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Abstract
The collective behavior of four magnetically controlled CubeSats in LEO is considered. The spacecraft fly
as a group and when commanded, use intersatellite link to negotiate and determine the most favorable
arrangement to provide maximum sky coverage around a specified reference direction by onboard sensors.
The most favorable arrangement is attained through attitude task allocation consensus and arrived at by a
fully magnetic controller implemented onboard of each spacecraft.
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1. Introduction

The study has been conducted as a part of the
Skoltech University project to deploy a swarm of 3U
CubeSats in LEO. The mission has to be a technol-
ogy demonstration for inter-satellite link (ISL) ca-
pabilities, hence a number of experiments involving
ISL usage have been considered for the mission. The
primary mission experiment is collective gamma-ray
bursts detection, which requires the satellites’ co-
ordinated attitude control [1]. Prior to this work,
we designed the attitude determination and control
subsystem with magnetic actuation [2] and studied
collective measurements processing algorithms to en-
hance the onboard magnetic field model [3]. The ex-
periment this study is about is to showcase the ISL
usage for negotiation-based consensus algorithm im-
plemented in the CubeSats to make them act as a
multi-agent system, which exhibits swarm behaviour
by optimal attitude task allocation on receipt of a
command from the mission control center.

The proposed experiment is in line with the recent
developments aimed at demonstrating Distributed
Spacecraft Autonomy (DSA) [4]. The need for intel-
ligent distributed spacecraft infrastructure has long
been emphasized [5], but it is only now that NASA is
planning a CubeSat swarm mission to implement the
distributed autonomy by using the on-board GPS re-

ceiver to perform in-situ, swarm-level reconfiguration
in response to observed features in the Topside Iono-
sphere [4]. The promise of DSA is greater flexibility
and lower cost of mission planning and scheduling
systems [6]. The approaches considered for usage in
autonomous architectures are multi-agent paradigm
[7] or bio-inspired self-organization paradigm (i.e ant
colony optimization [8] or stigmetry-based approach
[9]). The experiment considered in this study goes
along with the multi-agent optimization approach for
distributed attitude task allocation in a swarm of four
CubeSats actuated by magnetic attitude control sys-
tem. It should be noted that the experiment does
not imply full autonomy as it is triggered by a mis-
sion control center command, however the attitude
task allocation problem is to be solved by the swarm
autonomously.

Prior research shows that PD-based magnetic
three-axis attitude control is very sensitive to the
choice of the controller gains [10, 11]. Moreover, the
magnetic controller gains are dependent on the re-
quired attitude [12]. Gain tuning usually relies on
periodicity of the required trajectories in simplified
models and employs different techniques to optimize
the degree of stability for the required motion. The
first part of this study shows how to obtain the con-
troller gains as functions defined for all possible re-

IAC–21–C1.9 Page 1 of 9



72th International Astronautical Congress, Dubai, 25-29 October 2021. Copyright © 2021 by Mr. Ahmed Mahfouz..
Published by the International Astronautical Federation with permission.

quired attitudes with respect to the orbital frame.
This is done in two steps. The first step is lin-
earization of the spacecraft rotational dynamics in
the vicinity of the required attitude regime and sub-
sequent numerical optimization (carried out in terms
of Floquet theory). The procedure allows obtaining
optimal gains for all possible required attitudes, how-
ever, depending on the spacecraft inertia tensor and
estimated environmental effects there can be zones of
unfeasible attitudes, to which the controller cannot
converge.

The second part of this study shows the collective
attitude control scenario. The task of the swarm is to
ensure maximum sky coverage around the principal
direction uplinked to the spacecraft by the mission
control center. This is measured by the minimum
angular distance between the principal direction and
any point in the sky that does not fall into the field
of view of any of the spacecraft’s instruments. Thus
the swarm spacecraft act as four agents to solve a
multi-objective optimization problem maximizing the
coverage and negotiating to allocate their individ-
ual attitudes so as to maximize the resulting degrees
of stability given the attitude feasibility constraint.
The implemented optimization algorithm employs a
negotiation-based approach and can be scaled to a
greater number of spacecraft.

This paper is divided into seven different sections.
Section 2 states the orbital parameters of the swarm
and describes the mathematical model of their rota-
tional dynamics. The Floquet analysis and its utility
in the gain tuning procedure for magnetic control are
then explained in Section 3. The following section
(4) formulates the maximum sky coverage problem
for a swarm of CubeSats. Then, Section 5, under
consensus algorithm, details the ’EXTRA’ algorithm
employed in this work for resource allocation in a
swarm of magnetically controlled CubeSats. Section
6 investigates and evaluates the implementation of
the algorithm for the given test cases. Lastly, Sec-
tion 7 reiterates the significance of the solution and
its scalability and adaptiveness to other swarm net-
works.

2. Equations of Motion

We consider a group of four 3U CubeSats de-
ployed into a circular orbit at an altitude of 400 km
and an inclination of 52 degrees. Each space-
craft is assumed to have a mass of 3 kg with di-
mensions 100x100x340 mm in X, Y and Z di-
rections respectively, and the inertia tensor of
diag [0.031, 0.031, 0.005] kg ·m2.

Following are the reference frames used in the pa-
per:

• Orbital reference frame Fo: its origin is at the
center of mass of the satellite, the z-axis points
away from the center of the Earth, the y-axis is
directed along the cross product of the satellite’s
center of mass position and velocity vectors, and
the x-axis completes the frame according to the
right-hand rule.

• Body-fixed reference frame Fb: its origin is at
the satellite’s center of mass. Its three axes co-
incide with the three principal axes of inertia of
the satellite.

All vector transformations between reference
frames are described by unit quaternions.

The orbital motion of each CubeSat is assumed to
correspond to a purely Keplerian circular orbit (four
CubeSats fly in a train formation). Thus the posi-
tion of ith spacecraft in its orbit is determined by its
linearly changing argument of latitude ui . The char-
acteristic time of the considered experiments does not
exceed a few orbital periods, hence Earth oblateness
does not have any significant effects on the qualitative
results.

Let us denote by Ωb the satellite’s absolute angular
velocity and by ωb its angular velocity relative to the
orbital frame Fo. The two angular velocities are then
related as follows:

Ωb = ωb + q̃ob ◦ ωo0 ◦ qob (1)

where ωo0 =
[

0 ω0 0
]T

is the angular velocity
of Fo frame, ω0 is the mean motion of the satellite
in the orbit. Designating the unit quaternion that
transforms from the Fb frame to the Fo frame by
qob =

[
qob0 qob

]
, we can describe the kinematics of

the spacecraft as

q̇ob =
1

2
qob ◦ ωb. (2)

The satellite is considered to be a rigid body,
and all the environmental disturbances except for the
gravity-gradient torque are ignored. This yields the
satellite’s dynamical equations of motion as follows:

Jbω̇b = −ωb × Jbωb + Mb
ctrl + Mb

gg, (3)

where Jb denotes the inertia tensor of the spacecraft,
Mb

ctrl is the control torque provided by the actuators,
and Mb

gg is the gravity gradient torque. The gravity
gradient torque is given by

Mb
gg = 3ω2

0e
b
3 × Jbeb3. (4)
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The control torque is given by the following equa-
tion:

Mb
ctrl = mb ×Bb, (5)

where Bb is the geomagnetic induction vector and
mb is the control dipole moment generated by the
magnetorquers.

The control dipole moment is derived from Lya-
punov based PD-controller [12]:

mb = −4qe,0KpB
b × qe −KdB

b × ωb, (6)

where Kp,Kd > 0 are the controller gains and qe =[
qe,0 qe

]T
is the error quaternion defined in the

following equation:

qe = q̃d ◦ qob, (7)

where qd is the desired quaternion (desired qob at
steady state).

Let us note that the model of rotational dynamics
given by equations (2)-(3) is intentionally simplified
so as not to include all disturbances and uncertain-
ties. The full model where the control loop design
was properly investigated and disturbance identifi-
cation and rejection algorithms derived, tested and
simulated has been presented in [2]. The results ob-
tained in [2] allow us carrying out the present study
with the simplified model described in this section as-
suming that all major disturbances are dealt with by
the control system.

3. Controller Gain Tuning

The gain tuning routine is based on the Floquet
theory and was first proposed in [12]. The idea is to
reformulate the equations of motion as a system of
equations with periodic coefficients and for the given
required steady state of the system find a pair of gains
that ensures the greatest degree of stability for the
particular trajectory the controller is set to converge
to. The detailed description of the routine can be
found in[12], where it was first described, and in [13],
where it is reformulated in terms of quaternions in-
stead of Euler angles and applied to all possible space-
craft end-attitudes. Let us note here that it takes
rewriting the equations of motion in the non-inertial
orbital frame and using the direct dipole model for
geomagnetic field representation to reduce the equa-
tions of motion to a system with periodic coefficients.
The equations are then linearized in the vicinity of
the required attitude, the monodromy matrix is con-
structed, and a pair of gains is obtained as a solution

of the following optimization problem:

f(Kp,Kd) = max
i

[R [log [λi(Kp,Kd)]]] ,

(Kp,Kd) = arg min
Kp,Kd>0

f (Kp,Kd) ,
(8)

where λi are the monodromy matrix eigenvalues and
the Floquet theory states that having the real parts
of the logarithm of the eigenvalues negative corre-
sponds to the stability o the obtained periodic tra-
jectory. Provided that all real parts are negative,
the distance between the greatest of them and zero
determines the degree of stability of the solution in
consideration. Optimization problem (8) yields a pair
of coefficients (Kp,Kd) providing the maximum de-
gree of stability for the trajectory corresponding to
the required attitude.

The choice of gains depends on the orbit of the
satellite as well as the attitude around which it needs
to be stabilized (qd). It is due to the physical limita-
tion of the magnetic control system that the satellite
might not be able to stabilize around a certain orien-
tation. It has been concluded that for a fixed orbit,
there is no set of gains that can stabilize the space-
craft around a number of desired attitudes (the un-
stable attitudes pool). However, there is a stable atti-
tudes pool for which the gains need to be optimized in
order to attain optimal performance. Clearly, within
the stable attitudes pool and after finding the opti-
mal gains, the satellite’s performance around some
desired orientations is better than that around some
others.

As an example, the contour plot of the ob-
jective function (8) for a desired attitude qd =[
1 0 0 0

]T
(gravity-gradient orientation for this

case) is shown in Figure 1. It is found after the op-
timization that this attitude belongs to the stable
attitudes pool. The red dot indicates the solutions
of the optimization problem (8). The performance
of the magnetic control system using the optimized

gains for qd =
[
1 0 0 0

]T
is presented in Figure

2.
The same gain-tuning routine is further used to

generate the controller gains for a representative set
of the spacecraft possible orientations. This data
is used in the next section to provide an optimized
attitude set points for a swarm of CubeSats seek-
ing maximum sky coverage. Although the attitudes
are parameterized by unit quaternions, it has been
concluded that it would be more intuitive to express
the desired attitude of the spacecraft as a set of Eu-
ler angles with sequence of intrinsic rotations of 123,

αd,123 =
[
αx αy αz

]T
. The desired Euler angles
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Fig. 1: Contour plot of the cost function for qd =[
1 0 0 0

]T
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Fig. 2: Simulation example using optimized control
gains

can simply be transformed to qd in order to proceed
with solving the minimization problem.

It is important to note that the inertia tensor
defined in Section 2 suggests that the spacecraft
is symmetrical around the Z-axis of the Fb frame,
which allows us to use only two Euler angles to
fully parametrize any desired attitude, as the satel-
lite is invariant to the rotation with respect to the

Z-axis. This suggests αd,123 =
[
αx αy αz

]T
=[

αx αy 0
]T

. All possible orientations can now be
thought of as points on a unit sphere with αx being
the elevation and αy being the azimuth.

A differential evolution global optimization algo-
rithm has been used to run the optimization (8) for
1700 data points on the sphere, and the optimization
results are shown in Figures 3 and 4. Figure 3 shows
a scatter plot of only the orientations that belong to
the stable attitudes pool (with negative cost function)
on a sphere, each point of which corresponds to par-
ticular values of αx and αy. Figure 4, however, is a
projection of all the points on the sphere on the plane.
The color bar in both figures represents the objective
function of the optimization problem defined in (8).
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Fig. 3: Scatter plot showing area of successful con-
vergence on a sphere

4. Maximum Sky Coverage Problem

Let us now consider a problem that requires com-
munication and collective behavior of the four swarm
CubeSats. The satellites have the same parameters
as described in Section 2. In this case we might con-
sider a mission whose aim is to carry out observa-
tions whether of astronomical events using gamma-
ray detectors or space debris tracking with optical
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Fig. 4: A grid plot showing area of successful conver-
gence in spherical coordinates.

instrumentation (such as developed in [14]). When
a certain event of interest is expected the swarm is
commanded from the mission control center to pro-
vide the maximum sky coverage around a principal
reference direction eO (Fig. 5). For simplicity we will
assume that eO is represented in the orbital frame
of any of the spacecraft. The CubeSats are assumed
to be operating at small distances from one another
(the distances are 500-1000 m so as the swarm or-
bital configuration is compatible with other planned
experiments described in [1]) and the events of inter-
ests are sufficiently distant to neglect the difference
between the positions of the swarm spacecraft and
their orbital frames.

Fig. 5: sky coverage problem illustration

Let us denote by θ the field of view of the employed

sensors (assuming conical field of view and that the
sensors are mounted to have the field of view cone
axis ef,i coinciding with the z-axis of the ith space-
craft body frame). Also let us define the coverage
maximization metric in terms of the closest direction
to eO which does not fall within field field of view
of any of the sensors. If this direction is represented
by a unit vector eC our goal is to maximize the dot
product eO ·eC . From symmetry the arrangements of
the spacecraft providing maximum coverage is such
that the lines defined by ef,i intersect any plane or-
thogonal to eO in points that belong to a circle (see
Fig. 6). The points are distributed on this circle sym-
metrically, however the maximum coverage problem
solution is invariant to rotation of this circle (which
changes the required orientation of the four space-
craft). This invariance lets us add another objective
to the optimization problem, which is expressed in
minimization of the maximum cost function (as given
by (8)) value associated with the four required atti-
tudes. Thus, we can find the position of the four
points on the circle which ensure the best stability of
the required configuration within the maximum cov-
erage solution. Furthermore, due to symmetry this
solution can be expressed through one angle γ (as
shown in Fig. 6). The case when the optimization
yields a solution that requires one or more of the
spacecraft to take an attitude that belongs to the
unstable pool is not considered here.

Fig. 6: Consensus problem illustration

Thus, the problem left for the swarm to solve is
given the principal direction eO for the sky cover-
age activate the swarm communication mode and by
negotiation find the optimal (in terms of sky cov-
erage) attitude arrangement of all CubeSats in the
swarm that maximizes the minimum degree of stabil-
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ity among the four spacecraft:

min
i
fi → max

γ
. (9)

5. Consensus Algorithm

A graph G (V, E) is defined by its vertex set V as
well as its edge set E . V is a set which contains the
identifiers (i.e. names or numbers) of each vertex in
the graph, while E is a set that contains all the pairs
of vertices that are adjacent to each other (i.e. the
pairs that can send or receive information from each
other). A Time-invariant undirected graph G (V, E)
is a graph in which the structure of the graph is time
independent (i.e. V and E are constant). Moreover,
all the pairs in E can exchanging information back
and forth through undirected communication links.

A Laplacian matrix L of a graph G is a matrix
representation of G. In other words, the Laplacian
matrix holds all the information of the graph, from
the degrees of its vertices to the adjacency informa-
tion of these vertices. The entries of the Laplacian
matrix are defined as follows:

Li,j =

 deg (vi) if i = j
−1 if i 6= j
0 Otherwise

(10)

Taking the network in Fig. 7b -which will later
be introduced- as an example, it is obvious that the
degree of vertices 1 and 4 is 1 as both of them have
only one adjacent vertex, while the degree of agents
2 and 3 is 2. The degree of each vertex is reflected
on the diagonal elements of L, while the adjacency is
reflected on the off-diagonal elements. (e.g. vertices
2 and 3 are adjacent, which yields L2,3 = L3,2 = −1,
while agents 1 and 4 are not adjacent, which yields
L1,4 = L4,1 = 0). The Laplacian matrix of this graph
can be written as,

L =


1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

 (11)

Let us now consider the problem of distributed
consensus for a multi-agent network. In the litera-
ture, one can find a handful of algorithms that can
be used to solve the following consensus optimization
problem:

fcoll = max (fi (x)) ,

min
x

fcoll,
(12)

where x is the vector of decision variables and fi is
the indvidual cost function held privately by the ith

agent. The first algorithm that comes to mind is the
Decentralised Gradient Descent (DGD) [15], however,
more efficient algorithms like the decentralized exact
first-order algorithm (abbreviated as EXTRA) [15]
can as well be used. While DGD needs to use di-
minishing descent rate in order to arrive to an exact
minimum point, EXTRA can use a large fixed de-
scent rate and still consensually arrive to an exact
minimizer of the collective cost function. A complete
explanation of the algorithm as well as the method
of construction of the mixing matrices can be found
in [15].

In the context of the problem of this paper, four
agents are cooperating to reach consensus on the deci-
sion variable γ while each agent knows its individual
objective function fi (γ). The individual cost func-
tions for each of the identical spacecraft are defined
as in (8).

The consensus flow of the DGD algorithm is pre-
sented here. Although this research is adopting EX-
TRA as its distributed optimizer, it is much easier to
present the consensus flow using DGD, especially as
EXTRA works based on the same principles as DGD.
The DGD algorithm for a single decision variable is
implemented on-board of each of the n agents as in
Algorithm 1.

It can be seen form (13) that as the update is car-
ried out, the optimization variable is going down-hill
off of the collective cost function due to the term
−α∇fcoll (xi (k)). It can also be seen that consensus
is achieved through the two terms −τLi,ixi (k) and
−τ
∑

{i,j}∈E Li,jxj (k), as agent i is compromising its
current state while trying to reach an agreement with
its neighboring agents.

It is important to note that the speed at which
the multi-agent system arrives to a consensus is heav-
ily dependent on the latency in the network links as
agent i collects the set of current and updated opti-
mization variables {xj (k)} and {xj (k + 1)} from all
agents each iteration. It is also important to note
that although not all the elements of {xj (k)} explic-
itly appear in (13), it is substantially important to
collect the decision variable from all agents to calcu-
late the gradient ∇fcoll (xi (k)).

It has to be acknowledged that throughout Algo-
rithm 1, the grid in Fig. 4 was interpolated whenever
an individual objective function fi needed to be cal-
culated.
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Algorithm 1: Distributed gradient descent

1 foreach i ∈ V do

2 Choose a value for the descent rate α;

3 Choose a value for the consensus rate τ ;

4 Define a convergence threshold ε;

5 Initiate consensus violation CV ← ε+ 1;

6 while CV ≥ ε do

7 Collect the set of current decision

variables {xj (k)} ∀ j ∈ V;

8 Compute the gradient of the collective

cost function ∇fcoll (xi (k));

9

xi (k + 1) = xi (k)− τLi,ixi (k)

− τ
∑

{i,j}∈E

Li,jxj (k)

− α∇fcoll (xi (k)) (13)

;

10 Collect the updated decision variables

{xj (k + 1)} ∀ j ∈ V;

11 CV = xi (k + 1)− 1
n

∑n
j=1 xj (k + 1);

12 end

13 end

6. Results and Discussion

Two different time-invariant undirected communi-
cation graphs (see Fig. 7) were tested and the results
of implementing the adopted algorithms for each case
are presented in this section.

As seen by Fig. 7, Graph-I stipulates that all the
agents lie in the neighbourhood of each other and that
any agent can exchange information with any other
agent in the network, while Graph-II indicates that
only the neighbouring agents in the trailing forma-
tion can exchange information, which is more likely
to happen in a real-life scenario.

The consensus algorithm (Sec. 5) was run for both

graphs for a nominal orientation of
[
0 0 1

]T
where

each satellite is equipped with a sensor whose field of
view is 10 degrees. The agents could reach consensus
on the value of γ after a number of iterations in both
cases. The evolution of the system accordance for

1 2 3 4

(a) Graph-I

1 2 3 4

(b) Graph-II

Fig. 7: Graph scenarios

Graph-I and Graph-II is presented in Fig. 8 and Fig.
9 respectively.
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Fig. 8: Consensus evolution for Graph-I
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Fig. 9: Consensus evolution for Graph-II
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Although the agents of Graph-I arrive to consensus
much faster than those of Graph-II, the two graphs
approach the optimal point after the same number of
iterations (see Figs. 8 and 9). It is worth mentioning
that the mean consensus violation of the agents of
Graph-I at the last iteration is 5.55E − 17 degrees,
compared to that of Graph-II which is 1.86E − 6 de-
grees.

It is important to note that the collective cost func-
tion is generally not convex, and as long as a gradient-
based optimization algorithm is adopted, it is of a
great importance to run the optimization multiple
times with different initial conditions to make sure
the optimizer does not get stuck in a local minimum.
The two aforementioned optimization problems for
the two graphs appeared to have arrived to the ex-
act same solution, and the collective cost function
together with the optimized solution (the red point
in the plot) for both problems are shown in Fig. 10
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Fig. 10: Collective cost function minimization for
Graph-I and Graph-II

It is clear from Figs. 8 and 9 that the two graphs
eventually arrived to the same solution (γ). The value
of the optimal γ is then used to define the four desired
attitudes of the four spacecraft. Furthermore, the de-
sired attitudes are in turn used to interpolate the con-
troller gains dataset to obtain the suitable gains set
for each spacecraft. The controlled dynamics of the
spacecraft are simulated and the simulation results
are presented in Fig. 11.

7. Conclusion

The paper outlined an experiment for Skoltech’s
inter-satellite communication technology demonstra-
tion mission. The mission comprises four CubeSats
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Fig. 11: Simulation of the swarm using optimized γ

in a swarm, each equipped with purely magnetic
attitude actuators. This experiment, which is in-
line with NASA’s Distributed Spacecraft Autonomy
(DSA) project, is carried out mainly to investigate
the ability of the multi-agent system to autonomously
coordinate its actions through distributed decision
making, especially when the spacecraft are unaware
of each others properties.

The problem of maximum sky coverage around a
reference direction for the swarm is considered, and
the problem is reduced to one in which the swarm has
to reach consensus on a single decision variable that
defines the optimal geometry of the formation from
the point of view of the degree of attitude stability of
the satellite which is rendered most vulnerable in the
resulting attitude task allocation arrangement.

To solve the distributed consensus optimization
problem, the decentralized exact first-order algorithm
(EXTRA) which is a gradient-based distributed min-
imization technique is implemented for two differ-
ent time-invariant undirected communication graphs.
The algorithm proved to be able to arrive to an ex-
act minimum for both graphs after a number of it-
erations. The Distributed Gradient Descent (DGD)
algorithm was also investigated for the same commu-
nication graphs, and it was found equally competent
to EXTRA in the context of our problem.

The proposed experiment is especially interesting
in the context of magnetically controlled satellites,
as magnetic control is generally slow which gives the
swarm the needed relaxation in order to arrive to con-
sensus.

However sketchy the presented discussion of the
experiment is, coupled with the results of prior re-
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search of the magnetically controlled swarm, it gives
us full ground to assume that the multi-agent deci-
sion making can be transferred to a more complicated
or realistic environment.
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