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Background: Environmental Cheminformatics & HR-MS

1 10 100 1000 10000  100000 1 million 1 billion chemicals …. …. ….

Sample

High resolution 
mass spectrometry



Background: Environmental Cheminformatics & HR-MS

1 10 100 1000 10000  100000 1 million 1 billion chemicals …. …. ….

Schymanski et al. (2014) DOI: 10.1021/es4044374; Vermeulen et al. (2020) DOI: 10.1126/science.aay3164
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High resolution 
mass spectrometry

Chemicals

AND connecting
chemical knowledge

http://pubs.acs.org/doi/abs/10.1021/es4044374
http://science.sciencemag.org/content/367/6476/392


Background: Identification with HR-MS

Helmus et al (2021). patRoon. J. Cheminformatics. DOI: 10.1186/s13321-020-00477-w

https://doi.org/10.1186/s13321-020-00477-w


Mod. from Escher et al (2020). Science. DOI: 10.1126/science.aay6636

The Problem: Which chemicals are relevant? How to find them?

180 million

110 million

103 million

883,000

113,000
Source: ESO/IDA/Danish 1.5 m http://www.eso.org/public/images/potw1015a/

http://science.sciencemag.org/content/367/6476/388
http://www.eso.org/public/images/potw1015a/


Identification Strategies and Confidence in NT-HRMS(/MS)

Peak 
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Schymanski et al, 2014, ES&T. DOI: 10.1021/es5002105 & Schymanski et al. 2015, ABC, DOI: 10.1007/s00216-015-8681-7

https://doi.org/10.1021/es5002105
https://doi.org/10.1007/s00216-015-8681-7


Identification Strategies and Confidence in NT-HRMS(/MS)

Peak 
picking

Non-target HR-MS(/MS) Acquisition

Target
Screening

Suspect
Screening

Non-target
Screening

Start
Level 1 Confirmed Structure

by reference standard

Level 2 Probable Structure
by library/diagnostic evidence

Start
Level 3 Tentative Candidate(s)

suspect, substructure, class

Level 4 Unequivocal Molecular Formula
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Schymanski et al, 2014, ES&T. DOI: 10.1021/es5002105 & Schymanski et al. 2015, ABC, DOI: 10.1007/s00216-015-8681-7

https://doi.org/10.1021/es5002105
https://doi.org/10.1007/s00216-015-8681-7


Background: Key Resources for Identification / Annotation

• Compound Databases
oA collection of structures, 

their properties and 
associated information

oGenerally little or no spectral data, 
rather structures & links

oLargest have >100 million structures 
in them

• But don’t assume that everything is in 
there – it isn’t!!!!

180 million

110 million

103 million

883,000

113,000
370,000 entries “small”



Background: Key Resources for Identification / Annotation

• Mass Spectral Databases or Libraries
oA collection of structures, mass spectra and associated information
oNIST and Wiley are widely accepted for GC-EI/MS

• Together >1.2 million spectra of 707,000 compounds
• MS/MS databases are growing, none are yet “established”

oTogether > 2 million spectra, but only approx. 40-80,000 compounds
oMS/MS available for only ~0.1-4 % of relevant exposomics resources

(see next slide)

• Key resource(s) mentioned today:
oMassBank EU: http://massbank.eu/MassBank
oMoNA: https://mona.fiehnlab.ucdavis.edu/

http://massbank.eu/MassBank
https://mona.fiehnlab.ucdavis.edu/


Background: Scarcity of MS/MS Spectra in Exposomics

• MS/MS avail. for ~0.1-4 % of relevant exposomics resources

H. Oberacher et al. (2020) Environmental Sciences Europe 32: 43. DOI: 10.1186/s12302-020-00314-9

https://doi.org/10.1186/s12302-020-00314-9


Identification Strategies and Confidence in NT-HRMS(/MS)

MS,  MS2,  RT,  Reference Std.
Level 1: Confirmed  structure

by reference standard
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a) by library spectrum match
b) by diagnostic evidence
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Example Minimum data requirements

Level 4: Unequivocal molecular formula

Level 5: Exact mass of interest

C6H5N3O4

192.0757

MS isotope/adduct

MS

Level 3: Tentative candidate(s)
structure, substituent, class MS,  MS2,  Exp. data

>0.9 sim

Schymanski et al, 2014, ES&T. DOI: 10.1021/es5002105

https://doi.org/10.1021/es5002105


Outline for today

• Background
oEnvironmental cheminformatics & HR-MS
oNon-target screening and identification confidence
oCompound databases and spectral libraries

• Introduction to PubChemLite and MetFrag

• Examples (MassBank+PubChemLite+MetFrag)
oNicotine – relating identifications to disease outcomes
oDesethylterbutylazine – isobars and the role of metadata

• Closing – Perspectives and Community Contribution



Introduction to MetFrag https://msbi.ipb-halle.de/MetFrag/

5 ppm
0.001 Da

mz [M-H]-

213.9637
± 5 ppm

MS/MS
134.0054   339689
150.0001    77271
213.9607   632466

Ranked Candidates

Ruttkies, Schymanski, Wolf, Hollender, Neumann (2016) J. Cheminf., DOI: 10.1186/s13321-016-0115-9

https://msbi.ipb-halle.de/MetFrag/
https://doi.org/10.1186/s13321-016-0115-9


Key Challenge: MS and MS/MS alone is not enough!

Ruttkies, Schymanski, Wolf, Hollender, Neumann (2016) J. Cheminf., DOI: 10.1186/s13321-016-0115-9

MetFragRL 2016
MS/MS only (n=473)

0 20 40 60 80 100%

Schymanski, Kondic, Neumann, Thiessen, Zhang & Bolton (2021) J. Cheminf., DOI: 10.1186/s13321-021-00489-0

https://doi.org/10.1186/s13321-016-0115-9
https://doi.org/10.1186/s13321-021-00489-0


Key Challenge: MS and MS/MS alone is not enough!

MetFrag + PubChem + Formula Search + https://massbank.eu/MassBank/RecordDisplay?id=EQ300804

https://massbank.eu/MassBank/RecordDisplay?id=EQ300804


Status Quo in 2016: MetFrag Relaunched …

Ruttkies, Schymanski, Wolf, Hollender, Neumann (2016) J. Cheminf., DOI: 10.1186/s13321-016-0115-9
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https://doi.org/10.1186/s13321-016-0115-9


MetFragRL + PubChem + MS/MS + Metadata

• Adding literature, references & RT boosts to ~71 % rank 1!

Ruttkies, Schymanski, Wolf, Hollender, Neumann (2016) J. Cheminf., DOI: 10.1186/s13321-016-0115-9
Schymanski, Kondic, Neumann, Thiessen, Zhang & Bolton (2021) J. Cheminf., DOI: 10.1186/s13321-021-00489-0

MetFragRL 2016
MS/MS only (n=473)

MetFragRL 2016
MS/MS + Metadata (n=1298)

0 20 40 60 80 100%

https://doi.org/10.1186/s13321-016-0115-9
https://doi.org/10.1186/s13321-021-00489-0


MetFragRL + PubChem + MS/MS + Metadata

MetFrag + PubChem + Formula + MoNA + SusDat + Pat + Refs + https://massbank.eu/MassBank/RecordDisplay?id=EQ300804

BUT …databases grow … ID performance drops 
… and run times rise … (a lot!) 

https://massbank.eu/MassBank/RecordDisplay?id=EQ300804


Problem: Exposomics “Chemical Space” is too big! 

180 million 110 million 103 million

Candidates with high information content

Candidates with low information content

883,000



Can we break down                     into useful bits? 

Schymanski et al. (2021) DOI: 10.1186/s13321-016-0115-9

https://pubchem.ncbi.nlm.nih.gov/compound/
Furathiocarb#section=Agrochemical-Information

https://link.springer.com/article/10.1186/s13321-016-0115-9
https://pubchem.ncbi.nlm.nih.gov/compound/Furathiocarb#section=Agrochemical-Information


Introducing … 

~370,000 entries “small”

Schymanski et al. (2021) DOI: 10.1186/s13321-016-0115-9

https://link.springer.com/article/10.1186/s13321-016-0115-9


Introducing … 

~370,000 entries “small”

Schymanski et al. (2021) DOI: 10.1186/s13321-016-0115-9

Collapsed by InChIKey First Block (skeleton)
and by presence of annotation content

https://link.springer.com/article/10.1186/s13321-016-0115-9


MetFragRL + PubChemLite: tailor-made database + metadata

MetFrag+PubChemLite+Formula+MoNA+SusDat+Pat+Refs+Anno + https://massbank.eu/MassBank/RecordDisplay?id=EQ300804

PubChemLite v0.2.0

https://massbank.eu/MassBank/RecordDisplay?id=EQ300804


How does PubChemLite perform?

• ~110 M => ~370 K … how does this influence performance?

Ruttkies, Schymanski, Wolf, Hollender, Neumann (2016) J. Cheminf., DOI: 10.1186/s13321-016-0115-9
Schymanski, Kondic, Neumann, Thiessen, Zhang & Bolton (2021) J. Cheminf., DOI: 10.1186/s13321-021-00489-0

MetFragRL 2016
MS/MS only (n=473)

MetFragRL 2016
MS/MS + Metadata (n=1298)

0 20 40 60 80 100%

November 2019
MS/MS, Ref, Patents, Anno (n=1298)

https://doi.org/10.1186/s13321-016-0115-9
https://doi.org/10.1186/s13321-021-00489-0


How does PubChemLite perform?
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Ruttkies, Schymanski, Wolf, Hollender, Neumann (2016) J. Cheminf., DOI: 10.1186/s13321-016-0115-9
Schymanski, Kondic, Neumann, Thiessen, Zhang & Bolton (2021) J. Cheminf., DOI: 10.1186/s13321-021-00489-0
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https://doi.org/10.1186/s13321-016-0115-9
https://doi.org/10.1186/s13321-021-00489-0


Expert Knowledge: NORMAN Suspect List Exchange (>80 lists!)

>80 individual contributions!

https://www.norman-network.com/nds/SLE/ https://zenodo.org/communities/norman-sle
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https://www.norman-network.com/nds/SLE/
https://zenodo.org/communities/norman-sle


Filling Gaps: Integrating NORMAN-SLE
https://www.norman-network.com/nds/SLE/ => https://pubchem.ncbi.nlm.nih.gov/source/23819

https://www.norman-network.com/nds/SLE/
https://pubchem.ncbi.nlm.nih.gov/source/23819


Filling Gaps: Integrating NORMAN-SLE
NORMAN-SLE Classification: https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101

https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101


Assessing the Missing Entries in 

Schymanski et al. (2021) DOI: 10.1186/s13321-016-0115-9

14 Jan 2020
MS/MS, Ref, Patents, Anno (n=977)

0% 20 40 60 80 100%

https://link.springer.com/article/10.1186/s13321-016-0115-9


Transformation Products: Filling the Data Gaps!

Schymanski et al. (2021) DOI: 10.1186/s13321-016-0115-9

https://link.springer.com/article/10.1186/s13321-016-0115-9


Transformation Products: Filling the Data Gaps!

Schymanski et al. (2021) DOI: 10.1186/s13321-016-0115-9

https://link.springer.com/article/10.1186/s13321-016-0115-9


Assessing the Missing Entries in 

Schymanski et al. (2021) DOI: 10.1186/s13321-016-0115-9

14 Jan 2020
MS/MS, Ref, Patents, Anno (n=977)
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22 May 2020
MS/MS, Ref, Patents, Anno (n=977)

12 Jun 2020
MS/MS, Ref, Patents, Anno (n=977)

https://link.springer.com/article/10.1186/s13321-016-0115-9


Influence of the Annotation Content in 

Schymanski et al. (2021) DOI: 10.1186/s13321-016-0115-9

https://link.springer.com/article/10.1186/s13321-016-0115-9


Influence of the Annotation Content in 

Schymanski et al. (2021) DOI: 10.1186/s13321-016-0115-9

>90%

https://link.springer.com/article/10.1186/s13321-016-0115-9
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MetFrag Example: Nicotine and Disease Associations

https://msbi.ipb-halle.de/MetFrag/

Schymanski et al. (2021) DOI: 10.1186/s13321-016-0115-9

https://msbi.ipb-halle.de/MetFrag/
https://link.springer.com/article/10.1186/s13321-016-0115-9


MetFrag Example: Nicotine and Disease Associations

https://massbank.eu/MassBank/RecordDisplay?id=EQ300801

https://massbank.eu/MassBank/RecordDisplay?id=EQ300801


MetFrag Example: Nicotine and Disease Associations

Schymanski et al. (2021) DOI: 10.1186/s13321-016-0115-9

https://link.springer.com/article/10.1186/s13321-016-0115-9


MetFrag Example: Nicotine and Disease Associations

https://massbank.eu/MassBank/RecordDisplay?id=EQ300801

Check the spectrum (to see it copied well)

https://massbank.eu/MassBank/RecordDisplay?id=EQ300801


MetFrag Example: Nicotine and Disease Associations

Schymanski et al. (2021) DOI: 10.1186/s13321-016-0115-9

https://link.springer.com/article/10.1186/s13321-016-0115-9


MetFrag Example: Nicotine and Disease Associations

Schymanski et al. (2021) DOI: 10.1186/s13321-016-0115-9

https://link.springer.com/article/10.1186/s13321-016-0115-9


MetFrag Example: Nicotine and Disease Associations

Schymanski et al. (2021) DOI: 10.1186/s13321-016-0115-9

Process the candidates!

https://link.springer.com/article/10.1186/s13321-016-0115-9


MetFrag Example: Nicotine and Disease Associations

Schymanski et al. (2021) DOI: 10.1186/s13321-016-0115-9

Overview of all candidates: “Statistics” Plot

https://link.springer.com/article/10.1186/s13321-016-0115-9


MetFrag Example: Nicotine and Disease Associations

Schymanski et al. (2021) DOI: 10.1186/s13321-016-0115-9

Experimental evidence / values

Disease/Disorder information available

https://link.springer.com/article/10.1186/s13321-016-0115-9


MetFrag Example: Nicotine and Disease Associations

Schymanski et al. (2021) DOI: 10.1186/s13321-016-0115-9

https://link.springer.com/article/10.1186/s13321-016-0115-9


MetFrag Example: Nicotine and Disease Associations

Schymanski et al. (2021) DOI: 10.1186/s13321-016-0115-9

Level 2: Probable structure
a) by library spectrum match
b) by diagnostic evidence

MS,  MS2,  Library MS2

MS,  MS2,  Exp. data
>0.9 sim

https://link.springer.com/article/10.1186/s13321-016-0115-9


MetFrag Example: Nicotine and Disease Associations

Schymanski et al. (2021) DOI: 10.1186/s13321-016-0115-9 and https://pubchem.ncbi.nlm.nih.gov/#query=89594

Disease/Disorder information available

https://link.springer.com/article/10.1186/s13321-016-0115-9
https://pubchem.ncbi.nlm.nih.gov/#query=89594


PubChem Annotations: Disease Associations

https://pubchem.ncbi.nlm.nih.gov/compound/89594#section=Associated-Disorders-and-Diseases

https://pubchem.ncbi.nlm.nih.gov/compound/89594#section=Associated-Disorders-and-Diseases
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MetFrag Example: Isobars and Metadata!
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Schymanski et al. 2015, ABC, 
DOI: 10.1007/s00216-015-8681-7

https://doi.org/10.1007/s00216-015-8681-7


MetFrag Example: Isobars and Metadata!
Joint Black Sea 
Survey 2016

Image provided by Nikiforos Alygizakis. DSFP: Alygizakis et al, 2019, TrAC, DOI: 10.1016/j.trac.2019.04.008

NORMAN Digital 
Sample Freezing
Platform

Two very common
isomers … 

https://doi.org/10.1016/j.trac.2019.04.008


MetFrag Example: Isobars and Metadata!

Schymanski et al. (2021) DOI: 10.1186/s13321-016-0115-9 and https://massbank.eu/MassBank/RecordDisplay?id=EA067112

https://link.springer.com/article/10.1186/s13321-016-0115-9
https://massbank.eu/MassBank/RecordDisplay?id=EA067112


MetFrag Example: Isobars and Metadata!

Schymanski et al. (2021) DOI: 10.1186/s13321-016-0115-9 and https://massbank.eu/MassBank/RecordDisplay?id=EA067112

https://link.springer.com/article/10.1186/s13321-016-0115-9
https://massbank.eu/MassBank/RecordDisplay?id=EA067112


MetFrag Example: Isobars and Metadata!

Schymanski et al. (2021) DOI: 10.1186/s13321-016-0115-9 and https://massbank.eu/MassBank/RecordDisplay?id=EA067112

https://link.springer.com/article/10.1186/s13321-016-0115-9
https://massbank.eu/MassBank/RecordDisplay?id=EA067112


MetFrag Example: Isobars and Metadata!

Schymanski et al. (2021) DOI: 10.1186/s13321-016-0115-9 and https://massbank.eu/MassBank/RecordDisplay?id=EA067112

https://link.springer.com/article/10.1186/s13321-016-0115-9
https://massbank.eu/MassBank/RecordDisplay?id=EA067112


MetFrag Example: Isobars and Metadata!

Schymanski et al. (2021) DOI: 10.1186/s13321-016-0115-9 and https://massbank.eu/MassBank/RecordDisplay?id=EA067112

Spectral Match = 0.2976

Spectral Match = 1.000

Spectral Match = 0, Frag 0.4

https://link.springer.com/article/10.1186/s13321-016-0115-9
https://massbank.eu/MassBank/RecordDisplay?id=EA067112


MetFrag Example: Isobars & Adjusted Weighting

Schymanski et al. (2021) DOI: 10.1186/s13321-016-0115-9 and https://massbank.eu/MassBank/RecordDisplay?id=EA067112

Spectral Match = 0.2976

Spectral Match = 1.000

https://link.springer.com/article/10.1186/s13321-016-0115-9
https://massbank.eu/MassBank/RecordDisplay?id=EA067112


MetFrag & Isobars: Supporting Annotation Content

Schymanski et al. (2021) DOI: 10.1186/s13321-016-0115-9 and https://pubchem.ncbi.nlm.nih.gov/compound/108201#section=Transformations

Spectral Match = 1.000

https://link.springer.com/article/10.1186/s13321-016-0115-9
https://pubchem.ncbi.nlm.nih.gov/compound/108201#section=Transformations
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Expert Knowledge is YOUR Knowledge!

• Help us help you!  Add data with FAIR templates
oChemical Structures

oTransformations

Schymanski & Bolton (2021) FAIR Chemical Structures. J. Cheminform. DOI: 10.1186/s13321-021-00520-4

https://ftp.ncbi.nlm.nih.gov/
pubchem/Other/Submissions/

https://doi.org/10.1186/s13321-021-00520-4
https://ftp.ncbi.nlm.nih.gov/pubchem/Other/Submissions/


“Take home” Messages

• Background of HR-MS and Cheminformatics

• Introduction to MetFrag and PubChemLite
oMass spectral libraries help deliver Level 2a IDs
oAnnotation content is extremely powerful

• Please try the two examples & interpretation
oMore examples in the additional exercises

• Consider contributing your knowledge!
Schymanski et al. (2021) DOI: 10.1186/s13321-016-0115-9

https://link.springer.com/article/10.1186/s13321-016-0115-9


Thank you!

… and 
team

Email: emma.schymanski@uni.lu
Twitter: @Eschymanski

Slides @ 10.5281/zenodo.5115498

https://msbi.ipb-halle.de/MetFrag/
https://pubchem.ncbi.nlm.nih.gov/
https://massbank.eu/MassBank/

https://wwwen.uni.lu/lcsb/research/
environmental_cheminformatics/

mailto:emma.schymanski@uni.lu
https://twitter.com/ESchymanski
https://doi.org/10.5281/zenodo.5115498
https://msbi.ipb-halle.de/MetFrag/
https://pubchem.ncbi.nlm.nih.gov/
https://massbank.eu/MassBank/
https://wwwen.uni.lu/lcsb/research/environmental_cheminformatics/
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