
Causal Identification with Additive Noise Models: Quantifying the Effect of Noise

Benjamin Kap, Marharyta Aleksandrova, Thomas Engel
University of Luxembourg, 2 avenue de l’Université, L-4365 Esch-sur-Alzette, Luxembourg
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Abstract

In recent years, a lot of research has been conducted within
the area of causal inference and causal learning. Many meth-
ods have been developed to identify the cause-effect pairs in
models and have been successfully applied to observational
real-world data to determine the direction of causal relation-
ships. Yet in bivariate situations, causal discovery problems
remain challenging. One class of such methods, that also al-
lows tackling the bivariate case, is based on Additive Noise
Models (ANMs). Unfortunately, one aspect of these methods
has not received much attention until now: what is the im-
pact of different noise levels on the ability of these methods
to identify the direction of the causal relationship. This work
aims to bridge this gap with the help of an empirical study. We
test Regression with Subsequent Independence Test using an
exhaustive range of models where the level of additive noise
gradually changes from 1% to 10000% of the causes’ noise
level (the latter remains fixed). Additionally, the experiments
in this work consider several different types of distributions
as well as linear and non-linear models. The results of the ex-
periments show that ANMs methods can fail to capture the
true causal direction for some levels of noise.

1 Introduction & Related Work
Causal identification is the procedure of determining causal
relationship direction from observational data only and rep-
resenting these as a (causal) graph. This problem is closely
related to structure learning of Bayesian networks, as static
causal graphs are often represented and studied as Bayesian
networks.

The basic idea of structure learning emerged from Wright
(1921) as path analysis. In his work, Wright made a distinc-
tion between three possible types of causal substructures that
were allowed in a directed acyclic graph:

X → Y → Z, or X ← Y → Z, or X → Y ← Z.

Later, Rebane and Pearl (1987) developed an algorithm to
recover directed acyclic graphs from statistical data, which
relied on the distinction of these substructures. Spirtes et al.
(2000) used Bayes networks to axiomatize the connection
between causal structure and probabilistic independence and
formalized under what assumptions one could draw causal
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knowledge from observational data only. Furthermore, they
also formalized how incomplete causal knowledge could be
used for causal intervention. Judea Pearl presented in his
work (Judea 2000) a comprehensive theory of causality and
unified the probabilistic, manipulative, counterfactual, and
structural approaches to causation. From the work of Judea
(2000) we have the following key point: if there is a statisti-
cal association, e.g. two variables X,Y are dependent, then
one of the following is true:

1. there is a causal relationship, either X affects Y or Y af-
fects X;

2. there is a common cause (confounder) that affects both X
and Y ;

3. there is a possibly unobserved common effect ofX and Y
that is conditioned upon data acquisition (selection bias);

4. there can be a combination of these.

From there on a lot of research has been conducted to de-
velop theoretical approaches and methods for identifying
causal relationships from observational data.

In general, all these methods exploit the complexity of the
marginal and conditional probability distributions in some
way (e.g., Janzing et al. (2012); Sgouritsa et al. (2015)), and
under certain assumptions these methods are then able to
solve the task of causal identification. LetC denote the cause
and E the effect. In a system with two or more variables
we might have cause-effect pairs and then their joint density
can be expressed with pC,E(c, e). This joint density can be
factorized in either of the following ways:

pC,E(c, e) = pC(c) · PE|C(e|c), or (1)

pC,E(c, e) = pE(e) · PC|E(c|e). (2)

The idea is then that Eq. (1) gives models of lower to-
tal complexity than Eq. (2), and this allows us to draw
conclusions about the causal relationship direction. Intu-
itively this makes sense, because the effect contains infor-
mation from the cause but not vice-versa (of course un-
der the assumption that there are no cycles aka feedback
loops). Therefore, Eq. (2) has at least as much complexity
as Eq. (1). This unequal distribution of complexity is often
colloquially referred to as ”breaking the symmetry”, that is
pC(c) · PE|C(e|c) 6= pE(e) · PC|E(c|e).



In recent years, numerous approaches were proposed for
structure learning. Friedman and Nachman (2000) addressed
the problem of learning the structure of a Bayesian net-
work in domains that contain continuous variables. Kano
and Shimizu (2003) developed a model for causal inference
using non-normality of observed data and improved path
analysis proposed by Wright (1921). Shimizu et al. (2006)
proposed a method to determine the complete causal graph
of continuous data under three assumptions: the data gen-
erating process is linear, no unobserved confounders, and
noise variables have non-Gaussian distributions of non-zero
variances. This method was not scale-invariant, but later
work by Shimizu et al. (2009) addressed this problem. Sun,
Janzing, and Schölkopf (2006) introduced a method based
on comparing the conditional distributions of variables given
their direct causes for all hypothetical causal directions and
choosing the most plausible one (Markov kernels). Sun,
Janzing, and Schölkopf (2008) continued the work on ker-
nels by using the concept of reproducing kernel Hilbert
spaces.

A group of well-known and well-established methods is
based on the Additive Noise Models (ANMs), that yield
many good results (Kpotufe et al. 2014). In these models,
the effect is a function of the cause and some random and
non-observed additive noise term. These methods received
a lot of attention from researchers in the past years. Hoyer
et al. (2009) generalized the linear framework of additive
noise models to nonlinear models. Mooij et al. (2009) in-
troduced a method that minimizes the statistical dependence
between the regressors and residuals. This method does not
need to assume a particular distribution of the noise because
any form of regression can be used (e.g., Linear Regression)
and is well suited for the task of causal inference in additive
noise models. Mooij et al. (2011) introduced a method to de-
termine the causal relationship in cyclic additive noise mod-
els and stated that such models are generally identifiable in
the bivariate, Gaussian-noise case. Their method works for
continuous data and can be seen as a special case of nonlin-
ear independent component analysis. Hyvärinen and Smith
(2013) proposed a method which is based on the likelihood
ratio under the linear non-Gaussian acyclic model known
as LiNGAM (Shimizu 2014). This method does not resort
to independent component analysis algorithm as previous
methods did.

As indicated in the name, ANMs are heavily based on
the presence of noise. However, despite all the research in
the past years one small but nonetheless important aspect
of causal discovery methods with ANMs has not received
much attention: can different noise levels have an impact on
the correctness of these methods? In the real world, obser-
vational data often differ in terms of the noise level. Usually,
these levels do not differ significantly but it can occur that
noise levels change drastically from cause to effect. For ex-
ample, if the data collection process has a lot of interference
(e.g., in outer space) then the related noise levels can differ
a lot. In this work, we aim to bridge this research gap. We
perform an empirical study with a well-established method
of the ANMs group Regression with Subsequent Indepen-
dence Test (RESIT) (Peters et al. 2014). This method yields

good results and can be used even when variables have dif-
ferent distribution types. In our experimental evaluation, we
aim to quantify the impact of different noise levels on the
performance of RESIT.

The rest of the paper is organized as follows. In Section 2
we describe RESIT and discuss its functioning. Section 3
presents experimental setup followed by results analysis in
Section 4. Finally, we conclude our work and summarize our
findings in Section 5.

2 Model
2.1 RESIT
The RESIT method is based on the fact that for each node
Xi the corresponding noise variable Ni is independent of
all non-descendants of Xi. For example, if we have Y =
X1 + N1 then X1 ⊥⊥ N1. RESIT works in both bivariate
and multivariate cases, see Peters et al. (2014). We restrict
our experiments to bivariate cases to reduce runtimes. In our
experiments, we have two variables, X and Y , and the task
is to determine whether X causes Y (X → Y ) or Y causes
X (Y → X).

We apply the same algorithm as Algorithm 1 from Mooij
et al. (2016) which requires inputs X and Y , a regression
method, and a score estimator Ĉ : RN × RN → R. The
algorithm outputs dir (casual relationship direction). First,
the data is split into training data and test data. Kpotufe et al.
(2014) refers to this as decoupled estimation1. The training
data is used to fit the regression model and the test data is
used to calculate the value of the estimator. The idea is to
regress Y on X with the training data, predict Ŷ with the
test data and then calculate residuals Yres = Ŷ − YTest.
Yres and XTest are then used to calculate the score for the
assumed case X → Y : ĈX→Y . Similarly, to test the other
case (Y → X), we regress X on Y , calculate residuals
Xres = X̂ − XTest and estimate ĈY→X . If only one di-
rection in our data is correct (and not both), we can com-
pare estimates directly. Otherwise, we need to determine the
value of α for the independence tests.

2.2 Estimators
Both independence tests and entropy measures can be used
to calculate the scores ĈX→Y and ĈY→X . In general, for
the independence tests we have:

Ĉ(XTest, Yres) = I(XTest, Yres)

with I(·, ·) being any independence test. In the case of en-
tropy estimators, we have:

Ĉ(XTest, Yres) = H(XTest) +H(Yres),

with H(·) being any entropy measure. The estimator score
for entropy is derived from Lemma 1 from Kpotufe et al.
(2014).

1As opposed to decoupled estimation, in coupled estimation the
data is not split into training and test data, see Kpotufe et al. (2014);
Mooij et al. (2016).



Algorithm 1 General procedure to decide whether p(x, y)
satisfies Additive Noise Model X → Y or Y → X with
decoupled estimation.

1: Input:
2: 1) I.i.d. sample data X and Y
3: 2) Regression method
4: 3) Score estimator Ĉ : RN × RN → R
5: Output:
6: dir
7:
8: Procedure
9: 1) Split data into training and test data:

10: XTrain, XTest ← X
11: YTrain, YTest ← Y
12:
13: 2) Train regression models
14: reg1 ← Regress YTrain on XTrain

15: reg2 ← Regress XTrain on YTrain
16:
17: 3) Calculate Residuals:
18: Yres = reg1.predict(XTest)− YTest
19: Xres = reg2.predict(YTest)−XTest

20:
21: 4) Calculate Scores:
22: ĈX→Y = Ĉ(XTest, Yres)

23: ĈY→X = Ĉ(YTest, Xres)
24:
25: 5) Output direction dir:

dir =


X → Y if ĈX→Y < ĈY→X ,

Y → X if ĈX→Y > ĈY→X ,

? if ĈX→Y = ĈY→X .

The following 6 independence tests and 6 entropy mea-
sures were used as estimators in this work. The implemen-
tation of all estimators except HSIC was taken from the in-
formation theoretical estimators toolbox (Szabó 2014):2

1. HSIC: Hilbert-Schmidt Independence Criterion with
RBF Kernel3:

IHSIC(x, y) := ||Cxy||2HS ,
where Cxy is the cross-covariance operator and HS the
squared Hilbert-Schmidt norm.

2. HSIC IC: Hilbert-Schmidt Independence Criterion using
incomplete Cholesky decomposition (low rank decompo-
sition of the Gram matrices, which permits an accurate
approximation to HSIC as long as the kernel has a fast
decaying spectrum) with η = 1 ∗ 10−6 precision in the
incomplete cholesky decomposition.

3. HSIC IC2: Same as HSIC IC but with η = 1 ∗ 10−2.
4. DISTCOV: Distance covariance estimator using pairwise

distances. This is simply theL2
w norm of the characteristic

2See the documentation of the toolbox for more details.
3Source: https://github.com/amber0309/HSIC

functions ϕ12 and ϕ1ϕ2 of input x, y:

ϕ12(u1,u2) = E[ei〈u
1,x〉+i〈u2,y〉],

ϕ1(u1) = E[ei〈u
1,x〉],

ϕ2(u2) = E[ei〈u
2,y〉].

With i =
√
−1, 〈·, ·〉 - the standard Euclidean inner prod-

uct, and E - the expectation. Finally, we have:

IdCov(x, y) = ||ϕ12 − ϕ1ϕ2||L2
w

5. DISTCORR: Distance correlation estimator using pair-
wise distances. It is simply the standardized version of
the distance covariance:

IdCor(x, y) =
IdCov(x, y)√

IdV ar(x, x)IdV ar(y, y)

with IdV ar(x, x) = ||ϕ11 − ϕ1ϕ1||L2
w
, IdV ar(y, y) =

||ϕ22 − ϕ2ϕ2||L2
w

(see characteristic functions un-
der DISTCOV). If IdV ar(x, x)IdV ar(y, y) ≤ 0, then
IdCor(x, y) = 0.

6. HOEFFDING: Hoeffding’s Phi:

IΦ(x, y) = IΦ(C) =

(
h2(d)

∫
[0,1]d

[C(u)−Π(u)]2du

) 1
2

withC standing for the copula of the input and Π standing
for the product copula.

7. SH KNN: Shannon differential entropy estimator using
kNNs (k-nearest neighbors)

H(Y 1:T ) = log(T−1)−ψ(k)+log(Vd)+
d

T

T∑
t=1

log(ρk(t))

with T standing for the number of samples, ρk(t) - the
Euclidean distance of the kth nearest neighbour of yt in
the sample Y 1:T \{yt}, and V ⊆ Rd - a finite set.

8. SH KNN 2: Shannon differential entropy estimator using
kNNs with k = 3 and kd-tree for quick nearest-neighbour
lookup.

9. SH KNN 3: Shannon differential entropy estimator using
kNNs with k = 5.

10. SH MAXENT1: Maximum entropy distribution-
based Shannon entropy estimator: H(Y 1:T ) = H(n) −[
k1

(
1
T

∑T
t=1G1(y′t)

)2

+ k2

(
1
T

∑T
t=1G2(y′t)−

√
2
π

)2
]
+

log(σ̂), with σ̂ = σ̂(Y 1:T ) =
√

1
T−1

∑T
t=1(yt)2,

y′t = yt
σ̂ , (t = 1, . . . , T ), G1(z) = ze

−z2
2 , G2(z) = |z|,

k1 = 36
8
√

3−9
, k2 = 1

2− 6
π

.

11. SH MAXENT2: Same as SH MAXENT1 with the fol-
lowing changes:

G2(z) = e
−z2
2 , k2 =

24

16
√

3− 27
.

https://github.com/amber0309/HSIC


12. SH SPACING V: Shannon entropy estimator using Va-
sicek’s spacing method:

H(Y 1:T ) =
1

T

T∑
t=1

log

(
T

2m
[y(t+m) − y(t−m)]

)
,

with T standing for the number of samples. The conven-
tion that y(t) = y(1) if t < 1 and y(t) = y(T ) if t > T and
m = b

√
T c.

3 Experimental Setup
For all experiments, we generate artificial data using lin-
ear and non-linear functions. While both linear and non-
linear data can be identifiable in causal models, non-linearity
helps in identifying the causal direction as was shown by
Hoyer et al. (2009). In all experiments we use the equation
Y = X+NY for the linear cases and Y = X3 +NY for the
non-linear cases. These two structural causal models have
been selected arbitrarily for simplicity. For the consistency
of the identifiability of linear and non-linear data in additive
noise models, the reader is referred to Kpotufe et al. (2014);
Shimizu et al. (2006); Hoyer et al. (2009); Zhang and Hy-
varinen (2009). 80% of the generated data is used for train-
ing a regression model, and the rest 20% is used to calculate
the values of estimators ĈX→Y and ĈY→X .

In all our tests, we assume X to be a cause of Y , that is
X → Y .X andNY can be drawn from one of the following
distributions: the normal distribution denoted byN , the uni-
form distribution denoted by U , or the laplace distribution
denoted by L. The parameters of the distributions for X and
NY are defined by the equations below:

X ∼


N (0, 1) or
U(−1, 1) or
L(0, 1)

NY ∼


N (0, 1 · i) or
U(−1 · i, 1 · i) or
L(0, 1 · i)

with i being a scaling factor for the noise level in NY , i-
factor for short. By varying the value of i, we can analyze
how different values of standard deviations (boundaries for
the uniform case) in the noise term NY relative to the stan-
dard deviation (or boundaries for the uniform case) in the X
term impact the accuracy of RESIT method.

In our experiments, we consider 199 different i-factors:

i ∈ {0.01, 0.02, . . . , 1.00} ∪ {1, 2, . . . , 100}.

The values i < 1 correspond to the cases when deviation of
NY is less than that of X , and the values i > 1 correspond
to the cases when the deviation of NY is larger than that of
X . The deviation of noise ranges from 1% (for i = 0.01)
to 10000% (for i = 100) of the deviation of X . For each
value of i, we have 18 different combination of models: two
general structures Y = X +NY and Y = X3 +NY where
X and NY are drawn from one of the three different dis-
tributions: N ,U or L. To represent the models, we use the

notations like Y = L3 + U , that signifies a nonlinear model
with X ∼ L and NY ∼ U . For each of the 18 combinations,
for a single test, we generate 1000 samples from the relative
distributions. Next, we perform causal identification accord-
ing to the procedure described in Section 2.1 using one of the
estimators presented in Section 2.2. These tests are repeated
100 times. Finally, we calculate the fraction of successful
tests for each combination of a model and an estimator, and
define this ratio as our accuracy measure.

For the regression, we used Linear Regression with an
appropriate coordinates transformation for the non-linear
cases.

4 Experimental Results
Figs. 1 and 2 show the results for different estimators ob-
tained for liner and nonlinear models respectively. In these
figures, the y-axis shows the accuracy ( #successful tests

100 ) for dif-
ferent estimators, and the x-axis shows the range of the i-
factor. The results for independence estimators are presented
with solid lines and the results for entropy estimators are
shown with dashed lines. The values of the estimators close
to 0.5 indicate that in 50% of the tests the algorithm chose
the correct direction and vice versa 50% chose the wrong
one. Such cases are unidentifiable. The values of accuracy
closer to 1 mean very good or consistent identifiability.
Also, the plots for DISTCOV (dark green) and DISTCORR
(medium purple) often overlap (more than in 90% of cases),
resulting in a dark purple line.

Additionally, in Table 1 and Table 2 we summarize our
experimental result. The values in the cells show on what
range of i-factor the estimators can reach over 90%. Esti-
mators have some variance in the results and thus on some
intervals, they fall below 90% accuracy. The limits in the
cells were chosen as follows: the lower limit shows where
estimators reach the first time 90% or higher, and the upper
limit shows the last time where it reaches 90% or higher.
In between, most of the time estimators remain above 90%
or rarely fall below, but not more than 10% of the cases. An
empty cell in the tables means that for the relevant model and
estimator the accuracy never reached 90%. An open range
from one side, for example, ”– 5” or ”5 –”, or from both
sides, such as ” – ”, indicates an unbounded interval with
one or two missing bounds.

4.1 Linear Models: Y = X +NY

We start with the analysis of the results for the linear mod-
els presented in Fig. 1 and Table 1. First, we consider the
models with the independent variable distributed normally,
X ∼ N . Fig. 1a shows the only case where we never
achieve identifiability. This is the well-known linear Gaus-
sian structural causal model Y = N + N . Only recently
it has been tackled successfully by Chen, Drton, and Wang
(2019); Park and Kim (2019). However, we do not con-
sider their approach in this work. Fig. 1b shows the linear
model with Y = N +U . SH SPACING V performs the best
with the accuracy of 100% for i ∈ [0.55; 7]. HSIC IC and
HSIC IC2 perform the worst here. The associated accuracy
reaches 90% only for i ∈ [3; 7]. All other estimators per-
form mediocre with an accuracy above 80% for i ∈ [0.5; 7].
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Figure 1: Accuracy of RESIT for linear models as a function of i-factor.

Table 1: Summary for linear models. The numbers reflect the ranges of noise that allow identifiability with accuracy ≈ 90%.

Estimator N +N N + U N + L U +N U + U U + L L+N L+ U L+ L
HSIC 0.60 – 4 0.38 – 2 0.21 – 1 0.18 – 6 0.15 – 1 0.32 – 3 0.40 – 8 0.30 – 5
HISC IC 3 – 7 0.75 – 2 3 0.35 – 1 0.36 – 3 0.60 – 7 0.40 – 4
HSIC IC2 3 – 7 0.75 – 2 3 0.35 – 1 0.36 – 3 0.60 – 7 0.40 – 4
DISTCOV 1 0.80 – 1 0.25 – 1 0.20 – 3 0.20 – 1 0.33 – 2 0.40 – 5 0.23 – 4
DISTCORR 1 0.87 – 1 0.25 – 1 0.20 – 3 0.20 – 1 0.33 – 2 0.40 – 5 0.23 – 4
HOEFFDING 1 0.20 – 3 0.15 – 1 0.57 – 1 0.40 – 5
SH KNN 0.26 – 1 0.20 – 3 0.21 – 1 0.53 – 4
SH KNN 2 0.26 – 1 0.20 – 2 0.21 – 1 0.53 – 4
SH KNN 3 0.85 – 4 0.20 – 1 0.20 – 3 0.16 – 1 0.51 – 5 0.60 – 1
SH MAXENT1 0.65 – 5 0.30 – 3 0.20 – 1 0.23 – 3 0.12 – 3 0.21 – 4 0.32 – 10 0.20 – 6
SH MAXENT2 0.40 – 8 0.33 – 3 0.10 – 4 0.12 – 8 0.10 – 3 0.21 – 4 0.32 – 10 0.17 – 5
SH SPACING V 0.20 – 22 0.82 – 1 0.04 – 9 0.05 – 21 0.03 – 8 0.49 – 4 0.16 – 27 0.17 – 4



Fig. 1c shows the linear model Y = N+L. The best estima-
tors are SH MAXENT1 and SH MAXENT2 with accuracy
around 90% for i ∈ [0.30; 3]. HSIC also performs good with
accuracy over 90% for i ∈ [0.38; 2]. The worst estimators
are the three Shannon differential entropy estimators using
kNNs which never remain consistently above 80% accuracy.
The remaining estimators lie within the range 90%± 8% ac-
curacy for i ∈ [0.3; 3].

Next, we consider models with X ∼ U . Fig. 1d shows
the linear model Y = U + N . Here all estimators differ
stronger than in the previous cases. First, SH SPACING V
performs the best with 100% accuracy for i ∈ [0.08; 2].
With i = 1 all other estimators remain above 90%, expect
HOEFFDING (∼88%) and HSIC IC and HSIC IC2 (both
∼ 75%). After i becomes larger than 2, all estimators drop
drastically towards 50% accuracy except SH SPACING V
which remains above 70%. For i ∈ [0.2; 1] some estima-
tors remain between 80% and 95% while HSIC is above
95%. HSIC IC and HSIC IC2 perform worse than all other
estimators. Fig. 1e, shows the linear model Y = U + U .
In this case, HSIC IC and HSIC IC2 reach accuracy above
90% only around i = 3, see the 3d column in Table 1. All
other estimator perform quite good with i ∈ [0.2; 3], how-
ever HOEFFDING and DISTCOV drop slightly below 90%
accuracy for i = 1. SH SPACING V has 100% accuracy for
i ∈ [0.12; 10] and has on the remaining values of i better ac-
curacy than all other estimators. In general, we can observe
that identifiability is much better for i < 1, that is when the
range for noise term is less than the range of X . For i > 50
the accuracy of most of the estimators is around 50%, in-
dicating that the predicted direction is wrong in half of the
tests. Fig. 1f shows the model Y = U + L. For i ∈ [0.3; 1]
all estimators perform well with 90% or higher accuracy, ex-
cept HSIC IC and HSIC IC2 which remain above 90% ac-
curacy only after i = 0.45. After i = 1 each estimator drops
drastically and all converge towards 50% accuracy. The only
exception is SH SPACING V which remains with a mean of
70% accuracy longer than other estimators. For i ∈ [0.08; 1]
SH SPACING V also has accuracy 100%. For i < 0.3 all
other estimators drop fast towards 50%.

Now we proceed to the analysis of the remaining cases
where the independent variable X is distributed accord-
ing to the Laplace distribution, X ∼ L. Fig. 1g shows
the model Y = L + N . For i ∈ [0.3; 1] HSIC,
SH MAXENT1 and SH MAXENT2 have accuracy greater
than 90%. SH SPACING V, HSIC IC, HSIC IC2, DIST-
COV and DISTCORR lie between 85% and 95% accuracy
for i ∈ [0.4; 1] and HOEFFDING remains between 80%
and 90%. Again, the three Shannon kNN estimators never
reach an accuracy higher than 80%. After i reaches the
value of 1, all estimators drop fairly fast towards uniden-
tifiability. Fig. 1h shows the linear model Y = L + U .
SH SPACING V performs the best of all estimators and has
an accuracy of 100% for i ∈ [0.5; 5]. All other estimators
slowly climb towards good identifiability and for i ∈ [0.7; 7]
they remain above 90% accuracy. Afterward, all other es-
timators drop with a similar pace towards unidentifiability.
Fianlly, Fig. 1i shows the linear model Y = L+L. Here we
can observe the following. For i ∈ [0.4; 2] SH MAXENT1

and SH MAXENT2 have accuracy close to 100%. Next, for
i ∈ [0.4; 1] HSIC, HSIC IC, HSIC IC2, SH SPACING V,
DISTCOV and DISTCORR remain above 90% accuracy.
HOEFFDING, and the three Shannon kNN estimators never
reach an accuracy above 90%. After i = 1 all estimators
drop fast towards 50%.

4.2 Nonlinear Models: Y = X3 +NY

The results for nonlinear models are grouped in the same
way as for linear models and are presented in Fig. 2 and Ta-
ble 2. In general, we can notice much better identifiability in
the nonlinear case.

Similar to the linear case, We start with the analysis of
the modes with X ∼ N . Fig. 2a shows the nonlinear model
Y = N 3 +N . Here all estimators perform very good with
i ∈ [0.4; 25] having an accuracy of almost 100%. With
i < 0.3 most estimators drop fast below 90% accuracy.
With i ∈ [20; 100] all estimators remain above 90% accu-
racy, except for HSIC IC, HSIC IC2, SH MAXENT1 and
SH MAXENT2 which drop below 90% after i = 45. DIST-
COV, SH SPACING V and the three Shannon kNN estima-
tors remain close to 100% in i ∈ [0.01; 100]. Fig. 2b shows
the model Y = N 3 + U . In this case, for i ∈ [0.45; 80] we
have 90% or higher accuracy for all estimators. DISTCOV,
SH SPACING V and the three Shannon kNN estimators re-
main close to 100% in i ∈ [0.01; 100]. Fig. 2c shows the
nonlinear model Y = N 3 + L. For this model, all estima-
tors perform very good with i ∈ [0.4; 30] having an accu-
racy close to 100%. With i < 0.25 estimator drop rapidly
and for i > 30 HSIC IC, HSIC IC2, SH MAXENT1 and
SH MAXENT2 drop below 90% accuracy. All others re-
main over 90% accuracy while HSIC remains around 90%.

Now we proceed to the analysis of the models with X ∼
U . Fig. 2d shows the model Y = U3 + N . All estima-
tors, except HSIC IC and HSIC IC2, remain above 95%
for i ∈ [0.05; 1]. For i ∈ [1; 100] the estimators converge
differently. All three Shannon differential entropy measures
with kNNs and SH SPACING V remain above 95% accu-
racy. DISTCOV, DISCORR and HOEFFDING keep a mean
of∼85% accuracy. HSIC and SH MAXENT1 remain above
60% accuracy. SH MAXENT2 is pretty much unidentifi-
able. Finally, HSIC IC and HSIC IC2 are unidentifiable for
all values of i. Fig. 2e shows the nonlinear model Y =
U3 + U . For i ∈ [0.09; 1] all estimators except HSIC IC
and HSIC IC2 remain above 95% accuracy, while SH KNN,
SH KNN 2, and SH SPACING V continue to do so for
i ∈ [1; 100]. DISTCOV, DISCORR and HOEFFDING re-
main between 80% and 90%. HSIC and SH MAXENT1
drop to ≈ 60% after i = 20 and remain above 60% for
i < 100. SH MAXENT2, HSIC IC and HSIC IC2 drop to
50% for i ∈ [20; 100]. Fig. 2f shows the model Y = U3 +L.
The behaviour of different estimators is almost the same as
for Y = U3+N . The only differences are that HSIC IC per-
forms slightly better for i ∈ [0.2; 1] and DISTCOV, DIST-
CORR, HSIC and SH MAXENT2 perform worse.

Lastly, we analyze the 3 remaining models with X ∼ L.
Fig. 2g shows the model Y = L3 + N . For i ∈ [0.1; 100]
all estimators (except SH MAXENT1 and SH MAXENT2)
have an accuracy of 90% or higher, SH SPACING V and
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Figure 2: Accuracy of RESIT for nonlinear models as a function of i-factor.

Table 2: Summary for nonlinear models. The numbers reflect the ranges of noise that allow identifiability with accuracy≈ 90%.

Estimator N 3 +N N 3 + U N 3 + L U3 +N U3 + U U3 + L L3 +N L3 + U L3 + L
HSIC 0.09 – 68 0.16 – 0.11 – 70 0.04 – 3 0.05 – 6 0.05 – 3 0.04 – 0.07 – 0.05 –
HISC IC 0.10 – 40 0.16 – 88 0.10 – 35 0.70 – 1 0.07 – 0.12 – 0.06 –
HSIC IC2 0.10 – 40 0.17 – 88 0.10 – 35 0.70 – 1 0.10 – 0.15 – 0.10 –
DISTCOV 0.07 – 0.14 – 0.08 – 88 –85 0.03 – 20 0.02 – 5 0.03 – 0.04 – 0.03 –
DISTCORR 0.07 – 0.14 – 0.05 – 88 –85 0.03 – 20 0.02 – 5 0.03 – 0.04 – 0.03 –
HOEFFDING 0.02 – 0.05 – 0.04 – –95 0.03 – 0.02 – 0.02 – 0.02 – –
SH KNN – – – – – – – – –
SH KNN 2 – – – – – – – – –
SH KNN 3 – – – – – – – – –
SH MAXENT1 0.20 – 45 0.33 – 85 0.18 – 67 0.02 – 4 0.05 – 7 0.03 – 4 0.28 – 0.53 – 0.26 –
SH MAXENT2 0.28 – 45 0.43 – 91 0.25 – 65 0.08 – 2 0.09 – 5 0.06 – 3 0.30 – 0.43 – 0.28 –
SH SPACING V – – – – – – – – –



the three Shannon kNN estimators have an accuracy of
100% for all values of i-factor. Only SH MAXENT1 and
SH MAXENT2 perform badly at the beginning but still have
an accuracy of 90% or higher for i ∈ [0.35; 100]. Fig. 2h
shows the nonlinear model Y = L3 + U . It is very simi-
lar to the previous case. For i ∈ [0.15; 100] all estimators
(except SH MAXENT1 and SH MAXENT2) have an accu-
racy of 90% or higher, and SH SPACING V, and the three
Shannon kNN estimators have an accuracy of 100% for all
values of i. As in the previous case, SH MAXENT1 and
SH MAXENT2 perform badly at the beginning but still have
an accuracy of 90% or higher for i ∈ [0.7; 100]. For i ≥ 1 all
estimators are very close to 100% accuracy. Finally, Fig. 2i
shows the nonlinear model Y = L3 + L. This model al-
lows the best identifiability of all. For i ≥ 0.1 all estimators
except SH MAXENT1 and SH MAXENT2 have an accu-
racy 90% or higher. SH SPACING V and the three Shannon
kNN estimators have an accuracy of 100% for all values of
i. Only SH MAXENT1 and SH MAXENT2 perform badly
at the beginning but still have an accuracy of 90% or higher
for i ≥ 0.35.

4.3 Summary
As the results show, different noise levels do have an im-
pact on the identifiability performance in RESIT methods.
In general, the linear equation models are more fragile in
RESIT than the nonlinear equation models because nonlin-
ear relationships tend to break the symmetry between the
variables easier (Hoyer et al. 2009). Furthermore, in all cases
the test results themselves have a standard deviation between
0.05 to 0.1 as one can see in the sharp wiggles in the plots.

We can notice some similarities in the models depend-
ing on how distributed their components X and NY . It is
visually visible in a matrix of plots in Figs. 1 and 2. The
plots on the main diagonals, Figs. 1a, 1e, 1i, 2a, 2e and 2i,
represent the models for which both X and NY are drawn
from the same type of distribution. In the case of nonlinear
models, the diagonal plots demonstrate 3 distinct behaviors
of estimators, as presented in Figs. 2a, 2e and 2i. We can
also clearly see the similarity of plots in the same rows. It
means that the models with the same type of distribution
for the independent variable X have common characteris-
tics. We observe that all models with X ∼ L, see Figs. 2g
to 2i allow very good and consistent identifiability by all
estimators for i ≥ 1. For the values i < 1, many estima-
tors, except SH MAXENT1 and SH MAXENT2, also per-
form well with accuracy ≈ 90%. The group of models with
X ∼ N allow all estimators achieve almost perfect identifia-
bility for 0.8 < i < 20. The accuracy then reduces for larger
and smaller values of i. Finally, the group of models with
X ∼ N allow the worst identifiability, see Figs. 2d to 2f.
For i > 20 several estimators have accuracy of 50%− 60%.
However, SH KNN estimators allow consistent identifiabil-
ity for all values of i even in this case, see Table 2. Simi-
lar but much less prominent row-wise similarity can be ob-
served for linear models as well, see Fig. 1. This indicates
that the type of distribution of the independent variable X
impacts the accuracy of different estimators.

Looking now only at the best estimation function and

assuming a strong identifiability of ≥ 90% accuracy, we
can observe that for linear models and i /∈ [0.5; 5] the ac-
curacy is usually below 90%. This looks different for the
nonlinear cases. Such estimators as SH KNN, SH KNN 2,
SH KNN 3, and SH SPACING V allow consistent identifi-
ability for all nonlinear modes. At the same time, the models
with X ∼ L are identifiable with accuracy ≥ 90% by all es-
timators on almost all range of values of i, see Table 2.

Some estimators perform differently depending on the
setup. For example, for all nonlinear cases, the three Shan-
non differential entropy estimators with kNNs always per-
form above 90% accuracy for all values of i, see Table 2. The
associated accuracy even reaches 100% for all i in the case
of nonlinear models with X ∼ L, see Figs. 2g to 2i. In case
of linear models, these estimatros perform relatively poor,
sometimes never reaching 90% accuracy, see linear models
with X ∼ N , Y = L+N , and Y = L+ L in Table 1.

Overall, SH SPACING V performs the best in almost all
cases, and is only outperformed by SH MAXENT1 and
SH MAXENT2 for the following three linear models: Y =
N + L, Y = L + L, and Y = L + N , see Figs. 1c, 1g
and 1i and Table 1. Some independence tests lose some of
the accuracy while entropy estimators retain accuracy over
90%. This is observed for nonlinear models with X ∼ U ,
see Figs. 2d to 2f and Table 2. Additionally, it is worth men-
tioning that entropy estimators are less computationally de-
manding than independence tests but can be quite sensitive
to discretization effects (Mooij et al. 2016). However, en-
tropy estimators can only be used with the prior assumption
we made: there is only one causal direction and it is present
in the model.

5 Conclusions
In this paper, we study the performance of a well-known
causal discovery method RESIT which falls in a group of ad-
ditive noise models. While RESIT was widely studied in the
literature before, previous research paid little attention to the
effect of noise level on the accuracy of this approach. This
work aims to fill this gap by means of an empirical study.
In our experiments, we tested a liner model Y = X + NY
and a nonlinear model Y = X3 + NY with X and NY be-
ing drawn from one of the following distributions: Normal
N , Uniform U or Laplace L. We also used 12 different es-
timators (6 independence estimators and 6 entropy estima-
tors). The results from our experiments show that the effect
of noise is not negligible and can impact the model’s identifi-
ability. For significantly small noise levels in the disturbance
term NY or significantly large noise levels, this causal dis-
covery method fails to capture the true causal relationship of
the given structural equation model. Significantly here de-
pends on the model. For example, on some models if the
noise level is already twice larger than the variation of the in-
dependent variable, then the model becomes unidentifiable.
Other models remained identifiable with 100 times larger
noise levels, see Section 4 for details.

The range of different noise levels in our experiments is
quite exhaustive, changing from 100 times less to 100 times
larger than the variance of the causal variable X . Some of



these cases can be very rare in practice, however, the dis-
covered relationships can be useful for the practitioners and
researchers. In general, if the standard deviation of the noise
term is smaller than the standard deviation of the cause, then
models remained identifiable more often as opposed to the
case when the standard deviation of the noise term is larger.
For example, often when the standard deviation of the noise
term was only half of that of the cause, the model was still
identifiable. However, in several cases, if the standard devia-
tion of the noise term was already twice larger than the stan-
dard deviation of the cause, then the model became uniden-
tifiable.

Our results also show differences in terms of the per-
formance of the analyzed estimators. In our experiments,
Hilbert-Schmidt Independence Criterion with RBF Kernel
is the best independence estimator, and Shannon entropy
with Vasicek’s spacing method is the best entropy estimator.
Comparing the performance on linear and non-linear mod-
els, our results show that non-linear models are still identifi-
able in situations where linear models are not. For example,
some non-linear models with the noise term’s standard devi-
ation of 100 times higher than that of the cause, are perfectly
identifiable while their linear counterparts are not. Finally,
our experiments show different behavior for different dis-
tribution types (e.g., Gaussian, Uniform. or Laplace). Gen-
erally, models with the causal variable drawn from Laplace
distribution X ∼ L allow better identifiability.

In our experiments, we tested only two particular models
and three different distribution types. Similar results are ex-
pected with other methods for causal discovery with additive
noise models, as the failing point is the independence esti-
mation (or entropy estimation). Therefore, methods relying
on these estimations are generally prone to errors for some
levels of noise. This work also does not formalize the effect
of different noise levels in ANM causal discovery methods
but it could be done in future work. In reality, observed data
does not always strictly follow a certain distribution type. As
there are many different possible combinations, it would be
interesting to generalize the impact of different noise levels
on any distribution by using the properties exhibited by an
observed distribution.
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Szabó, Z. 2014. Information Theoretical Estimators Tool-
box. Journal of Machine Learning Research 15: 283–
287. URL https://www.jmlr.org/papers/volume15/szabo14a/
szabo14a.pdf.
Wright, S. 1921. Correlation and causation. Journal of Agri-
cultural Research 20: 557–580.
Zhang, K.; and Hyvarinen, A. 2009. On the Identifiability
of the Post-Nonlinear Causal Model. In Proceedings of the
Twenty-Fifth Conference on Uncertainty in Artificial Intelli-
gence (UAI2009), 647–655. URL https://arxiv.org/abs/1205.
2599.

http://proceedings.mlr.press/v38/sgouritsa15.pdf
http://proceedings.mlr.press/v38/sgouritsa15.pdf
http://www.cox-associates.com/CausalAnalytics/LiNGAMShimuzi2014.pdf
http://www.cox-associates.com/CausalAnalytics/LiNGAMShimuzi2014.pdf
https://www.jmlr.org/papers/volume7/shimizu06a/shimizu06a.pdf
https://www.jmlr.org/papers/volume7/shimizu06a/shimizu06a.pdf
https://arxiv.org/abs/1408.2038
https://pure.mpg.de/rest/items/item_1791171/component/file_3158882/content
https://pure.mpg.de/rest/items/item_1791171/component/file_3158882/content
https://www.sciencedirect.com/science/article/pii/S092523120800060X
https://www.sciencedirect.com/science/article/pii/S092523120800060X
https://www.jmlr.org/papers/volume15/szabo14a/szabo14a.pdf
https://www.jmlr.org/papers/volume15/szabo14a/szabo14a.pdf
https://arxiv.org/abs/1205.2599
https://arxiv.org/abs/1205.2599

	Introduction & Related Work
	Model
	RESIT
	Estimators

	Experimental Setup
	Experimental Results
	Linear Models: Y = X + NY
	Nonlinear Models: Y = X3 + NY
	Summary

	Conclusions
	Acknowledgments

