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ABSTRACT: Nonadiabatic (NA) molecular dynamics (MD) allows one to study

from-equilibrium processes involving excited electronic states coupled to Output:
motions. While NAMD involves expensive calculations of excitation energies @ P e
couplings (NACs), ground-state properties require much ¢essaed can be

obtained with machine learning (ML) at a fraction of the ab initio cost. Applicatiom .

ML to excited states and NACs is more challenging, due to costly reference qﬁ%trﬁgd%d -
many states, and complex geometry dependence. We developed a AKX Time

methodology that avoids time extrapolation of excitation energies and NACs. Instead,

under the classical path approximation that employs a precomputed ground-state trajectory, we use a small fraction (2%) o
geometries to train neural networks and obtain excited-state energies and NACs for the remaining 98% of the geometrie
interpolation. Demonstrated with metal halide perovskites that exhibit complex MD, the method provides nearly two orders
computational savings while generating accurate NAMD results.

N onadiabatic (NA) molecular dynamics (MD) is a history, starting from very simple models, e.g., harmonic and
powerful computational tool that allows one to modelLennard Jones potentials, to reactive+dnd most recently,
excited-state processes in a broad range of chemigalFF developed using machine learning (ML) techriitides,
systems.” Such simulations are able to mimic mostly closelysuch as artiial neural networks (ANNs). Analogous develop-
at the atomistic level and in the time domain, numerous timenent of parametrized models for advanced electronic proper-
resolved spectroscopy experiments, many of which are ngu&1s 17 inciyding excited-state forces and NAE, has

routinely used to characterize ultrafast response of molecyles.; jimited, because ab initio calculations required for the

; 4 6
and '.“ate“a's to extern.al electromagneﬁds. S.UCh Rarametrization are expensive, and the corresponding exper-
experimental and theoretical studies form the basis for ma

il ental data are scarce. Moreover, NAC has a notably more

modern-day applications, including solar cells, light-emitti lex d d ¢ v th q
diodes, eld-eect transistors, sensors, quantum informatio mplex dependence on System geometry than energy an
prce, and the number of NAC matrix elements scales

devices, etc. NAMD simulation requires knowledge ; X X -
geometry-dependent energies and forces for ground afgadratically with the numbe_r of electronic states. The qblhty
excited states, and NA coupling (NAC) between the state8f ANNS to represent essentially any set of data, rooted in the
Such information is most commonly obtained by ab initidiniversal approximation theorénand their current rapid
electronic structure caldidas performed with system development and popularity in all areas of science and
geometries along MD traj@des. The calculations are engineering raise the prospects that not only energies and
computationally demanding, especially those involving tlierces but also NACs can beciently parametrized. Several
excited state and NAC. Thereforerts to avoid the need to e orts have been reported in this refard drawing parallels
perform thousands of electronic structure calculations cafith ML FF developmeft;i.e., a set of geometries is used to
provide great computational savings. Rooted in the fact thedmpute NAC and train an ANN, and then the ANN predicts
MD in many condensed matter and nanoscale systems §&cs for future geometries. Because NAC is a more complex
weakly dependent on the occupied electronic state and foperty than energy, such a strategy is quite challenging,

driven by thermaluctuations, the classical path approximatio - s -
(CPA) replaces multiple excited-state trajectories with a Smg%qumng additional ANN layers and more thorough training.

ground-state trajectory, greatly simplifying the NAMD _
calculations.® Still, even ground-state MD trajectories areReceived: May 24, 2021
expensive to obtain at the ab initio level for large, nanoscdlecerted: June 23, 2021
systems and saiently long time scales that may involve, for
instance, formation of polarhsr di usion of defects.

Development of forceelds (FF) to replace ab initio
calculations and obtain ground-state MD trajectories has a long
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In comparison, ground-state FFs are already commonly
generated using ML techniques. Thus, long ab initio quality
ground-state trajectories can be obtained. Rather than
attempting to extrapolate excitation energies and NAC in a
similar way, we propose to sample these properties along a AN\ ok
pregenerated trajectory and then interpolate to obtain the -4 2 Erﬁ’ergy ( ezV) 4 6
values for the intermediate geometries. Such a strategy canno
be used in a general NAMD simulation since an NAMD | Cs
trajectory cannot be known a priori. However, the strategy can f Pb
provide huge computational savings if NAMD is performed
under the CPA,*" i.e., if the trajectory is precomputed . ;
because MD is driven by thermattuations rather than -4 2 0 2 4 6
di erences in excited and ground-state forces. Such a situation Energy (eV)
is common to many classes of materials and préteSses. Figure 1.Geometric structures of (a) pristine CsBbtl (c) CsPhy

In this letter, we develop a novel strategy for predictingith a cesium atom replaced by an iodine, indicated by the red ball.
excitation energies and NACs for NAMD simulation usingb, d) Corresponding projected DOS. The zero energy is set to the
ML. Given a trajectory, which can be precomputed using a M{BM. The defect creates a midgap electron trap.

FF, we sample excitation energies and NAC for a small fractiomn

(2%) of points along the trajectory and employ ANNS t0system, both the VBM and the CBM are supported by Pb and
obtain the missing values for the remaining points. The(Figure S2¢eand the trap state is supported by I atoms

strategy allows us to reduce the computational cost of ab inififijgure S2) which agrees with the defect D®8(re d).

by nearly two orders of magnitude, while obtaining reliablgyyple well to free charge carriers.

NAMD results in good agreement with the full ab initio |y order to develop an accurate ML model, it is essential to
perovskites (MHPs), which are among the most populgjgjance between coverage of structural details and redundancy.
modern-day materials for solar energy and optoelectronigany studies have been performed on extracting structural
applications. Easy to manufacture, MHPs possess maB¥tures from molecules and bulk mat&tidlEor molecules,
unusual physical and chemical properties, combining thosem@fgers and Hahn propoeextended-connectivitynger-
inorganic solids, organic matter, and even liquids. They exhigiints using a circular topological method that records the
complicated MD with a broad range of anharmonic motiongejghborhood of each non-hydrogen atom into multiple
and time scales, creating challenges even for ML Fifrcular layers, up to a given diameter. Although the
development. The developed ML-NAMD method works veryedundancy of the features is controllable, binary features are
well in this case, including both a pristine MHP and a MHRyjiven, and radial information is not considered. For bulk
with a common defect that creates a midgap charge trap stagstems, Behler and Parrinello pres€éndsymmetry
MHPs have gained a lot of attention recently because @inction that integrates radial information surrounding each
their low cost and ability to convert solar energy to electricitytom with a given cutaliameter into a real-valued number.
in a clean and sustainable way, as a viable alternative to foggl symmetry function is applicable to the optimized structure
fuels. A very large number of studies are currently reported gAd considers the radial information to improve the quality of
hybrid organicinorganic and all-inorganic MHPs. They canan extracted feature. Smith, Isayev and Roitberg et al.
be both Pb-based, as introduced initiglfyand non-Pb-  modi ed®® heavily the Behler and Parrinello symmetry
based to avoid toxicity associated with Pb afd®ath 3D function. In addition to the radial relationship, angular
and 2D MHPs of broadly varying compositions have beéRformation is also taken into account, increasing coverage of
produced and extensively studied. Discovered in the 19fuctural details while maintaining the size of the description.
century in the Ural Mountains, perovskites are among the mastgood representation of the investigated structure is highly
common type of minerals on Earth. MHPs have manynportant when obvious relationships exist between structure
favorable features, including strong light absorption, tunaly@d properties.
band gap, long charge carrieusion, and low manufacturing ~ ANN is a widely used ML model that has been applied to
cost, that make them promising candidates for solar energy gitédict thermodynamic stability, potential energy, formation
optoelectronic applications. energy, and other properties of perovskites and many other
In order to demonstrate the developed NAMD approach, weaterial§® “* The ANN architecture contains an input layer
focus on the pristine all-inorganic CsPbtovskite and the  receiving a vector of features of a given length, several hidden
same system, in which a cesium atom is replaced by an iodiggeers which conduct linear transformation on the input
atom EFigure #,c)>* *° The projected density of states followed by application of a nonlinear activation function, and
(DOS) is split into Cs, Pb, and | contributioRgy@re b,d). lastly, an output layer giving the prediciamre Slin the
The valence band minimum (VBM) and conduction bandpresent work, the features are calculated using thednodi
maximum (CBM) of pristine CsRlare separated by a wide symmetry function with the following form:
direct bandgap of 1.67 eV. The defect creates a trap state inside )
the bandgap, separated from the VBM and the CBM by 1.27 . atoms § E%RKSRSiE
and 0.15 eV, respectively. The state is empty, and therefore, itG"*? = 2% (1+ cos(uS ))x
acts as an electron trap. In the pristine system, the VBM is jk i
supported by both Pb and | atorAgy(ire S2aand the CBM x f
is localized primarily on Pb atorRgy(re S2b In the defect cC(RIVER @)

20yp)
Cs
Pb

-
S

DOS (arb.units)

DOS (arb.units)
=
o
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The feature is divided into cosine and Gaussian terms, whiThble 1. Average Energy Gap, Average Absolute NAC, Root
include angular and radial information on atoespectively. Mean Square NAC, Pure-Dephasing Time, and NAMD

ik is the angle between three atoms, witidicating the  Transition Time of the Ab Initio and ANN Models for the
central atom. controls the magnitude, and anglde nes Pristine System
the center of the angular terR).is the distance between

atomsi and j. Similarly to ¢ R, de nes the center the DD EHNN - GONN - 2oL

Gaussiaric(R) is the cuto function which limits the ective g9ap (eV) 1.888 1886 1890  1.886
diameters and reduces computatiormat:e Abs NAC (meV) 0.448 0450 0475 0479
RMS NAC (meV) 0.538 0543 0564  0.573
Rij pure-dephasing time (fs) 8.493 8.500 8.905 8.554
5x co% l+ 05 fd% R NAMD time (ns) 89.27 98.78 8173 8322
fo(R) = C
0.0 forR; > R ) set. Reducing the training set from 2% to 1% allows us to

obtain good results for the energy gaps, but the quality of the

The cuto radiusR: is set to 9.1 A, which is the distance NAC prediction drops sigeantly.
between the center of the rectangular simulation cell and itsAll ANN training, validating, and testing are done with the
vertex. The NAMD calculations are performed using period®Bcikit-Learn packdgeusing the Python language. While
boundary conditions, and the minimal image convention fdraining, the hyperbolic tangent function and the Adam
the descriptors is used. The input layer passes the vector toagtimizer are used as the activation function and the
the neurons in therst hidden layer, where a linear optimization algorithm. The L2 penalty is set to 0.005 and
transformation is applied to the features followed by 8.0009 for the pristine and defect systems, respectively. Both
nonlinear activation function. Then, the values are passedrtmdels are trained with an adaptive learning rate starting from
the next hidden layer. The same process is repeated severaDl. The results are showfimures Zand3, andTables 1
times, depending on the number of hidden layersnalhyl andSl
the output layer receives the processed values, conducts Rigure Zhows the ab initio and ANN predicted energy gaps
linear summation, and gives the prediction. The weights for thetween the VBM, the CBM, and the trap state in the pristine
linear transformations are tuned during the learning procesand defect systems, with only 2% of the data used for training.

The values and are set to 1 and 0.15, respectively, toSuch a small fraction of the data allows us to develop and train
keep the radial and angular ternegjifiat similar magnitudes. ANN models showing excellent agreement with the ab initio
These parameter choices ensure that all possible distance ealdulations for both pristine and defective ¢s®biough
angle values can be properly represented and distingishedhe training data points, marked as yellow dots, do not cover all
and ¢ are chosen to be the average distances and anglegpefiks anductuations, the testing set stitl well. InFigure
each pair of elements in CgPBhere are threg and six 2c, we notice that the ANN model performs well most of the
values for each element. The vector of features contains titRe, but the errors are relatively large in the beginning. That is
real-valued features for the cesium and lead atoms, and 2Bgause thast 20 data points are not sampled in the training
features for iodines. Thus, there are 360 features for eamdt, and the model did not learn from these points. As the
structure in total. The same features are used to train thstructures are getting close to ttst training point, the error
models for predicting the energy gaps and NAC. Howeveapidly decreases to the average level. The larger error for the
because of the more complex dependence of NAC on systgsry early part of the trajectory not included in the training
geometry, four hidden layers are used for NAC, while only twindicates that MD of the system is complex, and that 7000 fs of
hidden layers are used for energy gaps. The number of neuri3 is not su cient to sample the entire space of relevant
in the rst and second hidden layers for energy gaps is 20 asgstem geometries. That is why attempting to predict
30, respectively. The number of neurons in the four hiddefextrapolate) the NAMD Hamiltonian in these systems
layers used to train NAC is 20, 30, 30 and 20, as shown bbased on a 7000 fs trajectory will produce unsatisfactory
Figure S1 results. In contrast, the interpolation strategy developed here

The ab initio calculations are performed using the VASRorks very well, providing large computational savings.
softwar& “°and the PBE functioridIThe structures shown  The mean squared errors (MSE) are 0.164 meV for the
in Figure lare optimized, heated up, and equilibrated at roonvBM CBM bandgap in pristine CsPlaind 0.419, 0.484, and
temperature. Then, 7 ps trajectories are generated with a 10f211 meV for the tra%¥BM, CBM trap and CBMVBM
time step in the microcanonical ensemble. 10%, 5%, or 2.5%gaps in defective CsPblrhe errors are very small compared
the data are chosen, equally spaced along the trajectory, tiothe 1.67 eV bandgap, indicating that the developed models
training and validation, while the remaining data are used foave learned the relationship between the structure and
testing. Below we focus in detail on the most stringent casgsgndgap, and are capable of accurate prediction.
while the remaining results are summariZezthies andS1 The NAC has a more complex dependence on system
Specically, 2.5% represents 175 data points from the total geometry than the energy gaps. In particular, it exhibits a larger
7000 fs timesteps. 2%, or 140 points, are used for trainimgymber of fast uctuations between maxima and minima
while 0.5%, or 35 points, are used for validation. 97.5%, compared to the energy gaps. It is challenging to keep balance
6825 points, are used for testing. The 140 + 35 points used foetween undetting and ovetting. We choose to develop the
training and validation are spaced every 40 fs. Every fourrobdel as a smooth predictor which reasonably well learns fast
these points form the training set, and ewvénypoint is uctuation meanwhile reproducing most peaks. The peaks in
included in the validation set, i.e., 20 fs, 100 fs, 140 fs, 180tfe NAC are particularly important since the transition rate is
220 fs, 300 fs, 340 fs, 380 fs, 420 fs, 500 fs, etc. from theoportional to the NAC squared and is the largest when the
training set, while 60 fs, 260 fs, 460 fs, etc. form the validatibBlAC peaks. The same activation function and optimizer are
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Figure 2.Energy gaps calculated with the ab initio and ANN models. (a, b) Gaps of the pristine and defect system, respectively. (c) ANN errc
The data are divided into training, validation, and testing sets, which contain 2%, 0.5%, and 97.5% data points, respectively. The same ANN
accounts in (b) for gaps between trap and VBM, CBM and trap, and CBM and VBM. The errors are caleskedsbeativeen the ab initio

values and the ANN predictions.

Figure 3NAC calculated with the ab initio and ANN models. (a, b) NAC of the pristine and defect system, respectively. (c) ANN errors. The dat
are divided into training, validation, and testing sets, which contain 2%, 0.5%, and 97.5% data points, respetiNiN nixidels account

in (b) for the NAC between trap and VBM, CBM, and trap, and CBM and VBM. The errors are calculatedcas tietween the ab initio
values and the ANN predictions.

used for the NAC as for the bandgaps. The L2 penalty is set@®@0142 meV (pristine), 0.0058 meV (defect Tv&M),

1 x 10 7 (pristine), 5x 10 8 (defect trapVBM), 4x 10 8 0.3087 meV (defect tra@BBM), 0.0152 meV (defect CBM
(defect trapCBM), and 1x 108 (defect CBM VBM). VBM), and are small compared to the NAC valiegsds 1

Three independent ANN models are developed for defectiendS7), indicating the models are good. Even the MSE of the
CsPbj because of sigoant di erences between them and the defect NAC between Trap and CBM is reasonable compared
NAC complexity. The ANN models are able to predict thego the NAC magnitude.

NAC accurately, as showr-igure 3The error for the NAC Fourier transforms of the energy gaps and NAC provide
between the CBM and trap in the defect system is large atlditional insight into how ANN performs with the perov-
several special time stapgre 8). That is because the NAC skites. The FTs obtained from the ab initio and ANN data are
has large jumps that happen in a very short time, making thempared irFigure 4 Overall, the NAC exhibits a broader
NAC magnitude 10 times larger than the average. Typicallange of frequencies than the energy gaps, and the defect
this happens when the corresponding energy gap approacheg€iem has more frequencies than the pristine system. Because
(Figure B). In turn, the errors at such points are relativelyCsPbj is composed of heavy elements, the FT spectra exhibit
larger than at the other points. Shown in the middle panel édw frequencies. The largest peaks are around 5@vitin

Figure B, few data points are sampled for the big jump in thetrong signals extending to 200'and minor peaks seen alll
training set (yellow dots). However, the ANN model still giveshe way to 400 cry in particular, iffigure & Although the

good predictions in such extreme situations. The MSEs a#&N reproduces all key features, some disagreement is seen
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Figure 4.Fourier transforms of the ab initio and ANN values of the NAC and the energy gaps in (a, b) prigtamel ¢sPhlthe defect
system. The FT of the ANN data show good agreement with the ab initio FTs.

Figure 5.NAMD results of (a) pristine CsRlaind (b) the defect system. Shown are populations of the ground, trap, and excited states. ANNs
with 2%, 4%, and 8% of data used for training show comparable results, in good agreement with the ab initio data.

for the defect system in both the NAC and the energy gapsalculations every 40th point along the MD trajectory provides
That is because there are some peaks anddtagttions that  large computational savings, more than 1 order of magnitude.
are not reproduced exactly since our models are smoothFigure 5shows the NAMD results for the pristine and
predictors, which are expected to lose some precision.  defective CsPhIThe population of the ground state of the

It is instructive to consider why using 2% of data for thé@ristine CsPRicalculated ab initio increases from 0 to 0.11 in
training gives good results for both the energy gaps and th8 ns. This implies an 11% probability of nonradiative
NAC, while reducing the sampling to 1% creates problems ffectron hole recombination within 10 ns. The NAMD
NAC training. Even sampling of 2.5% from 7000 points impliggiculations based on the ANN input give similar results.
that a point every 40 fs is used. 0.5% of the points are not usBge Populations obtained using the ANN trained with 2% and
in the training and are included into the validation set. Becau&® Of the data are 0.12, while 8% ANN gives 0.10 at 10 ns. All

of the adopted protocol, the training set has gaps that are 8¢ Y3\ models generate good predictions, but the amount of the

; training data does notext the nal results much, which
Iﬁ? SNT ,28 ?:OTf?:i%irrlgdacgLrgvsvpsmot%ii fot(g]ec;}: fvof#eﬂzn&yé suggests that adding more than 2% of the training data does

sianals nallv decav. Therefore. by performing an ET of thenot help but costs more computational resources. Similar
9 y Y. » DY P€ 9 . fesults are obtained in the defect system. All ANN-based
property to be trained, one can anticipate the fraction of th

dat it ded for the training. It is i fant £ te th opulations follow the ab initio calculations.
ata points needea for the training. ft IS important to note Tables land S1summarize the ANN and ab initio results

even though the NAC FT shows no signals above 40Gcm ¢4, the pristine and defect systems, including the canonically
large time step cannot be used in the numerical NAGeraged energy gap and absolute NAC, the root mean square
calculatiodi? °* The NAC is an o-diagonal matrix element of (RMS) NAC, the pure-dephasing times, and the nonradiative
the force operator, and therefore, it draws many analogies Witiinsition times. The pure-dephasing times are computed from
the force. However, compared to the ground-state force, Itdpergy gap uctuations using the second-order cumulant
more sensitive to the nuclear geometry. Therefore, the tiﬁéﬁbproximation to the optical response funttibnThe

step used for the NAC calculation cannot be larger than thfonradiative transition times are obtainedttiyg the data

time step used to perform MD. One fs is a typical time step fan Figure Sto exponential functions or their short-time linear
MD simulations for various materials, such as the perovskitgsproximation®(t) =exp( t/ ) 1 t/ , modied to reect
considered here. The ability to perform ab initio NACeither rise or decay of a particular population. Considering the
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