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Epstein-Barr virus (EBV) is widely spread in the human population. EBV nuclear antigen 1 (EBNA1) is a
transcription factor that activates viral genes and is necessary for viral replication and partitioning, which
binds the EBV genome cooperatively. We identify similar EBNA1 repeat binding sites in the human genome
using a nearest-neighbor positional weight matrix. Previously experimentally verified EBNA1 sites in the
human genome are successfully recovered by our approach. Most importantly, 40 novel regions are

identified in the human genome, constituted of tandemly repeated binding sites for EBNA1. Genes located in
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the vicinity of these regions are presented as possible targets for EBNA1-mediated regulation. Among these,
four are discussed in more detail: IQCB1, IMPG1, IRF2BP2 and TPO. Incorporating the cooperative actions of
EBNAT1 is essential when identifying regulatory regions in the human genome and we believe the findings
presented here are highly valuable for the understanding of EBV-induced phenotypic changes.

© 2010 Elsevier Inc. All rights reserved.

Introduction

The Epstein-Barr virus (EBV) is a human herpes virus that infects
the majority of the human population. The virus is shed into and
spread via saliva. Primary infection is believed to occur in the
epithelial cells of the oropharynx, but in order to establish a persistent
latent infection the virus targets the B-lymphocytes (Borza and Hutt-
Fletcher, 2002; Petgel et al., 2004). The host-virus interaction can be
divided into four different latency phenotypes, defined by which viral
proteins are expressed, which viral promoters are active and the
differentiation stage and type of the infected cell (Babcock et al.,
2000). In the latently infected B-lymphocyte, EBV maintains its
170 kbp genome as multiple episomes. One protein is expressed in all
infected phenotypes: the Epstein-Barr nuclear antigen 1 (EBNA1). As
EBNAL is involved in viral transcriptional activation, replication and
plasmid partitioning, it is indispensable for the virus. The EBV genome
is copied once in every S-phase by the host cell replication machinery.
This is controlled by oriP, a 1.7 kb region of the EBV chromosome that
supports the replication and stable maintenance of the EBV plasmids
in human cells. It contains two essential components called the Dyad
Symmetry (DS) and the Family of Repeats (FR), respectively, both of
which contain multiple binding sites for EBNA1 (Resiman and Sugden,
1986; Summers et al., 1996). EBNA1 activates oriP by binding to these
two regions. The DS region contains four overlapping EBNA1 sites and
is the site for initiation of replication. FR is a region with 30 bp repeats
containing 20 binding sites for EBNAT, and it acts as a transcriptional
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enhancer on the viral C promoter, controlling production of all viral
nuclear antigens (Resiman and Sugden, 1986). Between six and eight
EBNAT1 proteins are required in order to fully activate the C promoter
(Wysokenski and Yates, 1989; Zetterberg et al., 2004). FR also contain
binding sites for the human transcription factor Oct-2 (Almqvist et al.,
2005). Multiple EBNA1 homo-dimers are thus required for the
formation of a transcriptionally active Cp complex; a process that
involves competition with Oct-2 for binding at FR as well as EBNA1-
induced changes in the chromatin structure, including DNA looping and
nucleosome destabilization (Zetterberg et al., 2004; Frappier and
O'Donnell, 1991; Su et al.,, 1991; Avolio-Hunter et al,, 2001; Werner
et al., 2007a,b). EBNA1 binding at FR also helps to activate replication
from DS through a cooperative action (Wysokenski and Yates, 1989). In
addition to FR and DS, EBNAT also binds to two sites downstream of the
viral Q promoter and to two sites in the oriP called Rep* (Sample et al.,
1992; Wang et al., 2006).

The binding of EBNA1 to DNA is sequence specific, and the
requirements for EBNA1 binding are fairly well understood. The
crystal structure of DNA-bound EBNA1 has identified the protein
domains responsible for DNA recognition and biochemical studies
have focused on the exact composition of the DNA binding site and
how single nucleotide mutations affect the binding affinity [Ambinder
et al,, 1990, 1991; Bochkarev et al., 1996]. The binding of EBNA1 to its
four different locations on the EBV genome differs dramatically
regarding binding strength, with the strongest binding to FR followed
by DS, Rep* and Qp (Ambinder et al., 1990; Wang et al., 2006).

Due to its various roles, many attempts have been made to
understand how EBNA1 affects human cells and whether EBNA1 can
in fact be categorized as an oncogene (Schulz and Cordes, 2009).
EBNA1 transgenic mice have been shown to develop malignancies,
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and the rate of lymphoma development has been linked to EBNA1
mRNA level (Wilson and Levine, 1992; Wilson et al., 1996). EBNA1
also affects cell proliferation in Burkitt's lymphoma (BL) cell lines,
which is partly explained by its interaction with HAUSP/USP7, a
deubigitination enzyme that prevents p53 degradation (Kennedy
et al,, 2003; Sengupta et al., 2006; Holowaty et al.,, 2003). Moreover,
several studies have shown that EBNA1 can affect the expression of
specific genes. Expression of EBNA1 in Hodgkin lymphoma cell lines
increased the expression of CD25 and CCL20 (Kube et al., 1999;
Baumforth et al., 2008). In Ad/AH cells, EBNA1 can modulate the TGF
pathway by increasing the degradation of SMAD2 (Flavell et al., 2008).
Furthermore, EBNA1 expression in Ad/AH cells and NPC tumors leads
to higher expression of certain cytokines and angiogenic factors
through increasing AP-1 activity. This is due to increased expression of
subunits of the AP-1 dimers: ATF2 and c-Jun. EBNA1 has been shown
to bind to their promoters (O'Neil et al., 2008). In addition, EBNA1
increases expression of the V(D)] recombinases RAG1 and RAG2
(Srinivas and Sixbey, 1995). These findings suggest that EBNA1 might
facilitate recombination events and could thereby contribute to the
c-myc (Ig) locus translocation that is crucial for the development of
BL. A recent study shows that EBNA1 induces chromosomal
abnormalities by activating transcription of NADPH oxidase, NOX2,
thereby increasing the production of reactive oxygen species (ROS)
(Gruhne et al., 2009). The authors propose that EBNA1 binds to a site
upstream of the NOX2 promoter, since this site resembles binding
sites in DS and Qp (Gruhne et al, 2009). In a recent study by
Dresang et al. (2009), EBNAT1 binding sites were sought for in 27,000
human promoter regions by computational means, followed by
experimental verification. This first large scale attempt to scan for
EBNAT sites on the human genome reports 73 in-vitro binding sites.
However, the functionality of the reported EBNA1 binding sites
remains uncertain, as no significant changes in gene expression
could be attributed to the occupation of these sites (Dresang et al.,
2009). We believe that since the transcriptional activation process
with EBNA1 on the EBV genome is known to be highly cooperative,
it is likely that EBNA1 also binds to multiple sites on the human
genome, when functioning as an activator or repressor of human
genes. Hence, the aim of this study is to investigate whether it is
possible to identify FR-like regions in the human genome. From a
bioinformatical screening of the whole human genome, we filtered
out 40 potential FR-like regions with fairly strong predicted binding
affinity for EBNA1. Several of them are located in the vicinity of
protein-coding genes that can be related to EBV infections.

Results
Binding sites on the EBV genome

First the matrix was evaluated on the EBV genome. Each position
on the genome is assigned a score which is used as a proxy for the
binding affinity for EBNA1. The lower a site's score, the higher its
similarity to the original set of binding sites, thus a lower score
correlates to an increased likelihood of EBNA1 binding. The back-
ground, that is the score given by EBNA1 binding to sites that are not
specific binding sites, includes in this study scores down to — 8, i.e. the
same order as the binding sites of Rep*and Qp. Our matrix correctly
identifies all previously known sites. The obtained scores for the
EBNAT1 binding sites on the EBV genome range from —14.3 to — 19 for
FR, see inlay in Fig. 1, and from —10.8 to — 15.1 for the DS sites. The
weaker scores for Qp (—8.7 and —12.7) and Rep* (—7 and —8.9) led
us to define the threshold of —10 for the filtering of the human
genome scores. Using a single nucleotide weight matrix description
instead of the nearest neighbor model, leads to a much smaller score
gap between known binding sites and non-specific background. The
difference between both descriptions is apparent in Fig. 1.

Single EBNAT1 binding sites on the human genome

Before looking at the repeated regions that bind EBNA1, we
examined the amount of predicted binding sites for EBNA1 on the
human genome. A threshold of —8, set as a first cutoff, yielded
2.3-10° predicted binding sites on the human genome. Fig. 2 shows
the distribution of these scores. As FR-like regions are the focus of this
study, these hits have not been the subject of further investigation.

Repeated binding sites

EBNAT1 activation of the C and W promoter in the EBV genome is a
highly cooperative process involving the occupation of multiple
binding sites (Wysokenski and Yates, 1989; Zetterberg et al., 2004;
Werner et al., 2007b). Based on this, we focused on the identification
of human FR-like regions. After the refined filtering (see Methods), we
retained a total of 50 FR-like regions on the whole genome for which
the nearest protein-coding genes were determined. The distribution
of these regions throughout the human chromosomes is shown in
Fig. 3.

Ten of these regions were neighboring uncharacterized genes and
therefore excluded from further analysis. Table 1 lists the remaining
40 genes.

EBNAT1 binding scores at already predicted sites

Gruhne et al. (2009) recently showed that EBNA1 induces
chromosomal aberrations, DNA double-strand breaks and engages
the DNA damage response. According to their finding, NOX2 oxidase is
transcriptionally active in EBNA1 expressing cells, and there is a
possible binding site for EBNA1 in the promoter of NOX2. This site is
similar to the Qp and DS site, i.e. it is most likely a weak binding site
for EBNAL1. Indeed, in our screening we do not recognize this site, and
when evaluating our matrix it yields a score of —5.16 which indicates
that the site is highly different from FR and DS and might have an
extremely low binding strength, weaker than Qp and Rep*, and
alternatively needs secondary factors to ensure binding.

O'Neil et al. describe c-Jun and ATF2 as likely regulatory targets of
EBNAT1. They were not able to show direct binding of EBNA1 to these
promoter-regions. However, they argue for a likely involvement of
EBNAT1 in direct regulation of these two genes. We looked in our
predicted binding site library for sites with a better score than — 10, in
the surroundings of these two transcription start sites. For c-Jun, we
identify one EBNAT1 site of score —12.3, 2298 bp upstream of the
transcription start site (NCBI36.48.dna.chromosome.1: 59024885).
For ATF2, there is one site with a score of —10.5, 4263 bp upstream
and one site of with a score of —11.55, 2908 bp downstream of the
transcription start site (NCBI36.48.dna.chromosome.2: 175745443
and 175734088). Since RAG1 and RAG2 were seen to be up-regulated
in the presence of EBNA1 in the cell, their promoter sequences were
also queried for EBNA1 binding sites. However, our matrix does not
identify any likely binding sites for EBNAT in the vicinity of these two
promoters.

We further verified whether our method correctly identifies the
EBNA1 binding sites found by Dresang et al. Our method recovers 53
out of the 73 previously experimentally identified EBNA1 binding
sites with scores above background (Supplementary Table 1).

Discussion

The aim of this study was to identify FR-like regions in the human
genome; more precisely, regions with multiple binding sites for
EBNAT1, with fairly high predicted binding scores and non-overlapping
with mobile DNA elements. After the stepwise filtering we were left
with 40 regions. These are presented in Table 1 and we believe that a
number of these proteins are interesting in relation to EBV.



526 AF. d'Hérouél et al. / Virology 405 (2010) 524-529

o
Q
[&]
(7]
=
E % ,ﬂf.; o 80 9 8g 8g 8g 8g 8o EEE:;\.
= fe 0,80 8 mnam,muaau = 10 "
< 4 B8 B8
I o 12 12 N
= It o 14 ° a4 " l
16 il - 16
2 P . smessama | FR e DS 1
. i ‘ e g T "2,07000 7500, B0 | 8500 e | 900 ; |
10° 10° 10* 10° " 2 4 6 8 10 12 14 16
density locus on EBV genome x 10
B
o
o
Q
[}
x
T
1S
_i, =
; ' os 2 ° ) = :
1o :: 00® o |FR :Z DS B
= f & e S e
0 20 ) ; —
T_ e 7000 7500 8000 8500 9040 9100 -1
; i ’ —T | 1 I | | |
10" 10 10° 10" 10° 2 4 6 8 10 12 14 16
4
density locus on EBV genome x10

Fig. 1. Distribution and positioning of predicted binding sites on EBV. A) Figure of the score distribution and the positioning of the predicted EBNA1 binding sites on the EBV genome, using a
single nucleotide weight matrix. The background level is quite high, around — 10, as can be seen both on the EBV map (right plot) as well as on the score density function (left plot). The sites
of FR are however still distinguishable (left inlay). B) The same plots of score distribution and the positioning of the predicted EBNA1 binding sites on the EBV genome; this time using our
nearest neighbor weight matrix. The background level is significantly lower using this model, lowering the risk for false positive sites with a threshold of — 10 as base for FR-like regions. The
left inlay shows the FR region of EBV, now significantly more prominent, while the DS region is shown in the right inlay.

The two genes with the largest negative scores, 1Q-motif Ca2+
binding protein 1 (IQCB1) and interphotoreceptor matrix proteogly-
can 1 (IMPG1) are, surprisingly, both associated with photoreceptors.
IQCB1 is expressed and localized in the primary cilia of renal epithelial
cells, but it also functions as a bridge between p53 and calmodulin-
regulated cellular processes in epithelial cells (Luo et al., 2005a).
Functionally IQCB1 binds to both the Ca2+-bound and Ca2+-free
calmodulin, and its expression is down-regulated by p53 and
genotoxic agents. Thus by negatively regulating IQCB1, p53 may
further enhance PUMA (p53 up-regulated modulator of apoptosis)
expression. IQCB1 is up-regulated in a number of primary colorectal
and gastric tumors when compared with matching normal tissues
(Luo et al., 2005a). Transcriptional up-regulation of PUMA modulates
endoplasmic reticulum calcium pool depletion-induced apoptosis via
Bax activation (Luo et al., 2005b). IQCB1 is expressed by the EBV
positive BL cell line Daudi (http://biogps.gnf.org/). Hypothetically,

this gene could add a survival advantage if expressed at a higher level
and at specific time points during division and differentiation. It
would be interesting to further explore if EBNA1 can up-regulate this
gene and whether this could be related to EBNA1 directed
tumorigenicity. IMPG1/SPACR (sialoprotein associated with cones
and rods), is the major 147-150 kDa glycoprotein present in the
insoluble interphotoreceptor matrix of the human retina (Acharaya
et al., 1998). Little is known about this protein but it is expressed in
EBV positive BL cell lines Daudi and Raji (http://biogps.gnf.org/) and
it would be worth investigating whether IMPGT1, like IQBC1, can play
various roles in different cellular backgrounds.

One of the identified FR-like regions is located close to the gene
encoding IRF2BP2, the Interferon Regulatory Factor-2 binding protein
2.IRF2BP2 is an IRF2-dependent co-repressor, interacting with the
C-terminal of the IRF2 protein (Childs and Goodbourn, 2003). IRF2
is both a transcriptional activator and repressor, involved in regulation
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Fig. 2. Score density function of single EBNAT sites on the human genome. Given that
some of the known functional EBNA1 sites on EBV have a binding site score of the order
of —8, using our model, one should pay attention to the large number of predicted
single sites within this order of score. It gives an indication on the predicaments of
looking at single EBNA1 binding sites on the human genome. However, there is also a
number of sites with predicted binding affinity of the same order as FR.

of interferon genes as response to viral infections (Harada et al., 1989).
What is highly interesting with the finding of an eventual EBNA1
regulative motif close to IRF2BP2 is that IRF2 has been shown to activate
EBNA1 transcription from the viral Q promoter (Schaefer et al.,, 1997;
Nonkwelo et al., 1997). It is difficult to hypothesize around the exact
regulatory role of our FR-like region, but there might indeed be a
feedback mechanism involved here, where EBNAT1 indirectly affects the
IRF2 transcriptional activation abilities; on Qp as well as on other
promoters.

Another interesting protein in our list of genes is the thyroid
peroxidase (TPO). TPO is targeted by autoantibodies produced in
Hashimoto's thyroiditis, an autoimmune thyroid disease (Chardes
et al,, 2002). Hashimoto's disease is a form of hypothyroiditis which
has been associated with EBV infections in several studies (Vrbikova
et al, 1996; Desailloud and Hober, 2009; Shimon et al., 2003).
However, whether the virus is an innocent bystander or actively plays
a role in inducing the disease is still not understood. It would be of
high interest to further investigate the functionality of the eventual
binding region we identified close to the thyroid peroxidase gene,
measuring the effect of EBNA1 binding on TPO expression. This would
give a clearer insight into a possible correlation between the EBV
infection and autoimmune thyroid disorders.

EBNAT1 has been shown to increase the migration potential of the
infected cell by binding to the metastasis inhibitor NM23-H1, thereby
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Fig. 3. Number of identified FR-like regions per chromosome on the human genome.

Table 1
List of 40 FR-like regions identified in this study.
Chr? Best score” Spacing® Nearest gene? Distance®® Sites’
1 —10:33 21 AGL — 48,442 3
1 —11.46 25 IRF2BP2 157,348 3
1 —10.36 35 KCNK2 10,828 3
1 —12.37 30-37 USP24 601,282 7
2 —11.61 28 HAT1 8667 13
2 —10.18 20 SLC4A3 — 718,192 3
2 —12.62 29-31 SPTBN1 50,317 4
2 —11.27 29-30 TGFA — 54,992 6
2 —10.99 33 TPO 5235 3
3 —15.29 18 1QCB1 —337 5
3 —10.42 37 PFN2 116,075 3
3 —14.16 18 ROBO2 —461,277 5
3 —11.85 17 TBL1XR1 — 85,471 3
4 —11.85 36 NR3C2 939,768 4
4 —10.77 34 SNX25 — 11,808 6
5 —11.61 24 CCDC99 293,716 4
5 —11.61 17 EDIL3 723,310 3
5 —12.01 22 SEMA5A —493,777 3
6 —15.26 23-24 IMPG1 263,802 5
6 —12.05 39 PSMB9 — 1450 3
7 —11.74 25 HUS1 —24,381 4
7 —10.25 42 MPP6 23,033 3
10 —10.46 44 INPP5A —94,516 3
12 —10.40 29-32 DTX1 18,763 4
12 —11.16 25 TBX3 612,914 4
13 —12.20 22 MYCBP2 4164 3
15 —11.34 37 ABHD2 —12,612 3
15 —11.01 25-30 TPM1 98,263 6
16 —11.43 28 SOX8 —31,090 5
16 —10.22 44 SOX8 —27,876 4
17 —10.04 36 ALOXE3 10,674 3
17 —11.92 23 NLRP1 33,063 7
18 —11.08 16 CDH20 459,550 3
18 —10.90 16-20 RIOK3 18,869 4
20 —12.74 20 C200rf100 26,514 4
20 —10.20 27 PLCB1 — 104,278 3
21 —10.24 19 IGHV10R15-9 2,690,575 3
X —10.74 38 AMELX — 185,093 3
X —10.24 22-36 ZCCHC13 12,894 7
Y —10.82 33 USP9Y 107,897 3

¢ Chromosome.
Best score among sites in region.
End-to-end spacing between neighboring sites.
Symbol of nearest protein-coding gene.
Distance to nearest protein-coding gene transcription start.
Number of binding sites in region.
& Negative distances correspond to regions upstream of the transcription start site of
the gene.

b
c
d
e
f

changing its localization from the cytoplasm to the nucleus. This
relocalization inhibits NM23-H1 non-metastatic effect (Murakami
et al., 2005). EBNA1 might have other ways to affect the migration
potential of the cell, as FR-like repeats are found in the enhancer
regions of Profilin and Tropomyosin (PFN2 and TMP1). Profilin is an
actin-binding protein involved in the spatially and temporally
controlled growth of actin microfilaments, which is an essential
process in cellular locomotion and cell shape changes. The TMP1 gene
codes for four different Tropomyosin isoforms. Tropomyosin is also an
actin-binding protein and is involved in actin remodeling (Lindberg
et al., 2008).

It has further been shown that EBNA1 decreases the half-life of
SMAD2 and thereby modulates TGFQ signaling. SMURF2 targets
SMAD?2 for degradation, as do WWP1 and NEDD4-2 (Flavell et al.,
2008). Our results show that EBNA1 binds enhancer regions to several
genes involved in protein degradation, thus it would be interesting to
further analyze their targets and verify if SMAD2 is among those,
especially as the protein that targets nuclear SMAD2 for degradation is
unknown (Zhang et al., 2001).

The experimental search for EBNA1 binding sites by Dresang et al.
was limited to promoter regions of the EBV-positive lymphoblastoid cell
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line 721, probed by NimbleGen's ChIP-chip human promoter arrays. Our
method remains unbiased, both towards cell-type specific chromatin
structure or nucleosome positioning, and a priori restrictions on the
queried sequences. The latter is of special interest, since eukaryotic
regulatory elements comprise not only promoter-near transcription
factor binding sites, but also enhancer-, silencer- and insulator
sequences, which can be located several kb up- or downstream of a
corresponding promoter (Narlikar and Ovcharenko, 2009; Blackwood
and Kadonaga, 1998). A recent study identifies clusters of EBNA1
binding sites in human promoter regions (Canaan et al., 2009). This
finding underlines the value of focusing on multiple binding sites when
searching for functional EBNAT sites.

Positional weight matrices assuming single nucleotide models are
widely used both for representation of DNA binding sites, e.g. as
WebLogos (Crooks et al., 2004), and for bioinformatical identification
of putative binding sites. However, more subtle statistical features
than average positional nucleotide occurrences are not reflected by
such objects. Weight matrices featuring higher order statistics can, on
the other hand, always be reduced to a lower order representation.
DNA binding sites are known to be more subtly recognized by
proteins than by the recognition of isolated nucleotides (for a more
thorough discussion see e.g. (O'Flanagan et al., 2005)). We therefore
advocate for a broader use of higher order (at least nearest neighbor)
positional weight matrices, as they are able to reflect a more acute
description of binding sites.

EBNA1 is known for binding to its EBV sites with extremely
varying affinity. From 73 experimentally identified human binding
sites for EBNA1, none was successfully shown to be functional
(Dresang et al., 2009). The putative EBNAT site in the NOX2 promoter
(Gruhne et al., 2009) scores much weaker than the sites on Qp or Rep*
within our model. The data presented in this paper needs to be
verified in biological systems and different experimental platforms by
comparing transcript and protein levels of target genes in EBNA1
positive and negative cells. It remains intriguing to elucidate whether
genes presented in this study are involved in tumor progression, for
example IQCB, TMP1 and PFN2. Also EBNAT1 binding at the suggested
sites must be explored more in depth. Altogether, the difficulty of
correctly identifying isolated binding sites for EBNA1 becomes
evident. This may be due to the manifold roles of EBNA1 as a
regulatory protein rendering a unique description in terms of a single
binding motif impossible. To exert its function, EBNA1 might rely on
higher orders of control, either by cooperating with other transcrip-
tion factors or by binding multiple sites, possibly in competition with
other factors. This was our motivation for searching specifically for
tandemly repeated EBNAT1 sites. We believe that the cooperative
nature of EBNAT1 is an important factor when searching for regulatory
binding sites of this protein on the human genome.

Methods
Nearest neighbor position weight matrix

Weight matrices were constructed from the binding sites of FR on
EBV (AJ507799). Di-nucleotide frequencies f,;,, were calculated from
the 20 binding sites of FR and human chromosomal di-nucleotide
occurrence probabilities py,, were taken into account to construct the
matrices according to

c fnv,i
anj - _frp/.i lOg pc :
v

A given sequence s = ($1Sz...5p) has then the associated score

n—1
c
I(s) = kgl WSy 1.ks

which is the more negative the more S resembles a sequence from FR
and the more it differs from background sequences modeled by pf,.
Evaluating the matrix on a long sequence S (|S| >n), e.g. a whole
chromosome, then means calculating I(s) of each sub-sequence sCS.

Screening of EBV and the human genome

The EBNA1 matrix was applied to the EBV genome (A]507799) and
the complete human genome sequence (NCBI36 Ensembl release 48).
Since FR-like sequences may be masked by common repeat
recognition software, the unmasked genome was used for our
analysis. Sites with weaker scores than —8 were discarded as
background. The remaining sites were stepwise filtered to identify
FR-like regions. Regions containing a minimum of three consecutive
sites of which at least one of the sites scored better than — 10 were
kept as potential FR-like regions. Allowed end-to-end distance
between sites were 16 to 50 nucleotides. Regions overlapping with
annotated (RepeatMasker) mobile DNA elements were excluded.
Functional binding site repeats are assumed to be under constant
selection pressure and may exhibit small sequence variations
between individual sites, as is the case for FR and DS on EBV.
Therefore, as a final filter we excluded perfect tandem repeats that did
not exhibit any variations.
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