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Abstract

Over the past few years, unmanned aerial vehicle (UAV)-enabled wireless communica-
tions have attracted considerable attention from both academia and industry due to their
high mobility, low cost, strong light-of-sight communication links, and ease of deployment.
Specifically, UAVs can be deployed to serve as aerial base stations (BSs), relays, power
sources, etc., to support ground users (GUs) in various scenarios such as surveillance mis-
sions, search and rescue, crop monitoring, delivery of goods, data collection, emergency
communications, secrecy communications, space-air-ground communications, etc. Despite
many advantages, UAV-enabled communications are not without limitations. The limita-
tions of UAVs have imposed technical restrictions on weight, size, and energy capability,
thereby affecting the durability and performance of UAVs. The key goal of this dissertation
is to propose and develop new frameworks and efficient optimization algorithms to solve
novel challenging problems, facilitate the design and deployment of UAV-enabled commu-
nications. Consequently, these proposed algorithms can become one of the foundations
for deploying UAVs in future wireless systems. Specifically, this dissertation investigates
different UAV communication systems by addressing several important research problems
through four emerging scenarios: 1) Design UAV trajectory based on traveling salesman
problem with time window (TSPTW); 2) Full-duplex (FD) UAV relay-assisted emergency
communications in Internet of Things (IoT) networks; 3) Backscatter- and cache-assisted
UAV communications; and 4) Satellite- and cache-assisted UAV communications in 6G
aerial networks.

In the first scenario, we provide the coarse trajectory for the UAV based on TSPTW,
which has not been investigated in UAV communications yet. Concretely, we propose two
trajectory design algorithms based on TSPTW, namely heuristic algorithm and dynamic
programming (DP)-based algorithm, and they are compared with exhaustive search and
traveling salesman problem (TSP)-based methods. Based on the feasible path obtained
from proposed algorithms, we minimize the total UAV’s energy consumption for each given
path via a joint optimization of the UAV velocities in all hops. Simulation results show
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that the energy consumption value of DP is very close to that of the exhaustive algorithm
with greatly reduced complexity. Based on this work, an efficient TSPTW-based algorithm
can be used as an initialized trajectory for designing a joint problem of UAV trajectory and
other communications factors (e.g., communication scheduling, transmit power allocation,
time allocation), which are challenges.

We then study the case of a FD UAV relaying system in IoT networks. Specifically, a
UAV can be deployed as a flying base station (BS) to collect data from time-constrained
IoT devices and then transfer it to a ground gateway (GW). Especially, the impact of
latency constraint for the uplink (UL) and downlink (DL) transmission utilizing FD or
half-duplex (HD) mode is investigated. Using the proposed system model, we aim to
maximize the total number of served IoT devices subject to the maximum speed constraint
of the UAV, total traveling time constant, UAV trajectory, maximum transmit power at
the devices/UAV, limited cache size of the UAV, and latency constraints for both UL and
DL. Next, we attempt to maximize the total throughput subject to the number of served
IoT devices. The outcome of this work will motivate a new framework for UAV-aided
communications in disaster or emergency communications.

Next, a novel system model that considers SWIPT, backscatter and caching in UAV
wireless networks is developed. Based on this model, we aim to maximize the system
throughput by jointly optimizing the dynamic time splitting (DTS) ratio and the UAV’s
trajectory with caching capability at the UAV. This is the first work that jointly considers
wireless power transfer (WPT), caching, and BackCom in UAV communications, which
provides a potential solution for a battery-free drone system that can fly for a long period
in the sky to support the terrestrial communication systems.

Finally, a novel system model for effective use of LEO satellite- and cache-assisted UAV
communication is proposed and studied. Specifically, caching is provided by the UAV to
reduce backhaul congestion, and the LEO satellite assists the UAV’s backhaul link. In this
context, we aim to maximize the minimum achievable throughput per ground user (GU)
by jointly optimizing cache placement, the UAV’s transmit power, bandwidth allocation,
and trajectory with a limited cache capacity and operation time. The outcomes of this
work can provide a new design framework for Satellite-UAV-terrestrial communications
that includes two tiers, i.e., the backhaul link from satellite to UAV and the access link
from UAV to ground users, which imposes new challenges and was not investigated before.
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Chapter 4 includes the scenario where a single full-duplex UAV as an aerial base station
aims to collect data from latency-constrained IoT users and then transfer it to a ground
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Chapter 1
Introduction

In recent years, unmanned aerial vehicles (UAVs) or drones, have been adopted in vari-
ous real-life applications from civilian (e.g., aerial photography, disaster response, rescue
mission, hospital emergency care, monitoring forest fire, oil rigs, and traffic monitoring)
to military (e.g., battlefield surveillance, border security, target localization, counter insur-
gency, tracking, crime control, and anti-terrorism arrests) [1–6]. As reported by the Federal
Aviation Administration (FAA), the number of UAVs is estimated to increase about 367
folds from 2.4 million in 2022 to 880.3 million in 2038 [7]. Besides, the UAV market is
expected to grow around two fold from 27.4 billion USD in 2021 to 58.4 billion USA by
2026 [8].

With the advantages in agility, mobility, swift deployment, and maneuverability, UAVs
such as airships, aircraft, balloons have been widely adopted in wireless communications.
Prominent examples of potential projects for UAV communications include Google Project
Wing, Google Loon, Facebook Halts Aquila, and Amazon Prime Air [9–12]. For example,
Google has built and tested autonomous aerial vehicles (AAVs) project termed Project
Wing [9]. This project aimed to develop UAVs that could be used after a disaster, e.g.,
earthquakes or floods, to delivery necessary necessities to isolated areas. Facebook Halts
Aquila project built a fleet of drones in the sky to beam internet to GUs [10]. In par-
ticular, these drones can stay aloft for three months using solar panels. Besides, AT&T
and Qualcomm have been planning to adopt UAVs for facilitating large-scale wireless com-
munications in 5G networks [12]. Despite many benefits, UAV communications are not
without limitations due to energy, resource constraints (e.g., bandwidth, power capacity),
and other technical challenges. In this chapter, we introduce an overview of the state-of-
the-art research on UAV communications over the past few years. We then point out the
limitations in these works, giving impetus to our contributions.
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1.1 Related Works

UAV communications have been an active area of research in the past few years. In
the following, we provide some advantages and potential applications of UAVs in wireless
communications. Specifically, this section shows the closest works related to our main
contributions in this dissertation.

Figure 1.1: Traveling salesman problem in UAV communications.

1.1.1 Trajectory Design for UAV System

Unmanned aerial vehicles (UAVs) have been applied in many areas such as aerial photogra-
phy and videography, mapping and surveying, reconstruction, monitoring, delivery, search
and rescue, and UAV-aided communications. In these applications, planning the optimal
trajectory for UAVs is a key challenge in UAV-based communication systems with limited
resources, e.g., bandwidth, energy capacity. The UAV trajectory is dramatically affected
by various factors such as flight time, battery capacity, GUs’ demands, obstacle avoidance,
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(a) Forest (b) Cave (c) City

Figure 1.2: 3D trajectory design in complex environments.

and authority requirements. Therefore, the UAV trajectory design has received significant
attention from researchers recently [13–19].

Fig. 1.1 shows the traveling salesman problem (TSP) for path planning in UAV commu-
nications. The TSP is an NP-hard problem that finds the shortest path that visits all nodes
exactly once and returns to the original depot with given locations and distance between
nodes. Zeng et al. was the first to bring up the traveling salesman problem (TSP) in UAV
communications [13]. Specifically, they studied the trajectory design to minimize the mis-
sion completion time in UAV-enabled multi-casting. They proposed strip-based waypoints,
TSP-based, virtual base stations (VBSs) as waypoints, and optimal waypoints methods to
design the trajectory of UAV for multi-casting information to GUs. Based on the TSP-
based trajectory design in [13–15] investigated the energy minimization problem in wireless
communications with rotary-wing UAVs Besides classic TSP, there are many other TSP-
related problems such as multiple TSP [20–22] or vehicle routing problem (VRP) [23–25].
Multiple TSP is generalized of TSP, whereas multiple users travel through N nodes in the
networks, then it returns the original point. The distinct point with TSP is that users
can go through a node multiple times. VRP describes the problem of multiple vehicles
that transfer goods to customers who require a different amount of goods. They aim to
design a path to minimize cost or path length. Therefore, TSP is a special scenario of
VRP. In literature, there are many intelligent algorithms proposed to solve TSP efficiently
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such as genetic algorithm [26, 27], the particle swarm optimization (PSO) [28], the ant
colony optimization [29–31], the neural network algorithm [32,33], the deep reinforcement
learning [34–36]. In Table 1.1, we list different efficient methods to solve the TSP.

Table 1.1: Listing of algorithms to solve the traveling salesman problem
Intelligent algorithms to solve
TSP

Related references

Genetic algorithm [26,27,37]
Particle swarm optimization (PSO) [28,38]
Ant colony optimization [29–31]
Simulated annealing algorithm [39]
Neural network algorithm [32,33]
Fuzzy Neural Network [40]
Deep reinforcement learning [34–36]

Table 1.2: Intelligent algorithms used to obtain the UAV 3D trajectory
Algorithms Related references
Sampling-based algo-
rithms

probabilistic roadmap [41],3D voronoi [42], simplified
probabilistic roadmap [43], k-nearest probabilistic
roadmap [44], corridor map [45], rapidly-exploring
random trees [46]

Mathematic model-mased
algorithms

mixed integer linear programming (MILP) [47], op-
timal control [48], binary linear programming (BLP)
[49], non-linear programming (NLP) [50]

Node-based algorithms Dijkstra’s algorithms [51], Harmony search [48], life-
long llanning A(LPA) [52]

Multi-fusion based algo-
rithms

PRM based optimal algorithms [41]; visibility graph
node-based optimal algorithms [53]; visibility graph,
Voronoi diagram, and potential field (VVP) algo-
rithms [54]; visibility graph Geodesics algorithm [55]

Bio-inspired algorithms shuffled frog leaping algorithm [56], genetic algo-
rithm [57], ant colony optimization [58]

Fig. 1.2 illustrates the 3D UAV trajectory design scenarios for aerial mapping, scene
exploration, urban reconstruction, surveying, and cinematography, in which many studies
have been carried out recently [59–68]. A complete scene construction can offer an ex-
act three-dimensional (3D) environment for map navigation autonomous driving, which is
a foundation for real-time/ultra-low latency decision-making. Furthermore, scene recon-
struction models give data sources for emergency scenarios analysis or urban planning.
In [60, 61], the authors applied UAVs-enabled light detection and ranging points (LDRP)
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to overcome the inherent limitations of traditional LDRP system, e.g., high-cost sensors,
sparse point clouds, and this method is not suitable for high building reconstructions.
Qin [62,63] adopted a semi-global matching algorithm (SGMA) for satellite stereo images,
which was rarely investigated before. In [64, 65], the authors used drones for filming mis-
sions. Huang et al. [64] proposed autonomous cinematography (ACT) system by using
UAV to address the existing challenges in action movies. In particular, it is the first UAV
camera system that can autonomously capture cinematic action scenes based on skeleton
point movements in outdoor and indoor environments. Nageli et al. [65] proposed a new
method for automatic aerial filming in turbulent and dynamic environments. In [66–68],
the authors utilized UAV for mapping tasks. Yang et al. [66] deployed UAV to map along
the west coast of North America to measure patchiness, dynamics, and eelgrass meadow
extent in Oregon, California, Washington, and Alaska. Rokhmana et al. [67] utilized UAV
in post-disaster mapping for quick rehabilitation and assessment, e.g., Merapi volcano erup-
tion and Kelud volcano eruption in 2010 and 2014, respectively. TaoZhang et al. [68] solved
the problem of how to integrate between simultaneous localization and mapping (SLAM)
and UAV systems. Concretely, the authors controlled the UAV altitude to help the SLAM’s
direct method effectively converges and faster. Besides the applications of 3D UAV trajec-
tory design mentioned above, 3D UAV trajectory design has also been received significant
attention in UAV-enabled wireless communications. The authors in [16,17,19] investigated
3D trajectory by adding altitude optimization into consideration. Sun et al. [16] studied
a joint 3D trajectory design, transmit power, and sub-carrier allocation for solar-powered
UAV communication systems. Guo et al. [17] considered a problem of jointly optimizing
3D trajectory, UAV’s charging duration, and power allocation to maximize the minimum
transmission rate of all GUs. In summary, the algorithms used to obtained an efficient 3D
UAV trajectory can be listed in Table 1.2.

1.1.2 Deployment of UAV for Delivering Time-Sensitive Information

Fig. 1.3 shows the applications of UAV in public safety and emergency communications. It
is because the existing communication technologies are significantly dependent on the ter-
restrial network; interruption or failure of terrestrial base stations (BSs) due to malicious at-
tacks or natural disasters will make communication difficulties for public safety/emergency
communications. For example, in mission-critical IoT applications such as smart grids, fac-
tory automation (e.g., printing machines, packaging machines, and process automation),
and intelligent transport systems (e.g., road safety highway and traffic efficiency) [69]. On
the other hand, IoT devices often have limited storage capacity, and thus their generated
data needs to be collected timely before it becomes worthless due to obsolete transmis-
sions or being overwritten by incoming data. Consequently, the out-of-date gathering data
may result in unreliable controllable decisions, which may ultimately be disastrous [70].
Therefore, the UAV must reach the right place at the right time.

27



Introduction

(a) Public safety. (b) Search and rescue mission in disasters.

Figure 1.3: UAV-enabled communications for disaster or emergency scenarios.

Recently, many studies focus on applying UAVs to overcome the above limitations
[70–76]. Merwaday et al. [71] deployed UAVs as aerial base stations (ABSs) to support the
backbone network in the case that the terrestrial BSs are broken or damaged after disasters
or malevolent attacks. Vamvakas et al. [72] solved the resource allocation problem in UAV-
aided public safety networks (PSNs), where the UAV’s bandwidth can be shared with all
users in the disaster areas. Anwar et al. [73] investigated the sound-based drone detection
applying Mel frequency cepstral coefficients (MFCC), linear predictive cepstral coefficients
(LPCC), and support vector machines (SVM). In [74], the authors proposed two UAV
trajectories, termed Max-AoI-optimal and Ave-AoI-optimal, to efficiently collect data from
ground sensor nodes under the impact of age of information (AoI) metric. Specifically, the
Max-AoI-optimal and Ave-AoI-optimal trajectory planning minimize the age of the oldest
information and the average AoI of all sensor nodes, respectively. The work in [75] studied
the role of a UAV acting as a relay to minimize the average Peak AoI for a transmitter-
receiver link, which was accomplished via a joint optimization of the UAV trajectory, energy
spending, and the service time allocations for packet transmissions. In [76], the authors
designed the UAV trajectory to minimize expired data packets in UAV-enabled wireless
sensor networks (WSNs) and then applied the reinforcement learning (RL) method for the
solution, which enhances the time-effectiveness and path design performance. The authors
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in [70] optimized the UAV trajectory as well as service bandwidth allocation to maximize
the total number of served ground IoT users, in which the UAV needed to collect data
from users within their RT constraint. Different from [70, 74–76], which only studied the
aspect of data collection on the UL channel, the works in [77] and [78] further studied the
latency constraint on the DL channel.

Wireless charging station

UAV-enabled wireless power
transfer

Figure 1.4: Wirelessly power UAV communications.

1.1.3 Wirelessly Powered UAV Communications

Fig. 1.4 shows the wirelessly powered UAV communication systems, whereas the UAV plays
as a flying BS. Moreover, it can harvest energy from a wireless charging station or transfer
energy to the power-limited devices on the ground. Since a restricted onboard battery is
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one of the inherent limitations of the UAV, which greatly affects the UAV lifetime and
performance in practice. To overcome this problem, there are some papers that investigate
energy-efficient systems [79, 80]. Besides, wireless power transfer (WPT) has emerged
as a promising solution to tackle this issue due to its controllability and predictability
compared to other ambient source such as wind, vibration, and solar [16,81]. Thanks to the
development of WPT technology that can transfer power to the user at a distance of up to
6.3 km [82], which can benefit UAV-assisted communications. Particularly, there has been
reports on solutions for battery-free drone that can fly forever with wireless power [83,84].
Specifically, the demo in [84] showed that a heavy drone with peak power consumption
up to 450 Watts and was powered completely wirelessly. As a research upsurge, wireless
powered UAV is a hot topic that receives considerable attention from researchers [85–87].
Yin et al. [85] investigated a downlink (DL) cellular network, whereas multiple UAVs were
powered by a ground charging station using save-then-transmit scheme. Jayakody et al. [86]
proposed a new self-energized UAV system, where they considered an EH scheme including
WPT, simultaneous wireless information and power transfer (SWIPT), and self-interference
from full-duplex (FD) mode. Yan et al. [87] studied a UAV-enabled wireless sensor network
(WSN) in which the UAV harvested energy from the base station (BS), then it used this
harvested energy to serve multiple WSNs to maximize total energy received by all sensors.

1.1.4 UAV and Satellite in 6G Aerial Networks

Although fifth-generation (5G) wireless systems are being deployed around the world [88],
the explosive growth of mobile data traffic still poses significant challenges for future net-
works, i.e., beyond 5G or 6G. It is predicted that individual user data rates will exceed 100
Gbps by 2030, and overall mobile data traffic will reach 5016 exabytes per month [89]. To
overcome these challenges, the research community is working towards a sixth-generation
(6G) system [90, 91]. Notably, the integration of satellite, aerial, and terrestrial networks
is promoted as a key factor in providing high-capacity and ubiquitous connectivity for
6G [19,90,92].

Satellite communication (Satcom) has received considerable attention from both in-
dustry and academia due to its ability to provide wide-area coverage, e.g., telemedicine,
military, satellite-assisted maritime communication, rescue missions, and disaster manage-
ment system (DMS) [93–95]. Essentially, satellites are installed in geostationary earth orbit
(GEO), medium earth orbit (MEO), and/or low earth orbit (LEO), which can complement
and support terrestrial communication networks. Compared to its GEO and MEO coun-
terparts, LEO Satcom operates at much lower altitudes, i.e., from 160 km to 2000 km [96],
and it provides lower path losses and transmission latency. Therefore, many projects such
as SpaceX, SPUTNIX, OneWeb, and Kepler plan to launch thousands of LEO satellites for
providing globally seamless and high throughput communications cooperating with terres-
trial communications [97]. Because of these benefits, many works have studied the hybrid
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TextTextText

Crowed areas Maritime communications

Figure 1.5: Satellite-Aerial-Terrestrial communications.

LEO satellite-terrestrial communication networks [98–100].
Fig. 1.5 illustrates the Satellite-UAV-Terrestrial networks in crowded areas and mar-

itime communications. Due to its necessity, there has been a lot of research works on hybrid
satellite and UAV in space-air-terrestrial communication networks to leverage the benefits
of each one [101–104]. Yu et al. [101] studied the 3D channel tracking and modeling for
satellite and UAV communications with LEO satellite movement and 3D trajectory design
for UAV. Gu et al. [102] proposed a new system model, termed cache-enabled satellite-
UAV-vehicle integrated network (CSUVIN), in which a GEO satellite and UAVs act as a
cloud server and edge caching servers, respectively. Then, they proposed an energy-aware
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coded caching to reduce the burden on the backhaul link. In [103], the authors investigated
the outage performance for a satellite-terrestrial network, where a multi-antenna satellite
communicates with a GU via the help of multiple UAVs acting as relays. Zhao et al. [104]
proposed a blind beam tracking approach for satellite-UAV communications in which the
UAV had a large-scale antenna array.

1.2 Limitations of Existing Works

Besides many advantages, UAV-enabled communications are not without limitations. There
are still many challenges and limitations in UAV communications for future networks, i.e.,
5G and beyond. This section describes disadvantages or the missing aspects or unresolved
challenges in the literature, which directly motives for our thesis. In summary, the main
limitations of UAV-enabled communications are given as follows:

• Despite remarkable achievements in UAV trajectory design, the aforementioned works
cannot provide a full picture for UAV trajectory design. More specifically, none of
the works in the literature [13–15] take the time constraints into consideration. To
the best of our knowledge, there are also no other works that investigate the problem
of UAV trajectory design with latency constraints in wireless communications.

• In the literature, there are some references that take latency requirements into con-
sideration in UAV communications [70, 74–76, 78]. Specifically, references [70, 74–76]
studied the aspect of data collection on the uplink (UL) channel, while reference [78]
studied latency constraints on the downlink (DL) channel. Nevertheless, these works
only investigated timely data exchange on UL or DL channel utilizing HD mode.
Moreover, these works [70, 74–76, 78] have not exploited benefits of full duplex (FD)
radios.

• As limited energy capacity is one of the main limitations of the UAV, it significantly
affects the UAV lifetime and reduces the network performance. Owning to the devel-
opment of wireless power transfer (WPT) technology that can provide power to GUs
at long distances. It motives for a wirelessly powered UAV communication system
in which the UAV can recharge energy in the sky. Consequently, this is a potential
solution to overcome the energy limit at UAV. Nevertheless, there are only a few
works in wirelessly powered UAV communications [85–87]. Therefore, this opens up
a new challenge for designing an energy-efficient WPT-assisted UAV system.

• Besides many advantages, Satcom is not without limitations. One satellite can cover
a very large area and thus it can improve network performance by acting as a relay
or a base station (BS) to provide communication services to isolated areas, e.g.,
ocean, desert, severe areas. However, only ground users (GUs) are equipped with
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expensive high-gain antennas to benefit from satellites. Other users within satellite
coverage cannot take advantage of Satcom’s broadband services since they do not
have high-gain antennas [93]. Consequently, the deployment of a UAV as a relay
is a potential solution to transfer information from the satellite to GUs, especially
during emergency communication situations such as after disasters or in isolated
areas. Recently, some noticeable achievements have been obtained for UAV-satellite
communications [93,105–107], yet the aforementioned works do not take caching into
consideration. In particular, the UAV is equipped with a cache that can storage
popular information during off-peak hours. Thus, it can reduce power consumption
and eliminate network congestion on the backhaul link.

Based on the above limitations in UAV-enabled communications, we will describe in
this thesis how to solve these technical problems. More specifically, the contributions of
our thesis can be summarized in the following section.

1.3 Contributions and Outline of the Thesis

The main contribution of this dissertation is to propose effective methods to overcome
limitations in trajectory design, latency-sensitive data transmission, WPT, and integration
with SatComs in UAV communication networks. The details of each chapter are listed as
follows:

Chapter 3 includes the scenarios in which a UAV acting as a flying base station to
serve latency-sensitive GUs on the downlink. Our objective is to minimize the UAV energy
consumption while satisfying the latency constraint of each GU. Main contributions of this
chapter are:

• In contrast to [13–15] which adopted TSP solution as an initial feasible trajectory in
their proposed alternative algorithm, we proposed three algorithms, termed exhaus-
tive search (ES), heuristic algorithm, and dynamic programming based on traveling
salesman problem with time window (TSPTW) to find a feasible set of paths satis-
fying the latency constraint at each GU.

• Based on feasible paths obtained from proposed algorithms, we minimize the UAV
energy consumption for each given path by optimizing the UAV speeds in all hops.
Then, the feasible path with lowest energy consumption and guarantee the energy
budget can be selected as traveling path for the UAV.

• Our results show that the proposed algorithms significantly improve the network per-
formance compared to the TSP-based method [13–15]. Particularly, the DP scheme
can obtain closed to the ES’s performance while greatly reducing the calculating time.

The outputs of this chapter are published in:
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[J1] D. H. Tran, T. X. Vu, S. Chatzinotas, S. Shahbazpanahi, and B. Ottersten,
“Coarse Trajectory design for energy minimization in UAV-enabled wire-
less communications with latency constraints,” in IEEE Transactions on Ve-
hicular Technology, Sept. 2020. Doi: 10.1109/TVT.2020.3001403.

[C1] D. H. Tran, T. X. Vu, S. Chatzinotas, and B. Ottersten, “Energy-efficient
trajectory design for UAV-enabled wireless communications with latency
constraints,” in 2019 53rd Asilomar on Signals, Systems, and Computers, Pacific
Grove, CA, USA, 2019, pp. 347-352. Doi: 10.1109/IEEECONF44664.2019.9048942.

In chapter 4, we propose a novel system model to investigate the UAV-assisted emer-
gency communications in IoT networks. Due to inherently limited energy budget and
storage capacity, the data generated from IoTs should be collected on time before they be-
come useless or obsolete. This chapter proposes a novel system model in UAV relay-assisted
IoT networks that further explores the impact of freshness of information for UAV-assisted
in disaster or emergency communications. To the best of our knowledge, this is the first
work investigating the latency constraints in uplink (UL) and downlink (DL) transmissions,
which is a great challenge and has not been investigated before. The contributions of this
chapter is given as follows:

• We proposed a novel UAV relay-assisted full duplex (FD) IoT system by considering
time-sensitive information transmission on both DL and UL.

• In this context, we aim to maximize the number of successfully served IoT devices
and the achievable throughput.

• Through simulation results, we show the superiority of the proposed method by
jointly optimizing bandwidth, transmit power, trajectory with caching capability
compared to benchmark ones.

• The results of chapter 4 constitute one of the first comprehensive studies on joint
optimal UAV trajectory, resource allocation with caching, and latency constraints on
DL and UL in IoT networks.

• The outcome of this chapter will motivate a new framework for UAV-aided commu-
nications in disaster or emergency communications.

The output of chapter 4 are published in:

[J2] D. H. Tran, V.D. Nguyen, S. Chatzinotas, T. X. Vu, and B. Ottersten, “UAV
Relay-Assisted Emergency Communications in IoT Networks: Resource
Allocation and Trajectory Optimization,” IEEE Transactions on Wireless Com-
munications, August 2021. Doi: 10.1109/TWC.2021.3105821.
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[C2] D. H. Tran, V.D. Nguyen, S. Gautam, S. Chatzinotas, T. X. Vu, and B. Otter-
sten, “Resource Allocation for UAV Relay-Assisted IoT Communication
Networks,” to IEEE Globecom Workshops 2020 (GC Wkshps), Taipei, Taiwan, pp.
1-7. Doi: 10.1109/GCWkshps50303.2020.9367522.

In chapter 5, we consider a wireless powered UAV communication with backscatter
and caching technologies. In this context, a UAV is equipped with a backscatter circuit
and it acts as a relay to transfer information from a source to a destination. To overcome
the energy limitation, the UAV can harvest energy from the source’s RF signals using
the dynamic time splitting (DTS) method and it stores a part of popular information
in its cache to reduce transmit power, which helps to improve the UAV lifetime. The
contributions of this chapter are:

• We proposed a novel backscatter- and cache-aided UAV relay-assisted communication
network. In particular, the UAV can perform both passive and active communication
to improve the network performance.

• This is the first study that constitutes one of the first comprehensive studies on
SWIPT, backscatter communication (BackCom), caching, and UAV, which imposes
high challenges.

• In this setup, we aim to maximize the achievable throughput at the destination
subject to constraints on UAV speed, limited flight time, UAV trajectory, and DTS
ratio.

• Through simulation results, we show the advantages of the proposed method com-
pared to benchmark ones, i.e., no caching (NC), fixed DTS ratio (FTau), and fixed
trajectory (FTra).

The outputs of chapter 5 is published in:

[J3] D. H. Tran, S. Chatzinotas, B. Ottersten, “Throughput Maximization for
Wireless Communication systems with backscatter- and Cache-assisted
UAV Technology ”, submitted to IEEE Transactions on Vehicular Technology,
(Major revision).

Chapter 6 presents a UAV-satellite communication model to analyze the performance
of GUs served by a UAV and a LEO satellite. The proposed framework takes into account
the effects of cache placement, UAV trajectory, limited resources, and limited flight time.
The contributions of chapter are summarized as:

• This is the first study on maximizing the minimum throughput of GUs in LEO
satellite and cache-assisted UAV communication systems.
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• We build a practical system model by considering the latency time due to limited
resources (i.e., limited transmit power, bandwidth, limited cache capacity, and flight
time) and large distance between satellite and UAV, which is not considered before.

• From simulation results, we provide the improvement of the proposed method com-
pared to benchmark ones, i.e., no caching capability, fixed resource allocation, and
fixed trajectory.

The output of chapter 6 is published in:

[J4] D. H. Tran, S. Chatzinotas, B. Ottersten, “Satellite- and Cache-assisted UAV:
A Joint Cache Placement, Resource Allocation, and Trajectory Optimiza-
tion for 6G Aerial Networks,” submitted IEEE Open Journal of Vehicular Tech-
nology, 2021.

Finally, we conclude the dissertation and discuss about future research directions in
chapter 7.

1.4 Contributions beyond thesis

During my doctoral study, I have contributed to a number of publications, which are not
part of this thesis. The details are listed as follows:

Journal Papers

[J5] P. X. Nguyen, D. H. Tran, O. Onireti, P. T. Tin, S. Q. Nguyen, S. Chatzinotas,
H. Vincent Poor, “Backscatter-Assisted Data Offloading in OFDMA-based
Wireless Powered Mobile Edge Computing for IoT Networks,” IEEE Inter-
net Things J., vol. 8, no. 11, pp. 9233-9243, 2021.

[J6] T. N. Nguyen, D. H. Tran, V. D. Phan, M. Voznak, S. Chatzinotas, B. Otter-
sten, and H. Vincent Poor, “Throughput Enhancement in FD- and SWIPT-
enabled IoT Networks over Non-Identical Rayleigh Fading Channels,”
IEEE Internet of Things Journal, Early accepted.

[J7] T. N. Nguyen, D. H. Tran, P. T. Tin, M. Voznak, S. Chatzinotas, B. Ottersten, and
H. Vincent Poor, “Physical Layer Security in AF-Based Cooperative SWIPT
Networks with a Direct Link,” submitted IEEE TVT (Revised).

[J8] P. T. Tin, T. N. Nguyen, D. H. Tran, M. Voznak, S. Chatzinotas, “Perfor-
mance Enhancement for Full-Duplex Relaying with Time Switching-Based
SWIPT in Wireless Ad-Hoc Networks,” Sensors, vol. 21, no. 11, p.3847, 2021.
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[J9] T. N. Nguyen, D. H. Tran, V. D. Phan, M. Voznak, S. Chatzinotas, and H. Vincent
Poor, “Security-Reliability Trade-Off Analysis for SWIPT- and AF-Based
IoT Networks with Friendly Jammers,” IEEE Internet of Things Journal, sub-
mitted.

[J10] T. N. Nguyen, D. H. Tran, V. D. Phan, M. Voznak, S. Chatzinotas, and H.
Vincent Poor, “Physical Layer Security Analysis of SWIPT-Enabled Coop-
erative Wireless IoT Networks in the Presence of Friendly Jammer and
Eavesdropper,” IEEE Internet of Things, submitted.

[J11] T. N. Nguyen, D. H. Tran, V. D. Phan, M. Voznak, S. Chatzinotas, and H. Vincent
Poor, “Security-Reliability Trade-Off Analysis for Satellite-Terrestrial Re-
lay Networks with Friendly Jammers,” IEEE Transactions on Communications,
submitted.

[J12] T. N. Nguyen, L. T. Tu, D. H. Tran, V. D. Phan,M. Voznak, S. Chatzinotas,
“Security-Reliability Trade-Off for Satellite-Terrestrial Relay Networks
with Friendly Jammer and Imperfect CSI,” IEEE Internet of Things, sub-
mitted.

Conference Papers

[C3] T. V. Chien, T. L, Thanh, D. H. Tran, H. V. Nguyen, S. Chatzinotas, M. Direnzo,
B. Ottersten, “Controlling Smart Propagation Environments: Long-Term
Versus Short-Term Phase Shift Optimization,” 2022 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP 2022), submitted.
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Chapter 2
Preliminaries

This chapter provides common knowledge about different techniques applied with UAV
communications in this dissertation, e.g., full-duplex, backscatter communications, simul-
taneous wireless information and power transfer (SWIPT), and mobile edge caching. We
summarize the basic concept, advantages, and why UAV communication becomes an at-
tractive approach when integrated with these techniques. The main purpose of this chapter
is to bring a broader context and to give the reader a general picture. Building on the
concepts presented in this chapter, advanced designs are shown in subsequent chapters to
solve specific realistic challenges.

Residual self interferenceData flow

Rx Tx
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RDh

RRh

Base Station FD Relay Mobile Client

Figure 2.1: Two different antenna in FD communications.
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Figure 2.2: One antenna scenario in FD communications.

2.0.1 Full-Duplex Communications

Due to the enormous increase in mobile devices and broadband services, the spectral ef-
ficiency requirement has become a challenge for wireless communication with limited re-
sources. As reported by Ericsson, the number of mobile users will be around 29 billion
in 2022 [108]. Besides, the mobile data traffic of one user and the total mobile traffic
will respectively reach 35 GB, and 300 EB at the end of 2026 [109]. Therefore, spectrum
scarcity becomes a never-ending story of wireless communications. Especially when the
number of users is significantly increased, such as massive machine-type communications
(mMTC) in fifth-generation (5G) and beyond, a limited spectrum resource needs to cover
massive data traffic and IoT users. In these scenarios, full-duplex (FD) technology has
emerged as a potential solution due to its capability of doubling the energy efficiency (EE)
compared to half-duplex (HD) communications. It is because FD can transmit and receive
signals on the uplink (UL) and downlink (DL) simultaneously using the same frequency
band. Therefore, FD can be considered as a key technology for 5G and beyond [110,111].

The concept of FD communications has been used in at least since 1940s [112, 113].
Essentially, FD radio system can be used in two separate antennas or one antenna, as shown
in Figs. 2.1 and 2.2. Self interference is the biggest challenges of FD communications and
it can be overcome by using separate antennas or circulators in one antenna as shown in
Fig. 2.1 or Fig. 2.2, respectively. In particular, self-interference cancellation (SIC) can be
achieved to 110 dB [114] or 150 dB [115].
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Figure 2.3: UAV-enabled full-duplex communication.

Owing to the development of self-interference cancellation (SIC) techniques, the ad-
vantages of the FD technique can be applied in UAV communications to improve net-
work performance. The FD-enabled UAV communication system is motivated by realistic
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communication-related applications. For instance, in content delivery networks or the age
of information, when a GU requests content data, it needs to be served within a certain
latency constraint. Thus, FD UAV communication helps to significantly reduce the data
transmission time. Moreover, in natural disaster alert applications, the FD-enabled UAV
communications help disseminate vital information to people about the incoming disaster
as soon as possible, as shown in Fig. 2.3 a. Besides, in the emergency case or during the
natural disaster, the out-of-date gathering data may result in unreliable controllable deci-
sions, which may ultimately be disastrous [70]. On the other hand, IoT devices often have
limited storage capacity, and thus their generated data need to be collected timely before it
becomes worthless due to obsolete transmissions or being overwritten by incoming data, as
shown in Fig. 2.3 b. Therefore, the FD UAV can improve the network performance in data
collection process, e.g., lower latency and higher throughput. Recently, many works have
investigated the integration of FD technology in UAV communications [116–122]. Haichao
et al. [116] investigated the spectrum sharing problem for an FD UAV system with device-
to-device communications, whereas the UAV acted as a relay to support communication
between ground users. Moreover, the authors aimed to maximize the total throughput
by optimizing the UAV trajectory and transmit power constraints. Gazestani et al. [117]
considered FD-enabled UAVs in multi-small cell networks with imperfect self-interference
cancellation (SIC). This work investigated three scenarios of maximizing the downlink (DL)
rate, the uplink (UL) rate, and the sum of DL and UL rates. Wenjuan et al. [118] stud-
ied FD-enabled UAV for non-orthogonal multiple access (NOMA) communications. They
aimed to minimize the power consumption on the DL and UL by jointly optimizing the
resource allocation of the terrestrial users and the UAV. FD-enabled UAV network was
also deployed to improve the total capacity in Millimeter-Wave networks [119]. Specifi-
cally, Lipeng et al. [119] optimized the UAV location, power allocation, and beam-forming
to maximize the total throughput at the source and destination. In [120,121], the authors
applied FD-enabled UAV for IoT networks. Han-Ting et al. [120] utilized an FD rotary-
wing UAV that acted as a flying base station to serve multiple IoT users (IoTU). Moreover,
the UAV provided wireless power to IoT users and collect information from them when
flying and hovering, respectively. Hieu et al. [121] considered a new system model for IoT
networks, whereas the latency constraint was considered in both UL from IoTU to UAV
and DL from UAV to ground gateway. FD UAV also brought benefits to the -intelligent
reflecting surface (IRS) system [122]. Shafique et al. [122] investigated FD UAV in IRS
relaying network in three scenarios, including UAV mode, IRS mode, and IRS-UAV mode
to maximize the capacity and energy efficiency of the proposed systems.

2.0.2 Backscatter Communications

Stockman is the first one who introduced Backscatter communication (BackCom) for the
first time in 1948 [123]. Then, this concept became a promising solution for low-powered
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Figure 2.4: Models for backscatter communications.

devices since a typical backscatter circuit’s power consumption is usually in the order of
µW [124–126]. Moreover, BackCom has been applied widely in various aspects such as
healthcare, medical telemetry, radio-frequency identification (RFID), IoT networks, etc.
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Figure 2.5: Models for backscatter communications.

[127, 128]. In particular, BackCom has been emerged as an ultra-power-efficient solution
for massive machine-type communications (mMTC) in sixth-generation (6G) network [129,
130]. This is because BackCom allows the backscatter devices (BackDs) to harvest energy
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from the ambient RF signals to maintain their operations and transfer information by
reflecting the received RF signals to the receiver using intentional load impedance mismatch
at the antenna.

As shown in Fig. 2.4, there are three types of BackCom, including mono-static Back-
Com (MoBackCom), bi-static BackCom (BiBackCom), and ambient BackCom (AmBack-
Com). In MoBackCom, there exists one reader and one backscatter transmitter (Back-
Tran). The reader creates RF signals to activate the BackTran by receiving the reflecting
signals from BackTran. The MoBackCom only focuses on short RFID applications. To
prevent the round-trip path loss in MoBackCom, the carrier transmitter (CaTran) and
backscatter transceiver (BackTranCei) are detached as in BiBackCom. Similar to BiBack-
Com, the CaTran in AmBackCom are also separated. Nevertheless, CaTran in AmBack-
Com is leveraged from ambient RF sources such as base stations, Wi-Fi access points, or
TV towers.

Beyond many advantages, BackCom is not without limitations. For instance, BackCom
is limited to low data rates and short-range communications [126]. Therefore, UAV can be
utilized to help BackDs transfer information to the receiver due to its high mobility and
flexibility [131]. In Fig. 2.5, we illustrate two main scenarios of UAV-assisted BackCom. In
the first case, a UAV is deployed as a flying BS to transmit active RF signals to the BackD,
then BackD can reflect its own signals to the ground BS [132]. In the second case, when
the direct link between BackD to the ground BS does not exist, the UAV helps transfer
backscatter’s signals to the ground BS [133].

Recently, the integration of BackCom and UAV communication has received significant
attention from researchers [134–138]. In [138], the authors proposed two novel schemes
termed the transmit-backscatter protocol and transmit-backscatter relay protocol corre-
sponding to the presence or absence of a direct link between backscatter user and receiver
in UAV-aided BackCom networks. Yang et al. [134] considered a UAV-aided BackCom
network comprising of backscatter devices (BDs) and carrier emitters (CEs) that are ran-
domly distributed on the ground. They aimed at maximum energy efficiency (EE) by jointly
optimizing the BDs’ scheduling, the UAV’s trajectory, and the CEs’ transmit power. Fara-
jzadeh et al. [135] proposed a novel UAV data collection in NOMA BackCom networks,
where the UAV acted both as a power source and a data collector. The objective was to
jointly design several backscatter devices, UAV’s altitude, and backscatter coefficient to
maximize the total successfully decoded bits while minimizing the UAV’s flight time. The
same authors in [136] studied the first work that considered UAV as an enabler to improve
over-the-air computation (AirComp)’s performance. Hu et al. [137] proposed the first work
that investigated secure transmissions in UAV-aided BackCom networks.
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Figure 2.7: Simultaneous wireless information and power transfer model.

2.0.3 Simultaneous wireless information and power transfer (SWIPT)

Internet of Things (IoT) can play a key role in improving quality of life through applica-
tions such as home automation, smart cars, smart city, health care, industrial or agriculture
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monitoring, augmented reality, and smart grid [139]. The number of IoT devices is esti-
mated to reach 25 billion by 2025 [121, 140]. Moreover, there is an explosive surge of
resource-intensive IoT applications such as interactive gaming, multi-view video construc-
tion, augmented reality (AR), virtual reality (VR), and face recognition, that impose strin-
gent demands on high energy consumption due to large computation capability [141]. The
constrained battery capacity of the IoT devices (IoTD) make them unsuitable for process-
ing resource-hungry applications. Moreover, since the IoT’s battery stores a finite amount
of energy, it needs to be replaced or charged, which is infeasible and costly in the hazardous
environments, e.g., in toxic (i.e., gas or chemical) environments. This is the reason why
energy harvesting (EH) has attracted much attention in the last decade [81, 142, 143]. In
particular, SWIPT plays an important pivotal role in the sixth-generation (6G) IoT net-
works [144, 145]. This is because a massive number of IoT devices (IoTDs) can adopt the
SWIPT technique to prolong their lifetime by collecting energy from RF signals.

As illustrated in Figs. 2.6 and 2.7, RF EH techniques can be divided into wireless power
transfer (WPT) and simultaneous wireless information and power transfer (SWIPT) cate-
gories. The main distinction between WPT and SWIPT is that the transmitter’s RF signals
carry only power in WPT, while it can carry both information and power concurrently in
SWIPT. Therefore, SWIPT brings more utilities than WPT but also presents more design
challenges since it needs to allocate the harvested energy and information transmission to
IoT users. Varshney [146] originated the SWIPT concept and Pulkit Grover and Anant
Sahai [147] extended the work to frequency-selective channels with additive white Gaussian
noise (AWGN). Nevertheless, [146] and [147] only provided theoretical limits, which was
impractical because the electric circuit used to harvest energy from an RF signal could
not decode the carried information. To overcome the limitations in [146] and [147], Zhang
and Ho [148] proposed two practical receiver designs, termed time switching (TS) and
static power splitting (SPS), to schedule the wireless power transfer (WPT) and wireless
information transfer (WIT) at the EH receiver.

Recently, extensive studies have been performed to investigate SWIPT with cooperative
relaying communications since the SWIPT relay network can improve the communication
range and provide power to energy-restricted users. Moreover, the benefits of SWIPT
in communication networks have been thoroughly discussed in [82]. The SWIPT relay
network can be divided into two types: time switching (TS)-based relaying [149–151] and
power splitting (PS)-based relaying [152–158]. Specifically, Nasir et al. [149] proposed
TS-based EH and information transmission (IT) protocols with continuous-time EH and
discrete-time EH modes at the relay. They then derived the analytical expressions in terms
of throughput for the proposed protocols. Focusing on the TS architecture, the authors
in [150] proposed novel relaying protocols based on adaptive TS for amplify-and-forward
(AF) and decode-and-forward (DF) modes. In contrast to the studies in [149] and [150],
which only considered a simple static TS structure, [151] divided the total time T into N
equal time slots and optimized the TS factor in all time slots. Making use of a PS-based EH
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Figure 2.8: Integration of SWIPT and UAV in wireless communications.

receiver architecture, a novel system model in which a massive multi-input multi-output
(MIMO) two-way relaying system with a PS relay was considered in [152]. By taking
into account the Nakagami-m and Rayleigh fading channel, Tan et al. [153] analyzed the
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performance analysis of user selection protocols with PS-based EH. Differently from [152]
and [153], which only considered a static PS factor, [154] and [155] designed relay selection
schemes based on an optimal dynamic PS ratio. While [152–155] only considered TS-
or PS-based relaying schemes, [156] and [157] investigated a two-way half-duplex hybrid
time-switching and power-splitting (HTPSR) relay network which leveraged the advantages
of both TS and PS protocols. Besides, Liu et al [158] aimed to maximize the 5G and
IoT transmission rate and the total power consumption by jointly optimizing time/power
allocation factors and transmit powers. In [159], the authors proposed a practical non-linear
EH model in SWIPT systems, where they aimed to maximize the total harvested energy
at the EH receivers according to the minimum demanded signal-to-interference-plus-noise
ratios at the information receivers.

Beyond many advantages, SWIPT is not without limitations. Specifically, the RF en-
ergy harvesting process works much better in the light-of-sight (LoS) data transmission
compared to the non-light-of-sight (NLoS) links. By leveraging the advantages of UAVs
such as mobility, flexibility, and probability of providing LoS communications, UAVs can
compensate for the shortcomings of SWIPT to improve network performance. Conse-
quently, the integration between UAV and SWIPT has attracted many attentions from
researchers [86, 160–163]. As illustrated in Fig. 2.8, we present two different scenarios of
the integration between SWIPT and UAV in wireless communication. In the first scenario,
the ground BS can transmit both information and power to the UAV to increase the life-
time of UAV [86]. In the second scenario, a UAV acts as a flying BS to transfer both power
and information to the IoTDs on the ground.

2.0.4 Mobile Edge Caching

The enormous explosion of data demand of mobile traffic, especially for videos and pho-
tos on social media networks such as Facebook, Instagram, and Youtube, has created a
significant burden on wireless communication with limited resources, i.e., bandwidth, fre-
quency, transmit power, storage capacity. As reported by Cisco, the data traffic demand
will increase 500 folds in the next decade [164].

One potential solution is caching at the central cloud (CC), which stores all information
at the data center or core network. Nevertheless, the CC faces many problems such as
network congestion and high transmission delay due to many users connecting to the CC
simultaneously and distant from users to CC, reducing system performance. To this end,
Mobile Edge Caching (MEC) was recently proposed to eliminate the shortcomings of the
traditional CC due to its close proximity to end-users. Consequently, MEC provides high
bandwidth connectivity and comes hand-in-hand with ultra-low latency in computational
offloading tasks. The architecture of caching at the CC and MEC is described in Fig. 2.9.

In Fig. 2.10, we illustrate different caching locations in cellular networks. Specifically,
when user A requests for a file f, it first checks in the local storage. If user A has already
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Figure 2.9: Caching at the central cloud and the edge networks.

cached the file f, it can be served by itself, and this scenario is local caching. Otherwise,
user A can send a request to its proximity neighbors. If any user stores the requested file,
it can transfer to users A, and this scenario is device-to-device caching. If both user A and
its neighbors do not cache the requested file, it can send a request to the small base station
(SBS). If the SBS has file f, it transmits directly to user A, and this is SBS caching. When
the SBS does not cache the requested file, a request can be sent to the MBS. Then, the
MBS will send file f to user A through SBS, which is MBS Caching.
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Figure 2.10: Different caching locations in cellular networks.

Due to the great benefit of caching, which helps to reduce congestion in the wireless
network at peak times, it becomes a mainstream technology for the next generation of
wireless systems, i.e., 6G networks [165, 166]. Specifically, 6G technology provides a lower
delay and higher bandwidth, which can support high-speed vehicles (HPVs) to transfer a
large amount of data in a short time. Nevertheless, since HPVs move faster than mobile
users, they may be out of the current SBS radio transmission range. Thus, they need
to shake hands between small base stations (SBSs) more often, which leads to a larger
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Figure 2.11: Caching-enabling UAV communications.

request delay and higher packet error rates. Moreover, when the current SBS does not
cache the file, it needs to send a request to the macro base station and/or to the cloud
center. Caching contents at different levels, i.e., macro base stations (MBSs), SBSs, and
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local cache, helps to reduce the redundant traffic load in the network and decreases data
congestion [166]. Therefore, caching becomes a high promising technique for 6G in general
and HPVs in particular.

Besides the advantages, caching also does not significantly improve the network condi-
tion for ground users (GUs) who do not have a good connection to the terrestrial network,
i.e., terrestrial BS is overloaded or destroyed after a natural disaster or due to deep fading.
In these cases, UAV is used as a relay to help transfer information to the GUs due to its
fast deployment, high mobility, and LoS transmission links. The examples of UAV-enabled
communication with proactive caching are illustrated in Fig. 2.11, where we show two sce-
narios for caching-enabling UAV communications. In the first scenario, a UAV can cache
popular files during off-peak times, and it plays as a flying BSs to disseminate information
to GUs. In the second scenario, a cache-enabled UAV is deployed to collect information
from IoT users and transfer it back to the ground BS.

Recently, many works such as [167–171] have been devoted to cache-assisted UAV com-
munications. Xu et al. [167] proposed a novel scheme to overcome the endurance issue
at the UAV by utilizing proactive caching. Specifically, they aimed at minimizing the
weighted sum of the file caching cost and the retrieval cost by jointly optimizing the UAV
communication scheduling, UAV trajectory, and file caching policy. Cheng et al. [168]
proposed a novel scheme to assure the secure transmission for UAV relay networks with
caching capability. The learning-based approaches in cache-enabled UAV communications
were investigated in [169–171]. Chen et al. [169] proposed the first work to analyze the
utilization of caching in UAV communications based on conceptor-based echo state net-
works (ESNs). Different from existing works that focused on finite-time horizon offline
trajectory design, Chai et al. [170] proposed an online trajectory and resource allocation
optimization for cache-enabled UAV wireless communications. Wu et al. [171] adopted a
convolutional neural network (CNN)-based deep supervised learning scheme for pushing
up the decision-making speed in the highly dynamic vehicular networks.
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Chapter 3
Traveling Salesman Problem with Time
Windows (TSPTW)-based Trajectory
Design for UAV communications

In this chapter, we design the UAV trajectory to minimize the total energy consumption
while satisfying the requested timeout (RT) requirement and energy budget, which is ac-
complished via jointly optimizing the path and UAV’s velocities along subsequent hops.
The corresponding optimization problem is difficult to solve due to its non-convexity and
combinatorial nature. To overcome this difficulty, we solve the original problem via two
consecutive steps. Firstly, we propose two algorithms, namely heuristic search, and dy-
namic programming (DP) to obtain a feasible set of paths without violating the GU’s
RT requirements based on the traveling salesman problem with time window (TSPTW).
Then, they are compared with exhaustive search and traveling salesman problem (TSP)
used as reference methods. While the exhaustive algorithm achieves the best performance
at a high computation cost, the heuristic algorithm exhibits poorer performance with low
complexity. As a result, the DP is proposed as a practical trade-off between the exhaustive
and heuristic algorithms. Specifically, the DP algorithm results in near-optimal perfor-
mance at a much lower complexity. Secondly, for given feasible paths, we propose an
energy minimization problem via a joint optimization of the UAV’s velocities along sub-
sequent hops. Finally, numerical results are presented to demonstrate the effectiveness of
our proposed algorithms. The results show that the DP-based algorithm approaches the
exhaustive search’s performance with a significantly reduced complexity. It is also shown
that the proposed solutions outperform the state-of-the-art benchmarks in terms of both
energy consumption and outage performance.

The chapter is organized as follows. Introduction to the current state of the art is
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discussed in Section 3.1. Section 3.2 introduces the system model. The energy-efficient
UAV communication with path design and velocity optimization is analyzed in Section 3.3.
Section 3.4 shows the simulation results. Finally, Section 3.5 provides the summary and
concluding remarks of this chapter.

3.1 Introduction to TSPTW-based Trajectory Design for
UAV Systems

With the proliferation of mobile devices and data-hungry applications, the next genera-
tion wireless networks are expected to support not only the unprecedented traffic increase
and stringent latency but also ubiquitous coverage requirements. Although heterogeneous
networks (HetNets) [172] and cloud radio access networks (C-RANs) [173,174] have shown
their capability in supporting massive network traffics, their deployments are usually fo-
cused on dense areas. In less-dense areas, e.g., urban, and places where the network traffic
highly fluctuates, the employment of C-RANs is economically inefficient. In such cases,
the current terrestrial network architecture might suffer network congestion or be unable
to support the ubiquitous coverage.

Recently, unmanned aerial vehicles (UAVs) have attracted much attention as a promis-
ing solution for improving the performance of terrestrial wireless communication networks
thanks to their mobility, agility, and flexible deployment [175]. By employing a flying base
station, UAVs can be deployed along with ground base stations (GBSs) to provide pervasive
coverage and timely applications to ground users (GUs). Consequently, the deployment
of UAVs in wireless communications has found applications in various domains, such as
disaster rescue mission [176], surveillance [177], and smart farming [178]. Besides many
advantages, UAV-enabled communications are not without limitation. The inherent lim-
itations of UAVs has imposed technical restrictions on size, weight, and power capability
(SWAP), which consequently affect the UAV’s endurance and performance [13]. One of
the major challenges in UAV deployment is to efficiently design the trajectory in order to
maximize the UAV’s service lifetime.

Certain efforts have recently been devoted to efficient UAV trajectory design [13,16,17,
179–184]. Yang et al. in [179] investigate the different Pareto efficiency between the optimal
GU transmit power and UAV trajectory design. Phu et al. [180] use UAV as a friendly
jammer to maximize the average secrecy rate of the cognitive radio network (CRN) by
jointly optimizing the transmission power and UAV trajectory. Reference [13] designs the
trajectory of UAV to minimize the mission completion time in UAV-enabled multi-casting
systems based on the traveling salesman problem (TSP). References [181–183] study more
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complicated scenarios with multiple UAVs. The authors of [181] investigate the dual-
UAV enabled secure communication system via jointly optimizing the UAV trajectories
and user scheduling. Reference [182] optimizes the UAV trajectory, transmit power and
user scheduling to maximize the achievable secrecy rate per energy consumption unit in
UAV-enabled secure communications. References [16,17,185] study more complicated UAV
enabled communications systems with 3-D trajectory.

Due to the limited endurance and on-board energy of UAVs, the problem of UAV
energy minimization has attracted much attention [15, 186–188]. The work [186] applies
the genetic algorithm to design the trajectory with the least energy consumption to visit
all BSs and return to the UAV station. Reference [187] minimizes the completion time and
energy consumption problems for a fixed-wing UAV-enabled multicasting system via jointly
optimizing the flying speed, UAV altitude, and antenna beamwidth. In [188], the authors
consider the joint problem of the sensor nodes’ wake-up schedule and the trajectory to
minimize the maximum energy consumption while guaranteeing the reliability of the data
collected from the sensors. Nevertheless, these works did not consider UAV’s propulsion
energy consumption, which is important for UAV’s lifetime. In [15], the authors derive a
closed-form propulsion power consumption model for rotary-wing UAVs. Then, by using
this model, they aim at minimizing the total energy consumption via joint optimization
of trajectory and time scheduling between GUs. Based on the energy model in [15], [188]
minimizes the maximum energy consumption of all Internet-of-Things (IoT) devices while
complying with the energy budget requirement.

Recently, there has been a growing research interest in applying dynamic programming
(DP) in UAV-enabled wireless communications [189, 190]. The authors in [189] solve the
problem of flight time minimization for data collection in a one dimensional wireless sensor
networks (WSNs). More specifically, the DP algorithm is proposed to find the optimal
data collection intervals of multi-sensors. In [190], the problem of optimizing the spectrum
trading between macro base station (MBS) manager and UAV operators is solved. Then,
the DP is adopted to find the optimal bandwidth allocation which is the most suitable for
each UAV operator.

The aforementioned works have addressed the various new challenges in UAV-enabled
communications, such as completion time minimization [13], energy minimization [15,186–
188], and throughput maximization [185]. Moreover, efficient methods have been devised
to deal with complicated optimization problems, e.g., time discretization method [17,188],
path discretization method [15], block coordinate descent (BCD) in combination with the
successive convex approximation (SCA) method [14], and efficient trajectory design [13].
Specifically, [13,15] and [14] have proposed a new framework to design an efficient trajectory
by applying TSP solution. Basically, the TSP asks the question of finding the shortest path
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that visits all users in the network and returns to the origin point which is an NP-hard
problem in combinatorial optimization. Thus, a joint problem of trajectory design and
other communications factors (e.g., communication scheduling, transmit power allocation,
time allocation) in [14,15] is even more challenging. In order to overcome these problems,
the authors of [14,15] are wisely using TSP solution as an initialized feasible trajectory in
their proposed iterative algorithms.

To overcome the limitation in [13–15], our work studies the UAV-enabled communica-
tions systems in practical scenarios in which the GUs’ transmissions are subject to some
latency or requested timeout (RT) constraints. The considered system is motivated from
realistic communication-related applications, e.g., content delivery networks [191] or the
age of information or data collection, in which when a GU requests content data, it needs
to be served within a certain RT. For example, in an emergency case or during a natural
disaster, data need to be collected/transmitted promptly for evaluations/disseminations
of the current situation in a given area. Concretely, the data from sensor nodes with
limited storage capacity need to be collected in time for the continuous measurements
before it becomes useless or being overwritten by incoming data. Besides that, the vital
information must be disseminated to people about incoming disaster as soon as possible.
Depending on the important role of each region, the different requested timeout values will
be assigned for each area. Our goal is to design an energy-efficient UAV trajectory while
guaranteeing the predefined RT constraints of all GUs. It can be seen that the consid-
ered system is clearly different from [13–15]. Therefore, the TSP-based method in those
works can not be directly applied for our scenario. This motivates us to propose a new
approach to solve problem of UAV trajectory design for energy minimization with latency
constraints. Concretely, we propose trajectory design algorithms based on TSPTW which
is a generalization of the classic TSP and has applications in many important sequencing
and distribution problems [192]. The TSPTW requires that each node (or user) must be
visited within a predefined time window. The time window includes start time and end
time (or requested timeout) associated with each node in the network. The start time and
end time define when the service at the considered node can begin and finish. The main
contributions of this chapter are four-fold, listed as follows

1. Firstly, we find a feasible set of paths while satisfying the RT constraints for all GUs.
In order to deal with the nature NP-hardness of the formulated problem, we propose
two algorithms, namely, DP, and heuristic algorithms based on the TSPTW and
they are compared with exhaustive search and TSP-based method [13, 15]. While
the exhaustive search algorithm provides the global optimality, its exponential com-
putation complexity might limit its applicability in practical applications. In such
cases, the heuristic algorithm with a lower complexity is often considered to be a
suitable replacement. However, this solution significantly decreases the performance
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compared to that of exhaustive search. Thus, DP is proposed as a new algorithm
to balance between exhaustive and heuristic algorithms. Especially, its performance
converges to that of exhaustive at a much lower complexity.

2. Secondly, we minimize the total UAV’s energy consumption for each given path in a
feasible set via a joint optimization of the UAV velocities in all hops. Since the for-
mulated problem is proved to be convex, it can be solved by using standard methods.
Then, the path with lowest energy consumption which also satisfies the energy bud-
get constraint is selected as a designed trajectory for UAV. Notably, in this chapter
all the computation for path design is performed in an offline manner, i.e., prior to
the UAV flight.

3. Finally, the effectiveness of the proposed algorithms is demonstrated via numerical
results, which show significant improvements in both energy consumption and outage
probability compared with our benchmarks [13,15].

3.2 System Model

We consider a UAV-enabled communication system in which a UAV helps to transmit
data to a set of K ground users (GUs), denoted by K ≜ {1, . . . ,K}. Due to limited
access, the users can only receive data from the UAV [13, 15]. The location of GU k is
denoted as qk ∈ R2×1, k ∈ K. Let (u1, u2, . . . , uK) be a permutation of (1, 2, . . . ,K), and
let u ≜ [u1 u2 · · · uK ]T specify a trajectory of the UAV to serve all users following the path
0 → u1 → u2 → ... → uK → 0, where 0 denotes the UAV station (or depot). It is assumed
that GU k is required to be served within nk units of time after the start of the UAV’s
mission. We refer to nk as the requested timeout of GU k, for k ∈ K.

3.2.1 Trajectory Design Model

In literature, there are different trajectory design models for UAV communications, e.g.,
Table 3.1. Basically, it can be classified into two types such as coarse (e.g., hovering-
communications [13]) and fine trajectory design (e.g., fly-hover-communication (FHC) and
flying-and-communication (FAC) methods in [15], virtual base station (VBS) as waypoints
(VAW) and waypoints based on VBS placement and convex optimization (WVC) methods
in [13]). In hovering-communications method, the UAV has to move to GU k’s location and
keeps hovering during the transmission period. The authors in [13, 15] utilize TSP to find
the visiting order of K GUs’ locations. Based on this result, the FHC method optimizes
the visited locations, each for communicating with one GU, instead of hovering over each
GU. The VAW is similar to FHC method, the difference is that each hovering location in
VAW is for communicating with a group of GUs. In [13], FAC method, an updated version
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Figure 3.1: System model.

of FHC, is proposed in which the UAV can communicate while flying. In [15], the authors
improve VAW method by proposing a more efficient waypoint (i.e., hovering point) design
to reduce the traveling distance, i.e., WVC method. Based on these examples, we can
conclude that the fine trajectory design can be obtained based on the coarse one.

In this chapter, hovering-communication is applied as the trajectory design model since
it is a very intuitive protocol that is also easy to implement in practice. Fig. 3.1 depicts a
two-dimensional Cartesian coordinate system, whereas the UAV is located at the ground
station and the GUs are located in the considered area.

3.2.2 Transmission Model

The UAV’s trajectory is split into K + 1 line segments (or hops) which are represented by
all connections between K + 2 way-points on any given route. We assume that the UAV
flies at a constant altitude of H (meters). Therefore, the distance traveled from GU j to
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Table 3.1: Trajectory design methods
Name No. of visited GUs per

1 hovering point
Hovering point design

Hovering-
communications
[13]

1 GU’s location as hovering points

FHC [15] 1 Hovering point is within the GUs’ transmis-
sion range

FAC [15] 1 Hovering point is within the GUs’ transmis-
sion range and UAV transmits data when fly-
ing

VAW [13] Multi-GUs Hovering point is the VBS defined as the cen-
ter of a group of GUs

WVC [13] Multi-GUs Based on VBS in VAW, they optimize the hov-
ering point using optimization method

GU k is given by

lj→k = ∥qj − qk∥, 0 ≤ j, k ≤ K + 1, (3.1)

where the index 0 represents the UAV station. We assume that the UAV velocity is constant
during each hop but can change from hop to hop.

For i = 1, 2, . . .K + 1, let vi denote the UAV velocity at the i-th hop, while for k =
1, 2, . . . ,K, τk stands for the transmission time needed for UAV to send the requested data
stream to GU k reliably. Then, for a given trajectory signified by u, the time for the UAV
to reach the GU uk is calculated as

Tk =
k∑
i=1

(tui + τui) , for 1 ≤ k ≤ K, (3.2)

where tui ≜
di
vi

and di = lui−1→ui represent the travel time and the distance in the i-th
hop, respectively, for i = 1, 2, . . . ,K + 1.

We assume the channel between the GU and the UAV follows a Rician fading [193,194],
where channel coefficient between GU k and UAV, hk, can be written as

hk = √
µkgk, (3.3)

where µk represents for the large-scale average channel power gain accounting for signal
attenuation including pathloss and gk accounts for small-scale fading coefficient.
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In particular, µk can be modeled as

µk = µ0H
−α, (3.4)

where µ0 is the average channel power gain at the reference distance, and α is the path
loss exponent. Then, the small scale fading gk with expected value E

[
|gk|2

]
= 1, is given

by

gk =
√

G

1 +G
gk +

√
1

1 +G

∼
gk, (3.5)

where G is the Rician factor; gk denotes the deterministic LoS channel component;
∼
gk ∼

CN (0, 1) denotes the Rayleigh fading channel accounting for NLoS components. Then, the
maximum achievable rate between the UAV and GU k is calculated as

Rk = B log2

(
1 + Υ|gk|2

)
, (3.6)

where Υ ≜ Pcomµ0
Hασ2 , B is the channel bandwidth, Pcom is the transmit power of the UAV,

and σ2 is the noise power.

As the lack of the knowledge for instantaneous channel state information (CSI) prior to
the UAV’s flight, the rate Rk is not exactly known. Therefore, the approximated rate for
GU k is adopted, i.e., Rk. Specially, Rk is chosen so that P{Rk < Rk} remains below or
equals to a target ϵ. Moreover, the outage probability that the GU k cannot successfully
receive the transmitted data from UAV, i.e., P{Rk < Rk}, is expressed mathematically as
follows [193]:

P{Rk < Rk}

= P
{

|gk|2 <

(
2Rk/B − 1

)
Υ

}
= 1 −Q1

{
xQ, yQ

}
≤ ϵ, (3.7)

where xQ ≜
√

2K, yQ ≜
√

2
(
2Rk/B − 1

)
(1 +G)/Υ, Q1(x, y) is the first order Marcum

Q-function. Moreover, at maximum tolerable value of ϵ, i.e., Q1

{
xQ, yQ

}
= 1 − ϵ, yQ is
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Figure 3.2: yQ curves corresponding to its sub-functions, with ϵ = 0.001 .

defined as [193]

yQ =



√
−2 log (1 − ε)eG/2, G ≤ G0,

√
2G+ 1

2Q−1(ε) log
( √

2G√
2G−Q−1(ε)

)
,

√
2G+ 1

2
√

2G
,G > G0 &Q−1(ε) = 0,

(3.8)

where G0 is the intersection of sub-functions at
√

2G < max[0, Q−1(ϵ)] and Q−1(x) is the
inverse Q-function. Fig. 3.1 shows that G0 can be obtained graphically based on the yQ
sub-functions.

In this chapter, since UAV hovers right above the user, we can consider a Rician channel
with strong LoS component (i.e., high G factor) and Q−1(ϵ) ̸= 0. Thus, the yQ function
can be approximated as yQ =

√
2G + 1

2Q−1(ϵ) log
( √

2G√
2G−Q−1(ϵ)

)
− Q−1(ϵ). This yields the

approximated rate Rk can be expressed as:

Rk = B log2

(
1 + yQ

2Υ
2(1 +G)

)
, (3.9)

We adopt the Rician model because it can capture both LoS and NLoS links.
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3.2.3 Energy Consumption Model

The energy consumption of the UAV consists of two types: propulsion energy consump-
tion and communication energy consumption. The former measures the energy con-
sumed to fly or hover over the UAV. The latter is used to transmit data to the GUs.
In general, the energy consumption depends not only on the UAV velocity, but also on
its acceleration/deceleration. Note that the energy consumption during UAV’s acceler-
ation/deceleration is ignored in [14, 15] which is reasonable for scenarios when the ac-
celeration/deceleration speed or acceleration/deceleration duration is small. The power
consumption of a rotary-wing UAV flying at velocity v is given as [15, Eq. (12)]

Pfly(v) =P0
(
1 + α1v

2
)

︸ ︷︷ ︸
bladeprofile

+ P1

√√
1 + α2

2v
4 − α2v2︸ ︷︷ ︸

induced

+ α3v
3︸ ︷︷ ︸

parasite

, (3.10)

where P0 = δ
8ρsAΩ3R3, P1 = (1 + I)W 3/2

√
2ρA , α1 = 3

Ω2R2 , α2 = 1
2V 2

R
, and α3 = 0.5a0ρsA.

Blade profile power, parasite power, and induced power are needed to overcome the profile
drag of the blades, the fuselage drag, the induced drag of the blades, respectively. Other
parameters are explained as in Table I of [15].

For i = 1, 2 . . . ,K+1, the total energy consumption that the UAV spends on hop i is
given as

Ei(vi, di) = Efly,i(vi, di) + Ehov,i + Ecom,i, (3.11)

where Efly,i(vi, di) = Pfly(vi) × tui = Pfly(vi) × di/vi, Ehov,i = Pfly(vhov) × τui , and Ecom,i =
Pcom × τui are the energy consumption due to flying, hovering, and communications, re-
spectively, where Pfly(vi) is provided in (3.10). When UAV approaches the GU, it will fly
around the GU with certain velocity vhov instead of hovering directly above it to mini-
mize the energy consumption [15]. Moreover, the energy consumption due to hovering is
Ehov,k = Pfly(vhov) × τk, where Pfly(vhov) and τk are the propulsion energy consumption
due to hovering and transmission time to serve GU k, respectively. Furthermore, τk is
computed as τk ≜ Qk/Rk, where Qk denotes the length of the requested content in bits
and Rk denotes the approximated transmission rate from the UAV to GU k. Since Qk
and Rk can be obtained prior to the UAV flight. Thus, Ehov,k is proportional to Pfly(vhov)
which is minimized at vhov value as in Fig. 3.3.
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Figure 3.3: Propulsion power consumption versus velocity.

3.3 Energy-efficient UAV communication with path and ve-
locity optimization

Our goal is to jointly design the path and velocities to minimize the total energy consump-
tion while satisfying the RT constraints and energy budget for all GUs. Intuitively, we
aim to find the visiting order u ≜ [u1, . . . , uK ] and the UAV velocities which result in the
smallest energy consumption. Then, the problem is formulated as

PEE
1 : min

u,{vi}K+1
i=1

K+1∑
i=1

(Efly,i(vi, di) + Ehov,i + Ecom,i) (3.12)

s.t. C1 :
k∑
i=1

(
di
vi

+ τui

)
≤ nuk

, for 1 ≤ k ≤ K

C2 : 0 ≤ vi ≤ Vmax, for 1 ≤ i ≤ K + 1,

C3 :
K+1∑
i=1

(Efly,i(vi, di) + Ehov,i + Ecom,i) ≤ Etot,

C4 : |vi+1 − vi| ≤ ∆V,∀1 ≤ i ≤ K.

In PEE
1 , constraint C1 guarantees the RT requirement for the GUs which states that

the maximum latency to serve GU uk cannot exceed the predefined RT nuk
, C2 requires

that the flying speed of the UAV must be less than the maximum velocity Vmax, and C3
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means that the total energy consumption of UAV on the considered path should not exceed
the total energy budget Etot. Otherwise, this is an infeasible path. C4 guarantees that the
traveling speed of UAV between two consecutive hops is less than a predetermined value.

Problem (3.12) requires optimizing the path u and traveling velocities {vi}K+1
i=1 of the

UAV on all hops. Note that (3.12) includes a complicated energy consumption as in C3,
as well as an objective function which depends on the designed path u. However, as the
objective function is the same of the LHS in C3, we can, without loss of generality, solve
PEE

1 without C3 and find the minimum total energy consumption. If this energy is less
than Etot, then PEE

1 is feasible and its solution is the same as the solution to PEE
1 without

C3, otherwise PEE
1 is not feasible and we say outage has occurred.

Definition 1. The OP is defined as P{Rk < Rk} or the probability that no feasible path
(a path that satisfies all the GUs’ RT requirements and Etot) is found.

Note that even without C3, problem PEE
1 is a TSPTW, itself is already NP-hard [192].

To solve this problem, we first find the feasible set of paths (denoted as U⋆) which satisfy
constraints C1 while the hop velocities satisfy C2. Next, we will minimize the energy
consumption on each given path via joint optimization of velocities over all hops. Finally,
the lowest energy consumption path which satisfies the energy budget constraint C3 is
chosen as the trajectory design for UAV.

3.3.1 Obtain a feasible set of paths

In this section, we introduce three solutions, namely, exhaustive search, heuristic search,
and DP algorithms to obtain a feasible set of paths that satisfy constraints C1, C2 and C4.
The exhaustive search gives the best solution with very high complexity. The heuristic tries
to reduce the complexity but the performance also decreases. Thus, the DP is proposed as
a solution to balance between exhaustive search and DP algorithms.

Specifically, the feasible set of all paths which satisfy constraints C1, C2, and C4, i.e.,
U⋆, will be obtained by choosing vi = Vmax, for i = 1, 2, . . . ,K + 1.

The proof of this property relies on the monotonically decreasing behavior of the LHS
of constraint C1 with respect to vi, for any given i. For any k ∈ K, if a path satisfies
C1 with vi < Vmax, then this path satisfies C1 with vi = Vmax, as the LHS of C1 is
monotonically decreasing in vi, for i = 1, 2, . . . ,K. Also, for any k ∈ K, if a path does
not satisfy C1 with vi = Vmax, then this path does not satisfy C1 with vi < Vmax, as
k∑
i=1

(
di
vi

+ τui

)
>

k∑
i=1

(
di
Vmax

+ τui

)
> nuk

.

By considering vi = Vmax as above discussion, the following subsections present three
proposed algorithms to find a feasible set of paths.
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Algorithm 1 Exhaustive search algorithm for solving PEE
2

1: Input: Vmax, {qk, τk, nk}Kk=1.
2: Initialize: Calculate the set I containing all the paths, n0 = [n1, . . . , nK ], U = Ø,
l0→k = ∥qk − q0∥, a0k = l0→k

Vmax
+ τk, k ∈ K, a = [a01, . . . , a0K ].

3: if a ≤ n0 then ▷ Check feasibility
4: for m = 1 : |I| do ▷ For each path u(m) ∈ I

5: L
(m)
k =

k∑
i=1

(
l
u

(m)
i−1→u

(m)
i

Vmax
+ τi

)
▷ Total traveling time between GUs ui−1 and ui

in u(m) and data transmission time to ui
6: if L(m) ≼ n0 then ▷ Check the RT constraint
7: U = U ∪ u(m) ▷ Update feasible paths
8: end ifend if
9: end forend for

10: Find Ψ shortest feasible paths, i.e., U⋆ ∈ U
11: end ifend if
12: Output: U⋆.

Algorithm 1: Exhaustive search algorithm

The principle of the exhaustive search algorithm is to visit all the paths and find Hamil-
tonian cycle paths [195] satisfying the RT constraint. For each path in the feasible set, we
minimize the energy consumption via jointly optimizing the velocities as in Section 3.3.2.
Thus, in order to reduce the computational complexity for solving (3.12), we only take Ψ
feasible paths into consideration.

This problem is in a form of TSPTW problem, which can be solved by finding the
minimum cost tour (Hamiltonian cycle path) starting and ending at location 0 and visiting
all GUs only once [192]. The details is summarized in Algorithm 1. Firstly, we initialize
all the parameters as in lines 1 and 2. More specifically, qk, τk, nk are the location,
data transmission time, requested timeout constraint of GU k, respectively; U is the set
containing all feasible paths; l0→k and a0k are the traveling distance from UAV to GU k
and the total time needed for UAV to finish transmitting data to GU k, respectively.

Basically, Algorithm 1 consists of two steps. In the first step, we check the RT constraint
from UAV station to each GU k, as in line 3. Based on the triangle inequality constraint,
if there exists any GU k which does not satisfy the RT constraint, it has no feasible path.
Otherwise, we will try all K! paths which visits all the GUs once, lines 4 to 9. For each
path u(m) ∈ I, we calculate the UAV traveling time from ui−1 to ui and data transmission
time for ui, with ui−1 and ui ∈ u(m). It then compares the visit time to every GU with
the corresponding RT requirements (constraint C1 in (3.12)), as in line 6. If path u(m)

satisfies the RT constraint, it will be accumulated to set U , line 7. Thus, the complexity
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Algorithm 2 Heuristic algorithm for solving P2

1: Input: Vmax, {qk, τk, nk}Kk=1.
2: Initialize: U = Ø, I+ = Ø, I− = K, l0→k = ∥qk − q0∥, a0k = l0→k

Vmax
+ τk, k ∈ K,

a = [a01, . . . , a0K ], n0 = [n1, . . . , nK ].
3: if a ≤ n0 then ▷ Check feasibility in the first hop
4: Find the closet GU having minimum RT value, i.e., u⋆ ∈ I−.
5: U = U ∪ {u⋆} ▷ If u⋆ satisfy constraint C1.
6: I+ = I+ ∪ {u⋆}, I− = K \ {u⋆}
7: Repeat steps 4 to 6 until I− = Ø or no any GU satisfying the C1 constraint.
8: end ifend if
9: Output: U⋆ = U.

Table 3.2: Illustration for Travel Time between GUs in Heuristic Algorithm
GU 0 1 2 3
0 +∞ 1 1.2 1.3
1 1 +∞ 0.5 1.2
2 1.2 0.5 +∞ 2
3 1.3 1.2 2 +∞

of Algorithm 1 is O(K!) [196]. Finally, the set of Ψ feasible paths which satisfies all the
RT constraints and imposes the Ψ shortest traveling time will be selected.

Algorithm 2: Heuristic algorithm

Although providing near-optimal performance, the high computation complexity of Algo-
rithm 1 may limit its potential in realistic scenarios. In this subsection, we propose a
heuristic search algorithm, which compromises the performance against complexity. The
key idea behind the heuristic algorithm is to restrict the search space at each step, in which
it only foresees one hop ahead when checking the RT condition. Details of the heuristic
algorithm are described in Algorithm 2.

Firstly, we initialize all the parameters as in lines 1 and 2. More specifically, U is
the feasible path; we can check other parameters as in Algorithm 1. The searching in the
heuristic algorithm consists of K steps, in which it maintains two sets: a set of visited GUs
and another set of GUs which have not been visited, i.e., I+ and I−, respectively. First,
we check the RT constraint for the first step (or hop) as in Algorithm 1, line 3. If the
RT constraint from UAV station to each GU k is satisfied, then, we select the closet GU
having minimum RT value as the first visited GU into the designed path, i.e., U as in lines
4 to 6. Then, we continue checking a until the set I− is empty. In the other hand, if there
has no GUs satisfying the RT constraint at the k-th step, it is not possible to find out the
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Algorithm 3 DP-based algorithm for solving PEE
2

1: Input: Vmax, {qk, τk, nk}Kk=1.
2: Initialize: Ξ1

∆= {ξ1}, ξ1 = ({0}, 0), C({0}, 0) = 0, A = {ajk}, U⋆ = Ø, l0→k =
∥qk − q0∥, a0k = l0→k

Vmax
+ τk, k ∈ K, a = [a01, . . . , a0K ], n0 = [n1, . . . , nK ], B0

1 = Ø,
3: if a ≤ n0 then ▷ Check feasibility
4: Ξm = Ø
5: for (S, j) ∈ Ξm−1 do
6: Update Ξm = Ξm ∪ ((S, j) ∪ k, k) ▷ If C((S, j) ∪ k, k) ≤ nk and C((S, j) ∪ k, k)

is the minimum cost of all states ((S, j) ∪ k, k)
7: Update Bkm = {j}
8: end forend for
9: m = m+ 1

10: Repeat steps 4 to 7 until |S| = K + 1 or no any GU satisfying the RT constraint.
11: For each state (S, k) ∈ ΞK+1, the visiting order u⋆ is obtained by checking for

backward from ΞK+1 to Ξ1 based on Bkm.
12: U⋆ = U⋆ ∪ u⋆
13: end ifend if
14: Output: U⋆.

feasible path. As shown in the Algorithm 2, the fundamental operations employed in the
computation are additions and comparisons. The total number of operations needed to run
Algorithm 2 from steps 1 to K is

K∑
k=2

(K − k + 1) = K(K+1)
2 [197, Eq. (0.121.1)]. Thus,

the complexity of the heuristic algorithm is O(K2), which is significantly smaller than the
complexity O(K!) of Algorithm 1.

To make it easy to understand, we would like to give an example of heuristic algorithm.
More specifically, we consider K = {1, 2, 3}, n = {2, 2, 5} seconds, τk = 0.12 seconds, 0
denotes the UAV station, Table 3.2 is the travel time between GUs. Firstly, the vector
a = [1.12, 1.32, 1.42] can be determined based on the equation a0k = l0→k

Vmax
+ τk as in step

2. Then, the RT constraint can be checked as in step 3. Since all GUs k satisfy the
constraint C1, thus, we update the feasible path U = 1 and I+ = 1 and I− = {2, 3}
as in steps 4 and 5. Next, the accumulated traveling of UAV to next GUs in I− can be
computed as a01 + a12 = 1.12 + 0.62 = 1.74 < n2, a01 + a13 = 1.12 + 1.32 = 2.44 < n3.
As a01 + a12 < a01 + a13, we have U = 1 → 2, I+ = {1, 2} and I− = {3}. Next, we check
the RT constraint to GU 3, i.e., a01 + a12 + a23 = 1.74 + 2.12 = 3.86 < n3. Then, we can
update U = 1 → 2 → 3, I+ = {1, 2, 3} and I− = Ø. Finally, we obtain the feasible path
U⋆ = U as the output of Algorithm 2, as in line 8.
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Algorithm 3: Dynamic programming

Although having a lower complexity, Algorithm 2 obtains a much degraded performance
compared with Algorithm 1. This motivates us to propose Algorithm 3, which is based on
DP method. It will be shown later that the DP-based algorithm approaches the optimal
solution with a considerably reduced complexity.

Denote G = (K,A), where K is the set of GUs and A = {ajk} is the set of the
summation of travel time from GU j → k and the data transmission time to GU k, e.g.,
ajk = lj→k/Vmax + τk, j ̸= k. In this chapter, since we do not consider ajk with j = k,
thus, ajk will henceforth be referred to as ajk with j ̸= k. Moreover, ajk is feasible if it
satisfies the RT constraint, i.e., ajk ≤ nk. As in the first step of Algorithms 1 and 2, we
check the feasibility by considering the RT constraint from UAV station to GU k, as in
lines 3 of Algorithm 3. Concretely, if there exists a value of a0k which does not satisfy the
RT constraint, a feasible path will not exist. Associate with each GU k ∈ K a time window
[0, nk] and a data transmission time τk.

A state (S, k) is defined as: S is an unordered set of visited GUs, k is the last visited
GU in S. Define C(S, k) as the least cost (e.g., summation of traveling time and data
transmission time to GU k) of path starting at UAV station, passing through each GU
of S ⊂ K exactly once, ending at GU k. Without loss of generality, we initialize the cost
function C as C({0}, 0) equals to zero, whereas the first and second elements represent for
the UAV station. The C(S, k) is calculated by solving the following equation [192]

C(S, k) = min
(ajk)∈A

{C(S\{k}, j) + C({j, k}, k)|

C(S\{k}, j) + C({j, k}, k) ≤ nk}.
(3.13)

where C({j, k}, k) = ajk = lj→k/Vmax + τk, S ⊂ K, j and k ∈ S.
We denote Bkm with k ∈ K,m = 1, 2, . . . ,K+1 as the set containing the last visited GU

before visiting GU k in step m, as in lines 2 and 7. Specifically, when an UAV starts from
ground station, there is no visited GU before this, i.e., B0

1 = Ø as in line 2. Let Ξm denote
the set of all feasible states (S, k), where |S| = m. In order to obtain Ξm from Ξm−1, we
do following steps. For each state (S, j) ∈ Ξm−1, we consider a new state ((S, j) ∪ k, k),
lines 5 to 7. This state can be added to Ξm iff it satisfies the RT constraint and is not yet
stored, as in line 6. In the case that this state is already stored in Ξm, we only keep the
state having minimum cost of C((S, j) ∪ k, k), as in line 6. Let assume that there exist
two states with the corresponding cost functions C1(S, k) and C2(S, k), respectively. If
C1(S, k) < C2(S, k), then, the second state will be eliminated. The goal of DP algorithm
is to take all the feasible paths satisfying constraints C1 and C2. Since we only store the
state with lowest value of C(S, k), k = 1, . . . ,K for each state (S, k). Thus, at the end of
Algorithm 3, when |S| = K + 1, we can achieve maximally K states (S, k) ∈ ΞK+1. For
each state (S, k), the visiting order u⋆ is obtained by checking for backward from ΞK+1 to
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Table 3.3: Illustration for the value of A = {ajk, j, k ∈ K, } in DP Algorithm
GU 0 1 2 3
0 +∞ 1 1.4 1.2
1 1 +∞ 0.5 1.5
2 1.4 0.5 +∞ 2
3 1.2 1.5 2 +∞

Table 3.4: Illustration for DP Algorithm
Ξ S k Bk

m C(S, k)

Ξ1 {0} 0 B0
1 = Ø 0

Ξ2 {0, 1} 1 B1
2 = {0} 1

Ξ2 {0, 2} 2 B2
2 = {0} 1.4

Ξ2 {0, 3} 3 B3
2 = {0} 1.2

Ξ3 {0, 1, 2} 2 B2
3 = {1} 1.5

Ξ3 {0, 1, 2} 1 B1
3 = {2} 1.9

Ξ3 {0, 1, 3} 3 B1
3 = {1} 2.5

Ξ4 {0, 1, 2, 3} 3 B3
4 = {1} 3.4

Ξ1 based on Bkm, as in line 10. Finally, feasible Hamiltonian cycle paths U⋆ with |U⋆| ≤ K
is acquired at the output of DP algorithm, as in line 12.

To make it easy to understand, the DP-based algorithm is illustrated in Tables 3.3
and 3.4. More specifically, we consider K = {1, 2, 3}, n = {2, 2, 4} seconds, 0 denotes
the UAV station, Table 3.3 is the travel time between GUs. Due to the RT constraint
and the condition of storing one state with minimum cost C(S, k), we cannot keep all
states into consideration. For example, when S = 3, we only achieve one final state, i.e.,
({0, 1, 2, 3}, 3). For the last state {0, 1, 2, 3} ∈ Ξ4, we can check for backward from Ξ4 to Ξ1
to find the feasible path u⋆. More specifically, from state Ξ4, we can find out that 1 ∈ B3

4
is the last visited GU before visit 3. Next, by considering the state (S, 1) ∈ Ξ3, 2 ∈ B1

3
is the last visited GU before visit 1. Similarly, we check for backward until reaching UAV
station 0. Finally, the visiting order u⋆ is obtained, i.e., u⋆ = {0 → 2 → 1 → 3 → 0}. The
complexity of the DP-based algorithm is O(K2 × 2K) in the worst case [198]. Moreover,
details of this method are described in Algorithm 3.

3.3.2 Minimization of the UAV’s Energy Consumption with given path

The previous section designs the paths based on the UAV maximum speed. While this
method is preferred to minimize the traveling time, it might not be energy-efficient since it
over-estimates the RT constraints. In this section, we minimize total energy consumption

71



Traveling Salesman Problem with Time Windows (TSPTW)-based Trajectory Design for
UAV communications

of the UAV via the joint optimization of UAV velocities over each given path in the feasible
set U⋆, e.g., the output of Algorithms 1, 2, and 3. The energy minimization problem is
formulated as

PEE
2 : min

{vi}K+1
i=1

∑K+1
i=1

(Efly,i(vi) + Ehov,i + Ecom,i) (3.14)

s.t. C1 :
k∑
i=1

(
di
vi

+ τui

)
≤ nuk

, 1 ≤ k ≤ K

C2 : 0 ≤ vi ≤ Vmax, i = 1, . . . ,K + 1.
C3 : |vi+1 − vi| ≤ ∆V,∀1 ≤ i ≤ K,

Because Ecom,i and Ehov,i do not depend on vi, they can be removed from the objective
function of (3.14) without loss of generality. Since function 1

x is convex in {vi}K+1
i=1 ∈ R+,

constraint C1 in (3.14) is convex. The most challenging is the term Efly,i(vi).

Lemma 2. The energy consumption Efly,i(vi) is convex.

Proof: From (3.10) and (3.11) we have

Efly,i(vi) = P0di

( 1
vi

+ α1vi

)
+P1di

√√
v−4
i + α2

2 − α2

+α3div
2
i , (3.15)

The second derivative of Efly,i(vi), after some manipulations, can be expressed as

d2

dv2
i

Efly,i(vi) = 2P0di
v3
i

+ 2α3di + P1diβ, (3.16)

where

β = 1

v6
i

√
α2

2 + v−4
i

√√
α2

2 + v−4
i − α2

×

(
5 − 2

1 + α2
2v

4
i

− 1
α2

2v
4
i + 1 − α2v

2
i

√
α2

2v
4
i + 1︸ ︷︷ ︸

β1

)
. (3.17)

Denote X = α2v
2
i ≥ 0, then we can express β1 = α2

2v
4
i + 1 − α2v

2
i

√
α2

2v
4
i + 1 = X2 +

72



3.4 Simulation Results

1 −X
√
X2 + 1. Since X

√
X2 + 1 ≤ 2X2+1

2 , it yields

β1 ≥ X2 + 1 − 2X2 + 1
2 = 1

2 . (3.18)

In addition, since 1 + α2
2v

4
i ≥ 1, we obtain the term in bracket in (3.17) is always

greater than or equal to 1. Thus, β > 0,∀vi. Since P0, di, α3 are also positive, from (3.16)
we conclude that the second derivative of Efly,i(vi) is always positive, which proves the
convexity of Efly,i(vi).

By using Lemma 2, we observe that problem PEE
2 is convex since the objective and all

constraints are convex. Thus, it can be solved by using the standard methods [199].

3.4 Simulation Results

This section provides numerical results to validate the proposed designs. The parameters
are set as follows: H = 50 meters, B = 2 MHz, path loss exponent α = 2.3, σ2 = −110
dBm, Pcom = 5 W, Rician factor G = 15 dB, UAV’s coverage area is 400 m x 400 m,
UAV ground station is located at (1.5m, 398m). On a more general level, we perform 1000
independent trials of Monte-Carlo simulations. In details, for each iteration, we deploy a
random GUs topology distributed in the considered area, the RT constraints are uniformly
ranging between nmin and nmax. Moreover, the channel coefficient gk is also regenerated
for each iteration. The proposed solutions are compared with a solution in [13,15], which is
based on the TSP. Specifically, since the heuristic and DP algorithms can find maximally 1
and Θ ≤ K feasible paths, respectively. In order to guarantee that the exhaustive method
is always an upper bound, this algorithm takes Ψ (Ψ ≥ Θ) shortest feasible paths while
the heuristic and DP algorithms take all feasible paths into consideration.

In Fig. 3.4, we illustrate the difference trajectory designs, i.e., TSP, exhaustive search,
heuristic, and DP, with ϵ = 0.001, Qk = 50 Mbits, nmin = 5 seconds, nmax = 17 seconds,
K = 7, Etot = 100 KJoules. For the purpose of a fair comparison, Vmax is assumed to be
sufficiently large so that all methods exists one path complying with the latency constraints.
The arrows in Fig. 3.4 denote the moving direction of UAV. While the TSP always follows
the shortest path and does not take latency into account, the others select the path with
minimum energy consumption via optimizing the traveling velocities. Therefore, the energy
consumption of TSP is higher than others. Moreover, the heuristic method selects the closet
GU having minimum RT value as the next visited GU, it leads to the longer traveling
distance. This explains why the energy consumption of heuristic is higher than exhaustive
and DP methods. Specifically, the DP method may obtain the same trajectory design
compared to that of exhaustive search. It shows the superiority of this scheme compared
to other ones.

Next, we evaluate the proposed trajectory designs via the outage probability metric
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(a) Traditional TSP,
K+1∑
i=1

Ei = 6175 Joules. (b) Exhaustive search,
K+1∑
i=1

Ei = 3944 Joules.

(c) Heuristic,
K+1∑
i=1

Ei = 4484 Joules. (d) Dynamic programming,
K+1∑
i=1

Ei = 3944 Joules.

Figure 3.4: Comparison of UAV’s trajectories with different path designs
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Figure 3.5: Average OP (%) versus Vmax
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Figure 3.6: Average OP versus requested
timeout (seconds).

(OP). Moreover, the in-feasibility also occurs if all the paths, which is obtained from
Algorithm 1 (or Algorithms 2, 3), do not satisfy the energy budget constraint, i.e., C3 in
(3.12). Fig. 3.5 presents the OP of the proposed algorithms and the reference as a function
of Vmax with the RT requirements nk ranging between 22 and 60 seconds, the energy budget
Etot = 500 KJoules, B = 3 MHz, ϵ = 0.001, G = 15 dB. It is shown that the proposed
algorithms significantly improve the OP compared with the reference for all values of Vmax.
Specifically, at Vmax = 40 m/s and K = 6, the exhaustive search and dynamic programing
algorithms can find the trajectory that satisfies all the GUs’ RT constraints with high
probability and the heuristic algorithm achieves less than 1.7% OP. Whereas the reference
scheme imposes 9.3% OP. The OP of all schemes can be reduced by increasing Vmax, which
is because a higher Vmax results in a lower traveling time between the GUs. Consequently,
it is highly probable for the UAV to satisfy the GUs’ RT.

In Fig. 3.6, the OP is presented as a function of minimum RT value nmin (seconds),
while nmax = 65 seconds, Vmax = 45 m/s, and Etot = 500 KJoules, Qk = 10 Mbits,
B = 3 Mhz, G = 15 dB. Similar to Fig. 3.5, the DP achieves almost the same outage
performance as the exhaustive search while it significantly outperforms the heuristic and
reference algorithms. Specifically, at nmin = 15 seconds and K = 6, the OP values of both
exhaustive search and dynamic programing algorithms equal to 5% and the heuristic-based
algorithm achieves less than 4.2 % OP. Whereas the reference scheme imposes 38.8% OP.
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Figure 3.7: Average OP versus network size,
e.g., A = x2 (m2).
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Figure 3.8: Average OP (%) versus energy
budget.

It is found that at a lower value of nmin, the outage performance is degraded. This is
expected since allocating more speed is needed to satisfy the GUs’ RT, but the Vmax is
limited. Furthermore, in Figs. 3.5 and 3.6, the average outage probability decreases when
we decrease the number of GUs from 6 to 4.

Fig. 3.7 represents the OP as a function of network size (i.e., x (meters)) with K = 7,
Vmax = 45 m/s, nmin = 15 seconds, nmax = 65 seconds, Qk = 10 Mbits, G = 15 dB,
B = 3 Mhz and Etot = 500 KJoules. Whereas the UAV’s coverage area is assumed to be a
square and it can be calculated as A = x2 (m2), e.g., Fig. 3.1. It is observed that with the
increasing of x, the average OP is significantly increasing for four schemes. This is expected
since more traveling velocity Vmax is needed to compensate the latency requirement which
is in contradiction with the Vmax limitation.

Next, we examine the energy consumption of the proposed optimization in Section 3.3.2
and compare with the TSP-based reference scheme in [13, 15]. For a fair comparison, we
assume that Vmax is sufficiently large so that all schemes have at least one path satisfying
the RT constraint. Once a feasible set of paths is obtained based on the TSP solution,
proposed Algorithms 1, 2 and 3, we apply the optimization PEE

2 to minimize the total
UAV’s energy consumption.

Fig. 3.8 illustrates the average OP versus energy budget (Joules), where the RT require-
ments nk ranging between 3 and 15 seconds, K = 4, ϵ = 0.001. It is the same with Figs.
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Figure 3.9: Average energy consumption vs.
number of GUs.
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Figure 3.11: Average energy consumption
vs. network size.
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3.4 and 3.5, the outage probability value of DP converges to that of the exhaustive search
which outperforms the heuristic and reference methods. Furthermore, when the value of
energy budget is large enough, the OP of all algorithms converges to the saturation value.
It is because the OP is dependent on the energy budget and the RT constraint, as well as
the P{Rk < Rk} = ϵ, i.e., constraints C1 and C3 in (3.12).

Fig. 3.9 plots the energy consumption (Joules) of all schemes as a function of the number
of GUs, i.e., K, with nmin = 3 seconds, nmax = 15 seconds, Ψ = K, Qk = 10 Mbits,
ϵ = 0.001, G = 15 dB. A similar observation is that our proposed designs significantly
reduce the UAV’s consumed energy compared with the reference. This is due to the fact
that the reference (TSP-based) always selects the shortest path regardless of the GUs’ RT
requirements. Consequently, in order to satisfy all GUs’ RT constraint, the UAV (in this
case) has to fly with a higher velocity than in our proposed designs. Obviously, serving
more GUs requires more energy consumption, as shown in these figures. Fig. 3.10 describes
the details of the maximum and minimum energy consumption for each algorithm.

Fig. 3.11 evaluates the average energy consumption versus network size with nmin = 15
seconds, nmax = 60 seconds, Ψ = K = 4, Qk = 10 Mbits. In Fig. 3.9, we assume
that the velocity Vmax is sufficiently large to make sure that the TSP scheme exists one
feasible path which is infeasible in practical. Thus, in Fig. 3.11, we compare the average
energy consumption of the exhaustive search, heuristic, and DP algorithms with Vmax = 50
m/s. We can observe that, for a larger network size, the energy consumption is increasing.
Due to the fact that, the energy consumption depends not only on velocity but also on
traveling distance (from eq. (3.11)). Specifically, the energy consumption value of DP is
very close to that of the exhaustive algorithm. Moreover, the heuristic consumes more
energy compared to that of exhaustive search and DP schemes and the gap between them
increases proportionally with the network size.

Last, to illustrate the complexity of all algorithms, Fig. 3.12 shows the average run-
ning time (seconds) as a function of the number of GUs. Clearly, the exhaustive search
(Algorithm 1) imposes the largest running time, which increases exponentially with the
number of GUs, as it tries all possible paths. The heuristic search (Algorithm 2) and
dynamic programing (Algorithm 3) consume much less time compared with Algorithm 1.
From practical aspects, Algorithm 3 is preferred as it has a relatively small complexity
while achieving good performance. Algorithm 2 consumes less time than Algorithm 3, but
it has lower performance, i.e., the OP and energy consumption. Although having a short
running time, the TSP-based reference has a poor performance, which is far worse than
the proposed Algorithms, as shown in Figs. 3.5 to 3.10.
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3.5 Summary

In this chapter, we make a first attempt to design the coarse trajectory for the energy mini-
mization in UAV-enabled wireless communications with latency constraints. The proposed
approach can be extended to a fine trajectory, e.g., waypoints based on VBS placement
and convex optimization (WVC) [13] and fly-hover-communication (FHC) [15]. However,
it leads to new challenges since [13] and [15] do not take the latency constraints into consid-
eration. Thus, FHC and WVC can not be directly applied to the problem investigated in
this chapter. Fortunately, the proposed algorithms in our work, i.e., exhaustive, heuristic,
and DP in Section III-A, become initial feasible paths for the block coordinate descend
(BCD) in combination with the successive convex approximation (SCA) method [14] that
can be considered as a new method to obtain the fine trajectory, e.g., FHC and WVC.
Moreover, a variable velocity can also be achieved by applying this new approach.

We have investigated the energy-efficient trajectory design for UAV-assisted communi-
cations networks which take into consideration latency requirements from the GUs. Con-
cretely, we minimize the total energy consumption via jointly optimizing the UAV trajec-
tory and velocity while satisfying the RT constraints and energy budget. The problem
was non-convex, which was solved via two consecutive steps. Firstly, we proposed two
algorithms for UAV trajectory design while satisfying the GUs’ latency constraints based
on the TSPTW. Secondly, for given feasible trajectories, we minimized the total energy
consumption via a joint design of the UAV’s velocities in all hops. Then, the best path
was selected as the designed trajectory of UAV. It was shown via numerical results that
our proposed designs outperform the TSP scheme in terms of both energy consumption
and outage probability.
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Chapter 4
Full-Duplex UAV Relay-assisted
Emergency Communications in IoT
Networks.

Unmanned aerial vehicle (UAV) communication has emerged as a prominent technology for
emergency communications (e.g., natural disaster) in the Internet of Things (IoT) networks
to enhance the ability of disaster prediction, damage assessment, and rescue operations
promptly. A UAV can be deployed as a flying base station (BS) to collect data from
time-constrained IoT devices and then transfer it to a ground gateway (GW). In general,
the latency constraint at IoT devices and UAV’s limited storage capacity highly hinder
practical applications of UAV-assisted IoT networks. In this paper, full-duplex (FD) radio
is adopted at the UAV to overcome these challenges. In addition, half-duplex (HD) scheme
for UAV-based relaying is also considered to provide a comparative study between two
modes (viz., FD and HD). Herein, a device is considered to be successfully served iff its
data is collected by the UAV and conveyed to GW timely during flight time. In this context,
we aim to maximize the number of served IoT devices by jointly optimizing bandwidth,
power allocation, and the UAV trajectory while satisfying each device’s requirement and
the UAV’s limited storage capacity. The formulated optimization problem is troublesome to
solve due to its non-convexity and combinatorial nature. Towards appealing applications,
we first relax binary variables into continuous ones and transform the original problem into
a more computationally tractable form. By leveraging inner approximation framework, we
derive newly approximated functions for non-convex parts and then develop a simple yet
efficient iterative algorithm for its solutions. Next, we attempt to maximize the total
throughput subject to the number of served IoT devices. Finally, numerical results show
that the proposed algorithms significantly outperform benchmark approaches in terms of
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the number of served IoT devices and system throughput.
The chapter is organized as follows. Introduction to the current state of the art is dis-

cussed in Section 4.1. The system model and problem formulation are given in Section 4.2.
The proposed iterative algorithm for FD is presented in Section 4.3. Section 4.4 devotes for
the HD scheme. Numerical results are illustrated in Section 4.5, and Section 4.6 concludes
the chapter.

4.1 Introduction to FD UAV Relay-assisted Emergency Com-
munications in IoT networks

In 1999, the British technology pioneer Kevin Ashton introduced the concept of the
Internet-of-Things (IoT) to describe a system in which all devices with sensors can connect
to each other [200]. IoT has the potential to significantly enhance the quality of human
life such as smart home, health care, wearable devices, agriculture, smart city, autonomous
vehicles, and smart grid [125,201]. The number of IoT connections of all types is estimated
to reach almost 25 billion by 2025 [140]. However, the growing demand for communica-
tions is becoming a great challenge for IoT networks due to limited spectral resources at
terrestrial base stations (BSs). Besides, BSs are deployed in fixed locations and antenna
height to serve a fixed geographical area, and resources cannot be rapidly shifted elsewhere.
Especially in emergency communications, whereas BSs are potentially isolated or damaged
after a natural disaster, or when BSs are unable to serve all users as they are overloaded
during peak hours. This raises a question of how to support the communication needs of a
massive number of IoT devices with restricted resources without compromising the network
performance [202]. Fortunately, due to the high maneuverability and flexible deployment,
unmanned aerial vehicle (UAV) communications could become a promising technology to
overcome the above shortcomings [203]. Due to energy constraints, IoT devices are com-
monly unable to propagate over a long distance. Thus, the UAV can fly closer to devices,
harvest the IoT data, and then transmit it to the BS/control center, which is out of the
transmission range of these devices.

Extensive studies have been carried out to investigate UAV-assisted IoT communication
networks [204–208]. The work in [204] studied the joint optimal 3D deployment of UAVs,
uplink (UL) power control, and device association in an IoT network. Specifically, the
authors proposed a new framework for efficiently distributing UAVs to collect information
in the UL from IoT users. In [205], the authors optimized the data gathering efficiency
of a UAV-assisted IoT network, subject to the power budget, the energy capacity, and
the total transmission time for IoT devices. Herein, a multi-antenna UAV was operated,
which followed a circular trajectory and served IoT devices to create a virtual multi-input
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multi-output (MIMO) channel. Reference [206] presented a robust central system orches-
trator (SO) that was designed to provide value-added IoT services (VAIoTS). Whereas the
SO keeps the entire details about UAVs including their current locations, flight missions,
total energy budget, and their onboard IoT devices. To obtain an efficient UAV selection
mechanism corresponding to each task requirement, the authors proposed three solutions,
namely, energy-aware UAV, fair trade-off UAV, and delay-aware UAV selection. A novel
UAV-aided IoT communication network to provide energy-efficient data gathering and ac-
curate 3D device positioning of IoT devices was proposed in [207], whereas a UAV was
deployed as an aerial anchor node and a flying data collector. Particularly, UAVs could
serve not only as aerial BSs but also as powerful IoT components that are capable of com-
munications, sensing, and data analysis while hovering in the air [208]. Note that none of
above-mentioned works in [204–208] have investigated the influences of latency constraint
on network performance.

Furthermore, despite noticeable achievements for data collection in UAV-assisted IoT
networks [70, 74–76, 204–208], aforementioned works also did not take FD scheme into
consideration. To efficiently exploit the radio spectrum, FD transmission was adopted
in UAV communications [209–212]. By applying a circular trajectory and decode-and-
forward (DF) relaying strategy, the work in [209] maximized instantaneous data rate by
a joint design of beam-forming and power allocation, under individual and sum-power
constraint for the source and relay users. In [210], the authors investigated the spectrum
sharing planning problem for FD UAV relaying systems with underlaid device-to-device
(D2D) communications, which aims to maximize the sum throughput. The work in [211]
maximized the energy efficiency (EE) by jointly optimizing UAV trajectory, as the transmit
and jamming powers of a source and a UAV, respectively. Besides, a new system model
for UAV-enabled FD wireless-powered IoT networks was proposed in [212], in which three
optimization problems, namely, total-time minimization, sum-throughput maximization,
and total energy minimization problem, were investigated.

Unlike previous studies such as [70, 74–78] that only investigate timely data exchange
on the UL or DL channel utilizing HD mode, this work proposes a novel system model
in UAV relay-assisted IoT networks that further explores the impact of requested timeout
(RT) constraints for both UL and DL transmissions. To the best of our knowledge, this is
the first work to jointly optimizes total bandwidth, transmission power, trajectory design,
storage capacity, and latency constraint in UAV relay-assisted IoT networks. To this end,
we formulate two optimization problems and develop efficient iterative algorithms to obtain
a sub-optimal solution. In summary, our contributions are as follows:

1. We propose a novel UAV relay-assisted IoT model that takes into account the la-
tency requirement for UL and DL channels to improve the freshness of information.
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Control center

Interference linkData link Backhaul link
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Ground gateway Overloaded or malfunctioning BS

UAV’s moving direction

Figure 4.1: System model: the UAV is deployed as a flying BS to collect the data from IoT
devices and then transmit to GW.

Therein, UAV-enabled FD relaying is exploited as an effective mean to enhance net-
work performance, i.e., increasing the number of served IoT devices, throughput, and
reducing latency. For instance, the reduced latency and high throughput owing to
FD operation can take the virtual/augmented reality (VR/AR) experiences or emer-
gency communications to the next level. Besides, it also helps to overcome UAV’s
limited storage capacity. Moreover, UAV-enabled HD relaying is also investigated to
fully capitalize on UAV benefits for time-sensitive data collection in IoT networks.

2. We formulate a generalized optimization problem to maximize the total number of
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served IoT devices under the UAV’s maximum speed constraint, total traveling time
constant, maximum transmit power of devices/UAV, limited cache size of UAV, and
latency constraints for both UL and DL. The formulation belongs to the difficult
class of mixed-integer non-convex optimization problem, which is generally NP-hard.
We first relax binary variables into continuous ones and penalize the objective by in-
troducing a penalty function. We then develop an iterative computational procedure
for its solutions, which guarantees convergence to at least a local optimal. The key
idea behind our approach is to derive newly approximated functions for non-convex
parts by employing the inner approximation (IA) framework [213].

3. Inspired by the practical requirement in human safety measurements, the more data
we have collected, the better our predictions are. This motivates us to investigate the
optimization problem in order to maximize the total collected throughput subject to
a given number of served IoT users.

4. The proposed schemes’ effectiveness is revealed via numerical results, which show sig-
nificant improvements in both number of served IoT devices and the total amount of
collected throughput compared with the benchmarks. More specifically, the Bench-
mark FD and Benchmark HD schemes are respectively designed similar to the pro-
posed FD-based and HD-based methods but with fixed resource allocation or fixed
trajectory.

5. Compared to our conference [214], we have made the following major revisions.
Firstly, the work in [214] only considers the throughput maximization problem with
an assumption of perfect CSI from IoT devices to UAV. Moreover, the details of
mathematical analysis are not provided in [214]. In this manuscript, we have updated
the channel model considering the approximated rate functions for both uplink and
downlink, as given in Lemma 1. Besides, we have provided the IA framework in
Section III and detailed the proof of Proposition 1 in Appendix D. We have added an
efficient method to generate an initial feasible point to start the IA-based algorithm
in Section III-B. Lastly, we have reproduced all simulation results in Section V due
to the change of channel model. In addition, we have also added Fig. 3 to illustrate
the UAV’s trajectories.

4.2 System Model

We consider a UAV-aided cooperative wireless IoT network, where a UAV is deployed to
assist the existing terrestrial communication infrastructure in the case of adverse conditions
or natural calamities, as shown in Fig. 4.1. In emergency communications, the ground base
station (GBS) is either partially or completely damaged after a natural disaster or in the
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Device 1           Device 2 Full Duplex 
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𝑛start,2

𝑛end,1𝑛start,1

𝑛end,2

Figure 4.2: Illustration of the data transmission process of 2 IoT devices with N time intervals.
The first IoT device with initial data transmission time at nstart,1 = 2, timeout at nend,1 = 5. The
second IoT device with initial data transmission time at nstart,2 = 3, timeout at nend,2 = 6. The
UAV operates in the FD mode from time slots 5 to 6 since two devices utilize the same sub-carrier.

case that the GBS is overloaded during the peak hours due to its incapability of handling
all the devices at the same time (e.g., a sporting event) [215]. The latter case has been
recognized as one of the key scenarios that need to be effectively solved by fifth-generation
(5G) wireless communication [215,216]. Concretely, a UAV helps to relay data from a set of
K IoT devices (or GUs), denoted by K ≜ {1, . . . ,K}, to a GW. Each IoT device is equipped
with a single antenna and works in HD mode. Due to the SWAP (size, weight, and power)
limitations, the UAV, acting as an on-demand relay, is equipped with one FD antenna,
which can simultaneously be used for data transmission and reception. Specifically, the
UAV can operate in FD or HD mode depending on the system designer. It hovers over the
considered area to effectively gather data from IoT devices and then transmit it to the GW
using UL and DL communication, respectively. Due to limited energy budget, we restrain
the total serving time of UAV as T . We assume that each device is active at different time
instances t, where 0 ≤ t ≤ T . The location of device k is denoted as wk ∈ R2×1, k ∈ K.
We assume that the locations of IoT devices together with their data sizes, the initial data
transmission time (i.e., nstart,k with k ∈ K), and latency requirement (i.e., nend,k with
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k ∈ K) are known to the UAV through the control center.1 Denote nstart,k and nend,k by
the initial data transmission time and timeout constraint of the device k, respectively, for
k ∈ K. It is assumed that the UAV should collect data from device k within nend,k units of
time. For simplicity, we assume that the UAV flies at a constant altitude of H (meters),
e.g., imposed by the regulatory authority for safety considerations. The location of UAV
projected on the ground is denoted as q(t) ∈ R2×1, with 0 ≤ t ≤ T [15].

4.2.1 UAV-to-Ground and Ground-to-UAV Channel Model

For ease of exposition, the time horizon T is discretized intoN equally spaced time intervals,
i.e., T = Nδt with δt denotes the primary slot length. Moreover, let N = {1, . . . , N} denote
a set of all time slots. Note that the UAV location can be assumed to be approximately
unchanged during each time slot compared to the distance from the UAV to IoT devices
since δt is chosen sufficiently small. Then, the UAV trajectory q(t) during time horizon T
can be represented as (q[n])Nn=1 , where q[n] denotes the UAV’s horizontal location at n-th
time interval. Let Vmax denote the maximum velocity of the UAV, then the UAV’s speed
constraint can be presented as

∥q[n] − q[n− 1]∥ ≤ δd = Vmaxδt, n = 2, ..., N. (4.1)

For notation convenience, let us denote the k-th IoT device and UAV by k and U,
respectively. Henceforth, 1k and 2k represent for the UL (i.e., k → U) and DL (i.e.,
U → GW), respectively. Then, the time-dependence distance from k → U or U → GW
(i.e., 1k or 2k), is given by

dik[n] =
√
H2 + ∥q[n] − w∥2, i ∈ {1, 2}, ∀n, k, (4.2)

where w ∈ {wk,w0}, with w0 denotes the location of GW.
In realistic scenarios, the devices are located in different environments, e.g., rural,

urban, suburban, etc. Thus, a generalized channel model consisting of both line-of-sight
(LOS) and non-line-of-sight (NLOS) channel elements is considered. In this work, we
consider a practical channel model that takes into account both large-scale and small-scale
fading channels [217]. Specifically, the channel coefficient at the n-th time slot, denoted by
hik[n], can be written as [70,194]

hik[n] =
√
ωik[n]h̃ik[n], (4.3)

where ωik[n] represents for the large-scale fading effects and h̃ik[n] accounts for Rician
1The control center can take care of the corresponding computations and informs the UAV through

separate signaling, without affecting the performance of the considered framework.
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small-scale fading coefficient. Specifically, ωik[n] can be modeled as

ωik[n] = ω0d
−α
ik [n], (4.4)

where ω0 is the average channel power gain at the reference distance d = 1 meter, and
α ≥ 2 is the path loss exponent for the Rician fading channel [70]. Then, the small scale
fading h̃ik[n] with an expected value E

[
|h̃ik[n]|2

]
= 1, is given by

h̃ik[n] =
√

G

1 +G
h̄ik[n] +

√
1

1 +G
ĥik[n], (4.5)

where G is the Rician factor; h̄ik[n] and ĥik[n] ∼ CN (0, 1) denote the deterministic LoS
and the NLoS component (Rayleigh fading) during time slot n, respectively.

Due to the UL and DL channels’ coexistence using the same frequency at n-th time
slot, the self-interference (SI) may occur at the UAV. Without loss of generality, once the
UAV finishes data collection from device k, then the transmission from UAV to GW can
be conducted.2

Let us denote by x1k[n] and x2k[n] the data symbols with unit power (i.e., E
[
|x1k[n]|2

]
=

1 and E
[
|x2k[n]|2

]
= 1) sent k → U and U → GW at time slot n, respectively. We consider

the transmission process for relaying the device k’s data consisting of two phases: the UL
from device k to UAV and the DL from UAV to GW. As a result, the received signals of
device k at the UAV and GW are respectively given by

y1k[n] =
√
p1k[n]h1k[n]x1k[n] +

√
ρRSIgU[n]

∑
k∗∈K\k

√
p2k∗ [n]x2k∗ [n] + n0, (4.6)

y2k[n] =
√
p2k[n]h2k[n]x2k[n] + n0, (4.7)

where RSI represents for residual self-interference term,
√
ρRSIgU[n] ∑

k∗∈K\k

√
p2k∗ [n]x2k∗ [n]

is the RSI power after all interference cancellations [219–222], ρRSI ∈ [0, 1) is the degree of
RSI, n0 ∼ CN (0, σ2) denotes the additive white Gaussian noise (AWGN); p1k[n] and p2k[n]
are the transmit power of the device k and UAV on the UL and DL to transmit the device
k’s data at time slot n; gU[n] denotes the fading loop channel at the UAV, which interferes
UL reception due to concurrent downlink transmission [223,224].

To deal with the issues involved in limited resources and the UAV’s self-interference,
we consider the resources allocation (i.e., bandwidth and transmit power) for the UL and

2In this work, we adopt a (decode-and-forward) DF relaying technique [142, 218]; thus, the UAV needs
to complete receiving all the data from device k before relaying to GW to guarantee the data encoding
properly. Moreover, a sufficiently large time period is assumed to carry out the data transfer as well as the
decoding process at the UAV.
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DL. Thus, the achievable rate (bits/s) of links from k → U or U → GW to transmit the
data of device k at time slot n are respectively given as

rik[n] = aik[n]B log2 (1 + Γik) , i ∈ {1, 2}, (4.8)

where Γ1k ≜ p1k[n]|h̃1k[n]|2ω0

(H2+∥q[n]−wk∥2)α/2
(
ϕRSI

∑
k∗∈K\k

p2k∗ [n]+σ2
) , Γ2k ≜ p2k[n]|h̃2k[n]|2ω0

(H2+∥q[n]−w0∥2)α/2
σ2

, ϕRSI ≜

ρRSI|gU[n]|2, σ2 denotes the noise power of the AWGN; B denotes the total bandwidth in
hertz (Hz) of the system; a1k[n]B and a2k[n]B are the total bandwidth allocated for the
UL and DL to transmit data of k-th device during time slot n, respectively. Herein, a1k[n]
and a2k[n] represent for the spectrum allocation for devices and the UAV, respectively.
Note that instantaneous CSI elements (i.e., |h̃1k[n]|2 and |h̃2k[n]|2) are difficult to obtain
in advance. Moreover, |h̃1k[n]|2 and |h̃2k[n]|2 are random variables, thus instantaneous
rates (i.e., r1k[n] and r2k[n]) are also random variables. Therefore, the expected values of
received rates at the UAV/GW are expressed as [133,151]

E
[
rik[n]

]
= aik[n]BE[log2

(
1 + Γik

)
], i ∈ {1, 2}, k ∈ K. (4.9)

Due to the troublesome of deriving the probability density function, it raises a difficulty
in obtaining the closed-form expression of rik[n]. Thus, we provide lower-bound functions
of E

[
rik[n]

]
as follows:

Lemma 3. The lower bounds of E
[
r1k[n]

]
and E

[
r2k[n]

]
are respectively given as

r̄1k[n] = a1k[n]B log2

1 + e−Ep1k[n]ω0

(H2 + ∥q[n] − wk∥2)α/2
(
ϕRSI ∑

k∗∈K\k
p2k∗ [n] + σ2

)
, (4.10)

r̄2k[n] = a2k[n]B log2

(
1 + e−Ep2k[n]ω0

(H2 + ∥q[n] − w0∥2)α/2σ2

)
. (4.11)

Proof. The corresponding proof is provided in Appendix A.1.

In practice, for a large number of resources, a1k[n] and a2k[n] are approximately con-
tinuous between 0 and 1. Thus, the bandwidth allocation should satisfy:∑

k∈K
aik[n] ≤ 1, ∀n, i ∈ {1, 2}, (4.12)

0 ≤ aik[n] ≤ 1, ∀k, n. (4.13)

Based on (4.10) and (4.11), the throughput (in bits) received on the UL or DL to
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transmit device k’s data during time slot n, can be written as

Cik[n] = δtRik[n], where i ∈ {1, 2}, (4.14)

where

Rik[n] =
{

r̄ik[n], if n ∈ Tik,
0, otherwise,

(4.15)

Herein, T1k ≜ {nstart,k, . . . , nend,k}, T2k ≜ {nend,k + 1, . . . , N}; (4.14) means that the
UAV only can collect the data from device k (or transmit data to the GW) during time
period T1k (or T2k). Otherwise, the data transmission rate is treated as zero. Specifically,
the UAV only transmits device k’s data to GW iff it finishes the data collection process
for that device. Moreover, the total throughput over N time slots received on the UL and
DL are denoted as C1k = ∑

n∈T1k

δtR1k[n] and C2k = ∑
n∈T2k

δtR2k[n], respectively.

To assist in the mathematical problem formulation, we introduce a new binary variable
λk as

λk =
{

1,Device k is successfully served by the UAV,
0, otherwise.

(4.16)

Definition 4. The value of λk should be equal to one iff the device k’s data is collected by
the UAV while additionally guaranteeing its successful reception at the GW.

Let Sk denotes the data size (in bits) needed to transmit from device k to GW. Then,
we have the RT constraint for transmitting the device k’s data on the UL and DL are
expressed as, respectively

λk
Sk
R1k

≤ (nend,k − nstart,k + 1)δt,∀k, (4.17)

λk
Sk
R2k

≤ (N − nend,k)δt,∀k, (4.18)

where Rik = ∑
n∈Tik

Rik[n], with i ∈ {1, 2}; (4.17) means that the device k must transmit

information to the UAV before timeout constraint, i.e., nend,k; (4.18) implies that the data
transmission process to transmit the device k’s data from U → GW is performed during
the serving time of the UAV.3

3We consider the system model in which the UAV does not transmit the data during taking off and
landing [225]. Thus, the data transmission process only occurs when the UAV is flying in the sky.
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4.2.2 Caching Model

The UAV has a cache with a storage capacity of C. Due to the limited cache size of the
UAV, it can utilize FD mode to release the storage and improve the network throughput.
Considering a storage limitation, the total number of files cached at the UAV should not
exceed its available storage capacity, i.e.,

∑
k∈K

 n∑
l=1

C1k[l] −
n−1∑
l=1

C2k[l]

 ≤ C, (4.19)

where
n∑
l=1

C1k[l] ≜ λkSk −
N∑

l=n+1
C1k[l].

Note that, in order to spend a part of storage capacity for future use, i.e., a free cache
size to store new data streams, the amount of data stored at the UAV is calculated as the
size of files collected from all devices till n-th time slot minus files transmitted to GW till
(n− 1)-th time slot as in (4.19).

4.2.3 Problem Formulation

In this section, we aim to maximize the total number of served IoT devices by jointly opti-
mizing the UAV trajectory q[n], the allocation of resources (i.e., bandwidth and transmit
power assigned for UL and DL), and take into account the storage limitation, under the
assumption that the locations, initial transmission time, and the timeout constraint of all
IoT devices are known a priori.

Let us denote q = {q[n], ∀n}, a = {a1k[n], a2k[n], k ∈ K, n ∈ N }, p = {p1k[n], p2k[n], k ∈
K, n ∈ N }, λ = {λk, k ∈ K}. Based on the above developments, the problem for maximiz-
ing number of served IoT devices can be mathematically formulated as follows:
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PFD : max
q,a,p,λ

∥λ∥1 (4.20)

s.t. λk ∈ {0, 1},∀k, (4.21)
δt min(R1k, R2k) ≥ λkSk, ∀k, (4.22)

λk
Sk
R1k

≤ (nend,k − nstart,k + 1)δt, ∀k, (4.23)

λk
Sk
R2k

≤ (N − nend,k)δt, ∀k, (4.24)

∑
k∈K

λkSk −
N∑

l=n+1
δtR1k[l] −

n−1∑
l=1

δtR2k[l]

 ≤ C,∀n, (4.25)

∑
k∈K

aik[n] ≤ 1, ∀n, (4.26)

0 ≤ aik[n] ≤ 1, ∀k, n, (4.27)
q[1] = qI,q[N ] = qF, (4.28)
∥q[n] − q[n− 1]∥ ≤ δd, n = 2, . . . , N, (4.29)
0 ≤ p1k[n] ≤ Pmax

k [n], ∀k, n, (4.30)
0 ≤

∑
k∈K

p2k[n] ≤ Pmax
U [n], ∀n, (4.31)

where constraint (4.22) means that each IoT device need to upload an amount of data Sk.
In constraint (4.28), qI and qF ∈ R2×1 denote the beginning and ending locations of UAV
projected onto horizontal plane, respectively; (4.29) signifies the maximum speed constraint
of the UAV; constraints (4.30) and (4.31) imply maximum transmit power constraints.

The problem PFD is a mixed integer non-linear program (MINLP), which is NP-hard.
Moreover, the binary constraint (4.21) and the non-convex constraints (4.22) to (4.25)
introduces intractability. Therefore, it is cumbersome to find a direct solution of PFD.
However, a suitable solution (local or global optimal) may be obtained by employing ade-
quate relaxations to PFD. In this regard, we provide a transformation mechanism for PFD,
followed by its corresponding solution in the succeeding section.

4.3 Proposed Iterative Algorithm for solving PFD

This section provides an iterative algorithm based on the IA method to solve the design
problem. The principle of IA framework can be detailed as follows. Let us consider the
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following non-convex problem

min
x∈Rn

f(x) (4.32)

s.t. hm(x) ≤ 0,m = {1, . . . ,M}, (4.33)

where f(x) and hm(x) are non-convex and continuous differentiable functions over Rn. he
key idea of IA is to replace non-convex functions by its approximated convex ones. Let
us denote f̄ (j)(x) and h̄(j)

m (x),∀m are new convex functions, satisfying the properties listed
in [226], i.e.,

f(x) ≤ f̄ (j)(x) and hm(x) ≤ h̄(j)
m (x), (4.34)

f(x(j)) = f̄ (j)(x(j)) and hm(x(j)) = h̄(j)
m (x(j)), (4.35)

∂f(x)
∂x

∣∣∣∣∣
x=x(j)

= ∂f̄ (j)(x)
∂x

∣∣∣∣∣
x=x(j)

and ∂hm(x)
∂x

∣∣∣∣∣
x=x(j)

= ∂h̄
(j)
m (x)
∂x

∣∣∣∣∣
x=x(j)

, (4.36)

where x(j) ∈ F ≜ {x|s.t. (4.33)} is feasible region for problem (4.32). In some special
scenarios, the approximated functions (f̄ (j)(x), h̄(j)

m (x)) can be easily obtained by adopting
first-order Taylor approximation of (f(x), hm(x)) at feasible point x(j). Consequently, we
solve the approximate convex program at iteration j of an iterative algorithm, which is
given by

min
x∈Rn

f̄ (j)(x) (4.37)

s.t. h̄(j)
m (x) ≤ 0,m = {1, . . . ,M}, (4.38)

A general iterative algorithm to solve (4.37) is presented as follows: i) Generate the initial
feasible point x(0) ∈ F ; ii) At iteration j, the optimal solution x⋆ is obtained by solving
(4.37); iii) Update x(j+1) ≜ x⋆ and j = j+1; iv) Repeats steps (ii)−(iii) until convergence.
The detailed proof of convergence can be found in [213,226].

4.3.1 Tractable Formulation for PFD

In this section, we aim to make problem (PFD) more tractable by relaxing the binary
variables of (4.21) into continuous values, i.e., 0 ≤ λk ≤ 1. To obtain near-exact binary
solutions at optimum, we introduce the penalty function to penalize uncertainties of the
binary nature. It is straightforward to see that λk ∈ {0, 1} ⇔

(
0 ≤ λk ≤ 1 & λk − (λk)2 ≤

0
)
. We see that the convex function P(λ) ≜

∑
k∈K

λk(λk − 1) with 0 ≤ λk ≤ 1,∀k is always

non-positive and can be used to measure the degree of satisfaction of (4.21). Similar
to [227, 228], instead of handling the non-convex constraint λk − (λk)2 ≤ 0, we maximize
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the penalty function P(λ) to achieve its satisfaction by incorporating it in the objective
function (see, e.g., [229, Chapter 16]). Hence, the parameterized relaxed problem with
penalty parameter µ ∈ R+ is expressed as

PFD
relaxed : max

q,a,p,λ
∥λ∥1 + µP(λ) (4.39)

s.t. 0 ≤ λk ≤ 1, ∀k, (4.40)
(4.22) to (4.31). (4.41)

Remark 5. Note that in the parameterized relaxed problem PFD
relaxed (4.39), the binary

variables in the original problem (4.20) are relaxed to continuous ones between 0 and 1.
Therefore, if λk,∀k are all binary at optimal, then the relaxation is tight and the obtained
solution is also a feasible solution of problem (4.20). Theoretically, P(λ) should be zero at
convergence to guarantee the same objective value with (4.20) under the sufficiently large
value of µ. Nevertheless, there exists a numerical tolerance in computation and it can be
accepted if P(λ) < ϵ, where ϵ is a very small chosen value corresponding to a large value
of µ [227,230,231].

However, a direct application of IA method to solve PFD
relaxed is inapplicable due to non-

concavity of the objective function and non-convexity of constraints in (4.22)-(4.25) as well
as strong coupling among optimization variables. In what follows, we transform (4.39) into
an equivalent non-convex problem where the IA method can be applied. In this context,
we introduce slack variables z1k[n], z2k[n], and t1k[n] such that

(
H2 + ∥q[n] − wk∥2

)
≤

(z1k[n])2/α,
(
H2 + ∥q[n] − w0∥2

)
≤ (z2k[n])2/α, and ϕRSI ∑

k∗∈K\k
p2k∗ [n] + σ2 ≤ t1k[n],

respectively, where α ≥ 2 for Rician fading channel [70, 232, 233], by which (4.10) and
(4.11) can be rewritten as

r̄1k[n] ≥ rlb
1k[n] ≜ a1k[n]B log2

(
1 + e−Ep1k[n]ω0

z1k[n]t1k[n]

)
, (4.42)

r̄2k[n] ≥ rlb
2k[n] ≜ a2k[n]B log2

(
1 + e−Ep2k[n]ω0

z2k[n]σ2

)
. (4.43)

By substituting (4.42) and (4.43) into (4.14) and (4.15), we respectively obtain C lb
ik [n],

and Rlb
ik[n], where i ∈ {1, 2}. Moreover, we have Rlb

ik = ∑
n∈Tik

Rlb
ik[n] and C lb

ik = ∑
n∈Tik

δtR
lb
ik[n].

Let us denote z = {z1k[n], z2k[n], n ∈ N , k ∈ K}, t = {t1k[n], k ∈ K, n ∈ N }. Then, the
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problem PFD
relaxed can be reformulated as

PFD
relaxed,1 : max

q,a,p,λ,z,t
∥λ∥1 + µP(λ) (4.44)

s.t. (4.40), (4.26) − (4.31), (4.45)
H2 + ∥q[n] − wk∥2 ≤ (z1k[n])2/α ,∀k, n,
H2 + ∥q[n] − w0∥2 ≤ (z2k[n])2/α , ∀n, (4.46)
ϕRSI ∑

k∗∈K\k
p2k∗ [n] + σ2 ≤ t1k[n],∀k, n, (4.47)

λk
Sk
Rlb

1k
≤ (nend,k − nstart,k + 1)δt,∀k, (4.48)

λk
Sk
Rlb

2k
≤ (N − nend,k)δt,∀k, (4.49)

δt min(Rlb
1k, R

lb
2k) ≥ λkSk,∀k, (4.50)∑

k∈K
δtR

lb
2k ≥

∑
k∈K

λkSk,∀k ∈ K, (4.51)

∑
k∈K

(
λkSk −

N∑
l=n+1

δtR1k[l] −
n−1∑
l=1

δtR2k[l]
)

≤ C,∀k, n. (4.52)

It is noteworthy that PFD
relaxed,1 is a much simpler form in comparison to PFD, but

the possibility of a direct solution still seem unviable. This is due to the fact that joint
computations of the optimization parameters (related to (4.48)-(4.52)) introduces non-
convexity to the problem. However, it is still possible to solve the problem in an iterative
manner, with alternating optimization of involved parameters. In the following, we discuss
the above-mentioned approach in detail.

4.3.2 Proposed IA-based Algorithm

We are now in position to convexify (4.44) by applying the IA method [213] under which
the non-convex parts are completely exposed.

Approximation of the objective function: The objective (4.44) is a convex function in
λ, which is useful to apply the IA method. In particular, the convex function P(λ) is
iteratively replaced by the linear function P̂(j)(λ):

P̂(j)(λ) ≜ P(λ(j)) + ▽P(λ(j))
(
λ − λ(j)

)
=
∑
k∈K

(
λk(2λ(j)

k − 1) − (λ(j)
k )2

)
, (4.53)
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where P(λ(j)) = P̂(j)(λ(j)). As a result, the objective function in problem PFD
relaxed−1 can

be replaced by ∥λ∥1 + µP̂(j)(λ).
Approximation of rlb

1k[n] and rlb
2k[n]: Before proceeding further, we can express rlb

ik[n],
i ∈ {1, 2} as

rlb
ik[n] = aik[n]Φik[n], (4.54)

where
Φ1k[n] ≜ B log2

(
1 + e−Ep1k[n]ω0

z1k[n]t1k[n]

)
, (4.55)

Φ2k[n] ≜ B log2

(
1 + e−Ep2k[n]ω0

z2k[n]σ2

)
. (4.56)

To approximate (4.55) and (4.56), we first introduce the following lemmas:

Lemma 6. Consider a concave function h(x, y) ≜
√
xy, x > 0, y > 0. Its convex upper

bound at given points x(j) and y(j) can be given by [219, Appendix B], [226]:

h(x, y) ≤
√
x(j)

2
√
y(j)

y +

√
y(j)

2
√
x(j)

x. (4.57)

Lemma 7. Consider a function h1(x, y, z) ≜ ln
(
1 + x

yz

)
and h2(x, z) ≜ ln

(
1 + x

z

)
, x >

0, y > 0, z > 0. The lower bound of h1(x, y, z) and h2(x, z) at given point x(j), y(j), and
z(j) which are expressed as

h1(x, y, z) ≥ ln
(

1 + x(j)

y(j)z(j)

)
− x(j)

y(j)z(j) + 2
√
x(j)√x
y(j)z(j) −

x(j)
(
x+ y(j)

2z(j) z
2 + z(j)

2y(j) y
2
)

y(j)z(j) (x(j) + y(j)z(j)) ,

(4.58)

h2(x, z) ≥ ln
(

1 + x(j)

z(j)

)
− x(j)

z(j) + 2
√
x(j)√x
z(j) − x(j) (x+ z)

z(j) (x(j) + z(j)) . (4.59)

Proof. See Appendix A.2.

Based on lemmas 4.57 and 7, Φ1k[n] and Φ1k[n] are lower bounded by

Φ1k[n] ≥ Φ̄1k[n] ≜ B
(
Ξ1 + Ξ2 − Ξ3

)
, (4.60)

Φ2k[n] ≥ Φ̄2k[n] ≜ B
(
Ξ4 + Ξ5 − Ξ6

)
, (4.61)

where Ξ1,Ξ2,Ξ3,Ξ4,Ξ5, and Ξ6 are defined in Appendix A.3.
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By introducing slack variable Φlb
ik[n], i ∈ {1, 2}, we have

Φ̄ik[n] ≥ Φlb
ik[n]. (4.62)

Consequently, rlb
ik[n], i ∈ {1, 2} is converted to the following constraints:

rlb
ik[n] ≥ r̄lb

ik[n] = aik[n]Φlb
ik[n]. (4.63)

Besides, since aik[n]Φlb
ik[n] is non-convex functions. To deal with these constraints, we

substitute aik[n]Φlb
ik[n] by equivalent Difference of Convex (DC) function 0.25

[
(aik[n] +

Φlb
ik[n])2 − (aik[n] − Φlb

ik[n])2
]
. Then, we apply the first-order Taylor approximation to

approximate the convex function (aik[n] + Φik[n])2 at the (j+ 1)-th iteration, respectively.
Hence, functions r̄lb

ik[n] in (4.63) is given by

aik[n] Φlb
ik[n]

≥

(
a

(j)
ik [n] + Φlb,(j)

ik [n]
)2

4 +

(
a

(j)
ik [n] + Φlb,(j)

ik [n]
)

2

×
(
aik[n] − a

(j)
ik [n] + Φlb

ik[n] − Φlb,(j)
ik [n]

)
−

(
aik[n] − Φlb

ik[n]
)2

4 ≜ r̃lb
ik[n].(4.64)

To convexify (4.48)-(4.52), we introduce the slack variable r̂lb
ik[n], with i ∈ {1, 2}, the

constraints (4.64) is innerly approximated by the following convex constraint:

r̃lb
ik[n] ≥ r̂lb

ik[n], i ∈ {1, 2}. (4.65)

As a result, substituting r̂lb
ik[n] into (4.14), (4.15), we obtain Ĉ lb

ik [n], R̂lb
ik[n]. Moreover,

we have R̂lb
ik = ∑

n∈Tik

R̂lb
ik[n], Ĉ lb

ik = ∑
n∈Tik

δtR̂
lb
ik[n]. Let us denote Φ = {Φlb

1k[n],Φlb
2k[n], ∀k, n}

and r = {r̂lb
1k[n], r̂lb

2k[n],∀k, n}. Bearing all the above developments in mind, we solve the
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following approximate convex program at the (j + 1)-th iteration:

Pconvex : max
Ψ

∑
k∈K

λk + µP̂(j)(λ) (4.66)

s.t. (4.26) − (4.31), (4.40), (4.46), (4.65), (4.67)

λk
Sk

R̂lb
1k

≤ (nend,k − nstart,k + 1)δt,∀k, (4.68)

λk
Sk

R̂lb
2k

≤ (N − nend,k)δt,∀k, (4.69)

δt min
(
R̂lb

1k, R̂
lb
2k

)
≥ λkSk,∀k, (4.70)

K∑
k=1

δtR̂
lb
2k ≥

K∑
k=1

λkSk, (4.71)

∑
k∈K

(
λkSk −

N∑
l=n+1

δtR̂
lb
1k[l] −

n−1∑
l=1

δtR̂
lb
2k[l]

)
≤ C,∀k, n. (4.72)

where Ψ ≜ {q,a,p,λ, z, t,Φ, r} and Ψ(j) ≜ {q(j),a(j),p(j),λ(j), z(j), t(j),Φ(j)} as the
feasible point for (4.66) at iteration j. The convex program (4.66) can be solved by using
standard convex optimization solvers [199]. To ensure the feasibility of (4.66) at the first
iteration, an appropriate starting point Ψ(0) is necessary. This selection should be made
such that the feasibility of (4.70) is always guaranteed while additionally satisfying other
constraints. Therefore, we successively solve the following simplified version of (4.66):

PFD
feasible : max

Ψ,{τk}K
k=1

min
∀k

τk (4.73)

s.t. δt min
(
R̂lb

1k, R̂
lb
2k

)
− λkSk ≥ τk, ∀k, (4.74)

(4.67) − (4.69), (4.71), (4.72), (4.75)

where τk is the slack variable. The initial feasible point Ψ(0) is obtained until problem
(4.73) is successfully solved and τk ≥ 0,∀k. Then, the sub-optimal solution is obtained
by successively solving (4.66) and updating the involved variables until satisfying the con-
vergence condition (discussed below in detail). Finally, a pseudo-code for solving (4.20) is
summarized in Algorithm 4.
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Algorithm 4 Proposed IA Based Design to Solve (4.20)
1: REQUIRE
2: Set j := 0 and and solve (4.73) to generate an initial feasible point Ψ(0).
3: REPEAT
4: Solve (4.66) to obtain the optimal solution Ψ⋆ ≜ (q⋆,a⋆,p⋆,λ⋆, z⋆, t⋆,Φ⋆, r⋆).
5: Update q(j+1) := q⋆,a(j+1) := a⋆,p(j+1) := p⋆,λ(j+1) := λ⋆, z(j+1) := z⋆, t(j+1) := t⋆,

Φ(j+1) := Φ⋆.
6: Set j := j + 1.
7: UNTIL
8: Convergence

4.3.3 Convergence and Complexity Analysis:

Convergence Analysis

Algorithm 1 is mainly based on inner approximation, where its convergence is proved
in [213,226]. To be self-contained, we introduce the following proposition.

Proposition 8. The proposed Algorithm 4 yields a sequence of improved solutions con-
verging to at least a local optimum of the relaxed problem PFD

relaxed.

Proof. See Appendix A.4.

Complexity Analysis

We now provide the complexity analysis for each iteration in Algorithm 0. Since problem
(4.66) is convex, several solvers employing the interior point method can be applied to
solve efficiently [199]. More specifically, the convex problem (4.66) involves N(7 + 8K) +
4K linear and quadratic constraints, and 5N(1 + 3K) + K scalar real variables. As a
result, the per-iteration computational complexity required to solve (4.66) is O(N(7 +
8K) + 4K)0.5(5N(1 + 3K) + K)3 [234, Chapter 6]. It results in the overall complexity of
O
(
Ni(N(7 + 8K) + 4K)0.5(5N(1 + 3K) + K)3

)
, where Ni is the number of iterations to

reach a local optimal solution.

4.3.4 Throughput Maximization:

In an emergency case or during a natural disaster, data needs to be collected promptly to
assess the current situation in a given area. The more collected information we have, the
better our predictions are. This motivates us to present a new problem that maximizes
the total amount of collected data with a given number of served IoT devices subjected to
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Algorithm 5 Proposed IA-based Iterative Algorithm to Solve (4.79)
1: REQUIRE
2: Set j := 0 and generate an initial feasible point Ψ(0) for all constraints in (4.79).
3: REPEAT
4: Solve (4.79) to obtain the optimal solution Ψ⋆ ≜ (q⋆,a⋆,p⋆,λ⋆, z⋆, t⋆,Φ⋆, r⋆).
5: Update q(j+1) := q⋆,a(j+1) := a⋆,p(j+1) := p⋆,λ(j+1) := λ⋆, z(j+1) := z⋆, t(j+1) :=

t⋆,Φ(j+1) := Φ⋆.
6: Set j := j + 1.
7: UNTIL
8: Convergence.

certain quality-of-service (QoS) constraints

PFD
rate : max

q,a,p,λ

∑
k∈K

δtmin(R1k, R2k) (4.76)

s.t. ∥λ∥1 ≥ λthresh, (4.77)
(4.21) − (4.31), (4.78)

where constraint (4.78) means that the total number of served IoT devices must be greater
than or equal to a predefined threshold value, i.e., λthresh.

Similar to PFD, the problem PFD
rate is also a MINLP, which is NP-hard. Fortunately, by

applying the relaxation method as in Section 4.3, (4.76) is rewritten as

PFD
rate,convex : max

Ψ

∑
k∈K

δtmin(R̂lb
1k, R̂

lb
2k) + µP̂(j)(λ) (4.79)

s.t. (4.67) − (4.72) (4.80)

where R̂lb
ik can be obtained as in Section 4.3.2.

Consequently, the solution of problem PFD
rate,convex can be found by successively solving

a simpler convex program, as summarized in Algorithm 5.

4.4 Half Duplex Mode Scheme

4.4.1 Maximizing the Number of Served IoT devices:

In order to stress the benefits of our proposed method using FD mode, we will describe
the problem again by considering HD mode at the UAV in this section. Then, (4.6) and
(4.7) can be rewritten as

yHD
ik [n] =

√
pik[n]hik[n]xik[n] + n0, i ∈ {1, 2}. (4.81)
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In (4.81), the UAV only transmits data to the GW when it finishes collecting data from
all GUs in HD mode. Consequently, the RSI is disappear compared to that of (4.6). Thus,
the achievable rate (bits/s) of link from k → U or U → GW to transmit the data of device
k at time slot n is given as

rHD
ik [n] = aik[n]B log2

1 + pik[n]|h̃1k[n]|2ω0(
H2 + ∥q[n] − w∥2

)α/2
σ2

, i ∈ {1, 2}, (4.82)

where w equals to wk and w0 corresponding to i equals to 1 and 2, respectively.
As the transformations to obtain (4.11), the approximated result of rHD

ik [n] can be
expressed as

r̄HD
ik [n] = aik[n]B log2

1 + e−Epik[n]ω0(
H2 + ∥q[n] − w∥2

)α/2
σ2

. (4.83)

Proof. It can be obtained similar to the proof of (4.7).

By replacing (4.83) into the equations (4.14) and (4.15), we obtain CHD
1k [n], CHD

2k [n] =
C2k[n], RHD

1k [n], and RHD
2k [n] = R2k[n], respectively. Then, we reformulate the problem of

maximizing the total number of served IoT devices as follows

PHD : max
q,a,p,λ

∥λ∥1 (4.84)

s.t. (4.21), (4.24), (4.26) − (4.31), (4.85)
δt min(RHD

1k , R2k) ≥ λkSk,∀k, (4.86)

λk
Sk
R1k

≤ (nend,k − nstart,k + 1)δt, ∀k, (4.87)

∑
k∈K

(
λkSk −

N∑
l=n+1

δtR1k[l] −
n−1∑
l=1

δtR2k[l]
)

≤ C,∀n. (4.88)

The problem PHD is non-convex because the binary constraint (4.21) and other non-
convex constraints (4.24), (4.86), (4.87), and (4.88). In order to seek a suitable solution, we
first relax the binary constraint (4.21) as in (4.45). Then, by introducing zHD

1k [n] and zHD
2k [n]

such that
(
H2 + ∥q[n] − wk∥2

)
≤ (zHD

1k [n])2/α and
(
H2 + ∥q[n] − w0∥2

)
≤ (zHD

2k [n])2/α,
respectively, with α ≥ 2 for Rician fading channel [70,232,233], by which the (4.83) can be
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expressed as

r̄HD
ik [n] = aik[n]B log2

(
1 + e−Epik[n]ω0

zHD
ik [n]σ2

)
, with i ∈ {1, 2}. (4.89)

It is easy to see that the r̄HD
ik [n] is totally the same as r̄lb

2k[n] in (4.11). Thus, we can
apply the IA method for r̄lb

2k[n] in Section 4.3 to r̄HD
ik [n]. As a result, rHD

ik [n] can be rewritten
as

r̄HD
ik [n] = aik[n]ΦHD

ik [n]. (4.90)

where

ΦHD
ik [n] = B log2

(
1 + e−Epik[n]ω0

zHD
ik [n]σ2

)
. (4.91)

Similar to (4.62), Φik[n] is lower bounded by

ΦHD
ik [n] ≥ Φ̄HD

ik [n], (4.92)

where Φ̄HD
1k [n] and Φ̄HD

2k [n] can be calculated as Φ̄2k[n], see Appendix A.2.

As in (4.63), it follows that

rHD
ik [n] ≥ rHD,lb

ik [n] = aik[n]ΦHD,lb
ik [n], (4.93)

where ΦHD,lb
ik [n] is a new slack variable which is lower bound of Φ̄HD

ik [n]. Then, we apply
the first order Taylor approximation for aik[n]ΦHD,lb

ik [n], it yields to

rHD,lb
ik [n] ≥ r̄HD,lb

ik [n], (4.94)

where r̄HD,lb
ik [n] and r̄HD,lb

ik [n] can be represented as in RHS of (4.64).

In turn, by introducing a slack variable r̂HD,lb
ik [n], the constraint (4.94) is innerly ap-

proximated by the following convex constraints:

r̄HD,lb
ik [n] ≥ r̂HD,lb

ik [n]. (4.95)

In Algorithm 6, we propose an iterative algorithm to solve the problem (4.84). At the
j-th iteration, it solves the following convex program:
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Algorithm 6 Proposed IA-based Iterative Algorithm to Solve (4.96)
1: REQUIRE Set j := 0 and generate an initial feasible point Ψ(0) for all constraints in (4.96).
2: REPEAT
3: Solve (4.96) to obtain the optimal solution Ψ⋆ ≜ (q⋆,a⋆,p⋆,λ⋆, z⋆,Φ⋆, r⋆).
4: Update q(j+1) := q⋆,a(j+1) := a⋆,p(j+1) := p⋆,λ(j+1) := λ⋆, z(j+1) := z⋆.
5: UNTIL
6: Convergence

PHD
convex : max

Ψ

∑
k∈K

λk + µP̂(j)(λ) (4.96)

s.t. (4.26) − (4.31), (4.40), (4.95), (4.97)
δt min(R̂HD,lb

1k , R̂HD,lb
2k ) ≥ λkSk,∀k, (4.98)

λk
Sk

R̂HD,lb
1k

≤ (nend,k − nstart,k + 1)δt,∀k, (4.99)

∑
k∈K

(
λkSk −

N∑
l=n+1

δtR̂
HD,lb
1k [l] −

n−1∑
l=1

δtR̂
HD,lb
2k [l]

)
≤ C,∀n, (4.100)

λk
Sk

R̂HD,lb
2k

≤ (N − nend,k)δt,∀k, (4.101)(
H2 + ∥q[n] − wk∥2

)
≤ (zHD

1k [n])2/α,(
H2 + ∥q[n] − w0∥2

)
≤ (zHD

2k [n])2/α. (4.102)

Similar to (4.66), we adopt penalty function in objective to guarantee the convergence
of λk value to either 0 or 1, ∀k ∈ K. The initial feasible point to solve (4.96) can be
obtained similar to (4.73).

Complexity Analysis

The convex problem (4.96) involves N(7 + 8K) + 4K linear and quadratic constraints, and
3N(1 + 4K) +K scalar real variables. As a result, the per-iteration complexity required to
solve (4.96) is (N(7 + 8K) + 4K)0.5(3N(1 + 4K) +K)3. It results in the overall complexity
is O

(
Ni(N(7 + 8K) + 4K)0.5(3N(1 + 4K) +K)3

)
, with Ni is the number of iterations to

reach a local solution.
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Algorithm 7 Proposed IA-based Iterative Algorithm to Solve (4.105)
1: REQUIRE
2: Set j := 0 and generate an initial feasible point Ψ(0) for all constraints in (4.105).
3: REPEAT
4: Solve (??) to obtain the optimal solution Ψ⋆ ≜ (q⋆,a⋆,p⋆,λ⋆, z⋆,Φ⋆, r⋆, t⋆).
5: Update q(j+1) := q⋆,a(j+1) := a⋆,p(j+1) := p⋆,λ(j+1) := λ⋆, z(j+1) := z⋆, t(j+1) :=

t⋆,Φ(j+1) := Φ⋆.
6: Set j := j + 1.
7: UNTIL
8: Convergence

4.4.2 Throughput Maximization:

In this section, we reuse all the slack variables as introduced in Sections 4.3.4 and 4.4.1.
First, the throughput maximization problem for HD mode can be presented as:

PHD
rate : max

q,a,p,λ

∑
k∈K

δtmin(RHD
1k , R

HD
2k ) (4.103)

s.t. (4.77), (4.85) − (4.88). (4.104)

By following the same steps presented in Section 4.3.4, we obtain the following convex
optimization problem:

PHD
rate−convex : max

Ψ

∑
k∈K

δtmin(R̂HD,lb
1k , R̂HD,lb

2k ) + µP̂(j)(λ) (4.105)

s.t. (4.77), (4.97) − (4.102), (4.106)

where R̂HD,lb
ik can be obtained as in Section IV-A. Due to the convexity of problem PHD

rate,
the solution of problem PHD

rate can be iteratively obtained as in Algorithm 7.

4.5 Numerical Results

In this section, we present numerical results to evaluate the proposed joint bandwidth
allocation and transmit power for the devices/UAV as well as the UAV trajectory design in
UAV-assisted IoT networks. We consider a system with K IoT devices that are randomly
distributed in a horizontal plane, i.e, area = x2 (m2), with x = 500 m. We assume
that the GW, the initial location, and end location of the UAV are located at (0, 500
m), qI = [500 m, 200 m], and qF = [300 m, 0], respectively. The UAV flight altitude
is invariant at H = 100 m [15]. The total bandwidth is B = 20 MHz. Thus, the total
AWGN power is σ2 = −174 + 10 log10(B) = −100.9897 dBm. The transmit power budget
of the UAV and IoT devices is respectively set as Pmax

U = 18 dBm and Pmax
k = 10 dBm.
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Figure 4.3: Geometry distribution of GUs and the UAV trajectory

Other parameters are set as follows: maximum speed Vmax = 50 m/s, path loss exponent
α = 2.4, ω0 = -30 dB, Sk ∈ [10, 70] Mbits, one time slot duration δt = 0.5 s, the maximum
collection time deadline for each device k nend,k is uniformly distributed between nmin

end,k
and nmax

end,k. The RSI suppression ρRSI is set to -80 dB [114, 235]. To show the superiority
of our designs, we compare the proposed methods with benchmark schemes. Herein, the
benchmark FD 2 (BFD2) and benchmark HD 2 (BHD2) are respectively implemented
similar to Algorithms 0 and 0 with fixed resource allocation, i.e., a1k[n] = a1k[n] = 1

K ,
p1k[n] = Pmax

k [n], p2k[n] = Pmax
U
K . The benchmark FD 1 (BFD1) and benchmark HD 1

(BHD1) are implemented with a fixed trajectory, i.e., linear from initial to final locations.

4.5.1 Maximizing the Number of Served IoT devices:

Fig. 4.3 plots the UAV’s designed trajectory corresponding to FD and HD mode, with
N = 70 times slots, ηstart,k ∈ [2, 15], ηend,k ∈ [25, 50], area = 700 m × 700 m, C = 1000,
and Sk values are ranging from 10 to 55 Mbits, Pmax

U = 19 dBm and Pmax
k = 10 dBm. In

additions, the GW, initial location, and end location of the UAV are respectively set as
(0, 700 m), qI = (700 m, 400 m), qI = (300 m, 0). First, we observe that the proposed FD
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Figure 4.4: Percentage of served devices
vs. cache size in FD mode with different value
of rthresh.
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method significantly improves the number of served IoT devices than the HD method, i.e.,
20 and 13 served GUs in FD and HD mode, respectively. Besides, the UAV can fly closer to
GW and GUs in FD than in HD mode. It is because the UAV transfers device k’s data to
GW right after it finishes gathering data of that IoT device in FD-based scheme. While in
HD mode, the UAV only operates in the downlink transmission when it completes the data
acquisition for all users on the uplink to prevent RSI at the UAV. Consequently, the UAV
in the FD scheme has more time to fly closer to GW and GUs. Thus, it obtains a higher
probability of satisfying the GUs’ RT. The UAV in the HD mode can collect information
and fulfill the latency constraint for each IoT device, but it has less time to move forward
GUs/GW to collect/offload the generated data. Thus, the performance in the HD-based
method is degraded.

In Fig. 4.4, we investigate the performance of FD-based schemes with different QoS re-
quirements. Specifically, the QoS is defined as the minimum rate threshold at the UAV/GW
to successfully decode the signal, i.e., r1k,thresh[n] and r2k,thresh[n]. For simplicity, we assume
that r1k,thresh[n] = r2k,thresh[n] = rthresh. It can be seen that the more the minimum rate
threshold is required, the fewer users the system can serve. This is because the UAV tends
to come closer or spend more time around an IoT device to gain a higher rate requirement.
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Figure 4.6: Percentage of served devices vs. cache size with different range of nend,k.

As a result, the UAV has less chance of serving more devices due to limited flight time and
latency constraints per IoT user. Another observation is that for larger cache sizes, the
number of served users increases. It is due to the fact that the UAV has more capacity to
store incoming data. Thus, the UAV can serve more users before offloading information to
GW. Similar to Fig. 4.3, our proposed FD algorithm achieves a much better percentage of
served IoT devices compared to BFD1 and BFD2 schemes, respectively. Particularly, the
performance of the BFD2 outperforms BFD1 with a small QoS requirement, i.e., rthresh =
0.5. However, the BFD2’s performance is inferior to that of BFD1 method with a large
QoS value, i.e., rthresh = 1.2. This is due to the fixed resource allocation per each time
slot n in these algorithms. This additionally leads to fluctuations in data transmission rate
values with low variance during time slot n, i.e., r1k[n] and r2k[n]. Thus, when the rthresh
value is still lower than the average rate of the BFD2, the performance is not significantly
affected. Nevertheless, if rthresh is large enough, the performance of BFD2 will drastically
be influenced.

Fig. 4.5 depicts the percentage of served IoT devices versus cache size with different
value of Pmax

k [n]. The parameters are set up similarly as shown in Fig. 4.4, e.g., rthresh =
0.5. First, we observe that HD-based schemes’ performance is interior to that of FD
counterparts. In particular, at Pmax

U = 20 dBm and C = 800, the HD method only serves
up to 85 % number of users, while the FD scheme can serve all IoT devices with Pmax

U = 18
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dBm and C = 800, as shown in Fig. 4.4. This also confirms the advantages of the FD
system. Second, it can be easily seen that the HD scheme outperforms benchmark ones,
i.e., BHD1 and BHD2. Specifically, at Pmax

U = 20 dBm and C = 500, the HD algorithm
can serve 85% of GUs, and the BHD1 achieves less than 15% OP. In comparison, the BHD2
scheme imposes a 35% percentage of served IoT devices. In Figs. 4.4 and 4.5, the proposed
FD and HD algorithms provide significantly better performance than those benchmarks,
which shows the superiority of these designed schemes compared to other ones.

Fig. 4.6 shows the impact of different value of ηend,k on our system, with N = 80,
K = 20, area = 500 m × 500 m, Pmax

U = 18 dBm, Pmax
k = 15 dBm, ηstart,k ∈ [2, 20],

and Sk value is ranging from 10 to 55 Mbits. It is observed that the percentage of served
users increases corresponding to ηend,k ∈ [65, 70], [60, 65], [55, 60], [50, 55], [45, 50], [40, 45],
respectively. It can be explained by constraint (4.22), which describes the condition of the
user being successfully served. Since the total throughput collected is proportional to the
time duration allocated to the UL/DL. When the given time for UL from an IoT device to
a UAV is large enough, the number of served IoT users depends significantly on the time
allocation for DL from UAV to GW. Furthermore, the time period for DL is calculated as
N−ηmin

end,k and N−ηmax
end,k for the FD and HD schemes, respectively. We see that the period

of time allocated for DL in the FD algorithm is higher than that in the HD algorithm, such
that the performance of the FD scheme outperforms the HD one. Specifically, the total
number of served IoT users obtained from the HD scheme equals that of the FD method
when the value of N −ηmax

end,k is large enough. For instance, in Figs. 4.6(a) and 4.6(b), both
proposed methods can serve the maximum number of IoT devices when ηend,k ∈ [40, 45] and
C ≥ 600. In this scenario, the UAV should work in HD mode for simplicity of operation
in realistic implementation.

In Fig. 4.7, we investigate the effect of data size on system performance, where K =
20, B = 5 Mhz, ηstart,k ∈ [2, 20], nmin

end,k = 30 time slots, and nmax
end,k = 55 time slots, with N

= 70 time slots. As inferred from the results, the FD algorithm significantly improves the
percentage of the served IoT devices compared to the HD algorithm for all values of cache
size. Specifically, at Sk ∈ [10, 30] Mbits and C = 400 Mbits, the FD scheme can serve
85% of IoT users on the network while HD imposes 40% of IoT users served. Furthermore,
performance is degraded by increasing packet size Sk due to limited available resources for
IoT devices or the UAV, i.e., Pmax

U , Pmax
k , Vmax, and B. Besides, when the Sk value is small,

corresponding to low data rate IoT devices, i.e., Sk ∈ [1, 10] Mbits, the number of IoT
users successfully served by proposed methods converge to a saturation value. Therefore,
the UAV can operate in HD mode instead of FD one.

Fig. 4.8 illustrates the percentage of served IoT devices versus network size (maximum
number of IoT devices located in the network area) with different data sizes, where B = 10
MHz, N = 70, Pmax

U = 18 dBm, Pmax
k = 15 dBm, nstart,k ∈ [2, 15] seconds, nmin

end,k = 25 time
slots, nmax

end,k = 55 time slots, and C = 1000 Mbits. Similar to Figs. 4.3-4.7, the percentage
of IoT devices served by the FD method is better than the HD one. In addition, the
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Figure 4.7: Percentage of served devices
vs. cache sizes with different data size Sk.
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Figure 4.8: Percentage of served devices
vs. number of IoT devices.

percentage of served users is reduced by increasing the number of IoT users in the same
network area. It is due to limited resources (i.e., bandwidth and transmit power allocated
for UL and DL) and Vmax when more IoT devices are considered. Besides, the percentage
of served users will enlarge by decreasing the packet sizes Sk. This is expected because the
UAV needs to spend more time and resources to compensate for higher Sk increase.

Fig. 4.9 presents the results corresponding to the percentage of served GUs versus
Pmax

U with different nend,k values. As shown, the number of served users is enhanced by
increasing the power budget, i.e., Pmax

U . Furthermore, FD scheme provides better results
than HD scheme when Pmax

U is relatively small, e.g., Pmax
U < 22 dBm with nend,k ∈ [40,

50] seconds. Nevertheless, the HD method can obtain the same number of served users as
the FD method when the Pmax

U value is large, e.g., Pmax
U ≥ 22 dBm with nend,k ∈ [40, 50]

seconds. This is because the FD mode suffers from RSI, which significantly increases the
noise power in the UAV compared to the HD mode. In addition, RSI is linearly proportional
to Pmax

U as in (4.8). Therefore, when Pmax
U is large, the UAV should operate in HD mode

since the FD mode requires more energy, which may exceed the system energy budget. It
is due to the fact that in FD mode, the UAV starts to transmit data to GW earlier than
in HD mode, which is highlighted in Fig. 4.5. This results in higher energy consumption
in the UAV when it manoeuvers in FD mode.
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U with different data size.

4.5.2 Throughput Maximization:

In the following, we present the corresponding results for the total throughput maximiza-
tion problem described in Sections 4.3.4 and 4.4.2. In Fig. 4.10, the total achieved through-
put is given as a function of network sizes, i.e., area is ranging from 500 m × 500 m to
900 m × 900 m, with K = 20, Sk is ranging from 20 to 70 Mbits, B = 10 Mbits, N = 70
time slots, nstart,k ∈ [2, 20] seconds, and nend,k ∈ [30, 45] seconds. Specifically, the achieved
throughput is defined as the total throughput that the UAV transfers from GUs to GW.
Herein, we only take into account the throughput of successfully served GUs. We found
that the proposed algorithms (i.e, FD and HD) significantly improve throughput perfor-
mance compared to references (i.e., BFD1, BFD2, BHD1, BHD2) for all values of network
sizes, i.e., x (meters). Specifically, at x = 700 m, FD algorithm can obtain 788 Mbits and
BFD1 algorithm achieves less than 131 Mbits. Whereas BFD2, HD, BHD1, and BHD2 im-
pose 230, 537, 372, and 140 Mbits, respectively. In particular, an interesting result is that
HD is even better than BFD2, which underlines the superiority of the proposed algorithms
over the references. That is due to the benefits of optimizing resource allocation.

In Fig. 4.11, we investigate the effect of system bandwidth on maximum throughput,
with K = 20, area = 700 m × 700 m, Sk ranging from 10 to 70 Mbits, Pmax

U = 18 dBm and
Pmax
k = 10 dBm, N = 70 time slots, nstart,k ∈ [2, 20] seconds, and nstart,k ∈ [45, 55] seconds.

Maximum throughput is defined as the total throughput that the UAV can convey to the
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Figure 4.10: Total achievable throughput
vs. different network sizes.
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Figure 4.11: Maximum system throughput
vs. different bandwidth.

GW regardless of whether or not each GU is successfully served. It has been observed
that all schemes achieve better performance with an increase in total bandwidth. This is
because the higher the bandwidth allocation, the greater the transmission can be achieved.
Fig. 4.11 shows that FD schemes’ performance is significantly better than the HD ones,
since the UAV has more time to transfer collected data to GW in FD-based methods
compared to HD-based ones. Therefore, they can be considered suitable for practical high
throughput applications.

4.6 Summary

In this chapter, we investigated the resource allocation and trajectory design for UAV-
assisted FD IoT networks with the emergency communication system, taking into account
latency requirements of IoT devices and the limited storage capacity of the UAV. In this
context, we formulated a novel problem to maximize the total number of served IoT devices
via a joint optimization of the UAV trajectory, allocated bandwidth, as well as the trans-
mission power of IoT devices and UAV while satisfying the requested timeout constraints
and storage capacity. Due to non-convexity of the formulated problem, we first trans-
formed the original problem into a tractable form, which is then solved using an iterative
algorithm with a polynomial computational complexity per iteration. Besides, pertaining
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to the realistic requirements for improving the estimation accuracy in a natural disaster or
emergency scenario, we proposed an additional optimization problem in order to maximize
the total collected data while satisfying the threshold of a minimum number of served
IoT devices. We illustrated via numerical results that the proposed designs outperform
the benchmark schemes in terms of both the total number of served IoT devices and the
amount of collected data. Notably, in the scenarios such as when IoT devices’ RT is not
stringent, in the case of small data size, or required Pmax

U is large, the UAV should operate
in the HD mode for a simple implementation.
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Chapter 5
Backscatter- and Cache-assisted UAV
Communications

Unmanned aerial vehicle (UAV) has been widely adopted in wireless systems due to its flex-
ibility, mobility, and agility. Nevertheless, a limited onboard battery greatly hinders UAV
to prolong the serving time from communication tasks that need a high power consump-
tion in active RF communications. Fortunately, caching and backscatter communication
(BackCom) are appealing technology for energy-efficient communication systems. This
motivates us to investigate a wireless communication network with backscatter- and cache-
assisted UAV technology. We assume a UAV with a cache memory is deployed as a flying
backscatter device (BD), term the UAV-enabled BD (UB), to relay the source’s signals to
the destination. Besides, the UAV can harvest energy from the source’s RF signals and
then utilizes it for backscattering information to the destination. In this context, we aim
to maximize the total throughput by jointly optimizing the dynamic time splitting (DTS)
ratio and the UB’s trajectory with caching capability at the UB. The formulation is trouble-
some to directly solve since they are mixed-integer non-convex problems. To find solutions,
we decompose the original problem into two sub-problems, whereas we first optimize the
DTS ratio for a given UB’s trajectory and the UB’s trajectory is finally optimized for a
given DTS ratio. By using the KKT conditions, closed-form expressions for the optimal
values of the DTS ratio are obtained, which greatly reduce the computation time. More-
over, the solution of the second sub-problem can be acquired by adopting the successive
convex approximation (SCA) technique. Consequently, efficient alternating algorithms are
proposed for both EH models by leveraging the block coordinate descent (BCD) method.
Finally, the intensive numerical results demonstrate that our proposed schemes achieve
significant throughput gain in comparison to the benchmark schemes.

The rest of the chapter is organized as follows. Introduction to the current state of
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the art is discussed in Section 5.1. The system model and problem formulation are
given in Section 5.2. The proposed iterative algorithm for solving linear EH model-based
UAV-enabled BackCom is presented in Section 5.3. Numerical results are illustrated in
Section 5.4, and Section 5.5 summarize the chapter.

5.1 Introduction to Backscatter- and Cache-assisted UAV
Communications

Unmanned aerial vehicles (UAVs) have attracted significant attention from both academia
and industry due to their flexible deployment, low cost, and high maneuverability [3,203].
Indeed, UAVs have enabled various applications such as military, agriculture, transporta-
tion, search and rescue missions, surveillance and monitoring, telecommunications [3,15,78,
121, 203, 203, 236, 237]. Particularly, if properly designed and deployed, UAVs can provide
efficient solutions for wireless communication networks. Specifically, UAVs can be utilized
as aerial/flying base stations (BSs) to support terrestrial BSs that are located in fixed
locations and cannot be shifted elsewhere. Especially, in a natural disaster where terres-
trial BSs are damaged or isolated, portable BSs do exist but they have to be moved using
ground vehicles which is problematic when infrastructures for publication transportation
systems may be destroyed. Consequently, UAVs can be swiftly deployed to disseminate
vital information to people or help them to communicate with authorities as soon as possi-
ble [78,121]. For industrial applications, Google Project Wing and Amazon Prime Air have
built and tested drones deliveries that could be used after a disaster (i.e., flood, earthquake)
or in extreme weather conditions [9]. They expect to develop an advanced delivery system
where drones help to bring medications or foods to people in the areas that conventional
vehicles cannot reach. Besides, Facebook Halts Aquila and Google Loon projects aim at
beaming internet access to people around the world who cannot connect to the Internet
by using drones/balloons [10]. Furthermore, AT&T and Qualcomm are planning to adopt
UAVs for facilitating large-scale wireless communications in 5G networks [12].

Recently, UAVs have been proposed as relays to improve the connectivity of net-
works [18, 121, 212, 238–240]. Especially, in case direct communications links are missing
due to shadowing or un-communication devices by the BSs during peak hours. In these
cases, UAVs are deployed as relays to help convey information from the source to the
destination. In [238], the authors studied UAVs-assisted self-organized device-to-device
(D2D) networks. Specifically, they aimed to maximize the total throughput via jointly
optimizing the channel allocation, relay deployment, and relay assignment. Li et al. [239]
investigated the joint positioning and power control to maximize the sum rate of UAV
relay networks, wherein the UAV utilized two-way communications between the BS and
a set of users. The works in [18] and [240] investigated the secure transmission in UAV
relay networks. Sharma et al. in [18] proposed a novel secure 3D UAV relaying for hybrid
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satellite-terrestrial networks (HSTNs) in the presence of a flying eavesdropper and then
they investigate secrecy outage probability and the probability of non-zero secrecy capac-
ity. Sun et al. [240] studied secure transmissions of millimeter-wave simultaneous wireless
information and power transfer (SWIPT) UAV relay networks with multiple eavesdrop-
pers. In contrast to [18, 238–240] that only considered half-duplex (HD), [121] and [212]
investigated the rotary-wing UAV-enabled FD Internet-of-Things (IoT) networks.

Notably, the UAVs in the above works emit active RF signals to the destination re-
quiring high energy consumption which reduces the lifetime of UAVs with a limited on-
board battery. In this regard, backscatter communication (BackCom) is a promising so-
lution since a typical backscatter circuit’s power consumption is usually in the order of
µW [124, 126], which is significantly lower than that of active RF transmission, i.e., in
Watts. Consequently, BackCom has recently emerged as a key concern for UAV commu-
nication networks [134–138]. In [138], the authors proposed two novel schemes termed the
transmit-backscatter protocol and transmit-backscatter relay protocol corresponding to the
presence or absence of a direct link between backscatter user and receiver in UAV-aided
BackCom networks. Yang et al. [134] considered a UAV-aided BackCom network compris-
ing of backscatter devices (BDs) and carrier emitters (CEs) that are randomly distributed
on the ground. They aimed at maximum energy efficiency (EE) by jointly optimizing
the BDs’ scheduling, the UAV’s trajectory, and the CEs’ transmit power. Farajzadeh et
al. [135] proposed a novel UAV data collection in NOMA BackCom networks, where the
UAV acted both as a power source and a data collector. The objective was to jointly design
several backscatter devices, UAV’s altitude, and backscatter coefficient to maximize the
total successfully decoded bits while minimizing the UAV’s flight time. The same authors
in [136] studied the first work that considered UAV as an enabler to improve over-the-
air computation (AirComp)’s performance. Hu et al. [137] proposed the first work that
investigated secure transmissions in UAV-aided BackCom networks. Despite prominent
achievements in UAV-assisted BackCom networks in [134–138], aforementioned works do
not take caching into consideration.

Recent works have shown that some popular files are repeatedly demanded by users,
which accounts for a massive portion of data traffic [241,242]. By storing a part of popular
content in the cache of edge nodes, wireless caching is a promising method to reduce traffic
load, especially during peak hours [243]. Some recent works such as in [167–171] have been
recently devoted to cache-assisted UAV communications. Xu et al. [167] proposed a novel
scheme to overcome the endurance issue at the UAV by utilizing proactive caching. Specif-
ically, they aimed at minimizing the weighted sum of the file caching cost and the retrieval
cost by jointly optimizing the UAV communication scheduling, UAV trajectory, and file
caching policy. Cheng et al. [168] proposed a novel scheme to assure the secure transmis-
sion for UAV relay networks with caching capability. The learning-based approaches in
cache-enabled UAV communications were investigated in [169–171]. Chen et al. [169] pro-
posed the first work to analyze the utilization of caching in UAV communications based on
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conceptor-based echo state networks (ESNs). Different from existing works that focused on
finite-time horizon offline trajectory design, Chai et al. [170] proposed an online trajectory
and resource allocation optimization for cache-enabled UAV wireless communications. Wu
et al. [171] adopted a convolutional neural network (CNN)-based deep supervised learning
scheme for pushing up the decision-making speed in the highly dynamic vehicular networks.

From the above discussions and the fact that wireless power, caching and BackCom are
energy-efficient communication technologies for UAV communication networks, this paper
investigates a caching UAV-enabled BackCom network with SWIPT, in which a UAV can
store a part of popular contents in its cache. Besides, the UAV is equipped with a energy
harvester circuit that can harvest the RF signal from the source and then use this energy
for BackCom and active transmission to the destination. In contrast to the above works
in [134–138] that only consider UAV as a transmitter/receiver, this work considers UAV
as an aerial BD which harvests energy from the source’s RF signal and then utilizes this
energy for backscattering signal to the destination. To our best knowledge, this is the first
work that jointly considers the combination of SWIPT, caching and backscatter in UAV
networks. In summary, our contributions are as follows:

1. We propose a novel backscatter- and cache-assisted wireless powered UAV communi-
cation network. Specifically, caching and backscatter can reduce the power consump-
tion while source S provides power to the UAV, thus overcoming the sustainability
issue in the UAV. In particular, this is the first work that jointly considers UAV,
SWIPT, caching, and BackCom, which imposes great challenges in system modeling
and problem-solving.

2. Because the UB flies from initial to final locations, it cannot hover over the source all
the time. Thus, the dynamic time splitting (DTS) ratio and the UB trajectory should
be carefully designed to maximize the total system throughput while still satisfying
the energy constraint. If τn is large, thus more time is allocated for data transmission
but less time is used for energy harvesting and vice versa. Consequently, there exists
a trade-off for the DTS ratio in each time slot which directly impacts the amount of
harvested energy and data rate.

3. Motivated by the above considerations, we formulate an optimization problem to
maximize the total collected throughput at the destination, subject to constraints
on the limited flying time, UB’s maximum speed, UB’s trajectory, and DTS ratio in
each time slot. The formulation is non-convex problem and challenges to be solved.

4. We decompose the problem into two sub-problems, wherein we first optimize the
DTS ratio for a given UB’s trajectory, followed by the trajectory optimization for
a given DTS ratio. Particularly, the closed-form expressions for the DTS ratio is
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Source Destination

UAV-enabled Backscatter

ℎ𝑢𝑑ℎ𝑠𝑢

Backscatter Communication Active Communication

Figure 5.1: System model: The cache-aided UAV can perform BackCom and active transmis-
sion to convey the data from a source to a destination, wherein the UB is quipped with a energy
harvester which harvests energy from the transmit RF signal.

derived which dramatically reduces the computation time. The trajectory optimiza-
tion sub-problem can be solved by leveraging the successive convex approximation
(SCA) technique. Based on the solutions of these sub-problems, we propose two-layer
alternating algorithms to solve formulated problems adopting the block coordinate
descent (BCD) method.

5. The effectiveness of the proposed schemes is demonstrated via numerical results,
which show significant enhancements concerning the total collected throughput at the
destination in comparison to the benchmark schemes. Specifically, the benchmark
schemes are designed similar to that of our proposed algorithm but without caching
capability or with a fixed DTS ratio or with a fixed trajectory.

5.2 System Model and Problem Formulation

We consider a cache-assisted UAV-enabled BackCom network, where a UAV is equipped
with a backscatter circuit, namely UAV-enabled backscatter device (UB), to assist the
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source to transmit data to the destination as shown in Fig. 5.1. Herein, we assume that
the direct transmission link from the source to the destination is impossible due to a heavy
obstacle or severe fading. In this work, we focus on communication links between the
source to the UB and from the UB to the destination with an assumption that all other
users are successfully served by the source through terrestrial communication. Notably,
non-terrestrial communication is recognized as a key component to provide cost-effective
and high-capacity connectivity in future 5G and beyond/6G wireless networks [244]. The
flight altitude of UAV is assumed to be fixed at H meter. We assume the total flying time
of UB is T . To make the problem tractable, the time period T is equally divided into
N time slots of δt = T/N . Consequently, the location of the UAV at time slot n is qn,
with n ∈ N = {0, . . . , N}. Moreover, the locations of the source and the destination are
assumed to be fixed at ws and wd, respectively.

5.2.1 Ground-to-Air Channel Model

By denoting Vmax as a maximum speed of the UB, the UB’s constraints can be represented
as

∥qn+1 − qn∥ ≤ δd = Vmaxδt, n = 0, . . . , N − 1. (5.1)

q0 = qI,qN = qF, (5.2)

where qI and qF is the initial and final location of the UB.
For analytical convenience, let us denote the source, destination, and UB by s, d, and

u, respectively. Consequently, the distance from s → u or u → d at time slot n is given as

dniu =
√
H2 + ∥qn − wi∥2, i ∈ {s, d}, ∀n, (5.3)

where ws and wd are fixed locations of the source and destination.
This chapter considers a realistic channel model consisting of both line-of-sight (LOS)

and non-line-of-sight (NLOS) channel. This is because the UB can operate in different
environments, e.g., urban, sub-urban, or rural area. Particularly, we take large-scale fading
and small-scale fading into consideration [78, 217]. Concretely, the channel coefficient hniu
at time slot n is given as

hniu =
√
ψniuh̃

n
iu, (5.4)

where ψniu and h̃niu denotes the large-scale fading and small-scale fading during time slot n,
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respectively. Specifically, ψiu[n] can be written as

ψniu = ω0(dniu)−α, (5.5)

where ω0 represents the reference channel gain at diu = 1 meter, and α denotes the path
loss exponent. The small-scale fading h̃niu with E

[
|h̃niu|2

]
= 1, can be modeled as

h̃
n
iu =

√
K

1 +K
h̄niu +

√
1

1 +K
ĥniu, (5.6)

where h̄niu accounts for deterministic LoS, ĥniu denotes the NLoS component, and K is the
Rician factor.

5.2.2 Caching Model

We consider a general caching model at the UB, whereas the UB needs to retrieve the
information from its cache to serve the destination. Specifically, the UB is able to store
0 ≤ σ ≤ 1 parts of each file in its cache1. Henceforth, σ is considered as the caching
coefficient in this chapter. When the destination requests a file, a part σ of this file is
already stored in the UB’s storage. Therefore, the source only needs to send the remainder
of the required file to the UB before its transmission to the destination via backscatter.
Moreover, the caching scheme adopted in this chapter can be considered as a lower bound
method in comparison with the case when UB knew the content popularity.

5.2.3 Energy Harvesting and Energy Consumption Constraints

Due to the limited energy storage at the UB, EH becomes a promising solution in prolonging
the lifetime of the UB. We design a dynamic time-splitting mechanism wherein the UB
communication can be divided into two dynamic phases within a time slot. Specifically, a
fraction τn and (1 − τn) of duration δt are used for backscattering signal and EH at the
UB, respectively. In the second phase of (1 − τn)δt, the harvested energy expression at the
UB at time slot n is given by [245].

Enh = EnL ≜ µ(1 − τn)δtPWPTE[|hnsu|2], (5.7)

where PWPT is the transmit power at the source during (1 − τn)δt of n-th time slot, EnL is
the harvested energy, µ denotes the energy harvesting efficiency corresponding to the LEH
model and τn represents the DTS ratio at time slot n. More specifically, τn = 1 means that

1This caching method is also known as probabilistic caching.
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all the signal is backscattered to the receiver during time slot n and τn = 0 indicates that
all the signal is used for EH.

The energy consumption of UAV consists of three parts: energy consumption due to
propulsion, backscatter, and active communications. Specifically, the propulsion energy
consumption of UAV during time slot n can be represented as [15,78]

Enfly(q) = P0
(
δt + κ1∆2

n

)
+ P1

√√
δ4
t + κ2

2∆4
n − κ2∆2

n + κ3∆3
n

δ2
t

, (5.8)

where ∆n ≜ ∥qn+1 − qn∥, P0 ≜ δ
8ρsAΩ3R3, P1 = (1 + I)W 3/2

√
2ρA , κ1 = 3

Ω2R2 , κ2 = 1
2v2

0
, and

κ3 = 0.5d0ρsA, with I = 0.1 is the incremental correction factor to induced power and
other parameters can be explained as in Table I of [15].

The energy consumption due to BackCom during time slot n is represented as τnδtPb,
where Pb is the circuit power of the UB during backscatter period [245]. Moreover, Pu
denote the transmit power of UAV. We then have the following energy constraint

n∑
i=1

(
Enfly(q) + τnδt

(
Pb + Pu

))
≤

n∑
i=1

Enh , (5.9)

where the constraint (5.9) guarantees that the total UAV’s energy consumption should be
less than or equal to the summation of harvested energy of the UB until time slot n ∈ N .

By substituting (5.7) into (5.9), we have
n∑
i=1

(
Enfly(q) + τnδt

(
Pb + Pu

))

≤
n∑
i=1

µ(1 − τn)δtω0PWPT(
H2 + ∥qn − ws∥2

)α/2 , (5.10)

where E[hnsu] = ω0(
H2+∥qn−ws∥2

)α/2 .

5.2.4 UAV-enabled backscatter (UB)

In this work, we consider a UB as a flying backscatter device to reflect the signal from source
to destination. To avoid the co-channel interference on the uplink (UL) and downlink (DL),
time-division duplexing (TDD) is utilized in this system [133]. Specifically, we consider
DTS method to divide each time slot into two parts. In this context, (1 − τn)δt and τnδt
are the fraction of time for EH on the UL from s → u and the DL from u → d, respectively,
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where 0 ≤ τn ≤ 1 denotes the DTS ratio at the time slot n.

Let us denote the symbol transmitted from the source during time slot n by xns with
unit power E[|xns |2] = 1. Then, the received signal at the UB during time slot n is given by

ynu =
√
Psh

n
sux

n
s + nu, (5.11)

where Ps is the transmit power of source S used for information transmission, and nu ∼
CN (0, σ2

u) denotes the additive white Gaussian noise (AWGN) at the UB. Let us denote
xnu as the backscatter information signal at time slot n, the transmitted signal of the UB
is then given as [246]

xnu =
√
ηnuPsh

n
sux

n
s , (5.12)

where ηnu represents the backscatter coefficient during time slot n. Since ηnu can not reach 1
in practice due to material and circuit losses [246]. Hence, we set a threshold for ηnu ≤ ηmax,
with 0 < ηmax < 1. Moreover, the additional noise and signal processing delay are ignored
in (5.12) which are widely utilized in [245–247]. Consequently, the received signal at
destination during time slot n is given as

ynd = hnudx
n
u +

√
Puh

n
udx

n
s + nd, (5.13)

where the first and second element represent the received signal at the destination due to
active data transmission and backscattering; nd ∼ CN (0, σ2

d) denote the additive white
Gaussian noise (AWGN) at the destination. Note that the backscatter noise power, i.e,√
ηnunu, is much smaller than baseband noise power [248], thus it is eliminated from (5.13).

By substituting (5.12) into (5.13), we have

ynd = hnudx
n
u︸ ︷︷ ︸

Information from S

+ ⌈σ⌉
√
Puh

n
udx

n
cache︸ ︷︷ ︸

Cached information

+nd, (5.14)

where xncache denotes a fraction of requested information that was cached at the UAV.√
Psh

n
udx

n
s and

√
Puh

n
udx

n
s are the backscattering and active RF signal to transmit received

signal from source S during time slot n. Moreover, ⌈σ⌉
√
Puh

n
udx

n
cache means that if the

UAV has cached a σ fraction of the requested file in its storage, thus it can transmit the
cached signal to the destination. Further, nd is the noise power at the destination which
is an independent and identically distributed (i.i.d.) complex Gaussian random variable
with zero mean and variance σ2

d. Thus, the SNR at the destination are represented as

γnd = ηnuPs|hnsu|2|hnud|2 + Pu⌈σ⌉|hnud|2

σ2
d

, (5.15)
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Then, the achievable rate (in bps) at the UB and the destination during time slot n
can be respectively calculated as

Rnu = B log2

(
1 + γnu

)
, (5.16)

Rnd = B log2

(
1 + γnd

)
, (5.17)

where B denotes the sytem bandwidth in hertz (Hz); γnu = Ps|hnsu|2/σ2
u, B is the total

bandwidth. Especially, the instantaneous channel state information (CSI) (i.e., hnsu and
hnud) are random variables, thus the instantaneous rate is also a random variable. Thus,
the approximated received rate of the UB and the destination are adopted, which can be
expressed as [133]

R̄nu = BE[log2

(
1 + γnu

)
], (5.18)

R̄nd = BE[log2

(
1 + γnd

)
]). (5.19)

As explicit, it is difficult to obtain the closed-form expression of R̄nu and R̄nd , and hence
the approximation functions for R̄nu and R̄nd are expressed as in the following lemma:

Lemma 9. The approximation expressions of R̄nu and R̄nd are respectively given as

R̄nu ≜ B log2

1 + e−Eω0Ps(
H2 + ∥qn − ws∥2

)α/2
σ2
u

, (5.20)

R̄nd ≜ B log2

1 +
Θ
(
ηnuω0Ps + Pu⌈σ⌉

(
dnsu

)α)
ϱ

, (5.21)

where Θ ≜ e−Eω0
σ2

d
, P̄u ≜ Pu⌈σ⌉, ϱ ≜

(
H2 + ∥qn − ws∥2

)α/2(
H2 + ∥qn − wd∥2

)α/2
.

Proof. See Appendix B.1.

5.2.5 Problem Formulation

This section aims at maximizing the total data transmission from u → d by jointly optimiz-
ing the DTS ratio and UB trajectory with consideration of a linear EH model. Let us define
q ≜ {qn, n ∈ N }, τ ≜ {τn, n ∈ N }. Then, the problem is mathematically formulated as
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follows

P1 : max
q,τ

B
∑
n∈N

τnδt log2

1 +
Θ
(
ηnuω0Ps + P̄u

(
dnsu

)α)
ϱ


(5.22)

s.t.

B
∑
n∈N

τnδt log2

1 + e−Eω0Ps(
H2 + ∥qn − ws∥2

)α/2
σ2
u

+ σS

≥ B
∑
n∈N

τnδt log2

1 +
Θ
(
ηnuω0Ps + P̄u

(
dnsu

)α)
ϱ

, (5.23)

B
∑
n∈N

τnδt log2

1 +
Θ
(
ηnuω0Ps + P̄u

(
dnsu

)α)
ϱ

 ≥ S,

(5.24)
n∑
i=1

(
Enfly(q) + τnδt

(
Pb + Pu

))
≤

n∑
i=1

µ(1 − τn)δtω0PWPT(
H2 + ∥qn − ws∥2

)α/2 ,

(5.25)
∥qn+1 − qn∥ ≤ δd = Vmaxδt, n = 0, . . . , N − 1, (5.26)
q0 = qI,qN = qF, (5.27)
0 ≤ τn ≤ 1, n ∈ N , (5.28)

where S is the demanded data (in bits) by the destination; constraint (5.23) guarantees a
non-empty caching at the UB; constraint (5.24) means that the total transmitted data on
the DL from u → d should be larger than or equal to the demanded data of the destination;
constraint (5.28) implies that the DTS ratio value must be less than or equal to 1.

The problem P1 is a non-convex problem, which is NP-hard. Specifically, the objective
function, constraints (5.23), (5.24), (5.25) are non-convex. Thus, it is troublesome to find
the direct solution of P1. In the succeeding section, we introduce an efficient method to
solve it.

5.3 Proposed Alternating Algorithm for Solving P1

To tackle the non-convexity of the problem P1, we first decompose P1 into two sub-
problems, wherein we first target the optimization of DTS ratio for a given trajectory,
and we perform the trajectory optimization for a given DTS ratio. By employing the
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block coordinate descent (BCD) method [249], we propose an efficient iterative algorithm
wherein we alternately optimize three subproblems until the algorithm converges to a given
threshold, ϵ > 0.

5.3.1 Dynamic Time Splitting Ratio Optimization:

For any given UB trajectory q, the DTS ratio τ can be obtained by solving the following
optimization problem:

Pτ
1 : max

τ

∑
n∈N

τnδtR̄
n
d (5.29)

s.t.
∑
n∈N

τnδtR̄
n
u + σS ≥

∑
n∈N

τnδtR̄
n
d ,∑

n∈N
τnδtR̄

n
d ≥ S, (5.30)

n∑
i=1

(
Enfly(q) + τnδt

(
Pb + Pu

))
≤

n∑
i=1

µ(1 − τn)δtω0PWPT(
H2 + ∥qn − ws∥2

)α/2 ,

(5.31)
0 ≤ τn ≤ 1, n ∈ N . (5.32)

It is clear that Pτ
1 is a linear optimization problem, and hence is convex. Moreover, it

is easy to verify that the Slater’s condition holds for Pτ
1 and thus the KKT conditions are

sufficient for optimality [199, Section 5.5]. Then, the Lagrangian function corresponding
to problem Pτ

1 is expressed as

L(τ , λ1, λ2, λ3, λ4) ≜ F (τ) + λ1G(τ ) + λ2H(τ )
+ λ3I(τ ) + λ4J(τ ), (5.33)
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with

F (τ ) ≜
∑
n∈N

τnδtR̄
n
d (5.34)

G(τ ) ≜
( ∑
n∈N

τnδtR̄
n
u + σS −

∑
n∈N

τnδtR̄
n
d

)
≥ 0 (5.35)

H(τ ) ≜
∑
n∈N

τnδtR̄
n
d − S ≥ 0, (5.36)

I(τ )≜
n∑
i=1

χ1(1 − τn) −
n∑
i=1

(
Enfly(q) + τnδt

(
Pb + Pu

))
≥ 0, (5.37)

J(τ ) ≜ 1 − τn ≥ 0. (5.38)

where λ1, λ2, λ3, λ4 is the Lagrangian dual variables; χ1 ≜ µδtω0PWPT(
H2+∥qn−ws∥2

)α/2 .

The stationarity condition is given as

∂L(τ , λ1, λ2, λ3, λ4)
∂τ

=
∑
n∈N

δtR̄
n
d + λ1

( ∑
n∈N

δtR̄
n
u −

∑
n∈N

δtR̄
n
d

)

+ λ2
∑
n∈N

δtR̄
n
d − λ3

( ∑
n∈N

χ1 +
∑
n∈N

δt
(
Pb + Pu

))
− λ4 = 0. (5.39)

The conditions for primal feasibility are given as (5.35), (5.36), (5.37), and (5.38). Then,
the complementary slackness conditions can be expressed as follows

λ1G(τ ) = 0, (5.40)
λ2H(τ ) = 0, (5.41)
λ3I(τ ) = 0, (5.42)
λ4J(τ ) = 0. (5.43)

Furthermore, the dual feasibility conditions should hold λ1, λ2, λ3, λ4 ≥ 0. The solution
is then postulated in the following theorem.
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Theorem 10. The optimal value {τ⋆n} to problem Pτ
1 can be expressed as

τ⋆n =



 σS

Nδt(R̄nd − R̄nu)

1

0

, iffR̄nd > R̄nu,∀n ∈ N

 χ1 − Enfly(q)
χ1 + δt

(
Pb + Pu

)
1

0

.

(5.44)

From Eq. (5.44), we report two possible solutions of {τ⋆n}. In order to reach to an optimal
outcome, we select the best solution that maximizes the objective function in Pτ

1 . Partic-
ularly, the optimal value of {τ⋆n} from (5.44) must be guaranteed to be inside the feasible
set, i.e., 0 ≤ τn ≤ 1.

Proof. See Appendix B.2.

5.3.2 Trajectory Optimization:

For given values of τ , the UAV trajectory q can be achieved by solving the following
problem

Pq
1 : max

q
B
∑
n∈N

τnδt log2

1 +
Θ
(
ηnuω0Ps + P̄u

(
dnsu

)α)
ϱ


(5.45)

s.t.

B
∑
n∈N

τnδt log2

1 + e−Eω0P
n
s(

H2 + ∥qn − ws∥2
)α/2

σ2
u

+ σS

≥ B
∑
n∈N

τnδt log2

1 +
Θ
(
ηnuω0Ps + P̄u

(
dnsu

)α)
ϱ

, (5.46)

B
∑
n∈N

τnδt log2

1 +
Θ
(
ηnuω0Ps + P̄u

(
dnsu

)α)
ϱ

 ≥ S,

(5.47)
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n∑
i=1

(
Enfly(q) + τnδt

(
Pb + Pu

))

≤
n∑
i=1

µ(1 − τn)δtω0Ps(
H2 + ∥qn − ws∥2

)α/2 , (5.48)

(5.26), (5.27), (5.49)

The problem Pq
1 is still non-convex, which is difficult to efficiently solve by utilizing

standard optimization methods. To make Pq
1 more tractable, we firstly introduce slack

variables zn1 and zn2 such that
(
H2 + ∥qn − ws∥2

)
≤ (zn1 )2/α and

(
H2 + ∥qn − wd∥2

)
≤

(zn2 )2/α, respectively. Let us denote z ≜ {zn1 , zn2 , n ∈ N }, by which the problem Pq
1 is

rewritten as

Pq
1.1 : max

q,z
B
∑
n∈N

τnδt log2

1 +
Θ
(
ηnuω0Ps + P̄uz

n
1

)
zn1 z

n
2


(5.50)

s.t.
(
H2 + ∥qn − ws∥2

)
≤ (zn1 )2/α, (5.51)(

H2 + ∥qn − wd∥2
)

≤ (zn2 )2/α, (5.52)

B
∑
n∈N

τnδt log2

1 + e−Eω0P
n
s

zn1 σ
2
u

+ σS

≥ B
∑
n∈N

τnδt log2

1 +
Θ
(
ηnuω0Ps + P̄uz

n
1

)
zn1 z

n
2

,
(5.53)

B
∑
n∈N

τnδt log2

1 +
Θ
(
ηnuω0Ps + P̄uz

n
1

)
zn1 z

n
2

 ≥ S,

(5.54)
n∑
i=1

(
Enfly(q) + τnδt

(
Pb + Pu

))
≤

n∑
i=1

µ(1 − τn)δtω0Ps
zn1

,

(5.55)
(5.26), (5.27), (5.56)

Note that the problem Pq
1.1 is simpler than Pq

1 , but it is still difficult to be directly
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solved. This is because the objective function is convex and the non-convexity of constraints
(5.53), (5.54), and (5.55). In the following, we transform Pq

1.1 into a convex form by
introducing the following lemmas:

Lemma 11. For any given zn,j1 and zn,j2 at j-th iteration, log2

(
1+ e−Eω0Pn

s
zn

1 σ
2
u

)
and log2

(
1+

Θ
(
ηn

uω0Ps+P̄uzn
1

)
zn

1 z
n
2

)
are respectively lower bounded by

log2

(
1 + e−Eω0Ps

zn1 σ
2
u

)
≥ log2

(
1 + e−Eω0Ps

zn,j1 σ2
u

)
− e−Eω0Ps(zn1 − zn,j1 )
zn,j1 (zn,j1 σ2

u + e−Eω0Ps) ln 2
≜ Θ1,

(5.57)

log2

(
1 +

Θ
(
ηnuω0Ps + P̄uz

n
1

)
zn1 z

n
2

)
≥ log2

(
1 +

Θ
(
ηnuω0Ps + P̄uz

n,j
1

)
zn,j1 zn,j2

)

− Θηnuω0Ps(zn1 − zn,j1 )
zn,j1

(
Θηnuω0Ps + zn,j1 (ΘP̄u + zn,j2 )

)
ln 2

−
Θ
(
ηnuω0Ps + P̄uz

n,j
1

)
(zn2 − zn,j2 )

zn,j2

(
Θηnuω0Ps + zn,j1 (ΘP̄u + zn,j2 )

)
ln 2

≜ Θ2. (5.58)

Proof. It is observed that log2

(
1 + 1/x

)
and log2

(
1 + (A2 + A3x)/xy

)
are convex func-

tions, with x > 0 and y > 0, see Appendix B.3. Then, we adopt the first-order Taylor
approximation to respectively approximate above convex functions at any given feasible
points xj , yj as

log2

(
1 + A1

x

)
≥ log2

(
1 + A1

xj

)
− A1
xj(xj +A1) ln 2(x− xj), (5.59)

log2

(
1 + A2 +A3x

xy

)
≥ log2

(
1 + A2 +A3x

j

xjyj

)
− A2(x− xj)
xj
(
A2 + xj(A3 + yj)

)
ln 2

−

(
A2 +A3x

j
)
(y − yj)

yj
(
A2 + xj(A3 + yj)

)
ln 2

. (5.60)

By applying A1 ≜ e−EωPs, x ≜ zn1 , y ≜ zn2 , A2 ≜ Θηnuω0Ps, and A3 ≜ ΘPu then the
Lemma 11 is proved.

Lemma 12. For any given zn,j1 at the j-th iteration, the lower bound of 1/zn1 can be
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expressed as

1
zn1

≥ 1
zn,j1

− 1
(zn,j1 )2

(zn1 − zn,j1 ) ≜ z̃n1 . (5.61)

Then, we obtain the following optimization problem:

Pq
1.2 : max

q,z
B
∑
n∈N

τnδtΘ2 (5.62)

s.t. (5.26), (5.27), (5.51), (5.52), (5.63)
B
∑
n∈N

τnδtΘ1 + σS ≥ B
∑
n∈N

τnδtΘ2, (5.64)

B
∑
n∈N

τnδtΘ2 ≥ S, (5.65)

n∑
i=1

(
Enfly(q) + τnδt

(
Pb + Pu

))
≤

n∑
i=1

µ(1 − τn)δtω0Psz̃
n
1 .

(5.66)

The problem Pq
1.2 is still non-convex due to the second term of Enfly(q) (5.8). To tackle

this issue, we introduce slack variable yn, such that√
δ4
t + κ2

2∆4
n − κ2∆2

n ≤ y2
n,∀n ∈ N . (5.67)

After some manipulations, it yields

δ4
n

y2
n

≤ y2
n + 2κ2∆2

n. (5.68)

Consequently, the second term of Enfly(q) can be substituted by P1yn and Enfly(q) is
replaced by its upper bound

Enfly(q) ≤ P0
(
δt + κ1∆2

n

)
+ P1yn + κ3∆3

n

δ2
t

≜ Ēnfly(q), (5.69)
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With the above manipulations, Pq
1.3 can be re-written as

Pq
1.3 : max

q,z
B
∑
n∈N

τnδtΘ2 (5.70)

s.t. (5.26), (5.27), (5.51), (5.52), (5.64), (5.65), (5.71)
n∑
i=1

(
Ēnfly(q) + τnδt

(
Pb + Pu

))

≤
n∑
i=1

µ(1 − τn)δtω0Psz̃
n
1 (5.72)

δ4
n

y2
n

≤ y2
n + 2κ2 ∥qn+1 − qn∥2 ,∀n (5.73)

The problem Pq
1.3 is still non-convex due to non-convex constraint (5.73). Thus, we

apply first-order Taylor to convexify (5.73) as follows

δ4
n

y2
n

≤ (yjn)2 + 2yjn
(
yn − yjn

)
− 2κ2

∥∥∥qjn+1 − qjn
∥∥∥2

+ 4κ2
(
qjn+1 − qjn

)T(
qn+1 − qn

)
, ∀n. (5.74)

Bearing all the above discussions in mind, we solve the following approximate convex
problem at the j-th iteration:

Pq
1.4 : max

q,z
B
∑
n∈N

τnδtΘ2 (5.75)

s.t.

(5.26), (5.27), (5.51), (5.52), (5.65), (5.72), (5.76)
δ4
n

y2
n

≤ (yjn)2 + 2yjn
(
yn − yjn

)
− 2κ2

∥∥∥qjn+1 − qjn
∥∥∥2

+4κ2
(
qjn+1 − qjn

)T(
qn+1 − qn

)
,∀n. (5.77)

Since the objective function and all constraints pf Pq
1.4 are convex, thus it can be directly

solved by applying standard optimization methods [199]. To this end, we propose an
iterative algorithm based on the solutions of three sub-problems. The alternating algorithm
is summarized as in Algorithm 8.

To ensure the feasibility of Algorithm 8, an appropriate initial point is required. In our
setup, we set ηn,ju = ηmax, τn,j = 0.5. Notably, the convergence of Algorithm 8 depends on
the initial trajectory. The initial UAV trajectory should be selected such that the feasibility
of (5.72) is fulfilled while also guaranteeing other constraints. Thus, we can obtain qj by
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Algorithm 8 Proposed Iterative Algorithm to Solve P1
1: REQUIRE
2: Set j := 0 and initialize qj , τ j .
3: REPEAT
4: Solve Pτ

1 for given {qj} and denote the optimal solution as τ ⋆.
5: SolvePq

1 for given {τ j+1} and denote the optimal solution as q⋆.
6: Update the local point τ j+1 = τ ⋆ and qj+1 = q⋆.
7: Set j := j + 1.
8: UNTIL
9: Convergence

solving the simplified version of Pq
1.4 as follows

Pq
feasible : max

q,{ζn}N
n=1

min
n∈N

ζn (5.78)

s.t.

(5.26), (5.27), (5.51), (5.52), (5.64), (5.65), (5.77), (5.79)
n∑
i=1

µ(1 − τn)δtω0Psz̃
n
1 −

n∑
i=1

(
Ēnfly(q) + τnδt

(
Pb + Pu

))
≥ ζn,∀n.(5.80)

where ζn is the slack variable. The initial UAV trajectory is obtained until problem Pq
feasible

is successfully solved and ζ ≥ 0, ∀n.

5.3.3 Convergence and Complexity Analysis

Convergence Analysis

Proposition 13. The proposed Algorithm 8 provides a solution that converges to at least
a locally optimal solution.

Proof. Let us define Π(τ j ,qj) and Πq
lb(τ j ,qj) as the objective values of P1 and Pq

1.4 at the
j-th iteration. In the (j + 1)-th iteration, at line 2 of Algorithm 8, we have

Π(τ j ,qj)
i
≤ Π(τ j+1,qj). (5.81)

The inequality (i) holds since τ j+1 is an optimal solution of Pτ
1 . Then, at line 3 of

Algorithm 8, we have

Π(τ j+1,qj) i2= Πq
lb(τ j+1,qj)

i3
≤ Πq

lb(τ j+1,qj+1)
i4
≤ Π(τ j+1,qj+1). (5.82)
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Table 5.1: Simulation Parameters
Parameters Values
UAV’s altitude, H 10 meters [138]
Maximum speed, Vmax 20 m/s [138]
Noise power, σ2 -90 dB [138]
Path loss exponent, α 2.3 [121]
Backscatter circuit power consumption Pb 10−6W [251]
Channel power gain at reference distance, ω0 -30 dB [138]
Time slot duration, δt 0.5 second
Error tolerance threshold, ϵ 10−4

Energy harvesting coefficient, µ 0.84 [252]
Maximum backscatter coefficient, ηmax 0.5 [246]
Transmit power of source used for information transmission, Ps 16 dBm
Transmit power of source used for charging the UAV, PWPT [27,40] dB [85]
Demanded data of the destination, S 50 Mbits
Error tolerance, ϵ 10−4

The equality (i2) holds since the first-order Taylor approximation as in (5.57), (5.58),
(5.61), and (5.74) are tight at given point qj , and the inequality (i3) holds since qj+1

is an optimal solution of Pq
1.4. Furthermore, the inequality (i4) holds since the optimal

value of Pq
1.4 is a lower bound of Pq

1 at given qj+1. From (5.82) and (5.81), we have
Π(τ j ,qj) ≤ Π(τ j+1,qj+1) which proves that the objective value of P1 is non-decreasing
over the iterations. Moreover, the objective value of P1 is restricted by an upper bound
value due to the limited total traveling time T , transmit power Ps, UB transmit power Pu,
and maximum value of ηmax. Thus, the convergence of Algorithm 8 is assured.

Complexity Analysis

We provide the worst-case complexity analysis for Algorithm 8. Since the problem Pτ
1 can

be solved by using the proposed closed-form expressions, thus the complexity is mainly
relied on addressing Pq

1 . Moreover, the problem Pq
1 includes logarithmic form, thus its

complexity is O
(
L1(3N)3.5

)
, where 3N is the number of scalar variables and L1 is the

number of iterations to update UB trajectory [250]. Then, the overall complexity of Algo-
rithm 8 is O

(
L2L1(3N)3.5

)
where L2 is the number of iterations until convergence.
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Figure 5.2: UB trajectory obtained by our
proposed scheme with different values of PWPT.
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Figure 5.3: Total throughput versus travel-
ing time T .

5.4 Simulation Results

In this section, the numerical results are given to validate the performance of our proposed
scheme. We assume that the horizontal locations of the source and destination are set as
ws = [5m, 0]T and wd = [15m, 0]T , respectively. The UB’s initial and final locations are
respectively set qI = [0, 10m]T and qF = [20m, 10m]T . The UB altitude is fixed at H = 10
meters with maximum transmit power Pu ∈ [5, 10] mW and maximum velocity Vmax =
20 m/s [138]. Moreover, the transmit power of source S used for WPT and information
transmission are set as PWPT ∈ [27, 40] dB [85] and Ps = 16 dBm, respectively. the
power channel gain at reference distance d = 1m is −30 dB [138] and the noise power
at the source and destination is −90 dB [?]. The circuit power consumption of typical
backscatter trasmitter is less than 1 µW [251], thus we set Pb = 10−6 W. The maximum
backscatter coefficient equals to 0.5 [246]. Each time slot duration equals to 0.5 second
and energy harvesting coefficient is 0.84 [252]. The system bandwidth is B = 1 Mhz.
The error tolerance threshold of alternating algorithms is set to ϵ = 10−4. To highlight
the designed algorithms, we compare our proposed methods with benchmark schemes.
Specifically, benchmark schemes are described as follows:

• No caching (NC): Similar to Algorithm 8 but without caching capability.
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Figure 5.4: Total throughput versus de-
manded data of the destination S.
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Figure 5.5: Total throughput versus PWPT.

• Fixed DTS ratio (FTau): Similar to Algorithm 8 but with fixed DTS ratio, τn = 0.5.

• Fixed trajectory (LFTra): Similar to Algorithm 8 but with fixed trajectory, wherein
the UB flies from initial position to the middle point between source and destination
then it returns to the final position.

Fig. 5.2 illustrates the UB trajectories obtained for the proposed algorithm at different
charging power values of the source, i.e., PWPT equals to 27 dB, 30 dB, and 40 dB. Moreover,
δt and Ps = are set as 0.5 second and 16 dBm, respectively. It can be seen from Fig. 5.2
that the PWPT significantly affects the UB’s trajectory. Specifically, the UB tends to fly
from the initial point to the source node and then return back to the final location when
PWPT is equal to 27 dB. Besides, the UB can move towards the destination with the
increase of PWPT values. For instance, when the charging power of the source is increased
from 27 dB to 40 dB, UB will move in the direction closer to the destination location to
improve the total throughput. This is because when the PWPT is small, the UB should
fly closer to source S to improve the harvested energy, which can satisfy constraint (5.25).
Especially, the harvested energy is maximized as the UB can hover over the source location,
as explained in the right-hand sight (RHS) of (5.25). Furthermore, when the PWPT value
is high enough, the constraint (5.25) can be guaranteed. Thus, the UB can fly closer to
the destination to maximize achievable throughput.
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Figure 5.6: Total throughput versus trans-
mit power of the UAV Pu.
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Figure 5.7: Total throughput versus ηmax.

In Fig. 5.3, we investigate the influence of total traveling time to the performance with
δt = 0.5 second, Ps = 40 mW, Pu = 5 mW, S = 50 Mbits, PWPT = 33 dB. We observe
that all the algorithms are linearly increasing with a higher number of traveling time T
(in seconds). This is expected since the total collected throughput at the destination is
proportional to the reflection time as in (5.22). As inferred from the results, the proposed
algorithms significantly improve the total throughput (bps) as compared with the bench-
marks. Specifically, at T = 100 seconds, the proposed algorithm can support a throughput
up to 550.59 Mbps while the NC, FTau, FTra schemes respectively impose 295.85, 269.07,
and 263.88. This demonstrates the superiority of our proposed method that jointly op-
timizes dynamic time splitting ratio and trajectory with caching at the UB compared to
benchmark schemes with no caching capability, fixed DTS ratio, or fixed trajectory.

In Fig. 5.4, we study the influences of the demanded data S (in bits) to the total
throughput, with T = 30 seconds, Ps = 5 mW, Vmax = 20 m/s, H = 8 m. We see that
the performance of NC method is unaltered by increasing the demanded data S. This can
be explained that since NC does not cache a part of requested file for data transmission to
destination, we then have σS = 0. Therefore, increasing the value of S has no effect on the
NC scheme. Furthermore, our proposed algorithm performs much better than benchmark
ones. Specifically, at S = 60 Mbits, the jointly optimization method can serve 137.03
Mbits while the NC, FTau, and FTra achieve less than 51.66 %, 37.39 %, and 16.71 %,
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respectively. One more interesting point that can be observed from Fig. 5.4 is that the
FTau scheme can achieve a better performance than FTra when the demanded data is
small, i.e., S < 30 Mbits. Nevertheless, FTau’s performance has deteriorated compared
to FTra when S > 30 Mbits. Particularly, the performance of FTra is converged to a
saturation value by growing S. This is because the total throughput is restricted by other
resources, i.e., transmit power Ps, traveling time T , reflection time τn.

Fig. 5.5 illustrated the influences of the charging power of the source S on the achievable
throughput of all schemes, with Pu = 5 mW, Ps = 10 mW, σ = 0.7, T = 30 seconds. First,
we can see that the performance of the proposed, NC, and FTra is significantly enhanced
with the increase of the PWPT values while the NC performance looks unchanged. In fact,
the total throughput of the NC scheme is slightly increased from 97.15 to 97.33 Mbits
when PWPT is from 30 to 31 dB. This is because the more the transmit power is assigned,
the higher the harvested energy is achieved. Therefore, the UB can have more reflection
time, i.e., higher value of τn, which satisfies the energy constraints as in Eqs. (5.10).
Consequently, the system throughput is improved. However, because the NC scheme has
a fixed τ value, the allocated time for data transmission is then unchanged, which restricts
the NC’s performance. Fig. 5.5 still shows the superiority of our proposed scheme over
benchmark ones. More specifically, the Proposed, NC, FTAU, and FTra impose 115.3,
70.5, 97.15, and 87.14 Mbits when PWPT equals 30 dB, respectively.

In Fig. 5.6, the total throughput is presented as a function of the transmit power of
the UB Pu, where T = 30 seconds, Vmax = 20 m/s, H = 5 m, S = 60 Mbits. It is observed
that the UB transmit power has dramatic impact on the total throughput obtained at
the destination. Specifically, the obtained throughput of proposed scheme increases from
174.94 to 184.44 Mbits corresponding to Pu value equals to 4 and 6 mW, respectively.
This is due to the fact that the total collected throughput depends on the transmit power
Pu as shown in Eq. (5.22). Specially, we also compare our schemes in the use case of
both passive with active transmission and when we only use passive mode (i.e., Pu = 0).
Obviously, all schemes’ performance when used in the active and passive transmission is
far superior to that when using only passive mode. Specifically, the total throughput of our
proposed, NC, Ftau, and Ftra is 16.56, 10.76, 5.4, and 3.1 when Pu = 0, respectively, while
it can respectively obtain 154.12, 136.6, 74.21, and 105.36 when Pu = 2 mW. Nevertheless,
increasing Pu does not always significantly improve network performance. For example,
the performance of the Proposed scheme only slightly increases from 189.41 to 192.03 when
Pu from 8 to 10 mW. This is because the throughput depends not only on transmit power
of UB, but also on other factors such as bandwidth, flying time, source transmit power.

Fig. 5.7 presents an evaluation of the total throughput versus the maximum value of
backscatter coefficient ηmax, with T = 100 seconds, Vmax = 20 m/s, H = 8 m, Pu = 5 mW,
S = 50 Mbits, and T = 20 seconds. It is observed that the achievable throughput of all
schemes is dramatically improved with the increase of the backscattering coefficient ηmax.
Specifically, at ηmax = 0.2 (or 0.4), the total throughput of the proposed scheme is 123.33
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Mbits (or 135.85 Mbits), respectively, while the NC obtains less than 7.49 % (or 5.62 %).
Whereas the FTau and FTra respectively impose less than 83.49 % (or 83.56 %) and 21.85
% (or 22.7 %) compared to the proposed method. Particularly, we also depict the total
throughput of all schemes in the case of no backscattering communications, i.e., ηmax = 0.
Specifically, our proposed method is still better than other benchmarks in this scenario.
Moreover, the performance of NC is worse than FTra, and the FTau is still the worst one.
This demonstrates the superiority of our proposed joint optimization compared to other
methods in practice with different parameters.

5.5 Summary

In this paper, a new self-energized EH model has been proposed to power the UAV com-
munications. In this context, we have investigated the cache-assisted wireless powered
UAV-enabled backscatter communciations. Specifically, we maximized the total through-
put via jointly optimizing DTS ratio and trajectory. The formulated problem was non-
convex which is troublesome to solve. Thus, we proposed efficient alternating algorithm
based on BCD method and SCA technique to solve it. Particularly, the optimal DTS ratio
for a given UB trajectory was derived in closed-form expression which significantly reduced
the complexity of proposed solutions. We illustrated via simulation results that the pro-
posed methods outperformed reference schemes in term of total throughput. Particularly,
the simulation results showed the superiority of our design over scenarios with active or
passive transmission only.
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Chapter 6
Satellite- and Cache-assisted UAV
Communications

Although fifth-generation (5G) mobile communication systems are being deployed world-
wide, significant challenges due to the explosive growth of mobile data traffic still re-
main. This motivates the development of next-generation networks, i.e., beyond 5G or
six-generation (6G), to provide ubiquitous connectivity and high-capacity. The combina-
tion of satellite, drone, and terrestrial network technologies shows great potential for next-
generation systems to provide universal wireless access. In this chapter, we consider LEO
satellite- and cache-assisted UAV communications for content delivery networks. Specifi-
cally, caching is provided by the UAV to reduce backhaul congestion, and the LEO satellite
assists the UAV’s backhaul link. In this context, we aim to maximize the minimum achiev-
able throughput per ground user (GU) by jointly optimizing cache placement, the UAV’s
transmit power, bandwidth allocation, and trajectory with a limited cache capacity and
operation time. The formulated problem is challenging to solve directly due to its non-
convexity and combinatorial nature. To find a solution, the original problem is decomposed
into three sub-problems: (1) cache placement optimization with fixed UAV resources (i.e.,
bandwidth and transmit power) and trajectory, followed by (2) the UAV bandwidth and
transmit power optimization with fixed cache placement vector and trajectory, and finally,
(3) we optimize the UAV trajectory with fixed cache placement and UAV resources. Based
on the solutions of sub-problems, an efficient alternating algorithm is proposed utilizing
the block coordinate descent (BCD) and successive convex approximation (SCA) methods.
Simulation results show that the max-min throughput and total achievable throughput en-
hancement can be achieved by applying our proposed algorithm instead of other benchmark
schemes.

The rest of the chapter is organized as follows. Introduction to the current state of the
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art is discussed in Section 6.1. The system model and problem formulation are given in
Section 6.2. The proposed iterative algorithm for solving satellite- and cache-aided UAV
communications is presented in Section 6.3. Numerical results are depicted in Section 6.4,
and Section 6.5 concludes the paper.

6.1 Introduction to Satellite- and Cache-assisted UAV Com-
munications

Although fifth-generation (5G) wireless systems are being deployed around the world [88],
the explosive growth of mobile data traffic still poses significant challenges for future net-
works, i.e., beyond 5G or 6G. It is predicted that individual user data rates will exceed 100
Gbps by 2030, and overall mobile data traffic will reach 5016 exabytes per month [89]. To
overcome these challenges, the research community is working towards a sixth-generation
(6G) system [90, 91]. Notably, the integration of satellite, aerial, and terrestrial networks
is promoted as a key factor in providing high-capacity and ubiquitous connectivity for
6G [19,90,92].

Satellite communication (Satcom) has received considerable attention from both in-
dustry and academia due to its ability to provide wide-area coverage, e.g., telemedicine,
military, satellite-assisted maritime communication, rescue missions, and disaster manage-
ment system (DMS) [93–95]. Essentially, satellites are installed in geostationary earth orbit
(GEO), medium earth orbit (MEO), and/or low earth orbit (LEO), which can complement
and support terrestrial communication networks. Compared to its GEO and MEO coun-
terparts, LEO Satcom operates at much lower altitudes, i.e., from 160 km to 2000 km [96],
and it provides lower path losses and transmission latency. Therefore, many projects such
as SpaceX, SPUTNIX, OneWeb, and Kepler plan to launch thousands of LEO satellites for
providing globally seamless and high throughput communications cooperating with terres-
trial communications [97]. Because of these benefits, many works have studied the hybrid
LEO satellite-terrestrial communication networks [98–100]. You et al. [98] studied massive
MIMO transmission for LEO satellite communications using full frequency reuse (FFR) and
statistical channel state information (sCSI). In [99], the authors proposed a novel grant-free
random access (GFRA) scheme to reduce the access delay in LEO satellite-enabled Internet
of things (IoT) networks. In [100], they designed a Stackelberg game-based pricing mech-
anism for terrestrial and satellite operators by jointly optimizing the Ka-band spectrum
allocation, C-band user association, and data service pricing.

In contrast to Satcom, the UAV can fly at much lower altitudes, and thus it can serve
as a flying BS to serve GUs due to its flexibility, ease of deployment, and maneuverabil-
ity. Herein, the satellite can provide a stable backhaul link to the UAV when terrestrial
infrastructures are unavailable or have been destroyed after a disaster [90, 93]. Recently,
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many works investigated the combination of satellite and UAVs in the integrated satellite-
UAV-terrestrial network (ISUTN) [93,105–107]. While [93,105,106] only considered dom-
inated LoS channel in UAV communications, [107] proposed a general analytic framework
for energy-efficient beamforming scheme of a satellite-aerial-terrestrial network (SATN).
Specifically, satellite-UAV links follow Shadowed-Rician fading while the UAV-user links
undergo Rician fading model. Nevertheless, these works [93,105–107], did not take caching
into consideration.

Recent studies have shown that some popular contents are requested repeatedly by
users, causing the majority of data traffic [242, 253]. Notably, UAVs only serve GUs by
connecting to the content server via a wireless backhaul. However, with the explosive
growth of the data traffic, the backhaul link can be overloaded due to limited capac-
ity, reducing the user experience. Caching of popular content at the network edge has
emerged as a solution to effectively eliminate bottlenecks to backhaul links, especially dur-
ing peak traffic time. Furthermore, caching techniques can prolong the UAV’s lifetime
since the UAV can pre-store popular files in its cache to prevent repeated requests from
GUs on backhaul links. Therefore, many works have extensively studied the benefits of
caching in UAV communications [151, 167, 168, 170, 254, 255]. Ji et al. [254] maximized
minimum throughput among GUs by jointly optimizing cache placement, UAV trajectory,
and transmission power. Chai et al. [170] proposed an online cache-enabled UAV wire-
less design through jointly optimizing UAV trajectory, transmission power, and caching
scheduling. In [167], the authors utilized proactive caching at GUs to overcome the UAV
endurance issue via jointly optimizing the caching policy, UAV trajectory, and communi-
cation scheduling. Specifically, all the files are cached cooperatively at specified GUs. If a
file is requested, it can be served locally if that GU contains the requested file; otherwise,
it can be retrieved from neighboring users through device-to-device (D2D) communica-
tions. In [151], the authors adopted caching and backscatter communication (BackCom)
to improve UAV lifetime. Specifically, they aimed to maximize total throughput via jointly
optimizing the backscatter coefficient, dynamic time splitting ratio, and the UAV trajec-
tory with linear and non-linear energy harvesting models. In [168], Cheng et al. proposed
a new scheme to ensure the security of UAV wireless networks through jointly optimizing
the UAV trajectory and time schedule. For GUs with caching capabilities, the UAV could
broadcast files to them and prevent eavesdropping. For GUs without caching, the authors
maximized the minimum average secrecy rate to guarantee GUs’ security. In [255], Zhao
et al. investigated caching- and UAV-assisted secure transmission for scalable videos in
hyper-dense networks via interference alignment. In this work, both UAVs and small-cell
base stations (SBSs) were equipped with caches to store popular videos at off-peak hours.
To ensure secure transmission, the idle SBSs were exploited to generate jamming signal to
disrupt eavesdropping.

Unlike previous works that only investigated the integration between satellite and
UAV [105–107] or UAV and caching [151, 167, 168, 170, 254, 255], there are very few works
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on satellite- and cache-assisted UAV communication networks in the literature [102, 256].
Shushi et al. [102] studied the energy-aware coded caching design cache-enabled satellite-
UAV vehicle integrated network (CSUVIN). Notably, the authors in [102] aimed to mini-
mize the total energy consumption of GEO satellite and UAV but did not solve the prob-
lem of maximizing the minimum throughput of GUs. In [256], the authors investigated
a satellite-UAV mobile edge caching system in IoT networks, where the IoT users acted
as relays to transfer information from satellite to UAV due to the assuming that there
was no direct satellite-to-UAV transmission but stable links existed between the satellite
and sensor users. Further, they considered limited storage capacity for the IoT users but
not as a caching model for content-based networks. In the literature, reference [254] is
the most relevant to our work. Nevertheless, [254] considered one-tier data transmission
between UAVs to GUs. In our work, we investigate a two-tier data transmission system
model including satellite-to-UAV and UAV-to-user data transmissions. This is motivated
by the fact that the UAV only can pre-store a portion of popular content during off-peak
hours and then forward this information to GUs. Due to the limited storage cache size, the
UAV cannot store all the files in its cache. In the case that a GU demands content but is
not stored in UAV’s cache, the UAV will ask the LEO satellite to send the required file on
the backhauling link. Moreover, reference [254] assumed that the transmitter only serves
up to one requester at a time slot, which is an inefficient method. In this work, we assume
that the UAV can serve multiple GUs simultaneously to improve network performance,
i.e., max-min throughput. Motivated by these observations, our work proposes a novel
system model in satellite- and cache-assisted UAV wireless networks that further explores
the impact of data transmission latency for backhaul link from satellite-to-UAV due to
large distance and limited resource allocation, which makes the problem design even more
challenging to solve and has not been investigated before. To the best of our knowledge,
this is the first work that maximizes the GUs’ minimum throughput via jointly optimizing
UAV’s bandwidth, UAV’s transmit power, trajectory design, and cache placement in LEO
satellite- and cache-assisted UAV wireless networks. In summary, our contributions are as
follows:

1. We propose a novel satellite- and cache-assisted UAV communication system. Specif-
ically, caching techniques can reduce the burden on the backhaul link during peak
times and prolong the UAV’s lifetime. In addition, the LEO satellite helps to deliver
requested content that is not cached by the UAV.

2. We formulate an optimization problem to maximize the minimum throughput at
GUs, subject to the UAV’s limited operation time, the UAV’s maximum speed, the
UAV’s trajectory, limited cache capacity of the UAV, bandwidth allocation for the
access link from the UAV to GUs, transmit power allocation at the UAV to transmit
data of GU k. The formulation belongs to a mixed-integer nonlinear programming
(MINLP) problem, which is challenging to solve. Especially, the binary nature of
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caching decision-making variables makes it more troublesome.

3. We solve the problem by decomposing it into three sub-problems: (1) cache placement
optimization with given UAV resources (i.e., bandwidth and transmit power) and
trajectory, followed by (2) the UAV bandwidth and transmit power optimization
with given cache placement vector and trajectory, and finally, (3) we optimize the
UAV trajectory with given cache placement vector and UAV resources. Based on
the sub-problems’ obtained solutions, we propose an iterative algorithm to solve the
non-convex optimization problem by adopting the block coordinate descent (BCD)
method and successive convex approximation (SCA) techniques.

4. The proposed algorithm’s effectiveness is shown via simulation results. In particular,
our approach yields an improvement up to 26.64%, 79.79%, and 87.96% in max-min
throughput compared to the benchmark scheme one (BS1), benchmark scheme two
(BS2), and benchmark scheme three (BS3), respectively. More specifically, BS1, BS2,
and BS3 are designed similarly to the proposed algorithm but with fixed trajectory,
no caching capability, and fixed resource allocation, respectively.

6.2 System Model and Problem Formulation

We consider the downlink of a wireless communication system consisting of a LEO satellite
constellation [106], a UAV acts as a flying base station (BS), and a set of K ground users
(GUs) denoted by K = {1, . . . , k, . . . ,K}. All GUs are assumed to be within the coverage
area of the considered LEO satellite, but it cannot take advantages of the benefits from
broadband service since they are not equipped with expensive high-gain antennas [93].
Therefore, the UAV acts as an aerial BS to serve GUs on the access links (ALs), wherein
it requests the demanded contents from satellite on the backhaul link (BL). Notably, the
satellite backhaul for content delivery is selected because it can broadcast content to mul-
tiple UAVs. Further, we assume that the cells of multiple UAVs do not interfere either
because they are geographically distant or they use different frequencies; thus, we focus on
studying a single UAV. To reduce the problem of congestion in the backhaul link, the UAV
is equipped with a cache [121,254,257] and it can pre-store a part of popular contents from
a ground base station (GBS) during off-peak hours and then forward this information to
the GUs. We assume that the flight time of the UAV is T due to the limited battery capac-
ity. For ease of analysis, T is divided into N equal time slot with duration δt, denoted by
N ≜ {1, . . . , n . . . , N}. Since δt is chosen sufficiently small, the distance between the UAV
and GU k is assumed to be unchanged during each time slot n [78]. Moreover, we utilize
the Cartesian coordinate system, whereas the location of GU k is wk ∈ R2×1, k ∈ K. For
ease of analysis, the UAV’s altitude is assumed to be fixed at Hu meters during the flight,
e.g., this is imposed by the regulator for safety requirements. The horizontal location of
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Table 6.1: List of Notation
Notations Descriptions
K The set of K ground users, k ∈ K
N The set of N time slots, n ∈ N
F The set of F contents in the network, f ∈ F
T Total flying time of the UAV
δt Duration of one time slot n, with n ∈ N
δd Maximum distance that the UAV can travel during time slot

n, with n ∈ N
wk ∈ R2×1, k ∈ K Cartersian coordinates of the GU k

qn ∈ R2×1, k ∈ K The horizontal location of the UAV during time slot n, with
n ∈ N

Hu The flying altitude of the UAV
d1k Distance between satellite and the UAV
dn2k Distance between the UAV and GU k during time slot n
hn1k Channel coefficient between satellite and the UAV to trans-

mit the demanded data for GU k

hn2k Channel coefficient between the UAV and GU k

ηf Binary variable ηf ∈ {0, 1} indicates the UAV caches content
f or not

bn2k 0 ≤ bn2k ≤ 1 denotes the allocation bandwidth for the UAV
to transmit GU k’s requested content during time slot n

pn2k The UAV transmit power to convey GU k’s requested con-
tent during time slot n

β0 Channel gain at the reference distance, i.e., d0 = 1 meter
S Maximum number of contents that the UAV can cache

the UAV during time slot n is denoted by qn = [xn, yn]. Key notations used in this work
are listed in Table 6.1.

6.2.1 Caching Model

The satellite is assumed to access to a set of F contents, denoted by F ≜ {1, . . . , f, . . . , F}.
All contents are assumed to have the same size of Q bits. For different size contents, they
can be split into several chunks with equal size [93, 258]. Therefore, this assumption is
applicable in realistic scenarios. In this chapter, we consider Zipf distribution which is the
most popular content popularity model [253]. Then, the demanded probability for any
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GROUND USERS

Satellite

Backhaul link Access link

Cache-enabled UAV

Figure 6.1: System model: The cache-aided UAV acts as a flying base station to transfer data
to ground users, wherein the satellite can provide backhaul link to the UAV.

content f being requested by GU k is given by

Pf = f−ϱ

F∑
i=1

i−ϱ
, (6.1)

where ϱ is the Zipf skewness factor with 0 < ϱ < 1 and ∑
f∈F

Pf = 1.

We assume that the UAV can proactively cache a part of popular contents in its stor-
age during off-peak hours. Specifically, this chapter utilizes the placement-then-delivery
method. Notably, cache placement is also a part of the optimization problem, which is
performed offline before the UAV takes off. Due to the limited storage cache size, the UAV
cannot store all files in its cache. In case a GU requests content but is not cached by the
UAV, the UAV will ask the satellite to send the required file on the BL. Let us define
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η ≜ {ηf ,∀f ∈ F} as the cache placement vector of the UAV, where ηf ∈ {0, 1}. Specifi-
cally, ηf = 1 means that the UAV caches content f , thus the GU k can directly obtain file
f from the UAV. Otherwise, ηnf = 0 indicates that the UAV does not cache file f , it thus
makes a request from the satellite to serve any GU k. Without loss of generality, once the
UAV has received the requested content of the device k, then it will begin transmitting the
requested content to that user.1

To overcome the problem of wireless BL congestion during peak hours, the UAV is
equipped with SQ bits storage capacity, where S is the maximum number of contents that
can be stored at the UAV. Due to the limited cache size, the UAV cannot store all contents,
thus we have S < F . Moreover, each GU demands content independently. Considering the
limited cache storage, the caching constraint can be given by∑

f∈F
ηf ≤ S. (6.2)

6.2.2 Channel Model

Let Vmax be the maximum UAV speed, leading to the following constraints:

∥qn − qn−1∥ ≤ δd = Vmaxδt, n = 1, . . . , N, (6.3)

q0 = qI,qN = qF, (6.4)

where δd denotes the maximum distance that UAV can travel during any time slot n; qI
and qF are the start point and end point of the UAV.

For analytical convenience, let us denote the satellite, UAV, and GU k by s, u, and k,
respectively. Henceforth, 1k and 2k are respectively denote the BL (i.e., s → u) and AL
(i.e., u → k) to transmit the GU k’s demanded data. Therefore, the distance from u → k
is expressed as

dn2k =
√
H2
u + ∥qn − wk∥2. (6.5)

We assume that the UAV’s altitude is high enough; thus, the channel between satellite
and UAV is dominated by LoS link with a limited number of scattered path [104, 107].
Propagation measurement in [259] mentions that the majority of the total signals trans-
mitted from a satellite to a receiver is predominant by the LoS link. In this regard, the
channel coefficient between s → u at time slot n to transmit GU k’s data is expressed as

1In this chapter, we use a (decode-and-forward) DF relaying technique [142]; therefore, the UAV needs
to complete getting the requested data from the satellite before relaying to GU k to ensure the properly
encoded data.

147



Satellite- and Cache-assisted UAV Communications

hn1k ≜ β0(dn1k)−α, where β0 is the channel gain at a reference distance, i.e., d0 = 1 meter,
α is the path loss exponent, dn1k denote the distance between the UAV and satellite at
time slot n. Thanks to recent developing techniques, the Doppler shift at the satellite and
UAV are assumed to be estimated and compensated accurately [260,261]. We assume that
the satellite starts from an initial point and moves along the x-axis with velocity vs [106].
Specifically, orbital velocity vs can be calculated as [262]

vs =
√

GM

(Re +Hs)
, (6.6)

where G = 6.67259 10−11 m3kg−1s−2 is the Universal Constant of Gravitation, M = 5.9736
1024 kg is the mass of the Earth, Re = 6371 km is the radius of the Earth, Hs is altitude
of the satellite above the Earth’s surface.

In practice, GUs operate in a variety of environments, e.g., suburban, urban, rural.
Therefore, a generalized transmission model comprising of line-of-sight (LOS) and non-
line-of-sight (NLOS) components is considered [78, 121, 217]. In this context, a practical
channel model is considered as follows

hn2k =
√
βn2kh̃

n
2k, (6.7)

where βn2k represents the large-scale fading due to distance and h̃n2k denotes the small-scale
fading channel model. Specifically, βn2k is modeled as

βn2k ≜ β0(dn2k)−α = β0
(H2

u + ∥qn − wk∥2)α/2 , (6.8)

where dn2k ≜ 1
(H2+∥qn−wk∥2)1/2 is the distance between the UAV and GU k at time slot n.

Refer to [78, 121, 217], the small-scale fading h̃nuk with E[|h̃n2k|2] = 1, can be expressed
as

h̃
n
2k =

√
K

1 +K
h̄n2k +

√
1

1 +K
ĥn2k, (6.9)

where the Rician factor K is defined as the ratio between the direct path’s power and
scattered paths’ power. Besides, h̄n2k and ĥn2k denote the LoS and the NLoS (Rayleigh
fading) channel components .

Without loss of generality, when the UAV receives all requested data from the satellite,
then the transmission from u → k can be conducted.2 Let xn1k and xn2k denote the symbols

2In this chapter, we utilize a decode-and-forwarding (DF) relaying technique, thus, the UAV needs to
complete getting the requested data from the satellite before relaying to GU k to ensure the properly
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with unit power (E
[
|xn1k|2

]
= 1 and E

[
|xn2k|2

]
= 1) sent s → u and u → k during time slot

n, respectively. Consequently, the received signals at the UAV or GU k can be expressed
as

ynik =
√
pnikh

n
ikx

n
ik + n0, with i ∈ {1, 2}, (6.10)

where pn1k and pn2k respectively denote the transmit power of the LEO satellite and the
UAV on the backhaul link (BL) and access link (AL) to transmit the GU k’s data during
n-th time slot; n0 ∼ CN (0, σ2) is the additive white Gaussian noise (AWGN) at the UAV
or GU k. Notably, the interference caused by the link between s → u on the link u → k is
neglected since they use different frequencies.

Next, the achievable rate (in bps) from s → u and u → k to transmit the GU k’s data
during n-th time slot are respectively calculated as

rn1k = B1k log2 (1 + Γn1k) , (6.11)
rn2k = bn2kB2k log2 (1 + Γn2k) , (6.12)

where Γn1k ≜
pn

1k|hn
1k|2

σ2 , Γn2k ≜
pn

2k|h̃n
2k|2β0

(H2
u+∥qn−wk∥2)α/2

σ2
, B2k denotes the total bandwidth from the

UAV to GUs (in Hz); B1k and bn2kB2k respectively denote the allocated bandwidth for the
BL and AL to transmit GU k’s data during time slot n. For a large amount of resources in
practice, bn2k is approximately continuous between 0 and 1. Particularly, since the channel
coefficient hn2k is a random variable, thus the achievable rate rn2k is also a random variable.
Consequently, we pay attention to get the approximated rate, are given as

r̄n2k = bn2kB2kE
[

log2

(
1 + Γn2k

)]
. (6.13)

Because the closed-form expression of E[rn2k] is difficult to obtain, and thus a lower
bound for E[rn2k] is adopted, which yields the following lemma:

Lemma 14. The approximation result of r̄n2k is given as

r̄n2k = bn2kB2k log2

1 + e−Epn2kβ0(
H2
u + ∥qn − wk∥2

)α/2
σ2

. (6.14)

Proof. We define a function f(z) = EZ [log2(1 + eln z)], with z > 0, then we have

f(z) ≥ log2

(
1 + eEZ [ln z]

)
≜ f̂(z). (6.15)

encoded data.
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where the inequality (6.15) holds based on Jensen’s inequality for a convex function log2(1+
eln z) w.r.t. z.

Let us denote z ≜
pn

2k|h̃n
2k|2β0

(H2+∥qn−wn∥2)α/2
σ2

. Because z is an exponentially distributed ran-

dom variable, its parameter is λZ = (E[Z])−1 = ζ1k
pn

2k
β0

, with ζ1k ≜
(
H2 + ∥qn − wn∥2

)α/2
σ2.

By applying [263, Eq. 4.331.1], EZ [ln z] can be calculated as

EZ [ln z] =
∫ +∞

0
λZe

−zλZ ln zdz = −
(

ln(λZ) + E
)
,

= ln p
n
2kβ0
ζ1k

− E, (6.16)

where E is the Euler-Mascheroni constant, i.e., E = 0.5772156649 as in [263, Eq. 8.367.1].
By substituting (6.16) into (6.15) and combining with (6.13), we obtain (6.14). Thus,

the Lemma 14 is proof.

From (6.14), the bandwidth allocation on the AL is applied to efficiently utilize the
resource. Besides, the spectrum allocation should satisfy:∑

k∈K
bn2k ≤ 1,∀n, (6.17)

0 ≤ bn2k ≤ 1,∀k, n. (6.18)

From (6.14), the achievable throughput of user k (in bits) during flight time T can be
given as

Υ2k = δtPk,f

ηf N∑
n1k

r̄n2k + (1 − nf )
N∑

n2k+1
r̄n2k

, (6.19)

where the first component represents the case when the UAV pre-stores the file f in its
cache, i.e., nf = 1, and thus it can transmit directly to GU k; While the second component
means that the UAV does not cache the file f , i.e., nf = 0, it thus starts transmitting data
to GU k when it finishes receiving the requested file from the satellite; n1k denotes the first
time slot during the flight time T ; n2k signifies the time slot in which the UAV completely
received GU k’s requested file from the satellite.

6.2.3 Problem Formulation

In this section, we aim to maximize the minimum achievable throughput among GUs
through jointly optimizing the cache placement, resources allocation (i.e., bandwidth and
transmit power of the UAV to convey the GU k’s data at time slot n), and the UAV
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trajectory, with the assumption that the GUs’ locations, the UAV altitude, and the satellite
height are known a priori.

Let q ≜ {qn,∀n}, b ≜ {bn2k, n ∈ N , k ∈ K}, p ≜ {pn2k, n ∈ N , k ∈ K}, η ≜ {ηf , ∀f ∈
F}. Based on the above discussions, the optimization problem is formulated as follows

PSat
1 : max

q,b,p,η
min
∀k∈K

Υ2k (6.20)

s.t. δt

n2k∑
n=n1k

B1k log2

1 + pn1kβ0
(dn1k)ασ2

 ≥ (1 − ηf )Q,

∀n, k, (6.21)
ηf ∈ {0, 1},∀f ∈ F , (6.22)∑
f∈F

ηf ≤ S, ∀f, (6.23)

∑
k∈K

bn2k ≤ 1,∀n, k, (6.24)

0 ≤ bn2k ≤ 1,∀n, (6.25)
∥qn − qn−1∥ ≤ δd, n = 1, . . . , N, (6.26)
q0 = qI ,qN = qF , (6.27)
0 ≤

∑
k∈K

pn2k ≤ Pmax
u , ∀n, (6.28)

where constraint (6.21) guarantees that the non-cached file f is transmitted from satellite
to the UAV; n1k and n2k denote the start and end data transmission time from satellite
to the UAV to convey GU k’s requested file, respectively; without loss of generality, n1k
is set to zero; (6.22) be the binary variable for the UAV to cache file f or not; (6.23)
means that the total number of contents cached at the UAV should be less than or equal to
the storage capacity; (6.24) and (6.25) signify the bandwidth allocation constraints; (6.26)
shows the maximum velocity constraint of the UAV; constraint (6.27) explains for the start
and end points of the UAV; constraint (6.28) implies that the transmit power of the UAV
is restrained by its maximum power budget.

It is troublesome to obtain the direct solution of PSat
1 since this is a mixed-integer

non-linear program (MINLP), which is NP-hard. Specifically, the objective function is a
max-min and non-convex function. Besides, the binary nature of constraint (6.22) and the
non-convexity of (6.26), which introduces intractability. In the next section, an efficient
method is proposed to solve it.
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6.3 Proposed Iterative Algorithm for Solving PSat
1

6.3.1 Tractable formulation for PSat
1

It can be seen that the n2k value in problem PSat
1 is not determined, thus we cannot solve

P1 if n2k is a variable. Consequently, we intend to find a specified value for n2k. In the
case that file f is stored at the UAV, we have t1k = 0. Otherwise, from (6.11), the total
transmission time to transmit GU k’s data from s → u can be specified as

t1k ≜
(1 − ηf )Q

r̄1k
. (6.29)

where r̄1k ≜

∑
∀n∈N

rn
1k

N is the average data transmission rate from s → u during flying time
T .

Based on (6.29), we have

n2k
∆= n1k +

⌈
t1k
δt

⌉
, (6.30)

where without loss of generality, we assume that n2k ≤ N .

Let us introduce an auxiliary variable χ(q,b,p,η) ≜ min
∀k∈K

δt
∑
n∈N

r̄n2k to transform the

max-min problem P1 into maximization problem, we then have

P1.1 : max
q,b,p,η,χ

χ(q,b,p,η) (6.31)

s.t. Υ2k ≥ χ,∀k, (6.32)
(6.21) − (6.28), (6.33)

To overcome the non-convexity of the problem P1, we first decompose P1 into three
sub-problems, wherein we first optimize the cache placement for a given trajectory and
resource allocation, followed by the optimization of resource allocation (i.e., bandwidth
and transmit power allocation) for a given trajectory and cache placement, and finally,
we perform the UAV trajectory optimization for a given cache placement and resource
allocation. Based on the block coordinate descent (BCD) method [125, 249] and SCA
technique [264], an efficient iterative algorithm is proposed, whereas three sub-problems
are alternately optimized until convergence.
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1

6.3.2 Subproblem 1: Cache Placement Optimization

For any given bj , pj , and qj , the cache placement η can be obtain by solving the following
optimization problem:

Pη
1 : max

η,χ
χ(qj ,bj ,pj ,η) (6.34)

s.t. δt

n2k∑
n=n1k

r̄1k ≥ (1 − ηf )Q,∀n, k, (6.35)

Υ2k ≥ χ,∀k, (6.36)
ηf ∈ {0, 1}, ∀f ∈ F , (6.37)∑
f∈F

ηf ≤ S,∀f. (6.38)

It can be seen that the problem Pη
1 is non-convex due to the binary nature of constraint

(6.37). To overcome this issue, we first relax the binary cache placement variable into
continuous ones. As a result, Pη

1 can be re-written as

Pη
1.1 : max

η,χ
χ(qj ,bj ,pj ,η) (6.39)

s.t. 0 ≤ ηf ≤ 1, ∀f, (6.40)
(6.35), (6.36), (6.38). (6.41)

It is observed that the problem Pη
1.1 is convex since the objective function and con-

straints are convex, i.e., linear. Consequently, the problem Pη
1.1 can be solved by using

standard methods [199]. Nevertheless, since the cache placement variable is relaxed into
continuous values between 0 and 1, and thus it does not ensure that the ηf can converge
to 0 or 1. Thus, we introduce a penalty function P(ηf ) ≜ ηf ln(ηf ) + (1 − ηf ) ln(1 − ηf ),
which is convex for λk ≥ 0 [121,265]. Hence, the sub-problem Pη

1.1 is reformulated as,

Pη
1.2 : max

η,χ

(
χ(qj ,bj ,pj ,η) + κP(ηf )

)
(6.42)

s.t. (6.40), (6.41). (6.43)

where κ > 0 is a penalty factor. Especially, the objective in Pη
1.2 is a difference of concave

function, i.e., f(ηf , χ) ≜
(
χ(qj ,bj ,pj ,η) − (−κP(ηf ))

)
with convex constraints. As a

result, the problem Pη
1.2 becomes a DC Programming Problem (DCP). To transform Pη

1.2
become a convex problem, we substitute P(ηf ) in the objective by its first-order Taylor
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expansion at (j + 1)-th iteration:

P̂(ηf ) ≜ κ

(
P(η(j)

f ) + ▽P(η(j)
f )
(
ηf − η

(j)
f

))
, (6.44)

where

▽P(η(j)
f ) = 2η(j)

f − 1. (6.45)

Thus, we have

P̂(ηf ) ≜ κ

(
ηf (2η(j)

f − 1) − (η(j)
f )2

)
. (6.46)

According to the above discussions, sub-problem Pη
1.2 is approximately converted to the

following linear programming (which is obtained by substituting convex component and
ignoring the constant parts in the objective):

Pη
1.3 : max

η,χ

(
χ(qj ,bj ,pj ,η) + P̂(ηf )

)
(6.47)

s.t. (6.40), (6.41). (6.48)

Remark 15. For cache placement optimization in Algorithm 0, we only solve the relaxed
problem (6.47) instead of the original problem (6.34), where the binary cache placement
variable η in the original problem (6.34) is relaxed to continuous values between 0 and 1.
Notably, if the cache placement variable η obtained by Algorithm 1 can converge to binary
values, then the relaxation is tight and the solution in (6.47) is also a feasible solution of
the problem (6.34). Especially, with an appropriate, sufficiently large, and positive value
of the penalty parameter κ, the relaxed problem (6.47) is equivalent to the original problem
(6.34), as clearly mentioned in [266, Theorem 2.1] or in the introduction of [267].

Remark 16. The solutions of sub-problem Pη
1.3 can be obtained by applying standard op-

timization solver, i.e., CVX [199]. Besides, we observe that constraint (6.40) is equivalent
to (6.37) when we achieve the optimal solutions of Pη

1.3. By applying the lower bound result
in (6.44), it can be seen that the feasible solutions for Pη

1.3 are also satisfy Pη
1 , which means

that we can obtain at least a locally optimal solution.
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1

6.3.3 Subproblem 2: UAV Bandwidth and Transmit Power Optimization

For any given cache placement ηj and UAV trajectory qj , b and p can be obtained by
solving the following optimization problem:

Pb,p
1 : max

b,p,χ
χ(qj ,b,p,ηj) (6.49)

s.t. ζnb,p ≥ χ,∀n, k, (6.50)

δt

n2k∑
n=n1k

r̄1k ≥ (1 − ηf )Q,∀n, k, (6.51)
∑
f∈F

ηf ≤ S, ∀f, (6.52)

∑
k∈K

bn2k ≤ 1,∀n, k, (6.53)

0 ≤ bn2k ≤ 1,∀n, k, (6.54)
0 ≤

∑
k∈K

pn2k ≤ Pmax
u , ∀n, (6.55)

where

ζnb,p ≜ δtPk,fb
n
2kB2k

nf N∑
n1k

Φn
p + (1 − nf )

N∑
n2k+1

Φn
p

, (6.56)

Φn
p ≜ log2

1 + e−Epn2kβ0(
H2
u + ∥qn − wk∥2

)α/2
σ2

. (6.57)

Due to the non-convexity of constraints (6.50), sub-problem Pb,p
1 is also non-convex.

To make Pb,p
1 more tractable, we first introduce slack variable Φ̄n

p such that

Φn
p ≜ log2

1 + e−Epn2kβ0(
H2
u + ∥qn − wk∥2

)α/2
σ2

 ≥ Φ̄n
p. (6.58)

Consequently, ζnb,p is converted to the following constraint

ζnb,p ≥ δtPk,fB2k

×

nf N∑
n1k

bn2kΦ̄n
p + (1 − nf )

N∑
n2k+1

bn2kΦ̄n
p

 ≜ ζ̄nb,p. (6.59)
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Lemma 17. For any given bn,j2k and Φ̄n,j
p at (j + 1)-th iteration, the lower bound of ζ̄nb,p is

expressed as

ζ̄nb,p ≥ δtPk,fB2k

×

nf N∑
n1k

Θn
b,p + (1 − nf )

N∑
n2k+1

Θn
b,p

 ≜ ζ̂nb,p, (6.60)

where

Θn
b,p ≜

(
bn,j2k + Φ̄n,j

p
)2

4 +

(
bn,j2k + Φ̄n,j

p
)

2 ×
(
bn2k − bn,j2k

+ Φ̄n
p − Φ̄n,j

p

)
−

(
bn2k − Φ̄n

p

)2

4 . (6.61)

Proof. It is observed that bn2kΦ̂n
2k is a non-convex function. To make it tractable, we replace

bn2kΦ̄n
2k by an equivalent different of convex function 0.25

[(
bn2k + Φ̄n

2k

)2
−
(
bn2k − Φ̄n

2k

)2
]
.

Then, we adopt first-order Taylor expansion to approximate function 0.25
(
bn2k + Φ̄n

2k

)2
as

follow

0.25
(
bn2k + Φ̄n

2k

)2
≥

(
bn,j2k + Φ̄n,j

2k

)2

4 +

(
bn,j2k + Φ̄n,j

2k

)
2 ×(

bn2k − bn,j2k + Φ̂n
2k − Φ̄n,j

2k

)
. (6.62)

Consequently, by substituting the lower bound of 0.25
(
bn2k+Φ̄n

2k

)2
as in (6.62) into 0.25

[(
bn2k+

Φ̄n
2k

)2
−
(
bn2k − Φ̄n

2k

)2
]
, the lower bound of bn2kΦ̄n

2k can be obtained as (6.60), which finishes
the proof.
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1

Bearing all the above developments in mind, the problem Pb,p
1 is re-formulated as

Pb,p
1.1 : max

b,p,χ
χ(qj ,b,p,ηj) (6.63)

s.t. ζ̂nb,p ≥ χ,∀n, k, (6.64)

log2

1 + e−Epn2kβ0(
H2
u + ∥qn − wk∥2

)α/2
σ2

 ≥ Φ̄n
p,

∀n, k, (6.65)
(6.51) − (6.55). (6.66)

Remark 18. It is noted that the problem Pb,p
1.1 is a convex problem because the objective

function and all constraints are convex. Therefore, it can be numerically solved via standard
optimization solvers such as CVX [199]. By applying the lower bound as in Lemma 17,
the set of feasible solutions for Pb,p

1.1 is also a subset feasible solutions for Pb,p
1 . Thus, it

guarantees that at least a locally optimal solution can be achieved.

6.3.4 Subproblem 3: UAV Trajectory Optimization

For any given bandwidth allocation bj , UAV transmit power pj , and cache placement ηj ,
the UAV trajectory q can be obtained by solving following optimization problem

Pq
1 : max

q,χ
χ(q,bj ,pj ,ηj) (6.67)

s.t. ζnq ≥ χ,∀n, k, (6.68)

δt

n2k∑
n=n1k

r̄1k ≥ (1 − ηf )Q,∀n, k, (6.69)
∑
f∈F

ηf ≤ S,∀f, (6.70)

∥qn − qn−1∥ ≤ δd = Vmaxδt, n = 1, . . . , N,
(6.71)

q0 = qI ,qN = qF , (6.72)
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where

ζnq ≜ δtPk,fb
n
2kB2k

nf N∑
n1k

Φn
q + (1 − nf )

N∑
n2k+1

Φn
q

, (6.73)

Φn
q ≜ log2

1 + ψ(
H2
u + ∥qn − wk∥2

)α/2

, (6.74)

ψ ≜
e−Epn2kβ0

σ2 . (6.75)

The problem Pq
1 is a non-convex optimization problem due to the non-convexity of

constraints (6.68) and the combinatorial of designing UAV trajectory. To convexify (6.68),
we introduce slack variable such that

(
H2
u + ∥qn − wk∥2

)
≤ (νn2k)2/α. Let us denote ν ≜

{νn2k, ∀n, k}, then the sub-problem Pq
1 can be re-written as

Pq
1.1 : max

q,ν,χ
χ(q,bj ,pj ,ηj) (6.76)

s.t.
(
H2
u + ∥qn − wk∥2

)
≤ (νn2k)2/α,∀n, k, (6.77)

ζ̄nq ≥ χ,∀n, k, (6.78)
(6.69) − (6.72), (6.79)

where

ζ̄nq ≜ δtPk,fb
n
2kB2k

nf N∑
n1k

Φ̄n
q + (1 − nf )

N∑
n2k+1

Φ̄n
q

, (6.80)

Φ̄n
q ≜ log2

1 + ψ

νn2k

. (6.81)

It is noted that the problem Pq
1.1 is still non-convex. To solve this problem, we transform

Pq
1.1 into a convex form by giving following lemmas:

Lemma 19. For any given νn,j2k at (j + 1)-th iteration, Φ̄n
q ≜ log2

1 + ψ
νn

2k

 is lower

bounded by

Φ̄n
q ≥ log2

(
1 + ψ

νn,j2k

)
−

ψ(νn2k − νn,j2k )
νn,j2k (νn,j2k + ψ) ln 2

≜ Φ̂n
q. (6.82)
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6.3 Proposed Iterative Algorithm for Solving PSat
1

Algorithm 9 Proposed Iterative Algorithm to Solve PSat
1

1: REQUIRE
2: Set j := 0 and initialize bj , pj , and qj .
3: REPEAT
4: Solve Pη

1 for given {bj ,pj ,qj} and denote the optimal solution as ηj+1.
5: Solve Pb,p

1 for given {ηj+1,qj} and denote the optimal solution as bj+1 and pj+1.
6: Solve Pq

1 for given {ηj+1,bj+1,pj+1} and denote the optimal solution as qj+1.
7: Set j := j + 1.
8: UNTIL
9: Convergence

Proof. Due to the convexity of the function f(x) = log2(1 + 1/x) with x > 0. By applying
the first-order Taylor expansion to achieve the lower bound of f(x) at given feasible point
xj as

log2

(
1 + Ω1

x

)
≥ log2

(
1 + Ω1

xj

)
− Ω1(x− xj)
xj(xj + Ω1) ln 2 . (6.83)

By adopting Ω1 = ψ and x = νn2k, the Lemma 19 is then proved.

Consequently, we have

ζ̄nq ≥ δtPk,fB2k

nf N∑
n1k

Φ̂n
q + (1 − nf )

N∑
n2k+1

Φ̂n
q

 ≜ ζ̂nq . (6.84)

Bearing all the above discussions in mind, the problem Pq
1.1 is re-formulated as

Pq
1.2 : max

q,ν,χ
χ(q,bj ,pj ,ηj) (6.85)

s.t. (6.70) − (6.72), (6.77), (6.86)
ζ̃nq ≥ χ,∀n, k, (6.87)

Because the objective function and all constraints of Pq
1.2 are convex, thus problem

Pq
1.2 can be directly solved by using standard methods [199]. Consequently, we propose an

alternating algorithm based on three sub-problem solutions described in Algorithm 10.
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6.3.5 Convergence and Complexity Analysis

Convergence Analysis

Proposition 20. From the proposed iterative Algorithm 10, we can obtain at least a locally
optimal solution.
Proof. Let us define Ξ(ηj ,bj ,pj ,qj), Ξb,p

lb (ηj ,bj ,pj ,qj), and Ξq
lb(ηj ,bj ,pj ,qj) as the

objective values of P1, Pb,p
1.1 , and Pq

1.2 at the j-th iteration. In the (j + 1)-th iteration, in
step 2 of Algorithm 10, we have

Ξ(ηj ,bj ,pj ,qj)
i
≤ Ξ(ηj+1,bj ,pj ,qj). (6.88)

The inequality (i) holds because ηj+1 is a optimal solution of Pη
1 . After that, in step 3 of

Algorithm 10, we have

Ξ(ηj+1,bj ,pj ,qj) i2= Ξb,p(ηj+1,bj ,pj ,qj)
i3
≤ Ξb,p(ηj+1,bj+1,pj+1,qj)
i4
≤ Ξ(ηj+1,bj+1,pj+1,qj). (6.89)

The inequality (i2) holds because first-order Taylor approximation at points bj and pj is
tight as in constraint (6.58), (6.59), and (6.60) [264]. Moreover, the inequality (i3) holds
since bj+1 and pj+1 are optimal solutions of Pb,p

1.1 . Then, the inequality (i4) holds because
the objective value of Pb,p

1.1 is a lower bound to that of Pb,p
1 at given points bj+1 and pj+1.

Further, in step 4, we have

Ξ(ηj+1,bj+1,pj+1,qj) i5= Ξq
lb(ηj+1,bj+1,pj+1,qj)

i6
≤ Ξq

lb(ηj+1,bj+1,pj+1,qj+1)
i7
≤ Ξ(ηj+1,bj+1,pj+1,qj+1). (6.90)

The equality (i5) holds because the first-order Taylor expansion at given point qj as in
(6.82), (6.84), and (??) are tight, and the inequality (i6) holds since qj+1 is a optimal
solution of Pq

1.2. Furthermore, the inequality (i7) holds since the optimal value of Pq
1.2 is a

lower bound of Pq
1 at given qj+1.

From (6.88) to (6.90), we conclude that Ξ(ηj ,bj ,pj ,qj) ≤ Ξ(ηj+1,bj+1,pj+1,qj+1),
which shows that the objective value of P1 is non-decreasing as the number of iteration
increases. Further, the objective value of P1 is limited by an upper bound value due to
the maximum transmit power Pmax

u , restricted traveling time T , and maximum bandwidth
allocation for each GU. Therefore, this guarantees for the convergence of Algorithm 10.
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6.4 Simulation Results

Complexity Analysis

We analyze the worst-case complexity of Algorithm 10. Because Pη
1.3 is a linear pro-

gramming and it can be solved by using interior method with computational complexity
is O

[
L1
(
(F + 1 + NK)0.5(N + 3)3

)]
, where L1, (N + 3), and (F + 1 + NK) denote

the number of iterations required to update the cache placement, the number of vari-
ables, the number of constraints, respectively [234]. Further, the problem Pb,p

1 includes
(7NK + 2K + 3N + 1) linear or quadratic constraints and (5NK + 1) variables, thus
its complexity is O

[
L2
(
(7NK + 2K + 3N + 1)0.5(5NK + 1)3

)]
, where L2 is the number

of iterations to update bandwidth and power allocation. Next, the problem Pq
1 includes

(3NK+2K+3N+2) linear or quadratic constraints and (3NK+2N+1) variables, thus its
complexity is O

[
L3
(
(3NK + 2K + 3N + 2)0.5(3NK + 2N + 1)3

)]
, where L3 is the number

of iterations to update the UAV trajectory. Then, the overall complexity of Algorithm 0
is O

[
L4
(
L1
(
(F + 1 + NK)0.5(N + 3)3

)
+ L2

(
(7NK + 2K + 3N + 1)0.5(5NK + 1)3

)
+

L3
(
(3NK + 2K + 3N + 2)0.5(3NK + 2N + 1)3

))]
where L4 is the number of iterations

until convergence.

6.4 Simulation Results

In this section, numerical results are given to validate the proposed method, which jointly
optimizes cache placement, resource allocation (i.e., bandwidth and transmit power), and
the UAV trajectory design in satellite- and cache-aided UAV communication networks. We
consider a system with one LEO satellite, one cache-enabled UAV, and K GUs which is
distributed in a horizontal plane, i.e., Area = x2 (km2), with x = 1 km or 2 km. We assume
that the UAV’s initial and final locations are respectively located at qI = [1; 0.7] km and
qF = [0.3; 0] km. The flight altitudes of the LEO satellite and the UAV are fixed at 2000 km
and 1 km, respectively [268]. The maximum bandwidth for the AL from u → k is B2k = 20
Mhz. Therefore, the AWGN power is σ2 = −174+10 log10B ≃ −101 dBm. The maximum
transmit powers of the satellite and the UAV are respectively set as pn1k = 49.03 dBm and
Pmax
u is ranging from 5 to 40 dBm [93, 254]. Without other stated, other parameters are

set as: path-loss exponent α = 2, the maximum UAV velocity Vmax = 50 m/s, one time
slot duration δt = 0.5 second, channel gain at the reference distance β0 = -40 dB, total
number of file F = 30 files, one file size Q = 40 Mbits, UAV’s cache size S = 10 files, Zipf
skewness factor ϱ = 0.8 [258]. The error tolerance of iterative algorithm is set to ϵ = 10−4.
The LEO satellite’s orbital velocity is set to 6.9005 km/s based on (6.6). The initial point
of the LEO satellite is [−345; 0] km. The penalty parameter κ is initialized to 0.1 and
incremented as κ = 1.1κ until κ ≤ 10. To show the superiority of our design, we compare
the proposed scheme with the following benchmark schemes:
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Figure 6.2: Geometry distribution of GUs and the UAV trajectories.

• Benchmark scheme 1 (BS1): UAV bandwidth and transmit power optimization with
caching capability and fixed trajectory, i.e., a linear trajectory from initial to final
locations [254].

• Benchmark scheme 2 (BS2): UAV bandwidth, transmit power, and trajectory opti-
mization without caching capability [258].

• Benchmark scheme 3 (BS3): UAV trajectory optimization with caching capability
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Figure 6.3: Max-min throughput and total throughput vs. number of time slots.

and fixed resource allocation, i.e., bn2k ≜ 1
K , pn2k ≜

Pmax
u
K [254].

Fig. 6.2 plots the geometric distribution of GUs and the UAV trajectories for different
traveling times, i.e., N equals 40 and 100 time slots, with B1k = 50 Mbits. First, we
observe that the UAV flies from the initial point to the furthest point where it can transmit
information to GUs then back to the final point. In contrast to the [254] reference, in which
the authors assume that the transmitter only serves up to one requester at a time slot, which
is impractical and inefficient. In this work, we assume that the UAV can serve multiple GUs
simultaneously to improve network performance, i.e., max-min throughput. It leads to the
fact that the UAV tends to fly to a point that keeps a relative distance to all GUs instead
of flying to each GU’s location as in [254, Figure 7]. Further, it can be explained that if
the UAV tries to fly closer to some GUs, thus it only helps to improve the throughput for
these GUs while other users’ performance is degraded. Thus, it does not guarantee the
fairness between all GUs, which is the main purpose of this work. Furthermore, we also
find that by increasing the total flight time T , the UAV trajectory range becomes larger
as it has more time to get closer to each GU, which improves the max-min throughput.

Fig. 6.3 describes max-min throughput and total throughput as functions of total
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Figure 6.4: Max-min throughput and total throughput vs. cache size (Mbits).

flight time or the number of time slots N , where B1k = 50 Mbits, Pmax
u = 15 dBm,

Q = 40 Mbits. First, we observe that all schemes’ performance increases significantly
with larger values of the number of time slots. That is because the higher the traveling
time, the more data transmission rate per GU can be obtained. Therefore, the minimum
throughput value is improved. It can be seen that the proposed method always achieves
the best performance as compared with other schemes. Moreover, as the travel time is
large enough, the performance of BS1 and BS2 methods can achieve the same performance
as the proposed method. For example, the minimum throughput of BS1 and BS2 can reach
40 Mbits when the number of time slots is greater than 260 and 200, respectively; while
BS3 always has the lowest value. In Fig. 6.3.5, the total throughput is illustrated as a
function of traveling time. We can see that Fig. 6.3.5 has similar properties as Fig. 6.3.5.
It shows the total throughput that the UAV successfully transfers to all GUs. Similar to
Fig. 6.3.5, when the number of time slot is lower than 80, the BS1 is better than the BS2
scheme. Further, the proposed scheme is still the best one. Specifically, the throughput
performance of the proposed algorithm can serve up to 387 Mbits and the BS1 can achieve
less than 26.46 %, i.e., 284.6 Mbits, when N = 180. In comparison, the BS2 and BS3
scheme imposes a 365 and 255.24 Mbits of total throughput, respectively.
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Figure 6.5: Max-min throughput and total throughput vs. demanded data size (Mbits).

In Fig. 6.4, we study the influences of cache size, i.e., the number of files that can be
stored at the UAV, on the network performance, where Q = 60 Mbits, N = 80, B1k = 20
Mbits, x = 2 km. From the results, it can be seen that the proposed algorithm significantly
enhances the minimum and total throughput compared to the benchmarks for all cache
sizes. It is expected since the UAV has stored part of the requested files in their memory.
Thus, it does not need to demand from the satellite, which incurs more delay. As a result,
the UAV has more time to communicate with GUs, and a higher data rate can be obtained.
For instance, the minimum throughput of the proposed and BS1 schemes get 15.84 and
15.2 Mbits respectively at cache size equals 20 Mbits. Moreover, the BS2 and BS3 impose
9.55 and 5.61 Mbits, respectively. One more noticeable point in Fig. 6.4 is the performance
of the BS2 scheme independent of the cache size values. This is because the BS2 method
is implemented without considering caching capability at the UAV. Notably, when the
cache size is ranging from 10 to 20, the BS3 method can achieve better total throughput
compared to other schemes.

In Fig. 6.5, we plot the max-min throughput as a function of the file size (in Mbits),
where N = 120, x = 2 km. From the results, it is shown that the proposed scheme greatly
improves the performance compared to the references for all file sizes. Specifically, at
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Figure 6.6: Max-min throughput and total throughput vs. UAV transmit power (dBm).

demanded data equals 160 Mbits, the max-min throughput value of proposed method is
64.4 Mbits, and the BS1 achieve less than 4.5%, i.e., 61.5 Mbits. Whereas the BS2 and
BS3 impose 13 and 7.75, respectively. Notably, we also find that the performance of the
proposed method and BS1 optains the maximum value at the optimal file size, then it
will decreases. While the performance of BS2 and BS3 decreases dramatically. This shows
the superiority of the resource and cache placement optimization in the proposed scheme
and BS1 compared to BS2 and BS3. Nevertheless, for a given resource (i.e., bandwidth,
transmit power, UAV speed, and total flight time), when the file size is too large (i.e., file
size is larger than 160 Mbits), the performance of the proposed scheme and BS1 decreases
significantly. This is due to the fact that the larger the file size, the more latency is
required to transmit the requested data from the satellite to the UAV on the backhaul
link. Therefore, the UAV has less time to transmit data to GUs.

Fig. 6.6 presents the results corresponding to the max-min throughput versus UAV
transmit power Pmax

u , where N = 100, Q = 50 Mbits, S = 10. As illustrated, system
performance is enhanced by increasing the power budget, i.e., Pmax

u . That is due to the fact
that the higher the transmit power, the higher the data transmission rate can be obtained,
as shown in Eqs. (6.11) and (6.12). Furthermore, the proposed scheme provides a better
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result in comparison with the benchmark ones when the transmit power is small, i.e.,
Pmax
u ≤ 50 dBm. Nevertheless, the BS1 method can obtain the same max-min throughput

as the proposed method when Pmax
u value is large, e.g., Pmax

u ≥ 50 dBm. In this scenario,
the UAV should operate in the BS1 scheme due to its simplicity and fast employment.
However, inherent restrictions of UAV is the limitation on size, weight, and power capability
(SWAP). Thus, the proposed scheme is the best one that can adapt to all scenarios in
practice.

6.5 Summary

This paper studied LEO satellite- and cache-assisted UAV communications. Especially,
we proposed a novel system model that jointly considers UAV, caching, and satellite com-
munications in content delivery networks. In this context, we maximized the minimum
achievable throughput among GUs via joint optimization of the cache placement, resource
allocation, and UAV trajectory. Because the formulated problem was in the form of MINLP,
it is difficult to solve directly. Thus, we transformed the original problem into a solvable
form using an alternative algorithm based on BCD method and SCA techniques. Extensive
simulation results showed that our proposed algorithm improves up to 26.64%, 79.79%, and
87.96% in the max-min throughput compared to BS1, BS2, and BS3, respectively. Notably,
in the cases such as the UAV transmit power or the total traveling time size is large enough,
the UAV should operate in fixed trajectory mode for a simple implementation.
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Chapter 7
Conclusions and Future Works

A summary and the main conclusions of our work in this dissertation are provided in
Section 7.1. Finally, Section 7.2 provides protential directions for future works.

7.1 Main Conclusion

In recent years, developments in the field of UAV communications motivates researchers
to propose a number of interesting ideas. In this dissertation, we focused on the trajectory
design and resource allocation of the UAV system. The main structure of our thesis can
be summarized as follows:

• In the first chapter, we provided an overview of the recent advantages and applica-
tions of UAV-enabled communication systems. Then, we present the limitations and
technical challenges without being investigated in the aforementioned works.

• In chapter 2, we have studied the trajectory design for energy minimization in UAV-
enabled wireless systems with latency constraints. To this end, first, we designed three
algorithms, namely, exhaustive search, heuristic algorithm, and dynamic algorithm to
find a set of feasible paths satisfying the latency constraint at each GU. Then, based
on the given feasible paths, we minimized the total energy consumption and the best
path is selected as the lower energy consumption one. The results obtained from
this work can provide an initial feasible path for UAV-enabled DL data transmission
problems with latency requirements.

• In chapter 3, we have studied FD- and UAV-assisted emergency communications to
collect data from IoT devices and transfer them to the ground gateway. In particular,
to guarantee the latency constraints of each IoT data, we have proposed a novel
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system model to jointly optimize the maximum transmit power of devices/UAV, the
allocated bandwidth for DL and UL, and the UAV trajectory. The results have
shown that by intelligently designing the UAV trajectory, the proposed algorithms
gain significance compared to the benchmarks. Particularly, the outcome of this
work can provide the first framework for designers to model a latency-sensitive data
collection in the IoT ecosystem .

• In chapter 4, we have studied the throughput performance of a UAV acting as a relay
to transfer information from source to destination. We have considered two type
of communications including passive (or backscatter) and active communications.
We have provided an efficient algorithm to maximize the achievable throughput at
the destination. The results obtained from this work can provide a new approach
for researchers in designing an energy efficiency of a low-power UAV in a practice
scenario.

• In chapter 5, we have investigated the LEO satellite and UAV communication in DL
transmission. In particular, we considered a practice delay transmission from satellite
to UAV due to large distance, and the UAV trajectory is optimized to maximize the
minimum throughput that transmits to GUs during a limited flight time. To our best
knowledge, this is the first comprehensive study that jointly considers UAV, caching,
and SatCom in content delivery networks. Thus, it provides a novel system model
and a new approach that has not been investigated before.

7.2 Future Works

Although there is a considerable amount of research on UAV communications, during my
Ph.D., I have discovered many other interesting problems that should be investigated to
further understanding the UAV networks. In the following, we list some open problems:

7.2.1 Possible Extensions

• Further analysis of the UAV trajectory design based on TSPTW: The
TSPTW-based trajectory design for UAV communications have investigated in Chap-
ter 2 could be further extended into many fascinating directions. First, chapter 2 only
provides a coarse trajectory design to satisfy the latency constraints of the downlink
from UAV to GUs. One interesting problem is finding a fine trajectory based on
the results obtained in Chapter 2, which can further improve the network perfor-
mance, i.e., reduce the energy consumption at the UAV. Besides, another problem
is to jointly select the paths and optimize the velocity, which requires advanced op-
timization techniques but might further improve the UAV’s performance. Further,
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the problem of considering dynamic network topology is also an appealing direction.
In this case, an adaptive solution that optimizes the UAV trajectory on the fly is
required. Furthermore, this research result motivates the trajectory design for multi-
UAV scenario, in which multiple UAVs jointly serve the ground users. Pursuing the
optimal solution in this case requires advanced optimization techniques and may need
collaboration among the UAVs.

• More Insights on the UAV relay-assisted emergency Communications frame-
work: In Chapter 3 of this dissertation, a study of FD- and UAV-assisted latency-
sensitive on both DL and UL was provided. In the process,a simple model, whereas
the UAV and GUs were equipped with single antenna, was used for analysis. The
outcome of this work will motivate future works in UAV-aided wireless systems.
One possible problem is to extend this work to a multi-antenna UAV system, which
imposes higher complexity but might further improve the network performance. An-
other promising problem is to consider low complexity yet efficient machine learning
approaches to provide a reliable prediction of the LoS probability for any pair of UAV
and GU locations, hence leading to enhance performance assurance.

• Consideration a more generalized UAV relay network: The framework pro-
vided in Chapter 4 considers an investigation assuming the backscatter and caching
in UAV communication where a UAV plays as a relay to transfer information to the
destination. The outcome of this work will motivate future research directions: i.
The study of a multi-antenna UAV system, which increases complexity but might
further improve the system performance; ii. Another promising direction is to con-
sider intelligent reflecting surface (IRS); iii. The study of a more general system
model with multiple UAVs and multiple ground users; iv. The existence of a direct
link between source and destination is a more general model; v. Research on physical
layer security in the presence of an eavesdropper and a friendly jammer; vi. The
UAV can apply the NOMA technique to serve two users at the same time.

• Satellite-UAV-Terrestrial communications: The outcome of chapter 5 will mo-
tivate future works in satellite and UAV wireless systems: i. One possible problem
is to extend this work to a multi-UAV system, which imposes higher complexity but
might further improve the network performance; ii. Another promising direction is to
consider mobile edge computing in which the satellite plays as a cloud center (CC),
the UAV is a relay to transfer offloading information from GUs to CC. Specifically,
we can formulated a dynamic task offloading and scheduling problem by jointly opti-
mizing the computing offloading task, task scheduling, resource allocation, and UAV
trajectory.
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7.2.2 New Problems

• UAV-assisted Symbiotic Communications: There are several studies on UAV
communication in IoT networks. Nevertheless, due to the unprecedented increase
of mobile and IoT devices, current network architectures are becoming overwhelmed
with growing data traffic demands due to the limited resources, i.e., spectrum and
energy. Recently, symbiotic is emerged as a promising solution for IoT networks to
overcome the above issues. Generally, symbiotic radio is the combination of cognitive
radio networks (CRN) and backscatter communications (BackCom). Therefore, it
inherits benefits from both techniques, which are spectrum efficiency and lower power
consumption. Moreover, the benefits of UAVs for IoT communications have been
intensively investigated in the literature due to the high mobility, swift, and low-cost
deployment. Consequently, the combination of UAV and symbiotic can become a hot
topic in the next few years.

• UAV with Mobile Edge Computing: Due to the explosive surge of resource in-
tensive applications such as interactive gaming, face recognition, augmented reality
(AR), and virtual reality (VR), that impose stringent demands on high computation
capability, and low-latency processing. Nevertheless, the limited storage, energy, and
computation resources of mobile users make them unsuitable for processing resource-
hungry applications. Mobile Edge Computing (MEC) was recently proposed to over-
come the above issues due to its compute-intensive capability and close proximity to
end-users. Besides, UAVs can be employed to improve the quality of service (QoS)
and the channel conditions since they can provide LoS links to GUs. Therefore, the
utilization of UAVs as flying computing servers as well as relays can provide low
latency-aware mobile services.

• Artificial Intelligence for UAV-Enabled Wireless Networks: UAVs are con-
sidered as one of the promising technologies for the next-generation wireless commu-
nication networks due to their mobility and ability to establish LoS links with GUs.
However, the still exists many problems that need to be solved in UAV communica-
tions. Especially, the problem of how to design the UAV system in online or real-time
scenarios is still needed to be studied. For example, during a natural disaster, terres-
trial infrastructure can be destroyed or compromised, affecting the ability of people
to communicate with the outside world. In this context, an intelligent UAV equipped
with machine learning (e.g., deep reinforcement learning) can be proposed to deter-
mine the optimal location of the UAV to maximize the final reward adaptively in
real-time, e.g., the important information disseminated to people in the isolated area
as soon as possible with unknown environments after a disaster. Another example is
that an AI-based UAV can prioritize one more important task in real-world situations
while performing another, e.g. when flying for broadcast information, it receives SOS
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information from a person on the ground. One more example is the UAV swarm in
a battlefield environment, herein the UAVs should be designed to have the ability
to self-control and make the right decisions in the highly dynamic environment to
finish the mission as best as possible. Recently, federated learning has been received
significant attention from wireless communication community. Due to the privacy
concerns of mobile users and limited communication resources and computing capa-
bility of UAVs, it is impractical to send raw data from GUs to UAV servers for model
training. There is a need to develop a federated learning framework for UAVs net-
works, which can efficiently provide asynchronous distributed computing by allowing
local training of the model.

• Blockchain-Envisioned UAV Communication: Secure communication in UAV
networks has been intensively investigated by both academic and industry experts,
but there are still many unsolved challenges. Specifically, traditional UAV communi-
cation is not enough to deal with the high maneuverability and dynamic features of
UAV in ultra-high speed and low latency requirements in 5G and beyond networks.
Therefore, there is a need for a secure and efficient network for UAV communica-
tions. Blockchain technology can be considered as a good security solution in UAV-
enabled 6G communication since it provides scalability, adaptability, transparency,
and immutability to the UAV networks. Furthermore, the blockchain-based UAV in
6G networks helps in various areas, such as disaster management, product delivery,
surveillance operations, supply chain management, etc., to provide efficient, secure,
and effective communication.
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Appendices for Chapter 4

A.1 Proof for Lemma 3 in Chapter 4

Proof for (4.10) and (4.11): We consider a function f(z) = EZ [log2(1 + eln z)], z > 0. By
adopting Jensen’s inequality for convex function log2(1 + eln z), it yields

f(z) ≥ log2

(
1 + eEZ [ln z]

)
. (A.1)

Let us denote Z ≜ Γ1k = p1k[n]|h̃1k[n]|2ω0(
H2+

∥∥∥q[n]−wk

∥∥∥2)α/2(
ϕRSI

∑
k∗∈K\k

p2k∗ [n]+σ2
) . Thus, this is an

exponentially distributed random variable with parameter λZ ≜ (E[Z])−1 = ζ1k
p1k[n]ω0

with

ζ1k ≜
(
H2 +

∥∥∥q[n] − wk

∥∥∥2)α/2 (
ϕRSI ∑

k∗∈K\k
p2k∗ [n] + σ2

)
. By applying [263, Eq. 4.331.1],

EZ [ln z] can be calculated as

EZ [ln z] =
∫ +∞

0
λZe

−zλZ ln zdz = −
(

ln(λZ) + E
)
,

= ln p1k[n]ω0
ζ1k

− E, (A.2)

where E is the Euler-Mascheroni constant, i.e., E = 0.5772156649 as in [263, Eq. 8.367.1].

By substituting (A.2) into (A.1), we obtain (4.10). Similar to (4.10), we also easily
achieve (4.11) by adopting Z ≜ Γ2k.
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A.2 Proof for Lemma 7 in Chapter 4

As in [221, Eq. (20)], we have

h1(x, y, z) ≥ ln
(

1 + x(j)

y(j)z(j)

)
− x(j)

y(j)z(j) + 2
√
x(j)√x
y(j)z(j) − x(j) (x+ yz)

y(j)z(j) (x(j) + y(j)z(j)) , (A.3)

h2(x, z) ≥ ln
(

1 + x(j)

z(j)

)
− x(j)

z(j) + 2
√
x(j)√x
z(j) − x(j) (x+ z)

z(j) (x(j) + z(j)) . (A.4)

By applying (4.57), the upper bound of yz in (A.3) is given by

yz ≤ y(j)

2z(j) z
2 + z(j)

2y(j) y
2, (A.5)

with x ≥ 0, y ≥ 0, z ≥ 0, x(j) ≥ 0, y(j) ≥ 0, z(j) ≥ 0.

Then, replacing (A.5) into (A.3), we obtain (4.58) and (4.59). The Lemma 2 is hence
proved.

A.3 Proof for Equations (4.60) and (4.61) in Chapter 4

From (A.5), the upper bound of zk[n]t1k[n] in rlb
1k[n] is:

zk[n]t1k[n] ≤ (z1k[n]t1k[n])ub ≜
z

(j)
1k [n] (t1k[n])2

2t(j)1k [n]
+ t

(j)
1k [n] (z1k[n])2

2z(j)
1k [n]

. (A.6)

By making use of (4.58), (4.59), and (A.6), the lower bound of Φ1k[n] and Φ2k[n] are,
respectively

Φ1k[n] ≥ Φ̄1k[n] ≜ B

(
Ξ1 + Ξ2 − Ξ3

)
, (A.7)

Φ2k[n] ≥ Φ̄2k[n] ≜ B

(
Ξ4 + Ξ5 − Ξ6

)
, (A.8)
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where

Ξ1 ≜ log2

1 + e−Ep
(j)
1k [n]ω0

z
(j)
1k [n]t(j)1k [n]

−
e−Ep

(j)
1k [n]ω0

z
(j)
1k [n]t(j)1k [n] ln 2

,

Ξ2 ≜ e−Eω0
2
√
p

(j)
1k [n]

√
p1k[n]

z
(j)
1k [n]t(j)1k [n] ln 2

,

Ξ3 ≜
e−Ep

(j)
1k [n]ω0(

e−Ep
(j)
1k [n]ω0 + z

(j)
1k [n]t(j)1k [n]

)
z

(j)
1k [n]t(j)1k [n] ln 2

×

e−Ep1k[n]ω0 + z
(j)
1k [n] (t1k[n])2

2t(j)1k [n]
+ t

(j)
1k [n] (z1k[n])2

2z(j)
1k [n]

,
Ξ4 ≜ log2

1 + e−Ep
(j)
2k [n]ω0

z
(j)
2k [n]σ2

−
e−Ep

(j)
2k [n]ω0

z
(j)
2k [n]σ2 ln 2

,

Ξ5 ≜
e−Eω0

z
(j)
2k [n]σ2 ln 2

2
√
p

(j)
2k [n]

√
p2k[n],

Ξ6 ≜
e−Ep

(j)
2k [n]ω0

e−Ep
(j)
2k [n]ω0 + z

(j)
2k [n]σ2

×

(
e−Ep2k[n]ω0 + z2k[n]σ2

)
z

(j)
2k [n]σ2 ln 2

.

A.4 Proof for Proposition 8 in Chapter 4

To be self-contained, we briefly provide the convergence analysis as follows. First, we
recall that the approximate functions presented in Section 4.3 satisfy properties of the IA
algorithm [213,226]. Let F(Ψ) and F̃(Ψ) denote the objective function of (4.20) and (4.66),
respectively. Following the IA principle, the approximated function’s feasible region is a
subset of the feasible region of original problem. Thus, it is true that

F(Ψ) ≥ F̃(Ψ), ∀Ψ, (A.9)
F(Ψ(j)) = F̃(Ψ(j)), ∀Ψ. (A.10)

Thus, it follows that

F(Ψ(j+1)) ≥ F̃(Ψ(j+1)) ≥ F̃(Ψ(j)) = F(Ψ(j)), (A.11)

where the first inequality is due to (A.9). The second inequality is attributed to the fact
that Ψ(j+1) is a better solution for (4.20) than Ψ(j) [226, Property iv of Lemma 2.2].
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Moreover, since the sequence {F(Ψ(j))} is bounded due to the power constraints (4.30)
and (4.31), the bandwidth constraints (4.25) and (4.26), and the limited flying time, the
sequence {Ψ(j)} will converge, as shown in [226, Corollary 2.3 ]. Thus, each accumulation
point Ψ⋆ of the sequence {Ψ(j)} is a KKT point as in [213, Theorem 1]. Consequently,
we can obtain at least a locally optimal solution according to [213, Corollary 1], which
completes the proof.
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B.1 Proof for Lemma 9 in Chapter 5

Proof for (5.20): Firstly, we consider a function f(x) = EX [log2(1 + elnx)], x > 0. Based
on Jensen’s inequality for convex function log2(1 + elnx), we have

f(x) ≥ log2

(
1 + eEX [lnx]

)
. (B.1)

Let us denote x ≜ Ps|hnsu|2/σ2
u and apply [263, Eq. 4.331.1], we then have

EX [ln x] =
∫ +∞

0
λsue

−λsux ln xdx = −(lnλsu + E)

= ln
(
Psω0(dnsu)−α/σ2

u

)
− E, (B.2)

where E is the Euler-Mascheroni constant, i.e., E = 0.5772156649 as in [263, Eq. 8.367.1];
E[x] = Psω0(dnsu)−α/σ2

u, and λsu =
(
E[x]

)−1
=
(
Psω0(dnsu)−α/σ2

u

)−1
.

By substituting (B.2) into (B.1), we obtain the equation expression (5.20).
Proof for (5.21): Secondly, we consider a function f(x, y) = EX,Y [log2(1 + xy)], x > 0,

y > 0, whereas x and y are two independent random variables. Based on Jensen’s inequality
for concave function log2(1 + xy) with respect to (w.r.t.) y, we have

f(x, y) ≤ EX
[

log2

(
1 + xEY [y]

)]
≜ f̂(x, y). (B.3)

Then, by applying Jensen’s inequality for convex function log2(1 + elnx) with respect
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to (w.r.t.) x, we have

f̂(x, y) = EX
[

log2

(
1 + elnxEY [y]

)]
≥ log2

(
1 + eEX [lnx]EY [y]

)
≜ f̃(x, y). (B.4)

From (??) and (B.4), we see that f̃(x, y) can serve as an approximation function of
f(x, y) but it is not a lower bound or an upper bound of f(x, y).

Let us denote x ≜ |hnud|2, y ≜ ηn
uPs|hn

su|2+P̄u

σ2
d

, and apply [263, Eq. 4.331.1], we then have

EX [ln x] =
∫ +∞

0
λsue

−λsux ln xdx = −(lnλsu + E)

= ln ω0(
H2 + ∥qn − wd∥2

)α/2 − E, (B.5)

EY [y] = E
[
ψud|h̃

n
ud|2

]
= ηnuPsω0(dnsu)−α + P̄u

σ2
d

, (B.6)

where E[x] = ω0(
H2+∥qn−wd∥2

)α/2 , and λsu =
(
E[x]

)−1
=
(

ω0(
H2+∥qn−wd∥2

)α/2

)−1
. Substi-

tuting (B.5) and (B.6) into (B.4), we obtain (5.21). Thus, the Lemma 9 is proof.

B.2 Proof for Theorem 10 in Chapter 5

It is easy to verify that if λ4 ̸= 0, thus J(τ ) = 0 implying that τn = 1 which is not a
feasible solution. Thus, we conclude that λ4 = 0.

In order to obtain the feasible solution, we evaluate all the cases as follows:
Case I : λ1 = 0 =⇒ G(τ ) ̸= 0, λ2 = 0 =⇒ H(τ ) ̸= 0, λ3 = 0 =⇒ I(τ ) ̸= 0.
From (5.39), we have ∑

n∈N
δtR̄

n
d = 0 which is unreasonable. Thus, this case can not

occur.
Case II : λ1 = 0 =⇒ G(τ ) ̸= 0, λ2 ̸= 0 =⇒ H(τ ) = 0, λ3 = 0 =⇒ I(τ ) ̸= 0.
From (5.39), we find that λ2 = −1 which is unreasonable. Thus, this case can not

occur.
Case III : λ1 ̸= 0 =⇒ G(τ ) = 0, λ2 = 0 =⇒ H(τ ) ̸= 0, λ3 = 0 =⇒ I(τ ) ̸= 0.

From (5.39), we have λ1 =

∑
n∈N

δtR̄n
d∑

n∈N
δtR̄n

d
−
∑

n∈N
δtR̄n

u
. If R̄nu = R̄nd , then we obtain λ1 = +∞.

If R̄nu > R̄nd , then we obtain λ1 < 0. All of these scenarios is unreasonable. If R̄nu < R̄nd ,
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then we obtain λ1 > 1. Furthermore, from G(τ ) = 0, we have

τ⋆n ≜
σS

Nδt(R̄nd − R̄nu)
. (B.7)

Based on (5.43), the optimal solution {τ⋆n} can be obtained iff R̄nu < R̄nd , ∀n ∈ N .

Case IV : λ1 = 0 =⇒ G(τ ) ̸= 0, λ2 ̸= 0 =⇒ H(τ ) = 0, λ3 ̸= 0 =⇒ I(τ ) = 0.

From H(τ ) = 0, we have τn = S
NδtR̄n

d

. From I(τ ) = 0, we obtain τn = χ1−En
fly(q)

χ1+δt

(
Pb+Pu

) .

It can be seen that there exists two different optimal values of τ which is contradictory.
Hence, this case does not occur.

Case V : λ1 ̸= 0 =⇒ G(τ ) = 0, λ2 = 0 =⇒ H(τ ) ̸= 0, λ3 ̸= 0 =⇒ I(τ ) = 0.

Case VI : λ1 ̸= 0 =⇒ G(τ ) = 0, λ2 ̸= 0 =⇒ H(τ ) = 0, λ3 = 0 =⇒ I(τ ) ̸= 0.

Similar to case IV, we also obtain two different values of τ in case V and VI which is
conflict. Thus, these cases are not occur.

Case VII : λ1 ̸= 0 =⇒ G(τ ) = 0, λ2 ̸= 0 =⇒ H(τ ) = 0, λ3 ̸= 0 =⇒ I(τ ) = 0.

In this special scenario, we obtain up to three different values of τ which is unreasonable.
Thus, this case is not occur.

Case VIII : λ1 = 0 =⇒ G(τ ) ̸= 0, λ2 = 0 =⇒ H(τ ) ̸= 0, λ3 ̸= 0 =⇒ I(τ ) = 0.

From (5.39), we have

∑
n∈N

δtR̄
n
d − λ3

(
χ1 +

∑
n∈N

δt
(
Pb + Pu

))
= 0

⇐⇒ λ3 =

∑
n∈N

δtR̄
n
d

χ1 + ∑
n∈N

δt
(
Pb + Pu

) . (B.8)

Moreover, from I(τ ) = 0, we have

τ⋆n =
χ1 − Enfly(q)

χ1 + δt
(
Pb + Pu

) . (B.9)

From (B.7), (B.9), and constraint (5.32), we can obtain (5.44) which completes the
proof of Theorem 10.
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B.3 Appendix C

First, we proof the convexity of function f(x) = log2

(
1 + 1/x

)
. By taking the second

derivative of f(x), we have

f ′′(x) = (1 + 2x)
x2(1 + x)2 ln 2 . (B.10)

It is easy to see that f ′′(x) > 0 with x > 0, thus function f(x) is convex.
Second, we proof the convexity of function f(x) = log2

(
1 + (A2 + A3x)/xy

)
. The

Hessian matrix of f(x) can be calculated as

Hf =



A2

(
A2+2x(A3+y)

)
x2
(
A2+x(A3+y)

)2
ln 2

A2(
A2+x(A3+y)

)2
ln 2

A2(
A2+x

(
A3+y)

)2
ln 2

(A2+A3x)(A2+x(A3+2y))

y2
(
A2+x(A3+y)

)2
ln 2


(B.11)

Based on (B.11), it can be seen that trace of matrix Hf is a positive value, with
A2, A3, x, y > 0.

Then, the determinant value of matrix Hf is calculated as

Det
(
Hf

)
=
A2
(
A2

2 + 3A2x (A3 + y) + 2A3x
2 (A3 + 2y)

)
x2y2(A2 + x (A3 + y))3(ln 2)2 . (B.12)

From (B.12), determinant of matrix Hf is positive with A2, A3, x, y > 0. Consequently,
we can conclude that function f(x) is convex since the Hessian matrix Hf is positive semi-
definite [269].
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