller dTCP2hole is, the less θTCP2hole can be
trusted. Thus, the negative-tilt direction θneg-tilt-dir becomes
more important while the TCP is coming closer to the theoret-
ical hole (and dTCP2hole is decreasing). Therefore, both angles
θneg-tilt-dir and θTCP2hole are fused into a single direction by
involving again a trust value κ:

θslide-surface = κ · θTCP2hole + (1− κ) · θneg-tilt-dir (12)

At this point the reader may ask again what value to assign
to the trust κ. In the avoiding-pin procedure the maximum
permitted number maxavoid of avoiding-pin procedures and the
length stepavoid of a single avoiding-pin maneuver, are given.
Based on them the maximum distance the TCP could ever
have to the theoretical hole when entering the sliding-surface
procedure can be computed by multiplying the two. This is
necessary in order to normalize the actual distance dTCP2hole
of the TCP and the theoretical hole, yielding dTCP2hole.

dTCP2hole-max = maxavoid · stepavoid

dTCP2hole =
dTCP2hole

dTCP2hole-max
(13)
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Fig. 6: Top-down view of the battery’s trajectory overcoming
a displacement error and being centered in the hole.

dTCP2hole → 1, when a pin has been avoided several times.
Then θTCP2hole is trusted more than θneg-tilt-dir. In the same
manner dTCP2hole → 0, when the TCP has come closer to the
theoretical hole and thus θneg-tilt-dir should be trusted more.
Therefore dTCP2hole can be used as the trust value κ, involved
in equation 12:

κ = dTCP2hole (14)

Figure 6 depicts real measurements of the peg’s trajectory
while sliding on the surface of the cell holder and then being
centered and lowered within the hole. As for the no-pin-
avoided case the pin-avoided case is terminated when the
condition in equation 9 is true.
It may happen that while sliding on the cell holder surface
towards the actual hole the tilted battery collides with a
protruding pin. This may occur in both cases, the no-pin-
avoided case and the pin-avoided case. It is indicated by the
horizontal force rising above a certain threshold, e.g. 10.0N:

forcexy =
√
force2x + force2y

thresholdforcexy = 10.0N

collisionpin-horiz = forcexy > thresholdforcexy

If the condition collisionpin-horiz is true, the robot should not
continue pressing the gripped battery into the pin as this could
damage the battery. Instead it should move horizontally around
the pin while still trying to find the actual hole. Thus, the
direction of the horizontal force vector of the pin acting on
the TCP is evaluated:

θforcexy = atan2(forcey, forcex) (15)

The previous determined angle θslide-surface is then merged with
θforcexy by trusting both directions equally. This new direction

allows the robot to do both: circumnavigating the pin and
approaching the actual hole.

κ = 0.5 (16)
θslide-around-pin = κ · θforce + (1− κ) · θslide-surface (17)

Eventually the actual hole is found and the sliding-on-surface
procedure is finished and the centering-lowering procedure is
executed, as described in the next chapter. If nevertheless the
hole cannot be found, a retry of the whole mounting process
is launched.

VII. CENTERING-LOWERING PROCEDURE

While the avoiding-pin and sliding-on-surface procedures
are helping the robot to overcome larger displacement errors
and guiding the peg to the constraint region of the hole, the
centering-lowering procedure is about inserting the tilted peg
into the hole until a three points contact is established. If done
so, the peg will be oriented back into the vertical in order to
align its axis with the hole axis.
The centering-lowering procedure is entered, when the surface
of the peg collides with the edge of the hole (see figure 2a)
and a one point contact or two points contact is reached.
Practically this is indicated by the collision height falling
below the reference height:

hcoll < href − htol (18)

When the precomputed hole position matches the actual
hole position well (dhole2hole ≈ 0mm, or a few tenth of a
millimeter), the centering-lowering procedure is entered right
away without the need of an avoiding-pin or sliding-surface
procedure. The three points contact can be achieved by using
the direction of the contact force vector as described in
[Li+17], deploying RL algorithms as in [Ino+17; Bel+20]
or by implementing other strategies presented in numerous
peg-in-hole publications.

VIII. RESULTS

During a several months period of testing in a real industrial
production, the UR5e robot assembled more than 13,500
batteries with a success rate of greater than 99.54% by using
the methods presented in this paper. It took approximately
11 s to pick up and fully assembly a single battery. The
time needed for the assembly process itself depends on the
positional deviation between the precomputed and actual hole
dhole2hole: the greater it is, the longer it takes to find the hole and
assemble the battery. It may vary from 4 s to up to 20 s for a
single try. Experiments have shown, that positional deviations
up to 4mm millimeters can be overcome. However when is
dhole2hole increasing, the error rate rises as well.
The following listing highlights the key parameters of the
presented method:

• Success rate: 13557/13619 ≈ 99.54%
• Cycle time of cell assembly: ≈ 11 s
• Of which the peg-in-hole takes: ≈ 4 s to 20 s
• Maximum displacement error to be overcome: ≈ 4mm
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IX. INDUSTRIAL VALIDATION AND OUTLOOK

In collaboration with the German battery pack manufacturer
ANSMANN AG a fully functioning robot plant (see figure
7) has been developed and tested for several months in real
production, assembling thousands of battery cells. A UR5e
robot arm is stationed at its center picking up a battery supplied
by the trays on the left and right side. They contain batteries
either with their positive or negative pole upwards. The robot
chooses the polarity of a battery depending on the current
position in the assembly sequence of the battery pack.
While having a battery gripped, the robot moves slightly above
the hole position it is been given and tilts the battery. Then
the peg-in-hole procedure described in this paper begins. After
finding the hole at the end of the centering-lowering procedure,
the robot tilts the battery back into the vertical axis in order to
insert it completely into the hole by a specified force. If a cell
cannot be mounted on the first run, there will be some more
retries to find the hole. If the mounting still fails, maybe due
to positional deviations too large for the robot to overcome,
the gripped battery is sorted out and the robot continues with
the next battery in the assembly sequence.
The current plant design has two major downsides: The first
one is that the trays containing the batteries still must be filled
manually. Secondly, the robot wastes valuable time picking up
the batteries and bringing them to the cell holders. Therefore
more research is invested into smart grippers: A new gripper
is under development that sucks out the batteries directly
out of the very box they are delivered and stored in. This
would significantly reduce the time for equipping the robot
plant with the batteries it needs for the battery pack assembly.
Another approach is also investigated, that aims to feed the
robot directly with batteries so it just can concentrate on
inserting them into the cell holders. This approach would not
only reduce but eliminate the time wasted for the movements
from picking to placing. The robot would only need to move
from one hole to another and insert the batteries by the hereby
described method.

X. CONCLUSION

At the beginning it was shown that the lihtium-ion battery-
based peg-in-hole problem dealt with in this paper is a lot
more challenging than the general round peg-in-hole problems:
A battery cannot be mounted from certain directions due to
already mounted battery cells (occlusion by cells) and pins
protruding from the cell holders surface (occlusion by pins).
The cell holders containing the holes are not static but deform
when they are assembled. Additionally lithium-ion batteries
have to be handled with extreme care, proposing a compliant
assembly strategy.
For each case, avoiding protruding pins during the hole search
and approaching the hole while the battery is sliding on the
cell holder surface, intelligent and yet simple strategies were
presented: the avoiding-pin and sliding-on-surface procedure,
respectively. Their only goal is to guide the peg into the
constraint region where the actual peg-in-hole problem is
solved.

Fig. 7: The complete robot plant

Within the constraint region, the peg is simultaneously cen-
tered and lowered by using common peg-in-hole strategies
published in other papers.
The explained methods have been implemented on a UR5e
collaborative robot with inbuilt force torque sensors being
the heart of a complete industrial robot assembly plant. No
vision system was used for the peg-in-hole assembly. The
robot plant is able to mount a variety of different shaped cell
holders being given a very limited number of environmental
constraints. Over a period of several months more than 13,500
batteries have been assembled with a success rate of greater
than 99.54%.
Lastly an outlook over ongoing research was given, overcom-
ing the downsides of the current plant design: reducing the
time the robot plant needs to stop for being equipped with
new batteries and eliminating the time it takes to pick up and
move a battery from the tray to the cell holder.
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Abstract—Counteracting the labour shortage, improving 
ergonomics in combination with increasing productivity, easy 
integration and programming are some of the benefits that 
Human-Robot Collaboration (HRC) offers. The innovative 
technology combines the strengths of humans and robots and 
helps to enable the Industry 4.0 approach. However, despite the 
many advantages, the widespread use of the production 
technology has still not been achieved. Reasons for the inhibited 
use include large knowledge and know-how gaps in the area of 
implementation and planning, the low economic efficiency due to 
low cycle times and the high safety requirements. In this paper, a 
study is presented that addresses the state of the art of HRC and 
in particular the implementation of risk assessment. The study 
includes two surveys with a total of 57 participants, the results of 
which are presented and discussed in this work. 

Keywords—Human-Robot Collaboration, Survey, State of the 
Art, Risk Assessment, Safety 

I. INTRODUCTION  
Due to the increasing demand for customized products that 

are available within a short period of time, combined with 
decreasing product life cycles, the requirements for fast response 
times in production are growing. This requires flexible and 
adaptable production technologies capable of handling the 
expanding range of variants and making it possible to introduce 
new products rapidly [1]. Furthermore, in order to maintain 
competitiveness in the long term, both new and innovative 
production systems and digital production strategies must be 
used [2], capable of linking people and technologies with 
advanced information and communication technologies [3]. 
According to [4] Human-Robot Collaboration (HRC) is one of 
such important cyber-physical technology that supports and 
enables the Industry 4.0 approach. 

Through HRC it is possible to use the capabilities of humans 
and combine them with the strengths of robots [5]. The 
interaction of the robot's repeatability, accuracy and strength 
with the human's cognitive abilities makes the production 
technology very flexible and adaptable, solving the needs and 
requirements of the industry [6], [7]. The advantages of HRC are 
manifold: increased productivity, improved product quality and 
ergonomics, and the elimination of protective fences enables 
optimized use of factory space [6], [7]. HRC also has a positive 
effect on the employee structure in the company. According to 
[8], the use of HRC helps to counteract the shortage of skilled 
workers on the one hand, as the production systems can close 

the skill gaps. On the other hand, the use of new innovative 
technologies makes the company more attractive and thus 
attracts the younger generations and skilled workers. 

But despite the numerous advantages, the sales volume of 
collaborative robots is barely 5 per cent compared to the total 
volume of robots sold in 2019 [9]. According to [10], the full 
potential of HRC has not yet been exploited as many HRC 
applications are limited to the same operations that a fully 
automated robotic application would perform. This is one of the 
reasons for the low sales volume of collaborative robots. 
References [10], [11] and [6] believe that the barriers to the use 
of collaborative robotics lie in the high safety requirements and 
resulting high costs for risk mitigation measures. These 
statements are supported by a study that identified conducting 
risk assessments for specific HRC applications as one of the 
main challenges in HRC implementation [12]. Other challenges 
that emerged from the study were the identification of 
appropriate HRC applications and the application of safety 
standards. 

In order to obtain a comprehensive overview of the state of 
the art in the field of HRC, a two-part online study was 
conducted, targeting experts and end users. The study consisted 
of two independent surveys, one providing a general overview 
of HRC and the second specifically addressing one of the main 
challenges: risk assessment for HRC applications and its 
supporting tools. 

The paper is structured as follows: first, Section II describes 
the research methodology, which includes the research 
approach, the structure of the questionnaire and the composition 
of the survey participants. Sections III and IV present and 
discuss specific parts of the results of the General Overview 
Survey and the Risk Assessment Survey. The paper ends with a 
conclusion in Section V. 

II. RESEARCH METHODOLOGY 

A. Research Approach 
The study aimed to provide a comprehensive overview of the 

state of the art in HRC, reflecting the current situation of HRC 
in the industry. The focus was on the opinions and experiences 
of users, integrators and service providers who apply HRC in 
industry, and in particular the hardware installed, suitability of 
processes, benefits and hurdles of HRC. 
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By conducting two independent surveys, the objective was 
to reach different groups of experts and thereby obtain an 
unbiased general overview of the topic area in the first step and 
specifically address one of the main hurdles for the introduction 
of HRC in depth in the second step. In this way, a broad scope 
of data and information was collected. The survey on the topic 
of risk assessment dealt with the requirements of experts for 
software tools and in general, their advantages and 
disadvantages and in specific with desirable enhancements for 
HRC. 

The standardized survey was chosen as the data collection 
method and the type of survey adopted was an online survey. 
The standardized survey ensures that different answers to a 
question are in fact due to different characteristics, attitudes and 
behavior of the persons and not to varying conditions during the 
survey situation. The prerequisites are (1) a uniform formulation 
of the questions, the answer options and the order of the 
questions, (2) standardized framework conditions and (3) 
standardized implementation of the survey [13]. 

In order to meet requirement (1), the general outline of the 
questionnaires were built according to the structure defined by 
[14] and the question phrasing followed the 10 rules of question 
phrasing according to [13]. 

To comply with (2) and (3), the survey type online survey 
was selected. This has several advantages [15]: (a) the answers 
are more thoughtful as there is no time pressure, (b) the answers 
are more "honest" as the survey is anonymous, (c) completing 
the survey is possible in a short time and (d) there is the 
possibility to give hints (e.g. in case of incomplete questions). In 
addition, a broad spectrum of experts can be reached through an 
online survey.  

The surveys were designed using the web portals 
UmfrageOnlinea and EUSurveyb, published via LinkedIn and 
email and conducted between January and March 2021. 

B. Questionnaire 
The General Overview Survey consisted of four thematic 

blocks with a total of 32 questions: 

• Collaborative robotics basics, 

• Process suitability, 

• Training and 

• Safety requirements and standards 

Whereas the Risk Assessment Survey consisted of three 
thematic blocks with a total of 19 questions: 

• Tools for conducting risk assessments, 

• Risk assessment method and 

• Requests for improvement with regard to HRC 

C. Structure of the Survey Participants 
A total of 29 participants participated in the General 

Overview Survey and a total of 28 in the Risk Assessment Survey. 
The characteristics of the participants are presented in TABLE 

a https://www.umfrageonline.com/ 

I. respectively in TABLE II.  The left column contains the 
parameter of the characteristic and the right column lists the 
number of participants exhibiting this characteristic. In TABLE 
II. the level of experience is defined as follows:  

• Expert knowledge: participant mainly engages in 
the subject area of risk assessment and has 
comprehensive know-how. 

• Advanced knowledge: participant has already 
carried out several risk assessments. 

• Basic knowledge: participant has already carried 
out one risk assessment. 

All participants with experience in the field of HRC also had 
experience in the field of industrial robotics. 

TABLE I.  GENERAL OVERVIEW SURVEY: CHARACTERISTICS OF THE 
PARTICIPANTS 

Occupation No. Industry Sector No. 

Integrator 12 Mechanical Engineering 18 

Manufacturer 3 Automobile 3 

Entrepreneur 3 Electro industry 3 

Consulting 2 Different sector 5 

Service Provider HRC 2   

Different Occupation 7   

Experience in HRC No. Number of HRC in 
operation No. 

< 1 year 1 none 14 

1 - 5 years 22 1 2 

> 5 years 6 > 1 13 

Experience in planning 
HRC No. Number of implemented 

HRC No. 

yes 24 1 2 

no 5 1 - 5 13 

  > 5 8 

TABLE II.  RISK ASSESSMENT SURVEY: CHARACTERISTICS OF THE 
PARTICIPANTS 

Occupation No. Experience in Risk 
Assessment No. 

Consulting 17 < 5 years 18 

CE Representative 6 5 – 10 years 3 

Integrator 3 11 – 15 years 3 

End user 2 > 15 years 5 

Researcher 1   

Level of Experience No. Experience in Robotics No. 

Expert knowledge 19 Industrial robotics 24 

Advanced knowledge 8 HRC 16 

b https://ec.europa.eu/eusurvey/ 
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Occupation No. Experience in Risk 
Assessment No. 

Basic knowledge 1 none 1 

III. GENERAL OVERVIEW SURVEY RESULTS 
The questions in the thematic blocks were not formulated as 

compulsory questions, resulting in the consequence of not every 
participant having answered every question. A response rate 
(RR) is thus specified for the interpretation of the results:  

 𝑅𝑅𝑅𝑅 =  𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 (1) 

The questionnaire consisted of the question types multiple 
choice (MC), single choice (SC), free question (FQ), ranking 
question (RQ) and applies/does not apply (A/DA). In the 
following subsections, the results are supplemented by a tuple 
consisting of RR and the question type. The results are given as 
absolute values on the number of participants. 

In the following, a portion of the results of the General 
Overview Survey results is presented and discussed. The report 
on the entire survey can be found in [16]. 

A. Collaborative Robotics Basics 
The thematic block of questions focused on the areas of 

collaboration types/protection principles, the types of robots 
used and the gripping techniques employed.  

The protection principles applied by the experts in the HRCs 
implemented and planned so far are shown in Fig. 1 in 
descending priority (RR=93%;MC). The experts primarily use 
the protection principle power and power limitation (PFL), 
followed by safety-rated monitored stop and speed and 
separation monitoring (SSM). The protection principle manual 
guidance is used the least. 

Fig. 1. Mainly applied protection principles in HRC applications. 

The ranking of the collaboration types according to which 
the HRC applications are most commonly operated is assessed 
by the experts as follows (RR=93%;RQ): 

1. Coexistence – Safety-rated monitored stop 

2. Coexistence – SSM 

3. Cooperation – Safety-rated monitored stop 

4. Cooperation – SSM 

5. Collaboration – PFL 

6. Collaboration – Hand guiding 

According to the experts' opinions, HRC applications are 
predominantly operated in the collaboration type coexistence, 
using either the protection principle safety-rated monitored stop 
or SSM. Although the protection principle PFL is most 
frequently used by the experts to safeguard HRC applications, 
HRC applications are barely operated in the collaboration type 
collaboration, even though this protection principle enables 
direct and close contact with humans [17]. 

In most applications, not only one protection principle is 
implemented, but a combination of several. HRC applications 
are often implemented as coexistence and protected by SSM. If 
a human approaches at a certain distance, the robot switches to 
another protection principle (e.g. PFL or safety-rated monitored 
stop). The flexible transition between protection principles 
enables efficient operation of the HRC application, as the robot 
can operate at full speed and handle dangerous components 
when the human is outside the protection zone. 

In addition to the collaboration types/protection principles, 
the questionnaire covered the types of robots (RR=100%;MC) 
and gripper technologies (RR=97%;MC) employed in HRC 
applications. The results are shown in Fig. 2 a) and b). In 
addition to the robot types listed, Yaskawa, Mitsubishi, Stäubli, 
Doosan, Kawasaki, Rethink - Sawyer were each mentioned 
once. Similarly, servo grippers and passive gripping systems 
were each mentioned once corresponding the gripping 
technologies in  use. 

Fig. 2. a) Types of robots and b) Gripping technologies used in HRC. 

Besides the market leader Universal Robot and KUKA iiwa, 
conventional industrial robots are also increasingly utilized in 
HRC applications. With today's state of the art, it is possible to 
equip conventional industrial robots with safety technology 
enabling them to be used in collaborative workplaces. Through 
safe interaction between humans and conventional industrial 
robots, the advantages of both, HRC and full automation, 
become available. In shared workspaces, the robot acts at low 
speed and ensures the safety of the human. In areas that are not 
accessible to humans, the robot can operate at full speed and 
power, counteracting the hurdle of the lack of economic 
efficiency.  

Furthermore, the results show that special HRC gripping 
systems or vacuum gripping technology are predominantly 
employed. Both technologies have a low risk of injury compared 
to conventional gripping systems due to the design, energy 
supply and special sensitive functions. The gripper as a 
component is safe and HRC suitable and does not need to be 
safeguarded by additional risk reduction measures. Preferred 
gripper manufacturers are Zimmer Group GmbH (9 mentions), 
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SCHUNK GmbH & Co. KG (6 mentions), OnRobot A/S (6 
mentions), RobotiQ (5 mentions), WEISS ROBOTICS GMBH 
& CO. KG (1 mention), Schmalz (1 mention) and own 3D 
printing (1 mention). 

B. Process Suitability 
The thematic block concerned suitable processed for HRC, 

the process characteristics a process should have in order to be 
suitable for HRC, the reasons for implementing HRC and the 
current hurdles. 

Regarding suitable processes for HRC, the experts evaluate 
the process types Handling/Pick and Place (26 mentions), 
Assembly (23 mentions), Quality Assurance (21 mentions), 
Palletizing (19 mentions), Screwing applications (17 mentions), 
Packing (16 mentions), Positioning aid (16 mentions), Lifting 
aid (12 mentions), Welding applications (6 mentions), Gluing 
processes (3 mentions), Grinding/Polishing (1 mention) as more 
or less suitable for the implementation of HRC 
(RR=100%;MC). For the implementation of Handling/Pick and 
Place, Assembly, Quality Assurance and Palletizing tasks in 
HRC, a large number of sample applications, best practices and 
comprehensive experience exist as well as sensor systems and 
other HRC-capable hardware, enabling a safe implementation 
and efficient employment. The implementation of those 
processes using HRC offers the advantages of reducing 
monotonous activities, a low-effort adaptation to different 
products and an optimized use of factory space. 

Processes involving hazardous tools or materials, such as 
welding, gluing or polishing tasks, are not suitable for HRC 
applications, or only to a limited extent. Due to the process-
related hazards, safe application planning and ensuring the 
safety of humans is linked to a very high expenditure of time and 
costs, resulting in the possibility of high residual risks that 
cannot be mitigated. The experts disagree about welding 
applications in particular. There are already solutions on the 
market that enable welding in HRC, but the results show a 
critical attitude on behalf of the experts. In this context, the high 
approval of screw applications is striking. In screwing 
applications, a screwing tool is required which, due to its small 
surface area and rotating movements, poses a great risk to 
humans. The availability of HRC screwdrivers, which enable 
safe operation of screwing applications in HRC, is a possible 
reason for the high level of approval, despite the high process-
related risks. 

Fig. 3. Characteristics for HRC suitability. 

The experts agree that processes that are (ergonomically) 
stressful, include monotonous process steps or complicated sub-

process steps, offer great potential for optimization through the 
use of HRC (see Fig. 3). On the other hand, processes that 
require a high number of peripherals or processes for which the 
primary goal is to improve the cycle time or that involve heavy 
work steps are rather unsuitable for the use of HRC 
(RR=97%;A/DA). For some characteristics, experts disagree on 
whether the use of HRC is beneficial or not. These aspects 
depend on the expert's perspective, e.g. an existing characteristic 
may be beneficial through the use of HRC compared to manual 
operations, but disadvantageous for HRC compared to full 
automation. 

Detailed information on areas where HRC provides an 
advantage or disadvantage compared to manual activity or full 
automation is provided in TABLE III. (RR=90%;MC). In 
TABLE III. (1)  is advantage of HRC compared to manual 
process, (2) disadvantage of HRC compared to manual process, 
(3) advantage HRC compared to full automation and (4) is 
disadvantage HRC compared to full automation. The values 
refer to the number of experts who support the corresponding 
position. 

TABLE III.  HRC COMPARED TO MANUAL ACTIVITY AND FULL 
AUTOMATION 

Characteristics (1) (2) (3) (4) 

Counteracting the shortage of manpower 21 2 10 6 

Repeatability 21 1 5 14 

Low error rate/High quality 20 2 1 18 

Precision 18 6 3 14 

Increase in productivity 17 4 4 19 

Economic efficiency 14 8 9 9 

Compliance with low tolerances 14 6 2 15 

Sensitivity 12 7 18 3 

Improvement of cycle time 11 11 2 23 

Easy to learn/operate/use 11 9 18 3 

Collision detection 11 6 18 2 

Fast amortization 9 10 12 7 

Fast reprogramming 8 10 19 1 

Elimination of time consuming training 8 10 17 3 

Low investment 8 15 14 5 

Response to uncertainties 8 13 12 5 

High variance 7 13 19 2 

Fast adaptability to changing conditions 7 1 20 13 

Speed 7 13 1 21 

Fast installation 6 15 17 4 

Small quantities/single-piece production 4 16 17 1 

Low space requirements 2 14 16 6 
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Advantages that HRC offers compared to manual work are 
considered by the experts to be disadvantages compared to full 
automation for the majority of the aspects and vice versa. But 
HRC offers advantages over manual activities as well as full 
automation in terms of counteracting labour shortages, 
sensitivity, ease of learning and collision detection, and 
disadvantages in terms of process speed. The experts' 
assessment reflects and confirms current knowledge and 
research results. In a specific application, the objectives must 
therefore be clearly defined and the optimal implementation 
strategy must be selected for the application in order to utilize 
the advantages of HRC and achieve the best possible design of 
the process.  

Other findings of the survey are the results regarding the 
main reasons for implementing HRC applications 
(RR=100%;SC) as well as the reasons for the hesitant adoption 
of HRC applications (RR=100%;MC). Improving ergonomics is 
the most frequently cited reason for implementation with 11 
mentions, followed by saving labour/counteracting the labour 
shortage and (partial) automation with low investment with 9 
mentions each. The reasons given are in line with the findings 
on the advantages of HRC over manual activities and full 
automation from the previous analysis. The reasons for the 
hesitant adoption of HRC applications are listed in Fig. 4. The 
experts agreed that the lack of HRC know-how, experience and 
skills, the economic inefficiency and the high safety 
requirements to be fulfilled inhibit the use of HRC. These results 
indicate that there is a need for action, particularly in the area of 
know-how development and training, in order to accelerate the 
introduction of HRC into the industry. Economic production is 
directly related to the speed of the robot, which must be kept low 
due to the high safety requirements and the risk of collision. A 
higher movement speed leads to shorter cycle times and thus to 
an increase in economic efficiency. The results show that there 
is potential for optimization and a need for research, especially 
in the area of safety. 

Fig. 4. Reasons for the hesitant adoption of HRC application. 

IV. RISK ASSESSMENT SURVEY RESULTS 
According to the General Overview Survey, the questions in 

the Risk Assessment Survey were not mandatory and were 
developed using the question types SC, MC, A/DA. The RR is 
also used to interpret the results and the presentation of the 
results is also supplemented by a tuple consisting of RR and 
question type. The results are given as absolute values on the 
number of participants. 

In the following, a portion of the results of the Risk 
Assessment Survey results is presented and discussed. The report 
on the entire survey can be found in [18]. 

A. Risk Assessment Tools and Methods 
This section presents the results regarding the risk 

assessment tools used by the experts, the methodology and 
general aspects of the topic of risk assessment. Tool is defined 
as the totality of documentation tools for risk assessment and 
includes both MS Office templates and software. 

For the documentation of the risk assessment 
(RR=96%;MC), the experts predominantly prefer MS Office 
templates (25 mentions), though the most frequently used are 
self-created Excel templates (11 mentions). In contrast, software 
solutions are utilized less (11 mentions). The most frequently 
used software is Safexpert with 7 mentions (RR=54%;MC). The 
tools in use are listed in Fig. 5 a). MS Office templates offer the 
advantage of being easily and flexibly adapted to individual 
needs. This allows the user to design the risk assessment 
documentation according to individual preferences and the type 
of machinery under consideration. Software provides a 
relatively rigid structure and therefore offers little scope for 
individual adaptations, but offers the advantage of 
standardization across all risk assessments conducted.  

Fig. 5. a) Risk assessment tools used by the experts and b) 

For the identification of hazards (RR=96%;SC), the majority 
of experts use the checklist procedure according to DIN EN ISO 
12100 Annex B (17 mentions) and apply a combination of top-
down and bottom-up methodology (11 mentions) 
(RR=100%;SC) (see Fig. 5 b)). An important question that 
needs to be addressed in the risk assessment is the completeness 
of the identified hazards. The use of the checklist method 
ensures each hazard listed in DIN EN ISO 12100 Annex B has 
been considered and, in conjunction with the combination of 
top-down and bottom-up, a high completeness of the identified 
hazards can be achieved.  

The survey also included general statements on the 
conduction of risk assessments, assessed accordingly TABLE 
IV. by the experts (RR=93%;A/DA). The results highlight the 
importance of the experience and know-how of the person 
conducting the risk assessment in order to achieve a successful 
and high-quality risk assessment. A tool can only support the 
implementation and serves as documentation, but experience 
cannot (yet) be replaced by a software.  

TABLE IV.  STATEMENTS ON RISK ASSESSMENT 

Statement No. 
The quality of the risk assessment depends on the know-how, 
experience and accuracy of the user 

25 

The software available on the market is not a substitute for 
experience and expert knowledge. 23 
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Statement No. 
The risk assessment should be started already in the 
development phase of a product/application. 23 

Checklists of potential hazard causes or consequences are 
helpful and should be used in the hazard identification phase of 
the risk assessment. 

21 

The most important aspect of risk assessment is the experience 
of the user. 21 

A risk assessment should be carried out in a group. 18 
A risk assessment should be conducted by an external service 
provider or system integrator. 3 

 

A need for assistance in conducting the risk assessment 
(RR=86%;MC) exists in deciding if a hazard is acceptable (16 
mentions), which hazards are reasonably foreseeable and 
where the boundary to gross negligence lies (14 mentions), 
which hazards need to be considered (12 mentions) and the 
automatic transfer of hazards from application-specific 
standards into the risk assessment (12 mentions). Risk 
assessment is partially a subjective process. In particular, risk 
estimation and evaluation are mainly based on the subjective 
opinion of the person conducting the risk assessment, and thus 
also the decision on the acceptable residual risk. The results of 
the survey indicate a need for support, especially in the 
subjective aspects of risk assessment, and that there are still 
uncertainties in these areas. An experienced user has less 
difficulties in assessing risks and deciding if the residual risk is 
acceptable. For an inexperienced user who wants to implement 
HRC applications in the production line and therefore needs to 
conduct a risk assessment, these processes represent a major 
hurdle. In order to facilitate the introduction of HRC and to 
simplify the process of risk assessment of HRC for 
inexperienced users, it is necessary to increase the objectivity of 
subjective processes. 

B. Enhancements for Risk Assessment Tools for HRC 
The requests for improvements and support to facilitate risk 

assessment for HRC are grouped into two categories. The first 
category describes possible HRC-specific additions to risk 
assessment tools such as guidelines, good practice examples or 
other assistance and support and the second category includes 
new functionalities by automating parts of the risk assessment 
process. 

Regarding the first category, the results of the survey are 
listed in TABLE V.  (RR=79%; A/DA). The majority of experts 
agree that there should be more guidance on risk assessment for 
HRC. In particular, matching specific hazards with appropriate 
risk reduction measures is considered promising with a total of 
19 mentions, closely followed by support in deciding when a 
significant change exists with 18 mentions. In risk reduction 
according to the 3-stage procedure, the hazard is safeguarded in 
the first stage by design measures, in the second stage by 
technical measures and the third stage covers user information 
[19]. Due to the absence of the protective fence at HRC, the 
hazards must be secured in particular by stages 1 and 2. As the 
number of designed and implemented HRC applications 
increases, the experience and the range of possibilities for 
safeguarding certain hazards also rises. This experience should 
be shared among users, designers and safety engineers, and new 
users in particular can benefit from catalogues containing 

possible risk-reducing measures for specific hazards and the 
experience of experts. The availability of support and 
guidelines, assistance in deciding on significant changes and in 
performing the necessary collision measurements can counteract 
the uncertainties and challenges related to risk assessment and 
thus advance the adoption of HRC applications. 

TABLE V.  DESIRABLE ADDITIONS TO RISK ASSESSMENT TOOLS 

Statement Applies 
Does 
not 

apply 
For certain hazards, a catalogue of possible applicable 
safety measures. 3 19 

Assistance in deciding whether changes to HRC 
applications are significant enough to require a 
renewed risk assessment. 

4 18 

More help and guidance on HRC-specific issues in 
general (e.g. more instructions, application examples, 
exemplary safety measures, instructions on how to 
conduct collision measurements, etc.). 

5 17 

More precise instructions on how to conduct collision 
force/pressure measurements. 6 16 

Concretisation of ISO TS 15066. 6 16 

 

The experts also consider the automation of sub-processes in 
risk assessment to offer great potential for support (see TABLE 
VI. ) (RR=68%; A/DA). The visualization of paths and work 
areas of humans and robots as well as the development of 
standard modules for recurring sub-processes with 16 mentions 
each are seen as the most promising by the experts. Visualization 
enables the simple detection of overlapping paths or work areas, 
which facilitates the definition of hazardous areas and supports 
the fast detection of collision points. The use of standardized 
templates for certain (sub-)processes also leads to a considerable 
facilitation of the process, since first, all hazards, assessments, 
evaluations and mitigation of the specific process are pre-
determined and second, the documentation effort can be 
significantly reduced. Yet, the development of standard 
templates proves to be difficult, as a multitude of parameters 
have to be considered influencing the hazards and their severity 
(e.g. workpiece, tool, gripping technique, working environment, 
etc.). In general, the automation of sub-areas of risk assessment 
is considered promising and facilitating by the experts. The 
experts are divided solely on the automation of hazard 
identification using simulations or artificial intelligence and the 
automated detection of critical geometries. 

TABLE VI.  DESIRABLE NEW FUNCTIONALITIES 

Statement Applies 
Does 
not 

apply 
Visualization of the path and working areas of the 
robot and the human. 16 3 

Standard templates / modules for risk assessment of 
frequently recurring (sub-) processes (e.g. safety 
functions for specific activities). 

16 3 

Automatic detection of collisions and comparison 
with parameters for compliance with biomechanical 
limit values. 

15 4 

Simulation of human behaviour in certain situations / 
Inclusion of human behaviour in certain situations in 
the risk assessment (e.g. on which parts of the body a 
collision can occur). 

14 5 
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Statement Applies 
Does 
not 

apply 
Automatically calculate safety distances and speeds 
with the help of simulations / CAD data. 13 6 

Automatic hazard identification using simulations or 
artificial intelligence. 12 7 

Automatically detect critical geometries (sharp edges, 
sharp corners, etc.) with the help of simulations / CAD 
data. 

13 7 

 

Despite the significant number of opposing opinions, the 
experts were positive about the usefulness of a (partially) 
automatic identification of hazards with a total of 18 mentions 
(RR=93%;SC). 

Automation of hazard identification based on simulations or 
artificial intelligence and automated detection of critical 
geometries are currently research-based and methodologies 
proven and tested in industry are not yet available. This fact 
explains the differentiated and contradictory opinions of the 
experts. The statement is supported by the question about the 
awareness of the methodologies developed in research 
(RR=75%;MC), the result of which is shown in Fig. 6. With the 
exception of the combination of HAZOP and UML, the experts 
are either unaware of most of the methods or consider them to 
be unpromising. 

Fig. 6. Novel methods to facilitate hazard identification. 

Another important aspect is the expert opinion regarding the 
calculation of the biomechanical limits on a simulation basis 
(RR=82%;A/AD). The results are shown in TABLE VII. The 
experts agree that collision measurements on a simulation basis 
significantly help risk assessment of HRC applications and if the 
quality of the simulation is high enough, the measurements 
could even be reduced. However, the majority of experts believe 
that simulations cannot completely replace measurements. The 
high effort required to develop a simulation meeting the 
requirements for quality and accuracy in order to be able to 
simulate collisions in detail is offset by the effort required to 
perform measurements in reality. In order to be able to obtain 
detailed and reliable statements through simulations, the 
simulations must be as close to reality as possible, including the 
modelling of the worker's behavior. One possibility to reduce the 
effort of model creation would be the use of virtual reality, 
eliminating the need for human modelling. 

 

TABLE VII.  SIMULATION-BASED DETERMINATION OF BIOMECHANICAL 
LIMITS 

Statement Applies 
Does 
not 

apply 
Simulation-based estimation of collision 
force/pressure could significantly help risk 
assessment of HRC applications. 

20 2 

With a detailed, high-quality simulation, it would be 
possible to significantly reduce the number of 
required collision force/pressure measurements. 

19 3 

With a detailed, high-quality simulation, it would be 
possible to significantly reduce the number of 
required collision force/pressure measurements. 

9 13 

 

V. CONCLUSION 
As part of the study on the current state of the art of HRC, 

two independent surveys (General Overview Survey and Risk 
Assessment Survey) were conducted, the results of which were 
presented and discussed in this paper. 

Coexistent implementations of HRC applications are the 
most common, whereas collaborative applications are only 
implemented to a small extent. In addition to the market leader 
Universal Robots and KUKA iiwa, conventional industrial 
robots equipped with appropriate safety technology are 
increasingly being used. With regard to gripping technology, the 
experts are focusing on the safe solutions and predominantly use 
HRC-capable gripping systems or vacuum gripping technology. 
For HRC applications, processes that have low process-related 
hazards are classified as HRC suitable. The biggest obstacle to 
the introduction of HRC applications is the large knowledge and 
know-how gap as well as the non-economical operation of HRC 
applications due to too high cycle times. 

A key finding of the Risk Assessment Survey is the 
dependence of the quality of the risk assessment on the 
experience and know-how of the person conducting the risk 
assessment. For the documentation of the risk assessment, 
experts prefer MS Office templates instead of software 
solutions. If software solutions are applied, Safexpert is chosen 
most frequently.   

A need for support in risk assessment for HRC in the form 
of general assistance, examples and guidelines as well as 
standard catalogues containing the suitable risk-reducing 
measures for specific hazards or in deciding when a significant 
change occurs, is considered useful and necessary. The survey 
also identified a need for (partial) automation of risk assessment, 
especially in the area of hazard identification. In research, there 
are already methodologies and procedures that simplify the 
identification of hazards, but these are not known or are not 
considered promising by the experts. Further support is needed 
in the area of measuring biomechanical limits. The study 
concluded that the measurements can be reduced with a detailed, 
high-quality and realistic simulation. 

In conclusion, HRC should be employed in areas where the 
benefits of HRC can be optimally exploited. In terms of safety 
and risk assessment, there are a number of shortcomings that 
need to be addressed through research and development in order 
to further advance the technology. 
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Abstract— Current Human-Robot Interaction (HRI) 
evaluation methods deal primarily with multi-criteria target 
systems to identify the optimal possible robot cell. Those 
possibilities are often limited exclusively to either collaborative 
robots (cobots) or industrial ones. A methodological gap exists in 
the comparison of both robot technologies regarding their 
economic advantages. Therefore, we present a planning tool to 
determine the optimal fenceless robot-based machine tending 
system, strongly incorporating financial factors and the 
influence of human presence on the robot's operating speeds. 

I. INTRODUCTION 

The market introduction of the first cobots ignited a huge 
Industry 4.0 hype around this new technology, mainly 
amplified by opening up robotization to small and medium-
sized companies (SMEs) by providing higher usability and 
flexibility [1]. Due to lacking truly collaborative use cases, 
this euphory subsided increasingly over the last years. Most 
applications considered as collaborative were either 
coexistent, cooperative or ended up behind a safety fence [2]. 
This contradiction reveals a methodological gap in 
determining the required HRI technology, especially when 
comparing industrial robots with external safety devices as a 
suitable fenceless alternative. Furthermore, planning 
methodologies for cobot systems are still insufficient and 
cover only selected parts of the planning entities. Despite the 
promises of cobots to guarantee easy implementation and 
commissioning, it turns out that planning such a system 
includes even more parameters of uncertain data than a 
fenced-in robot system [2]. Obstacles can be traced back to 
the requirements that have been defined in ISO/TS 15066, 
especially regarding application-specific force and pressure 
measurements and the respective allowed operating speed in 
collaborative mode [3]. In fact, switching between industrial 
and collaborative speed by applying external safety devices 
enlarges the calculation complexity even more. Hence, the 
traditional generation of industrial robotics and the new 
generation of cobotics clash: while the cobot world claims 
that a cobot is the easiest and most profitable solution, the 
industrial world prefers fenceless industrial robots in many 
cases. Higher operation speeds, increasing usability, and 
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decreasing prices of industrial robots challenge the stated 
benefits. 

 The traditional automation field of machine tending 
utilizes robot technologies for decades, usually focusing on 
high volumes of mainly automotive companies in partially or 
fully fenced in operating areas [4, 5]. Automation optimizes 
CNC manufacturing regarding motions and defects (see Lean 
Management and seven types of waste) [6]. On the one hand, 
robotized movements are faster due to the robot’s operating 
speed and the utilization of double grippers and improve 
ergonomics by unburdening the operator. On the other hand, 
the higher accuracy and consistent workpiece positioning of 
robots eliminate defects occurring from clamping deviations. 
Within the last years, cobot installations increased rapidly in 
machine tending with growing potential to become one of the 
main cobot applications [7]. Especially SMEs face the 
challenge of recruiting CNC professionals due to 
demographic change while managing the needs for flexibility, 
automation, and digitization [8, 9]. Cobots pick up low in-
house experience in automation planning and implementation 
of SMEs with easy programming, plug&play, and online-
based training and configuration. 

 This paper shows how to strategically derive an economic-
oriented calculation scheme for HRI based on the current 
workflow in CNC lathe machine tending. The proposed 
scheme can support the user in identifying the most efficient 
robot solution. It is based on the following four steps: 

1) Deriving a process pipeline for CNC lathe

machine tending from user surveys

2) Choosing the typical use case and defining its

constraints

3) Parametrization of the relevant factors and their

relations to each other

4) Illustrating the relationship between economic

profitability and human-robot-interaction grade.

II. LITERATURE REVIEW

For a comprehensive understanding of the stated problem, the 
implicated disciplinary fields Human-Robot Interaction, 
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Flexible Manufacturing Systems, Machine Tending, and 
Planning Methodologies are outlined in the following.  

For Human-Robot Collaboration (HRC), various 
classification approaches have been developed in research 
within the last years [2, 10–12]. While ISO 10218-1:2012 
defines the term collaborative operation, ISO TS 15066 
differentiates the operation modes (1) Safety rated Monitored 
Stop (SRMS), (2) Hand Guiding (HG), (3) Speed and 
Separation Monitoring (SSM) as well as (4) Power and Force 
Limiting (PFL) [3, 13]. Fenceless production concepts can be 
achieved with both industrial and collaborative robots by 
combining different modes. Industrial robots require an 
additional safety device (i.e., safety scanner) mandatorily to 
switch between modes 1 and 3. Due to their onboard 
technology (i.e., torque sensors), cobots can be operated 
either as standalone (mode 4) or in hybrid mode with external 
safety (mode 3 and 4) [3, 14–16].  

Research in HRC planning implies, among others, the 
main fields task allocation, resource selection and layout 
development, mainly focusing on assembly operations. Task 
division algorithms, based on individual strengths, have been 
described by [17], [18], and [19]. Although these models 
consider various evaluation criteria, economic comparisons of 
different robot system alternatives are not observed. For the 
planning of HRC applications, different methods have been 
developed, such as  [20], [21], and [22]. In [23], the process 
is analyzed and described regarding output and ergonomics. 
A multicriterial pairwise comparison scale evaluates the 
advantageousness of the alternatives manual execution and 
HRC. Another approach is a search method and tool for 
resource selection, layout development, and task assignment 
in the rough planning phase based on economic and technical 
criteria [24]. The planning of human-industrial robot 
cooperation (HIRC) is described in [25] and [26]. In [27], a 
software planning tool has been developed, which utilizes 
digital human modeling and industrial robot simulation for 
evaluation. In [28], multi-criterial evaluation of manual and 
hybrid workstations has been undertaken, mainly focusing on 
the economic figures of each alternative.  

Different approaches to Flexible Manufacturing System 
(FMS) planning and design can be found in [16], [29], and 
[30]. Due to the high automation grade and the predominant 
fence utilization, those concepts lack transferability to 
fenceless manufacturing. Besides customized machine 
tending systems, standard solutions have been developed and 
are offered at the market. Until today, those systems exist 
mainly with a partially fenced-in industrial robot equipped 
with an additional laser scanner. Cobot systems are mostly 
individual solutions and, therefore, not comparable. In [31], a 
cycle timed-based method for layout determination of 
robotized machine cells is presented. A practical planning 
approach for machine tending with collaborative robots can 
be found in [32], utilizing the Return on Investment [ROI] as 
the target figure.  

In the current research, machine tending as a potential 
application field for HRI has not been analyzed in much detail 
yet. Furthermore, most models lack in the comparison of 

multiple robot technologies as well as in considering the 
impact of the hybrid operation on cycle times.  

Sophisticated methods, as well as multi-criteria target 
systems, increase the methodological complexity. A lack of 
simplicity can be noted for rapid resource suitability 
evaluation in the rough planning stage, hindering a broad 
application and acceptance in both research and industry. 

III. METHODOLOGY

A. Process Pipeline for CNC Lathe Machine Tending 
The fundament of process automation forms a solid 

understanding of the manual process. Therefore, existing 
customer projects have been compared to each other, and 
expert interviews with various CNC turning professionals 
have been conducted. As a result, the following process 
pipeline for lathe machine operation has been derived (Fig.1). 

Fig. 1 Process Pipeline for CNC Lathe Machine Tending (own figure) 

As can be seen, the processes are distinguished between 
cognitively challenging and repetitive tasks, which are 
executed either exclusively manually by the operator (M) or 
automated with an industrial (IR) or collaborative (CR) robot. 
While the industrial robot either operates at full speed (FS) or 
stops, the collaborative robot is usually moving in full speed 
(FS) and reduces to collaborative speed (CS), as soon as an 
operator approaches (hybrid mode). Another option is the 
exclusive operation in collaborative mode at the respective 
collaborative speed level (CS). Suitable methods to determine 
the execution times for the alternatives are Methods-Time 
Measurement (MTM) for the manual tasks and offline 
simulation studies for the robotized execution [33, 34]. 
Furthermore, there are lathe machine-based processes (L), 
which are neutral to the execution form. For both automated 
process chains, the manual process “robot program 
adjustment” (P3) is added, including tasks such as reteaching 
points or tool center point (TCP) calibration. 
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B. Use Case Description and Constraints 
Due to the process complexity of milling operations and the 

respective geometrical variety of the workpieces, the research 
object has been narrowed to lathe machines and machining 
centers. According to state-of-the-art, chuck parts are mainly 
handled with robots, which qualifies them as the workpiece 
representative for this research.  

Fig. 2 Exemplary Technical Automation Alternatives (own figure) 

It is assumed that the doors stand open at the beginning and 
are operated by an actuation system. Furthermore, the 
automated process chains include only those manual 
processes that must remain in that execution form to pursue a 
maximum automation level. A collaborative and an industrial 
robot with comparable technical specifications are used as 
technology representatives.  

Please note that the maximum operating speeds of both 
robots differ due to kinematic individualities. Cash-out flow 
relevant factors (i.e., space occupation, maintenance effort, 
energy consumption) are presumed equal. Double grippers 
are assumed to handle raw and machine parts simultaneously 
for cycle time optimization. Based on the illustrated 
protection field configuration, floor-installed safety laser 
scanners with a 275 ° scanning angle enable the robot system 
to switch between operation modes. For this research, only 
full-speed operation (white zone), SRMS (red zone), and PFL 
(green zone) are considered. SSM (yellow zone) is excluded 
to limit this paper's scope and ensure the simplicity of the 
presented calculation scheme. This gap must be closed in 
future research by considering the required distances and 
allowed speeds regarding the robot’s stopping times. Figure 2 
illustrates the three concluded technical alternatives: 1) 
collaborative robot in exclusive PFL operation (CR, PFL), 2) 
collaborative robot in hybrid mode (CR, HM), and 3) 
industrial robot (IR). 

C. Planning Algorithm 

For this paper, the economic feasibility is emphasized 
using the net present value 𝑁𝑃𝑉 [€] as the target figure. In its 
simplified form, it consists of the initial net investment 𝐼0 [€],
the periodical cash-in flows 𝐶𝐼𝐹 [€] and cash-out flows 𝐶𝑂𝐹 
[€], the discount factor 𝑞, the time index 𝑡 [year] and the 
observed time period 𝑇 [years] [35]. 

NPV = −𝐼0 + ∑ (𝐶𝐼𝐹(𝑡) − 𝐶𝑂𝐹(𝑡)) • 𝑞−𝑡𝑇
𝑡=0 (1) 

The values for I0 and CIF show vast differences when 
comparing robot systems, while those for COF can be cut 
down due to the previously defined assumptions. 

△ 𝑁𝑃𝑉 = −𝐼0 + ∑ 𝐶𝐼𝐹(𝑡) • 𝑞−𝑡𝑇
𝑡=0 (2) 

Consequently, only cash-in flow determination is 
emphasized. To evaluate the single alternatives, the process 
times P [h] of each process module p must be identified, 
leading to the following variables: Pp,M, Pp,IR,FS, Pp,CR,FS and 
Pp,CR,CS as well as Pp,L. For better understanding, the 
calculation of the execution time (ET) [h] in the manual state 
is demonstrated first. Therefore, the production order is 
subdivided to single batches 𝐵𝑛, which includes a specific
number of workpieces per batch n: the batch size 𝑆𝑛

[workpieces]. Before a batch can be produced in the loop 
phase (LOOP), the enclosing preparation (PREP) and 
initialization (INIT) phase take place before and after. The 
sum of all three steps delivers the execution time. 

𝐸𝑇𝑃𝑅𝐸𝑃,𝐵𝑛,𝑀 = ∑ 𝑃𝑝,𝑀
2
𝑝=1 (3) 

PFL 

SSM 

FS 

SRMS 

SSM 

FS 

PFL 

CR, PFL

CR, HM

IR
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𝐸𝑇𝐼𝑁𝐼𝑇,𝐵𝑛,𝑀 = 2 ∗ ∑ 𝑃𝑝,𝑀
5
𝑝=4 + 2 ∗ 𝑃6,𝐿 (4) 

𝐸𝑇𝐿𝑂𝑂𝑃,𝐵𝑛,𝑀 = 2 ∗ 𝑃6,𝐿 + 𝑃4,𝑀 + 𝑃7,𝑀 (5) 

𝐸𝑇𝐵𝑛,𝑀 = 𝐸𝑇𝑃𝑅𝐸𝑃,𝐵𝑛,𝑀 + 𝐸𝑇𝐼𝑁𝐼𝑇,𝐵𝑛,𝑀 +

((𝐸𝑇
𝐿𝑂𝑂𝑃,𝐵𝑛,𝑀

+ 𝑃8,𝐿) • 𝑆𝑛)
(6) 

When calculating the execution times for one batch, the 
total number of batches N can be concluded. The available 
annual working time 𝑊 [h] is defined as plain working time, 
while breaks are taken additionally. 

𝑁𝑀 =
𝑊

𝐸𝑇𝐵𝑛,𝑀
, 𝑁𝑀 ∈ ℕ*   (7)

The available rest capacity R is equivalent to the time that 
is left over after subtracting the ETs of all executed lots 𝐸𝑇𝑁. 

𝑅𝑀 = 𝑊 − 𝑁𝑀 • 𝐸𝑇𝐵𝑛,𝑀 (8) 

Within this remaining time (R), a batch share can be 
produced in the loop phase. Therefore, the PREP and INIT 
phases need to be executed first. The leftover capacity can be 
used to manufacture a specific output 𝑂𝑅. As a result, either
no or one batch share 𝑁+ can be produced.

𝑂𝑅,𝑀 =
𝑅𝑀 − (𝐸𝑇𝑃𝑅𝐸𝑃,𝐵𝑛,𝑀 + 𝐸𝑇𝐼𝑁𝐼𝑇,𝐵𝑛,𝑀)

(𝐸𝑇𝐿𝑂𝑂𝑃,𝐵𝑛,𝑀 + 𝑃8,𝐿)

𝑂𝑅,𝑀 ∈ ℕ, → 𝑁+,𝑀 {0; 1}

(9) 

By adding up the batch sizes 𝑆𝑛 of the single batches 𝐵𝑛

with the remaining lot share 𝑂𝑅, the total annual output 𝑂𝐴 is
determined. 

𝑂𝐴,𝑀 = 𝑆𝑛 • 𝑁𝑀 + 𝑂𝑅,𝑀 (10) 

As a calculation base for the labor release grade LRG, the 
manual annual execution time is determined, delivering the 
temporal binding of the operator to the machine. In manual 
operation, this factor is relatively high because all operations 
are executed by hand. Only when the machine is processing, 
the operator is relieved.  

𝐴𝐸𝑇𝑀 = (𝐸𝑇𝑃𝑅𝐸𝑃,𝐵𝑛,𝑀 + 𝐸𝑇𝐼𝑁𝐼𝑇,𝐵𝑛,𝑀) • (𝑁𝑀 +

𝑁+,𝑀) + 𝐸𝑇𝐿𝑂𝑂𝑃,𝐵𝑛,𝑀 • (𝑆𝑛 • 𝑁𝑀 + 𝑂𝑅,𝑀)
(11) 

To calculate the robotized execution times, mixed 
operations at different speed levels must be considered. 
Therefore, the human-robot interaction grade α is introduced 
to cover the time slice, in which the operator stays within the 
robot's working space for potential interaction. For 
simplification, it is assumed that the operator stays either out 
of the robot’s operating space (white area) or within (red or 
green area). Passing through the yellow area and the 
associated speed reduction in terms of SSM are not 
considered. Zone violation events are either planned activities 
(e.g., setup, programming) or unplanned ones (e.g., 

troubleshooting, in-process workpiece measurements). The 
behavior of the human-robot interaction grade and its 
influence on the robot’s performance depends on the used 
technology and assumed consideration period. For cobots, a 
linear interaction-speed relation is noted because the robot is 
gradually decreasing from full to collaborative speed. 
Consequently, the execution times of both modes are set in 
relation to each other for mixed operation calculations. 

𝐸𝑇𝑃𝑅𝐸𝑃,𝐵𝑛,𝐶𝑅 = ∑ 𝑃𝑝,𝐶𝑅
3
𝑝=1 (12) 

𝐸𝑇𝐼𝑁𝐼𝑇,𝐵𝑛,𝐶𝑅,𝛼∗ = 2 ∗ 𝑃6,𝐿 (13) 

𝐸𝑇𝐼𝑁𝐼𝑇,𝐵𝑛,𝐶𝑅,𝛼,𝐹𝑆 = 2 ∗ ∑ 𝑃𝑝,𝐶𝑅,𝐹𝑆
5
𝑝=4 (14) 

𝐸𝑇𝐼𝑁𝐼𝑇,𝐵𝑛,𝐶𝑅,𝛼,𝐶𝑆 = 2 ∗ ∑ 𝑃𝑝,𝐶𝑅,𝐶𝑆
5
𝑝=4 (15) 

𝐸𝑇𝐼𝑁𝐼𝑇,𝐵𝑛,𝐶𝑅 = 𝐸𝑇𝐼𝑁𝐼𝑇,𝐵𝑛,𝐶𝑅,𝛼∗ + 𝐸𝑇𝐼𝑁𝐼𝑇,𝐵𝑛,𝐶𝑅,𝛼,𝐹𝑆 •

(1 − 𝛼) + 𝐸𝑇𝐼𝑁𝐼𝑇,𝐵𝑛,𝐶𝑅,𝛼,𝐶𝑆 • 𝛼
(16) 

𝐸𝑇𝐿𝑂𝑂𝑃,𝐵𝑛,𝐶𝑅,𝛼∗ = 2 ∗ 𝑃6,𝐿 (17) 

𝐸𝑇𝐿𝑂𝑂𝑃,𝐵𝑛,𝐶𝑅,𝛼,𝐹𝑆 = 𝑃4,𝐶𝑅,𝐹𝑆 + 𝑃7,𝐶𝑅,𝐹𝑆 (18) 

𝐸𝑇𝐿𝑂𝑂𝑃,𝐵𝑛,𝐶𝑅,𝛼,𝐶𝑆 = 𝑃4,𝐶𝑅,𝐶𝑆 + 𝑃7,𝐶𝑅,𝐶𝑆 (19) 

𝐸𝑇𝐿𝑂𝑂𝑃,𝐵𝑛,𝐶𝑅 = 𝐸𝑇𝐿𝑂𝑂𝑃,𝐵𝑛,𝐶𝑅,𝛼∗ +

𝐸𝑇𝐿𝑂𝑂𝑃,𝐵𝑛,𝐶𝑅,𝛼,𝐹𝑆 • (1 − 𝛼) + 𝐸𝑇𝐿𝑂𝑂𝑃,𝐵𝑛,𝐶𝑅,𝛼,𝐶𝑆 •

𝛼  
(20) 

𝐸𝑇𝐵𝑛,𝐶𝑅 = 𝐸𝑇𝑃𝑅𝐸𝑃,𝐵𝑛,𝐶𝑅 + 𝐸𝑇𝐼𝑁𝐼𝑇,𝐵𝑛,𝐶𝑅 +

(𝐸𝑇𝐿𝑂𝑂𝑃,𝐵𝑛,𝐶𝑅 + 𝑃8,𝐿)) • 𝑆𝑛 (21) 

𝑁𝐶𝑅 =
𝑊

𝐸𝑇𝐵𝑛,𝐶𝑅

, 𝑁𝐶𝑅 ∈ ℕ* (22) 

𝑅𝐶𝑅 = 𝑊 − 𝑁𝐶𝑅 • 𝐸𝑇𝐵𝑛,𝐶𝑅 (23) 

𝑂𝑅,𝐶𝑅 =
𝑅𝐶𝑅 − (𝐸𝑇𝑃𝑅𝐸𝑃,𝐵𝑛,𝐶𝑅 + 𝐸𝑇𝐼𝑁𝐼𝑇,𝐵𝑛,𝐶𝑅)

(𝐸𝑇𝐿𝑂𝑂𝑃,𝐵𝑛,𝐶𝑅 + 𝑃8,𝐿)

𝑂𝑅,𝐶𝑅 ∈ ℕ → 𝑁+,𝐶𝑅 {0; 1}  

(24) 

𝑂𝐴,𝐶𝑅 = 𝑆𝑛 • 𝑁𝐶𝑅 + 𝑂𝑅,𝐶𝑅 (25) 

To observe cash-flows, the annual output deviation, and the 
labor release grade between the automated and the manual 
execution is utilized. 

△ 𝑂𝐴,𝐶𝑅,𝑀 = 𝑂𝐴,𝐶𝑅 − 𝑂𝐴,𝑀 (26) 

𝐴𝐸𝑇𝐶𝑅 = 𝐸𝑇𝑃𝑅𝐸𝑃,𝐵𝑛,𝐶𝑅 • (𝑁𝐶𝑅 + 𝑁+,𝐶𝑅) (27) 
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𝐿𝑅𝐺𝐶𝑅 = 1 −
𝐴𝐸𝑇𝐶𝑅

𝐴𝐸𝑇𝑀
(28) 

Finally, the overall cash-in flow CIF is calculated by 
multiplying the LRG with the annual labor cost of the 
operator C on the one side and the △ 𝑂𝐴 with the value
creation per workpiece VC on the other. 

𝐶𝐼𝐹(𝑡)
𝐶𝑅

= 𝐿𝑅𝐺𝐶𝑅 • 𝐶 +△ 𝑂𝐴,𝐶𝑅,𝑀 • 𝑉𝐶 (29) 

Then, the CIF and 𝐼0 values for each automation alternative
are inserted into the NPV equation. 

𝑁𝑃𝑉𝐶𝑅 = −𝐼0,𝐶𝑅 + ∑ 𝐶𝐼𝐹𝐶𝑅(𝑡) • 𝑞−𝑡𝑇
𝑡=0 (30) 

For the technical variant “CR, PFL”, the calculations can 
be strongly simplified since the allocation of the α-affected 
ET’s can be neglected. Consequently, the same calculations 
can be used by cutting out the allocations. 

On the other side, industrial robots, stop in the event of 
safety zone penetration. As a counterpart for the execution 
time in 100% full speed, the actual value in a 100% stop 
situation cannot be calculated, hindering time estimation in 
mixed operation. In theory, the order would never be 
completed in the 100% stop scenario and the execution time 
converges to infinity with the expression: 

𝑃𝑝,𝐼𝑅 =
𝑃𝑝,𝐼𝑅,𝐹𝑆

1−𝛼
(31) 

Exemplary calculations verify this exponential behavior. 
With an increasing share of stopping periods, the robot must 
subsequently compensate. Hence, the entire operating time 
(e.g., one year) is assumed, in which stopping events occur 
irregularly and need to be compensated for finishing the 
batch. By considering a short period of time (e.g., one shift) 
with regular stopping times (planned activities), the expected 
waiting times of the next cycle are not included. Instead, the 
execution time results from adding the unproductive time 
slice to the theoretical ideal execution time at full speed: 

𝑃𝑝,𝐼𝑅 = 𝑃𝑝,𝐼𝑅,𝐹𝑆 • (1 + 𝛼) (32) 

However, this calculation is theoretically correct and an 
idealistic assumption that is not transferrable to the 
unpredictable character of production. Therefore, equation 
(31) is used for the following calculations. 

𝐸𝑇𝑃𝑅𝐸𝑃,𝐵𝑛,𝐼𝑅 = ∑ 𝑃𝑝,𝐼𝑅
3
𝑝=1 (33) 

𝐸𝑇𝐼𝑁𝐼𝑇,𝐵𝑛,𝐼𝑅,𝛼∗ = 2 ∗ 𝑃6,𝐿 (34) 

𝐸𝑇𝐼𝑁𝐼𝑇,𝐵𝑛,𝐼𝑅,𝛼,𝐹𝑆 = 2 ∗ ∑ 𝑃𝑝,𝐼𝑅,𝐹𝑆
5
𝑝=4 (35) 

𝐸𝑇𝐼𝑁𝐼𝑇,𝐵𝑛,𝐼𝑅 = 𝐸𝑇𝐼𝑁𝐼𝑇,𝐵𝑛,𝐼𝑅,𝛼∗ +
𝐸𝑇𝐼𝑁𝐼𝑇,𝐵𝑛,𝐼𝑅,𝛼,𝐹𝑆

(1−𝛼)
(36) 

𝐸𝑇𝐿𝑂𝑂𝑃,𝐵𝑛,𝐼𝑅,𝛼∗ = 2 ∗ 𝑃6,𝐿 (37) 

𝐸𝑇𝐿𝑂𝑂𝑃,𝐵𝑛,𝐼𝑅,𝛼,𝐹𝑆 = 𝑃4,𝐼𝑅,𝐹𝑆 + 𝑃7,𝐼𝑅,𝐹𝑆 (38) 

𝐸𝑇𝐿𝑂𝑂𝑃,𝐵𝑛,𝐼𝑅 = 𝐸𝑇𝐿𝑂𝑂𝑃,𝐵𝑛,𝐼𝑅,𝛼∗ +
𝐸𝑇𝐿𝑂𝑂𝑃,𝐵𝑛,𝐼𝑅,𝛼,𝐹𝑆

(1−𝛼)
(39) 

𝐸𝑇𝐵𝑛,𝐼𝑅 = 𝐸𝑇𝑃𝑅𝐸𝑃,𝐵𝑛,𝐼𝑅 + 𝐸𝑇𝐼𝑁𝐼𝑇,𝐵𝑛,𝐼𝑅 +

(𝐸𝑇𝐿𝑂𝑂𝑃,𝐵𝑛,𝐼𝑅 + 𝑃8,𝐿) • 𝑆𝑛  (40) 

𝑁𝐼𝑅 =
𝑊

𝐸𝑇𝐵𝑛,𝐼𝑅

, 𝑁𝐼𝑅 ∈ ℕ* (41) 

𝑅𝐼𝑅 = 𝑊 − 𝑁𝐼𝑅 • 𝐸𝑇𝐵𝑛,𝐼𝑅 (42) 

𝑂𝑅,𝐼𝑅 =
𝑅𝐼𝑅 − (𝐸𝑇𝑃𝑅𝐸𝑃,𝐵𝑛,𝐼𝑅 + 𝐸𝑇𝐼𝑁𝐼𝑇,𝐵𝑛,𝐼𝑅)

(𝐸𝑇𝐿𝑂𝑂𝑃,𝐵𝑛,𝐼𝑅 + 𝑃8,𝐿)

𝑂𝑅,𝐼𝑅 ∈ ℕ → 𝑁+,𝐼𝑅 {0; 1}  

(43) 

𝑂𝐴,𝐼𝑅 = 𝑆𝑛 • 𝑁𝐼𝑅 + 𝑂𝑅,𝐼𝑅 (44) 

△ 𝑂𝐴,𝐼𝑅,𝑀 = 𝑂𝐴,𝐼𝑅 − 𝑂𝐴,𝑀 (45) 

𝐴𝐸𝑇𝐼𝑅 = 𝐸𝑇𝑃𝑅𝐸𝑃,𝐵𝑛,𝐼𝑅 • (𝑁𝐼𝑅 + 𝑁+,𝐼𝑅) (46) 

𝐿𝑅𝐺𝐼𝑅 = 1 −
𝐴𝐸𝑇𝐼𝑅

𝐴𝐸𝑇𝑀
(47) 

𝐶𝐼𝐹(𝑡)
𝐼𝑅

= 𝐿𝑅𝐺𝐼𝑅 • 𝐶 +△ 𝑂𝐴,𝐼𝑅,𝑀 • 𝑉𝐶 (48) 

𝑁𝑃𝑉𝐼𝑅 = −𝐼0,𝐼𝑅 + ∑ 𝐶𝐼𝐹𝐼𝑅(𝑡) • 𝑞−𝑡𝑇
𝑡=0 (49) 

As a result, three net present values can be calculated, one 
for each technical alternative. By comparing these variants to 
each other, the relative advantageousness can be concluded as 
decision assistance. 

𝑁𝑃𝑉𝐼𝑅 >

𝑁𝑃𝑉𝐶𝑅: 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 𝑅𝑜𝑏𝑜𝑡 𝑝𝑟𝑒𝑓𝑒𝑟𝑎𝑏𝑙𝑒
(50) 

𝑁𝑃𝑉𝐼𝑅 <

𝑁𝑃𝑉𝐶𝑅: 𝐶𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑣𝑒 𝑅𝑜𝑏𝑜𝑡 𝑝𝑟𝑒𝑓𝑒𝑟𝑎𝑏𝑙𝑒
(51) 

D. Relationship between Economic Profitability and 
Human-Robot-Interaction Grade 
To illustrate the application of the proposed calculation 

scheme, an example with realistic values is given. The HRI 
grade α is used as the sensitivity target figure, progressing in 
steps of 0,1 from 0 to 0,9. By this, the influence of this factor 
α on the overall decision is illustrated (see Fig. 3). The 
industrial robot (IR) is the preferred solution up to an 
interaction grade of 20 % since this robot has the highest 
velocity and stops occasionally. With increasing interaction 
grade, the IR profitability decreases exponentially because the 
stopping time slices are getting higher, making this alternative 
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increasingly undesirable in dynamic environments. Up to an 
alpha value of 84 %, the NPV is absolutely advantageous 
(NPV > 0). Between 20 % and 50 % interaction grade, the 
collaborative robot in hybrid mode (CR, HM) is relatively 
advantageous because the robot can switch between full- and 
collaborative speed due to external laser scanners. With 
increasing interaction grade, the net present value decreases 
linearly and gets closer to the collaborative robot in exclusive 
PFL operation (CR, PFL) because the operating speeds 
increasingly converge to those in the PFL operation. The CR, 
PFL variant is the dominant solution at an interaction grade 
of 50 % or higher. If the robot operates most of the time at 
collaborative speed, the additional investment of the CR, HM 
is no longer beneficial since the operating speeds between FS 
and PFL operations are very small during the main times. 
Consequently, the decision-maker can make a sound 
investment decision based on the expected interaction grade. 

 Fig. 3 Sensitivity analysis of the HRI grade α (own figure) 

IV. RESULTS AND DISCUSSION

 The results of this paper are intended to help to manage the 
decision complexity in the early automation planning stage. 
With the mathematical model, a substantial discussion base 
about the practicability of collaborative robots has been 
presented to stimulate reconsiderations of the cobot hype 
while simultaneously encouraging traditional automation 
enthusiasts for this new technology. The focus of this work is 
the systematic categorization of the economic structure of 
fenceless robot cells. The financial framework for classic 

automation was adopted to cobots until now, without the 
precise exposure of the cobot-specific factors, such as the HRI 
grade. Particular interest lies in the behavior individualities 
for both robot types regarding their linearity and 
advantageousness, which has also been plausibly illustrated 
in the example. Innovative is the identification of an absolute 
unprofitable zone and the subdivision in different decision 
areas. Therefore, an economically justified assertation about 
the fitness of cobots as a credible automation alternative can 
be made, especially for low-volume production with various 
setups and process interventions. Limitations occur in the 
transferability to other use cases due to the strict application 
characterization. Partial fencing and SSM, as it is usual in 
machine tending, were excluded from consideration leading 
to mismatches with reality. Due to the strong focus on α, the 
decision is highly sensitive to the estimation uncertainties of 
this factor. For counterbalancing, a sensitivity analysis similar 
to figure 3 can assist in defining realistic solution spaces. A 
practical solution for accurate α-value estimation can be 
achieved by tracking the operator behavior in the manual state 
over a relevant period of time. State-of-the-art laser scanners 
provide a data collection interface to create heat maps of the 
violated safety zones. 
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Abstract—Assembly tasks often require high level of 
perception, skill and logical thinking, which is challenging for 
automation. Increased customization and shortening product 
life cycles are further inhibiting automation. Monitoring the 
fluid level in gluing processes in assembly of highly 
individualized products is one of such tasks. To automate the 
task, an AI-based model is proposed in this paper. Target is the 
automation of a gluing process in a final assembly. A 
convolutional neural network is applied to extract features of 
images taken of a gluing process. A support vector machine 
classifier is trained with these features and used to identify the 
level of liquid in bores. A Monte-Carlo-simulation is applied to 
validate the model. Overall, the proposed model achieves 98% 
accuracy in classifying liquid level. Testing the model on a 
technology demonstrator showcases similar results. 

Keywords—liquid detection, convolutional neural network, 
artificial intelligence, assembly automation 

I. INTRODUCTION 

The automation of a pick and place and gluing process in 
a high variance low volume assembly scenario is in focus of 
the authors’ research. In this assembly, parts are inserted into 
carrier workpieces and then bonded with glue. A standard 
volumetric control of the gluing process it not possible due to 
the specific properties of the carrier workpiece and the in 
consequence unknown required glue volume. A model to 
detect the glue in order to start, monitor, and stop the gluing 
process is presented in this paper. Since there are different 
sensing tasks in the overall process which can be covered with 
an optical sensor, an industrial grade fixed lens camera is 
applied. 

A brief overview of related work is given in the next 
chapter followed by the applied methodology, experimental 
setup, results, and conclusion in subsequent chapters. An 
elaborated version of this paper was presented on APMS 
conference 2021 [1]. 

II. RELATED WORK

To detect specific features, objects, parts, etc. in 
manufacturing automation. Existing detection problems are 
solved differently depending on the exact task. In the area of 
glue, liquid, and fluid detection in production environment, 
most solutions are proposed in the context of bottle filling and 
electronics manufacturing [2]–[8]. The majority of reviewed 
publications applies a static edge detection algorithm in order 
to identify the surface or the silhouette of the liquid [2]–[4]. 

Once the boarder of the liquid is detected it is compared to a 
predefined position or threshold in order to measure the width 
of an applied glue line [2] or to determine the upper filling 
level of a bottle [3], [4]. Another method is the image 
segmentation based on colour. In [5] the dark liquid inside the 
monitored bottle is separated from the image background 
solely based on colour values and the contour of the identified 
area is taken to estimate the filling level. A less complex 
algorithm based on changes in histogram is applied in [6] to 
measure the volume of a liquid and a bubble phase in 
translucent cylindric vessels. Key of this method is the 
experimental setup with special light source and background, 
which amplifies the liquid and bubble phase. In [7] the 
authors compare a conventional detection approach to 
identify liquid and bubble phase in bottles via mean filters 
with convolutional neural network (CNN) based approach. 
The classification results are slightly improved with the 
CNN, despite its very simple structure (three layers). To 
detect variation in a dispensed glue drop on a workpiece, the 
authors of [8] selected principal component analysis. Target 
is to identify whether a fault in the dispensing system exists.  

Most of the introduced methods by other researchers 
apply conventional models to identify the surface, silhouette 
or colour of a liquid and compare it against predefined 
thresholds or references. Further they are depending on a 
constant environment with specific settings for each feature 
to be detected. In order to start, monitor, and stop a gluing 
process in a constantly changing production environment, 
e.g., high difference between products, robot mounted
system, more robust and flexible detection algorithms are 
necessary.  

III. METHODOLOGY

 The authors present in this paper an AI-based model for 
the robust detection of fluid in bores in a workpiece as part of 
the automation of an industrial gluing process. The model was 
developed following the in workflow for supervised and 
unsupervised learning [9]. The glue detection problem is 
reduced to a binary problem with the two classes “full” and 
“empty”, i.e., sufficient and insufficient amount of glue. An 
initial data set is generated by taking images and labelling 
these as “full” or “empty”. In order to increase the amount of 
data, the initial data set is augmented according to the method 
of importance sampling [10]. Focus of augmentation are data 
points, which are expected to be more influential as data points 
close to the label change. The data set is split in the subsequent 
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step into training and test set randomly. The model is trained 
on the training set. In the developed model a pre-trained CNN 
is applied to extract image features, which are used for 
classification. Using a pre-trained CNN is usually 
significantly faster and simpler than designing a new network 
[11]. A machine learning algorithm is trained on the extracted 
image features by the CNN and used to classify the test set. 
The achieved performance and accuracy of machine learning 
algorithms is similar to deep learning classifiers by reducing 
complexity and computational effort [12]. In contrast to the 
initial publication [1], the less complex eight layer deep CNN 
AlexNet and a support vector machine (SVM) image classifier 
are applied in the proposed model. 

Fig. 1.     Workflow for supervised and unsupervised learning [9, p. 22] 

To analyse the impact of the randomly selected training 
and test set on the outcome, a Monto-Carlo-Simulation is 
conducted [13]. This cross-validation is conducted, since the 
learned interdependencies by training the model with the 
training set are highly depending on the random drawing of 
the data. 

The model is then utilized in a live gluing process. New 
images are captured during gluing and are classified by the 
developed model. Based on the classification result the gluing 
process is automatically stopped. 

IV. EXPERIMENTAL SET-UP

A. Generation of data sets 
The initial data set is created on a test stand by recording 

manually conducted gluing trials. As depicted in Fig. 2. a), a 
smartphone cradle is mounted on a horizontal aluminium 
profile above the workpiece in order to capture the gluing 
process. Via a fixed nozzle, glue is filled trough an inlet hole 
of the inserted part into the workpiece. The process is 
recorded and the region of interest (ROI), the outlet hole of 
the inserted workpiece, is cropped out of the video frames. 
The resulting images of 41x41x3 pixels are labelled into the 
categories (labels) “full” and “empty” and transformed into 
the required image format of the AlexNet input layer, which 
is 227x227x3 pixels. 605 initial images are obtained via the 
described procedure, which are later used for data set 
optimization. In TABLE I sample images of the two labels 
are given in row “Label”. 

Fig. 2.     a): Designed test stand. b): Demonstrator. Source: [1] 

B. Optimization of data set 
Enough data is required to train the developed model. The 

size of the data set is increased by augmentation of the 
existing data. A selection of created images is rotated and 
mirrored according to the importance sampling method. It is 
expected that images labelled as “empty” but close to the 
label “full” and vice versa have a high impact on the decision 
rule. Thus, these images are augmented. On overview of the 
final data set is given in TABLE I. The total data set size is 
increased from 605 to 3,000 images via augmentation of 
selected images following importance sampling.  

TABLE I.     GENERATED AND OPTIMIZED DATA SET 

Data Frames from videos taken on test stand 

Label

Empty (380 images) Full (225 images) 

Divide into more and less influential 
data for “importance sampling” 

Sublabel 

Clearly 
empty 

Close to 
full 

Sufficiently 
full 

Overfull 

augment augment 

Data set 1830 images 1170images 

C. Validation 
To balance the size of the classes 1170 images are 

randomly selected from the label “empty”. The resulting data 
set is randomly split in the ratio 70:30 into training data and 
test data. The model is trained on the training set. I.e., the 
image features of the images in the test set are extracted by 
the CNN and used to train the SVM image classifier. The 
model is then used to classify the test set. The result of the 
classification is compared to the original label. The whole 
process is repeated 500 times in an MCS. Each epoch has a 
different random selection of the label “empty”, training set, 
and test set.  

After training and testing the model with images created 
on the test stand, the model is applied on a technology 
demonstrator. Here, new images are taken by a fixed lens 
camera mounted on a robot. The camera is held perpendicular 
above the carrier workpiece so that the ROI, i.e., the outlet 
hole, can be monitored. Glue is pumped automatically 
through a nozzle into the inlet hole of the inserted part. The 
scenery is illuminated with a red LED ring light with the 
target to reduce environmental impacts. The whole setup is 
depicted in Fig. 2. b).  

The ROI is cropped out of the red image plane of the taken 
images of the live gluing process and the image patch is 
transformed into the required input size of the CNN. The 
image features are extracted by the CNN and classified by the 
trained SVM image classifier. The gluing process is stopped 
once an image is classified as “full”. The trials are conducted 
in bright and dark environmental conditions. 

V. RESULTS 
With the developed model an overall prediction accuracy 

of >97% is achieved. 500 different, randomly selected 
configurations of the class “empty”, training set, and test set 
are calculated in the cross validation with an MCS. The 
prediction accuracy varies in an interval from 90-99% over 

Robotix-Academy Conference for Industrial Robotics RACIR 2021 at UCB during September 22nd, 2021

26



the 500 simulations (s. Fig. 3). Each wrongly classified image 
is analysed. It is found that these images are directly at 
boarder to the other label. Considering the whole video from 
where the images frames are grabbed, each of the wrongly 
classified images is either the last image, which is labelled as 
“empty” or the fist image of a video, which is labelled as 
“full” (cf. TABLE I). 

Fig. 3.     Results of overall classifier performance with AlexNet feature 
extraction based on MCS  

On a technology demonstrator the proposed model 
achieved similar results during gluing trials, where it is used 
to stop a gluing process based on the classification of the glue 
level. In total 35 gluing trials are conducted on the 
demonstrator using the developed model. In all cases, the 
gluing process was stopped correctly based on the glue level 
classification. The differences of the images used for training 
and the images taken on the demonstrator are significantly 
different. Further, the trials are conducted in a daylight and 
night scenario. A selection of images classified as “full” on 
the demonstrator is given in TABLE II.  

TABLE II.     ”FULL” IMAGES FROM DEMONSTRATOR VALIDATION 

Scenario Sample images 

Daylight scenario 

Night scenario 

VI. CONCLUSION AND FUTURE WORK

 A new model to robustly detect glue level in workpieces 
is proposed in this paper. The authors present a hybrid 
detection model consisting of the pre-trained neural network 
AlexNet and a support vector machine image classifier. The 
convolutional neural network is applied to extract image 
features of images taken with a smartphone camera from a 
gluing process on a designed test stand. After training of the 
image classifier with the extracted image features, the 
classifier is used to classify new images. The classification is 
reduced to a binary classification problem and the generated 
data set is labelled into the two classed “full” and “empty”.  

The overall achieved average accuracy of the proposed 
model in classification of the test set images is >97%. The 
result is cross-validated with a Monte-Carlo-Simulation – 500 
random distributions of training and test set data of the initial 
data set are simulated. The application of the developed 
detection model on a technology demonstrator indicated 
similar results. In all conducted gluing trials on the 
demonstrator, the model stopped the gluing process correctly 
based on glue level classification. The application of the 
detection model in a real gluing process has a huge impact on 

the boundary conditions. Especially the lighting situation and 
the image resolution is significantly different to the initial data 
set, which highlights the robustness of the AI-based detection 
model. In ongoing experiments, the proposed model is 
compared to other approaches from both computer science 
and production perspective. 
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Abstract—With the deployment of Industrial Robots in the
last decades, picking objects from scattered environments has
become inevitable. Human hand-eye coordination allows humans
to recognize and sort different objects. But the engagement is
vastly cumbersome and pestilent as they have to do the identical
task monotonously. For this particular reason, bin picking
tasks have enormous development potential per effectiveness
and efficiency comparing humans. The robot is a potential
candidate to automate the picking process, but it still has
deficiencies in detecting objects in different environments. The
limited deployment of AI algorithms in existing solutions restricts
the integration of automated picking applications. Moreover,
existing solutions require expensive equipment and additional
development time. In this paper, we are portraying a method to
detect objects in heterogeneous environments using a 2D camera
and AI algorithms. Thereby, the position and orientation of the
object are determined. Moreover, the proper gripping pose of
the object is calculated concerning the robot coordinate system.
This method is executed and evaluated in detecting complete
assembled nut-bolts on a plane surface.

Index Terms—Bin Picking, Image Processing, Deep Learning,
CNN, YOLO.

I. INTRODUCTION

Over the last decades, the subject of picking up objects
from specified locations or boxes is a research part in the
field of automation technology. In ordered picking or machine
tending, each of the scenarios needs inspection for picking
objects. Predominantly, this task was perpetually performed
by humans with much efficiency and quality. Human has
extraordinary hand-eye coordination to recognize and pick
up objects without any prior knowledge. But they are error-
prone, and the fatigue or boredom effect can influence their
efficiency. With the industrial revolution, this task seeks for
more productivity along with more momentum of execution.

For instance, picking up objects in an ordered environment in
a typical warehouse burns 50% - 75% of the total operating
cost [4]. Thus, the robotic solution for bin picking became
inevitable. Industrial robots are manoeuvred in the production
and assembly lines to generate high flexibility for the high
level of automation. These robots are freely programmable
and there are some common ways to do this which are more
or less involved in the problem that they are not flexible and
adaptive regarding changes in the environment. The use of
robotic automation means an effective and efficient solution to
the bin picking problem with reduced cost. Notwithstanding,
the necessity of automated bin picking solution is implacable,
robust use of AI-based solutions is still an extensive quest.
Existing research has produced a wide variation and dimension
of the described enigma. These methods are often expensive
and utilized for individual solutions. High costs are thereby
incurred, for example, for equipment such as cameras.
In this paper, we are presenting a solution for detecting objects
and gripping pose estimation in bin picking scenario. Our
approach consists of a camera mounted on the robot flange
equipped with an OnRobot RG2 gripper [13]. With the camera,
we observe the environment straight below the robot flange
to detect the desired object. Beforehand, we modify a pre-
trained model to append our desired object. We can use this
appended pre-trained model for different objects in the future.
Afterward, we utilize the OpenCV [1] [7] contour to figure
out the object area of our intended object and process the best
gripping pose for the object for 2 finger gripper. Eventually,
we have transformed this gripping pose from pixel to robot-
base coordinate system and convey the output to achieve our
bin-picking task. For demonstration, we have implemented the
system with the Kuka KR6 industrial robot.

Robotix-Academy Conference for Industrial Robotics RACIR 2021 at UCB during September 22nd, 2021

28



II. RELATED WORK

Zeng et. al [18] have illustrated a method for grasping
and recognizing both known and unknown objects in a
cluttered environment without requiring any task-specific
training model. Initially, it uses a diagnostic target retrieval
frame to map visual observations to actions that derive dense
pixel probability maps of the possibilities of four different
primitive retrieval actions. It then performs the action at its
highest retention and recognizes the selected objects using
a cross-domain image classification framework that matches
observed images with product images. Since product images
are available for a large number of objects (e.g., from the
web), the system works out-of-the-box for intended objects
without additional data acquisition or retraining. But it has a
complex and expensive setup with four cameras and multiple
fundamental setups. Petersen et. al [14] presented a more
complete scenario focusing on three process decisions of
picking, storing and routing of ordered picking scenario. This
method leans more towards the best routing planning outline
with a specific object in the current time frame. Moreover,
Kraft et al [8] has introduced an approach that is capable of
automatically generating good grips using a dynamic grip
simulator and post-processing methods, along with an offline
learning approach that can adjust grip priorities based on past
performance. Our work is most aligned with Holz et. al [6].
Here authors have proposed a detecting method after picking
up objects in the different unordered piles with compounds
of simple shape and contour primitives. This method can
give proper object grasping planning and afterward detect the
grasped object to sort properly.
Primarily, we focused on detecting objects, and then we attain
the best gripping position to act with and proceed for the
path planning to grip and place our intended object.

III. OBJECT DETECTION

A. Camera Calibration

The aim of camera calibration is to determine the
transformation between the camera unit pixel and a physical
unit of length (e.g., millimeter). The result can then basically
be used to convert pixels of the camera into world coordinates,
and vice versa. One of the most commonly used camera
models to describe a mapping from three-dimensional to
two-dimensional space is the pinhole camera model [see fig 1].

The coordinates of the projection of the point P onto the
image plane in the coordinate system i can be described with
the help of the second intercept theorem from mathematics.
From the length relations between the camera focal length
f and the cZp-coordinate as well as between the iXp -
coordinate and cXp-coordinate respectively iYp-coordinate
and cYp-coordinate follows [7]:

iXp = f ×
cXp

cZp
and iYp = f ×

cYp
cZp

(1)

Fig. 1: Pinhole Camera Mode

With the parameters u0 and v0 first the displacement of the
coordinate system i with respect to the coordinate system B in
the corner of the image plane is described. Furthermore, two
factors sx and sy (unit pixel/mm) are introduced, which define
the pixel density along the respective image axis in relation to
a physical unit of length. The pixel coordinates iup and iup of
the point P result then in accordance with the equations (1):iup

ivp
1

 =

fx 0 u0
0 fy v0
0 0 1


︸ ︷︷ ︸

camera matrix

·


cXp
cZp
cYp
cZp

1

 (2)

with fx = sx × f and fy = sy × f
CPp

CPp
cYp
cZp

1

 =

fx 0 u0
0 fy v0
0 0 1

−1

·

Bup
Bvp
1

 =

ab
1

 (3)

The identification of the parameters listed here can be done
using the Python library OpenCV and a chessboard pattern.
Using several images of the chessboard pattern from different
poses, the camera matrix can be calculated. In addition to this,
the transformation between camera coordinate system C and
chessboard coordinate system CB is obtained as a result of
the calibration.


cXp
cYp
cZp

1

 =


d11 d12 d13 tx
d21 d22 d23 ty
d31 d32 d33 tz
0 0 0 1

 ·


CBXp
CBYp
0
1

 (4)

B. Camera-Flange calibration

In order to make the data from the camera calibration
described above available for the robot, the camera must be
calibrated with respect to the robot flange. For this purpose, a
method developed at ZeMA [11] [12] is used. The prerequisite
for this calculation is a camera calibration that has already
been carried out with the camera mounted on the flange.
The extrinsic parameters, i.e., the transformation from the
chessboard coordinate system CB to the camera coordinate
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system C, are used for different positions and orientations of
the camera above a stationary checkerboard pattern. Matching
the camera position over the chessboard pattern, the respective
poses of the robot flange with respect to the robot base
coordinate system B have to be acquired. With this data, a
system of equations of the form AX = XB can be set up,
where X represents the transformation matrix F Tc that must
be identified.

C. Introduction to AI

Artificial Intelligence (AI) leverages computer systems and
machines to imitate the problem-fixing and decision-making
abilities of the human mind. Machine Learning (ML) is a
branch of AI where the use and development of computer
systems that are able to learn and adapt without following
explicit instructions, by using algorithms and statistical models
to analyze and draw inferences from patterns in data. Deep
learning is a subset of machine learning, which is essentially a
neural network multiple layer. These neural networks attempt
to simulate the behavior of the human brain (but far from
matching human brain’s ability) allowing it to “learn” from
large amounts of data.

D. Convolutional Neural Network[CNN]

One of the most popular Deep Neural Networks for object
detection is the Convolutional Neural Network (CNN) [9].
It takes this name from the mathematical linear operation
between matrices called convolution. CNN’s efficiency lies
in decreasing the Artificial Neural Network Parameters and
its ability to handle a huge amount of data. Depending on
this reasoning, researchers have used it in various spheres
like Computer Vision, Natural Language Processing, Pattern
Recognition, and other instances. First, we will go through the
base of CNN [2].

1) Convolution Layer: In the case of Image processing,
usually, we get color images with height × width × color
shape. For instance, fig. 2 has 4 × 4 × 1 image as input
examples. But in real-life scenarios images can be enormous.
For instance, with an 8k image, the size can be 7680×4320×3.
Hence, reducing these huge sizes is essential. The convolu-
tional layer reduces the images into a form that is easier to
process, without losing features that are critical for getting
a good prediction. In the beginning, the hidden neurons1 of
the next layer only get inputs from the corresponding part
of the previous layer (output of the previous layer) rather
than the full connectivity where the connection is extremely
high. Another simplification way is to keep weight constant
throughout all neurons which makes sure that the next layer
connection remains smooth. By doing this, a lot of weight
update is controlled. With these two assumptions, it provides
an opportunity to detect and recognize features regardless
of their positions in the image. These weights are given
as matrices to find specific features from the image. These

1The word “hidden” implies that they are not visible to the external systems
and are “private” to the neural network.

Fig. 2: Convolution Layer

matrices are also called a filter because they act like the
classic filters in the image processing. However, these filters
are initialized in the CNN, followed by the training procedure
shape filters, which are more suitable for the given task.
These filters strides through the whole image. Controlling
these strides can decrease the parameters more and more, and
at the same time reduce some of the side effects. Usually,
filters move through the image grid with one jump at a time.
This is known as Stride. The assumption is that the successive
layer’s node overlaps with their neighbors by gazing at the
regions. Stride manipulates this overlapping condition. If we
provide a stride of two, the filter will jump two grid lines as a
stride which will reduce the size. If we have an image N ×N
and F × F filter, then the output O would be:

O =
2 +N − F

S
(5)

Where N = input size, F = filter size and S = stride. But
convolution has a drawback. As the filter moves forward with
strides, it gives more emphasis on the middle parts of an image
than in the corner. But corners can have important information
which we are giving less emphasis. We can use 0 padding to
recoup this situation. 0 Padding means adding an extra row and
column of the outside of an image to get through the corners
more. But adding an extra part will decrease the reduction size
of the image but it captures more information about the image
[see fig. 2]. With 0 padding the output would be:

O =
1 +N + 2P–F

S
(6)

Where P is padding.

2) Pooling Layer: The pooling layer is responsible for
reducing the spatial size of the convolved feature. It reduces
the computing power required to process the data by reducing
the dimensions to effectively train the model. There are two
types of pooling. Max pooling and Average pooling. Max
Pooling returns the maximum value of the portion of the
image covered by the kernel. Average Pooling, on the other
hand, returns the average of all the values of the part of the
image covered by the kernel. Max Pooling also acts as a noise
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Fig. 3: Max Pooling

canceller. Completely discard noisy triggers and perform noise
suppression along with dimensionality reduction [see fig. 3].

3) Fully Connected Layer: Fully Connected Layers form
the last few layers in the network are just like feed forward
network of ANN (see fig 4). In feed-forward network, every
point is counted as feature. By verifying series of epochs,
the model can differentiate between predominating and low-
level features in images and classify applying the Softmax
Classification technique.

softmax(x)i =
exp(xi)∑
j exp(xj))

(7)

The flattened output is fed to a feed-forward neural network
and backpropagation applied to every iteration of training for
validation for object detection decision. Output of pooling is
flattened into a column vector so that we can feed it to feed-
forward network. Each input, g(Wx + b) is calculated for
each of the hidden layer neuron (g = activation function, x
= input, W = weight, b = bias). The weights are essentially
reflecting how important an input is. Positive weights increase
the output while negative decreases the output. The bias is used
to shift the result of activation function towards the positive
or negative side. Usually ReLU is used for the activation
function, which is ReLU(z) = max(0, z). There can be
n-number of hidden layers depending on the accuracy we
need and computational power we have. For each neuron of
the hidden layer, the weighted sum of inputs and weights is
Y = x1w1 + x2w2 + .......+ xnwn + b. After passing through
all the hidden layer with same calculation, each class will get
a predicted value using softmax function from each of the
neuron. Then each output’s error is calculated.

Error = actual value− predicted value (8)

The goal is to minimize this error for same class and
increase for different classes, this error minimization is done
by Stochastic gradient descent which is derivative of loss in
respect to weight.

wnew = wold − η
n∑

i=1

∇ loss (w) (9)

Where, η = learning rate
step size . Higher the η, more it learns.

But with higher η, there is risk of over fitting and lower η

Fig. 4: Fully Connected Layers

gives underfitting. So, we need provide a moderate learning
rate. Each weight is updated to minimize the error for same
class and increase for different classes. Thus, each class
gets a value of training. While detection, same procedure
is followed to decide the new object class which has least
error with respect to class values. Fig 5 represents full CNN
structure.

4) YOLO: The abbreviation YOLO [15] [17] stands for
the expression ‘You Only Look Once’. It is an algorithm
to detects and recognizes objects in images or video feeds.
YOLO considers object detection as a regression problem
and renders the class probabilities of the detected images.
YOLO is based on CNN. It requires only a single forward
propagation through CNN to detect objects. It yields that
prediction in the entire image is done in a single algorithm
run. CNN permits to prediction of different class probabilities
and bounding boxes simultaneously. In this section, we will
describe the YOLO in general. We have implemented YOLO
version 3 over the YOLO version 2 which is described in
section IV.

YOLO is crucial due to the fact of:
• Speed: This algorithm improves the rate of detection due

to the fact it can predict the object in real-time.
• High Accuracy: YOLO is a predictive method that gives

correct outcomes with minimum background errors.
• Learning Capability: It has amazing insight-gaining

abilities that allow it to analyze the representations of
objects and employ them in object detection.

YOLO works in 3 steps [17]:

• Residual blocks: In the beginning, an image is divided
into S×S grids (see fig 6). In the grid, there are numerous
grid cells of identical dimensions. Every grid unit will
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Fig. 5: Convolutional Neural Network[CNN]

locate items that seem inside of it. For instance, if an
item middle seems inside a sure grid unit, then this unit
could be liable for detecting it.

• Bounding box regression: A bounding box is an outline to
highlight an object in an image. Each bounding box have
width (bw), height (bh) and class (e.g. person, car, traffic
light, etc.) where c = Classes and box center (bx,by) [see
fig 7]. The yellow outline is the bounding box. YOLO
algorithm utilizes a single bounding box regression to
predict the height, width, center, and class.

• Intersection Over Union (IOU): IOU is the description of
how the boxes overlap. YOLO employs IOU to render a
yield box that encircles the objects ideally. Each grid unit
is accountable for divining the bounding boxes and their
confidence scores. The IOU is equal to 1 if the predicted

Fig. 6: Residual Blocks

bounding box is the same as the real box. This mechanism
eliminates bounding boxes that are not equal to the real
box. In fig 8, there are two bounding boxes, the blue box
which is the predicted box while the green box is the
real box. YOLO ensures that the two bounding boxes are
equal.

IV. EXPERIMENT

To validate the concept, we implemented the object detec-
tion for demonstrative use case with bolts, nuts and washers.
They are randomly placed on a flat surface with black back-
ground in the workspace of the used Kuka Kr6 robot (see fig.
9). A two finger gripper (OnRobot RG2 gripper [13]) and a
3d camera (Intel Realsense D435) are attached to the robot
flange. The target is to detect and grip these objects and drop
them at a predefined place.

A. Model Training

For the experiment, we have captured 365 photos of our
object assembled nuts, unassembled nuts, bolts, and washers.
Each picture can have multiple items from upper mentioned.
We have used LabelImg [10] to label our images into two

Fig. 7: Bounding Box
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Fig. 8: Intersection Over Union (IOU)

classes. All properly assembled nuts, bolts and washers to-
gether are assigned to the ”Assembled” class and all that are
not properly connected are assigned as ”Not assembled”. Thus,
we have around 700+ labels. Moreover, we also changed the
shape of the images (rotate, flip, but do not resize) and were
able to create some additional images.

For model training and object detection we have imple-
mented YOLOv3 [16]. In comparison, YOLOv2 [19] has
darknet-19 which is a custom deep architecture of a 19-layer
network extended with 11 layers. YOLOv2 often grapples
to detect diminutive objects because it downsampled the
input which attribute to the loss of the fine-grained features.
YOLOv2 uses identity mapping, concatenating feature maps
from a previous layer to capture low-level features to coup
up with the difficulty. However, YOLOv2’s architecture has
obstacles like no residual blocks, no skip connections and no

Fig. 9: System Setup

Fig. 10: Detected Objects

upsampling. YOLOv3 solves these obstacles. YOLOv3 has 53-
layer network trained on Imagenet [5]. For detection, YOLOv3
has 53 layers stacked up. Overall YOLOv3 has 106 layers of
convolutional architecture. But v3 is slower than v2 as it boasts
of residual skip connections, and upsampling. The standout
feature of v3 is that it makes detections at three different
scales. YOLO is a fully convolutional network, and its eventual
output is generated by applying a 1×1 kernel on a feature map.
2. In YOLOv3, 1 x 1 detection kernels are applied on feature
maps of three different sizes at three different places in the
network. The shape of the detection kernel is 1 × 1 × (B ×
(5 + C)). Here B is the number of bounding boxes a cell on
the feature map can predict and C is the number of classes.
YOLOv3 trained on COCO dataset as pre-trained model.

After detecting the object [Figure 10], we crop the detected
part from the video feed which is “assembled” and apply
the OpenCV contour function to find the object area. It is
important to know that we are only interested in detected
object and we need to find out a proper gripping point for
the object to grip and change it’s location. Applying OpenCV
contour appears with it’s challenges because before applying
contour, we are required to crop the detected image and
transformed it into a grayscale image. In this grayscale image,
we solicit contour detection to get the definitive (only) object
area. But grayscale transformation depends distinctly on the
proper lighting condition. Thus, contour is variable with the
lighting setup. With the contour from the object, we can
perceive the contour center which is the center of the density
of the contour. But we discovered that the contour center is not
a gripping position as the assembled object has more density
towards its nut-bolt connection position which is not up to
the mark for gripping. So, we adopted the highest distanced
points from the contour center point to create reference points
distanced from the contour center point to produce a straight
line using these reference points. Meanwhile, this straight line
served to shift the center point along towards the bottom of
the assembled object, so the gripper gets a proper gripping

2Feature map is finding edges for each smallest grid where currently the
filter is going through.
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Fig. 11: Calculated gripping point (blue) for the assembled object. Upper left
[red] is contour center and also one of the reference point and down right
[red] point is another reference point which is adopted the highest distanced
points from the contour center point.

point [Figure 11].

B. Path Planning

To finally pick up the assembled screws the gripping point
P , identified in the image (see fig. 11), has to be transferred
to the robot. Furthermore, the gripping position has to be
extended by an orientation. The transformation from image
coordinates system i to the robot base coordinate system
B can be accomplished using the parameters of the camera
calibration and the camera flange calibration. In the first step,
converting the gripping position from pixel coordinates to the
camera coordinate system C is calculated with aid of the
equations (3) and (4). Merging the two equations yields the
following system of equations from which the CZp-value for
the sought pixel can be extracted.

CBXp
CBYp
CZp

 =

−d11 −d12 a
−d21 −d22 b
−d31 −d32 1

−1

·

txty
tz

 (10)

Substitution of CZp into equation e1 then also provides
the corresponding CXp and CYp coordinates of the gripping
point regarding the camera coordinate system C. For the
following calculation these coordinates are extended with a
one to homogeneous coordinates of the form

Crp =

[
Crp
1

]
= (CXp,

C Yp,
C Zp, 1)

T (11)

The now missing transformation to the base coordinate
system B can be expressed as a chain of transformations
consisting of the transformation matrix F TC from camera
coordinate system C to the flange coordinate system F and
the transformation matrix BTF derived from the flange pose
during image acquisition.

Brp =

(
Brp
1

)
=B TF ·F TC ·

(
Crp
1

)
(12)

In this equation Brp describes the displacement vector of
the gripping point P regarding the robot base coordinate
system B. For a suitable orientation to gripping position the

Fig. 12: Object Gripping.

estimation is done, that an alignment of the gripper parallel
to the normal vector of the table meets the requirements of
the gripping process. This normal vector is obtained from
the chessboard coordinate system CB. A second axis to
determine the orientation is then given by the straight line,
calculated to shift the gripping point towards the bottom of
the screw (section IV.A). Two points Pl1 and Pl2 on this
straight line inserted into equation (9) provide the position of
the straight line regarding the chessboard coordinate system.
The orientation of the screw with respect to the chessboard
coordinate system can now be described as a simple rotation
around the z-axis of CB. The angle of rotation is given by

α = atan
( yl2−yl1

xl2−xl1

)
(13)

The resulting rotation matrix is then:

CBDp =

cosα − sinα 0
sinα cosα 0
0 0 1

 (14)

The final orientation of the screw with respect to the base co-
ordinate system can be composed of several rotation matrices
similar to the position transformation.

BDp =B DF ·F DC ·C DCB ·CB Dp (15)

Where BDF and F DC can be extracted from the transfor-
mation matrices BTF and F TC . Furthermore, CDS originates
from the transformation matrix CTCB , which was calculated
in equation (4) during camera calibration. Finally the ro-
tation matrix BDp has to be expressed in the Roll-Pitch-
Yaw convention [3], to provide 6D pose vector of the form
wp = (xp, yp, zp, ap.bp, cp)

T to the robot. Here aP , bP and
cP describe the three euler angles. An example of the gripping
pose that occurs can be seen in fig. 12.

V. EVALUATION

With the specified training method and parameters, we have
achieved more than 90% accuracy for the object detection
on our specified class of “Assembled” and “Not Assembled”.
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Moreover, for the contour detection we have obtained exceed-
ingly satisfactory results. Nevertheless, finding the contour
could be influenced by changing lighting conditions. For
industrial implementation this stipulation should be taken
into account. Another issue is the contour detection with
different background colors. This is why we installed a black
background to generate a high contrast to the objects. After
acquiring an acceptable gripping position described in section
IV.B, we transformed the gripping position in the robot base
coordinate system. In this transformation, we have around 4-
6mm accuracy error depending on the camera calibration and
camera-flange calibration error. This is sufficient for our evalu-
ation process of gripping the “assembled” bolts. Furthermore,
our use case does not contain high requirements for the drop
off position, thus minor errors don’t influence our outcome.

VI. DISCUSSION & FUTURE WORK

As we described in evaluation, we have achieved satisfac-
tory results. For instance, we were able to minimize the cost
with a less expensive camera. Our object detection is also
quite economical. But as we are using contour, we required
to set the object background black to differentiate between
our object (which is bright) and background. To solve this
problem, one future approach could be better training of our
model with OpenCV Rectangle function as we can manipulate
the image cropped from the video feed. Towards the bin
picking, the objection detection should also be able to handle
stacked bolts or more general stacked objects. Moreover,
the localization is performed in a 2D scenario and thereby
restricted to pre-calibrated planes. Our future work will look
towards the use of a 3D camera to solve the upper mentioned
problem. Coordinate transformation will then be possible for
any position and orientation of the objects. Another focus
point could be the improvement of the calibration errors and
therefore make it feasible to implement for higher precision
applications.
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Abstract— In this paper, we propose to robotize wire and cable 
stripping using an external position/force control developed on the 
ABB IRB14000 robot called "YuMi". This command aims at 
controlling the external force applied on the robot and 
consequently the one applied on the wire to be stripped, which 
allows both to improve the robot behavior and to robotize an 
application currently not robotized. The first results of robotic 
stripping are presented. 

Keywords— Robot control, External position/force control, 
Robotic stripping, YuMi  

I. INTRODUCTION 

The stripping of electrical cables is a widespread process in 
the world and its importance extends to many areas. It is used 
for example in the industrial world, in the home for the 
connection of electrical installations, and in crimping for the 
preparation of cables. The concept of stripping is similar to that 
of degaussing in some areas where cables are stripped to 
recover the copper conductors. Degaussing can also be 
considered as the stripping of cables with a cross-sectional area 
greater than 16 mm2 [1].  This technique was introduced during 
the second industrial revolution, which began in 1870. Indeed, 
the use of electricity in industrial production will make men 
rush to invent electrical machines [2]. Thus, from then on, in 
order to make the connections between machines, operators 
would need to strip the electrical cables. 

Stripping an electrical cable means removing the protective 
layer called "insulation" from the conductive layer over a 
certain length of cable. It also exposes the core of the cable.  
Over time and with a growing market, the demand for 
innovative stripping techniques has continued to increase [3]. 
A number of companies have specialized in this process, 
offering ever more innovative techniques. A large number of 
patents support this. Nowadays, there are many special tools 
and machines created as a result of the various industrial 
revolutions. 

A. What are the properties of the stripping process? 

Stripping techniques and tools have continued to develop 
and evolve over the years, to the point where there are now a 
large number of them. To strip an electrical wire, a certain 
number of parameters must be taken into account for the 
stripping to be done correctly. According to the NF EN 2812 
standard [4], stripping is correctly performed when: 

 The insulation or shielding does not show any signs of
deterioration that could cause short circuits in electrical
installations

 The conductive core does not show any cracks or
alterations that could cause the wire to break and cause
an electric shock

 The original performance of the wire or cable as defined
in the technical specifications is not reduced after the
stripping operation.

In addition, this standard also identifies defects that may 
appear after the stripping operation [4] [5]. These defects 
include:  

 A lack of torsion and discarding of the core
 Marks on the insulation (nick, burn, visible wire, etc.)
 Residual insulation
 Cut wires or strands
 Surface contamination (burnt insulation, glue residue,

dust, etc.)

B. Stripping concepts and techniques 

To strip an electrical cable, several techniques can be 
distinguished. Four main stripping methods are presented in the 
NF EN 2812 standard. They are based on mechanical tools 
made according to different and varied technologies. For this 
purpose, there are: 
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 Manual stripping: this practice is performed with a scalpel,
razor blade or any other sharp object (cutting pliers,
scissors, etc.). This practice is most often used when users
do not have the proper tools to perform the stripping. This
leads in the vast majority of cases to numerous stripping
defects and for applications such as aeronautics; the use of
manual cable stripping is prohibited when another
stripping process can be used.

 Mechanical stripping: This method of stripping is the most
common and most used by professionals to strip individual
wires. It includes many tools of different strengths adapted
to given cable sections. The special feature of these tools is
their simplicity, which makes them ideal for use in a wide
range of applications.

 Thermal stripping: it encompasses all devices powered by
a voltage and composed of two parts: a voltage generator
to control the temperature and a manual part consisting of
two wires with clamps at their end. The two wires are
powered by a current and heated to a temperature between
0° and 99°. The stripping is then done by pressing the
clamps on the cable. The advantage of this device is that it
does not require very strong pressure on the electrical
cable. On the other hand, its design remains complex.

 Laser stripping: Laser is a process used by professionals
for its precision, repeatability and robustness [6]. It is also
used for applications where the presence of the slightest
defect on the conductive core is not acceptable and when
the external geometry of the cable to be stripped is
incompatible with a mechanical process.

Mechanical stripping is the most widespread 
technique in the industrial world today. In the context of 
the project, it is the easiest to adapt. Moreover, in terms of 
cost, it is the one with the least financial requirements. We 
have therefore chosen in our project the mechanical 
stripping technologies for their feasibility and ease of 
implementation on the YuMi robot (Fig. 1) and also to 
allow us to validate the external control law we seek to 
apply on the robot. 

Fig. 1 Robot IRB14000 from ABB (in LCFC lab) 

The first part of this paper presents a state of the art on 
wire stripping, its properties and existing methods on the 
market to strip a wire. In the second part, we briefly present 
the control law developed on the robot to robotize the wire 
stripping application. In the third part, we present the 
technique adopted for this purpose. In the fourth part, we 
exploit the experiments carried out to test and validate this 
stripping. Finally, in the last part, the results obtained and 
the perspectives of this study are discussed. 

II. CONTROL LAW

The external control of the position/force is 
implemented by using the dynamic model of the robot 
without using external sensors. This consists in organizing 
beforehand the force control loop on the position control 
loop and not in organizing these two loops simultaneously 
like the classical hybrid control [8]. Fig. 2 shows the 
schematic diagram for a single arm of YuMi. 

Fig. 2  Proposed control principle for a single YuMi arm 
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The desired external forces Fd and the calculated 
forces Fcal applied to the robot end effector are used to 
calculate a position deviation X and then added to the 
desired position set point Xd to form the new position set 
point X transmitted to the robot. Thanks to this, a constant 
desired force is imposed and then, with the selection matrix 
S, a diagonal matrix composed of 1 or 0 is chosen, the 
directions to be controlled in force; if this one is equal to 1, 
the servo-control of this direction is carried out. The 
position variation ΔX resulting from the difference (Fd - 
Fcal) is obtained from a force control law LCF to be defined 
according to the task to be performed and the desired 
results. Indeed, contrary to the hybrid control, the force 
constraints do not act directly on the joint torque of the 
actuators but on the operational position of the robot. A 
great advantage of this control is that it can be applied to 
relatively "closed" controller architectures, as in the case 
of our YuMi robot, which already has its own position 
controller and which is not suitable for implementing 
another position control either. 

This allows us to take advantage of the robot controller 
as well as the new external control. The complexity of this 
law can thus be particularly high depending on the 
identified dynamic model of the robot; see our detailed 
work on this part in reference [9]. It also depends on the 
filtering of the data and the frequency of the measurements, 
i.e. the real-time communication with the robot; also refer 
to our detailed work on this topic in reference [10]. 

III. STRIPPING TECHNIQUE ADOPTED

In order to strip an electrical wire, it is necessary to 
perform an adequate technique beforehand in order to respect 
certain constraints. For example, it is important not to damage 
the conductive core, which could then break during handling 
and cause defects, and not to damage the protective sheath on 
the remaining length of the cable to avoid causing short circuits. 
This being the case, the stripping is spread over several steps 
[7], namely: 

 Step 1: Setting the gauge, this is the first step of the
stripping operation, which consists in adapting the tool or
the machine to the wire to be stripped. The important
characteristic to take into account here is most often the
wire section.

 Step 2: Wire clamping, this step is relatively simple as it
consists of placing the wire between the clamps of the
stripping tool. During this step, it is also important to
ensure that the clamping force does not damage the
protective cover

 Step 3: Application of force to segment the insulation,
this is an important step, as it is here that all parameters
must be taken into account. The space left between the
tool's clamps must be sufficient and precise so that the
cut does not damage the conductive core. In addition, the

segmentation obtained must be sufficient to facilitate the 
removal of the insulation in the next step.  

 Step 4: Removal of the protective sheath is the last step
of the stripping operation, which consists in removing the
insulation from a given portion of wire. Automatic
stripping tools and industrial machines allow to remove
the insulation on the concerned part directly after the
segmentation in a single action. For manual tools, it must
be done by pulling on the wire or by separating the wire
from its sheath (stripping).

Fig. 3  Proposed CAD model of the clamp with identical V-shaped blades V 

As part of our project, we have designed a tooling for the 
YuMi robot to strip electrical cables using a suitable technology 
that takes into account the constraints encountered in the 
execution of the stripping by the robot and that respects the 
required technical specifications.  It consists of a pair of pliers 
with identical V-shaped blades (Fig. 3), a solution inspired by 
the classic stripping pliers that have V-shaped jaws and a locking 
screw to adjust the section of the cable to be cut. 

A groove is made in each finger of the YuMi to 
accommodate the base of each blade. This groove has a radius 
r = 0.8mm which is twice the minimum value imposed by 3D 
printing. A smooth hole is also drilled in each finger and in each 
blade. A FHC M3 x8 screw and a M3 nut ensure the holding in 
position. This type of screw was preferred for space reasons 
because this screw can be completely embedded in the blade 
without causing problems to the overall design. 

On each finger, roundings of r ≥ 0.4 mm have been created 
on all the ribs in order to support the forces. An M3 x20 knurled 
screw and an M3 knurled nut can also be seen on one finger 
while on the other, an extension was created in order to reduce 
the length of the knurled screw used and to comply with the 
standards for knurled screws. The hole created, which rests on a 
vertex of the finger for stability and bearing surface, has a thread 
of pitch p = 0.25 mm and diameter d = 2.5 mm. The knurled 
locking system is explained here by the choice of manual 
adjustment, which has been taken into account. 
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The blades are made by folding a sheet of characteristics  
L × l × e = 25 × 20 × 2 mm. A chamfer was created on the base 
of the blade to facilitate its retention in position in the finger 
groove. A 120° chamfered notch was also made in the blade to 
create the cutting portion. The two blades were designed to be 
mounted back to back. With this in mind, chamfers of length 
1 mm × 60° were added on the ends of the blades to provide a 
backlash free overlap of the blades and their adjustment into a 
self-contained position. This backlash-free overlap is useful 
because it enhances the cutting operation of the blades. Fig. 4 
shows the proposed solution mounted on the robot. 

Fig. 4 Proposed clamp mounted on the robot 

IV. EXPERIMENTATION

Before presenting the first results of stripping with the 
control law, it is worth mentioning that we tried, with the same 
experiments, to strip wire only with the robot control. This 
means with a simple RAPID program that commands the robot 
to go from one position to another holding the cable between the 
clamps, but it turned out that the robot was not able to strip and 
it stopped because it considered itself to be in collision and, 
therefore, it deactivates the motors and displays the message 
"Motion Monitoring". In addition, we also noted that the robot 
was able to sustain much more than the external force on its 
arms, up to 40 N in a single direction, which confirms that the 
performance of a robot can be significantly improved by adding 
additional controls. 

We now turn to the first results obtained during the stripping 
process. These results are based on an experiment carried out 
with a 1 mm diameter wire that we stripped with the right arm 
of the robot and a clamping tool that allows to hold the wire 
without any risk of slipping. Contrary to what happens when we 
use the other arm since we have not yet developed a tool that 
allows to hold the wire and to strip it well.  Moreover, by 
changing each time the clamping force and the traction force 
controlled by the control law developed on the robot. We 
considered for these tests the same length to strip of 5 mm. 

In the first result, we applied a maximum clamping force 
achievable by the robot of 20 N and commanded the robot to 30 

N for the pulling force. It can be seen in Fig. 5 that the robot 
reached the desired force i.e. 30 N, and experimentally we found 
that the segmentation step was done at 15 s and the sheath 
removal takes place 3 s right after which explains the decrease 
in force from 15 s. 

On the other hand, in the second case, we reduced the pulling 
force to 23N and the clamping force to 18 N because we noticed 
that the stripping could be done with less force and Fig. 6 proves 
it because the stripping is clearly better done than in the previous 
example.  For Fig. 7 and Fig. 8, we have therefore maintained 
the same clamping forces and we have modified the tensile force 
to know its influence on the stripping. With a force of 35 N, the 
robot could not reach the force and it stripped before with a force 
of 30 N and for segmentation it needed a force between 15 N 
and 17 N to finalize the stripping operation. 

In the last test, we decreased both forces. The stripping was 
perfectly performed with 20 N and 8 N of segmentation and 
clamping respectively, Fig. 9 shows the results. In this test, the 
stripping is performed in one-step with less force to be applied. 

Fig. 5  Stripping results with 20 N clamping force and 30 N controlled force 

Fig. 6   Stripping results with 18 N clamping force and 25 N controlled force 
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Fig. 7 Stripping results with clamping force 15 N and controlled force 35 N 

Fig. 8 Stripping results with 15 N clamping force and 25 N controlled force 

Fig. 9 Stripping results with 8 N clamping force and 20 N controlled force 

Fig. 10 Stripping steps with YuMi 

V. CONCLUSION 

The first results of robotic stripping with external 
position/force control with the robot confirm the 
applicability of robotic stripping and its steps are presented 
in Fig. 10; we have a defect-free stripped electrical cable 
respecting all the properties of manual stripping. These 
results also allow us to see that it is necessary to know in 
advance the force pattern to be applied for a specific length 
and diameter of the cable. We propose and take into 
consideration as a perspective of this work the 
identification of a force model from the experimental 
results allowing to know in advance the two forces to be 
applied on a cable to achieve a successful stripping 
respecting all the defined standards. 
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Abstract—A Cable-Driven Parallel Robot (CDPR) uses wires 
instead of rigid links to move the end-effector of the mechanism. 
It has the advantages of a simple model, large workspace and low 
price, and has gained the attention of many researchers in recent 
years. Additionally, with the increase in labor costs, it has become 
a trend to replace manual labor with automation technology. 
Various robots have been widely used in manufacturing industry, 
service industry, and medical industry. Therefore, the 
combination of parallel robots and visual inspection technology 
has become an exciting development trend. This article is 
dedicated to the evaluation of the feasibility of using camera and 
Aruco markers for position feedback on a 4 cable-driven parallel 
robot.  

Keywords—Cable-Driven Parallel Robot, Vision, Depth Camera, 
Aruco. 

I. INTRODUCTION 

Cable-driven parallel robot (CDPR) have been studied by an 
increasing number of researchers as an important type of 
mechanism. CDPRs have the advantages of simple design, large 
working area and low price. In recent years, they have been 
increasingly used in lifting, machining, port cargo handling, 
shipbuilding, subsea exploration, debris removal, etc. The study 
of the CDPR end-effectors is an important indicator of the 
motion state of the mechanism and provides a baseline for 
simplifying the mechanism and diagnosing faults. Its detection 
accuracy is an important aspect of measuring the structural 
performance of the mechanism and it is necessary to ensure that 
the end effector achieves the intended state of motion. Therefore, 
the study of the detection of the final trajectory of the CDPR is 
of great importance [1]. 

This article is dedicated to evaluation of the feasibility of 
using camera and Aruco for position feedback on a 4 cable-
driven parallel robot.  

A CDPR is composed of four basic components. A platform 
or end-effector, which is positioned within a workspace to fulfill 
a specific task, cables to control and move the platform, winches 
which change the cable length, and a frame upon which these 
cables are fixed (Figure 1) [2]. 

To position the robot, an Intel® RealSense™ Depth Camera 
D435 and an Aruco are used. The depth camera is fixed to the 
ceiling and the Aruco is pasted to the center of the platform (The 
end effector of the robot.). It can measure the relative pose of the 
platform by identifying the Aruco. The camera is connected to 
the PC and sends the measurement data to the PC. The 
experimental setup is shown in Figure 2. The operational flow 
of the system is shown in Figure 3. 
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II. POSITIONING PLATFORM

The depth technology used in the camera is active 
stereoscopic projection. An active stereo display is a projector 
that projects an image, one moment projecting the signal seen 
by the left imager and the next moment projecting the signal 
seen by the right imager. At the moment when the signal is 
projected to the left imager, a control signal is sent from the 
workstation to control the left imager of the active stereoscope 
so that it opens, when the right imager is closed; conversely, 
when the image is projected to the right imager, the left imager 
is closed. At the same time, the independent IR projector on the 
camera sends a synchronisation message to the imagers. 

The Aruco is used to determine the position and pose of 
the robot with respect to the camera in real-time. The Aruco 
tag was originally developed by S. Garrido-Jurado et al.in 
2014 [3]. The Aruco library is a two-dimensional code tag 
library [4], which can be used for image recognition, graph 
localization and three-

dimensional problem solving. The frame and four corners are 
mainly used for tag positioning The Hamming internal code [5] 
is mainly used for identity recognition, information validation 

and error correction. The detection of the Aruco code consists of 
two main parts: one part is the detection of the four corners of 
the Aruco code and the second part is the detection of the 
identification of the 2D code representing the numbers. Figure 6 
illustrates the process of detecting Aruco codes.  

As the Aruco ID is unique, the depth camera is programmed 
to recognize the code to detect the platform's position in real 

time. This method is much faster than monitoring by other 
sensors. 

III. CAMERA PRECISION

The precision of the camera needs to be measured before the 
end-effector’s precision can be improved. Precision 
measurement experiments with Intel® RealSense™ Depth 
Camera D435 were carried out on a serial robot IRB1200.  

Figure 2: Measurement systems in the laboratory 

Figure 3: System flow chart 

Figure 6: The process of detecting Aruco codes[6] 
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The depth camera measures six parameters, three 
translational parameters x, y, z and three rotational parameters 
RV1, RV2, RV3.  

A. Stability of the camera 
The first step is to measure the stability of the camera. Each 

path consists of multiple poses and each pose is measured three 
times to obtain the standard deviation of the three data. The 
stability of the camera when measuring the path is then obtained 
by calculating the average of the standard deviations of the poses 
on each path. A total of six paths are measured: translation along 
the x-axis, y-axis and z-axis, and rotation along the x-axis, y-
axis and z-axis. 

X(m) Y(m) Z(m) RV1 RV2 RV3 
Trans-X 0.0002 0.0002 0.0006 0.3140 0.0048 0.0302 

Trans-Y 0.0000 0.0000 0.0002 0.1146 0.0018 0.0077 

Trans-Z 0.0000 0.0000 0.0001 0.1664 0.0026 0.0117 

Rotation-
X 

0.0001 0.0001 0.0005 0.4361 0.0089 0.0549 

Rotation-
Y 

0.0000 0.0000 0.0002 0.0015 0.0007 0.0033 

Rotation-
Z 

0.0000 0.0001 0.0003 0.1627 0.0370 0.0271 

Table 1: Result of the stability 
As can be seen from Table 1, the mean standard deviation of 

the translation parameters for all paths is less than 0.001m. This 
means that the camera is very stable in measuring the translation 
vectors. 

Whereas for the rotation vector, the rotation vector RV1 has 
a large error, for the other two vectors, it is less than 0.01. 

When the camera is measured multiple times in the same 
pose, the translation parameters are almost constant, while the 
measured rotation vectors have a large error. 

B. Translation and Rotation along x-axis, y-axis and z-axis 
The motion of an object in space has six degrees of freedom, 

they are: translation along the x-axis, y-axis and z-axis, and 
rotation along the x-axis, y-axis and z-axis. In order to measure 
the precision of the camera in each degree of freedom, this 
experiment uses the control variable method: each path moves 
along only one degree of freedom. Since there is an error 
between the camera's measured pose and the initial input pose, 
this experiment yielded both the error in percentage with 
𝑐𝑎𝑚𝑒𝑟𝑎−𝑅𝑜𝑏𝑜𝑡

𝑅𝑜𝑏𝑜𝑡
 and the difference between the two 

with|𝐶𝑎𝑚𝑒𝑟𝑎 − 𝑅𝑜𝑏𝑜𝑡| for error analysis. The results of the 
experiment are shown in Table 2. 

Trajectory Result 

Translation X An error in 
average 38% and 
in average 0.05m 
for a depth 5cm 
of ±0.3m is 
obtained. 

Translation Y An error in 
average 17% and 
in average 
0.0152m for a 
depth 5cm of 
±0.18m is 
obtained. 

Translation Z An error in 
average 6% and 
in average 
0.0208m for a 
depth 5cm of 
0.15m-0.65m is 
obtained. 

Rotation X An error in 
average 2% and 
in average 
3.4816 deg for an 
angle of -25deg 
to 25deg is 
obtained. 

Rotation Y An error in 
average 58% and 
in average 
6.9487 deg for an 
angle of -30deg 
to 15deg is 
obtained. 

Rotation Z An error in 
average 6% and 
in average 
2.1444 deg for an 
angle of -15deg 
to 35deg is 
obtained. 

Table 2: Result of the experiment 
In conclusion, the precision of the camera for  translation 

along the X-axis is smaller than the other two with an error of 
0.0515m between the input position and the real position, and 
the precision along the Y-axis and Z-axis are with an error of 
0.0152m and 0.0208m between the input position and the real 
position.  

Figure 7: Experimental flow chart 
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And the precision of the camera along Y-axis rotation is 
smaller than the other two with an error of 6.9487deg between 
the input angle and the actual angle, and the precision along the 
X-axis and Z-axis are with an error of 3.4816deg and 2.1444deg 
between the input position and the actual position. 

IV. TRANSLATION ALONG Z-AXIS ON THE CABLE-DRIVEN 
PARALLEL ROBOT 

After the camera precision measurements, the vertical 
translation along the Z-axis of the CDPR was studied and the 
transfer function was calculated. This experiment had three 
variables: different speeds of movement, different distances of 
movement and the presence or absence of buffer times. After a 
total of eight sets of experiments, the dataset with the best 
experimental results (buffer time = 5s, movement distance = 
15cm and movement speed = 0.05m/s) was chosen to calculate 
the transfer function. Figure 8 shows the platform movement for 
the test. During the movement of the platform, the depth camera 
feeds the measured relative poses (Z_camera) to the computer 
and the robot also calculates the real-time poses (Z_rebuilt) of 
the platform from the cable length detected by the sensors and 
feeds it to the computer.  

Using MATLAB, here are the 2 transfer functions and the 
respective figures. In the figure 9, the three curves are: the height 

of the platform entered by the program over time (Z input), the 
height of the platform measured by the camera over time (Z 
camera) and the trajectory of the platform obtained by the 
calculated transfer function (Output model).  

The transfer function between the input and output of camera 
is:

𝑍𝑐𝑎𝑚𝑒𝑟𝑎(𝑠)

𝑍𝑖𝑛𝑝𝑢𝑡(𝑠)
=

12.62

𝑠2+9.933∗𝑠+11.92
(1) 

 With Static Gain: K = 12.62/11.92 = 1.0587 ; Natural 
frequency :𝑤0 = √11.92 = 3.45 𝑟𝑎𝑑/𝑠 ; Damping: 𝜉 = 0.5 ∗
3.45 ∗ 9.933/11.92 = 1.4374. 

In the figure 10, the three curves are: the height of the 
platform entered by the program over time (Z input), the height 
of the platform measured by the sensors over time (Z rebuilt) 
and the trajectory of the platform obtained by the calculated 
transfer function (Output model).  

The transfer function between the input and output of sensor 
is:

𝑍𝑟𝑒𝑏𝑢𝑖𝑙𝑡(𝑠)

𝑍𝑖𝑛𝑝𝑢𝑡(𝑠)
=

6.433

𝑠2+4.199∗𝑠+6.155
(2) 

With Static Gain: K =  6.433/6.155 = 1.0452 ; Natural 
frequency: 𝑤0 = √6.155 = 2.48 𝑟𝑎𝑑/𝑠 ; Damping: 𝜉 = 0.5 ∗
2.48 ∗ 4.199/6.155 = 0.8459. 

V. CONCLUSION 
Both, the camera measurements and sensor calculations can 

be used to obtain a curve that approximates the input trajectory. 
The advantage of the camera is that it is more responsive and 
less subjected to external influences, as the cable's elasticity 
causes the wire winding to be slightly dependent to force and 
affects the sensor's calculations. The advantage of the sensor 
calculation is the greater detection range. The combination of 
the two can be used to improve the accuracy of monitoring to a 
greater extent.  
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Abstract—The generation of electricity through renewable 
energies is an important component of the German electricity mix. 
Photovoltaic and solar power systems have an important position 
among these green energies. Due to the exposed location of these 
systems to weather and environmental conditions, large efficiency 
losses can occur due to surface impurities. Even though cleaning 
solar plants can make sense from the point of view of increasing 
efficiency, this is not always the case from an economic point of view. 
In particular, small or difficult-to-access plants have a disadvantage 
here due to the high manpower requirements. So far, no mobile and 
autonomously acting systems can be found on the market. Either 
they have to be mounted on the plant or be controlled by operators. 
In addition, these robots must always be supplied with energy and 
operating materials via a pipeline.  This problem was addressed here. 
The result of this work is a prototype of an autonomous cleaning 
robot that is independent of supply lines. 

Keywords—autonomous Robot, solar, photovoltaic, cleaning 

I. INTRODUCTION

The generation of green energy is an important factor in 
today's power generation.  Solar and photovoltaic plants play a 
leading role in the process. The percentage of these plants, 
together with wind energy, bioenergy and hydropower, in 
German electricity generation is 50.6% [1]. Photovoltaic (PV) 
installations alone accounted for 10.5% of the German 
electricity mix, according to data from the transmission system 
operators. This share corresponds roughly to 51.4 TWh of 
electrical energy [1]. 

Photovoltaic systems are mostly found as rooftop systems or 
as large solar farms on open spaces. In Germany, around 90% of 
all PV systems are roof systems with a nominal output of up to 
30 kWp (kilowatt peak). In 2020, for example, they generated a 
total output of 18.4 GWp [1]. A kilowatt peak is the unit of 
maximum output of solar modules. One kWp can generate about 
1000 kWh of electricity per year, which requires about seven to 
ten square metres of solar surface [2]. 

Solar installations are exposed to external weather 
conditions all throughout the year, which is why dirt appears 
after a certain period of time. This can consist of dust, moss or 
bird droppings, for an example, and can lead to the performance 
being impaired [3]. 

A 2018 research study by Milk the Sun GmbH showed that 
solar installations with a tilt angle below 35° are particularly 
sensitive to soiling and that the effects of regular cleaning are 
the most significant [4]. Depending on the location of the PV 
systems, efficiency losses can vary. A measurement of a solar 
surface at the edge of a forest, for example, showed a loss in 
efficiency of up to 17% due to soiling by dust and moss [5]. The 
feed-in tariff for photovoltaic systems in April 2021 was 5.36 
cents/kWh for systems up to 750 kWp [6]. For a PV system with 
an output of 500 kWp, which is a solar surface of about 5000 
m², the average kWh production is about 500,000 kWh or 500 
MWh per year. This would result in a feed-in tariff of 26,800 €. 
With an efficiency loss of 17%, the energy production would 
only be 415 MWh, i.e. a feed-in tariff of 22,244 € and a loss of 
4556 €. Regular cleaning is therefore very important. 

However, cleaning the solar surfaces is very difficult. Due to 
the fact that the PV systems are mostly found on roofs, there is 
an increased risk of injury from falling. The size of the surfaces 
and the slippery surface also make cleaning complicated. 
Incorrect cleaning can also damage the surface [7]. 

So far, the cleaning can only be carried out manually, which 
is often very expensive. Depending on the accessibility of the 
system, average costs of approximately 1.00 to 2.50 euros per 
m², additionally travel costs, are charged for photovoltaic 
cleaning. The photovoltaic cleaning prices are made up of the 
size of the system, the type and severity of the soiling, the access 
to the system and the technology used for cleaning [8]. 

Another reason why the conventional methods are limited is 
that the cleaning industry has a very high staffing requirement 
and therefore a shortage of skilled workers, which is why 
cutbacks make sense [9].  
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Possible solutions are autonomous robotic systems for 
cleaning PV and solar plants. Regular cleaning can prevent 
heavy soiling and therefore significantly reduce efficiency 
losses. 

Due to the autonomous operation, no complex cleaning 
measures by external service providers are necessary. In 
addition, the robot system with an optimised concept enables 
more efficient, water-saving and thus more economical 
cleaning.  

The automatic cleaning systems already available on the 
market can be divided into two categories. The first category are 
autonomous systems that use rainwater for cleaning, but are 
stationary, i.e. mounted on the PV system [10]. The second 
category are remote-controlled robots, which are placed on the 
PV system [11, 12]. In this case, at least one person is always 
necessary to control the robot and guide the supply cables along 
the system. These robots usually require an external power and 
water supply. Depending on the model and cleaning principle, 
demineralised water is used here [11]. Depending on the type of 
movement, an additional pneumatic supply is required [11]. The 
movement on the PV systems, i.e. an angled and slippery 
surface, is a problem that has already been solved, which many 
manufacturers and suppliers demonstrate with different 
solutions. Rubber tracks [13] or pneumatically operated types of 
movement are used for this purpose, for example [11, 12]. 

Partially automated systems, in contrast, are only used for 
large solar farms. Systems that work hand-operated are also 
used. Water (sometimes with detergent) is fed from a supply line 
and the modules are then cleaned with sponges or brushes. This 
type of cleaning is very resource-intensive, as cleaning is often 
done with a lot of water [11]. 

II. CHALLENGES

A. Structure of a solar module
The materials used inside a solar module make it very

sensitive. Therefore, PV systems require a certain cleaning. 

Fig. 1: Structure of a solar cell [14] 

Solar modules consist of several layers. Figure 1 shows that 
the upper layer is usually tempered glass. Underneath, there is 
an anti-reflective film, metal and silicon, which convert the sun's 
radiation into usable energy [14]. On the one hand, the tempered 
glass serves as a protective layer, but it should also ensure that 
the solar radiation can be transmitted reliably. Depending on the 
manufacturer of the solar modules, other transparent materials 

can also be used as top layers. However, the material of the top 
layer is sensitive and requires special cleaning. Chemical 
cleaning products are usually not permitted, according to the 
manufacturers. Water and gentle brushes are recommended for 
cleaning so that the surface is neither damaged nor attacked by 
harsh cleaning products [15]. 

Several solar modules are lined up on roof surfaces or solar 
farms. They are attached by using frames, which are mounted 
on a base construction. There are gaps between the individual 
modules, which vary in size depending on the manufacturer. 
This is illustrated in Figure 2. 

Fig. 2:  Gap between the solar modules [1] 

This fact plays a major role in the implementation of the path 
planning and the design of the sensors. The robot must be able 
to overcome the gaps as well as recognise that it is only a gap 
and not an outer edge. 

B. Requirements for an autonomous robot system
The robot system must be able to navigate and move

autonomously on the roof. The key is to build a suitable sensor 
system that can reliably detect the outer edges and distinguish 
them from the gaps between the solar panels. Reliable detection 
of the edges is made more difficult by the weather conditions 
and the smooth surface. No other obstacles are expected on the 
PV surface besides the outer edges. PV systems that have a 
distance of less than 5 cm to skylights, chimneys, antennas or 
other obstacles are not considered by the presented solution. 
The problem of robot control and path planning is considered to 
be minor, as corresponding applications are already available on 
the market in the field of service robots. Vacuum cleaning robots 
that can recognise steps are a good example.  

The robot system has several weight-limiting factors, such 
as the maximum payload of the module and the worker. A safe 
snow load of 5400 Pascal per module is given by manufacturers 
[16]. With a module size of 1.64 m², this corresponds to a total 
load of 8856 N, which is equivalent to up to 903 kg with 
appropriate distribution on the solar panel [16]. Transporting the 
robotic system to the PV plant can take place under non-
ergonomic conditions. The following options are considered 
here: 

• Putting down at the ground level up to 1.80 m without
any aids
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• Putting down from a lifting platform onto the roof
surface

• Putting down from a skylight onto the PV system

• Putting down from a ladder onto the roof surface

According to German labour law, a regular load may weigh 
a maximum of 10 kg, for pregnant persons only 5 kg [17]. 

The robot needs its own power supply, which shall be 
provided by a rechargeable battery. This is necessary because 
with a wired power supply, the cable would have to be guided 
by a worker or at least checked so that it does not get tangled. 
This would make autonomous operation impossible. 

Water is needed for cleaning, but the robot will clean without 
a water supply. Only rainwater, which rains off before, during 
and after driving, is used.  

Some robot solutions for PV systems use demineralised 
water. The reason for this is that, in contrast to water containing 
minerals, no lime stains can occur when drying. However, this 
danger only exists in direct sunlight or if the water evaporates in 
a short time [7]. If the cleaning process takes place during a 
rainfall, demineralised water is therefore not required. This is 
also demonstrated by the "SolarProtec" cleaning system from 
Osborn International GmbH [10]. Water volumes of more than 
12 l/min are recommended for cleaning [18]. Even with a small 
area that would be cleaned within one minute, this would mean 
that the water to be transported would already require a load of 
about 12 kg. A robot of this size would no longer comply with 
the above-mentioned weight restrictions.  

The robot must have a waterproof housing. This must keep 
out two types of water: Firstly, splashing water from the wet 
panels and the track drive, and rainwater. The housing must 
contain the battery, the on-board electronics and the electric 
motors. The sensors must also be installed waterproof, but 
outside the central housing. Special attention must be paid to the 
transitions between the electric motors and their shafts, as well 
as the cables leaving the housing. The housing must also have a 
removable lid, which must be closed watertight. The lid is 
needed to reach the battery and the on-board electronics. 

III. ROBOT CONSTRUCTION

A. Cleaning concept development
Based on the previous conditions for cleaning solar

installations, an optimized cleaning concept was developed with 
which the autonomous robot system can clean PV installations. 
For the tests, different cleaning tools were used and tested on 
glass surfaces. The cleaning tools used are shown in Figure 3. 

The glass surfaces showed a medium degree of soiling. They 
were then cleaned with normal tap water using different cleaning 
tools. The cleaning was carried out in wiping and rotating 
movements. The result was that rough dirt, such as bird 
droppings, should be loosened first. The easiest way to do this 
was with a combination of water and a silicone sponge (5).  

Loose dirt, such as dust and pollen, could be removed with 
all tools in combination with water. When it came to drying, 
however, there were big differences between the cleaning 
methods. The common household sponge (2) did not pick up the 

dirt, but spread it over the surface, which is why there were 
strong streaks. Other sponge structures, such as the bottle brush 
(4) and the microfibre cloth (3), also did not leave a clean result.
The microfibre cover (1), on the other hand, cleaned the surface
sufficiently and absorbed the dirt completely. Due to the
structure of the cover, the wet glass surface was polished
afterwards and no water residues or streaks were left.

Fig. 3: used cleaning tools 

The final cleaning concept has now been put together from 
a combination of the tools. The dirt is loosened with the help of 
rotating silicone sponges. The loosened dirt is then picked up by 
a microfibre cover and the glass surface is polished with it. 
Figure 4 shows the cleaned glass surface. 

Fig. 4: dirty vs. cleaned glass surface 

B. Description of the robot construction
The main components of the robot are mostly made of 3D

printed parts. Manufacturing by 3D printing has the advantage 
that the components are light, cheap as well as quick and easy to 
produce. Figure 5 shows the CAD model of the developed robot. 
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Fig. 5: CAD-model of the cleaning robot 

At the front end of the robot are two sensor arms (1) in which 
the sensors for navigation are integrated. 

The cleaning mechanisms are also located at the front and 
back of the robot. At the front end there are two rotating silicone 
sponges (2) that can loosen the rough dirt. At the rear end there 
is a rotating mechanism with a microfibre cover (5). In this way, 
the surface is polished and the dirt is picked up.  

The housing (3) should also be waterproof, which is why all 
unprotected openings are shielded from moisture caused by 
rainwater with a rubber membrane or sealing compound.  

To ensure reliable traction and movement on the slippery 
solar modules, there are several possibilities. Since the robot is 
supposed to move autonomously, drives for which an additional 
supply line would be necessary are excluded. This is the case, 
for example, with vacuum feet or pneumatic nubs. A reliable 
possibility is a chain wheel drive with rubber tracks (4). These 
are already present in other systems on the market and can 
negotiate a slope of up to 30° without any problems, even on wet 
surfaces [19]. 

Inside the housing there are various electronic components. 
On the right and left, there is a DC motor to drive the chain wheel 
drive. These motors are controlled by a motor control unit. A 
program on a microcontroller defines when and in which way 
the motors are controlled in order to let the robot move on the 
desired path. The cleaning mechanisms are each driven by a DC 
motor. With the help of bevel gears, the momentums are 
transmitted to the corresponding shafts. 

IV. SENSORS AND PATH PLANNING

A. Placement of the sensors

Fig. 6: Sensor placement on robot 

Fig. 7: Sensor placement over solar modules 

The outer edges of the solar modules play a major role in 
path planning. There are four sensors on the front of the robot, 
two on the left and two on the right (see figure 6). Using the 
circuit diagram in Table 1, the robot drives left, right, straight 
ahead or turns. Their signal is switched binary between 1 or 0 
depending on whether the PV system is detected below them or 
not.  The sensors measure the distance between the sensor and 
the ground. The distance between the sensor and the PV module 
is defined by the height of the mounts, which is 7 cm (see Figure 
7). If the distance is 10 cm or more, it is a gap between two solar 
modules or an outer edge of the modules; then the sensor value 
is switched to 0, otherwise it is 1 (Figure 7). If both sensors on 
one side are set to 0, the robot will move in the opposite 
direction, as there must be an outer edge there. If all 4 sensors 
are set to 0, the robot turns because it has reached the end of a 
path. If it switches individual sensors to 0 in between, this is a 
gap, as these are 1-3 cm apart, depending on the design [20].  

The direction of travel, or deviations from it, are measured 
with an acceleration sensor. The "Joy-it MPU 6050" was used 
here [21]. With the help of this sensor, deviations are detected 
and counterbalanced when driving straight ahead. Furthermore, 
the sensor is used to detect how far the robot has rotated during 
the turning manoeuvre. 

The ultrasonic sensors used cover the required measuring 
range with a measuring distance of 2 cm to 4 m [22]. During the 
measurement, the condition and moisture of the surface have no 
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significant influence on the measurement result. This is 
important because both the moisture of the solar system and the 
roof covering can differ and they can also be made of different 
materials.  

TABLE I. SENSOR SIGNAL SCHEDULE 

Direction of travel based on sensor signal 

Driving direction DEC FL BL FR BR 

Forward 15 1 1 1 1 

Forward 14 1 1 1 0 

Forward 13 1 1 0 1 

Rotation left 12 1 1 0 0 

Forward 11 1 0 1 1 

Forward 10 1 0 1 0 

Forward 9 1 0 0 1 

Rotation left 8 1 0 0 0 

Forward 7 1 1 1 1 

Forward 6 0 1 1 0 

Forward 5 0 1 0 1 

Rotation left 4 0 1 0 0 

Rotation right 3 0 0 1 1 

Rotation right 2 0 0 1 0 

Rotation right 1 0 0 0 1 

Turnaround 0 0 0 0 0 

The microcontroller "Elegoo Mega2560" was used to 
process the sensor signals in order to control the electric motors 
of the drive and cleaning system [23]. The "Saberthooth Dual" 
motor driver was connected between the drives and the 
microcontroller [24]. The "AZDelivery L293D" motor driver 
was installed between the microcontroller and the cleaning 
system [25]. 

B. Description of the path planning

Fig. 8: Path development 

Figure 8 shows the path that the robot follows in six steps. 

Step 1: The robot is placed on the PV system and moves 
forward. When putting it down, it must be ensured that it reaches 
the upper edge of the roof.  

Step 2: The robot reaches the upper edge. This is detected 
because two sensors on one side now switch to 0. 

Step 3: The robot aligns its position and orientation parallel 
to the upper edge.  

Step 4: The robot starts the cleaning unit and drives to the 
end of the roof.  

Step 5: Once it reaches the end of the roof, it turns backwards 
and returns to the first track.  

Step 6: The robot now drives along the tracks. It moves 
horizontally from one side of the plant to the other. Each lane is 
offset by 15 cm, so that each lane is offset by half. This 
guarantees that all dirt is removed with both the brushes and the 
microfibre cloth. The effective cleaning width per lane is 
therefore 15 cm.   

The dirt on the system is loosened from the top down and 
can be rinsed off by the rain. 

V. RESULTS

The completed prototype of the robot is shown in Figure 9. 

Fig. 9: Robot prototype 

Simplifications were made for the construction of the 
prototype, as the focus was on testing the sensor technology and 
path planning as well as the cleaning system. The energy supply 
was provided by cable, which means that no battery was needed 
during the tests and the required energy demand of the system 
could be measured. It must be considered that the weight of the 
battery will lead to an increase in the total energy requirements. 

The robot has a total weight (without battery) of 2.25 kg, 
which corresponds to 22.1 N. The tracks have a contact area of 
about 0.02 m². Thus, the robot applies a pressure of 1103.06 Pa. 
This is less than the specified 5400 Pa of a solar module [16]. In 
this calculation, the contact surface of the cleaning system was 
not taken into account, as there is almost no load there. 

The robot has a cleaning speed of 0.5 m/s. The exact cleaning 
time for a PV system could not be tested experimentally, so the 
time for cleaning a roof can only be estimated. The following 
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formula can be used to calculate the time required to clean a 
roof. 

𝑇𝐶 = 𝑇𝑆 + 𝑁 ∗ (2 𝑇𝑇 + 𝑉𝑅 ∗ 𝐿) (1) 

Tc is the overall cleaning time 
Ts is the starting time until the first rotation 
N are the number of lanes, which is calculated below 
L is the length of the roof 
VR is the speed of the robot 

𝑁 =
𝐵𝑅

𝐵𝑒𝑓𝑓
(2) 

Beff is the effective cleaning width per lane 
BR is the width of the PV system 

For a large private PV system of 60 m², the robot needs about 
630 seconds, or 10.5 minutes [26]. The calculation was based on 
the assumption that the PV system is rectangular and has a width 
of 6 m and a length of 10 m. The robot was put down at the 
bottom right corner so that it first had to drive 15 m to the top 
right edge, which takes 30 seconds travel time. For one turn, 5 
seconds were needed. 

A battery of 500g would already cover the energy demand 
for 2 hours and 12 minutes. An average battery has an energy 
density of 200 Wh/kg [27]. The robot requires a measured power 
of 45.3 W at an operating voltage of 12 V. For the 
microcontroller, the voltage must be regulated to 5 V. 

VI. CONCLUSION

Within the paper, a new cleaning system was developed in 
combination with an autonomously driving robot. For this 
concept and the result, new applications in the cleaning of PV 
and solar plants are considered conceivable and possible. 

In addition to the already mentioned possibilities to bring the 
robot to elevated positions, such as roofs, transport with a drone 
would also be conceivable. This would offer further advantages 
for the PV system cleaning business model.  The advantage 
could be that the robot could be brought to the roof with little 
time effort. There, the drone would drop the robot off and pick 
it up after cleaning. This extension is a complicated task, but 
would revolutionise the entire concept and could make the 
cleaning market for hard-to-reach and relatively small PV 
modules attainable.  

Another possibility as an alternative to cleaning during 
rainfall would be the external supply of water with the help of 
heavy-duty drones. This would make the robot autonomous, but 
still ensure a reliable water supply. 
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Abstract—Within the InStent project, project partners are 
working on a solution to automate the quality assurance process 
and thus increase process efficiency, as well as minimize the risk 
of an undetected defect. Therefore, an automated optical 
inspection is to take place by means of a robot. In this context, 
problems with the handling of the stents, the image acquisition and 
the classification of the images have to be solved. [1] 

To inspect the stents for cuts, one of the possible defect classes, 
the application of Convolutional Neural Networks will be 
investigated. Conventional image processing methods, such as 
corner detection and various point operators, are used to 
preprocess the images to achieve the best possible result in 
classification. The chosen inductive learning approach assumes 
the existence of training data. Following this, a dataset of 932 
images is generated. The results from the test data set show that 
the method promises sufficient accuracy to be used in production 
as an assistance system in quality assurance. However, in order to 
achieve this, it is still necessary to extend the training data set and, 
if required, to adjust the sensitivity of the test procedure. 

Keywords—Convolutional Neural Network, InStent, Vascular 
Stent, Cut Detection, Image Classification, Image Preprocessing, 
Transmitted Lighting 

I. INTRODUCTION 
According to the German Society of Angiology, vascular 

disease is one of the most common diseases. A common method 
of treating vascular disease is the usually minimally invasive 
insertion of a vascular stent. Stents are medical implants that are 
inserted into narrowed vessels to widen them and thus ensure 
continued normal blood flow. 

In addition to the already high demands on product quality 
within the medical technology industry, errors in production 
pose a serious risk to patients. These special quality expectations 
require the highest standards of quality assurance methods on 
the part of the manufacturer. At the same time, in a high-wage 
country like Germany, production costs play an essential role in 
order to be competitive on the international market. Manual 
inspection of the stents is a time-consuming but also tiring task 
for the employees. Even partial automation of the inspection 
process would have the potential to not only significantly 
improve the effort required and the associated costs, but also the 

quality of work. This is to be achieved by a robot-guided optical 
inspection system in which image acquisition and evaluation are 
automated. 

For the evaluation of the acquired images, conventional 
methods and modern approaches from the field of computer 
vision are available. Since both the geometries of the individual 
stent types and their defects can vary greatly, inspection using 
only conventional methods of image processing proves to be 
difficult, but the application of these methods is not ruled out. 
Using conventional methods, it has already been possible to 
detect braiding defects on stents [2]. As a counterpart, artificial 
intelligence methods, on the other hand, have already proven to 
be powerful in similar tasks in other fields (cf. with case study 
on the classification of defects in solar cells) [3]. This suggests 
that such methods may also be suitable for stent inspection. 
Since these AI methods are less demanding in terms of image 
acquisition compared to conventional methods, they could 
represent a simpler and more flexibly applicable solution option. 
Therefore, it is investigated how machine learning methods, 
supported by classical image processing methods, can be applied 
to combine the advantages of both disciplines and thus ensure 
reliable quality assurance. 

II. STATE OF THE ART IMAGE CLASSIFICATION WITH METHODS
OF MACHINE LEARNING

Machine learning training algorithms usually fall into the 
following three categories: 

• Supervised Learning

• Unsupervised Learning

• Reinforcement Learning

For classification tasks, an inductive learning approach is 
usually chosen (supervised learning). This learning approach 
assumes a set of examples that can be learned from, i.e. whose 
correct result is already known [4, p. 19 f.], [5, p. 15 f.] The 
regularity derived from the training data is used to assign similar 
data to a class that is not already covered in the same form by 
the examples. 
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Commonly used learning models of supervised learning are 
support vector machines, decision trees and artificial neural 
networks. The latter have proven to be particularly well suited 
for the classification of image data [6], since the huge number 
of attributes (in this case the values of all pixels of an image) can 
be processed comparatively efficiently with them by 
convolution and pooling operations.  

Support Vector Machines try to separate an n-dimensional 
point cloud from each other by a hyperplane for classification 
[5, pp. 19–20]. Decision trees, on the other hand, take the 
approach of breaking down a complex problem into a finite 
number of easy-to-make distinctions, which can then be 
assigned to a class [7, pp. 217–219]. In contrast, the structure of 
artificial neural networks is based on the biological functioning 
of the brain [7, p. 275]. This structure essentially consists of 
neurons and weighted connections between the neurons. The 
quality of a neural network is not proportional to its size and 
complexity. For many problems, comparatively simple 
structures are already sufficient [8]. The learning process in an 
artificial neural network is done by adjusting the weights, which 
establishes a relationship between a characteristic input and the 
corresponding output. The adjustment of the weights within the 
neural network is done by a gradient descent procedure in which 
the error, that is, the deviation of the value predicted by the 
neural network from the actual value, is minimized [9]. 

For neural networks there are a variety of possible 
architectures, for the respective application purposes [10]. For 
processing image data, Convolutional Neural Networks have 
proven to be particularly powerful [6]. In this architecture, so-
called convolutional and pooling layers are used to highlight 
features on images while drastically reducing the number of 
pixels. In a convolutional layer, a convolution operation is 
performed as known from classical image processing [11, p. 33]. 
Here, a convolution kernel is applied to a section of the image, 
and the result of this operation is a scalar. By shifting the section 
pixel by pixel by a defined step size (stride), a new image is 
created pixel by pixel, the so-called feature map. Different 
strategies (padding) can be used for the edge areas, which 
expand the image in different ways to ensure a constant number 
of pixels. Alternatively, no expansion can be done. In this case, 
the reduced number of pixels must be considered in the 
following layers. This procedure is called valid padding. 

In a pooling layer, the number of pixels is reduced by 
combining an image section (usually 2x2 pixels) into just one 
pixel. One of the most commonly used methods is MaxPooling, 
where the highest value of the matrix is selected and written into 
a new feature map. [12, p. 9] 

III. GENERATION OF A TRAINING/TEST DATA SET AND 
CLASSICAL IMAGE PROCESSING TO PREPARE THE IMAGE DATA 

FOR THE NEURAL NETWORK. 
Due to the project being in its early stages, no functional 
inspection station existed over its duration. Nevertheless, in 
order to generate image data for training and testing the 
Convolutional Neural Network, it was necessary to set up a 
provisional camera setup, in which one limits oneself to the 
available resources of the later inspection station. 

As shown in Fig. 1 the setup used an RGB matrix camera to 
capture the image sections. The stent is placed in a holder on a 
luminescent plate, which diffusely illuminates the stent from 
the underside. 

Fig. 1. Diagram of the camera setup 

With the appropriate aperture setting, the illumination resulting 
from the transmitted light causes the wire to appear nearly black 
in the image, while the background disappears into an 
overexposed area. Thus, the contour of the stent, over which the 
stent can be examined for a tear site, is clearly visible. 

Training a neural network directly with the original images 
would be feasible, but not recommended, since the error region 
is too small with respect to the acquisition area. By detecting 
the vertices, it is possible to define a region of interest starting 
from the wire intersection points. Fig. 2 shows a flowchart of 
this process, including the sorting into the predefined classes. 

Fig. 2. Flowchart of the segmentation and labeling process 

Following this, the extracted image areas are converted to 
grayscale and a thresholding procedure is applied to remove the 
background. In addition, the image area is inverted so that the 
irrelevant area receives the pixel value 0 (See Fig. 3). 
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Fig. 3. Flowchart of image pre-processing following Error! Reference source 
not found. 

The generated dataset, minus the images unsuitable for the 
training process, comprises 932 image sections (691 training / 
241 validation). Since this is a relatively small size for a dataset 
in the deep learning domain, it can be artificially enlarged by 
transposing and rotating the original image section several 
times. This process is depicted in Fig. 4 and is known as data 
augmentation. It allows increased performance without 
manually acquiring more data [13]. 

Fig. 4. Transpose and rotate the preprocessed data to enlarge the data set 
following Error! Reference source not found. 

IV. NEURAL NETWORK FOR CUT DETECTION

The architecture of the applied Convolutional Neural 
Network consists of four alternating Convolutional and 
MaxPooling layers followed by three fully connected layers and 
the output layer. (See Fig. 5) 

When traversing the feature learning section, the number of 
pixels reduces from 130 x 130 to 5 x 5 pixels in 8 feature maps. 
Accordingly, the layers of the Classification section have 200 
neurons in each layer. The output layer has two neurons for the 
classes "good" and "cut". The framework employed here is 
Keras from Tensorflow. 

Fig. 5. Architecture of the used CNN with designation of the layers as well as 
the respective tensor size 

By considering the feature maps, a number of 32, 32, 16 and 
8 feature maps have been found to be suitable for the different 
convolutional layers. This involves initially extracting larger 
features (7x7 pixels) in the first two layers, following which 
increasingly smaller features (5x5 and 3x3 pixels) are extracted 
as the image size decreases. A stride of 1 and valid padding is 
used. For the training process, the Adam Optimizer is used with 
a dynamic learning rate, 100 epochs and a batch size of 10 
images. Since this is a classification problem, an accuracy-based 
optimization is performed. 

V. RESULTS 
During the training process, the learning curve characteristic 

for machine learning algorithms emerges, in which the accuracy 
asymptotically approaches a steady-state value. After about 60 
epochs, this value is 98%. However, this value is not very 
meaningful because there are numerous, slightly modified 
copies of the original image sections in the training data set due 
to data augmentation. 

Since this is a typical test procedure with the possible results 
being positive or negative, a four-field table can be used to 
evaluate the test data set. The specific results are shown in 
TABLE I. 

TABLE I FOUR-FIELD TABLE OF THE DISTRIBUTION OF RESULTS 

Predictor 
(CNN) 

Good Cut Sum: 

Criterion 
(Class) 

Good 
154 10 

164 
(True Negative) (False Positive) 

Cut 
14 63 

77 
(False Negative) (True Positive) 

Sum: 168 73 241 

Sensitivity: 81,82% 

Specificity: 93,90% 

Positive Predictive Value: 86,30% 

Negative Predictive Value: 91,67% 

Hit rate: 90,04% 
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When looking at the incorrectly classified images, it is 
noticeable that a significant proportion of them consists of 
images that cannot be explicitly classified. This is the case, for 
example, when the location of a cut leads to a distortion of the 
braiding pattern of the surrounding image areas. Although these 
image areas indicate the occurrence of a cut in the immediate 
vicinity, they do not show it directly. 

To avoid distortion of the results by these types of images, 
all images that cannot be explicitly classified are removed from 
the test data set. The corrected data can be seen in TABLE II. 

TABLE II.  FOUR-FIELD TABLE WITH CORRECTED RESULT 
DISTRIBUTION AFTER SUBTRACTION OF THE AMBIGUOUSLY DEFINED IMAGE 

SECTIONS 

Predictor 
(CNN) 

Good Cut Sum: 

Criterion 
(Class) 

Good 
139 5 

144 
(True Negative) (False Positive) 

Cut 
10 62 

72 
(False Negative) (True Positive) 

Sum: 149 67 216 

Sensitivity: 86,11% 

Specificity: 96,53% 

Positive Predictive Value: 92,54% 

Negative Predictive Value: 93,29% 

Hit rate: 93,06% 

VI. CONCLUSION AND OUTLOOK

Although the achieved accuracy values do not yet 
correspond to a production-ready result, they prove that it is 
possible to detect cracks in stents by combining classical image 
processing and machine learning. Since the dataset used is still 
very small compared to other popular deep learning databases 
(e.g. MNIST), an extension of the dataset holds a promising 
opportunity to further improve the accuracy. By shifting the 
sensitivity of the testing procedure, the rate of false negative 
classifications could be reduced to the point where the procedure 
provides sufficient confidence for the particularly high 
demands. However, the possibility of this procedure completely 
replacing humans at this point is unlikely. For reasons of 
economy, image sections classified as cut should still be 
checked by humans for false positives. It is therefore not so 
much a fully autonomous inspection procedure, but rather an 
assistance system designed to direct the employee's attention to 
potential fault points. The latter then makes the decision as to 
whether it really is a faulty stent. The amount of work required 
to inspect a stent is thus considerably reduced. 
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Abstract—Human Robot Collaboration (HRC) applications
face challenges in implementing a central system that controls the
flow of the tasks set to achieve a certain goal as well as the safety
measures to avoid unnecessary overlaps between the human
and the robot that may lead either to injuries or to technical
malfunctions. This paper presents an observation system bases
on 3D camera system and the robot controller. Therefore, an
optimization of the work flow is achieved while maintaining the
safety measures. The camera system detects and observes the 3D
pose of LEGO part, while the robot controller is responsible for
the execution of the robot tasks and the commands set by the
observation system.

I. INTRODUCTION

Smart manufacturing is a main concept that the fourth
industrial revolution is built upon [1] [2], as well as the
introduction of three features: horizontal integration through
value networks, end-to-end digital integration of engineering,
and vertical integration [3]. This integration is dependent
on advances and breakthroughs in digital technologies and
automation. One of the main features of this integration into a
smarter manufacturing and production system is human robot
collaboration, where humans and robots can work together
and create a shared workspace. Simultaneously, the system
benefits from the advantages of robots in terms of accuracy
and speed, as well as the flexibility and skills of a human. For
example, a robot observes a human in an assembly operation
to learn the assembly tasks sequence [4]. However, there are
some challenges that need to be targeted to provide an efficient
collaborative solution [5]: safe measures must be provided by
a observation system to avoid any robot human collisions, as
well as techniques that benefit from the cognitive skills of the
human such as understanding gestures expressed by the body
or the hand of a human.

This paper attempts to apply a validation scenario for body
tracking, hand pose estimation, and 3D position estimation
concepts, which are integrated into an observation system. A
convolutional neural network is used to track body motion
by building the body nodes and connecting them to simplify
the body structure [6]. Moreover, the hand pose estimation is
developed to recognise the numbers that different gestures are

trying to express [7]. Body tracking and hand pose estimation
are used to track the human body movement and understand
the hand pose expression. The Azure Kinect camera integrates
two interesting sensors: a depth camera that supports time-of-
flight (ToF) technology, and a color camera of 12 megapixels
with a maximum resolution of 3840x2160. Furthermore, the
experimental data show that the depth of the Azure Kinect
Camera is highly correlated with the color of the LEGO part.
Delta X and Delta Y (the difference between the desired X
and Y coordinates and the actual X and Y coordinates) show a
significant correlation with the image pixel coordinate system.
This paper discusses the different mathematical methods to
reduce the error of the 3D position calculation.

A simple use case will verify the practicability of the
observation system. The robot arm is configured with a camera
to observe whether the LEGO components are placed in areas
of the same color. In the event of detecting a human, the
system will automatically recognise the human body and send
a command to stop the robot from working. After the human
interaction such as swapping, removing, adding, and changing
position, the workspace is scanned again and the LEGO parts
are sorted by the robot to the correct area.

II. STATE OF THE ART

Real-time observation systems (or surveillance systems) can
have different deployments. For example, in [8] a real-time
observation system is implemented where a robot continuously
observes the behaviour of a human for it to be able to
recognize gestures from people and turn this robot to a social
robot. Likewise, [9] a real time face re-identification system
is developed to achieve effective interactions between robots
and humans, i.e. to be able to build and update the run-time
user database in a low latency model where it should get high
recognition accuracy. Moreover, [10] implements a real-time
collision avoidance system that is composed by three parts:
perception of the environment, collision avoidance algorithm,
and robot control. An approach is developed to calculate the
respective distances between the robot and the obstacles in
the workspace from the depth data of the Microsoft Kinect
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Fig. 1. Overview of the observation system

Camera. The distances between the robot and the obstacles
(humans included) are required to generate repulsive com-
mands for the robot to avoid collisions.

There are different approaches for body tracking, especially
regarding whether the algorithm follows a top-down or a
buttom-up approach, i.e. whether the algorithm detects the
humans in the image and then start predicting the body parts
of each human or it detects a body part and then predicts the
other body parts to get the whole human. [11] builds on the
pictorial structure model (PSM) [12] and extends it with a
”mixture of trees” model by partitioning the space of human
pose into clusters, which can be modeled and analyzed in a
simpler manner. A top-down approach is used by modelling
a Mask R-CNN, where first humans are detected and then
K masks are predicted, one for each body keypoint, e.g. left
shoulder or neck [13]. On the other hand, [6] takes a bottom-
up method that uses part affinity fields to associate between
the different body parts belonging to the same human.

In [14], the hand pose estimation problem is presented as an
image database indexing problem, i.e. the database is searched
for the closest match for an input hand image. On the other
hand, [15] uses the depth data of the Kinect Camera to segment
the hand region. After building a 3D hand model that gives
the hand a 21 part representation, a random decision forest is
trained on depth images. Each pixel is classified to a hand part
and then this classification is passed to a local mode finding
algorithm that estimates the joint locations of the hand. [7]
uses the depth data of the Kinect Camera to extract the hand
region out of the frame and then with the help of functions that
output specific contours and values, the number of extended
fingers are estimated.

Techniques to find the 3D position of an object vary ac-
cording to the system used, e.g. a single RGB camera, a depth
camera, a stereo camera system, or an industrial camera. [16]
proposes a method to find the 3D position of a flying ball
using triangular geometric relations, thus following a sequence
where at first they compute the projection matrix and then
detect the object of interest and finally estimate the 3D position

of that object. [17] uses two deep learning models, one that
extracts the images information, and another that extracts the
temporal information for better prediction. Building a pipeline
for both neural networks where the input of the ”temporal
network” is the output of 25 ”image networks”. This pipeline
is able to predict the 3D position of an object that may be in
trajectory.

III. CONCEPT

A. Overview

The observation system is implemented to communicate be-
tween the camera system and the robot control system in a way
where the observation system sends commands and triggers to
either systems and in return receives feedback from them. As
demonstrated in “Fig. 1”, the observation system consists of
two phases, when “Watchdog” mode is activated and when
not activated. When the “Watchdog” mode is not activated,
the system starts by triggering the camera system to scan the
environment. The camera system then detects the LEGO parts
and their 3D position as well as it keeps monitoring if any
hand or body is present near to the workspace. Afterward
the observation system sends a command to the robot control
system, e.g. to grip the LEGO parts to a certain position. At
the moment a hand or body is detected by the camera system,
the observation system moves into the ”Watchdog” mode and
the observation system sends a STOP command to the robot
control system and waits its feedback that it stopped. After the
hand or body leave the environment, the ”Watchdog” mode is
deactivated and the camera system is again triggered to scan
the environment and update the database.

B. Body Tracking

OpenPose (Realtime Multi-Person 2D Pose Estimation us-
ing Part Affinity Fields) [6] adopts a buttom-up system that
in return achieves high accuracy and real-time performance.
The method first estimates the body locations and then with
each stage it refines the part affinity fields (PAFs) which
are needed to be able to learn to associate body parts with
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individuals in the image. The input of the model is an image
of size w*h and the output is a 2D locations of keypoints for
each individual in the image. This process goes through three
stages: First, the first ten layers of the VGGNet (VGGNet
is a Convolutional Neural Network architecture) are used to
generate feature maps F for the input image.

Fig. 2. Example of a confidence map and part affinities [6]

Then, a two branched CNN is used, the first branch is
responsible for the prediction of a set of 2D confidence maps
S of body part locations, e.g. neck, elbow, shoulder, etc.. The
second branch is responsible for the prediction of a set of 2D
vector fields L of part affinities which encode the degree of
association between the body parts. Set S has J confidence
maps and set L has C vector fields. An example of confidence
maps and part affinities is shown in “Fig. 2”. Finally, the
confidence maps and the vector fields are parsed to output
the 2D keypoints for the people present in the image. Since
this method relies on confidence maps to detect the body parts
and then for vector fields to associate between them, it is able
to detect body parts even the whole body is not visible in the
image. The trained Tensorflow model 1 used in this project
outputs the 2D keypoints for a single individual. Moreover,
this model uses Tesnorflow Mobilenet Model instead of the
CaffeModel which reduces its size from 200MB to 7MB.

C. Hand Pose Estimation

The hand pose estimation approach used in this project is
inspired by [7]. The algorithm is based on three stages: hand
region segmentation, hand shape analysis and hand gesture
recognition. With the hand region segmentation, the human’s
hand region will be extracted in every frame with the help of
the depth map output of the Kinect sensor. Then, the shape
of the segmented hand region is analyzed by getting contours,
convex hull and convexity defects. Finally, by analyzing the
convexity defects, the number of extended fingers is deter-
mined.

In this project the PY4KA 2 is needed to deploy the
Azure Kinect Camera sensors and functions. The first step is
performed by a function that takes in the depth map and returns
the segment of the hand region. In the second step we get the
largest contour found in the segment as well as the convexity

1https://github.com/quanhua92/human-pose-estimation-opencv
2https://github.com/etiennedub/pyk4a

defects in it if any are detected. To get the max contour within
the segment, the OpenCV function findContours() is used, also
to get the convex hull that envelopes the contour area, the
OpenCV function convexHull() that takes in the max contour
and gives back the convex hull. Finally, the OpenCV function
convexityDefects() that takes in both the max contour and the
convex hull to give back the convexity defects, i.e. the points
farthest away from the convex hull and logically caused by
the wrist and the fingers.

Fig. 3. Values to analyze hand region [7]

A convexity defect is an array of four integers. Relative
to us are three of these four integers, namely the start index
(the index of the point at the beginning of the defect), the
end index (the index of the point at the end of the defect),
and the farthest pt index (the point with the farthest distance
away from the convex hull within the defect). The tip to find
the number of extended fingers now is two form an angle
within each defect between the farthest pt index and both
the start index and the end index. These values are shown
in “Fig. 3”.

Fig. 4. Estimation of extended fingers

As shown in “Fig. 4”, if the angle within each defect is
smaller than a predefined threshold angle (we set it at 80°),
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then we assume that this convexity defect is located between
two fingers, otherwise it is not. There are two special cases:
when the number of defects is less or equal to 2, we predict
that we are showing a closed fist and thus we get a 0 back.
If the number of defects is greater than 2 and the none of the
angles satisfy the condition, we predict that we are showing
number 1. Then with each angle that satisfies the condition
we add 1 to the number of extended fingers, with a maximum
number of 5.

D. 3D Position Estimation

1) Experiment: The experiment consists of setting 15
LEGO parts of a certain color at 15 specific locations on the
workspace. Then we move the robot to the center of each
LEGO part to save the 3D position of the each LEGO part in
the robot coordinate system.

Fig. 5. The layout of the experiment.

Then we capture the scene with the Azure Kinect Camera
in order to save the depth values in a JSON file and the
color image in PNG format. The color image is of resolution
1280x720 and the depth image is of 640x576. The field of
view of the depth sensor is different than that of the RGB
sensor. That means that a pixel coordinate of the same point
varies between the two sensors. In order to align the depth
values to the RGB field of view, we use a function called
transformed depth from the PYK4A library. The color image
is used to get the pixels of the center of each LEGO part,
and the depth values are used to get the depth of that exact
location. [7]up

uv

1

 =

fx 0 u0

0 fy v0
0 0 1

 ∗
CXp/

CZp
CYp/

CZp

1

 (1)

The matrix in “(1)” is called the camera matrix and we
obtain it by calibrating the camera with a chessboard. We
set a 9x7 chessboard at 21 different poses and we capture
these different scenes with the camera set at a 1280x720
resolution then we input these images as well as the chessboard

dimension and the edge length of a square in the chessboard
into the camera calibration program. The program then outputs
the aforementioned camera matrix, the distortion coefficients,
the translational vector, and the rotational matrix. We assume
that CZp is exactly the depth value captured by the depth
sensor, and since we already have up and uv from the color
image, the only unknowns left are CXp and CYp. After
calculating the unknowns and in order to verify the accuracy
of our calculations we transform the robot coordinates to
the camera coordinate system by multiplying them by the
transformation matrix CTB as shown in “(2)”.

Fig. 6. Plot of Delta Zs


CXp
CYp
CZp

1

 = CTB ∗


BXp
BYp
BZp

1

 (2)

We assume that these transformed coordinates are the target
values and that the calculated coordinates through “(2)” are the
actual values in order to check the difference and understand
how accurate is our approach.

From data in “Fig. 6”, it is obviously clear how depth is
highly dependent on the color. In each position the lowest
Delta Z is between -15mm and -21mm and it belongs to blue
LEGO parts. The sequence of the increase of Delta Z then
goes as follows: blue → green → lightgreen → white →
lightblue → orange → yellow → red. The highest error in
Z direction varies between -35mm and -40mm and belongs to
red LEGO parts. This indicates the necessity for finding an
approach to minimize Delta Z.

The general reasons for the inaccuracy of the depth sensor
is the noise from the environment. For example, if the pixels
are not located in the IR illumination mask, then the pixels are
invalidated and have zero depth values. Moreover, if a pixel
contains a saturated infrared signal then it also gets invalidated
since the phase information is lost. In the same logic, if the
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Fig. 7. Reasons for the inaccuracy of the depth sensor [18] [19]

strength of the infrared signal is not strong enough to generate
depth, then the pixels at these positions are also invalidated.
In addition to the factor of reflectivity, since the depth sensor
follows the technology of flight then the reflectivity of the
object is critical to the depth estimation.

The main reasons for the inaccuracy of the position estima-
tion:

• Depth sensor and RGB sensor have different coordinates
systems.

• Depth sensor and RGB sensor have different resolutions,
which will influence the conversion from the depth image
to RGB image.

• Depth sensor and RGB sensor have blink spots when
converted to each other.

2) Weight Function: To minimize Delta Z, we use a weight
function where the previous values of Delta Zs are saved in
our database and the Z value of any new LEGO part is fixed
with the weight function. First, we get the pixels of the center
of the LEGO part as well as the color of that part. Second,
we get the depth value of the center of the LEGO part.

Fig. 8. Weights proportional to the distances

Then, we search our database for the four nearest neighbors
and we set a weight for the Delta Z of each neighbor depending
on how close is it to the new LEGO part.

∆Z = w1 ·∆Z1 + w2 ·∆Z2 + w3 ·∆Z3 + w4 ·∆Z4 (3)

Using “(3)” we calculate the Delta Z that in return corrects
the Z value of the new LEGO part. We set the new LEGO
part at 5 different locations (See “Fig. 8”): [1: TOPLEFT, 2:
TOPRIGHT, 3: CENTER, 4: LOWLEFT, 5: LOWRIGHT].
With this approach we minimize Delta Z from 15mm-40mm
to -3.08mm-4.69mm.

3) Correction by Trendline: The plots of both Delta X and
Delta Y show a possibility to calculate a trendline for the
values of these Deltas for each color in each row. (see “Fig. 9”)

Fig. 9. Plots of Delta X and Delta Y

Fig. 10. Trendlines of Delta X in row 1

“Fig. 10” shows the trendlines of Delta X for ev-
ery color in the first row (see “Fig. 5”). First, we
assume that the ratio CXp/

CZp is equal to a vari-
able a, where atarget = CXp target/

CZp target and
aactual = CXp actual/

CZp actual. “(4)” is dissected from
the first row of “(1)”.

CXp

CZp
=

(
1

fx
0 −u0

fx

)
·

up

uv

1

 (4)

Then with some mathematical operations we arrive at:

CZp target =
CXp actual − ∆CXp

atarget
(5)

“(5)” shows that the target Z value is equal to the corrected X
value divided by the atarget. This approach did not succeed to
minimize Delta Z at all. Reasons were that a general trendline
that combines the three rows for each color was not found and
with each capture the trendline would have a slight change that
deviates the actual value away from the desired value [19]. So
regarding the general trendline obstacle, we had an idea where
we cover each possible row in the workspace, in a way that
eliminates the necessity for a general trendline. However, the
results were still far away from the target.
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E. Image Processing

Fig. 11. Contour extraction process

1) Contour Detection: As shown in “Fig. 11”, the color
image is converted to the HSV colormap (Hue Satura-
tion Value). The HSV parameters are manually set so that
the colors: blue, green, yellow, red, orange, light blue,
and light green are detected. The findContours() function
of OpenCV with these two modes RETR EXTERNAL and
CHAIN APPROX SIMPLE gets the contours by extracting the
corner points of the image.

2) Shape Detection: An erosion mask of 5x5 kernel is used
to reduce noise from the image. Then, to detect the shape
and size of the LEGO part the width and height values of
the bounding box of the contours are used to decide if the
following contour is a square or medium rectangle or a big
rectangle to get a good estimation for the midpoint of the
contour.

F. Database

The database model is implemented with SQLite. A “LE-
GOS” table is created with the following entries: [ID, x, y, z,
a, b, c, ColorOfTheSortArea, IsSorted]. ID is the primary key
to each LEGO part, ’x,y,z’ are the 3D position values of the
LEGO part, ’a,b,c’ represent the orientation parameters (roll,
pitch, and yaw) of the LEGO part, ColorOfTheSortedArea
specifies which area should the LEGO part be at and IsSorted
is whether the LEGO part is already sorted at the correct
color area or not. As mentioned before, the observation system
updates upon triggering the camera system the database with
the changes.

IV. APPLICATION

A. Experimental Setup

Fig. 12. Experimental setup of the Kinect Camera, KUKA KR6 Robot, and
LEGO parts

The Azure Kinect Camera is set on the side bar as shown
in “Fig. 12” and the LEGO parts are placed in the workspace.
A flexible two finger gripper is used to grip LEGO parts and
set them into desired positions. A human can appear from the
left side of the robotic arm.

B. Body Tracking

Fig. 13. Body tracking keypoints

Facing the camera, the body tracking approach is tested.
First, to check if all body keypoints are detected when the
whole body is visible, and second to check if visible body
keypoints are detected when part of the body is only available
in the image. As shown in “Fig. 13”, both scenarios are
validated since the in the left image the full set of body
keypoints is shown. On the right side and even though only
about 50% of the body is visible, the keypoints are still
correctly detected.

Fig. 14. Body keypoints at close range

C. Hand Pose Estimation

The hand pose estimation approach is tested by showing
the camera different representations of different numbers and
checking if they are correctly predicted. The method yields
good results as shown in “Fig. 15”.

D. Observation System

The previous approaches are combined with the 3D position
estimation approach in one program. At the beginning, the
camera detects the LEGO parts and then if a body is detected
the system starts tracking the body. If the body keypoints
visible become less than 11, we assume that the body is too
close to the workspace and that the human wills to show a hand
gesture, so the system moves to detect the number of extended
fingers. In “Fig. 14”, it is seen that when a human is close
enough to the workspace to give a hand gesture that in fact
less than 11 keypoints will be visible. Then after the human
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Fig. 15. Hand pose estimations

leaves the workspace, the camera then detects the LEGO parts
again and saves the data in the database. We have four sort area
colors: red, blue, yellow, and green. Red and orange LEGO
parts should be sorted to the red sort area, blue and light blue
to the blue sort area, yellow to the yellow sort area, and green
and light green to the green sort area. These sort areas are seen
in “Fig. 12” with the appropriate LEGO parts positioned on
them. The 3D position of the midpoint of each LEGO part is
calculated and then corrected with the weight function. Since
the contours are a bit smaller than the actual LEGO parts and
since they do not possess the same sharp edges, the midpoint
calculated in pixels may not be exactly at the middle of the
LEGO part. Moreover, the algorithm was able to correctly save
the LEGO parts in the SQLite database and was able to detect
the color of the LEGO part and to sort it at the correct sort
area.

V. SUMMARY

The paper represents a real time observation system, which
consists of body tracking, hand pose tracking, and 3D position
estimation. The camera system detects 3D positions of objects
of interest in the workspace and at the same time observes
body or hand presence in the workspace. Upon the presence
of a body or hand, the observation system asks the robot to
stop if it is performing a task. When the human leaves the
workspace, the camera system updates the database in real
time. The observation system specifies the required tasks from
the robot. The depth data of the Azure Kinect Camera are
used in this paper in the methods to estimate hand poses and
to estimate 3D positions of objects of interest.

Points of weakness and limitations will be addressed in
future work. The 3D position estimation accuracy of the
different coordinates between the RGB sensor and the depth
sensor is still limited. The transformed depth image that

transforms the depth values to the RGB camera point of view
should be improved. Additionally, more work will be put on
getting a more accurate estimation of the midpoints of the
LEGO parts. Moreover, the body tracking and hand poses will
be converted to commands that the observation system then
sends them either to the camera system or to the robot control
system.

In the future the observation system will be used in a use
case and will be combined with the digital twin tools with AI
to build an intelligent robotic system. The intelligent robotic
system will focus on how the robot understands an existing
malfunction and adapts itself to the environment to solve the
problem based on the existing condition.
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Abstract—The availability of open-source as well as cost-
effective solutions is ever increasing as time progresses. MaRIO, a 
robot capable of human-robot interaction, was initially intended 
for the purpose of adherence to COVID-19 measures regarding the 
wearing of masks in closed spaces. However, the system can also be 
seen as an example of how a robot can be constructed within a very 
tight budget and still perform a variety of tasks. This paper also 
aims to describe how the developmental process of MaRIO can be 
implemented using open-source tools, while shedding further light 
on the current state of the project and further objectives. These 
objectives are aimed at further developing the platform while also 
ensuring that the robot remains a cost-effective solution for tasks 
that it would be later capable of handling. 

Keywords—Human-robot interaction, open-source, image 
processing, machine learning, deep learning 

I. INTRODUCTION 
The subject of robotics has taken great strides in recent decades 
and continues to hold a high degree of relevance. Today, that 

same subject has been the focus of research in a variety of fields, 
with one of these, namely human-robot interaction, also 
garnering considerable attention [1, 2].  

Human-robot interaction (HRI) may be defined as a field of 
robotics dedicated towards robot systems that are directly used 
by or work alongside humans. Such a purpose thereby also 
requires communication between human and robot, which can 
be achieved either through remote (such as robots for explosive 
ordnance removal or EOD [3]) or proximate (such as the well-
known Pepper from Softbank Robotics [4]) means [1]. This 
communication also includes understanding whose turn it would 
be to respond to a stimulus [5]. Effective communication, being 
a must in the case of HRI, can take place through a number of 
methods which include verbal cues, gestures, prosody and gaze 
among others [2, 5–7]. 

The term "open-source" is widely used in today's day and age, 
and for good reason. The existence of open-source solutions has 
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enabled even the average human being to access, design, 
develop and implement important information and technologies 
[8]. Furthermore, it also enables the dissemination of 
information among a greater community of individuals working 
together on a specific topic. This results in a wider availability 
of solutions and greater participation in discussion towards a 
working solution [9]. Open-source products see application in a 
variety of applications and continue to hold relevance due to 
their numerous advantages [8].  

The robot for Mask Recognition and Interaction for Order 
(MaRIO) is a result of the integration of the concept of human-
robot interaction with open-source solutions. Through the use of 
hardware such as the Raspberry Pi and Arduino as well as  image 
processing software such as OpenCV in combination with 
Python libraries and a deep learning algorithm for mask 
detection, MaRIO was built with the initial idea of adherence to 
COVID-19 measures concerning the wearing of masks [10–13], 
which continue to be in effect as of the time of publishing this 
paper. Through this idea, the goal of creating a robot capable of 
autonomous movement within a closed environment while 
ensuring that people in front of it in close proximity are wearing 
their masks was conceived. 

This paper intends to document a useful example of human-
robot interaction and open-source products that can be put 
together to create a low-cost system that can be further 
developed for a variety of other tasks not specific to the original 
goal. This project was created due to the Trinatronics 2021 
competition, organized by the TriRhenaTech, an alliance of 
universities for applied sciences at the Upper Rhine region [14]. 

II. STATE OF THE ART
MaRIO’s development covers a wide range of topics whose 
relevant literature is described within this section. 

A. The Open-Source Approach 
OpenCV and Python have been used in scientific work 
pertaining to human-robot interaction [7, 15–17]. The Raspberry 
Pi, being a cost-effective computing device, is also an often-used 
solution within the open-source ecosystem [15–17]. Arduino 
boards and the tools used alongside are also well-known for their 
role in the above mentioned ecosystem [17–19]. These devices 
are typically used with compatible hardware either from their 
respective producers [15, 18] or from third-party producers [16]. 

B. Human-Robot Interaction (HRI) 
There exists a growing market in robots capable of interaction 
with humans. Pepper and Nao are well-known humanoid robot 
examples in this case, which are also capable of autonomous 
movement [20–22]. Given the close proximity of many HRI 
methods, robots with HRI features must also come equipped 
with the necessary safety standards and flexibility of movement 
and communication while also exhibiting an appearance that 
makes them desirable enough to interact with, besides other 

factors [20–23]. HRI is an integral part of human-robot 
collaboration (HRC) and the list of possible applications extends 
across a wide range of fields besides industrial applications, with 
education, public services and healthcare being examples [20–
22, 24]. 

C. Mask detection using image processing and machine 
learning 

The use of facemasks is currently a major topic in society. 
According to the World Health Organisation (WHO), face 
masks are a very effective way to reduce the spread of the Covid-
19 pandemic [13]. In the last year, many measures have been 
developed to counter Covid-19 through the methods of Artificial 
Intelligence (AI), more specifically Machine Learning (ML) and 
Deep Learning (DL) [25]. One possible use of DL is the 
development of facemask recognition software. Such DL 
models have been published in scientific papers [26] or on the 
developmental platform GitHub, in which case the latter was 
used to fulfil the objectives of the project [27]. 

D. Autonomous Platforms
Classic industrial robots currently lack flexibility. They 
traditionally perform pre-programmed, repetitive tasks in a 
highly constrained workspace. They are also unable to adapt to 
new environments or situations [28].  

The development of autonomous robots has increased their 
range of tasks significantly in recent years. Autonomous robots 
can, for example, build an intelligent logistics network [29, 30] 
or investigate in areas that are too dangerous for humans to enter 
such as mine shafts or nuclear power plants [31, 32]. However, 
autonomous robots can also assist humans with everyday tasks. 
For example, many households already have autonomously 
driven lawn mowing or vacuum cleaning robots [33, 34]. Robot 
autonomy is also an important part of HRI, as can be seen in the 
previously mentioned examples of Pepper and Nao [22]. 

The difficulty of such systems lies in safe movement and 
navigation in free space. To recognise all obstacles and not 
present a danger to the surroundings and itself, a multitude of 
sensors and intelligent software is necessary [35]. 

III. METHODS
The developmental process of MaRIO is subdivided into the 
categories listed below. A vast majority of the system was 
designed from the ground up, the exception being applied to 
some aspects of the software in order to complete the project 
within the given time constraints.  

A. Construction 
The assembly of the robot was conceived and visualized with 
the help of the computer-aided-design (CAD) package Siemens 
NX. Figure 1 illustrates the robot with the parts of its 
construction labelled. The chassis, mask holder and head are 
comprised of 5 cm thick wooden plates that were processed 

Robotix-Academy Conference for Industrial Robotics RACIR 2021 at UCB during September 22nd, 2021

67



using a laser machine and the open-source vector graphics 
editing software, Inkscape. The cutting pattern is produced with 
help of the open-source box generator Boxes.py, which provides 
a variety of patterns that can be flexibly tailored as per 
requirements. The chassis is separated into two parts, so as to 
separate the motors and a majority of the cabling from the 
electronics. A wooden plate protects the underbelly of the robot, 
while a plexiglass roof shields the electronics from the external 
environment, while also providing a brief visual of the system 
setup. The head, which houses the display as well as the 
Raspberry Pi, comprises a slot for concealed positioning of the 
camera as well as additional slots for a speaker and for any quick 
work required while working on the software and electronics. A 
PVC rod was chosen for the neck of the robot, with the mask 
holder placed high enough within arm's reach. 

Figure 1: A side view of MaRIO with all visible parts labelled 

A number of 3D-printed parts, constructed using NX, were 
employed in order to attach and reinforce specific components, 
such as the mask holder, head, neck and battery. The head is also 
inclined at an angle of 25° using 3D-printed parts. An additional 
attachment is positioned at the front of the robot for an 
ultraviolet sensor. This attachment is constructed in order to be 
long enough to give the robot time to respond to the sensor as 
required (see Section 4.2). All 3D parts were created using PLA 
filament.

It is important to note here that while Siemens NX is not open-
source software, it need not be a necessary tool for visualizing 
the design of a system like MaRIO. If required, CAD 
alternatives also exist, among many others, depending on the 
needs and understanding of potential users [36].  

B. Implementation of Electronic and Electrical Parts 
a) Main controlling components: The latest version of the

Raspberry Pi computers, being a tried, tested and
proven solution for a large variety of applications, has
proven itself worthy in being the main coordinating

unit of MaRIO. The Raspberry Pi 4 features 8 GB of 
RAM and a 1.5 GHz Broadcom BCM2711, quad-core 
Cortex-A72 64-bit SoC and uses an OpenGL® ES 3.1 
graphics API for GPU (graphics processing unit) 
computing, which in most cases satisfies the 
requirements for the average university robotics 
project.  
Combining a Raspberry Pi computer with an Arduino 
Mega board via USB enhances the flexibility of the 
system to control sensors and actuators. An 
ATmega328P microcontroller developed by the Atmel 
Corporation (now acquired by Microchip Technology) 
powers the Arduino Mega. The division of labor was 
implemented in such a way that the Arduino Mega, 
alongside another Arduino Mega would be used to 
control as many sensors and actuators as possible. This 
would leave the Raspberry Pi with the objectives of 
communicating with the Arduino UNO and, more 
importantly, directly operating the mask recognition 
algorithm as well as the LiDAR (light detection and 
ranging) sensor, both of which are the most resource-
intensive tasks in this system. Due to the latter two 
operations demanding so much computing power, a 
combination of active and passive cooling through a 
heat sink fitted with fans had to be used to keep the 
temperatures from going too high. Without cooling, the 
Raspberry Pi would reach a temperature beyond 80° 
Celsius, which would not only lead to a shutdown and 
failure of the Pi, but also reduce its lifetime. 
A further division of labor takes place between both 
Arduino Mega boards. Directly connected to one of 
these are an SD card reader and an amplifier, which in 
turn leads to a speaker. The SD card loads audio output 
commands that are used in the mask recognition 
software (see section 4.3). The second board assumes 
control of the motors for robot motion. 

b) Image Processing: The task of image processing for the
purpose of recognizing masks is performed using a 5
MP camera module powered by an OmniVision
OV5647 CMOS sensor and an aperture of f/1.8. Video
data is fed to the Raspberry Pi, which differentiates
between faces that do not wear a mask and those
wearing a mask using an externally developed
machine-learning algorithm [insert GitHub reference
here]. The entire process of mask recognition is
explained in further detail in section 4.4.

c) Motion: The movement of the robot would be
coordinated via the Arduino using 4 Mecanum wheels,
each powered by a single motor. Mecanum wheels
possess the ability of turning the device to which they
are equipped left and right while rotating about a single
axis [37, 38]. This is accomplished through tiny mini
wheels that comprise the contact surface of the wheel,
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which rotate about their own position in order to "turn" 
the device to which the wheels are equipped. This 
movement would be additionally guided by a 
YDLIDAR X2 sensor and an Ultrasonic sensor. The 
YDLIDAR X2 sensor, as can be noticed in the name, is 
the sole LiDAR sensor in the robot system and is 
positioned right above the robot chassis in front of the 
neck. It is tasked with detecting any objects that could 
lie in front of the robot's intended movement path. The 
ultrasonic sensor is positioned under the mask holder 
and is attached to a servo motor such that it rotates only 
within a specific angle while also facing the frontal side 
of the robot. The rotation enables the sensor to detect 
any obstacles placed within the height of the robot. In 
the event that the robot encounters a lower floor 
surface, such as the next step of a staircase from the top 
end, an ultraviolet sensor is positioned at the front of 
the robot, giving it enough time to stop moving.  
The robot motion is currently so programmed, that the 
robot only moves forward, stopping only to turn about 
its position depending on the input received from the 
obstacle detection sensorics before resuming forward 
motion. 

d) Power supply: A 15000 mAh Li-ion battery pack was
developed in-house, using a pack of 2 parallel sets of 5
batteries connected in series. The batteries are of the
type ICR 18650, each possessing a voltage of 3.7V.
The Pi and the robot display are connected to the
battery pack via step-down transformers.

C. Software 

Figure 2: MaRIO's display showing the programmed environmental coverage 
from the LiDAR sensor 

The vast majority of the software aspect of the system has been 
written using Python. The code for motor control was however, 
for obvious reasons, implemented in C++ via the Arduino IDE. 
A program written specifically for the LiDAR sensor 
communicates with the Arduino UNO based on the input 
received from the robot's external environment, which then 

adjusts the movement of the 4 motors that influence the motion 
of the robot. An optional graphical interface has also been 
designed to better visualize how the LiDAR sensor interprets its 
surroundings. 

Figure 3 (from top left clockwise): Home screen for the mask detection 
interface, a screen indicating that the system does not recognise a mask on the 

individual standing in front of the camera and a screen indicating that the 
individual in front of the camera is wearing a mask 

The interface for human-robot interaction is controlled by a deep 
learning algorithm developed externally and shared over GitHub 
[27]. The deep learning algorithm was developed in Python 
using OpenCV, Keras and TensorFlow libraries, all of which are 
open-source programs for image processing and AI respectively. 
The data set used for this algorithm comprised 4095 images, 
which were divided into individuals wearing a mask and 
individuals not wearing a mask. The algorithm also makes use 
of the MobileNetV2 convolutional neural network architecture, 
which is designed for use on mobile devices [39]. 

Figure 5: Arrangement of convolutional blocks for the MobileNetV2 
architecture. More information regarding the architecture can be found in the 

publication from Sandler et al [39]. 

The theoretical accuracy after training via version 2.5.0 of the 
TensorFlow GPU was recorded at 98%. Considering an 
individual standing in front of a camera, an accurate result can 
be generated within 2 meters of distance between the camera and 
the individual. The detection accuracy reduces when considering 
a moving individual and may result in errors in correctly 
recognizing a face wearing a mask. Although the algorithm is 
capable of detecting several faces at a given time, the human-
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robot interface has currently only been designed to read one face 
at a time. 

D. Human-Robot Interaction 

Abbildung 4: A still depicting the results of the applied HRI algorithm 

The HRI feature of the robot is described in this section. All 
necessary programs for the complete functioning of the system 
are run on startup, this including the program for mask 
recognition. In order to elicit a response from the system, a 
single individual is required to pose within arm-distance of the 
robot. Following this, an image of a face with a green or red 
mask will be displayed, with green indicating that the individual 
is wearing a mask and red indicating that the individual is not 
wearing one. At the same time, audio messages are played based 
on the outcome, either acknowledging the person wearing a 
mask or requesting an individual not wearing a mask to either 
wear one or take one from the mask holder. In the case of the 
latter, the individual is requested to stay where they are until the 
robot is able to recognize a mask on their face. 

IV. RESULTS

Figure 5: Front-facing view of MaRIO 

As of the status of the project, the robot currently exists in a 
partially finished condition. Two versions of the robot were built 
under consideration of the conditions specified for the 
Trinatronics 2021 competition as well as the budget limit of 600 
EUR per robot. While common issues between both builds were 
experienced and solved, a number of tasks and features could 
have been useful for the system but could not be fully 
implemented within the small time-frame of approximately two 
months. The most notable of these as well as the project 
accomplishments will be mentioned here. 

Additional programming is required for some parts that have not 
been fitted but not programmed yet, such as the rotating 
ultrasonic sensor at the mask holder. An extremely important 
point to consider is the lack of sensors for obstacle detection. As 
it stands, only the frontal region of the robot is partially protected 
with the help of the LiDAR sensor, which is barely sufficient 
considering that the robot does not move backwards. The 
LiDAR sensor has been proven to do a good job at detecting 
walls and large obstacles. However, these tests were still in their 
early stages and it is clear that more sensors need to be integrated 
around the robot. 

While the current motors responsible for robot motion appear to 
respond well to all tests conducted so far, it would still be safer 
to upgrade to ones that are more powerful. The current motors 
are designed with much smaller and lighter robot kits in mind 
and the combined weight of the robot platform goes much 
beyond the weight of the average mini-robot kit, which is 
usually less than a kilogram. However, while autonomous robot 
motion still requires more work, the robot does a somewhat 
decent job of moving about its environment with the current 
equipment under consideration. 

The human-robot interaction, designed with regard to mask 
detection, provides accurate and desirable results. Lowering the 
response time and improving the look of the interface may 
definitely be a task for future work, although not as great a 
priority as the above-mentioned tasks. Although the Raspberry 
Pi 4 possesses the ability to perform compute intensive 
operations such as running image processing and machine 
learning algorithms, the response time is greatly reduced. Active 
and passive cooling is also necessary considering how quickly 
the Pi tends to heat up to the point of automatic shutdown 
without a sufficient cooling apparatus. Further experiments 
involving the use of additional hardware to accompany the Pi 
with such operations have not been conducted and may be 
investigated in future developments of the robot platform. 

V. CONCLUSION 
Although a complete and fully functioning system is difficult to 
implement from the ground up within a span of two and half 
months, it can definitely be proven from the work done so far, 
that a well-built robot with software specialized for human-robot 
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interaction can definitely be a reality. This is especially true as 
long as costs are kept at a minimum and with the help of open-
source software. Additional resources and tests are definitely 
required in order to understand better how to manage the 
resources of the Raspberry Pi 4, while also placing focus on 
upgrading various aspects of the entire robot system for better 
results. With the required effort, MaRIO can be further 
developed into a system that can do much more than mask 
recognition. Examples of possible cases of application could be 
at old-age homes and at demonstrations in schools to generate 
additional interest among younger generations. This paper 
marks only the end of the beginning of a project that will 
continue to be worked on as time passes. 
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