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Abstract. The enormous growth of the Internet of Things (IoT) in the
recent past has fueled a strong demand for lightweight implementations
of cryptosystems, i.e. implementations that are efficient enough to run
on resource-limited devices like sensor nodes. However, most of today’s
widely-used cryptographic algorithms, including the AES or the SHA2
family of hash functions, were already designed some 20 years ago and
did not take efficiency in restricted environments into account. In this
paper, we introduce implementation options and software optimization
techniques to reduce the execution time of SHA-512 on 16-bit MSP430
microcontrollers. These optimizations include a novel register allocation
strategy for the 512-bit hash state, a fast “on-the-fly” message schedule
with low RAM footprint, special pointer arithmetic to avoid the need to
copy state words, as well as instruction sequences for multi-bit rotation
of 64-bit operands. Thanks to the combination of all these optimization
techniques, our hand-written MSP430 Assembler code for the SHA-512
compression function reaches an execution time of roughly 40.6k cycles
on an MSP430F1611 microcontroller. Hashing a message of 1000 bytes
takes slightly below 338k clock cycles, which corresponds to a hash rate
of about 338 cycles/byte. This execution time sets a new speed record
for hashing with 256 bits of security on a 16-bit platform and improves
the time needed by the fastest C implementations by a factor of 2.3. In
addition, our implementation is extremely small in terms of code size
(roughly 2.1k bytes) and has a RAM footprint of only 390 bytes.

Keywords: IoT security, lightweight cryptography, cryptographic hash
function, MSP430 architecture, software optimization.

1 Introduction

A cryptographic hash function is an algorithm that maps data of arbitrary size
and form to a fixed-size bit-string, typically between 160 and 512 bits, which is
(under idealized assumptions) unique and can be seen as a “digest” or “digital
fingerprint” of the data. Such algorithms play a crucial role in IT security and
are used for a broad range of purposes, e.g. to verify the integrity of data, to
serve as digest of data for digital signature schemes, to verify passwords, or to
implement a proof-of-work for digital currencies [10]. In addition to these basic
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applications, modern hash functions can also be used to construct e.g. Message
Authentication Codes (MACs), eXtensible Output Functions (XOFs), Pseudo-
Random Number Generators (PRNGs), and even stream ciphers. Amongst the
most important and widely-used hash functions are the members of the SHA2
family, which have been adopted by the NIST and many other standardization
bodies all around the world [7]. The SHA2 family consists of six hash functions
altogether, which vary with respect to the digest lengths (ranging from 224 to
512 bits) and, consequently, provide different levels of security. SHA-512 is the
“biggest” member of the family and especially important since it is part of the
popular Edwards Curve Digital Signature Algorithm (EdDSA) [5].

The SHA-512 algorithm is based on the carefully-analyzed Merkle-Damg̊ard
structure [6,3] and uses a Davies-Meyer compression function [9] that consists
of only Boolean operations (i.e. AND, OR, XOR, NOT), modular additions, as
well as shifts and rotations. All these operations are applied to a 512-bit state
arranged in the form of eight 64-bit words called working variables. Arithmetic
and logical operations on 64-bit words are extremely efficient on modern high-
end X64 processors, but can introduce a significant performance-bottleneck on
8 and 16-bit microcontrollers with a small register space and slow shift/rotate
operations. Such resource-constrained platforms can only hold a fraction of the
512-bit state in registers (but never the entire state), which necessitates a large
number of load and store operations to transfer working variables between the
register file and RAM. In addition, all small 8 and 16-bit microcontrollers can
only shift or rotate the content of a register by a single bit at a time, i.e. shifts
or rotations by n bits take (at least) n clock cycles. The cycle count increases
further when the data word to be shifted or rotated is too large to fit into one
register, which is always the case when SHA-512 is implemented on processors
with a word-size of less than 64 bits. Furthermore, most C compilers for small
microcontrollers are not good at optimizing arithmetic or logical operations on
64-bit words because operands of such a length have hardly any application on
8/16-bit platforms apart from cryptography.

The massive growth of the Internet of Things (IoT) [4] in the past 10 years
has created a strong interest in the question of how cryptographic algorithms
can be optimized for resource-restricted microcontrollers and what performance
highly-optimized implementations can achieve. An example for such platforms
is the MSP430(X) series of 16-bit ultra-low-power microcontrollers from Texas
Instruments [11]. MSP430 devices were among the first embedded platforms
to be equipped with Ferro-electric Random Access Memory (FRAM), which is
non-volatile (like Flash) but nonetheless offers high-speed read, write, and erase
accesses (similar to SRAM). In addition, MSP430 microcontrollers have several
low-power modes with fine-grain control over active components, making them
suitable for battery-operated devices like wireless sensor nodes. The MSP430 is
based on the von-Neumann memory model, which means code and data share
a unified address space, and there is a single address bus and a single data bus
that connects the microcontroller core with RAM, flash/ROM, and peripheral
modules. Twelve of the 16 registers (each 16 bits wide) are available for general
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use; the remaining four serve a special purpose. The MSP430 architecture has
a minimalist instruction set consisting of only 27 core instructions that can be
divided into three categories: double-operand instructions (which overwrite one
of the operands with the result), single-operand instructions, and jumps.

In this paper, we present (to the best of our knowledge) the first optimized
assembler implementation of SHA-512 for the MSP430(X) platform, which we
developed from scratch with the goal to achieve a reasonable trade-off between
fast execution time, small code size, and low memory consumption. The main
data structure of our SHA-512 software is an efficient circular buffer based on
a special memory alignment method and advanced pointer arithmetic. We also
explain how we optimized the rotation of 64-bit words, and how we maximized
the register usage (resp. minimized the number of memory accesses) in order to
speed up the computation of the compression function. Though we describe all
our optimization techniques in the context of SHA-512, they also facilitate the
implementation of other members of the SHA2 family, and may even be useful
for applications other than cryptographic hashing. We assess the performance
of our software by comparing it with a number of optimized C implementations
of SHA-512. This comparison indicates that our implementation is at least 2.3
times faster and requires less code size and RAM than its competitors.

2 SHA-512

SHA-512 is a member of the SHA2 suite of hash functions, which was designed
by the National Security Agency (NSA) and first published in 2001. The SHA2
suite includes six hash functions in total, with digest sizes ranging from 224 to
512 bits. After standardization by the U.S. National Institute of Standards and
Technology (NIST) [7] and various other standards bodies, the SHA2 suite has
become widely used in practice and is now an integral building block of modern
security protocols like SSL/TLS and IPSec. Another reason for the widespread
deployment of the SHA2 suite is their excellent performance in software. As its
name suggests, SHA-512 produces a digest of a length of 512 bits, which makes
it the “biggest” member of the SHA2 suite. It has a block size of 1024 bits and
can hash data of a length of up to 2128 bits (i.e. 2125 bytes). SHA-512, like all
other members of the SHA2 suite, involves a padding so that the length of the
data becomes a multiple of the block size. Finding a pair of colliding messages
based on the birthday paradox requires about 2256 evaluations of SHA-512. On
the other hand, finding a preimage (i.e. a message with a given hash value) has
a time complexity of 2512. In other words, SHA-512 provides 256 bits of security
against collision attacks and 512 bits of security against preimage attacks.

SHA-512, as well as all other members of the SHA2 suite, is a Merkle-Dam-
g̊ard construction, which is a well-established way of designing a hash function
from a one-way compression function [6,3]. A hash function built according to
the Merkle-Damg̊ard approach is provably resistant against collisions when the
compression function is collision-resistant and an appropriate padding scheme is
used. In other words, when following the Merkle-Damg̊ard method, the problem
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of designing a collision-resistant hash function for messages of any length boils
down to designing a collision-resistant compression function for short blocks. In
the SHA2 suite, the compression function is based on a block cipher according
to the Davies-Meyer strategy [9], which means the message block to compress is
fed as key to the block cipher, while the previous hash value is the plaintext to
encrypt. The ciphertext generated by the block cipher is then XORed with the
plaintext to produce the next hash value. Consequently, the block cipher of the
compression function of SHA-512 has a key length of 1024 bits and a block size
of 512 bits.

2.1 Preprocessing

According to [7], the SHA-512 hash function consists of two core parts: prepro-
cessing and hash computation. The former includes the padding of the message
and the initialization of the working variables to fixed values. Thereafter, the
actual hash computation involves a message schedule and (iteratively) produces
a sequence of hash values, the last of which forms the final digest.

SHA-512 takes as input a message M of a length of l < 2128 bits, which is
processed in blocks Mi with a fixed length of 1024 bits. At first, M is padded
by appending a “1” bit followed by a certain number of “0” bits such that the
overall bit-length becomes congruent to 896 modulo 1024 (i.e. when k denotes
the number of “0” bits, the congruence relation l + k + 129 ≡ 0 mod 1024 has
to hold). Then, l is appended as unsigned 128-bit integer (most significant byte
first), which means that the last block of a padded message becomes 1024 bits
long. Note that padding is always added, even if the length l of the unpadded
message M is already a multiple of 1024. Consequently, it can happen that the
padded message becomes one block longer than the unpadded message.

SHA-512 operates on a state of a length of 512 bits that holds intermediate
results during the computation and also the final message digest. This state is
organized in eight 64-bit working variables, usually referred to by the lowercase
letters a, b, c, d, e, f , g, and h. At the beginning of the hash computation, the
working variables are initialized to 64-bit integers, which are specified in [7] in
big-endian format, i.e. the most-significant byte is placed at the lowest address
(or leftmost byte position) of the word representing a working variable. These
eight 64-bit integers were obtained by taking the first 64 bits of the fractional
portions of the square roots of the first eight prime numbers.

2.2 Hash Computation

The most speed-critical part of SHA-512 is the computation of the compression
function, which is an iterative process consisting of 80 rounds. Each round gets
as input the set of working variables, a 64-bit word wi that is derived from the
message block to be compressed via the so-called message schedule (described
below), and a 64-bit round constant ki. These round constants are nothing else
than the first 64 bits of the fractional portions of the cube roots of the first 80
prime numbers. At the end of each round, the set of eight working variables is



Optimized Implementation of SHA-512 for 16-bit MSP430 Microcontrollers 5

w0 … w15 w16 … w79

64x64bit extension16x64bit

1024bit message chunk

Fig. 1. SHA-512 message schedule (a 1024-bit block of the message contained in sixteen
64-bit words w0, . . . , w15 is extended to 80 words w0, . . . , w79).

a b c d e f g h

b c d e f g h a

Maj

!1

Ch

!0

ki

wi

Fig. 2. Illustration of the SHA-512 round function showing how the working variables
a to h are updated in every round.

updated. Following to the Davies-Meyer principle, the working variables at the
end of the last (i.e. 80-th) round are XORed with the working variables at the
beginning of the first round.

Message Schedule. As depicted in Fig. 1, the message schedule expands the
1024-bit message block Mi to 80 words wi with 0 ≤ i ≤ 79, each of which has
a length of 64 bits. For the first 16 rounds, the 64-bit words w0 to w15 are the
same as the words of the 1024-bit block Mi of the message to be hashed. The
remaining 64 words are computed according to the following equations.

wi = (σ1(wi−2) + wi−7 + σ0(wi−15) + wi−16) mod 264

σ0(w) = (w ≫ 1)⊕ (w ≫ 8)⊕ (w � 7)

σ1(w) = (w ≫ 19)⊕ (w ≫ 61)⊕ (w � 6)

Consequently, the word wi for 16 ≤ i ≤ 79 is derived from four preceding words
of wi, namely wi−2, wi−7, wi−15, and wi−16, whereby two of these four words
are subjected to the functions σ0(.) and σ1(.). These “small sigma” functions
consist of XOR operations, right-rotations (represented by the symbol ≫), as
well as right-shifts (represented by �).
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Round Function. As shown in Fig. 2, the SHA-512 round function processes
the eight working variables a, b, c, d, e, f , g, and h, using as additional inputs
a word wi of the message schedule and a round constant ki. In each round, two
of the eight working variables are updated through additions (modulo 264) in
combination with the following four operations.

Σ0(e) = (e≫ 28)⊕ (e≫ 34)⊕ (e≫ 39)

Σ1(a) = (a≫ 14)⊕ (a≫ 18)⊕ (a≫ 41)

Ch(e, f, g) = (e ∧ f)⊕ (ē ∧ g)

Maj(a, b, c) = (a ∧ b)⊕ (a ∧ c)⊕ (b ∧ c)

The two Σ operations (“big sigma”) are very similar to the σ operations of the
message schedule and consist of rotations and XORs. Ch (short for “choice”) is
a conditional operation where e determines whether a bit of f or a bit of g gets
assigned to the output. On the other hand, Maj (short for “majority”) assigns
the majority of the three inputs bits a, b, c to the output, i.e. the output bit is
“1” if at least two bits are “1”. Finally, the values of the six working variables
a, b, c, e, f , g are respectively copied to the working variables b, c, d, f , g, h.

3 Implementation and Optimization for MSP430

In the following, we explain the main design choices and optimizations that we
made in order to obtain an efficient (i.e. fast) and “lightweight” (i.e. modest in
terms of RAM and flash footprint) implementation of SHA-512 for MSP430.

Storage of 64-bit Words in Registers and RAM. Since the MSP430 has
only 16-bit registers, the 64-bit words used by the SHA-512 algorithm have to
be processed in “chunks” of 16 bits. As can be seen in Fig. 3, there are sixteen
16-bit registers in total (R0 to R15), but only twelve of them (namely R4 to R15)
are general-purpose registers and can be freely used by the programmer. Since
four 16-bit registers are necessary to store a single 64-bit word, at most three
64-bit words can be kept in registers at once, as depicted in Fig. 3. During the
computation of the message expansion and the compression function, we often
use the stack pointer R1 to access 64-bit words in memory.

Depending on the used addressing mode, memory read and write operations
(i.e. MOV instructions) can take up to seven clock cycles, which means they are
relatively expensive compared to other architectures. Hence, memory accesses
should be avoided as much as possible. For example, loading a 64-bit word from
memory into four registers using four consecutive POP.W instructions requires
eight clock cycles, and writing a 64-bit word from registers to memory with the
help of four PUSH.W instructions takes even 12 cycles. But copying 64 bits from
four registers to four other registers can be done in just four cycles. This makes
a strong case to implement the compression function in such a way that the
frequently-accessed values are kept in registers as much as possible.
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R0/PC           16bit Program Counter

R1/SP           16bit Stack Pointer

R2/SR/CG1  16bit Status Register

R3/CG2        16bit Constant Generator

R4                 16bit General Purpose

R5                 16bit General Purpose

R6                 16bit General Purpose

R7                 16bit General Purpose

R8                 16bit General Purpose

R9                 16bit General Purpose

R10               16bit General Purpose

R11               16bit General Purpose

R12               16bit General Purpose

R13               16bit General Purpose

R14               16bit General Purpose

R15               16bit General Purpose

R0/PC           16bit Program Counter

R1/SP           16bit Pointer to Memory

R2/SR/CG1  16bit Status Register

R3/CG2        16bit Constant Register

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

                      64bit Value A

                      64bit Value B

                      64bit Value C

Fig. 3. The MSP430 has twelve general-purpose 16-bit registers. During the computa-
tion of the compression function, we use them to store three 64-bit words, while R1 is
used as a pointer to efficiently access 64-bit words in RAM.

On-the-Fly Message Schedule. The message schedule, which expands the
16 words w0, . . . , w15 of a 1024-bit message-block to 80 words w0, . . . , w79, can
either be pre-computed or computed “on the fly.” The former approach has the
disadvantage that all 80 words need to be stored in RAM, where they consume
640 bytes in total. Since a RAM footprint of 640 bytes is not non-negligible on
an MSP430, it makes sense to compute the words w16, . . . , w79 on the fly, one
word per round. Due to the fact that only the words wt−16, wt−15, wt−7, and
wt−2 are actually required to compute the value of wt, a buffer containing the
preceding 16 words wt−16 to wt−1 is sufficient. Therefore, when following this
approach, the memory consumption is reduced from 640 to only 128 bytes. To
avoid the copying of words from wt−15 to wt−16, wt−14 to wt−15, and so on in
every round, we adopt a circular buffer, whereby in round t of the compression
function the word wt corresponds to the word wt mod 16 in the buffer. In this
way, the word wt (i.e. wt mod 16) is computed as

wt mod 16 ← [σ1(w(t+14) mod 16) + w(t+9) mod 16 +

σ0(w(t+1) mod 16) + wt mod 16 ] mod 264.

The approach we use to implement this circular buffer is based on a dedicated
memory alignment and pointer masking. More precisely, the buffer is aligned in
memory on a 256-byte boundary, so that it starts at a memory address of the
form a = 0x..00. As the buffer is 128 byte long, it ranges up to a + 0x7f. The
computation of wt is then carried out by using the register R1 as pointer into
this buffer. To access wt−16, wt−15, wt−7, and wt−2, the pointer is incremented
successively so that it moves in relative steps from one iteration of the message
schedule to the next. The circular behaviour of the buffer is guaranteed by the
application of a bit-mask to R1 (e.g. via AND.W #0xff7f, R1) every time it has
been incremented so that R1 always stays within the valid address range.
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w3 w2 w1w15 w14 w13 w12 w11 w10 w9 w8 w7 w6 w5 w4

b c d ef g h a b c d e f g h a

mem. offset: 0x..00-0x..7f

mem. offset: 0x..00-0x..7f

R1/SP
pointer

w0

Fig. 4. The 128-byte buffers are 256-byte aligned so that they range from an address
of form 0x..00 (i.e. the last two hex-digits are 0) to an address of form 0x..7f.

.

An alternative approach to implement a circular buffer without the need to
copy 64-bit words in every round was introduced in [2]. This approach utilizes
a “sliding window” of 16 message words wi in a double-sized buffer of 32 words
(256 bytes), so that the words only need to be copied once every 16 rounds. The
computational cost of copying these words every 16 rounds is only slightly more
than the cost of masking the pointer R1 after every increment that we perform
in our approach. So, regarding the message schedule part, the main advantage
of our approach based on pointer masking compared to [2] is a reduction of the
RAM consumption by half since we do not need a double-sized buffer.

Avoiding Word-Wise State Rotation. An ordinary implementation of the
compression function described in Subsect. 2.2 that directly follows the steps as
specified in [7] would not be very efficient since it involves a word-wise rotation
of the state, i.e. the working variables have to be copied from g to h, from f to
g, and so on in every round. Similar to the message schedule, we can minimize
the execution time through a circular buffer using the memory alignment and
pointer masking described before. This buffer for the eight working variables is
adjusted in a way that allows for fast switching between the message schedule
and the compression function. As depicted in Fig. 4, the words of the message
schedule are stored in reverse order, and the buffer for the compression function
contains every word twice. The words are rotated so that e.g. working variable
e aligns with the position of word w0, which eliminates the need to mask the
pointer R1 when switching from the message-word buffer to the buffer with the
working variables for the computation of the round function.

Optimized Rotations. The rotations of 64-bit words that are carried out as
part of the functions σ0(w), σ1(w), Σ0(e), Σ1(a) are slower on MSP430 than
on more sophisticated processors due to the lack of a fast barrel shifter capable
to shift/rotate a register by several bits at once. Instead, the MSP430 provides
instructions for shifts/rotations by only a single bit [11]. However, one can still
reduce the overall execution time by carefully optimizing each function. Special
base cases where a 64-bit word (held in four registers) is rotated by 1, 8, or 16
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w w w ∧ #0xf…f80

⨁

⨁
>>>1

>>>8

<<<1

σ
0
(w)  =  w>>>1  ⨁  w>>>8  ⨁  w>>7 

(a) Computation of σ0(w).

w w w ∧ #0xf…fc0

⨁

⨁
>>>3

>>>3>>>16

<<<3

σ
1
(w)  =  w>>>19  ⨁  w>>>61  ⨁  w>>6 

(b) Computation of σ1(w).

Fig. 5. Optimized computation of the rotations for the message schedule. Shift oper-
ations (i.e. w � 7 and w � 6) are computed using a masking operation (to set the
appropriate bits to 0) followed by a rotation.

e e e

⨁

⨁
<<<1

>>>8<<<3

>>>2

>>>32 >>>32 >>>32

Σ
0
(e)  =  e>>>28  ⨁  e>>>34  ⨁  e>>>39 

(a) Computation of Σ0(e).

a a a

>>>16 >>>32

⨁

⨁<<<2

>>>1

>>>8>>>1

Σ
1
(a)  =  a>>>14  ⨁  a>>>18  ⨁  a>>>41

>>>16

(b) Computation of Σ1(a).

Fig. 6. Optimized computation of the rotations for the compression function.

bits have the following costs. A simple rotation by 1 bit can be implemented to
execute in only five cycles (see Listing 1 and 2). When taking advantage of the
byte-swap instruction SWPB, a rotation by 8 bits can be done via the sequence
in Listing 3 so that it only takes 16 cycles instead of the 40 it would take when
the operand was rotated eight times by 1 bit. Finally, a rotation by a multiple
of 16 bits is basically free as one can simply “re-order” the registers, e.g. when
a 64-bit word is held in the four registers (R4, R5, R6, R7), it can be implicitly
rotated by 16 bits by accessing it in the order (R7, R4, R5, R6).

Figure 5 illustrates how we optimized the functions σ0(w) and σ1(w) of the
message schedule. Note that the shift operations are transformed to rotations
and logical ANDs (∧) with a mask to ensure that the appropriate bits are all
set to 0. These functions can, therefore, be re-written as

σ0(w) = (w ≫ 1)⊕ ((w ⊕ ((w ∧ 0xf...f80) ≪ 1)) ≫ 8)

σ1(w) = ((((w ∧ 0xf...fc0) ≫ 3)⊕ (w ≫ 16)) ≫ 3)⊕ (w ≪ 3).

Figure 6 shows how we optimized the functions Σ0(w) and Σ1(w) of the com-
pression function. These functions can be re-written as
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Table 1. Execution time of the four sigma functions.

Function Rot+XOR Loads Total

σ0(w) 36 cycles 21 cycles 57 cycles

σ1(w) 55 cycles 16 cycles 71 cycles

Σ0(e) 54 cycles 26 cycles 80 cycles

Σ1(a) 44 cycles 26 cycles 70 cycles

Σ0(e) = ((((e≫ 32) ≪ 3)⊕ ((e≫ 32) ≫ 8)) ≪ 1)⊕ ((e≫ 32) ≫ 2)

Σ1(a) = ((a≫ 16) ≪ 2)⊕ ((((a≫ 16) ≫ 1)⊕ ((a≫ 32) ≫ 8)) ≫ 1).

Besides executing the actual rotations, the 64-bit words also have to be loaded
from memory into the registers and XORed (⊕) twice, the latter of which takes
eight cycles. The detailed costs of the rotations are summarized in Table 1.

Choice and Majority Function. The Choice (Ch) and Majority (Maj) func-
tion both take three 64-bit operands as input. Unlike for the rotations, one can
perform these operations on 16-bit chunks in such a way that there is no need
to load the entire 64-bit words from memory at once. Using this approach, we
start with three pointers to the 64-bit operands, and then progressively execute
the whole operation on 16-bit chunks (e.g. we start at the lowest 16 bits of the
words, then continue with the next higher 16 bits, and so on). But since these
functions are not really complex, there is only little space for optimization.

4 Experimental Results

To assess the performance of our software we compared it with various C imple-
mentations that are usable (and optimized) for embedded platforms such as the
MSP430. More concretely, we looked at SHA-512 implementations from

– the paper of Cheng et al. [2],
– the CycloneCRYPTO library [8],
– the Noise-C protocol [12], and
– the RELIC toolkit [1].

The version of Cheng et al. we benchmarked is a plain C implementation of an
approach that uses a double-length buffer to avoid copying of working variables
in every round. CycloneCRYPTO is a cryptographic library specifically tuned
for use in embedded systems. Noise-C is a plain C implementation of the Noise
framework for building security protocols. Finally, RELIC is a research-oriented
cryptographic meta-toolkit with emphasis on efficiency and flexibility.

These implementations have been compiled and benchmarked with version
7.21 of IAR Embedded Workbench for MSP430 using an MSP430F1611 as the
target device. The optimization level of the C compiler was set to medium, and
Common Subexpression Elimination as well as Code Motion were enabled. We
determined the stack memory consumption using a simple stack canary.
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Table 2. Execution times of SHA-512 implementations on an MSP430F1611.

Implementation Type Hash 3 byte Hash 1000 byte Compr. only

Our software C & Asm 42351 cycles 337736 cycles 40582 cycles

Cheng et al. [2] pure C 100354 cycles 792951 cycles 97597 cycles

Cyclone [8] pure C 102026 cycles 795323 cycles 97698 cycles

Noise-C [12] pure C 97297 cycles 758898 cycles 94468 cycles

RELIC [1] pure C 123466 cycles 1084390 cycles 118420 cycles

Table 3. Memory requirements of SHA-512 implementations.

Implementation Type Code size RAM size

Our software C & Asm 2104 bytes 390 bytes

Cheng et al. [2] pure C 2642 bytes 408 bytes

Cyclone [8] pure C 2840 bytes 318 bytes

Noise-C [12] pure C 7436 bytes 966 bytes

RELIC [1] pure C 3624 bytes 990 bytes

Performance. The execution times of the five SHA-512 implementations are
summarized in Table 2. We measured the number of cycles needed to compute
the SHA-512 digest of a 3-byte and a 1000-byte message, respectively, as well as
the number of cycles for a single execution of the compression function. These
results show that our implementation is the fastest; concretely, it is

– 2.30 to 2.91 times faster to compute the digest of a 3-byte message,

– 2.35 to 3.21 times faster to compute the digest of a 1000-byte message, and

– 2.33 to 2.92 times faster to execute the compression function.

The fastest “pure” C implementation is the one from Noise-C, closely followed
by that of Cheng et al. and the one from CycloneCRYPTO. RELIC, which is
not particularly optimized for speed on embedded devices, is between 21% and
26% slower than the other three C implementations.

Code Size and RAM Footprint. Table 3 shows the results for the code size
and RAM consumption. Our implementation has the smallest binary code size
(only 2104 bytes), followed by the ones of Cheng et al., CycloneCRYPTO, and
RELIC. The code size of Noise-C exceeds the size of all other implementations
by a factor of more than two, which is because it unrolls eight rounds to avoid
the copying of working variables in each round. Regarding RAM footprint, the
CycloneCRYPTO library is the most efficient one since it needs only 318 bytes
of RAM. Our software follows with 390 bytes, and then Cheng et al’s with 408
bytes. The implementations with the largest RAM footprint are the ones from
Noise-C and RELIC with respectively 966 and 990 bytes. This is mainly due to
the fact that, in these two implementations, all 80 words wi from the message
schedule are pre-computed and stored in an array in RAM.
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5 Concluding Remarks

SHA-512 is a standardized and well-established hash function whose use cases
range from signature schemes (e.g. EdDSA) to all kinds of security protocols
(e.g. IPSec). In this paper, we presented a highly-optimized assembly-language
implementation of SHA-512 for 16-bit MSP430 microcontrollers. We explained
how we handle 64-bit words, how we minimize RAM usage by performing the
message schedule on the fly, and how we avoid the copying of working variables
during the round function. Further, we discussed the efficient implementation
of circular buffers through memory alignment and pointer masking. Finally, we
tackled the the problem of performing multi-bit rotations on the MSP430, and
presented fast implementations of the functions σ0(w), σ1(w), Σ0(e), Σ1(a).

Our experiments show that our implementation compares very favorably to
the three C implementations we benchmarked, which means it is (at least) 2.3
times faster than the best C implementation. In addition, it has a smaller code
size, and is also among the most efficient implementations with respect to the
RAM footprint. Our work can be directly used to improve the speed and code
size of SHA-512-based cryptosystems (resp. security protocols) on the MSP430
platform, and we hope that the presented optimization techniques will also be
useful to increase the efficiency of other members of the SHA2 family.
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A Optimized Rotation of 64-bit Words

The MSP430 architecture provides instructions to shift or rotate a 16-bit value
by a single bit. However, unlike e.g. more powerful ARM processors, MSP430
microcontrollers are not equipped with a barrel shifter that would allow one to
shift or rotate multiple bits at once. Furthermore, when a 64-bit word is to be
shifted or rotated, the number of instructions and, consequently, the execution
time increases accordingly. Listing 1 shows a sequence of MSP430 instructions
for a 1-bit right-rotation of a 64-bit word that is held in the four registers R4 to
R7. These five instructions execute in five clock cycles.

Listing 1. 1-bit right-rotation of a 64-bit word held in R4 to R7 (5 cycles).

1 BIT.W #1, R4

2 RRC.W R7

3 RRC.W R6

4 RRC.W R5

5 RRC.W R4

Listing 2 contains a code snipped for a 1-bit left-rotation of a 64-bit word
that is held in the four registers R4 to R7. These instructions have an execution
time of five clock cycles on an MSP430 microcontroller.

Listing 2. 1-bit left-rotation of a 64-bit word held in R4 to R7 (5 cycles).

1 RLA.W R7

2 RLC.W R4

3 RLC.W R5

4 RLC.W R6

5 ADC.W R7

Right/left-rotations by two or three bits can be simply assembled from the
instruction sequence for 1-bit rotation. However, there are “shortcuts” for some
rotation distances due to special MSP430 instructions. For example, a rotation
by eight bits can be greatly accelerated with help of the byte-swap instruction

http://www.ti.com/sc/docs/products/micro/msp430/userguid/ag_01.pdf
http://www.ti.com/sc/docs/products/micro/msp430/userguid/ag_01.pdf
http://github.com/rweather/noise-c
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SWPB, which swaps the lower and upper byte of a 16-bit value. Listing 3 shows
how this instruction can be used to implement a right-rotation of a 64-bit word
by eight bits, whereby it is assumed that this word is held in the four registers
R4 to R7. However, unlike the 1-bit rotation, the rotation by eight bits needs an
additional register, namely R8, for storing a temporary value. The instruction
sequence of Listing 3 executes in 16 clock cycles, which is 2.5 times faster than
a naive implementation based on eight 1-bit right-rotations.

Listing 3. 8-bit right-rotation of a 64-bit word held in R4 to R7 (16 cycles).

1 MOV.B R4, R8

2 XOR.B R5, R8

3 XOR.W R8, R4

4 XOR.W R8, R5

5 MOV.B R5, R8

6 XOR.B R6, R8

7 XOR.W R8, R5

8 XOR.W R8, R6

9 MOV.B R6, R8

10 XOR.B R7, R8

11 XOR.W R8, R6

12 XOR.W R8, R7

13 SWPB R4

14 SWPB R5

15 SWPB R6

16 SWPB R7


