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Abstract. EdDSA is a digital signature scheme based on elliptic curves
in Edwards form that is supported in the latest incarnation of the TLS
protocol (i.e. TLS version 1.3). The straightforward way of verifying an
EdDSA signature involves a costly double-scalar multiplication of the
form kP − lQ where P is a “fixed” point (namely the generator of the
underlying elliptic-curve group) and Q is only known at run time. This
computation makes a verification not only much slower than a signature
generation, but also more memory demanding. In the present paper we
compare two implementations of EdDSA verification using Ed25519 as
case study; the first is speed-optimized, while the other aims to achieve
low RAM footprint. The speed-optimized variant performs the double-
scalar multiplication in a simultaneous fashion and uses a Joint-Sparse
Form (JSF) representation for the two scalars. On the other hand, the
memory-optimized variant splits the computation of kP − lQ into two
separate parts, namely a fixed-base scalar multiplication that is carried
out using a standard comb method with eight pre-computed points, and
a variable-base scalar multiplication, which is executed by means of the
conventional Montgomery ladder on the birationally-equivalent Mont-
gomery curve. Our experiments with a 16-bit ultra-low-power MSP430
microcontroller show that the separated method is 24% slower than the
simultaneous technique, but reduces the RAM footprint by 40%. This
makes the separated method attractive for “lightweight” cryptographic
libraries, in particular if both Ed25519 signature generation/verification
and X25519 key exchange need to be supported.

1 Introduction

Digital signature schemes can be used to provide entity and data-origin authen-
tication, integrity protection, and non-repudiation services, which makes them
an essential tool for enabling secure communication over the Internet. Common
security protocols like TLS rely on these services to authenticate the server to
the client (and optionally the client to the server) and to securely exchange the
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public keys needed for the establishment of a shared pre-master secret [34]. To
date, the most widely used signature schemes are based on the RSA algorithm
[35] and a variant of the ElGamal cryptosystem, which is standardized by the
NIST [30]. However, signature schemes operating on elliptic curves, such as the
Elliptic Curve Digital Signature Algorithm (ECDSA) from [30], have gained in
acceptance over the past few years. What makes ECDSA attractive is that its
security is based on the intractability of the Elliptic Curve Discrete Logarithm
Problem (ECDLP), which allows one to use much smaller groups compared to
its classical counterpart RSA, whose security rests on the Integer Factorization
Problem (IFP). For example, it is generally accepted that ECDSA instantiated
with a 160-bit elliptic-curve group provides about the same level of security as
the RSA signature scheme using a 1024-bit modulus [19]. Smaller group sizes
directly translate into shorter signatures, which is a crucial feature in settings
where communication bandwidth is limited or data transfer consumes a large
amount of energy (e.g. battery-powered devices [15]). Another major difference
between RSA and ECDSA is the (relative) complexity of signature generation
versus signature verification. While the verification of an RSA signature is less
costly than the generation, exactly the opposite holds for ECDSA: verifying an
ECDSA signature is more demanding than signature generation.

From an arithmetic point of view, the main operation of elliptic curve cryp-
tosystems such as ECDSA is scalar multiplication, a computation of the form
R = kP where k is a positive integer and R,P are points on an elliptic curve
E over a finite field Fq. This computation can be decomposed into a sequence
of point additions and point doublings, both of which, in turn, consist of arith-
metic operations in the field Fq [12, 19]. In the case of signature generation, the
scalar multiplication is performed on a point P that is fixed and known a priori
since it is part of the domain parameters (namely, it is generator of a subgroup
of prime order). Therefore, it is possible to speed up the scalar multiplication
through pre-computation of multiples of P following the comb approach or the
windows method [19]. Both techniques are suitable for resource-limited devices
with little RAM since, at any time, only one point from the table (but not the
full table) is required as input for the computation, which means the table can
actually be stored in non-volatile memory [26]. The verification of a signature is
more costly and requires a double-scalar multiplication, which is a computation
of the form R = kP + lQ where P is fixed (it is actually the same point P as in
the signature generation), while Q is the signer’s public key and, thus, becomes
only available at run time [19, 30]. There exist different implementation options
for a double-scalar multiplication, whereby the most widely-used approach is to
compute the sum kP + lQ in a simultaneous fashion with “joint” doublings as
described in [19, Algorithm 3.48]. Assuming that each of the two scalars k and
l has a length of b bits, the simultaneous double-scalar multiplication technique
requires b point doublings, while the number of point additions depends on the
joint Hamming weight of the two scalars.

The Edwards-curve Digital Signature Algorithm (EdDSA) is a state-of-the-
art signature scheme using elliptic curves in (twisted) Edwards form that was
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developed with the intention of achieving both high performance (especially in
software) and high security [8, 9]. A variant of EdDSA as specified in RFC 8032
[21] is one of the digital signature systems supported in the most-recent version
of the TLS protocol, i.e. TLS 1.3. EdDSA is a “Schnorr-like” signature scheme
that combines the strong security and simplicity of classical Schnorr signatures
[36] with the efficiency (and further positive implementation aspects) of twisted
Edwards curves [6]. However, unlike the original Schnorr scheme, EdDSA uses
a double-size hash function (to help alleviate concerns regarding hash-function
security) and generates the per-message secret nonces in a deterministic fashion
by hashing each message together with a long-term secret. Thus, EdDSA does
not consume fresh randomness for each message to be signed, which makes the
scheme attractive for constrained environments (e.g. embedded systems) where
the generation of random numbers is very costly due to the absence of reliable
sources of entropy. In ECDSA, on the other hand, a unique and unpredictable
random number is required for each computation of a signature, whereby even
a small weakness in the random-number generation can have fatal consequences
and may, in the worst case, leak the signer’s secret key. Thus, the deterministic
nonce generation method of EdDSA is not only a performance feature but also
a security feature. To verify an EdDSA signature, one has to check whether an
equation of the form R = kP − lQ holds or not. This is normally accomplished
by computing kP − lQ and then comparing the obtained result with R [8].

A common problem of both ECDSA and EdDSA is that the verification is
significantly slower and also consumes much more memory than the generation
of a signature. The high computational complexity of the verification operation
of curve-based signature schemes is widely recognized in the literature and has
initiated a body of research on techniques to speed up double-scalar multiplica-
tion [19]. When using a simultaneous approach to compute R = kP ± lQ, this
can be achieved by representing the two scalars k and l in such a way that the
number of required point arithmetic operations is reduced, or by reducing the
individual cost of the point arithmetic operations, or through the combination
of both (as in e.g. [7]). While the massive computational burden of verification
affects basically any implementation, the problem of high memory consumption
is mainly relevant for embedded software that runs on resource-limited devices
with little memory, such as smart cards or wireless sensor nodes. Recently, Liu
et al. [25] presented a lightweight elliptic curve software for embedded platforms
and reported that, on a 16-bit MSP430 microcontroller, the verification opera-
tion of their signature scheme consumes about 5 kB of stack memory, while the
signature generation needs a stack space of merely 1.6 kB. In other words, the
verification is roughly three times more “memory hungry” than the generation
of a signature. In the past, there was relatively little awareness of this problem
because resource-constrained devices like smart cards were exclusively used to
generate signatures, but not for verification. However, the recent growth of the
Internet of things has created a demand to support advanced security protocols
(involving verifications) on restricted devices, and in such settings the memory
consumption is indeed a serious problem, as was recently pointed out in [3].
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In this paper, we present an approach to make the double-scalar multiplica-
tion required for the verification of an EdDSA signature more “lightweight” in
terms of RAM footprint. Our basic idea is to exploit the birational equivalence
between twisted Edwards curves and Montgomery curves in order to combine
their individual arithmetic benefits. More concretely, we split the computation
of kP − lQ into two separate steps, namely the fixed-base scalar multiplication
kP carried out with a fixed-base comb method using the twisted Edwards form
of the curve, and the variable-base scalar multiplication lQ, which we perform
with the straightforward (i.e. “X-coordinate-only”) Montgomery ladder on the
birationally-equivalent Montgomery curve [29]. At the end of the ladder compu-
tation, the (projective) Y coordinate of the result is recovered according to the
formulae from [31], and the obtained projective point is then converted to the
corresponding projective point on the birationally-equivalent twisted Edwards
curve so that it can be subtracted from kP . Intuitively, one would expect this
approach to be memory-efficient since the two scalar multiplications are carried
out sequentially and both the fixed-base comb method on the twisted Edwards
curve and the variable-base Montgomery ladder on the Montgomery curve can
be optimized to have a RAM footprint of below 1 kB as shown in [26]. On the
other hand, one would also expect the “separated” approach to be slower than
a simultaneous double-scalar multiplication since it requires more point addi-
tions and doublings. The experimental results we report in this paper allow one
to analyze the trade-offs between execution time and RAM footprint these two
approaches provide. We also discuss some corner cases in the point conversion
and the recovery of the Y coordinate that require special attention.

2 Preliminaries

In this section, we first describe the EdDSA signature scheme and then give an
overview of the arithmetic properties of (twisted) Edwards curves.

EdDSA. The Edwards-curve Digital Signature Algorithm (EdDSA) is a state-
of-the-art signature scheme that provides high speed in software (especially on
64-bit platforms) and high security [8, 9]. EdDSA was obviously inspired by the
classical Schnorr signature algorithm [36], which, in its original form, uses Zp as
underlying algebraic structure, but can be straightforwardly adapted for elliptic
curve groups; see e.g. [10, Sect. 4.2.3] for a formal description of a curve-based
variant. However, EdDSA comes with a number of enhancements compared to
[10] that were developed with the goal to improve the real-world security of the
scheme. The major differences between EdDSA and the EC-Schnorr signature
algorithm described in [10] are as follows.

– EdDSA is a deterministic signature scheme since it employs a deterministic
process to generate the secret scalar r (called “session key” in [8]) needed to
sign a message M . Concretely, EdDSA generates r by hashing a long-term
secret together with M . In this way, the signing operation does not require
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any fresh randomness and it is also guaranteed that a value r is never used
for different messages. On the other hand, the classical EC-Schnorr scheme
from [10] has to produce a fresh random value r for each message M to be
signed. This r must be unique for every M and chosen uniformly from the
set {1, 2, . . . , ` − 1}, where ` is the order of the base point. Even marginal
deviations from randomness or a slight non-uniformity of the distribution
from which r is taken can enable an attack against the EC-Schnorr scheme
that may allow an adversary to get the signer’s private key. EdDSA avoids
such problems and is, therefore, particularly suited for environments where
accessing a source of high-quality randomness is not easily possible.

– A distinguishing characteristic of curve-based Schnorr signature schemes is
that they hash the message M together with R = rB, i.e. the result of the
scalar multiplication between the secret scalar r and the base point B. The
EC-Schnorr variant specified in [10] actually computes Hash(M,xR) where
xR is the x-coordinate of R. EdDSA, on the other hand, also includes the
signer’s public key A in the hash computation; more precisely, it computes
Hash(R,A,M) as part of the signature generation. The purpose of this so-
called key-prefixing is to provide an “inexpensive way to alleviate concerns
that several public keys could be attacked simultaneously” [8]. Indeed, as
recently proven by Bernstein [5], single-user security for Schnorr signatures
tightly implies multi-user security for key-prefixed Schnorr signatures in the
standard model. Shortly after the publication of [5], Kiltz et al. [22] found
that key-prefixing is not needed to ensure multi-user security and provided
a reduction showing that “strong” single-user unforgeability tightly implies
“strong” multi-user unforgeability in the random oracle model. However, to
date, proving multi-user security using standard unforgeability assumptions
without key-prefixing remains being an open problem.

– EdDSA supports fast verification of (large) batches of signatures, which is
not (efficiently) possible when using the EC-Schnorr scheme from [10]. The
saving in execution time that can be achieved through a batch verification
of 64 signatures (versus an individual verification of 64 signatures) is more
than 52% according to the experimental results reported in [8]. To achieve
this speed-up, the designers of EdDSA modified the signature generation to
output the (compressed) point R = rB as first component of the signature
instead of Hash(M,xR) as in EC-Schnorr. This tweak does not impact the
security compared to EC-Schnorr since, given an EC-Schorr signature and
the signer’s public key, one can always recover R as in [10, Sect. 4.2.3.2].

– When designing an elliptic curve signature scheme, it is common practice to
choose a hash function with an output length matching the bit-length of the
order ` of the base point B. Choosing the hash function in this way is also
recommended for the EC-Schnorr algorithm in [10]. However, the designers
of EdDSA were more conservative and recommend to employ a double-size
hash function, claiming it “helps alleviate concerns regarding hash-function
security” [8]. Specifically, they recommend to use SHA-512 when EdDSA is
instantiated with a twisted Edwards curve that is birationally equivalent to
Curve25519 and a base point B whose order ` has a bit-length of 253.
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Algorithm 1. EdDSA signature generation (sketch)

Input: Domain parameters (Fq, E,B, `), signer’s key pair (a,A), signer’s long-term
secret n for session-key generation, and message M .

Output: Signature (R, s) of M .
1: r ← Hash(n,M) mod `
2: R← rB
3: h← Hash(R,A,M) mod `
4: s← r + ha mod `
5: return (R, s)

Algorithm 1 specifies a (slightly) simplified version of the EdDSA signature
generation as described in [8]. We left out some details that are not relevant in
the context of the present paper. One such detail concerns the long-term secrets
a and n, which are generated by hashing a secret “master key.” In addition, the
points R and A in line 3 and 5 are actually compressed, i.e. represented by the
y-coordinate and one bit of the x-coordinate (see [8] for further details). When
using the curve promoted by the EdDSA designers, which is a twisted Edwards
curve birationally equivalent to Curve25519 [4], then a compressed point fits in
32 bytes and the complete signature has a size of 64 bytes. As shown in Algo-
rithm 1, the message M is actually hashed twice, whereby one of the inputs to
the second hash computation in line 3, namely the point R = rB, depends on
the result of the first hash computation in line 1. This dependency may require
the signer to buffer the complete message M , which could exceed the available
memory capacity when M is large. Furthermore, this “double hashing” is also
computationally expensive for large messages3. On the other hand, when M is
relatively small, then the overall execution time of the signature generation is
primarily determined by the scalar multiplication R = rB in line 2, which is, in
fact, a fixed-base scalar multiplication since B is a pre-defined point.

Algorithm 2. EdDSA signature verification (sketch)

Input: Domain parameters (Fq, E,B, `), signer’s public key A, message M , and alleged
signature (R, s).

Output: Acceptance or rejection of signature.
1: h← Hash(R,A,M) mod `
2: return Accept if R = sB − hA and Reject otherwise

Algorithm 2 describes the operations that need to be performed in order to
verify an EdDSA signature. In particular, for short messages, one can assume
that the hash computation in line 1 is relatively inexpensive, which means the

3 RFC 8032 [21] specifies besides the original EdDSA scheme also a pre-hash version
that replaces the message M in Algorithm 1 by its hash value m = Hash(M). This
pre-hashing potentially reduces the execution time and RAM requirements for large
messages, but loses the collision-resilience feature of the original EdDSA.
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overall execution time will be mainly determined by checking whether R equals
sB − hA or not. This check can be carried out in a few different ways, but the
most common approach is to compute sB − hA using an algorithm optimized
for double-scalar multiplication (i.e. an algorithm that computes sB and hA in
an interleaved or simultaneous fashion with “joint” doublings) and compare the
result with R. The performance can be further improved by pre-computation
of multiples of the points B and A (and possibly also combinations thereof) as
well as by using a special representation of the two scalars s and h to minimize
their joint weight; see e.g. [7, 12, 19] for a more detailed treatment. However, on
memory-restricted devices, it generally makes sense to represent the scalars in
Joint-Sparse Form (JSF) [37] since in this case the verifier has to pre-compute
and store just two points, namely B − A and B + A. An alternative technique
to verify an EdDSA signature consists of computing R + hA and sB, and then
checking whether they are equal or not, which can be efficiently done using the
projective representations of the points (i.e. no projective-to-affine conversions
are required). However, a drawback of this approach is that the verifier has to
carry out a costly decompression of R.

Twisted Edwards Curves. EdDSA uses a special class of elliptic curves, the
so-called twisted Edwards (TE) curves, which were first described by Bernstein
et al. in 2008 [6]. A TE curve over a non-binary finite field Fq is defined by an
equation of the form

ET : ax2 + y2 = 1 + dx2y2 (1)

where a and d are distinct and non-zero. The order of a TE curve is a multiple
of four, and every TE curve contains a point of order two, which is (0,−1). An
interesting feature of TE curves is the existence of a neutral element O = (0, 1)
that is an affine point on the curve. The formula for point addition

(x3, y3)︸ ︷︷ ︸
P3

= (x1, y1)︸ ︷︷ ︸
P1

+ (x2, y2)︸ ︷︷ ︸
P2

=
( x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − ax1x2
1− dx1x2y1y2

)
is unified and can, therefore, also be used for point doubling, i.e. it yields the
correct result when P1 = P2. Further, it is complete when a is a square and d is
a non-square in Fq, so that the correct sum is computed for any pair of points
(including special cases like P1 = O, P2 = O, P2 = −P1). The additive inverse
of a point (x, y) is the point (−x, y). Any TE curve is birationally-equivalent to
a Montgomery curve [29] (i.e. a curve defined by By2 = x3 + Ax2 + x over Fp)
and vice versa. The specific TE curve recommended by the EdDSA designers is
birationally-equivalent to Curve25519 [4] and has the parameters a = −1 and
d = −121665/121166 ∈ Fp with p = 2255 − 19. The group ET (Fp) is isomorphic
to Z` × Z8 where ` is a 253-bit prime (see [8, 9] for more details).

When a = −1, the extended TE coordinates introduced in [20] allow one to
perform a “mixed” point addition with only seven multiplications (7M) in the
underlying field [26]. Doubling a point in extended projective coordinates costs
three multiplications (3M) and four squarings (4S).
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3 Implementation Options for EdDSA Verification

In this section we will have a closer look at different ways the verification of an
EdDSA signature can be implemented, whereby we pay special attention to the
double-scalar multiplication sB − hA. The straightforward approach, which is
used by most (lightweight) cryptographic libraries, is to compute sB and hA in
a combined fashion (i.e. with “joint” doublings) following e.g. the simultaneous
or interleaving strategy [19]. An alternative approach is to completely separate
these two scalar multiplications and exploit the birational equivalence between
the TE form and the Montgomery form.

3.1 Simultaneous Double-Scalar Multiplication

There are two main approaches for performing the double-scalar multiplication
sB − hA in a combined fashion, namely the simultaneous method [19] and the
interleaving technique [28], which have their origin in corresponding algorithms
for multi-exponentiation. Both methods reduce the number of point doublings
by half (compared to the separate computation of sB and hA) at the expense
of increased RAM consumption for storing a pre-computed table that contains
multiples (and possibly also linear combinations4) of the two base points A and
B. Furthermore, both methods can utilize a “low-weight” representation of the
scalars, e.g. Non-Adjacent Form (NAF) or Joint-Sparse Form (JSF) [19], which
determines the actual execution time (i.e. the number of point additions) and
the size of the pre-computed table. However, when RAM is limited, it makes
generally sense to restrict the size of the table to a few points, e.g. four points
including A and B. In this case, the simultaneous double-scalar multiplication
with a JSF representation of the scalars s and h executes, on average, the same
number of point additions in the evaluation phase as the interleaving technique
with width-3 NAFs (see [19, Table 3.6] for a more detailed analysis). Since the
width-3 NAFs of s and h require more RAM than their JSF representation, we
decided to implement the simultaneous method.

The JSF utilizes a binary (i.e. radix-2) signed-digit number system with the
digit set D = {−1, 0, 1} to represent a pair of integers a, b such that they have
minimal joint Hamming weight, which means the number of non-(0, 0) columns
is as small as possible. Solinas gave in [37] a formal definition of the JSF based
on three properties and also proved both its uniqueness and optimality. More
concretely, he showed that any pair of integers has a unique JSF and that this
JSF has the least density of non-(0, 0) columns among all joint expansions. The
number of digits of the JSF representation of two positive integers exceeds the
bitlength of the larger of these two integers by at most one digit. However, since
each digit is from D and requires two bits for its representation, the JSF of the
scalars s and h needed for EdDSA verification occupies 128 bytes in RAM.

4 The main difference between the simultaneous method and the interleaving method
is that, in the latter case, the table entries are disjoint with respect to the two base
points A and B (i.e. each pre-computed value involves only a single base point).
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Algorithm 3. Simultaneous method for double-scalar multiplication.

Input: Twisted Edwards curve ET over Fq of cardinality h` where ` is prime, rational
points A ∈ ET (Fq) and B ∈ ET (Fq), scalars h ∈ [0, `− 1] and s ∈ [0, `− 1].

Output: Point R = sB − hA in affine coordinates.
1: (s′, h′)← JointSparseForm(s, h)
2: T ← [−A, B + A, B, B −A ] {table with 2 affine and 2 proj. points}
3: T ← ProToExtAff(T ) {table with 4 extended affine points}
4: Q← O
5: for i from Length(s′, h′)− 1 down to 0 do
6: Q← 2Q
7: di ← 3s′i + h′

i

8: if (di > 0) then Q← Q + T [di − 1] end if
9: if (di < 0) then Q← Q− T [Abs(di)− 1] end if

10: end for
11: R← ProToAff(Q)
12: return R

Algorithm 3 shows a simplified implementation of the simultaneous method
for the double-scalar multiplication sB − hA using the JSF for the scalars. The
computation of the JSF of the scalars s and h in line 1 is relatively inexpensive
and can be done as specified in e.g. [37] or [19, Algorithm 3.50]. Thereafter, the
entries of the table T are generated, starting with the sum S = B + A and the
difference D = B − A, which we obtain using the projective addition formulae
from [6, Sect. 6]. We convert these two (projective) points to affine coordinates
by taking advantage of the simultaneous inversion technique, i.e. we invert the
product ZSZD and then obtain 1/ZS and 1/ZD by multiplying the result of the
inversion by ZD and ZS , respectively [19, Algorithm 2.26]. Next, the four affine
points −A, B, S, and D have to be represented in extended affine coordinates
of the form (u, v, w) where u = (x + y)/2, v = (y − x)/2, w = dxy [9, 24] and
stored in table T . The bulk of the computation, in particular the doubling and
addition/subtraction of points, is carried out in a relatively simple loop whose
number of iterations corresponds to the length of the JSF expansion of the two
scalars (approximately the bitlength of `). In each iteration, a point doubling is
performed (line 6) and an index di to access the table T is calculated based on
the digits s′i and h′i (line 7). This index di is in the range [−4, 4]; depending on
its value and sign, an entry of table T may be added or subtracted as specified
in line 8 and 9. Since the negation of a point is cheap, it suffices to have a table
with only four pre-computed points. The point Q (represented with extended
projective coordinates) is initialized to the neutral element O and updated in
each iteration of the loop until it eventually holds the result sB − hA, which is
finally converted to standard affine coordinates (line 11).

Since, on average, roughly half of the columns of the JSF expansion of s and
h are not (0, 0) [37], the probability that di 6= 0 is roughly 50%. Thus, it can be
expected that only in roughly half of the iterations of the loop a point addition
(or subtraction) is actually performed. On the other hand, a point doubling is
carried out in each iteration. Using the basic cost models for a mixed addition
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(7M) and projective doubling (3M + 4S) mentioned in Sect. 2, we can estimate
that, on average, 0.5 · 7 + 3 = 6.5 multiplications and four squarings in Fp are
executed per iteration. Consequently, the complete cost of the loop amounts to
about 6.5n multiplications and 4n squarings in Fp (where n is the length of the
JSF expansion), i.e. roughly 6.5M + 4S per scalar bit. The pre-computed table
T contains four points in extended affine coordinates, which means in our case
the table occupies 384 bytes in RAM (96 bytes per point).

3.2 Two Separate Scalar Multiplications

An obvious alternative to the simultaneous method for obtaining sB − hA is to
split the computation into two completely separate parts, namely a fixed-base
scalar multiplication sB, and a variable-base scalar multiplication hA. Intu-
itively, one expects this separated approach to be slower than the simultaneous
method since significantly more point doublings have to be performed, which is
likely the reason why this approach has, to our knowledge, never been analyzed
in the literature. However, this disadvantage can be mitigated by exploiting the
birational equivalence between TE curves and Montgomery curves, enabling us
to take advantage of the highly-efficient Montgomery ladder to implement the
variable-base scalar multiplication hA. The primary advantage of the separated
approach is low memory consumption (in relation to the simultaneous method)
since it requires neither a table with pre-computed points nor additional space
for a JSF representation of the two scalars.

Algorithm 4. Scalar multiplication on TE curve using Montgomery ladder

Input: Twisted Edwards curve ET over Fq of cardinality h` where ` is prime, rational
point P = (x, y) ∈ ET (Fq) with ord(P ) ≥ `, scalar k ∈ [0, `− 1].

Output: Point Q = kP in projective coordinates.
1: if k = 0 then return (0 : 1 : 1)
2: if k = `− 1 then return (−x : y : 1)
3: Pm ← TedToMon(P )
4: (Q1, Q2)←MonLadder(Pm)
5: Qr ← RecoverY(Q1, Q2, Pm)
6: Q←MonToTed(Qr)
7: return Q

Algorithm 4 explains how one can perform a variable-base scalar multiplica-
tion kP (where P is a public key, i.e. a rational point on a TE curve) using the
Montgomery ladder on the birationally-equivalent Montgomery curve, which is
in the case of Ed25519 a curve5 that is isomorphic to Curve25519. At first, the
point P on the TE curve is mapped to the Montgomery curve with help of the

5 The specific Montgomery curve that is birationally-equivalent to the TE curve used
by Ed25519 has the same parameter A as Curve25519 (i.e. A = 48662 [4]), but the
parameter B differs since B = −(A + 2) = −48664 instead of B = 1.
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formulae given in [6]. This mapping involves a costly inversion, since to achieve
maximum performance, the input point for the Montgomery ladder needs to be
represented in affine coordinates. Thereafter, the Montgomery ladder is carried
out in a similar fashion as in X25519 key exchange [4] (i.e. the point arithmetic
involves only the projective X and Z coordinate) and, thus, achieves the same
efficiency. However, there are two deviations from the X25519 ladder, namely (i)
the Y coordinate of the resulting point has to be recovered, and (ii) the main
loop of the ladder (as specified in e.g. [17]) needs to be modified because, unlike
X25519, it can not be taken for granted that the most significant “1” bit of the
scalar is always at the same position. Finally, the resulting point in projective
(X : Y : Z) coordinates has to be converted to the corresponding point on the
TE curve. This TE point can be in projective coordinates since it is added to
the result of the fixed-base scalar multiplication sB, which is usually also given
in projective coordinates. Only at the very end, a single inversion is necessary to
get the final result (i.e. the sum of the results of the two scalar multiplications)
in affine coordinates. Although the basic principle of performing the variable-
base scalar multiplication hA on the birationally-equivalent Montgomery curve
is fairly straightforward, there are a couple of corner cases that require special
attention. Such corner cases can occur in (i) the point conversions between the
TE form and the Montgomery form, and (ii) the recovery of the Y coordinate
at the end of the Montgomery ladder.

Corner Cases of Point Conversion. An affine point (xt, yt) on a TE-form
elliptic curve ET can be converted to the corresponding point (xm, ym) on the
birationally-equivalent Montgomery curve EM using the following map [6].

φ : (xt, yt) 7→ (xm, ym) =

(
1 + yt
1− yt

,
1 + yt

(1− yt)xt

)
(2)

Obviously, the map φ is not defined for xt = 0 or yt = 1. Since the parameters
a and d of a TE curve ET must be distinct and nonzero, there exists only one
point with yt = 1, namely the neutral element (0, 1), which corresponds to the
point at infinity O on the birationally-equivalent Montgomery curve. There are
two points on ET with xt = 0; one is the neutral element (0, 1) and the other is
the point (0,−1). This point has order 2 and corresponds to the point (0, 0) on
the Montgomery curve, which also has order 2 [6].

Given an affine point (xm, ym) on a Montgomery curve EM governed by the
equation By2 = x3 +Ax2 + x, one can compute the corresponding point on the
birationally-equivalent TE curve ET using the map

ψ : (xm, ym) 7→ (xt, yt) =

(
xm
ym

,
xm − 1

xm + 1

)
. (3)

The map ψ is not regular at points with xm = −1 or ym = 0; in particular ψ is
undefined at the affine point (0, 0) on EM . Another special case for which ψ is
irregular are the points with xm = −1. By setting xm to −1, we can write the
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Montgomery-curve equation as By2m = A − 2 to make it clear that such points
only exist when (A− 2)/B is a square in Fp, which obviously does not apply to
our curve. Hence, in summary, corner cases in the conversion of points between
the TE model and the birationally-equivalent Montgomery model can only be
caused by points of low order. However, since the input point for the variable-
base scalar multiplication hA is the signer’s public key A, it should never have
low order, provided the signer generated his/her key pair in a proper fashion as
specified in [8]. We will discuss low-order points further in the next subsection
and describe how our implementation deals with them.

Corner Cases of Y -Coordinate Recovery. Situations that require special
attention can also emerge during the recovery of the Y coordinate as described
in [31]. According to Algorithm 4, the Montgomery ladder actually returns two
points, namely Q1 = kPm and Q2 = Q1 + Pm = kPm + Pm = (k + 1)Pm (see
[13] for details). The X and Z coordinates of these two points, along with the
affine x and y coordinates of the input point Pm, allow one to re-compute the
projective Y -coordinate of Q1, which is relatively inexpensive since it requires
only ten multiplications and six additions/subtractions in Fp. Given the points
Q1 = (X1 : Z1), Q2 = (X2 : Z2), Pm = (xm, ym), a full projective representation
of Q1 (including Y coordinate) can be obtained as follows [31]:

Xr = 2BymZ1Z2X1

Yr = Z2[(X1 + xmZ1 + 2AZ1)(X1xm + Z1)− 2AZ2
1 ]− (X1 − xmZ1)2X2

Zr = 2BymZ1Z2Z1

The coordinate Zr of this new representation of Q1 is a product of ym, Z2
1 , and

Z2, but this does normally not change the value of the affine x coordinate since
xr = Xr/Zr = X1/Z1. However, the equation for Zr shows that recovering the
affine y coordinate yr = Yr/Zr does not work when (i) the y coordinate of the
ladder-input Pm is 0, or (ii) the projective Z coordinate of one of the output-
points of the ladder (i.e. Z1 or Z2) is 0. The former case is only possible when
Pm has order 2 [13], which means Pm = (0, 0) since there are no other points
in the 2-torsion group of our Montgomery curve. A pragmatic approach to deal
with this corner case is to simply reject a public key if it has low order (as we
will discuss in detail in the next subsection). Preventing low-order points from
entering the ladder also simplifies the analysis of the second corner case, i.e. the
case Z1 = 0 or Z2 = 0. Namely, when we exclude low-order points as input to
the ladder and insist that k is in the range [0, `− 1], then Z1 = 0 (i.e. Q1 = O)
is only possible when k = 0. On the other hand, Z2 = 0 (i.e. Q2 = O) implies
Q1 = −Pm since Q2 = Q1 + Pm, which can only occur when k = `− 1.

So, in summary, when the order of the ladder input Pm is at least `, there
remain only two corner cases that require special attention when recovering the
Y coordinate at the end of the ladder, namely k = 0 and k = ` − 1. As shown
in Algorithm 4, our implementation handles these special cases through if-then
clauses (line 1 and 2) without actually executing the ladder.
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Single Ladder for X25519 and Ed25519. The Montgomery ladder can be
used to implement not only EdDSA verification, but also ECDH key exchange
as described in [4]. This naturally raises the question whether one and the same
ladder implementation can serve both cryptosystems and, in this way, reduce
the code size of an ECC library. As already mentioned before, there are some
subtle differences between a conventional X25519 ladder (see e.g. [17]) and the
ladder we use to compute hA as part of EdDSA verification. In particular, due
to the so-called “clamping” of scalars according to [4], the highest “1” bit of an
X22519 scalar is always at the same position, which is not guaranteed for the
scalar h computed during EdDSA verification (line 1 of Algorithm 2) since it is
a hash value reduced modulo `. Furthermore, a ladder for X25519 key exchange
has to be resistant to timings attacks, whereas a ladder for EdDSA verification
does not. Nonetheless, it is possible to implement a “unified” ladder that suits
both X25519 and Ed25519 by adopting one of the following two strategies. The
first is to initialize the ladder as usual (i.e. Q1 = (xm : 1) and Q2 = 2Q1), then
scan for the most-significant “1” bit in the scalar, and start the iteration of the
ladder loop from the next-lower bit. This scanning for the highest “1” bit does
not introduce a vulnerability to timing attacks, even when it is implemented in
a naive way, since X25519 scalars are always “clamped” as specified in [4]. An
alternative way is to initialize the ladder with Q1 = (0 : 1) and Q2 = (xm : 1)
to make it work correctly with leading “0” bits in a scalar. More precisely, this
initialization allows one to fix the number of ladder iterations for X25519 and
Ed25519 to e.g. 256 because the processing of leading “0” bits does not change
Q1 and also not the quotient X2/Z2 [13]. We implemented the first method as
it enables slightly better performance for EdDSA verification.

Computation of R = sB − hA. Besides the variable-base scalar multipli-
cation hA, we also have compute sB, where s ∈ [0, ` − 1] is extracted from the
signature to be verified and B ∈ ET (Fp) is the generator of the cyclic sub-group
specified by the parameter set for EdDSA [8]. This computation is a fixed-base
scalar multiplication and can be carried out much faster than the variable-base
scalar multiplication hA. Our software implementation executes this fixed-base
scalar multiplication via a fixed-base comb method [19] with a radix-24 signed-
digit representation for the scalar s, which means four bits of s are processed
at once. The implementation uses a look-up table of eight pre-computed points
that are stored in flash memory (and not in RAM) since B is fixed and known
a priori. Our implementation of the fixed-base comb method is, in essence, the
same as in [26], where a detailed description can be found. After computation
of the two points sB and hA, which are obtained in projective coordinates, the
latter has to be subtracted from the former. We use the (projective) addition
formulae provided in [6] for this subtraction. Finally, the point R = sB − hA is
converted to standard affine coordinates and then compressed so that it can be
compared with the compressed point contained in the signature.

Thanks to the extended projective coordinates introduced in [20], a mixed
point addition (i.e. an addition where one point is given in extended projective
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coordinates and the other point in extended affine coordinates) costs just seven
multiplications (7M) in Fp [26, 24]. Furthermore, doubling a point in extended
projective coordinates requires four multiplications (4M) and three squarings
(3M). Our fixed-base comb method (with eight pre-computed points) executes
n/4 point doublings the same number of point additions, where n refers to the
bitlength of the scalar. The overall cost of the fixed-base scalar multiplication
sB amounts to (7n+ 3n)/4 = 2.5n multiplications and 4n/4 = 1n squarings in
Fp, i.e. 2.5M + 1S per bit of the scalar. Thanks to the Montgomery ladder, the
variable-base scalar multiplication hA takes only 5M + 4S per scalar bit [4]. In
summary, the overall cost of the separated approach to compute sB and hA is
7.5M + 5S per bit, which is only slightly (i.e. 1M + 1S) worse than the average
number of multiplications/squarings for the simultaneous technique. Both the
simultaneous technique and the separated method also involve two inversions in
Fp, one at the beginning and one at the end of the scalar multiplication.

3.3 Compatibility with other ECC Libraries

The initial Ed25519 specification from [8, 9] does not mandate much validation
of input data and is also relatively vague when it comes to dealing with certain
“corner cases.” In particular, Ed25519 as specified in [8, 9] does not validate the
signer’s public key A; it does not even carry out a partial public-key validation
(by checking cA 6= O [1], where c is the cofactor, i.e. c = #E(Fp)/`) to ensure
that A does not have low order. However, due to the lack of key validation, the
Ed25519 signature scheme can not guarantee non-repudiation or resilience to
key-substitution attacks (see [11, Sect. A] for an example). Another problem is
the omission of clear guidance on how to handle corner cases, which has led to
a number of Ed25519 variants, as well as inconsistencies and incompatibilities
between implementations. As analyzed in e.g. [11, 16], existing implementations
of variants or tweaks of Ed25519 differ with respect to the following aspects.

– whether a non-canonically encoded scalar s is accepted as valid input,
– whether non-canonically encoded points A, R are accepted as valid input,
– whether the points A, R are allowed to have low order,
– whether the verification procedure uses the cofactored (“batched”) equation

8R = 8(sB − hA) or the more strict cofactorless equation R = sB − hA.

The specific way how an Ed25519 implementation deals with corner cases does
not affect the verification of honestly-generated signatures, but can cause diver-
gence when the signer (or an attacker) crafts a signature so that it is accepted
by some implementations and rejected by others. This is especially problematic
when an Ed25519 signature is verified by many entities seeking for a consensus
(e.g. contract signing, electronic voting, blockchain transactions [11]).

Our software is compatible with the widely-used LibSodium library (version
1.0.16 or newer), which means it rejects an alleged signature when s, A or R is
non-canonically encoded, or when A or R has low order. Any alleged signature
passing these input checks is then verified using the cofactorless equation.
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4 Experimental Results

The target platform of our performance assessment of the two implementation
options for EdDSA verification described in the last section is the well-known
and widely-used 16-bit MSP430 architecture from Texas Instruments. MSP430
microcontrollers were designed for extremely low power dissipation; this covers
not only the active processing power, but also standby and memory read/write
power, respectively [14]. Regarding the latter it should be noted that MSP430
devices were among the first to be equipped with Ferro-electric Random Access
Memory (FRAM), which has similar attributes like SRAM (e.g. fast read and
write operations, low power dissipation, high reliability and endurance), but is
non-volatile, like EEPROM or flash memory, and can hold data even after it is
powered off. This feature makes it relatively easy to switch from active mode to
standby or sleep mode, thereby enabling energy savings even for short periods
of inactivity, since data can simply remain in FRAM. For these reasons, Texas
Instruments markets the MSP430 family as “ultra-low-power” microcontrollers
to emphasize their suitability for the Internet of Things (IoT) [14].

The MSP430 uses the von-Neumann memory model, which means code and
data share a unified address space, and there is a single address bus and single
data bus that connects the CPU core with RAM, flash/ROM, and peripheral
modules. Twelve out of a total of 16 registers (each 16 bits wide) are available
for general use; the remaining four serve a special purpose. The MSP430 archi-
tecture has a reduced instruction set consisting of 27 core instructions that can
be split into three categories: double-operand instructions (which overwrite one
of the operands with the result), single-operand instructions, and jumps. This
minimalist instruction set is orthogonal and supports seven addressing modes
altogether, including modes for direct memory-to-memory transfers without an
intermediate register holding [38]. The used addressing mode(s) determine the
latency of double-operand instructions, which can vary between one clock cycle
(when both source and destination operand are held in registers) and six clock
cycles (operands are in RAM or in flash). Some MSP430 models, including the
MSP430F1611 we use for our benchmarking, have a memory-mapped hardware
multiplier capable to carry out (16 × 16)-bit multiply and multiply-accumulate
operations [38]. Since this multiplier is a memory-mapped peripheral, it has to
be accessed by writing the two operands to specific locations in memory. The
MSP430F1611 is equipped with 10 kB RAM and 48 kB flash.

Our implementation of the field-arithmetic operations is a slightly modified
and improved version of the ECC software for MSP430(X) devices introduced
in [24]. This library is written in Assembly language and provides all low-level
operations needed to perform point addition and doubling on Montgomery and
TE curves, respectively. Since our target device is a 16-bit microcontroller, the
elements of Fp are represented as arrays of (unsigned) 16-bit words, i.e. arrays
of type uint16 t. Except for inversion, the arithmetic functions do not execute
operand-dependent conditional jumps or branches (i.e. their execution time is
constant), which contributes to preventing timing attacks against the signature
generation. Although the verification of an EdDSA signature does not involve
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Table 1. Execution time and binary code size of 255-bit field-arithmetic operations on
an MSP430F1611 microcontroller.

Exec. time Code size
Operation

(cycles) (bytes)

Addition 322 100

Subtraction 332 140

Multiplication (incl. red.) 5388 352

Squaring (incl. red.) 3826 388

Mul. by 32-bit constant 1040 240

Inversion (incl. masking) 197102 942

any secret information, it still makes sense to use a constant-time Fp-arithmetic
library since it can be shared between the signature generation and verification
functions. The Fp-inversion of our library is based on the Extended Euclidean
Algorithm (EEA), but uses a “multiplicative masking” technique to randomize
the execution time and thwart timing attacks (see [24] for details).

Table 1 specifies the execution time (including function-call overhead) and
code size of the most important operations of our Fp-arithmetic library on an
MSP430F1611 microcontroller. These timings are slightly better than the ones
reported in [24], which is due to a couple of further Assembly optimizations we
added to the source code. The code size of the full library for Fp-arithmetic is
just slightly more than 2.2 kB, which is very small compared to other MSP430
implementations, e.g. [2, 18, 23, 27, 32, 33]. This small code size became possible
because our arithmetic library is not purely optimized for high performance (as
most other libraries) but aims for a trade-off between size and speed.

Table 2. Execution time, RAM footprint, and binary code size (excluding the field
arithmetic) of point-arithmetic operations on an MSP430F1611 microcontroller.

Exec. time RAM footpr. Code size
Operation

(cycles) (bytes) (bytes)

Point addition (TE curve) 39718 72 272

Point doubling (TE curve) 33451 68 268

Point addition (Mon curve) 25811 132 220

Point doubling (Mon curve) 20776 128 184

Recovery Y coord. (Mon curve) 56117 96 302

Conversion Mon to TE 22519 124 116

Conversion TE to Mon 22521 124 112

Table 2 summarizes the execution time, RAM footprint, and (binary) code
size of some point-arithmetic operations. Point addition and point doubling on
a Montgomery curve is significantly faster than on a TE curve, which is little
surprising since the projective point arithmetic on the former involves only the
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Table 3. Execution time, RAM footprint, and binary code size of scalar multiplication
and full EdDSA verification on an MSP430F1611 microcontroller.

Exec. time RAM footpr. Code size
Operation

(cycles) (bytes) (bytes)

Table pre-computation (TE curve) 261926 612 288

Double-scalar mul. (TE curve) 14126254 878 674 + 2230

EdDSA verification (simultaneous) 14206712 980 6143

Fixed-base scalar mul. (TE curve) 4682599 596 602 + 2230

Variable-base scalar mul. (Mon curve) 12138929 478 1356 + 2230

EdDSA verification (separated) 17516534 596 7850

X and Z coordinate. The recovery of the projective Y coordinate is a bit more
costly, but this operation is performed only once. The results for the code size
in the right column cover only the size of the function itself and do not include
sub-functions like the field-arithmetic operations (this makes sense because the
field arithmetic is shared across all higher-level operations).

Finally, Table 3 compares the execution time, RAM footprint, and code size
of the simultaneous method and the separated technique for double-scalar mul-
tiplication and full EdDSA signature verification, respectively. As expected, the
separated technique is slower than the simultaneous method, but the difference
(with respect to overall verification time) is relatively small, namely about 3.3
million clock cycles, which is approximately 24% of the verification time of the
simultaneous method. On the other hand, the simultaneous method consumes
almost 1 kB RAM, which is 394 bytes more than the amount of RAM needed
for the separated technique. This significant difference can be explained by the
fact that the separated method (i) does not need to store table with four pre-
computed points in RAM, and (ii) also does not occupy RAM for storing the
JSF representation of two scalars. The execution time of EdDSA verification is
mainly dominated by the double-base scalar multiplication, which contributes
more than 98% to the overall execution time when the message to be verified is
small. The execution times for the entire EdDSA verification listed in Table 3
were determined with a message of a length of only a few bytes, which means
the compression function of the SHA-512 hash function was executed only once
to obtain the 512-bit digest. Our assembler implementation of the compression
function has an execution time of about 38500 clock cycles, which is negligible
compared to the double-scalar multiplication.

5 Conclusions

All major elliptic-curve signature schemes have in common that the verification
of a signature requires much more computation time than its generation. Even
worse, most existing implementation results reported in the literature indicate
that verifying an EdDSA signature consumes significantly more RAM than the
signing operation, which poses a serious problem for resource-restricted devices
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like sensor nodes that often have only a few kilobytes of RAM. The enormous
computational cost and large RAM footprint of the verification is mainly due to
the double-scalar multiplication R = sB − hA, which is normally implemented
using the simultaneous method with joint doublings. In this paper we proposed
an alternative approach that splits the computation of sB − hA up into two
separate operations: a fixed-base scalar multiplication sB and a variable-base
scalar multiplication hA. By exploiting the birational equivalence between the
twisted Edwards model and the Montgomery model, we compute the variable-
base scalar multiplication with the fast Montgomery ladder. Our experiments
show that, on a 16-bit MSP430F1611 microcontroller, the separated method is
only 24% slower than the simultaneous method, but consumes about 40% less
RAM, mainly because it does not need to store a table of pre-computed points
and and also does not require a JSF-representation of the scalars. This makes
the separated approach an attractive alternative to the simultaneous technique
whenever RAM is a scarce resource.
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