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Abstract. Enterprise Resource Planning (ERP) software is used by
businesses and extended via customisation. Automated custom code anal-
ysis and migration is a critical issue at ERP release upgrade times. De-
spite research advances, automated code analysis and transformation
require a huge amount of manual work related to parser adaptation, rule
extension and post-processing. These operations become unmanageable
if the frequency of updates increases from yearly to monthly intervals.
This article describes how the process of custom code analysis to custom
code transformation can be automated in an explainable way. We develop
an aggregate taxonomy for explainability and analyse the requirements
based on roles. We explain in which steps on the new code migration
process machine learning is used. Further, we analyse additional effort
needed to make the new way of code migration explainable to different
stakeholders.

Keywords: Explainable Automated Source-code Transformation - Multi-
modal Conversational Interfaces - Explainability Taxonomy.

1 Introduction

Enterprise resource planning (ERP) systems, such as SAP Business One® and
Oracle E-Business Suite?, have been implemented by many large and medium
size companies [5]. The ERP software market grew globally by 10% and reached
$ 35 billion in 2018 [18]. The costs of initial implementation range for medium
to large scale businesses from $ 150.000 to over $10 million.

Although ERP system vendors recommend to limit code customisation and
adapt the business processes to the system, studies report a significant number
of customisations in existing ERP systems. For instance, 74% of the companies
studied in [9] have adjusted their systems to a degree between moderate and high.

* Supported by FNR Luxembourg INTER-SLANT grant 13320890
3 https://www.sap.com/products/business-one.html
* https://www.oracle.com/de/applications/ebusiness/
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The possibility to adapt an ERP system to the business needs and processes of
an organisation (i.e. create custom programs) is one of the key requirements for
the choice of a specific ERP software [33].

An ERP upgrade implies major changes caused by an implementation of
a new version of an already installed ERP system [5]. ERP upgrades can add
up to 25-33% of the initial implementation costs for one upgrade [33], most
of them caused by labour costs. In average, the costs can increase by $ 1,5
million (between $37.500 and $3,3 million). According to [36], usually a major
ERP system upgrade is needed every three years. Cloud-based SAP solutions,
however, move to a quarterly release cycle. Current change in the market leader’s
platform to the SAP S/4HANA ERP software and HANA database forces SAP
customers to spend resources on migration of their custom code base [31]. ABAP
(Advanced Business Application Programming), the proprietary programming
language of SAP, is normally used for custom programs.

Several companies developed rule-based solutions to support SAP customers
in their custom code migration tasks within SAP upgrade projects. However, all
state-of-the-art solutions share two major problems:

1. Frequent manual updates of the rule-based solution would be required in
order to keep it compatible with quarterly updates of the cloud-based SAP
ERP solutions, but they are time-consuming and labour-expensive.

2. The reports generated by the current set of tools usually consist several hun-
dreds of spreadsheets. Usually experts review these reports using standard
Business Intelligence software and decide which custom programs must be
maintained. This is expensive and exhausting.

This is why, technological innovation that transfers academic advances in
Machine Learning (ML) and Robotic Process automation (RPA) to the field of
software transformation in legacy ERP systems is urgently needed. To tackle
this challenge, we developed a plan for knowledge transfer for this specific prob-
lem in a close collaboration with one of the technology leaders in the domain
of automated ERP custom-code upgrade, smartShift Technologies®. Although
SAP itself offers a standard solution for custom code upgrade, it only covers
unused code and some database compatibility checks. The smartShift tools also
analyse syntax and functional errors in the custom code. This is why we chose
this solution as our baseline. The business case discussed here is the service of
automated custom code migration offered by smartShift.

One of the important questions within this business case is the question of
decision explainability. First, the service providers needs to ensure the quality
of analysis and migration with a certain level of accuracy. Second, the service
provider can be made liable for problems in the work of the ERP system after
migration caused by the wrong decisions made by the AI system. Third, errors
in the process of code transformation can delay other dependent tasks in the
upgrade project and cause additional costs, which should be avoided.

® https://smartshifttech.com
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The process of code migration is monitored on both sides, the service provider
and the customer. This is why the explanations need to be reasonable for multiple
stakeholders and multiple roles. With this motivation, we focus on the question,
is additional effort needed in order to make a transformation from an
existing rule-based to an ML-based system in an explainable way.

Because the notion of explainability is a complex phenomenon by itself, we
first create an aggregate taxonomy of explainability as explained in Section 2.
Section 3 briefly describes the steps in the innovation process. Further in Section
4, we use the aggregate taxonomy to evaluate feasibility and cost of a potential
transformation of a rule-based system to an ML-based system used in the ERP
domain. Section 5 discusses the results and future research directions.

2 Dimensions of Explainability

Scholar literature on XAI developed several approaches for managing explain-
ability. The works deal with such issues as interpretability [21,26], fairness [40]
and transparency [7]. Each of these terms is recognised as very complex, so that
efforts have been made to break them down to a well-defined set of features or
parameters [39, 2].

It has been recognised that explainability of ML systems has to target system-
related aspects, such as data, models and algorithms [39,2], and user-related
features, such as the user’s knowledge of the domain and the interface [37,12].
Some authors propose to include explainability as a non-functional requirement
in the process of software design by focusing on the real users’ need for explana-
tions of the system’s behaviour [6]. This, in turn, is very difficult given that the
notions of interpretable, intelligible, explainable and understandable Al are vague
and overlapping. For example, [39] discusses multiple definitions of these terms
from literature and, finally, uses interpretability as a synonym to all termsthat
describe the process and the result of human sense-making by using, training
and modifying an ML system. In contrast, [13] uses the term transparency for
”decisions affecting us explained to us in terms, formats, and languages we can
understand” [13, p. 29].

What is more, case studies such as [12] show that in industrial applications
of XAI, different users have different needs (data scientists want to see the data
while ML engineers want to see the trained model).

In order to make the explainability requirement manageable, we created an
aggregate of existing taxonomies for XAI [39, 2, 13]. The interface dimension has
not been mentioned in the earlier taxonomies, however, it is an important aspect.
As pointed out in [2], interactive explanations are rarely studied; a few examples
not mentioned in [2] include [16, 1].

The aggregated taxonomy is presented in Table 1. It includes six dimensions:
user, object, scope, directness, interaction and interface. The taxonomy can be
used as follows: first we need to understand who will be the user of the expla-
nations. Then, based on the description of the role or the persona, we need to
determine the object of explanations (can be more than one).
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Dimension Values Reference
User E.g. based on roles or personas 12,2]
Object Data: bias, causality, 39,2,13]

Model: optimiser, training, prediction
Evaluation: accuracy, fairness of the deci-
sions, safety and reliability of the system

Scope Local vs. global 2]
Directness Directly interpretable, post-hoc explana-|[2,13]
tion after training, surrogate approxima-
tion model
Interaction Static vs interactive 2]
Interface Visualisation, voice, text, virtual or aug-|Own work

mented reality, multi-modal
Table 1. Aggregated dimensions of explainability based on [39, 2,13, 12] and own work

Interaction

,  Buiell

Fig. 1. Cut colour paper circles, write the dimensions on them and assemble in the
center, then rotate and bring the needed dimensions together on a line to construct a
vector describing your case
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For every object, explanations can be of different scope (local or global).
The models used for each object can be either directly interpretable (e.g. a
small and simple set of rules) or can be explained post-hoc or using a surrogate,
approximation model. The explanations for each of those cases can be either
static or interactive. For both static and interactive explanations, we can use
different interfaces, e.g. conversational, visual and multi-modal. Figure 1 shows
how this taxonomy can be visually used to choose the right features.

3 Steps in the Innovation Process

This section explains the changes needed in the custom-code upgrade process
in order to go from the rule-based existing system to an ML-based system with
a multi-modal conversational interface. In theory it is possible to have multiple
interfaces for the same XAI system (e.g. an app, a website and an Alexa skill.
However, we chose a multi-modal conversational interface for our business case,
as explained below.

3.1 Custom Code Analysis

Custom code analysis includes detection of unused custom code, syntactic, se-
mantic and functional analysis. It addresses two key requirements for a successful
ERP upgrade project:

1. System clean-up and
2. Replacement of custom programs whose functionality is already covered by
the standard functionality of the target version (obsolete programs).

System clean-up includes identification of duplicates, outdated, or unused
functions in the custom code. Between 40% and 70% of the customisations in
an average SAP system are not in use [10]. Replacement of obsolete custom pro-
grams with standard functionality implies a detailed analysis of the features in
the target ERP version [5]. We challenge scholar state of the art by applying
natural language processing (NLP) methods, models and tools to legacy pro-
gramming languages. We analyse the ABAP custom code on syntactic, semantic
and functional levels.

In the first step we develop a general method based on NLP state-of-the-
art to identify and track custom programs that are obsolete, no longer in use
or incompatible with application functionality, data model and interfaces. The
automation of the custom code analysis happens in four stages:

1. Detection of unused custom code. It includes custom programs that
have not been activated in the ERP system for more than N months (in
practice, 6 < N < 18), including underutilized dependencies (modules that
are used only partially and contain blocks of ”dead code”) [41].
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2. Syntactic analysis. It includes checks with respect to the target ERP re-
lated to the syntactic correctness of the custom programs, the correctness
of the data model, and the API interface compatibility with the target plat-
form. This step can be formulated as a machine-translation problem in which
the translation happens from code with syntactic errors to correct code [28].

3. Semantic analysis. This phase detects code clones. Following [32] we distin-
guish between structural clones (exact copies of code, copies with renaming
and /or modification) and semantic clones (programs that do the same with-
out being structurally similar). Code clones are intentionally introduced by
programmers because they help to address changes quickly, save procedure
calls and are encouraged by template-based programming. However, code
clones increase maintenance costs, cause bug propagation and have negative
impact on design and system understanding [32]. Scientists distinguish four
types of semantic clones with different grades of syntactic similarities. Type
1 of code clones are syntactically very similar, while Type 4 code clones
have no syntactic similarities. The problem can be technically solved using
neural models , for example convolutional [42] or rule-based approaches, for
example graph-based [35].

4. Functional analysis. This step detects obsolete programs. Detection of
obsolete programs is one instance of the Type 4 semantic clone detection.
Neural models have been shown to be most successful for this task [42].
Custom code is usually unstructured bulk of programs while SAP uses so-
called tile architecture in which all programs are classified by business area.
Therefore, we can also specify the detection of obsolete custom programs as a
text classification task with the classes from SAP core. Deep Learning-based
text classification approaches are in this case also the most successful [25].

These four stages of the custom code analysis deliver facts about the actual state
of the software code in a particular ERP system with respect to a particular
target release version. Thus, these analysis steps need to be repeated for each
source-target pair each time.

Usually, the results of such an analysis are presented to a business analyst
in the form of hundreds of spreadsheets (the number depends on the system’s
size and the number of identified issues in the custom code). The business ana-
lyst makes decisions related to the code transformation using standard business
intelligence software. We decided to automate this process using multi-modal
conversational interfaces. We store the facts learned about the current state of
the system in a knowledge base. The next section explains the implementation
of the multi-model conversational interface.

3.2 Multi-modal Conversational Interface

Conversational interfaces, also called chatbots, support explainability of complex
technical systems [16] and facilitate complex problem solving [11]. Multi-modal
conversational interfaces have been explored in the bio-informatics domain [8]
and fashion retail applications [20]. The authors in [8] formulate seven design
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principles for multi-modal conversational interfaces which we use for the design
of our system. Figure 2 shows the current modalities.

Menu area

Help area

Visualisation area XYZ 268 Objects
unused since 598
days

Conversation area

| I II I .l . .. What if we had deleted

package XYZ?

See the simulated result!

Fig. 2. Preliminary design of the multi-modal conversational interface

The visualisation area presents the contextual view on the data from the
knowledge base as requested by the user via the conversation area. The con-
versation area is designed and developed as a standard chatbot design pipeline
consisting of skills, natural language understanding (NLU) module and natural
language generation (NLG) module

1. Skills are defined manually using the SAP CAI interface®. Each skill con-
tains the domain knowledge of the analysed custom code, e.g. obsolete code,
unused code etc. Therefore, the skills are the same for each system to be
analysed and explored with the help of the new interface.

2. Because Intent-based language understanding is commonly used in NLU
platforms for task-based interactions. Intents represent the identified mean-
ing of a user’s utterance. NLU models are usually trained on a large number
of examples of user inputs. Because no conversational training data for the
custom code upgrade domain are available, we use other types of documents
such as analysis reports and written customer communication.

5 https://cai.tools.sap, former recast.ai
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3. For the NLG module, we define the chatbot’s interaction profile that is con-
sistent with the corporate environment. We use the persona methodology to
define the chatbot’s personality aligned with the company’s brand [23].

The advantage of the multi-modal interface is that the users can simulate
software code transformation results before they trigger the actual transforma-
tion in the development system. The so-called ”what-if’-analysis can be easily
initiated in the conversational area of the interface, and visualised in the visu-
alisation area. Because bad user experience also may negatively influence the
explainability of the system [34], we apply recent conversational user experience
(CUX) findings when designing the interaction with the multimodal interface,
see for instance [14].

3.3 Source-code Transformation

An automated source-code transformation can be then triggered via the conver-
sational interface and includes:

1. Archiving of unused custom programs;

2. Removal of obsolete programs;

3. Code transformation for custom programs that are currently in use and
whose function is not covered by the core programs. Modification of functions
incompatible with new interfaces (i.e. cloud interfaces).

The latter item, automated source-code transformation, is also known as source
code translation or language migration. Academic literature reports various
types of source-code translation: translation from a programming language to
pseudo-code and back [30]; from one programming language to a different pro-
gramming language [17]; from code with errors to code without errors (code re-
pair) [24]; from proprietary languages to non-proprietary languages (e.g. ABAP
to Java) [27]; from source code to natural language (source code summarisation)
[15]; and from a natural language to API code templates [29]. In this project
we perform transformations from ABAP to ABAP (proprietary language) while
correcting errors in the code.

4 Explainability Requirements and Costs

As explained in Section 3, ML is used in several phases of the analysis and
transformation process, and also for the conversational part of the multi-modal
interface. In this section we analyse, what kind of explainability we need at
which step, and what are their costs. In order to obtain the requirements for
explainability, we use the aggregate taxonomy presented in Sec. 2. We summarise
in Table 2 how the explainability requirements change if the proposed innovation
replaces the existing rule-based system.
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Dimension |Before After
User ABAP developer, project manager,| ABAP developer, project manager,
business analyst business analyst, ML /NLP engi-
neer
Object Data: causality Data: bias, causality
Model: classification Model: optimiser, training, pre-
diction
Evaluation: accuracy, safety Evaluation: accuracy, safety
Scope Local: single rules Local: single prediction of an
error

Global: behaviour of the code
analyser and its parts, be-
haviour of the NLU

Directness |Directly interpretable Post-hoc, surrogate
Interaction|Static Interactive
Interface |Spreadsheets Multi-modal, conversational

Table 2. Changes in explainability requirements caused by transformation from the
rule-based solution to the ML-based solution described in Sec.3, differences marked in
bold

4.1 Explainability Requirements

As suggested in Sec. 3.1, the code transformation task can be defined as a
machine-translation problem. NLP methods have been successfully used for sim-
ilar tasks for software code (see Sec. 3.3 for references). Neural machine-learning
models deliver the most accurate results on tasks similar to machine translation,
including software code migration. However, these models are the least inter-
pretable. Although attempts are made to make neural models explainable [38,
3], the explanations are mostly limited to visualisation of functions and variables.
Such explanations are only accessible to ML experts. For instance, if visualisa-
tion of a function in the model training process has a particular curve, what does
it mean for the expert? How would an expert explain this curve to a non-expert
(simplified explanations)? This question must find an answer in the design of
the multi-modal interface: the knowledge stored in the knowledge base needs to
be formulated in natural-language utterances and/or visual elements in a way
accessible to the target user group.

Because different roles may need different explanations, we analyse here the
explainability requirements by role:

1. ML/NLP engineer: is interested in validating the models and the data for a
particular release version and a particular set of custom programs. This role
would need static views on data (both bias and causality) and models (opti-
mizer and training) as well as evaluation of the accuracy. Static visualisations
are an appropriate way used in most ML tools to generate surrogate-based
and post-hoc explanations. This role would need explanations on the global
level, but may need to have access to single predictions for evaluation.
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2. ABAP developer: wants to know why a particular program has been classified
as incorrect or obsolete. The explanation needs to be static, local and post-
hoc at the level of model.

3. Project manager: needs to ensure a smooth execution of the project and is
interested in the global picture of the code analysis in order to plan human
resources for post-processing and quality assessment. Explanations for this
role need to be interactive, global, post-hoc, the object of the explanations
will be mostly model and evaluation.

4. Business analyst: is interested in the global picture and in simulations. This
role would need interactive, global explanations of the surrogate model.

A set of explainability tools similar to AIX360 described in [2] can be built and
offered to the users via multi-modal interface.

Because the user of the analysis results will mainly interact with the new
multi-modal interface, static explanations can be generated in the process of
interaction with the interface. The explanations can have the form of natural-
language utterances generated by the chatbot, or visual shown in the visual-
isation area, or a synchronised version of both areas where a visualisation is
generated and an utterance explains what the visualisation is supposed to show.
The conversational area of the interface does not have to be restricted on text
input. As CUX research suggests, a wise combination of textual and visual ele-
ments improves the CUX [14], and consequently, it improves transparency of the
system to the target user group. Therefore, we use the 12 heuristics suggested
in [14] for the interface and interaction design.

In addition, humans usually use less precise formulations in their requests
that computer systems store in the models. As Hagras (2018) [13] and Alonso
et. al ([1]) point out, humans are able to communicate effectively with imprecisely
defined labels such as slow, slightly and infrequent, while computer systems need
a specific numerical value for such labels. The numerical values for these labels
would be different for different people, but the conversational interface needs to
map them to precise numbers. Both works suggest using fuzzy logic to deal with
such issues. One possible consequence of this could be additional effort in the
system’s explanations of the sort ”Did you mean...?”

4.2 Explainability Costs

The number of tools that support explainability tasks is growing and the range
of the problems tackled becomes wider and wider. We can see the explainability
requirements for which no tools or methods currently exist as infinitely large.
For those requirements that are currently supported by tools, we set the cost at
1. For directly interpretable parts of the systems, we set the costs as 0.

As shown in Table 2, the new system needs to be made explainable for
different roles. Each role may need different parts of the system to be explained
in different ways. Therefore, costs of explainability can be different for different
roles. In Table 3 we specify the explainability costs for each of the parts of the
new technology.
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Step Explainability type Cost
Unused code detec-|Directly interpretable 0
tion

Syntactic analysis  |Post-hoc or surrogate 1
Semantic analysis

- Structural clones |Directly interpretable 0
- Semantic clones Post-hoc or surrogate 1
Funcional analysis  |Post-hoc or surrogate 1
NLU Post-hoc 1
NLG Directly interpretable 0
Simulation Surrogate 1

Table 3. Explainability costs for each step in the innovation process

As we can see from Table 3, it is possible to find an explainable model for
each part so that costs are never infinitely large. Specific methods for explain-
able neural models have been developed, for example [38,19,4,22]. However,
they may be insufficient for users who are not ML engineers. The multi-modal
conversational interface can help to solve this issue in the form of feature gener-
alisation and zoom-in/zoom-out visualisations. Also, simplified explanations as
described above would be required.

5 Conclusions

This research was motivated by the question, whether an XAI system would
cause addition costs as compared to non-XAI version. We analysed a use case
from the SAP custom code transformation domain. To evaluate the costs we
proposed an aggregated taxonomy for XAl based on six dimensions: user, object,
scope, directness, interaction and interface.

We found that the new approach will cause additional effort at all six di-
mensions. However, due to recent progress in the implementation of explainable
neural models such as [38,19, 4, 22], the costs are not infinitely large. Neverthe-
less, the creation of a multi-modal interactive interface for explanations would
require integration of the explainable models in the process from the beginning.

The proposed approach brings the risk that the explainable methods de-
scribed in the academic literature are not suitable for deployment in a deployed
system. However, tool sets for XAI such as AIX360 show that it is technically
possible at least in some cases.
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