BURST: A Benchmarking Platform for Uniform Random
Sampling Techniques

Mathieu Acher
IRISA, University of Rennes I, France
mathieu.acher@irisa.fr

Gilles Perrouin
PReCISE, NaDlI,
Faculty of Computer Science,

Maxime Cordy
SnT, University of Luxembourg
maxime.cordy@uni.lu

University of Namur
gilles.perrouin@unamur.be

ABSTRACT

We present BURST, a benchmarking platform for uniform random
sampling techniques. With BURST, researchers have a flexible, con-
trolled environment in which they can evaluate the scalability and
uniformity of their sampling. BURST comes with an extensive —
and extensible — benchmark dataset comprising 128 feature mod-
els, including challenging, real-world models of the Linux kernel.
BURST takes as inputs a sampling tool, a set of feature models and
a sampling budget. It automatically translates any feature model
of the set in DIMACS and invokes the sampling tool to generate
the budgeted number of samples. To evaluate the scalability of the
sampling tool, BURST measures the time the tool needs to produce
the requested sample. To evaluate the uniformity of the produced
sample, BURST integrates the state-of-the-art and proven statistical
test Barbarik. We envision BURST to become the starting point of
a standardisation initiative of sampling tool evaluation. Given the
huge interest of research for sampling algorithms and tools, this
initiative would have the potential to reach and crosscut multiple
research communities including AI, ML, SAT and SPL.

CCS CONCEPTS

+ Software and its engineering — Software testing and de-
bugging; Software product lines.

KEYWORDS

configurable systems, software product lines, variability model,
sampling, SAT, benchmark

ACM Reference Format:

Mathieu Acher, Gilles Perrouin, and Maxime Cordy. 2021. BURST: A Bench-
marking Platform for Uniform Random Sampling Techniques. In 25th ACM
International Systems and Software Product Line Conference - Volume B (SPLC
"21), September 6—11, 2021, Leicester, United Kingdom. ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/3461002.3473070

1 INTRODUCTION

Uniform Random Sampling (URS) is a family of techniques to sam-
ple from the set of solutions of a logical formulae, such that each

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SPLC 21, September 6-11, 2021, Leicester, United Kingdom

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8470-4/21/09.

https://doi.org/10.1145/3461002.3473070

solution gets the same probability of being selected. URS has nu-
merous applications in various domains including deep learning
[3] and Software Product Line (SPL) engineering [27, 29, 32]. As
such, multiple research communities have worked on approaches
and tools for URS.

In SPL engineering, URS — and more generally, sampling ap-
proaches — have been an important support to quality assurance
techniques like testing [16, 32], verification [10, 30] and perfor-
mance analysis [2, 19, 40]. This support consists of computing a
representative sample of SPL variants (or configurations). Because
these variants are too numerous to be all considered for analysis,
sampling offers an adequate compromise between completeness
and efficiency.

Various artifacts can drive the sampling of SPL variants, such as
feature models [20], source code, test suites, behavioural models,
etc. Feature models, however, remain the most commonly used
input for SPL sampling techniques. The main reason is that the
semantics of feature models can be expressed in first-order logic
[4, 35], whose set of solutions corresponds to the set of valid SPL
variants. This makes feature models inherently amenable to URS.

There exist also approaches that combine URS with metaheuris-
tics to obtain a sample optimizing several objectives (e.g. coverage
and cost of configurations) [15, 17, 34]. Metaheuristics — such as
evolutionary algorithms — start from initial set of random solutions,
and the choice of these initial solutions can have a significant im-
pact on effectiveness [5]. Indeed, past research has demonstrated
that URS can produce an initial set of solutions that ultimately
improve the effectiveness of the metahuristics by 10% on average
[11, 24].

As the interest towards URS has been growing, different research
communities have developed algorithmic solutions and evaluated
those solutions on community-specific datasets. For example, re-
searchers in SPL engineering typically use feature models, whereas
researchers in artificial intelligence and SAT solvers typically focus
on circuits or embedded system design problems, resulting in very
different formulas. Such lack of standardization has inevitably led
to poor generalization beyond the specifically used datasets. For
instance, our past study has revealed that UniGen - one of the most
effective URS tools that Al researchers had developed - failed to
scale on large feature models [32]. UniGen’s authors have, since
then, developed new approaches that perform better on feature
models [37, 38]. This experience illustrates that researchers need
the ability to experiment with various datasets and, ideally, under
a common protocol and technological ground. Such experimental
control would circumvent the threats to generalization of previous
studies and lead to a standardization of sampling tools evaluation.

https://doi.org/10.1145/3461002.3473070
https://doi.org/10.1145/3461002.3473070

SPLC °21, September 6-11, 2021, Leicester, United Kingdom

To address this need, we present BURST, a benchmarking plat-
form for uniform random sampling techniques. With BURST, re-
searchers have a flexible, controlled environment in which they
can evaluate the scalability and uniformity of their sampling. As
noted by Pett et al. [31], evaluating sampling algorithms require
collecting them, benchmarks data and executing them. BURST thus
comes with an extensive — and extensible — benchmark dataset
comprising 128 feature models, including challenging, real-world
models of the Linux kernel stored as CNF formulas in the well-
known DIMACS format. The platform also includes datasets from
the artificial intelligence community [12] for comparison. BURST
takes as inputs a sampling tool, a set of CNF formulas and a sam-
pling budget to generate samples and/or evaluate their confor-
mance to uniform distributions. BURST relies on external tools
(such as FeatureIDE [26]) to transform feature models to CNF
formulas. To evaluate the uniformity of the produced samples,
BURST integrates the state-of-the-art and proven statistical test
Barbarik [7]. BURST is available as open source and as a Docker im-
age: https://github.com/FAMILIAR-project/usampling-exp. A short
video explaining BURST motivation and usage is also available:
https://www.youtube.com/watch?v=sSKosyrfitA.

2 BURST: INPUTS, PROCESS, OUTPUTS

2.1 Feature models

BURST’s benchmark dataset comprises 128 publicly available fea-
ture models with a varying complexity scale, including models
of real-world configurable systems (Linux, eCos, toybox, JHipster,
etc.). These models come from three sources:

e 117 feature models come from previous research [21, 22].
The majority of these 117 models contain between 1,221 and
1,266 features. Of these 117 models, 107 comprise between
2,968 and 4,138 cross-tree constraints, one has 14,295, and
the other nine have around 50,000 [21, 22].

e 10 additional models come from [23]. These models contain
more than 6,000 features.

o the last model is the JHipster feature model [16, 33]. It is
real-world but smaller: 45 variables, 26,000+ configurations.

Once transformed in conjunctive normal form (CNF), these in-
stances typically contain between 1 and 15 thousand variables and
up to 340 thousand clauses. For instance, the Linux kernel models —
the hardest model for sampling that we have — contains more than
6 thousand variables, 340 thousand clauses.

2.2 Other Models

BURST also offers a variety of models obtained when evaluating
tools such as QuickSampler and Unigen. The models are not trans-
lation of feature models but represent electronic circuits, embedded
design or algorithmic problems. These models have different char-
acteristics from feature models, inducing a very different behavior
from uniform samplers. Feature models are generally more challeng-
ing. Since uniform sampling have applications in many areas and
not only SPLs, diversity of models is key to practical significance
of sampling tools.

Mathieu Acher, Gilles Perrouin, and Maxime Cordy

2.3 Uniform random sampling tools

BURST integrates multiple URS tools that researchers from different
communities have proposed in the recent years. The underlying
techniques offer various trade-offs between efficiency and unifor-
mity guarantees. Therefore, BURST comes with multiple state-of-
the-art baselines that can support the evaluation of new techniques.
The techniques and tools that BURST includes are:

e UniGen [6, 8] is a hashing-based algorithm to generate sam-
ples in a nearly uniform manner with strong theoretical
guarantees: it either produces samples satisfying a nearly
uniform distribution or it produces no sample at all. These
strong theoretical properties come at a cost: the hashing
based approach requires adding large clauses to formulas so
they can be sampled. These clauses grow quadratically in
size with the number of variables in the formula, which can
raise scalability issues.

e QuickSampler is an algorithm based on a strong set of
heuristics, which are shown to produce samples quickly in
practice on a large set of industrial benchmarks [13]. How-
ever, the tool offers no guarantee on the distribution of gen-
erated samples, or even on the termination of the sampling
process and the validity of generated samples (they have to
be checked with a SAT solver after the generation phase).

¢ Distance-based Sampling (DbS) [19] is a recent sampling
technique designed to improve configuration-performance
prediction models. The techniques is based on a distance met-
ric and a probability distribution to control the spread of the
random sampling over the configuration space. By doing so,
DbS covers different kinds of interactions among configura-
tion options in the sample set. DbS does not aim to generate
uniform samples. However, it is an efficient metrics that is
competitive to uniform sampling in terms of improving the
performance predictions models.

e SMARCH [28] follows a divide-and-conquer approach es-
tablihing mapping between integers and configurations and
exploit multiple CPUs facilities by running computations in
parallel.

e SPUR [1] is a perfect uniform random sampler that is based
on the sharpSAT model counter .

e KUS is an uniform sampler based on knowledge compilation
techniques: it rewrites CNF formulas in d-DNNF format and
iterates over this representation, allowing order of magni-
tude compared to UniGen [36].

e ApproxMC/UniGen3 is a near uniform sampler based on
approximate model counting. Since model counting of large
formulas is computationally heavy, such a tool can drastically
improve sampling performance [9, 37, 38]. Because it also
integrates hahsing-based techniques of UniGen we refer to
it as "UniGen3’.

o STS [14] explores the space of variable assignments in a
breadth-first manner and use a SAT solver to complete solu-
tions.

e CMS CryptoMiniSAT is a SAT solver originally dedicated
to cryptographic applications [39]. Now in version 5.x', it
integrates with ApproxMC/Unigen3.

Uhttps://github.com/msoos/cryptominisat/releases/tag/5.8.0

https://github.com/FAMILIAR-project/usampling-exp
https://www.youtube.com/watch?v=sSKosyrfitA
https://github.com/msoos/cryptominisat/releases/tag/5.8.0

BURST: A Benchmarking Platform for Uniform Random Sampling Techniques

Overall, support the evaluation of ten distinct sampling tools,
issued both from the SPL and SAT/artificial intelligence communi-
ties.

2.4 Quality Metrics

BURST enables the evaluation of URS techniques according to two
qualities: uniformity and efficiency. Uniformity refers to the quality
of the samples that a given technique generates, that is, whether
it actually samples any configuration with the same likelihood.
Efficiency refers to the speed at which the tool can produce such
samples.

To assess uniformity, we use a recent statistical test named
Barbarik [7]. Barbarik is an algorithmic framework that can test
whether a sample’s distribution is e-close or n-far from the uniform
distribution where € and 7 are thresholds. Compared to other sta-
tistical methods, Barbarik requires a smaller number of samples,
ie. O((’]_—ley,). To realize this test, Barbarik invokes a reference,
ideal uniform sampling tools to produce a uniform sample. BURST
reuses the open-source implementation of Barbarik as available in
the official repository.?

To assess efficiency, BURST invokes the sampling tool and records
the number of samples the tool can generate within a predefined
time budget.

2.5 BURST configuration parameters

BURST has two execution modes, one for sampling efficiency (S) and
the other for uniformity assessment (U). BURST main configuration
parameters are the following:

S/U . The formulas or folder of CNF formulas in DIMACS format
to be analysed, allowing for large scale experiments in batch
mode.

S/U The sampler to evaluated.

U The sampler that will serves as the reference for uniformity
evaluation. SPUR is the reference by default.

S/U A timeout for experiments, which is useful for slow samplers
and large formulas.

Additionally, BURST supports all options provided by Barbarik
(such as n and €), using default values if omitted. Parameters n and
€ determine the number of samples required for the evaluation of
the uniformity. All supported options are described on BURST’s
website.

3 BURST IMPLEMENTATION

BURST is implemented a set of command-line tools written in
Python.

3.1 Architecture
BURST utilities are decomposed as follows:

e Samplers. All samplers are in samplers directory (and all
utilities/dependencies are also in this folder).

e Sampling experiments. The usampling-experiments.py
script pilots the scalability study of samplers over different
models.

Zhttps://github.com/meelgroup/barbarik

SPLC °21, September 6-11, 2021, Leicester, United Kingdom

o Uniformity experiments. The file barbarikloop.py per-
forms uniformity experiments and store results in a CSV
file. It is based on the barbarik tool from Kuldeep Meel et
al: https://github.com/meelgroup/barbarik. This version sup-
ports uniformity check for all the 10 solvers above and uses
SPUR as a reference uniform solver, if not specified.

e Models. Our models come from different sources: https://
github.com/diverse-project/samplingfm/ (including non-SPL
formulas and hard feature models) and https://github.com/
PettTo/Feature-Model-History-of-Linux gathering difeertn
version of linux models of more than 6,000 features.

To ease usage, these artifacts are embedded in a docker image.

3.2 Extending BURST

It is relatively easy to add a new sampler to BURST. One needs
to implement a Python function - getSolutionFromXXX - in the
SolutionRetriver class of the barbarik.py file. Existing imple-
mentations of that function can serve as examples. It is straightfor-
ward to add new satisfiability formulae (e.g., coming from feature
models), using the ’flas’ option allowing to process all files in a
given folder.

4 CONCLUSION

We presented BURST, a benchmarking platform for assessing ran-
dom uniform samplers. BURST provides flexible and extensible
tools to run samplers and to evaluate their performance as well
as the uniformity of generated samples. This platform joins the
effort of research aiming at providing systematic and reproducible
evaluation and comparison of sampling approaches [31]. Our initial
experiments [32] demonstrated that it is challenging for a sampler
to achieve both performance and uniformity goals. BURST is an op-
portunity to evaluate algorithmic developments and demonstrate
practical advances on a variety of SPL and non-SPL models, in-
cluding the most challenging ones. BURST is under development
and there is room for future work. First, We would like to include
visualisation tools, to understand in a more fine-grained way unifor-
mity deviations [32]. Second, since the development of uniformity
testing approaches is a research area in itself [18, 25], we would
like to integrate them in BURST. Indeed, akin to model diversity,
such tests have different features: Barabarik works with CNF for-
mulas and requires a reference sampler, Heradio et al’s technique
works with BDDs and does not need such a reference. We believe
that this platform can contribute to the synergistic development of
new samplers and testing approaches [25], and more generally to
more collaboration between the SAT solving and SPL engineering
communities.

ACKNOWLEDGMENTS

This research was partly funded by the ANR-17-CE25-0010-01
VaryVary project. Gilles Perrouin is a Research Associate at the
FNRS. Maxime Cordy was supported by FNR Luxembourg (grant
C19/1S/13566661/BEEHIVE/Cordy).

REFERENCES

[1] D. Achlioptas, Zayd Hammoudeh, and P. Theodoropoulos. 2018. Fast Sampling
of Perfectly Uniform Satisfying Assignments. In SAT.

https://github.com/meelgroup/barbarik
https://github.com/meelgroup/barbarik
https://github.com/diverse-project/samplingfm/
https://github.com/diverse-project/samplingfm/
https://github.com/PettTo/Feature-Model-History-of-Linux
https://github.com/PettTo/Feature-Model-History-of-Linux

SPLC °21, September 6-11, 2021, Leicester, United Kingdom

(2]

[6

=

[7

[

>
&

[9

=

[10]

(11

[12

[13

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Juliana Alves Pereira, Mathieu Acher, Hugo Martin, and Jean-Marc Jézéquel.
2020. Sampling effect on performance prediction of configurable systems: A case
study. In Proceedings of the ACM/SPEC International Conference on Performance
Engineering. 277-288.

Teodora Baluta, Zheng Leong Chua, Kuldeep S. Meel, and Prateek Saxena. 2021.
Scalable Quantitative Verification For Deep Neural Networks. In 43rd IEEE/ACM
International Conference on Software Engineering, ICSE 2021, Madrid, Spain, 22-30
May 2021. IEEE, 312-323. https://doi.org/10.1109/ICSE43902.2021.00039

D. Batory, D. Benavides, and A. Ruiz-Cortés. 2006. Automated Analysis of Feature
Models: Challenges Ahead. Commun. ACM (December 2006).

Erick Cantd-Paz. 2002. On Random Numbers and the Performance of Genetic
Algorithms. In Proceedings of the 4th Annual Conference on Genetic and Evolu-
tionary Computation (New York City, New York) (GECCO’02). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 311-318. http://dl.acm.org/citation.
cfm?id=2955491.2955546

Supratik Chakraborty, Daniel J. Fremont, Kuldeep S. Meel, Sanjit A. Seshia, and
Moshe Y. Vardi. 2015. On Parallel Scalable Uniform SAT Witness Generation.
In Tools and Algorithms for the Construction and Analysis of Systems, Christel
Baier and Cesare Tinelli (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
304-319.

Sourav Chakraborty and Kuldeep S. Meel. 2019. On Testing of Uniform Samplers.
In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The
Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019,
The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019. AAAI Press,
7777-7784. https://doi.org/10.1609/aaai.v33i01.33017777

Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. 2014. Balancing
scalability and uniformity in SAT witness generator. In 2014 51st ACM/EDAC/IEEE
Design Automation Conference (DAC). 1-6. https://doi.org/10.1145/2593069.
2593097

Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. 2016. Algorithmic
Improvements in Approximate Counting for Probabilistic Inference: From Linear
to Logarithmic SAT Calls. In Proceedings of International Joint Conference on
Artificial Intelligence (IJCAI).

Maxime Cordy, Mike Papadakis, and Axel Legay. 2020. Statistical Model Checking
for Variability-Intensive Systems. In International Conference on Fundamental
Approaches to Software Engineering. Springer, 294-314.

Axel de Perthuis de Laillevault, Benjamin Doerr, and Carola Doerr. 2015. Money
for Nothing: Speeding Up Evolutionary Algorithms Through Better Initializa-
tion. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary
Computation (Madrid, Spain) (GECCO ’15). ACM, New York, NY, USA, 815-822.
https://doi.org/10.1145/2739480.2754760

Rafael Dutra, Kevin Laeufer, Jonathan Bachrach, and Koushik Sen. 2018. Efficient
sampling of SAT solutions for testing. In Proceedings of the 40th International
Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 -
June 03, 2018. 549-559. https://doi.org/10.1145/3180155.3180248

Rafael Dutra, Kevin Laeufer, Jonathan Bachrach, and Koushik Sen. 2018. Efficient
sampling of SAT solutions for testing. In Proceedings of the 40th International
Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 -
June 03, 2018. 549-559. https://doi.org/10.1145/3180155.3180248

Stefano Ermon, Carla Gomes, and Bart Selman. 2012. Uniform Solution Sampling
Using a Constraint Solver as an Oracle. In Proceedings of the Twenty-Eighth
Conference on Uncertainty in Artificial Intelligence (Catalina Island, CA) (UAI'12).
AUAI Press, Arlington, Virginia, USA, 255-264.

Jianmei Guo, Jia Hui Liang, Kai Shi, Dingyu Yang, Jingsong Zhang, Krzysztof
Czarnecki, Vijay Ganesh, and Huiqun Yu. 2017. SMTIBEA: a hybrid multi-
objective optimization algorithm for configuring large constrained software
product lines. Software & Systems Modeling (22 Jul 2017). https://doi.org/10.
1007/s10270-017-0610-0

Axel Halin, Alexandre Nuttinck, Mathieu Acher, Xavier Devroey, Gilles Perrouin,
and Benoit Baudry. 2019. Test them all, is it worth it? Assessing configuration
sampling on the JHipster Web development stack. Empirical Software Engineering
24, 2 (2019), 674-717.

Christopher Henard, Mike Papadakis, Mark Harman, and Yves Le Traon. 2015.
Combining Multi-objective Search and Constraint Solving for Configuring Large
Software Product Lines. In Proceedings of the 37th International Conference on
Software Engineering - Volume 1 (Florence, Italy) (ICSE ’15). IEEE Press, Piscataway,
NJ, USA, 517-528. http://dl.acm.org/citation.cfm?id=2818754.2818819

Ruben Heradio, David Fernandez-Amoros, José A Galindo, and David Benavides.
2020. Uniform and scalable SAT-sampling for configurable systems. In Proceedings
of the 24th ACM Conference on Systems and Software Product Line: Volume A-
Volume A. 1-11.

Christian Kaltenecker, Alexander Grebhahn, Norbert Siegmund, Jianmei Guo,
and Sven Apel. 2019. Distance-based sampling of software configuration spaces.
In Proceedings of the 41st International Conference on Software Engineering, ICSE
2019, Montreal, QC, Canada, May 25-31, 2019, Joanne M. Atlee, Tevfik Bultan, and
Jon Whittle (Eds.). IEEE / ACM, 1084-1094.

K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. 1990. Feature-Oriented
Domain Analysis (FODA). Technical Report CMU/SEI-90-TR-21. SEL

Mathieu Acher, Gilles Perrouin, and Maxime Cordy

Alexander Kniippel, Thomas Thiim, Stephan Mennicke, Jens Meinicke, and Ina
Schaefer. 2017. Is there a mismatch between real-world feature models and
product-line research?. In Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017.
291-302. https://doi.org/10.1145/3106237.3106252

Sebastian Krieter, Thomas Thiim, Sandro Schulze, Reimar Schréter, and Gunter
Saake. 2018. Propagating configuration decisions with modal implication graphs.
In Proceedings of the 40th International Conference on Software Engineering, ICSE
2018, Gothenburg, Sweden, May 27 - June 03, 2018. 898-909. https://doi.org/10.
1145/3180155.3180159

Jia Hui Liang, Vijay Ganesh, Krzysztof Czarnecki, and Venkatesh Raman. 2015.
SAT-based Analysis of Large Real-world Feature Models is Easy. In Proceedings of
the 19th International Conference on Software Product Line (Nashville, Tennessee)
(SPLC ’15). ACM, New York, NY, USA, 91-100. https://doi.org/10.1145/2791060.
2791070

H. Maaranen, K. Miettinen, and M. M. Mikeld. 2004. Quasi-random Initial
Population for Genetic Algorithms. Comput. Math. Appl. 47, 12 (June 2004),
1885-1895. https://doi.org/10.1016/j.camwa.2003.07.011

Kuldeep S. Meel, Yash Pote, and Sourav Chakraborty. 2020. On Testing of Sam-
plers. In Advances in Neural Information Processing Systems(NeurIPS).

[26] Jens Meinicke, Thomas Thiim, Reimar Schroter, Fabian Benduhn, Thomas Leich,

and Gunter Saake. [n.d.]. Mastering software variability with FeatureIDE. Springer.

[27] Jeho Oh, Don S. Batory, Margaret Myers, and Norbert Siegmund. 2017. Finding

near-optimal configurations in product lines by random sampling. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2017, Paderborn, Germany, September 4-8, 2017, Eric Bodden, Wilhelm Schéfer,
Arie van Deursen, and Andrea Zisman (Eds.). ACM, 61-71. https://doi.org/10.
1145/3106237.3106273

Jeho Oh, Paul Gazzillo, Don Batory, Marijn Heule, and Margaret Myers. 2020.
Scalable Uniform Sampling for Real-World Software Product Lines. Technical
Report TR-20-01.

[29] Jeho Oh, Paul Gazzillo, and Don S. Batory. 2019. t-wise coverage by uniform

sampling. In Proceedings of the 23rd International Systems and Software Product
Line Conference, SPLC 2019, Volume A, Paris, France, September 9-13, 2019, Thorsten
Berger, Philippe Collet, Laurence Duchien, Thomas Fogdal, Patrick Heymans,
Timo Kehrer, Jabier Martinez, Ratl Mazo, Leticia Montalvillo, Camille Salinesi,
Xhevahire Térnava, Thomas Thiim, and Tewfik Ziadi (Eds.). ACM, 15:1-15:4.

[30] Johan Oudinet, Alain Denise, Marie-Claude Gaudel, Richard Lassaigne, and

Sylvain Peyronnet. 2011. Uniform Monte-Carlo Model Checking. In Fundamental
Approaches to Software Engineering - 14th International Conference, FASE 2011,
Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2011, Saarbriicken, Germany, March 26-April 3, 2011. Proceedings (Lecture
Notes in Computer Science, Vol. 6603), Dimitra Giannakopoulou and Fernando
Orejas (Eds.). Springer, 127-140.

Tobias Pett, Sebastian Krieter, Thomas Thiim, Malte Lochau, and Ina Schaefer.
2021. AutoSMP: An Evaluation Platform for Sampling Algorithms. In Proc. Int’l
Systems and Software Product Line Conf. (SPLC). ACM, New York, NY, USA. To
appear.

Quentin Plazar, Mathieu Acher, Gilles Perrouin, Xavier Devroey, and Maxime
Cordy. 2019. Uniform Sampling of SAT Solutions for Configurable Systems: Are
We There Yet?. In ICST 19 (to appear).

Matt Raible. 2015. The JHipster mini-book. C4Media.

Abdel Salam Sayyad, Tim Menzies, and Hany Ammar. 2013. On the value of
user preferences in search-based software engineering: a case study in software
product lines. In ICSE’13. 492-501.

Pierre-Yves Schobbens, Patrick Heymans, and Jean-Christophe Trigaux. 2006.
Feature Diagrams: A Survey and a Formal Semantics. In RE ’06: Proceedings of
the 14th IEEE International Requirements Engineering Conference (RE’06). IEEE
Computer Society, Washington, DC, USA, 136-145. https://doi.org/10.1109/RE.
2006.23

Shubham Sharma, Rahul Gupta, Subhajit Roy, and Kuldeep S. Meel. 2018. Knowl-
edge Compilation meets Uniform Sampling. In Proceedings of International Con-
ference on Logic for Programming Artificial Intelligence and Reasoning (LPAR).
Mate Soos, Stephan Gocht, and Kuldeep S. Meel. 2020. Tinted, Detached, and Lazy
CNF-XOR solving and its Applications to Counting and Sampling. In Proceedings
of International Conference on Computer-Aided Verification (CAV).

Mate Soos and Kuldeep S. Meel. 2019. BIRD: Engineering an Efficient CNF-XOR
SAT Solver and its Applications to Approximate Model Counting. In Proceedings
of AAAI Conference on Artificial Intelligence (AAAI).

Mate Soos, Karsten Nohl, and Claude Castelluccia. 2009. Extending SAT solvers
to cryptographic problems. In International Conference on Theory and Applications
of Satisfiability Testing. Springer, 244-257.

Paul Temple, José A. Galindo, Mathieu Acher, and Jean-Marc Jézéquel. 2016.
Using Machine Learning to Infer Constraints for Product Lines. In Proceedings
of the 20th International Systems and Software Product Line Conference (Beijing,
China) (SPLC ’16). Association for Computing Machinery, New York, NY, USA,
209-218. https://doi.org/10.1145/2934466.2934472

https://doi.org/10.1109/ICSE43902.2021.00039
http://dl.acm.org/citation.cfm?id=2955491.2955546
http://dl.acm.org/citation.cfm?id=2955491.2955546
https://doi.org/10.1609/aaai.v33i01.33017777
https://doi.org/10.1145/2593069.2593097
https://doi.org/10.1145/2593069.2593097
https://doi.org/10.1145/2739480.2754760
https://doi.org/10.1145/3180155.3180248
https://doi.org/10.1145/3180155.3180248
https://doi.org/10.1007/s10270-017-0610-0
https://doi.org/10.1007/s10270-017-0610-0
http://dl.acm.org/citation.cfm?id=2818754.2818819
https://doi.org/10.1145/3106237.3106252
https://doi.org/10.1145/3180155.3180159
https://doi.org/10.1145/3180155.3180159
https://doi.org/10.1145/2791060.2791070
https://doi.org/10.1145/2791060.2791070
https://doi.org/10.1016/j.camwa.2003.07.011
https://doi.org/10.1145/3106237.3106273
https://doi.org/10.1145/3106237.3106273
https://doi.org/10.1109/RE.2006.23
https://doi.org/10.1109/RE.2006.23
https://doi.org/10.1145/2934466.2934472

BURST: A Benchmarking Platform for Uniform Random Sampling Techniques

APPENDIX
A BURST DEMONSTRATION

Our demonstration has four steps. We begin with an introduction
to uniform random sampling and why URS is an important prob-
lem for SPL research and other communities. We, then, present
the different sampling tools that exist in the literature and are
included in BURST. We provide an overview of BURST, its compo-
nents and functionalities. Finally, we detail BURST usage scenarios
as described below.

B BURST USAGE SCENARIOS

B.1 Setup

BURST is based on Docker to host data, scripts, and samplers. The
Python scripts in charge of executing samplers and gathering results
are available on Github.

SPLC °21, September 6-11, 2021, Leicester, United Kingdom

SAMPLER_UNIGEN = 1
SAMPLER_QUICKSAMPLER = 2
SAMPLER_STS = 3
SAMPLER_CMS = 4
SAMPLER_UNIGEN3 = 5
SAMPLER_SPUR = 6
SAMPLER_SMARCH = 7
SAMPLER_UNIGEN2 = 8
SAMPLER_KUS = 9
SAMPLER_DISTAWARE = 10

Typical outcomes are:

git clone https://github.com/FAMILIAR-project/
<— usampling-exp
docker pull macher/usampling:squashed

Once the Docker is pulled, one can run a container with the last
up-to-date scripts of Github repository:

cd usampling-exp
docker run -it -v $(pwd):/home/usampling-exp macher
< /usampling:squashed /bin/bash

SAT formulae are located in a specific folder and come from
different benchmarks or feature models:

1s -d /home/samplingfm/Benchmarks/*/
/home/samplingfm/Benchmarks/Blasted_Real/
/home/samplingfm/Benchmarks/FMEasy/
/home/samplingfm/Benchmarks/FeatureModels/
/home/samplingfm/Benchmarks/V15/
/home/samplingfm/Benchmarks/V3/
/home/samplingfm/Benchmarks/V7/

Please note that the setup phase is out of the scope of the tool
demonstration since it requires to download large docker images
(up to 10GB).

B.2 Sampling Performance

It is possible to run a Docker container without the interactive
mode, typically to measure performance of samplers:

cat usampling-data/experiments-DBS.csv

formula_file,timeout,execution_time_in,exception_dbs

/home/samplingfm/Benchmarks/FeatureModels/FM-3.6.1-
— refined.cnf,False,0.6199491024017334,False

cat usampling-data/experiments-KUS.csv
formula_file,timeout,execution_time_in,dnnf_time,
< sampling_time,model_count,counting_time,
< dnnfparsing_time
/home/samplingfm/Benchmarks/FeatureModels/FM-3.6.1-
— refined.cnf,False, ©.1399824619293213,
— 0.011404275894165039, 0.0007951259613037109,
— 26256, 0.0008006095886230469,
<~ 0.0012776851654052734

cat usampling-data/experiments-SPUR.csv

formula_file,execution_time_in, timeout

/home/samplingfm/Benchmarks/Blasted_Real/
— blasted_casel41.cnf,1,True

/home/samplingfm/Benchmarks/Blasted_Real/
< blasted_casel42.cnf,1,True

cat usampling-data/experiments-Unigen2.csv

formula_file,timeout,execution_time_in

/home/samplingfm/Benchmarks/FeatureModels/FM-3.6.1-
< refined.cnf,False,0.045912742614746094

docker run -v $(pwd):/home/usampling-exp:z macher/
< usampling:squashed /bin/bash -c 'cd_/home/
<— usampling-exp/;._echo STARTING; python3_
< barbarikloop.py._.-flas_/home/samplingfm/
< Benchmarks/FeatureModels/ _--sampler._9._--ref-
< sampler_6_--seed_1_--timeout _5600; _echo_END'

B.3 Uniformity Analysis

The following command performs uniformity analysis on the JHip-
ster FM using CMS as the target sampler and SPUR as reference for
a sampling budget of 5000 samples:

python3 barbarikloop.py --maxSamples 50000 --
< minSamples @ --ref-sampler 6 --sampler 4 --
— seed 1 --delta 0.05 --epsilon 0.3 --eta 0.9 -
— flas /home/samplingfm/Benchmarks/
< FeatureModels/FM-3.6.1-refined.cnf

The current list of supported samplers is as follows.

The content of the generated CSV file should look something
like this:

cat output/c1f1b9a13035439383912ef57a98535d/Uniform-
< CustomSampler.csv
file,time,cmd_output,err_output,Uniform,Timeout
/home/gilles/FeatureModels/FM-3.6.1-refined.cnf
— ,1.782,...,b"",True,FALSE

	Abstract
	1 Introduction
	2 BURST: Inputs, Process, Outputs
	2.1 Feature models
	2.2 Other Models
	2.3 Uniform random sampling tools
	2.4 Quality Metrics
	2.5 BURST configuration parameters

	3 BURST Implementation
	3.1 Architecture
	3.2 Extending BURST

	4 Conclusion
	References
	A BURST Demonstration
	B BURST Usage Scenarios
	B.1 Setup
	B.2 Sampling Performance
	B.3 Uniformity Analysis

