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ABSTRACT

We present BURST, a benchmarking platform for uniform random
sampling techniques. With BURST, researchers have a flexible, con-
trolled environment in which they can evaluate the scalability and
uniformity of their sampling. BURST comes with an extensive —
and extensible — benchmark dataset comprising 128 feature mod-
els, including challenging, real-world models of the Linux kernel.
BURST takes as inputs a sampling tool, a set of feature models and
a sampling budget. It automatically translates any feature model
of the set in DIMACS and invokes the sampling tool to generate
the budgeted number of samples. To evaluate the scalability of the
sampling tool, BURST measures the time the tool needs to produce
the requested sample. To evaluate the uniformity of the produced
sample, BURST integrates the state-of-the-art and proven statistical
test Barbarik. We envision BURST to become the starting point of
a standardisation initiative of sampling tool evaluation. Given the
huge interest of research for sampling algorithms and tools, this
initiative would have the potential to reach and crosscut multiple
research communities including AI, ML, SAT and SPL.
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1 INTRODUCTION

Uniform Random Sampling (URS) is a family of techniques to sam-
ple from the set of solutions of a logical formulae, such that each
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solution gets the same probability of being selected. URS has nu-
merous applications in various domains including deep learning
[3] and Software Product Line (SPL) engineering [27, 29, 32]. As
such, multiple research communities have worked on approaches
and tools for URS.

In SPL engineering, URS — and more generally, sampling ap-
proaches — have been an important support to quality assurance
techniques like testing [16, 32], verification [10, 30] and perfor-
mance analysis [2, 19, 40]. This support consists of computing a
representative sample of SPL variants (or configurations). Because
these variants are too numerous to be all considered for analysis,
sampling offers an adequate compromise between completeness
and efficiency.

Various artifacts can drive the sampling of SPL variants, such as
feature models [20], source code, test suites, behavioural models,
etc. Feature models, however, remain the most commonly used
input for SPL sampling techniques. The main reason is that the
semantics of feature models can be expressed in first-order logic
[4, 35], whose set of solutions corresponds to the set of valid SPL
variants. This makes feature models inherently amenable to URS.

There exist also approaches that combine URS with metaheuris-
tics to obtain a sample optimizing several objectives (e.g. coverage
and cost of configurations) [15, 17, 34]. Metaheuristics — such as
evolutionary algorithms — start from initial set of random solutions,
and the choice of these initial solutions can have a significant im-
pact on effectiveness [5]. Indeed, past research has demonstrated
that URS can produce an initial set of solutions that ultimately
improve the effectiveness of the metahuristics by 10% on average
[11, 24].

As the interest towards URS has been growing, different research
communities have developed algorithmic solutions and evaluated
those solutions on community-specific datasets. For example, re-
searchers in SPL engineering typically use feature models, whereas
researchers in artificial intelligence and SAT solvers typically focus
on circuits or embedded system design problems, resulting in very
different formulas. Such lack of standardization has inevitably led
to poor generalization beyond the specifically used datasets. For
instance, our past study has revealed that UniGen - one of the most
effective URS tools that Al researchers had developed - failed to
scale on large feature models [32]. UniGen’s authors have, since
then, developed new approaches that perform better on feature
models [37, 38]. This experience illustrates that researchers need
the ability to experiment with various datasets and, ideally, under
a common protocol and technological ground. Such experimental
control would circumvent the threats to generalization of previous
studies and lead to a standardization of sampling tools evaluation.
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To address this need, we present BURST, a benchmarking plat-
form for uniform random sampling techniques. With BURST, re-
searchers have a flexible, controlled environment in which they
can evaluate the scalability and uniformity of their sampling. As
noted by Pett et al. [31], evaluating sampling algorithms require
collecting them, benchmarks data and executing them. BURST thus
comes with an extensive — and extensible — benchmark dataset
comprising 128 feature models, including challenging, real-world
models of the Linux kernel stored as CNF formulas in the well-
known DIMACS format. The platform also includes datasets from
the artificial intelligence community [12] for comparison. BURST
takes as inputs a sampling tool, a set of CNF formulas and a sam-
pling budget to generate samples and/or evaluate their confor-
mance to uniform distributions. BURST relies on external tools
(such as FeatureIDE [26]) to transform feature models to CNF
formulas. To evaluate the uniformity of the produced samples,
BURST integrates the state-of-the-art and proven statistical test
Barbarik [7]. BURST is available as open source and as a Docker im-
age: https://github.com/FAMILIAR-project/usampling-exp. A short
video explaining BURST motivation and usage is also available:
https://www.youtube.com/watch?v=sSKosyrfitA.

2 BURST: INPUTS, PROCESS, OUTPUTS

2.1 Feature models

BURST’s benchmark dataset comprises 128 publicly available fea-
ture models with a varying complexity scale, including models
of real-world configurable systems (Linux, eCos, toybox, JHipster,
etc.). These models come from three sources:

e 117 feature models come from previous research [21, 22].
The majority of these 117 models contain between 1,221 and
1,266 features. Of these 117 models, 107 comprise between
2,968 and 4,138 cross-tree constraints, one has 14,295, and
the other nine have around 50,000 [21, 22].

e 10 additional models come from [23]. These models contain
more than 6,000 features.

o the last model is the JHipster feature model [16, 33]. It is
real-world but smaller: 45 variables, 26,000+ configurations.

Once transformed in conjunctive normal form (CNF), these in-
stances typically contain between 1 and 15 thousand variables and
up to 340 thousand clauses. For instance, the Linux kernel models —
the hardest model for sampling that we have — contains more than
6 thousand variables, 340 thousand clauses.

2.2 Other Models

BURST also offers a variety of models obtained when evaluating
tools such as QuickSampler and Unigen. The models are not trans-
lation of feature models but represent electronic circuits, embedded
design or algorithmic problems. These models have different char-
acteristics from feature models, inducing a very different behavior
from uniform samplers. Feature models are generally more challeng-
ing. Since uniform sampling have applications in many areas and
not only SPLs, diversity of models is key to practical significance
of sampling tools.
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2.3 Uniform random sampling tools

BURST integrates multiple URS tools that researchers from different
communities have proposed in the recent years. The underlying
techniques offer various trade-offs between efficiency and unifor-
mity guarantees. Therefore, BURST comes with multiple state-of-
the-art baselines that can support the evaluation of new techniques.
The techniques and tools that BURST includes are:

e UniGen [6, 8] is a hashing-based algorithm to generate sam-
ples in a nearly uniform manner with strong theoretical
guarantees: it either produces samples satisfying a nearly
uniform distribution or it produces no sample at all. These
strong theoretical properties come at a cost: the hashing
based approach requires adding large clauses to formulas so
they can be sampled. These clauses grow quadratically in
size with the number of variables in the formula, which can
raise scalability issues.

e QuickSampler is an algorithm based on a strong set of
heuristics, which are shown to produce samples quickly in
practice on a large set of industrial benchmarks [13]. How-
ever, the tool offers no guarantee on the distribution of gen-
erated samples, or even on the termination of the sampling
process and the validity of generated samples (they have to
be checked with a SAT solver after the generation phase).

¢ Distance-based Sampling (DbS) [19] is a recent sampling
technique designed to improve configuration-performance
prediction models. The techniques is based on a distance met-
ric and a probability distribution to control the spread of the
random sampling over the configuration space. By doing so,
DbS covers different kinds of interactions among configura-
tion options in the sample set. DbS does not aim to generate
uniform samples. However, it is an efficient metrics that is
competitive to uniform sampling in terms of improving the
performance predictions models.

e SMARCH [28] follows a divide-and-conquer approach es-
tablihing mapping between integers and configurations and
exploit multiple CPUs facilities by running computations in
parallel.

e SPUR [1] is a perfect uniform random sampler that is based
on the sharpSAT model counter .

e KUS is an uniform sampler based on knowledge compilation
techniques: it rewrites CNF formulas in d-DNNF format and
iterates over this representation, allowing order of magni-
tude compared to UniGen [36].

e ApproxMC/UniGen3 is a near uniform sampler based on
approximate model counting. Since model counting of large
formulas is computationally heavy, such a tool can drastically
improve sampling performance [9, 37, 38]. Because it also
integrates hahsing-based techniques of UniGen we refer to
it as "UniGen3’.

o STS [14] explores the space of variable assignments in a
breadth-first manner and use a SAT solver to complete solu-
tions.

e CMS CryptoMiniSAT is a SAT solver originally dedicated
to cryptographic applications [39]. Now in version 5.x', it
integrates with ApproxMC/Unigen3.

Uhttps://github.com/msoos/cryptominisat/releases/tag/5.8.0
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Overall, support the evaluation of ten distinct sampling tools,
issued both from the SPL and SAT/artificial intelligence communi-
ties.

2.4 Quality Metrics

BURST enables the evaluation of URS techniques according to two
qualities: uniformity and efficiency. Uniformity refers to the quality
of the samples that a given technique generates, that is, whether
it actually samples any configuration with the same likelihood.
Efficiency refers to the speed at which the tool can produce such
samples.

To assess uniformity, we use a recent statistical test named
Barbarik [7]. Barbarik is an algorithmic framework that can test
whether a sample’s distribution is e-close or n-far from the uniform
distribution where € and 7 are thresholds. Compared to other sta-
tistical methods, Barbarik requires a smaller number of samples,
ie. O((’]_—ley,). To realize this test, Barbarik invokes a reference,
ideal uniform sampling tools to produce a uniform sample. BURST
reuses the open-source implementation of Barbarik as available in
the official repository.?

To assess efficiency, BURST invokes the sampling tool and records
the number of samples the tool can generate within a predefined
time budget.

2.5 BURST configuration parameters

BURST has two execution modes, one for sampling efficiency (S) and
the other for uniformity assessment (U). BURST main configuration
parameters are the following:

S/U . The formulas or folder of CNF formulas in DIMACS format
to be analysed, allowing for large scale experiments in batch
mode.

S/U The sampler to evaluated.

U The sampler that will serves as the reference for uniformity
evaluation. SPUR is the reference by default.

S/U A timeout for experiments, which is useful for slow samplers
and large formulas.

Additionally, BURST supports all options provided by Barbarik
(such as n and €), using default values if omitted. Parameters n and
€ determine the number of samples required for the evaluation of
the uniformity. All supported options are described on BURST’s
website.

3 BURST IMPLEMENTATION

BURST is implemented a set of command-line tools written in
Python.

3.1 Architecture
BURST utilities are decomposed as follows:

e Samplers. All samplers are in samplers directory (and all
utilities/dependencies are also in this folder).

e Sampling experiments. The usampling-experiments.py
script pilots the scalability study of samplers over different
models.

Zhttps://github.com/meelgroup/barbarik
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o Uniformity experiments. The file barbarikloop.py per-
forms uniformity experiments and store results in a CSV
file. It is based on the barbarik tool from Kuldeep Meel et
al: https://github.com/meelgroup/barbarik. This version sup-
ports uniformity check for all the 10 solvers above and uses
SPUR as a reference uniform solver, if not specified.

e Models. Our models come from different sources: https://
github.com/diverse-project/samplingfm/ (including non-SPL
formulas and hard feature models) and https://github.com/
PettTo/Feature-Model-History-of-Linux gathering difeertn
version of linux models of more than 6,000 features.

To ease usage, these artifacts are embedded in a docker image.

3.2 Extending BURST

It is relatively easy to add a new sampler to BURST. One needs
to implement a Python function - getSolutionFromXXX - in the
SolutionRetriver class of the barbarik.py file. Existing imple-
mentations of that function can serve as examples. It is straightfor-
ward to add new satisfiability formulae (e.g., coming from feature
models), using the ’flas’ option allowing to process all files in a
given folder.

4 CONCLUSION

We presented BURST, a benchmarking platform for assessing ran-
dom uniform samplers. BURST provides flexible and extensible
tools to run samplers and to evaluate their performance as well
as the uniformity of generated samples. This platform joins the
effort of research aiming at providing systematic and reproducible
evaluation and comparison of sampling approaches [31]. Our initial
experiments [32] demonstrated that it is challenging for a sampler
to achieve both performance and uniformity goals. BURST is an op-
portunity to evaluate algorithmic developments and demonstrate
practical advances on a variety of SPL and non-SPL models, in-
cluding the most challenging ones. BURST is under development
and there is room for future work. First, We would like to include
visualisation tools, to understand in a more fine-grained way unifor-
mity deviations [32]. Second, since the development of uniformity
testing approaches is a research area in itself [18, 25], we would
like to integrate them in BURST. Indeed, akin to model diversity,
such tests have different features: Barabarik works with CNF for-
mulas and requires a reference sampler, Heradio et al’s technique
works with BDDs and does not need such a reference. We believe
that this platform can contribute to the synergistic development of
new samplers and testing approaches [25], and more generally to
more collaboration between the SAT solving and SPL engineering
communities.
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BURST: A Benchmarking Platform for Uniform Random Sampling Techniques

APPENDIX
A BURST DEMONSTRATION

Our demonstration has four steps. We begin with an introduction
to uniform random sampling and why URS is an important prob-
lem for SPL research and other communities. We, then, present
the different sampling tools that exist in the literature and are
included in BURST. We provide an overview of BURST, its compo-
nents and functionalities. Finally, we detail BURST usage scenarios
as described below.

B BURST USAGE SCENARIOS

B.1 Setup

BURST is based on Docker to host data, scripts, and samplers. The
Python scripts in charge of executing samplers and gathering results
are available on Github.
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SAMPLER_UNIGEN = 1
SAMPLER_QUICKSAMPLER = 2
SAMPLER_STS = 3
SAMPLER_CMS = 4
SAMPLER_UNIGEN3 = 5
SAMPLER_SPUR = 6
SAMPLER_SMARCH = 7
SAMPLER_UNIGEN2 = 8
SAMPLER_KUS = 9
SAMPLER_DISTAWARE = 10

Typical outcomes are:

git clone https://github.com/FAMILIAR-project/
<— usampling-exp
docker pull macher/usampling:squashed

Once the Docker is pulled, one can run a container with the last
up-to-date scripts of Github repository:

cd usampling-exp
docker run -it -v $(pwd):/home/usampling-exp macher
< /usampling:squashed /bin/bash

SAT formulae are located in a specific folder and come from
different benchmarks or feature models:

1s -d /home/samplingfm/Benchmarks/*/
/home/samplingfm/Benchmarks/Blasted_Real/
/home/samplingfm/Benchmarks/FMEasy/
/home/samplingfm/Benchmarks/FeatureModels/
/home/samplingfm/Benchmarks/V15/
/home/samplingfm/Benchmarks/V3/
/home/samplingfm/Benchmarks/V7/

Please note that the setup phase is out of the scope of the tool
demonstration since it requires to download large docker images
(up to 10GB).

B.2 Sampling Performance

It is possible to run a Docker container without the interactive
mode, typically to measure performance of samplers:

cat usampling-data/experiments-DBS.csv

formula_file,timeout,execution_time_in,exception_dbs

/home/samplingfm/Benchmarks/FeatureModels/FM-3.6.1-
— refined.cnf,False,0.6199491024017334,False

cat usampling-data/experiments-KUS.csv
formula_file,timeout,execution_time_in,dnnf_time,
< sampling_time,model_count,counting_time,
< dnnfparsing_time
/home/samplingfm/Benchmarks/FeatureModels/FM-3.6.1-
— refined.cnf,False, ©.1399824619293213,
— 0.011404275894165039, 0.0007951259613037109,
— 26256, 0.0008006095886230469,
<~ 0.0012776851654052734

cat usampling-data/experiments-SPUR.csv

formula_file,execution_time_in, timeout

/home/samplingfm/Benchmarks/Blasted_Real/
— blasted_casel41.cnf,1,True

/home/samplingfm/Benchmarks/Blasted_Real/
< blasted_casel42.cnf,1,True

cat usampling-data/experiments-Unigen2.csv

formula_file,timeout,execution_time_in

/home/samplingfm/Benchmarks/FeatureModels/FM-3.6.1-
< refined.cnf,False,0.045912742614746094

docker run -v $(pwd):/home/usampling-exp:z macher/
< usampling:squashed /bin/bash -c 'cd_/home/
<— usampling-exp/;._echo STARTING; python3_
< barbarikloop.py._.-flas_/home/samplingfm/
< Benchmarks/FeatureModels/ _--sampler._9._--ref-
< sampler_6_--seed_1_--timeout _5600; _echo_END'

B.3 Uniformity Analysis

The following command performs uniformity analysis on the JHip-
ster FM using CMS as the target sampler and SPUR as reference for
a sampling budget of 5000 samples:

python3 barbarikloop.py --maxSamples 50000 --
< minSamples @ --ref-sampler 6 --sampler 4 --
— seed 1 --delta 0.05 --epsilon 0.3 --eta 0.9 -
— flas /home/samplingfm/Benchmarks/
< FeatureModels/FM-3.6.1-refined.cnf

The current list of supported samplers is as follows.

The content of the generated CSV file should look something
like this:

cat output/c1f1b9a13035439383912ef57a98535d/Uniform-
< CustomSampler.csv
file,time,cmd_output,err_output,Uniform,Timeout
/home/gilles/FeatureModels/FM-3.6.1-refined.cnf
— ,1.782,...,b"",True,FALSE
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