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Abstract. We revisit the e-voting protocol IVXV that is used for legally-
binding political elections in Estonia from a privacy perspective. We
demonstrate that IVXV is vulnerable to attacks against vote privacy in
those threat scenarios that were considered for IVXV originally. We ex-
plain how to improve IVXYV so that it protects against the privacy issues
we discovered.

1 Introduction

More than 15 years ago, Estonia became the first country in the world in which
voters could regularly cast their ballots for political elections over the Internet.
The initial e-voting system used for political elections in Estonia was a rather
naive system whose security relied on trusted voting authorities; in particular,
that system did not allow for auditing the correctness of the election result.
Not least due to the attacks against the initial e-voting system discovered by
Springall et al. [11], Heiberg et al. [4] proposed a new e-voting protocol designed
to mitigate trust in the voting authorities and to allow for external auditing.
This protocol, which is called IVXV, has been used for legally-binding political
elections in Estonia since 2015 until today.

Our contributions. In this work, we revisit IVXV from a privacy perspective.
We discovered that IVXV (described in Sec. 2) does not guarantee vote privacy
of all voters, which violates a fundamental right of Estonian voters (Article 1(2)
of Riigikogu Election Act). More precisely, in Sec. 3, we present efficient attacks
against vote privacy of IVXV that exploit the malleability of the underlying
encryption scheme. In Sec. 4.1, we show that the assumptions of our attacks are
realistic or within the original threat scenario of IVXV, respectively. In Sec. 4.2,
we elaborate on real-world implications of the privacy vulnerabilities. Eventually,
in Sec. 4.3, we explain how to fix the privacy issues of IVXV presented in this
work.

Responsible disclosure. We shared our insights with representatives of the Es-
tonian election authorities on August 23, 2021, and discussed our findings with
them as well as members from the system provider (Smartmatic-Cybernetica)/a



main author of IVXV in an online meeting on September 2, 2021. Following this
meeting and a further online meeting, Smartmatic-Cybernetica acknowledged
the existence of the privacy issue of the IVXV protocol [4] that we present in
this paper and declared their intention to fix this issue as proposed in Sec. 4.3.
However, they claimed that in the actual system used for real-world elections,
“there are quite a few physical and organisational safequards implemented” that
would already mitigate the risk of these vote privacy issues; we discuss their ar-
gument in Sec. 4.1.

2 Protocol Description

In this section, we recall how the IVXV e-voting protocol works on the conceptual
level. We restrict our presentation to those phases of IVXV which are relevant
for the privacy attacks described in Sec. 3, emphasizing that these attacks also
work against the full IVXV protocol, as presented in [4].1

2.1 Protocol participants

The Election Organizer (EO) is the administrator of the election who determines
the list of candidates/choices, list of voters, etc. EO is also responsible for gen-
erating the public/private key material used to encrypt and eventually decrypt
the voters’ choices.

The Vote Collector (VC) is active during the ballot submission phase in which
it collects the ballots submitted by the voters. VC checks incoming ballots for
eligibility of the respective voter and stores all ballots according to the time at
which they have been submitted.

The I-Ballot Box Processor (IBBP) is started once the submission phase has
closed. IBBP takes as input the ballots collected by VC, verifies its correctness,
and removes all data which is no longer needed for the subsequent tallying phase
(e.g., voters’ signatures).

The role of the Mizing Service (MS) is to anonymize votes before they are
decrypted by EO. MS takes as input a list of ciphertexts from IBBP, re-encrypts
and shuffles this list, and returns the resulting mixed ciphertext list to EO.

Any external party who wants to verify the integrity of the election result (i.e.,
whether the election result corresponds to the votes submitted by the voters)
can run the Data Auditor program which takes as input all data published by
the election authorities and verifies its correctness.

2.2 Cryptographic primitives
IVXV employs the following cryptographic primitives:

! To be more precise, in our presentation, we simplified the checks carried out to verify
eligibility of voters, and we completely omitted the voters’ individual verification
procedures.



A digital signature scheme S = (KeyGeng, Sign, Verify) for signing ballots and
for signing all public data output by the election authorities.

A homomorphic public-key encryption scheme £ = (KeyGeng, Enc, Dec) for
encrypting the voters’ plain choices. In the IVXV implementation, £ is instanti-
ated with the ElGamal PKE scheme [2].

A proof of shuffle mspufre Which is generated by MS to prove that it shuffled its
input ciphertexts correctly. In the IVXV implementation, mshse is instantiated
with Verificatum [14].

A proof of correct decryption mpec which is generated by EO to prove that
it decrypted the final ciphertexts correctly. In the IVXV implementation, mpec
is instantiated with a Schnorr-based NIZKP [10] to prove knowledge of discrete
logarithms.

In the original IVXV paper [4], it had not been specified which security
properties these primitives need to provide precisely but the respective instanti-
ations suggest that the signature scheme S, the encryption scheme &£, the proof
of shuffle mspuifie, and the proof of correct decryption mpec are supposed to be
EUF-CMA-secure, IND-CPA-secure, and non-interactive zero-knowledge proofs
(NIZKPs), respectively.

2.3 Protocol phases

The IVXV protocol is split into the following phases. In the setup phase, EO
creates the key material. In the submission phase, voters can submit their ballots.
In the tabulation phase, the ballots submitted by the voters are anonymized and
decrypted. In the auditing phase, which can be executed at any point after the
election result has been announced, the correctness of the data output by the
election authorities can be verified externally.

Setup phase. The protocol assumes that there exists a public-key infrastructure
(PKI) of public verification keys for individual voters. The Election Organizer
EQO determines the list of eligible voters which are identified by their respective
public verification keys. EO also determines the set of valid choices C (i.e., party
lists with individual candidates). EO runs the key generation algorithm of the
public-key encryption scheme £ to obtain an encryption/decryption key pair
(pk,sk) « KeyGeng, .. The list of eligible voters, the set of valid choices C, as
well as the public key pk are made available to everybody.

Submission phase. Each voter V; who wants to vote for some choice ch € C
encrypts her choice as ¢ «— Enc(pk, ch), then signs the ciphertext ¢ with her secret
signing key ssk as o < Sign(ssk, ¢) and submits the resulting pair b + (c,0) to
the Vote Collector VC.

For each incoming ballot b = (c, o), VC verifies whether o is a valid signature
for ¢ w.r.t. a verification key vk of one of the eligible voters. If this is the case,
then VC stores b together with the time at which it had been submitted. Voters
can re-vote multiple times.



Tabulation phase. After the submission phase has closed, VC forwards the list
of ballots to the I-Ballot Box Processor IBBP who first verifies that all ballots
in VC’s list were signed by eligible voters only. Afterwards, IBBP removes the
ballots of all voters who have also submitted a paper vote. Eventually, IBBP
extracts the last submitted ballot of each voter (who did not submit a paper
vote), removes the respective signatures, and stores the resulting ciphertexts in
a list Bl.

The I-Ballot Box Processor sends the list of ciphertexts B; to the mixing
service MS which then re-encrypts all ciphertexts in Bj, shuffles the resulting
re-encrypted ciphertexts uniformly at random, and computes a proof of correct
shuffling mshuffle-

After that, MS sends the resulting ciphertext vector By to EO which first
uses its secret decryption key sk to decrypt all ciphertexts in Bs to obtain the
final result res, and then computes a proof of correct decryption mpec to prove
that it decrypted By correctly.

The tuple (B, B2, Tshuffle, TDec, res) is the output of the tabulation phase,
where the list of plaintexts res determines the raw final election result. Even-
tually, EO publishes a “sanitized” version of the raw result res from which all
invalid choices, if any, were removed.

Auditing phase. The Data Auditor DA takes as input (B1, B2, Tshuffle; TDec, r€S)
and verifies whether mspue is a valid proof of shuffle w.r.t. the lists of B; and
Bs, and whether mpec is a valid proof of correct decryption w.r.t. Bs and res.

3 Privacy Attacks

We describe two attacks against vote privacy of IVXV [4] which we will call
shifting attacks and encoding attacks, respectively. Both attacks exploit the ho-
momorphic property of the encryption scheme, that is employed in IVXV to
encrypt the voters’ plain choices (recall Sec. 2), to create maliciously generated
ballots that depend on honest voters’ ballots [3]. Both attacks slightly differ in
terms of the underlying assumptions and their impact: in comparison to the
shifting attack, the encoding attack requires qualitatively stronger assumptions
but it allows to break privacy of several voters by submitting a single malicious
vote. In this section, we focus on the purely technical description of the attacks
and refer to Sec. 4 for a discussion of their assumptions and implications.

3.1 Background: Homomorphic Encryption

Recall that a public-key encryption scheme £ = (KeyGeng,Enc,Dec) is ho-
momorphic if both the message space (M,-) and the ciphertext space (C,®)
are (algebraic) groups and the encryption algorithm is a homomorphism be-
tween these two groups, i.e., Enc(pk,m) ® Enc(pk,m’) € Enc(pk,m - m') for
all (pk,sk) € KeyGeng and all m,m’ € M. For example, the ElGamal PKE
scheme [2], the one employed in the IVXV system, is homomorphic.



The privacy attacks presented in the remainder of this section are based on
the following facts.

Note 1. Let € be a homomorphic public-key encryption scheme, and let (pk, sk) €
KeyGeng. Then the following statements hold true:

— For all my, mg € M, we have that Enc(pk,m;) ® Enc(pk,m2) € Enc(pk,ms)
holds true for mo = ms - ml_l.

— Forallmy,...,m, € Mandallay,...,a, € N, wehave [[|_, Enc(pk,m;)* €
Enc(pk, [T;—, m$?).

3.2 Shifting Attacks

The idea of the shifting attack is to submit a ballot which contains a vote for ch’
if and only if the targeted voter V submitted a vote for ch. If ch’ is an unpopular
choice, then the adversary learns whether or not V voted for ch by checking
whether there exists a vote for ch’ in the final election result.

Assumptions. We make the following assumptions:

1. The attacker can learn the ballot of the voter V whose privacy he wants to
break.

2. There exists a (valid) choice ch” € C which is chosen by none of the (honest)
voters with high probability (see 2nd paragraph in Sec. 4.1).

3. The attacker can control one voter.

Impact. The attacker can check whether V voted for ch.

Program. The attacker runs the following program:

1. Submission phase: Learn ballot b = (c, o) of voter V.

2. Submission phase: Submit ballot b’ = (c’, "), where ¢’ < ¢ ® Enc(pk,ch™" -
ch’).

3. After election: Check whether ch’ € res’.

3.3 Encoding Attacks

The idea of the encoding attack is to submit a ballot which encrypts a unique
encoding of the choices chy, ..., chg submitted by the targeted voters Vi, ..., V.

The attacker then checks for all possible combinations chy, . .., ch}, whether there
exists an encoding of these choices in the final result. If the attacker finds such a
combination, then he knows that Vi, ...,V voted for ch}, ..., ch}, respectively.

Originally, the concept of what we call encoding attacks in this paper goes
back to Pfitzmann’s seminal works [8,9]; here, we use a generalized version of
Pfitzmann’s attack presented in [6].



Assumptions. We make the following assumptions:

1. The attacker can learn the ballots of the voters V...,V whose privacy he
wants to break.

2. The attacker can learn the raw election result res.

3. The attacker can control one voter.

Impact. The attacker learns how Vi, ...,V voted.

Program. The attacker runs the following program:

1. Submission phase: Learn ballots by = (¢1,01),...,bx = (ck,0k) of voters
Vi,...,Vg.

2. Submission phase: Submit ballot b’ = (c¢/,0”), where ¢’ +~ ¢ © ... ® ;"
and aq, ..., are integers chosen uniformly at random.

3. After election: Let ch € res be the invalid choice in the raw election result
res. Return ch', ... ch” such that ch = ch{* - ... . chi* holds true.

Efficiency. The computational complexity of the encoding attack is O(nk),
where n is the number of possible choices and k is the number of targeted voters.
Hence, in practice, several dozen voters can be targeted efficiently. If the attacker
only wants to check whether V1,...,Vy voted for chy,...,chg, then complexity
reduces to O(k).

4 Discussion

4.1 Assumptions

We show that the assumptions that are sufficient to execute the privacy at-
tacks against IVXV (Sec. 3) are realistic or within the original threat scenario
considered for IVXV [4], respectively.

On learning targeted voters’ ballots. The IVXV protocol was explicitly designed
in such a way that it “allows to outsource the vote collection task to a third party,
as the correct operation of this party is verifiable by voters, third-party auditors
and auditors nominated by the election organizer itself” [4]. We argue that the
fact that they claimed that any third party could perform this task implies that
VC should also not be trusted in terms of vote privacy. Since VC receives all
incoming messages, an attacker who controls VC can learn all submitted ballots
(even if he cannot manipulate them undectably). Hence, the assumption on
learning targeted voters’ ballots is within the general threat scenario considered
for IVXV originally.

In our online meeting, Smartmatic-Cybernetica stated that, unlike in [4], in
the system used for real-world elections, the task of VC was not executed by a
third party but by a service which they claimed to be protected by physical and
organisational safeguards. Even if this is the case, we think that it is undesirable



having to trust a party (VC) for vote privacy whose original purpose/role is not
to protect vote privacy (but to simply collect votes). Furthermore, since collected
votes are not published in IVXV, it is questionable whether all parties (voters,
observers, etc.) can have the same view on the data being processed, which is a
crucial property for secure e-voting in general (see, e.g., [5]).

On the existence of unpopular choices. For the shifting attack, we assume that
there exists at least one unpopular choice (and that the attacker knows a priori
that this choice is unpopular). In what follows, we show that this assumption
is realistic. The electorate of parliamentary (Riigikogu) elections in Estonia is
divided into numerous districts. For each of these districts, there exist party
lists which contain several candidates of the respective party. Altogether, each
voter can vote for one candidate of one party list in one district, which results
into a large number of possible choices in total and a granular public election
result. It is therefore not surprising that in the last Riigikogu election [12] in
most districts, there existed several candidates that received only one vote in
total (most likely, the vote of the respective candidate), or even no votes at all.
It is also realistic to assume that an attacker knows a priori for at least one of
these candidates that she/he will not receive any votes with high probability
(except for her/his own vote).

On learning the raw election result. For the encoding attack, we assume that
the attacker can learn the “raw” election result which also contains invalid plain
choices. Unlike in many modern e-voting systems, the Election Organizer EO
only publishes a “sanitized” version of the raw result from which all invalid
choices have been removed (see [13]), which may contradict our assumption
on first sight. However, there exist several parties which learn the raw election
result anyway. For example, according to [4], “trusted representatives of political
parties, foreign research groups or even local civil activists” may fill the auditor’s
role. In order to be able to audit a run of the IVXV system end-to-end, an auditor
needs to obtain the raw election result; otherwise, it wouldn’t be possible to
verify the proof of correct decryption employed in IVXV. It can therefore not be
ruled out that one of those parties who audit an election has malicious intents.
Indeed, the IVXV protocol was explicitly designed in such a way that a possibly
corrupted auditor is not able to learn how individual voters voted: “[dJue to
the re-encryption mixnet used, the malicious auditor could not break the ballot
secrecy” [4]. This proves that the assumption on learning the raw election result
is clearly within the threat scenario considered for IVXV originally.

On corrupting a voter. It is realistic to assume that the attacker can control a
voter because the attacker can be an eligible voter herself. For the same reason,
in case some voters collude, the attacker can execute the privacy attacks multiple
times to target even more voters and break their vote privacy.



4.2 Implications

In democratic elections, vote privacy is a wuniversal right: the individual vote
of each single voter must remain secret. All voters, not just the majority of
them, must have the right to express their true will without facing personal neg-
ative consequences. Indeed, it is particularly important to protect the privacy
of those voters who favour less popular parties/candidates because these par-
ties/candidates as well as their supporters are more likely to be threatened than
those (who voted for the) ones in power. Additionally, in each election, there
exist voters whose individual choices are particularly interesting to single out
for non-political reasons. For example, a party of an ongoing trial may want to
learn the judge’s personal political orientation in order to increase its advantage
in the court or to blame the judge being biased.

Furthermore, even if vote privacy of only a fraction of the electorate can be
broken, no voter can be sure whether or not she is among the targeted voters.
This observation can be exploited to coerce many voters at the same time (not)
to vote for a specific party/candidate because each coerced voter will likely
follow the coercer’s instruction if she knows that the coercer can randomly check
whether or not she obeyed.

The mere possibility of these attacks can cause a significant bias in the elec-
tion result and thus undermine the legitimacy of the government elected.

4.3 Protection

Fortunately, it is straightforward to protect against the privacy attacks pre-
sented in Sec. 3, as described next. In the submission phase, each voter com-
putes a NIZKP of knowledge mg,. which proves that the voter knows plaintext ch
(and randomness r) such that ¢ = Enc(pk, ch; 7). This mechanism is commonly
employed in modern secure e-voting systems (e.g., Helios [1]) because, in this
way, the ciphertext c is no longer malleable if the correctness of 7gn is verified
before further processing (see, e.g., [3]). If IVXV is modified accordingly, the
homomorphic privacy attacks presented in this paper are no longer possible.
We note, however, that this modification may not necessarily protect against
all possible attacks against vote privacy of IVXV. In order to ensure that the
IVXYV protocol in fact provides vote privacy, a formal reduction proof is neces-
sary. However, the current presentation of IVXV in [4] does not allow for such
a proof because the security properties of the underlying cryptographic primi-
tives are not specified precisely (recall Sec. 2) and the overall protocol model is
partially underspecified. Furthermore, the threat scenario for vote privacy (as
well as the ones for verifiability and coercion-resistance) needs to be stated more
explicitly than in the original paper [4] and in the current online documentation.

Recommendations. We recommend to improve IVXV as follows:

1. Voters in IVXV use a NIZKP 7g,. as described above.
2. The (fixed) IVXV protocol is presented in full technical details.



3. The threat scenarios for all security properties (verifiability, privacy, coercion-
resistance) are described explicitly. Security is formally proven.

We hope that the insights on vote privacy from this paper as well as the ones
on verifiability from [7] will make electronic elections in Estonia more secure.
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