Computational Management Science
https://doi.org/10.1007/510287-021-00411-x

ORIGINAL PAPER

®

Check for
updates

Parallel and distributed computing for stochastic dual
dynamic programming

D. Avila'® - A. Papavasiliou' - N. Léhndorf?

Received: 10 July 2020 / Accepted: 7 July 2021
©The Author(s) 2021, corrected publication 2021

Abstract

We study different parallelization schemes for the stochastic dual dynamic program-
ming (SDDP) algorithm. We propose a taxonomy for these parallel algorithms,
which is based on the concept of parallelizing by scenario and parallelizing by node
of the underlying stochastic process. We develop a synchronous and asynchronous
version for each configuration. The parallelization strategy in the parallelscenario
configuration aims at parallelizing the Monte Carlo sampling procedure in the for-
ward pass of the SDDP algorithm, and thus generates a large number of support-
ing hyperplanes in parallel. On the other hand, the parallel-node strategy aims at
building a single hyperplane of the dynamic programming value function in par-
allel. The considered algorithms are implemented using Julia and JuMP on a high
performance computing cluster. We study the effectiveness of the methods in terms
of achieving tight optimality gaps, as well as the scalability properties of the algo-
rithms with respect to an increasing number of CPUs. In particular, we study the
effects of the different parallelization strategies on performance when increasing
the number of Monte Carlo samples in the forward pass, and demonstrate through
numerical experiments that such an increase may be harmful. Our results indicate
that a parallel-node strategy presents certain benefits as compared to a parallel-sce-
nario configuration.

Keywords Multistage stochastic programming - Stochastic dual dynamic
programming - High performance computing - Distributed computing - Parallel
computing

X D. Avila
daniel.avila@uclouvain.be

Center for Operations Research and Econometrics, Université Catholique de Louvain,
Louvain-la-Neuve, Belgium

Luxembourg Centre for Logistics and Supply Chain Management, University of Luxembourg,
Esch-sur-Alzette, Luxembourg

Published online: 24 August 2021 @ Springer

http://orcid.org/0000-0003-4590-2254
http://crossmark.crossref.org/dialog/?doi=10.1007/s10287-021-00411-x&domain=pdf

D. Avilaetal.

1 Introduction

The stochastic dual dynamic programming (SDDP) algorithm, developed by Pereira
and Pinto (1991), has emerged as a scalable approximation method for tackling
multistage stochastic programming problems. The algorithm is based on building
piecewise linear approximations of the value functions of the dynamic programming
equations. The algorithm has its origins in hydrothermal scheduling (Pereira and
Pinto, 1991; Flach et al., 2010; De Matos et al., 2010; Pinto et al., 2013), although
other applications have emerged in recent years, including day-ahead bidding of
pumped-hydro storage plants (Lohndorf et al., 2013), natural gas storage valuation
(Lohndorf and Wozabal, 2020), dairy farm operations (Dowson et al., 2019), and
short-term energy dispatch (Papavasiliou et al., 2017; Kaneda et al., 2018).

Multistage stochastic programming problems are generally computationally
intractable and therefore pose serious computational challenges, even for SDDP. For
example, SDDP is unable to close the optimality gap for the problem studied in Sha-
piro et al. (2013), even after several hours of run time. In order to reduce the com-
plexity of the algorithm, different techniques have been proposed in the literature.
With an objective of limiting the complexity of the cost-to-go function, cut selection
techniques are considered in De Matos et al. (2015); Guigues (2017); Guigues and
Bandarra (2019); Lohndorf et al. (2013).

Regularization techniques are studied in Asamov and Powell (2018) in order to
accelerate convergence.

The nature of the SDDP algorithm makes it suitable for parallel computing
(Pereira and Pinto, 1991). This has led to parallel schemes for SDDP in past research
that aim at improving the performance of the algorithm (da Silva and Finardi, 2003;
Pinto et al., 2013; Helseth and Braaten, 2015; Dowson and Kapelevich, 2021;
Machado et al., 2021).

1.1 Parallelism in large-scale optimization

Parallelism is a crucial attribute for tackling large-scale optimization problems, but
is often undermined by synchronization bottlenecks. In power system applications,
for instance, parallelism has allowed tackling large-scale day-ahead stochastic unit
commitment problems (Papavasiliou et al., 2014). While synchronous parallel com-
puting algorithms require run times in the order of a weeks for certain instances of
stochastic unit commitment, asynchronous implementations of Lagrange relaxation
have been shown to reduce these run times to a few hours (Aravena and Papavasil-
iou, 2020). This allows us to hope for an eventual deployment of stochastic opera-
tional planning models in actual operations, where run time constraints are critical.
This objective motivates our research on the parallelism attributes of SDDP. Nev-
ertheless, the extant literature on SDDP presents a limited study in this front. The
literature provides a narrow set of parallel schemes, which rely on increasing the
number of Monte Carlo samples that are used in the forward pass of the algorithm
(da Silva and Finardi, 2003; Pinto et al., 2013; Helseth and Braaten, 2015; Dowson

@ Springer

Parallel and distributed computing for stochastic dual dynamic...

and Kapelevich, 2021). The aforementioned literature provides evidence that such
schemes are superior relative to a serial approach. The literature, however, does not
focus on how different schemes may compare relative to each other.

In Pinto et al. (2013) and da Silva and Finardi (2003) the authors propose a syn-
chronous parallel scheme, according to which subproblems are solved in parallel at
every stage. Parallelization is also applied in the backward pass of the algorithm.
This introduces a natural synchronization bottleneck at each stage. In Helseth and
Braaten (2015) the authors propose a relaxation in the synchronization points of this
synchronous parallel scheme. According to the proposed scheme, a worker waits for
a subset of subproblems at each stage of the backward pass. The authors provide
empirical evidence that demonstrate that their approach achieves performance gains
relative to the synchronous setting. However, the analysis is not sufficiently robust,
since the authors declare convergence once the lower bound is within the 95% confi-
dence interval of the upper bound. This convergence criterion has been criticized in
Shapiro (2011).

In our work, we propose a richer family of parallelizable algorithms for SDDP.
Our analysis considers synchronous as well as asynchronous computation. We
develop a taxonomy of (i) parallelization by scenario of Monte-Carlo samples in the
forward pass of the algorithm, and (ii) parallelization by node of the underlying sto-
chastic process, that encompasses the traditional parallel schemes that are encoun-
tered in the literature, and gives rise to new parallel formulations. We present an
analysis for the resulting class of algorithms, and compare the relative strengths and
weaknesses of the proposed algorithms.

1.2 Limitations of parallelism

Parallelism is often viewed as a one-way procedure, where more processors neces-
sarily imply better performance. The SDDP literature tends to consider an increase
in the number of Monte Carlo samples in the forward pass, in order to be able to
rely on more processors (da Silva and Finardi, 2003; Pinto et al., 2013; Helseth and
Braaten, 2015; Dowson and Kapelevich, 2021). Nevertheless, there is a lack of evi-
dence for assessing the effect of such an increase on the performance of the SDDP
algorithm. In our work, we present empirical evidence which indicates that increas-
ing the number of Monte Carlo samples in the forward pass of the SDDP algorithm
may in fact undermine performance. This indicates a serious drawback with tradi-
tional parallel schemes that have been proposed in the literature, since it indicates
that these traditional parallel schemes may not scale well.

1.3 Contributions

Our contribution to the literature on SDDP parallelization is two-fold. First, we
enrich the set of available parallel schemes that have been considered in the litera-
ture, by considering both synchronous as well as asynchronous computation, and we
present a taxonomy that categorises existing and new schemes. Second, we conduct
an extensive numerical experiment in order to compare the relative performance

@ Springer

D. Avilaetal.

of these schemes when the objective is to achieve tight optimality gaps with high
confidence. Moreover, our analysis provides empirical evidence that indicates that
increasing the number of parallel processors may harm the performance of tradi-
tional parallel schemes that have been proposed for SDDP.

The paper is organized as follows. In Sect. 2 we present the notation and formu-
lation of Multistage Stochastic Programs, and we describe the SDDP algorithm. In
Sect. 3 we describe our proposed parallelization schemes for SDDP. In Sect. 4 we
present numerical case studies which constitute the basis for our empirical observa-
tions. Finally, in Sect. 5 we summarize our conclusions and outline future directions
of research that are inspired by this work.

2 Stochastic dual dynamic programming (SDDP)

Let us consider a multistage stochastic linear program with 7 stages, given by

min c]Txl +E[min chz + E[--- + E[min c;xT]]]
Ax=b, Byx;+A;x,=b, Brxp_1+Apxp=bp
x>0 x>0 X720

Here, the vectors c,b, as well as the matrices B,A, form the stochastic data pro-
cess &,=(c,b,B,A,). We assume that c¢,,b;,A, are deterministic. Let us assume that,
at each stage, there are finitely many outcomes €2,, and that the data process follows
a Markov chain. The dynamic programming equations can be written as

Qz(xz—hét) = H}Cin{czxt + Qt+l(xz’ &)t Bx,_4 +A,x, = b,,x, >0}

Qt+1(xt’§t) L= [E[Qt+1(xz’ §I+1)|§t]

for t=2,---,T. There is no associated function Q. in the last stage. Note that, due
to the Markov property, the cost-to-go function Q,(x,_;,&,) and the expected value
cost-to-go functions 9, ,(x,, &) depend only on £, and not on the entire history of
the data process. Moreover Q,,,(x,,&,) is a convex function of x, (Birge and Lou-
veaux, 2011) and can therefore be approximated by a piecewise linear function. The
idea of SDDP is to generate approximations @, (x,,&,) of the expected value cost-
to-go functions through supporting hyperplanes H, commonly referred to as cuts.
The cost-to-go functions can then be approximated as:

Qz(xl_h 5[) = n}vin{Ctht + Qt+l(xz’ gz) . tht—l +Atxt = bl’xt Z 0}

The procedure for generating a cut H is a two-step process that consists of for-
ward and backward passes. During forward passes, we generate trial points. During
backward passes, we generate cuts for the expected value cost-to-go functions at the
trial points.

1. Forward Pass Draw N Monte Carlo scenarios of the realization of uncertainty

throughout the entire time horizon of the problem. This yields sequences
;‘, ,5;, where &t e Q, forn=1,-N.

@ Springer

Parallel and distributed computing for stochastic dual dynamic...

Qi1 (e, &)

B

X,

Transition
Probability

o &8 Qi@ \.:,)**n}in{z,’.m‘Qy 1(x4,&) : Biwe—1 + Age = by, x4 > 0}

Fig. 1 Lattice representation of uncertainty in SDDP. Each node corresponds to a realization of uncer-
tainty. Nodes grouped in the same column correspond to a given time stage of the problem. Lines con-
necting nodes represent the probability of transitioning form one node to another. Each node stores an
associated subproblem and a value function

Forn=1,---,N
Fort=1,-,T
an

Solve the linear problem associated to QA[(x,,&") and store x7'.

1 1 1 2 % — .ee
This process produces trial points X7, ---, %7 forn=1,---N.

2. Backward Pass

Fort="1T,--,2
Forn=1,--- N
For & € (4 N
Solve the linear problem associated to Q. (T}, &) and store the dual multiplier 7¢, ;
Use the dual multipliers {m¢, ;}¢,c, to build a cut that approximates Q(2:—1,&-1),
§i—1 € 244, at the trial point Z7" ; (Pereira and Pinto, 1991)

This two-step process constitutes an iteration of the algorithm. In Philpott and
Guan (2008) it is proven that this procedure converges, meaning that the algorithm
converges almost surely after finitely many iterations.

A common and attractive way to represent this process and the underlying struc-
ture of the problem graphically, relies on a lattice representation of uncertainty. Fig-
ure 1 presents a lattice, where each column represents a time stage of the problem,
and where each node represents the possible outcomes at the current time stage.
Note that each node of the lattice is associated with an optimization problem, which
aims at minimizing the current-period cost plus the cost-to-go function of the given
node.

Figure 2 presents an SDDP iteration graphically over a lattice. The computa-
tional time evolves along the y axis, as indicated by the left-most arrow. The red

@ Springer

D. Avilaetal.

Computational
Time

Forward Pass

63("2,2)

Generate

Backward Pass Cutat ,

Generate
Cut at X,

\J

Fig.2 Graphical representation of the SDDP algorithm on a lattice. The position of the red dashed boxes
on the y axis represents the elapsed computational time. The forward pass draws a sample path and pro-
duces trial points X,,%,. During the backward pass, the third stage produces a cut at %, for the value
functions associated to nodes in stage 2. The second stage generates a cut at X, for the value functions
associated to nodes in stage 1

dashed boxes indicate the work that a CPU is performing over the lattice and the y
axis length represents the elapsed computational time for the current task. During
a forward pass, a sample path is drawn from the distribution implied by the lattice.
This results in selecting the red nodes in the figure, namely nodes 1, 2, and 5. The
subproblems associated to these nodes are solved, starting from the first stage to
the last one, that is node 1, then node 2, and finally node 5. This process produces
trial points X, ---,%;. Note that the subproblems at each stage are calculated at the
trial point that is obtained in the previous time stage. The backward pass procedure
moves backward in time, starting from the last stage and moving towards the first
stage. At the last stage, the subproblems associated to nodes 7, 6, and 5 are solved at
the trial point X,. The order in which these nodes are solved is not critical. The dual
multipliers of these problems are used for computing a cut of the value functions of
stage 2 at point %,. The procedure continues in this manner throughout all stages.

3 Parallel schemes for SDDP

We begin this section by presenting parallel strategies for SDDP and then pro-
ceed to explain how these strategies can be implemented in a synchronous and
asynchronous setting. These schemes span the different strategies that have been
proposed in the literature (da Silva and Finardi, 2003; Pinto et al., 2013; Hel-
seth and Braaten, 2015; Dowson and Kapelevich, 2021; Machado et al., 2021)
and some new schemes that, to the best of our knowledge, have not yet been
considered.

@ Springer

Parallel and distributed computing for stochastic dual dynamic...

CPU1--- CPU1---
CPU2--- I Time - CPU2---
Master -- - i <2 Master.--
1
Eorward 22 Forward
Pass) Pass
Master
SN F 5
Backward Cutat X, Cutat X, Backward
Pass /) Pass
\ a1
_C/ut at X cutat &
\j {V
(a) Parallelizing by Scenario (b) Parallelizing by Node

Fig.3 Representation of SDDP parallel schemes. The height of the red and blue dashed boxes represents
the elapsed time. a Presents the parallel scenario scheme. At each iteration a cut is built at 2 different
points, and each cut is computed by a different CPU. b Presents the parallel node scheme. The grey
dashed boxes represent outcomes that belong to the same time stage. At each iteration, a cut is computed
at a single point of the state space. The work that is required for computing such a cut is distributed
among the available CPUs

3.1 Parallelizing by scenario and by node
3.1.1 Parallelizing by scenario (PS)

As we demonstrate graphically in panel (a) of Fig. 3, in this approach, each pro-
cessor generates a cut that supports the expected value cost-to-go functions at
different sample points of the state space. The forward and backward steps are
executed as follows:

e Forward pass The forward pass consists of N Monte Carlo scenarios. Each
processor computes a different scenario, thus producing trial points x7, -+, x7.
in the state space, forn=1,---,N.

e Backward pass At stage t, the nth processor generates a cut for the expected
cost-to-go functions of stage 7 — 1 at point x;'_.

The Parallel Scenario approach appears to be the most common paralleliza-
tion strategy for SDDP in the literature. Different variants have been proposed,
ranging from synchronous schemes (da Silva and Finardi, 2003; Pinto et al.,
2013) to relaxations in the synchronization points (Helseth and Braaten, 2015),
to asynchronous schemes (Dowson and Kapelevich, 2021).

3.1.2 Parallelizing by node (PN)
In panel (b) of Fig. 3 we can observe that, as opposed to the PS strategy, the idea in

PN strategies is to use the available processors in order to generate a single cut at a
single trial point. The forward and backward steps are executed as follows:

@ Springer

D. Avilaetal.

e Forward Pass The main processor computes trial points along a single scenario.
This produces a sequence x,, --- x;. Note that there is no parallelization at this
step.

e Backward Pass Moving backwards in time through the lattice, each processor
selects a node of the lattice that has not yet been updated and solves the corre-
sponding subproblem.

A competitive implementation for this scheme is unfortunately limited to a shared
memory setting. This is due to the fact that, when a CPU commences a task in a
distributed memory setting, there is a non-negligible communication startup time
involved with receiving the required data for commencing the task. This implies that
the task executed by each processor must require significantly more time than this
start up time if parallelism is to deliver benefits, otherwise the latency of the network
becomes an important factor in slowing down the algorithm. In the PN scheme, at
stage ¢, each processor withdraws a subproblem from the list of 12| problems and
proceeds to solve it. In a distributed memory setting, this solve time is compara-
ble to the startup time of the processor. Thus, the latency of the network becomes
problematic.

In Machado et al. (2021) a similar approach is followed, a single scenario is
considered and the work required to compute the scenario is distributed among the
workers. However, the authors consider a different scheme to distribute the nodes
among the processors. They allow processors to be attached to a stage. The proces-
sors are then constantly generating cuts for the given stage.

3.2 Synchronous and asynchronous computing

As is commonly the case in parallel computing algorithms (Bertsekas and Tsitsik-
lis, 1989), the interaction between processors in our proposed schemes can unfold
synchronously or asynchronously. In what follows, we propose synchronous and
asynchronous schemes for both the parallel scenario (PS) and parallel node (PN)
versions of SDDP. This leads to a variety of algorithms, which are summarized in
Table 1.

3.2.1 Synchronous parallel scenario (sync PS)
As we discuss in Sect. 3.1.1, in the PS scheme each processor builds a cut. The dif-
ference between the synchronous and asynchronous version of the algorithm is how

these cuts are exchanged between processors. Given N processors, the forward and
backward procedures for the synchronous PS scheme can be described as follows.

@ Springer

Parallel and distributed computing for stochastic dual dynamic...

(120T “Te 19 OpeydRA)

SOpOU [[& JO uonnjos Y} 0}

$S900® 9ARY Jou Aew S10Ss001d
‘opou e sandwod 10ss9001d yoeg

(120T ‘Yo

-[odey] pue uosmo(J) sind [[e o0}

$S200€ 2ARY Jou Aew S10Ss001d
9nd e seonpoid J0sseo01d yoeg

SOpOU [[& JO UOTINOS A} O} SSIIOE dAkY SI0ss2001d “opou e sondwod Jossaoo1d yoeq Nd

(10T ‘uvrerlg pue yAs[oH) (£10T
“Ie 10 ould ‘€00Z ‘IPIBUL] PUB BAJIS BP) SIND [[B 0) SS90k dARY $105s001d ‘Ind & seonpoid 1ossadoid yoeg Sd

SNOUOIYOUASY

SNOUOIYOUAS

1oded sty ur paredwods sowayos JAdS L d|gelL

pringer

As

D. Avilaetal.

Time

Forward
Pass
Master
I’z
Backward i~ Cut
Pass
Cut /\

(a) SyncPS (b) Async PS

Fig.4 Synchronous and asynchronous parallel scenario schemes. The height of the red and blue dashed
boxes represents the elapsed time

1. Forward Pass: The n-th processor computes a Monte Carlo scenario, thus obtain-
ing a sequencel”, -+ ,5;, where & e Q..

Fort=1,-,T

Solve the linear problem associated to 0, (%,,&") and store X

At the end of this step, the processors synchronize'

2. Backward Pass:

The n-th processor solves:

Fort=T,-,2
For & €Q,

Solve the linear problem associated to Qt (x/,,¢&,) and store the dual multiplier .

The multipliers are used for computing a cut. The processors synchronize, and the
expected value cost-to-go function is updated with the gathered cuts.

In panel (a) of Fig. 4 we present the evolution of the algorithm over a lattice. In
the forward pass, the processors compute a scenario and synchronize at the end of
the forward pass. In the backward pass, at stage 3, both processors compute a cut
which is shared in order to approximate the expected value cost to go functions.
Because of the synchronization, both processors must wait until receiving the cut
of the other processor. If one processor is faster when computing a cut, then it must
stay idle until all other processors have computed their cut. Note that, apart from the
synchronization at the end of each stage during the backward pass, synchronization

! The processors could in fact start as soon as possible. Nevertheless, since the forward pass represents a
small part of the computational effort, the algorithm is implemented as described here.

@ Springer

Parallel and distributed computing for stochastic dual dynamic...

also occurs at the end of the backward pass. Consequently, in the next iteration, all
processors commence with the same set of cuts.

The synchronous version appears in a number of publications (da Silva and
Finardi, 2003; Pinto et al., 2013). In Helseth and Braaten (2015) the authors pro-
pose a relaxation in the synchronization points of each stage of the backward pass,
whereby a processor waits for a subset of processors. This work discusses empirical
evidence that indicate benefits relative to a fully synchronous version.

3.2.2 Asynchronous parallel scenario (async PS)

The difference between Async PS and the synchronous version is that processors do
not wait for cuts that have not been computed yet. The algorithm can be described as
follows.

1. Forward pass: The n-th processor performs the same steps as in the synchronous
setting, the difference is that there is no synchronization.
2. Backward pass:The n-th processor solves:

The n-th processor solves: For
t=T--,2
For & €Q,

Solve the linear problem associated to Q[(x,,&,) and store the dual multiplier 7.

The processor asks for available cuts, and updates the expected value cost-to-go function
with available cuts.

As we can observe in panel (b) of Fig. 4, in the forward pass each processor com-
putes a sample and proceeds immediately to the backward pass. In the backward
pass, once a processor computes a cut, this cut is shared with the master process.
The processor then asks for available cuts and proceeds without waiting for cuts that
have not been computed yet. For instance, at stage 3, the blue processor computes a
cut faster than the red processor, sends the cut and asks if the cut provided by the red
processor is already available. Since the red processor has not finished its job, the
blue processor proceeds to stage 2 without waiting for the cut provided by the red
processor. On the other hand, once the red processor finishes stage 3, it will receive
the cut provided by the blue processor. A disadvantage of this scheme is that, since
every processor operates with a different set of cuts, it is not clear how to estimate
an upper bound. In Sect. 4 we discuss how the convergence evolution is measured.

In Dowson and Kapelevich (2021) the authors follow the aforementioned asyn-
chronous strategy, nevertheless no evidence of its benefits are developed in detail.

3.2.3 Synchronous parallel node (sync PN)

In Sect. 3.1.2 we present the PN scheme, according to which different processors
are allocated to different nodes of the lattice for a given stage. The synchronous and

@ Springer

D. Avilaetal.

asynchronous schemes then differ on whether a processor waits for the nodes com-
puted by other processors. The forward and backward passes can be described as
follows.

1. Forward pass: The main process computes a single Monte Carlo scenario, thus
obtaining a sequence &, ---, &, where &, € Q..

Fort=1,-,T

Solve the linear problem associated to Qt (%,_1,&) and store X, .

Note that there is no parallelization in this step.

2. Backward Pass:

Fort=T,-,2
There is a list of |2¢] problems. The n-th processor solves:
Select a & €Q, that has not been selected yet, and solve the linear problem associated
to Q, (%,.1,&) . The dual multiplier mgis stored.

The processors synchronize, and the multipliers are collected and used for building
the cut. The expected value cost-to-go function is updated with the generated cut.

In Fig. 5, panel (a), we present this process graphically over a lattice. Note that,
in stage 3, the blue processor solves the subproblem associated with the first node,
while the red processor solves the subproblem associated with the second node. The
red processor finishes first and proceeds with the third node. Note that, once the blue
processor finishes, it must stay idle as there are no more nodes available for that
stage. The solution information of all the nodes is then used in order to compute a
cut, which is then transmitted to stage 2. Note that, before passing to stage 2, all the
subproblems of the third stage must be solved.

3.2.4 Asynchronous parallel node (async PN)

In contrast to the synchronous version, in the asynchronous version the processors
do not wait for nodes that have not been solved. The procedures in the backward and
forward passes can be described as follows.

1. Forward Pass: The same process as in the synchronous PN setting is executed.

There is no parallelization in this step.
2. Backward Pass:

@ Springer

Parallel and distributed computing for stochastic dual dynamic...

CPU 1---

CPUZ-| -

Master---

Previous Cut

Forward Information

Pass

Master

Backward
Pass

(a) Sync PN (b) Async PN

Fig.5 Synchronous and asynchronous parallel node schemes. The height of the red and blue dashed
boxes represents the elapsed time. The dashed grey box represents outcomes that belong to the same
stage

Fort=T,-,2
There is a list of |2¢| problems. The n-th processor solves:
Selecta & €€, that has not been selected yet, and solve the linear problem associated to
Q (%,_1,&,) - The dual multiplier mgis stored.

If there are no more subproblems available, the available multipliers are collected.
The multipliers of the previous iteration are used for a subproblem that has not been
computed yet. The cut is computed and the expected value cost-to-go functions are
updated.

This process is presented graphically in panel (b) of Fig. 5. At stage 3, the blue
processor solves the subproblem associated to the first node. When it completes
its computation, there are no more subproblems available for that stage, since the
red processor has already solved the second node and is now working on the third
node. Then the blue processor starts processing the nodes of the second stage.
However, in order to compute a cut for stage 2, without having access to the solu-
tion information from the subproblem of node 3, the processor uses the subprob-
lem information of node 3 of the cut obtained in the previous iteration. The blue
processor is thus able to build a cut, and can start processing the nodes of stage 2.

The following lemma shows that the proposed cuts are valid. The proof can be
found in the “Appendix 1”.

Lemma 1 The cuts built in the Async PN scheme are valid cuts.

@ Springer

D. Avilaetal.

Following a similar argument as the one presented in Philpott and Guan (2008),
we can show that, after a finite number of iterations, no new cuts will be added. The
proof can be found in the “Appendix 1”.

Lemma 2 Let G be the set of cuts at stage t, node w and iteration k. There exists
m, ,, such that|G;”| <m,, for all k, 1<t<T-1.

It is worth mentioning that as the missing information is not completed using the
cuts that are the tightest at the current trial point, as is the case in Philpott and Guan
(2008), the convergence might be to a different value. However, as the value func-
tion is a lower approximation we can always ensure that the convergence will be an
under-estimation. We have also tested the approach of using the cut that maximizes
the current trial point, however no considerable difference is observed. In practice,
the considered test cases have shown that Async PN presents a convergence behav-
iour comparable to the one obtained by the other schemes that are implemented in
the paper.

As previously said, the authors in Machado et al. (2021) consider a variant in the
distribution of the nodes among the processors. Instead of distributing the nodes at
each stage, the processors are attached to the nodes of a fixed stage. The authors pro-
pose an asynchronous version. The results of the authors vary. On certain instances,
such an approach exhibits superior performance relative to a synchronous PS imple-
mentation. On other instances, the performance of the proposed method is compara-
ble to a synchronous PS implementation.

4 Case studies

In this section we present results for an inventory control problem and a hydrother-
mal scheduling problem. The considered case studies aim at present results that
correspond to state-of-the-art problem sizes that can be found in the literature. We
present problem sizes that correspond to recent SDDP literature in Table 2. Our
experimental results can be summarized as follows.

i Asynchronous computing is not helpful for achieving tight optimality gaps faster.
Nevertheless, in certain cases, there is a temporary advantage in the asynchronous
PS scheme in early stages of the execution of the algorithm.

ii The PN scheme performs better than the PS scheme during early stages of the
execution of the algorithm.

iii The PS scheme scales poorly when increasing the number of Monte Carlo sam-
ples.

iv The PN scheme exhibits desirable parallel efficiency properties, nevertheless a
competitive implementation is limited to a shared memory setting.

@ Springer

Parallel and distributed computing for stochastic dual dynamic...

Table2 Overview of problem sizes in the literature. The problem sizes are ranked according to the year
of publication. The dashes indicate that the data was not available in the paper

Author State space dimen- Nodes Scenarios Stages
s10n

Machado et al. (2021) 44 20 20,119 120
Dowson et al. (2019) 5 60 9.20% 52
Lahndorf and Shapiro (2019) 4 1000 10001 120
Van Ackooij et al. (2019) 16 80 80% 96
Asamov and Powell (2018) 500 - - 288
Philpott et al. (2018) 7 30 30! 52
Kaneda et al. (2018) 5 10 10% 96
Papavasiliou et al. (2017) - 10 10% 96
De Matos et al. (2015) 4 20 20" 120
Helseth and Braaten (2015) 12 - - 156
Lohndorf et al. (2013) 7 - - 365
Pinto et al. (2013) 4 50 50119 120
Shapiro et al. (2013) 4 100 100'"? 120
Philpott and De Matos (2012) 9 20 20! 52
De Matos et al. (2010) 9 20 20°! 52
Flach et al. (2010) 5 50 50%° 60

We proceed by briefly introducing the test cases that we analyze in this work. The
models are presented in further detail in the “Appendix 1”.

Inventory control problem We model a stochastic inventory problem with Marko-
vian demand. The objective of the problem is to maximize expected profits by plac-
ing optimal order quantities x,, for products n €N over periods t€ H. Demand is sat-
isfied from on-hand inventory v,_; , by selling a quantity s, of each product. Any
excess demand is considered as being lost. We consider a case with 10 products,
which is the dimension of the random vector. The problem horizon is equal to 10
stages, with 100 nodes per stage.

Hydrothermal scheduling problem The Brazilian interconnected power system is a
multistage stochastic programming problem that has been analyzed extensively in
the literature due to its practical relevance (Pereira and Pinto, 1991; Shapiro et al.,
2013; Pinto et al., 2013; De Matos et al., 2015; Lohndorf and Shapiro, 2019). The
Brazilian power systems comprises, as of 2010, more than 200 power plants. Among
these, 141 are hydro units.

The objective of the problem is to determine optimal operation policies for power
plants while minimizing operation costs and satisfying demand. Representing the
141 hydro plants as well as their associated inflows results in a high-dimensional
dynamic problem. In order to tackle this problem, the literature typically separates
it into long-term, medium-term and short-term operational planning. The value
functions obtained in long-term operational planning problem are used as input for

@ Springer

D. Avilaetal.

North Transhipment Northeast

O

Southeast

O South

Fig. 6 Brazilian hydrothermal test case—equivalent reservoirs

medium-term planning. The value functions from medium-term planning are then
used, in turn, as input for the short-term operational planning problem. The SDDP
algorithm is applied in the long-term operational planning problem. The problem is
simplified by aggregating reservoirs into equivalent energy reservoirs (Arvanitidits
and Rosing, 1970). The literature typically considers 4 energy equivalent reservoirs
for this problem instance: North, Northeast, Southeast, South and a Transshipment
node. The Transshipment node has no loads or production. The system is presented
in Fig. 6.

The problem aims at satisfying the demand at each node by using the hydro and
thermal power of that node, as well as power that is imported from other nodes.
However, there is a limit in the power that can flow trough the transmission lines
of the electricity network. In the literature, the problem is typically solved for a
60-month planning period. However, in order to represent the continuation of opera-
tions at the end of the planning horizon, 60 additional months are considered. This
leads to a multi-stage stochastic program in 4 dimensions and 120 stages. We con-
sider a setting with 100 nodes per stage.”

2 The inventory test case data and the lattice used in the hydrothermal test case can be found in the fol-
lowing link: https://github.com/Daniel AvilaGirardot/Test-Cases-Data.

@ Springer

https://github.com/DanielAvilaGirardot/Test-Cases-Data

Parallel and distributed computing for stochastic dual dynamic...

Sync PS 0 Sync PS
2 —— Async PS —— Async PS
—— Sync PN 80 —— Sync PN
10 —— Async PN —— Async PN
X R 60
o o
- g —
o Q
I & 2
6
4 20
2 0
[100 200 300 400 500 600 0 25 50 75 100 125 150 175 200
Time (s) Time (s)
(a) ()
14 100
Sync PS Sync PS
1 —— Async PS o —— Async PS
N —— Sync PN —— Sync PN
—— Async PN —— Async PN
X 8 X 60
3 =t
Q 6 o
4
2 20
0
0
0 1 2 3 4 5 0.0 0.1 0.2 03 0.4 0.5
Time (h) Time (h)
(© d)

Fig.7 Comparison of algorithms. a, b Present the evolution of the optimality gap against time for the
inventory test case. ¢, d Present the evolution of the optimality gap for the hydrothermal problem. a, ¢
Show the gap evolution throughout the entire execution time, with emphasis on presenting the differ-
ences when the gap is low. b, d Present a close up at the beginning of the run time, emphasizing the dif-
ferences between the PS and PN schemes at the early steps of execution

4.1 Experimental results

The computational work is performed on the Lemaitre3 cluster, which is hosted
at the Consortium des Equipements de Calcul Intensif (CECI). It comprises 80
compute nodes with two 12-core Intel SkyLake 5118 processors at 2.3 GHz and
95 GB of RAM (3970 MB/core), interconnected with an OmniPath network (OPA-
56Gbps). The algorithms are implemented in Julia v0.6 (Bezanson et al., 2017) and

JuMP v0.18 (Dunning et al., 2017). The chosen linear programming solver is Gurobi
8.

4.1.1 Synchronous and asynchronous computation
Figure 7 presents the evolution of the optimality gap for all algorithms against run

time. The algorithms are run with 20 CPUs. Obtaining a reliable upper bound at each
point in time can be very time consuming. Thus, providing a reliable gap evolution

@ Springer

D. Avilaetal.

can be time consuming as well. Moreover, estimating an upper bound for the Async
PS scheme is difficult, as on each CPU there is a policy evolving differently. There-
fore, in order to provide a fair comparison between the different schemes, we have
pre-calculated a best available lower bound and compared the lower bound evolution
of all the algorithms against this best known solution. Concretely, the gap is meas-
ured as the relative difference between the lower bound evolution of the algorithm
and the “best available lower bound” L that we are able to compute for the problem.
What we refer to as the “best available lower bound” L is a lower bound that cor-
responds to a high-quality policy. The way in which we verify a high-quality policy
is by verifying that the relative difference between the upper bound estimate of said
policy and L is below 1%. The upper bound estimate for this policy is calculated
with a sufficient number of samples so as to ensure a 1% difference between the per-
formance of this policy and L with a confidence of 95%. Once this best lower bound
L is calculated, the reported gaps are calculated as follows: (L-L,) - 100/L, where L,is
the lower bound calculated as each algorithm progresses. More specifically, for the
PN schemes and the Sync PS scheme, L,is the lower bound at the end of iteration .
For the Async PS scheme, each CPU is performing it’'s own SDDP run and sharing
cuts whenever they are available. Namely, on each CPU the policy is evolving dif-
ferently. Therefore, L,corresponds to the lower bound at the end of iteration ¢ of the
fastest CPU.

1. Parallelizing by Scenario: For the inventory test case, the asynchronous schemes
tend to perform better during early iterations, as indicated in panels (a) and (b)
of Fig. 7. Instead, for the hydrothermal test case there is not a considerable dif-
ference, see panels (c) and (d) of Fig. 7. The difference in the behaviour between
both test cases can be explained as follows. As pointed out in De Matos et al.
(2015), the expected value cost-to-go function approximations tend to be myopic
at early iterations, when the gap is high. This implies that the trial points and the
cuts obtained when there is a high gap tend to produce low-quality information.
Therefore, the following possibilities can occur:

e When the algorithm struggles to decrease the gap during early iterations, the
synchronous version tends to perform poorly. This is due to the fact that the
processors wait for the generation of loose cuts. Instead, an asynchronous ver-
sion benefits from the fact that the fastest processor is not waiting for these
low-quality cuts.

e On the other hand, when the algorithm manages to reduce the optimality gap
during early iterations, the disadvantage of the synchronous version dimin-
ishes. This is due to the fact that, since the gap reduces quickly, the value
functions are of good quality. Consequently, the synchronous version will
wait for useful information.

The inventory test case corresponds to the former case, whereas the Brazil-
ian hydrothermal test case corresponds to the latter. Panel (a) of Fig. 8 dem-
onstrates that, after 500 scenarios, the gap for the PS methods is above 100%
for the inventory test case. Instead, the same number of scenarios analyzed
results in a gap below 20% for the hydrothermal test case, as we can observe

@ Springer

Parallel and distributed computing for stochastic dual dynamic...

100 Sync PS Sync PS
—— Async PS 20001 —— Async PS
80 —— Sync PN - —— Sync PN
—— Async PN & —— Async PN
o > 1500
R]
9 60 §
e 2 1000
O 40 ©
c
[
O
n 500
20
3 0
o 200 400 600 800 1000 1200 1400 1600 0.000 0.025 0.050 0.075 0100 0125 0150 0.175
Scenarios analyzed Time (h)
(a) (b)
100 3000
Sync PS Sync PS
—— Async PS 25004 —— Async PS
80
—— Sync PN - —— Sync PN
—— Async PN GN;ZOOO —— Async PN
X 60 ©
c
o ﬁ 1500
g £
40
o g 1000
[
O
(%2}
20 500
0 o
0 500 1000 1500 2000 2500 0 1 2 4
Scenarios analyzed Time (h)
(© (d

Fig.8 Scenarios analyzed by each method. The scenarios analyzed refers to the number of scenarios vis-
ited during the training process for each method. The first row corresponds to the inventory test case, the
second row corresponds to the hydrothermal test case. a, ¢ Present the evolution of the optimality gap
against the number of scenarios analyzed. b, d Present the number of scenarios analyzed against time

in panel (c) of Fig. 8. Moreover, as we can observe in panel (b) of Fig. 8, the
PS scheme is able to process more scenarios compared to the PN scheme for
the inventory test case. Nevertheless, the PS gap is worse, thus supporting the
observation that the value functions computed during early steps of the algo-
rithm are poorly approximated.

Despite these observations, we note that there is no significant difference
between the synchronous or asynchronous schemes when aiming for tight opti-
mality gaps. This can be observed in Fig. 7. When we target tight gaps, many
additional scenarios are required, as we can observe in panels (a) and (c) of
Fig. 8. Unfortunately, Async PS is not able to visit many more scenarios than
the synchronous counterpart, see panels (b) and (d) of Fig. 8. As a consequence,
although Async PS may reduce the optimality gap faster during early iterations,
both synchronous and asynchronous schemes achieve similar performance after
a significant amount of computation time has elapsed.

2. Parallelizing by Node: As seen in panels (b) and (d) of Fig. 8 the asynchronous
version is able to process more scenarios as compared to the synchronous coun-
terpart. Nevertheless, the main observation of Fig. 7 is that there is no significant

@ Springer

D. Avilaetal.

600
Sync PS Sync PS
soo] — AsyncPs 10 —— Async PS
—— Sync PN —— Sync PN
—— Async PN 8 —— Async PN
400
— [}
o)
g 300 § 8
= &
200 -
100 2
0 0
0 5 10 15 20 25 30 35 40 2 10 15 20 25 30 35 40
CPUs # CPUs
(a) (b)

Fig.9 CPU scalability for the inventory test case

benefit in an asynchronous implementation for parallelizing by node. Both the
synchronous and asynchronous parallel node algorithms are attaining comparable
performance in terms of gap throughout the entire course of the execution of the
algorithms.

In order to evaluate the reproducibility of the results under different runs, 5 rep-
etitions are performed for each method. We report that we observe a similar con-
vergence trend for each repetition. In addition to the experiments shown, an out-
of-sample estimation was performed. Every x scenarios used to train the policy,
an out-of-sample estimation is done by considering 2000 scenarios not used in the
training process. We report the same behaviour already shown in Fig. 7. Concretely,
In both test cases the PN schemes tend to perform better at the beginning. For the
inventory test case, there is a considerable difference between the Sync PS and
Async PS schemes, where the asynchronous version dominates at the beginning.

4.1.2 Parallel node versus parallel scenario

Interestingly, as we can observe in panels (b) and (d) of Fig. 7, the PN strategy is
behaving much better than the PS strategy during early iterations. The reason is that,
as we discuss previously, the value function approximations tend to be poor in early
iterations (De Matos et al., 2015). Thus, at each iteration, the PS version generates
several cuts that are loose approximations of the value functions, whereas the PN
setting generates a single cut. Nevertheless, if the goal is to obtain tight gaps, the
difference is not significant. The reason is that, once value functions of better quality
have been obtained by either algorithm, there is a benefit of visiting more than one
scenario per iteration. This works in favor of the PS setting.

4.1.3 Scalability of parallel scenario

Panel (a) of Figs. 9, 10 presents the evolution of the PS algorithms when increasing
the number of CPUs. Figure 9 corresponds to the inventory test case, and Fig. 10

@ Springer

Parallel and distributed computing for stochastic dual dynamic...

2250 Sync PS 16
—— Async PS
2000 —— SyncPN 14
—— Async PN
1750
— o 12
) =]
1500
g)
= 1250 &
8 Sync PS
1000 —— Async PS
6 e
- Sync PN
—— Async PN
500 ¢
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
CPUs # CPUs
(a) ()

Fig. 10 Hydrothermal test case—CPU scalability

corresponds to the hydrothermal test case. The target gap for terminating the algo-
rithms is set to 10%. As in the previous experiments, the gap refers to the relative
difference between the lower bound and the best available solution. The algorithms
present an inherent uncertainty due to the Monte Carlo sampling which is performed
in the forward pass. Consequently, the run time itself is random. Therefore, for each
CPU count we conduct the experiment 5 times, in order to construct 95% confidence
intervals, which are based on Student’s t-distribution. Panels (a) and (b) of Figs. 9
and 10 demonstrate that an initial increase in the number of CPUs results in a nota-
ble performance improvement. Nevertheless, there is a point at which this trend is
reversed. This is especially true for the inventory test case. We arrive to the same
observation when reporting the speedup of the algorithms. Note, in panel (b) of the
Figures, that there is a point beyond which the speedup decreases. This is due to
the fact that, as more CPUs are introduced, more samples are introduced per itera-
tion. As we have argued, the expected value cost-to-go functions are myopic at early
steps. Consequently, more samples tend to introduce information that is not entirely
useful for the algorithm, more so in early iterations. This results in a slowdown of
the Sync PS algorithm. As the asynchronous version is not waiting for the possi-
bly loose cuts, the effects in the speed up are not as adverse as for the synchronous
version. We would also like to point that, as explained by Bertsekas and Tsitsiklis
(1989), a synchronous algorithm exhibits a more severe deterioration in scalability
when increasing the CPU count, because more problems solved once implies that
the slowest one will require more run time. Thus, synchronism affects the algorithm
adversely. Note that the problems assignation to the CPUs may affect the perfor-
mance, showing a closely relation with a job-scheduling problem.

In order to tackle the poor quality of cuts that is produced as a result of the myopic
value function that is found at early steps, the cut selection methodology proposed
in Lohndorf et al. (2013) is implemented for the Sync PS algorithm. Our choice to
focus on the Sync PS algorithm is motivated by the fact that is suffered the most due
to the aforementioned effect. This cut selection technique rejects a cut, calculated
at point x,, if the value function is not improved by some >0 when adding the cut
at point x,. We observe, however, that introducing such a cut selection method has a

@ Springer

D. Avilaetal.

damping effect: the issue is diminished but is not solved. The cut selection technique
helps by not adding some non-useful cuts to the linear programs, nevertheless the
computational resources are wasted as several scenarios end up building non-useful
cuts. Concretely, resources are wasted by solving linear programs that end up build-
ing non-useful cuts.

4.1.4 Parallel node scalability

Panel (a) of Figs. 9, 10 presents the performance when increasing the number of
CPUs for the parallel node setting. As in the previous paragraph, the target opti-
mality gap is set to 10% and 95% confidence intervals are presented. Note that the
performance of the algorithm improves with additional CPUs. Since the algorithm is
building one cut per iteration, as more CPUs are introduced, that single cut is com-
puted faster. This is an important difference as compared to the PS scheme, where
the speedup can decrease.

Although this scheme exhibits favorable scalability behavior, it is limited to a
shared memory setting. As stated in Sect. 3.1.2 the reason behind this limitation is
that the solve time of a subproblem is comparable to the startup cost of a worker in
a distributed memory setting. Concretely, after some hundred of iterations the solve
time per subproblem for both test cases ranges in a few milliseconds, a time which
is comparable to the startup cost which is about 3 ms. Therefore, the latency of the
network becomes an issue.

5 Conclusions

In this paper we propose a family of parallel schemes for SDDP. These schemes
are differentiated along two dimensions: (i) using parallel processors in order to dis-
tribute computation per Monte Carlo sample of the forward pass (per scenario) or
per node of the lattice at every stage of the problem (per node); (ii) implementing
the exchange of information among processors in a synchronous or asynchronous
fashion. We compare the performance of these algorithms in two case studies: (i) an
inventory management problem, and (ii) an instance of the Brazilian hydrothermal
scheduling problem. The case studies deliver consistent messages, which we sum-
marize below in the form of four conclusions.

(i) Asynchronous computing is not helpful in the studied experiments, when the
goal is to achieve a tight optimality gap in a shorter time. Asynchronous schemes,
on the other hand, may be beneficial at early stages of the Parallel Scenario strategy.
(i) We have proposed a Parallel Node strategy for SDDP, which performs better at
early iterations than the traditional parallel scheme for SDDP. (iii) Parallel schemes
that are based on increasing the number of scenarios which are processed during
the forward pass, may not scale well with extra CPUs. This is the case for the PS
scheme. (iv) The Parallel Node strategy presents desirable CPU scalability proper-
ties, but only in a shared memory setting.

We would also like to highlight that synchronous schemes are easier to fully
reproduce. While reproducing results may be easier, it still remains difficult. Full

@ Springer

Parallel and distributed computing for stochastic dual dynamic...

reproducibility of a synchronous parallel scheme entails solving node problems
and updating cuts in a fixed order. This naturally decreases the benefits of parallel
computing, since an idle processor would need to wait for its turn according to the
fixed sequence. The reproducibility of asynchronous schemes is considerably more
involved, as it would require to pre-define the exact sequence of events and the exact
exchange of information between CPUs. This introduces synchronization between
CPUs and undermines the purpose of an asynchronous implementation. The imple-
mentation and study of full reproducibility is beyond the scope of the present paper.

In our work we have indicated some of the weaknesses in the parallelization of
SDDP. On the one hand, we have empirically demonstrated scalability issues with
the commonly proposed parallel scheme. On the other hand, we have proposed a
new set of parallel schemes, with better scalability properties. However, our pro-
posed algorithms which present better scalability with respect to CPU count are
restricted to a shared memory setting. This observation motivates future research
into scalable parallel SDDP schemes based on backward dynamic programming.
These schemes, which present desirable scalability properties, are closer to the per-
node strategy, but are also implementable in distributed memory settings, such as
high performance computing clusters.

Appendix: Inventory control problem

The inventory control problem can be modeled as a multistage stochastic problem.
The uncertainty in the problem is due to stochastic demand, which is assumed to fol-
low a Markov Chain. The cost-to-go function Q,(v,_;, &,) is computed by solving the
following problem:

max Z P-s,—HC-v,,—PC-x., + Q,,(v.&)

neN
SL Vi =Viqn T X0 =S NE N
Sl,n S vt—l,n ne N
Sn SDLE) neN
Vin <C neN
Vins St X 20 neN

The variables are given as follows:

e v, The state variable, which represents the on-hand inventory for product n €
N.

e s,,: Variable representing the amount of sold items for product n € N.

® X, ,: Variable representing the ordered quantities for product n € N.

The parameters can be described as follows:

P: The sales price.

@ Springer

D. Avilaetal.

HC: The inventory holding cost.
PC: the purchase cost.

D, ,: The demand for product n € N.
C: The inventory capacity.

The problem is set up for 10 products. This is the dimension of the random vec-
tor. The time horizon is equal to 10 stages. We consider 100 nodes per stage.

Hydrothermal Scheduling problem

We use a transportation model to approximate the operation of the transmission net-
work. The cost to go function Q,(v,_;,&,) can then be computed by solving the fol-
lowing problem:

min »' M, - g,;+ VOLL Y Is,, + Q.41 (v,, &)
i€g neN

StV =V, +ALE) G, —5, n EN
9in + th,i + Zfz,i = Lr,n neN

ieg i€eF,

81tV G S0 f; 20

The variables can be described as follows:

e v The state variable vector, which represents the stored energy of the equivalent
IeServoir.

® g,s, : Decision variables which represent the generated hydro energy and the
spillage, respectively.

e s, : Decision variable which represents load shedding.

e g, The vector of generated power from thermal plant i € G.

The parameters can be described as follows:

M;: The generation cost of thermal plan i € G.

V OLL: The value of lost load.

P;: The hydro generation coefficient of hydro plant i € H.
A, The inflow vector.

L. Load at stage ¢.

G,” V,” Q,” F : Physical upper limits on the variables.

@ Springer

Parallel and distributed computing for stochastic dual dynamic...

Further details for the Brazilian hydrothermal model, and the description of the
data, can be found in Shapiro et al. (2013).

Convergence of the async PN scheme

The proposed strategy to build cuts for the Async PN scheme is a valid strategy, as
the following lemma shows.

Lemma 1 The cuts built in the Async PN scheme are valid cuts.

Proof Let fcf_l be the obtained trial point for stage #—1 at iteration k. Consider the
cut for the cost-to-go function.

0,(x,_;,&,), which is given by
Qt(xt_l’ 5[) > alg[’t + ﬂé,t c X (1)
The expected cost-to-go function satisfies

Q&) =), Quxiis &) - PENE))

5{ eQI

Then, a cut for Q,(x,_;, &,_,) is given by
Qt(‘xt—l’gt—l) > Z aé’, : P(§t|§t—1) + Z ﬂét ’ P(gtlét—l) c X1 (3)

'fr EQI gt EQZ

Let us now build a cut for the expected cost-to-go function at iteration k+ 1 using
incomplete information. Assume that, at iteration k+ 1, we do not have access to
the solution information of outcome &,. Note that, as Eq. (1) holds for any x,_,, and
given Eq. (2), we can write

kl £
Q62 Y ot PEIE) +af - PEIE)
qeQ~(4)
k+1 k 2 (4)
[X B PEla)+ B - PEIE DX

éfeg {5}}

Note that, in Eq. 4, the missing information, at iteration k+ 1, of outcome ft is
completed by using the information of the previous iteration, namely by using the
cut coefficients ac.f ﬂ" of the previous iteration.

In Philpott and Guan (2008) the authors show that any sequence of cuts will nec-
essarily be finite, in the sense that after a finite number of iterations no new cuts will
be computed. Concretely, the following lemma, which is just an adaptation of the
proof shown in Philpott and Guan (2008), proves that after a finite number of itera-
tions the algorithm will not produce new cuts.

@ Springer

D. Avilaetal.

Lemma 2 Let G be the set of cuts at stage t, node w and iteration k. There exists
m, ,, such that|G;”| <m,, for all k, 1<t<T-1.

Proof Let’s proceed by induction on ¢. For rt=T— 1. Note that as there are no cuts in
the last stage, the set of multipliers in the last stage is given by,

{zlz" - Ar(@) < cp(@)}

Thus, there are at most let’s say M., possibilities for multipliers. Assuming there
are N, nodes for stage ¢, then it implies that at stage T there are at most HNT

i=1 T,0;
combinations of multipliers. As a consequence for any node @ at stage 7—1 there
are at most =TV M possibilities to build a cut. Let’s now assume that

mT—l,m s H'— T,

for t we have m, , such that |g§f5| <m,, for all k. We have to show the property
holds for r—1.

Due to the assumption, we know that for node w in stage 7, |g | < S My, iN par-
ticular this 1mphes that there exists a such that Q’ @ = g”” for all k>k, and so any

cut after iteration % is already in the set of cuts. Then after iteration¥, the linear pro-
gram of node w at stage r won’t have new cuts. As a consequence the set of multipli-

ers for node w at stage ¢ is finite, say M, ,. This implies that at stage ¢ there are

HN, possible combinations of multipliers. Therefore, for any node @ at stage
i=1 i
t—1 there will be at most m_ = Hj\/,l M possibilities to build a cut, which

proves the result.

Acknowledgements Computational resources have been provided by the Consortium des Equipements
de Calcul Intensif (CECI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS)
under Grant No. 2.5020.11 and by the Walloon Region. The first and second author have been supported
financially by the Bauchau family in the context of the Bauchau prize which is administered by UCLou-
vain. This work was supported in part by the European Commission’s Horizon 2020 Framework Program
under grant agreement No 864537 (FEVER Project).

Funding Université Catholique de Louvain.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License,which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long asyou give appropriate credit to the original author(s) and the source, provide a link to the Crea-
tive Commonslicence, and indicate if changes were made. The images or other third party material in this
article areincluded in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to thematerial. If material is not included in the article’s Creative Commons licence and your intended
use is notpermitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directlyfrom the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Aravena I, Papavasiliou A (2020) Asynchronous lagrangian scenario decomposition. Mathematical Pro-
gramming Computation pp 1-50

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Parallel and distributed computing for stochastic dual dynamic...

Arvanitidits NV, Rosing J (1970) Composite representation of a multireservoir hydroelectric power sys-
tem. IEEE Trans Power Appar Syst 2:319-326

Asamov T, Powell WB (2018) Regularized decomposition of high-dimensional multistage stochastic pro-
grams with markov uncertainty. SIAM J Optim 28(1):575-595

Bertsekas DP, Tsitsiklis JN (1989) Parallel and distributed computation: numerical methods, vol 23.
Prentice hall Englewood Cliffs, NJ

Bezanson J, Edelman A, Karpinski S, Shah VB (2017) Julia: A fresh approach to numerical computing.

Birge JR, Louveaux F (2011) Introduction to stochastic programming. Springer Science & Business
Media

da Silva EL, Finardi EC (2003) Parallel processing applied to the planning of hydrothermal systems.
IEEE Trans Parallel Distrib Syst 14(8):721-729

De Matos V, Philpott AB, Finardi EC, Guan Z (2010) Solving long-term hydro-thermal scheduling prob-
lems. Technical report, Electric Power Optimization Centre, University of Auckland, Tech. rep.

De Matos VL, Philpott AB, Finardi EC (2015) Improving the performance of stochastic dual dynamic
programming.] Comput Appl Math 290:196-208

Dowson O, Kapelevich L (2021) Sddp. jl: a julia package for stochastic dual dynamic programming.
INFORMS Journal on Computing 33(1):27-33

Dowson O, Philpott A, Mason A, Downward A (2019) A multi-stage stochastic optimization model of a
pastoral dairy farm. Eur J Oper Res 274(3):1077-1089

Dunning I, Huchette J, Lubin M (2017) Jump: A modeling language for mathematical optimization.
SIAM Rev 59(2):295-320. https://doi.org/10.1137/15M 1020575

Flach B, Barroso L, Pereira M (2010) Long-term optimal allocation of hydro generation for a price-maker
company in a competitive market: latest developments and a stochastic dual dynamic programming
approach. IET Gener Transm Distrib 4(2):299-314

Guigues V (2017) Dual dynamic programing with cut selection: Convergence proof and numerical exper-
iments. Eur J Oper Res 258(1):47-57

Guigues V, Bandarra M (2019) Single cut and multicut sddp with cut selection for multistage stochastic
linear programs: convergence proof and numerical experiments. arXiv preprint arXiv:190206757

Helseth A, Braaten H (2015) Efficient parallelization of the stochastic dual dynamic programming algo-
rithm applied to hydropower scheduling. Energies 8(12):14287-14297

Kaneda T, Scieur D, Cambier L, Henneaux P (2018) Optimal management of storage for offsetting solar
power uncertainty using multistage stochastic programming. In: 2018 Power Systems Computation
Conference (PSCC), IEEE, pp 1-7

Lohndorf N, Shapiro A (2019) Modeling time-dependent randomness in stochastic dual dynamic pro-
gramming. Eur J Oper Res 273(2):650-661

Lohndorf N, Wozabal D (2020) Gas storage valuation in incomplete markets. European Journal of Opera-
tional Research

Lohndorf N, Wozabal D, Minner S (2013) Optimizing trading decisions for hydro storage systems using
approximate dual dynamic programming. Oper Res 61(4):810-823

Machado FD, Diniz AL, Borges CL, Brandiao LC (2021) Asynchronous parallel stochastic dual dynamic
programming applied to hydrothermal generation planning. Electric Power Systems Research
191:106907

Papavasiliou A, Oren SS, Rountree B (2014) Applying high performance computing to transmission-
constrained stochastic unit commitment for renewable energy integration. IEEE Trans Power Syst
30(3):1109-1120

Papavasiliou A, Mou Y, Cambier L, Scieur D (2017) Application of stochastic dual dynamic program-
ming to the real-time dispatch of storage under renewable supply uncertainty. IEEE Transactions on
Sustainable Energy 9(2):547-558

Pereira MV, Pinto LM (1991) Multi-stage stochastic optimization applied to energy planning. Math Pro-
gram 52(1-3):359-375

Philpott AB, De Matos VL (2012) Dynamic sampling algorithms for multi-stage stochastic programs
with risk aversion. Eur J Oper Res 218(2):470—483

Philpott AB, Guan Z (2008) On the convergence of stochastic dual dynamic programming and related
methods. Oper Res Lett 36(4):450-455

Philpott AB, de Matos VL, Kapelevich L (2018) Distributionally robust sddp. CMS 15(3-4):431-454

Pinto RJ, Borges CT, Maceira ME (2013) An efficient parallel algorithm for large scale hydrothermal
system operation planning. IEEE Trans Power Syst 28(4):4888-4896

@ Springer

https://doi.org/10.1137/15M1020575
https://arxiv.org/abs/1902.06757

D. Avilaetal.

Shapiro A (2011) Analysis of stochastic dual dynamic programming method. Eur J Oper Res
209(1):63-72

Shapiro A, Tekaya W, da Costa JP, Soares MP (2013) Risk neutral and risk averse stochastic dual
dynamic programming method. Eur J Oper Res 224(2):375-391

Van Ackooij W, de Oliveira W, Song Y (2019) On level regularization with normal solutions in decom-
position methods for multistage stochastic programming problems. Comput Optim Appl 74(1):1-42

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

@ Springer

	Parallel and distributed computing for stochastic dual dynamic programming
	Abstract
	1 Introduction
	1.1 Parallelism in large-scale optimization
	1.2 Limitations of parallelism
	1.3 Contributions

	2 Stochastic dual dynamic programming (SDDP)
	3 Parallel schemes for SDDP
	3.1 Parallelizing by scenario and by node
	3.1.1 Parallelizing by scenario (PS)
	3.1.2 Parallelizing by node (PN)

	3.2 Synchronous and asynchronous computing
	3.2.1 Synchronous parallel scenario (sync PS)
	3.2.2 Asynchronous parallel scenario (async PS)
	3.2.3 Synchronous parallel node (sync PN)
	3.2.4 Asynchronous parallel node (async PN)

	4 Case studies
	4.1 Experimental results
	4.1.1 Synchronous and asynchronous computation
	4.1.2 Parallel node versus parallel scenario
	4.1.3 Scalability of parallel scenario
	4.1.4 Parallel node scalability

	5 Conclusions
	Acknowledgements
	References

