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Abstract

We investigate transport in type-I/type-II Weyl semimetal heterostructures that realize
effective black- or white-hole event horizons. We provide an exact solution to the scatter-
ing problem at normal incidence and low energies, both for a sharp and a slowly-varying
Weyl cone tilt profile. In the latter case, we find two channels with transmission ampli-
tudes analog to those of Hawking radiation. Whereas the Hawking-like signatures of
these two channels cancel in equilibrium, we demonstrate that one can favor the contri-
bution of either channel using a non-equilibrium state, either by irradiating the type-II
region or by coupling it to a magnetic lead. This in turn gives rise to a peak in the two-
terminal differential conductance which can serve as an experimental indicator of the
artificial event horizon.
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1 Introduction

Hawking radiation is the phenomenon whereby black holes slowly evaporate by emitting ther-
mal radiation due to quantum fluctuations near the event horizon [1, 2]. It is one of the
most exotic predictions of quantum field theory in a curved spacetime but its experimental
verification remains elusive. Indeed, the corresponding Hawking temperature is inversely
proportional to the mass of the black hole such that the effect is masked by the cosmic mi-
crowave background for generic black holes. However, analogs of Hawking radiation can
arise in other physical systems that are more amenable to experimental verification, featur-
ing artificial event horizons sharing many similarities to their gravitational counterpart [3].
This field was pioneered by Unruh who proposed such an analog at the interface between
subsonic and supersonic flow in a hydrodynamic system [4]. In condensed-matter physics,
similar black-hole analogs have been proposed in Bose-Einstein condensates [5,6], optical sys-
tems [7], borophene [8], one-dimensional fermionic chains [9], among others, and recently
in Weyl semimetals [10–16]. In this work, we study electronic analogs of stimulated Hawking
emission in heterostructures containing an interface of a type-I and type-II Weyl semimetal,
as illustrated in Fig. 1(a). To the best of our knowledge, our work provides the first explicit
calculation of physical observables in Weyl semimetal black hole analogs, and does so using a
minimal model that captures all salient features of Weyl semimetals.

Weyl semimetals host quasiparticles near generic crossings of the energy bands whose low-
energy physics are captured by a Weyl Hamiltonian (ħh= vF = 1) [17]

Hχ = Eχ + V
�

kz − kχz

�

+χ
�

k − kχ
�

·σ , (1)

where k = (kx , ky , kz) and
�

Eχ , kχ
�

is the energy and position of the Weyl node in the Brillouin
zone and σ =

�

σx ,σy ,σz

�

is the vector of Pauli matrices. Weyl nodes carry a net Berry flux
χ = ±1 and necessarily come in pairs as the total Berry flux in the Brillouin zone vanishes [18].
Depending on the tilt, given by the second term in Eq. (1), one can distinguish two types of
Weyl semimetals based on the Fermi surface topology, as illustrated in Fig. 1(b). When V 2 < 1,
the Fermi surface at the Weyl node is a point (type I). At the critical tilt V 2 = 1, there is a Lifshitz
transition and the system is a nodal line semimetal. For V 2 > 1, the nodal line evolves into an
electron and hole pocket that touch at the Weyl node (type II), shown in Fig. 1(b) and (c) [19].

The connection between type-I/type-II heterostructures and Weyl fermions in an effective
curved spacetime is made explicit by writing down the covariant form of the Weyl equation in
a general spacetime with the tetrad formalism [10,20,21],

σaeµa
�

∂µ +Ωµ
�

ψ= 0 , (2)
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where we use the Einstein summation convention with µ= 0,1, 2,3 corresponding to general
spacetime coordinates and a = 0, 1,2, 3 to local inertial coordinates and where eµa are tetrad
components. A short introduction to the tetrad formalism and more details on the covariant
Weyl equation are given in App. A. Here, we also introduced σa given by the identity and the
Pauli matrices χσ, and the spin connection Ωµ. The spin connection ensures covariance since
∂µψ does not transform as a spinor under local Lorentz transformations. The corresponding
Weyl Hamiltonian can be written as H = α · k − iΥ with

αi(p) = (e0
bσ

b)−1ei
aσ

a , Υ (p) = (e0
bσ

b)−1eµaσ
aΩµ , (3)

where p is a point in spacetime. If we compare this to Eq. (1), we identify

eµa(z) = δ
µ
a + V (z)δµ3δ

0
a, (4)

which correspond to the so-called acoustic metric [4]:

gµν =







V 2 − 1 0 0 −V
0 1 0 0
0 0 1 0
−V 0 0 1






, (5)

and which follows from gµν = eµaeνbηab with ηab = diag (−1, 1,1, 1) the Minkowski metric of
flat spacetime (see App. A). The spin connection becomes

Ωµ =
χσ3

2

�

δ3
µ − Vδ0

µ

�

V ′ , (6)

with V ′ = ∂ V/∂ z, and the corresponding Weyl equation can then be written as

i∂tφ =
�

−i (χσ + Vez) · ∇− iV ′/2
�

φ ≡Hχφ , (7)

where the extra term proportional to V ′ comes from the spin connection and ensures that the
Hamiltonian is Hermitian for a position-dependent tilt [14].

We can thus interpret a tilted Weyl cone in terms of a free Weyl fermion in an effective
curved spacetime with line element

ds2 = gµνd xµd xν = −d t2 + [dz − V (z)d t]2 + d x2 + d y2 , (8)

whose null trajectories at normal incidence are given by

d x
d t
=

d y
d t
= 0 ,

dz
d t
= V (z)± 1 , (9)

where ± corresponds to so-called copropagating and counterpropagating solutions, respec-
tively. We note that one obtains the same equations from the semiclassical equations of mo-
tion [22]

ṙ =
∂ E
∂ k
−χ k̇ ×Ω , k̇ = −

∂ V
∂ z

kz ez , (10)

in the absence of external electromagnetic fields and where Ω(k) = k/2k3 is the Berry curva-
ture and E(k) = V kz ± |k|. One can check that at normal incidence (kx = ky = 0) the first
equation of motion yields Eqs. (9).

Now consider the case where V (z) is monotonic and |V (0)|= 1, corresponding to an inter-
face at z = 0 between a type-I and type-II Weyl semimetal [Fig. 1(a)]. While the type-I region
(|V | < 1) supports trajectories that propagate in both directions, the type-II region (|V | > 1)

3
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Figure 1: (a) Weyl semimetal (WS) heterostructure where the type-II region is irra-
diated, which gives rise to a Hawking current between the type-II and type-I region.
(b) Energy dispersion for ky = 0. (c) Zero-energy Fermi surface in the type-II phase
for V/vF = 1.2 where the Weyl nodes are shown as black dots.

only supports unidirectional trajectories. Semiclassically, the interface gives rise to a turning
point where the group velocity of counterpropagating modes vanishes. Hence, we can regard
the interface as an artificial event horizon, where the type-I and type-II regions respectively cor-
respond to a normal region of spacetime and a “black hole" (V > 1) or “white hole" (V < −1)
spacetime. However, we note that the acoustic metric is not a solution of the Einstein equa-
tions in four-dimensional spacetime. Actually, since the effective spacetime is essentially two
dimensional, it is conformally flat [3]. However, due to the horizon, the effective spacetime
is not equivalent to a flat spacetime globally. For these reasons, the acoustic metric that we
consider is not equivalent to a black hole from general relativity. Instead, the correspondence
resides in the fact that both feature an event horizon. Hence, the effective spacetime has a
similar causal structure as that of a real black hole. We note that an exact mapping between
a type-I/type-II interface to a Schwarzschild black hole in Gullstrand-Painlevé coordinates is
obtained for a radial tilt profile V (r) = −

p

rS/r with rS the Schwarzschild radius [10].
In this work, we investigate transport through a type-I/type-II interface using a minimal

model for a Weyl semimetal with a tilt profile V (z). We consider both fast and slow varying
tilt profiles relative to the Fermi wavelength. In both cases, we obtain low-energy expres-
sions for the scattering matrix and the tunneling rates at normal incidence. In the case of a
slowly-varying tilt profile with a linear horizon, for energies ω close to the Weyl node, coun-
terpropagating particles tunnel through the effective horizon from inside the black hole region
via two channels with probability

T1,2 =
1

1+ e±2πω/ħhV ′(0)
, (11)

where cV ′(0) is the effective gravitational field strength at the horizon with c the speed of
light [1–3]. In equilibrium, both channels contribute equally and since T1 + T2 = 1 there is
no net analog of Hawking radiation [10,16]. We therefore propose a means of creating a sta-
tionary non-equilibrium distribution by irradiating the type-II region with light or by injecting
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a spin-polarized current from a magnetic lead. Both cases favor the occupation of one of the
two channels, yielding a net non-equilibrium Hawking effect. Summing over all transverse
channels, we then find that the differential conductance is asymmetric about the energy of the
Weyl node and features a peak whose position and height is characterized by the slope of the
tilt profile at the horizon.

This paper is organized as follows: In Sec. 2, we introduce the continuum model for the
Weyl semimetal heterostructure and in Sec. 3 we solve the scattering problem at normal inci-
dence for the case of a fast or slow varying tilt profile. In the former case, we employ standard
scattering theory where the horizon only enters through the boundary conditions, while in
the latter we use the WKB approximation in combination with an approximate solution that
is valid close to a linear horizon. In Sec. 4, we discuss how to obtain a net Hawking effect
out of equilibrium. In particular, we show how to favor the occupation of one of the two
counterpropagating modes that tunnel across the horizon, and we calculate the differential
conductance. Finally, we present our conclusions in Sec. 5.

2 Model

We start from a minimal model for a tilted Weyl semimetal with two isotropic Weyl cones
that are cotilted normal to the axis along which the nodes lie [23]. For a bulk system, the
Hamiltonian is given by Ĥ =

∑

k ĉ†
kH(k)ĉk with ĉk = (ĉ1k , ĉ2k)

t and

H(k) = V kz σ0 +
1

2k0

�

|k|2 − k2
0

�

σx + ky σy + kz σz , (12)

with k = (kx , ky , kz) and σ0 the identity matrix. The Weyl nodes with chirality χ = ±1
are located at momenta ±k0ex and we set vF = 1. The tilt V is applied along the z axis
and given by the first term of Eq. (12). In general, our model only has a mirror sym-
metry about the yz plane: H(−kx , ky , kz) = H(kx , ky , kz) and a chiral symmetry given by
σzH(kx , ky ,−kz)σz = −H(kx , ky , kz).

For |V |< 1, this model gives a type-I Weyl semimetal with a point Fermi surface at the Weyl
nodes, while for |V | > 1 we obtain a type-II Weyl semimetal. This is illustrated in Fig. 1(b),
where we show the energy dispersion relation for ky = 0 in both phases. In the type-II phase,
the zero-energy Fermi surface consists of electron and hole pockets touching at the Weyl nodes.
The connectivity of these pockets depends on the details of the tilting term. For our model, the
pockets form a crescent between the Weyl nodes, as shown in Fig. 1(c). For example, isolated
pairs of electron and hole pockets are obtained from the tilting term ∝ kx kz which tilts the
Weyl cones in opposite directions and preserves inversion symmetry. Note also that the second-
order terms in Eq. (12) break Lorentz covariance and introduce a length scale k−1

0 which
regularizes divergences in the limit |V | → 1, known as the trans-Planckian problem [2, 3].
Moreover, these terms keep the Fermi surface finite in the overtilted regime and therefore they
cannot be neglected in a realistic system, see Fig. 1(c).

We now consider an interface between a type-I and a type-II Weyl semimetal modeled by
a tilt profile V (z) with V (+∞) = VR and V (−∞) = VL such that |VL|< 1 (type I) and |VR|> 1
(type II) as shown in Fig. 1(a). Since translation symmetry is only broken along the tilt axis,
the single-particle wave function can be written as Ψ(r , t) = ei(k⊥·r⊥−ωt)φ(z)with r⊥ = (x , y),
where k⊥ =

�

kx , ky

�

and ω are the conserved transverse momentum and energy, respectively.
The continuum Hamiltonian becomes

Ĥ =
∑

k⊥

∫ L/2

−L/2
dz ψ̂†

k⊥
(z)H(k⊥,−i∂z)ψ̂k⊥(z) , (13)
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Figure 2: Dispersion relation for k⊥ = (±k0, 0) in the undertilted (0 ≤ V < 1) and
overtilted case (V > 1) where the copropagating and counterpropagating branch
correspond to the red and blue solid lines, respectively.

with L the system length, ψ̂k⊥(z) = L−1/2
∑

kz
ĉk eikzz , and

H = 1
2i
∂ V
∂ z
σ0 − i [V (z)σ0 +σz]∂z − ∂ 2

z σx +
�

k2
⊥ − 1/4

�

σx + ky σy , (14)

in dimensionless form such that nowH is given in units of 2ħhvF k0, z in units of 1/2k0, momenta
in units of 2k0, and the tilt V in units of vF such that the transition between the type-I and
type-II phase corresponds to V 2 = 1. Similarly as before, the first term in the Hamiltonian
(14) ensures Hermiticity. We now first consider the special case k⊥ = (±1/2, 0) which we call
the Hawking channel. Later we return to the full problem which we solve numerically using
the KWANT Python package [24].

One can show that any solution ψ(z, t) of the wave equation H0ψ = i∂tψ, where
H0 =H(±1/2,0,−i∂z), obeys a continuity equation

∂t(ψ
†ψ) + ∂z j = 0 , (15)

with current density

j(z, t) =ψ† [V (z)σ0 +σz]ψ+ 2 Im
�

ψ†σx∂zψ
�

, (16)

which is constant in space and time for stationary statesψ(z, t) = e−iωtφ(z) as our problem is
effectively one dimensional. For constant tilt, the eigenstates of H0 are given by plane waves,
φ(z) = eikzϕkλ, with λ= ± and

ϕk+ =
1

p

2c (1+ c)

�

1+ c
k

�

, (17)

ϕk− =
1

p

2c (1+ c)

�

−k
1+ c

�

, (18)

where c(k) =
p

1+ k2. Note that we dropped the subscript z for kz and that {H0,σy}= 0 such
that ϕk− = −iσyϕk+. For concreteness, we now take V ≥ 0 in the remainder of this work. In
this case, the λ= + (λ= −) branch is referred to as the copropagating (counterpropagating)
branch [3]. This nomenclature follows from the dispersion relations

ω= k [V +λc(k)] . (19)

6

https://scipost.org
https://scipost.org/SciPostPhys.11.5.095


SciPost Phys. 11, 095 (2021)

Note that the same dispersion is also obtained for a Bose-Einstein condensate with macro-
scopic velocity V and contact interactions in mean-field approximation [5]. Here, we have
one copropagating mode and three counterpropagating modes for a given energy, see Fig. 2.
Closed-form expressions for the momenta of these modes exist, but they are unwieldy and not
very insightful. Up to first order in ω, we find

kv =
ω

V + 1
+O(ω3) , (20)

ku =
ω

V − 1
+O(ω3) , (21)

kw1,2
= ±

p

V 2 − 1+
Vω

1− V 2
+O(ω2) , (22)

where co- and counterpropagating modes are labeled by v and {u, w1, w2}, respectively, and
the corresponding spinors are given in lowest order by

ϕv '
�

1,
ω

2 (1+ V )

�t

, (23)

ϕu '
�

ω

2 (1− V )
, 1
�t

, (24)

ϕw1,2
'

1
p

2V

�

∓
p

V − 1,
p

V + 1
�t

, (25)

which are normalized up to first order in ω. It follows that the w modes are evanescent for
0≤ V < 1, while for V > 1 all counterpropagating modes are scattering states for

|ω|<ωc = kc [V − c(kc)] , (26)

with kc = (V 2 − 4+ V
p

V 2 + 8 )1/2/(2
p

2) [5]. Here, the group velocity of the counterprop-
agating modes vanishes, corresponding to a classical turning point (Fig. 2). The low-energy
expansions of the wavevectors and spinors are valid away from these extrema.

3 Scattering at an effective horizon

In this section, we solve the scattering problem for the Hawking channel analytically at low
energies in two limits, namely, when the tilt profile V (z) varies fast or slow compared to the
Fermi wave length. In the former case, we use plane-wave scattering modes together with a
boundary condition that conserves the current. In the latter case, we calculate the WKB wave
function away from the classical turning point in combination with an approximate solution
near a linear horizon valid at low energies close to the Weyl node, in order to match the WKB
wave functions at either side of the horizon.

3.1 Slowly-varying tilt profile

3.1.1 WKB solution

We first consider the slowly-varying limit for which the tilt profile is slowly varying on the scale
of the Fermi wavelength. To this end, we use a WKB ansatz

φ(z) = ei
∫ z

dz′k(z′)ϕ(z) , (27)

with [25]
ϕ(z) = a(z)ϕk+ + b(z)ϕk− , (28)
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where k(z), a(z), and b(z) are to be determined from the wave equation. Here, the spinors
ϕk± are eigenstates for constant tilt [Eqs. (17) and (18)], in which case k corresponds to the
momentum in the z direction. If we plug the ansatz in the wave equation, we obtain

−i
�

k (Vσ0 +σz) + k2σx −ω
�

ϕ =
1
2

�

V ′σ0 + 2k′σx

�

ϕ

+ (Vσ0 +σz + 2kσx)ϕ
′ − iσxϕ

′′,
(29)

where primes indicate derivatives with respect to z. So far, everything is exact. We now make
a WKB approximation for a slowly-varying tilt profile by only keeping terms up to first order
in V ′ and dropping all terms proportional to

�

V ′
�2

and V ′′. Next, we multiply with the spinor
(ϕk±)

t from the left which yields two coupled equations for the spinor coefficients a(z) and
b(z),

−ia [k (V + c)−ω] =
av′+
2
+ a′v+ +

�

1
c
− V

�

bk′

2c2
+

b′k
c

, (30)

−i b [k (V − c)−ω] =
bv′−
2
+ b′v− +

�

1
c
+ V

�

ak′

2c2
+

a′k
c

, (31)

where

v±(k) = V ±
d

dk
kc(k) = V ±

�

2c −
1
c

�

, (32)

is the group velocity where we used dc/dk = k/c.
In lowest order, we have a = 0 (b = 0) for counterpropagating (copropagating) modes

since this corresponds to the case of constant tilt. Furthermore, any terms containing deriva-
tives of the tilt will be small. Hence, we find ω = k(z) [V (z) +λc(k(z))] where k(z) is the
semiclassical momentum. We now assume that first-order corrections to a (b) for counterprop-
agating (copropagating) modes are proportional to V ′. For example, for counterpropagating
modes (λ= −1), Eqs. (30) and (31) become

2ikca =
�

V −
1
c

�

bk′

2c2
−

b′k
c

, (33)

b′

b
= −

v′−
2v−

, (34)

where we dropped higher-order terms taking into account a ∝ V ′ for counterpropagating
modes. The second equation is solved by b(z)∝ 1/

p

v−(z) and plugging this back into the
first equation yields

ia
b
=

1
4c2

�

�

V −
1
c

�

k′

kc
+

v′−
v−

�

. (35)

Up to first order, the WKB solution of the counterpropagating branch thus becomes

φµ(z) = cµ
ei
∫ z

dz′kµ(z′)

Æ

vµ(z)

�

σ0 +
ia
b
σy

�

ϕµ(z) , (36)

where cµ is a constant and µ ∈ {u, w1, w2}. Here kµ(z) is a solution of the local disper-
sion relation, vµ(z) = v−(kµ(z)) is the corresponding group velocity defined in Eq. (32), and
ϕµ(z) = ϕkµ(z)− is the wavefunction, given in Eq. (18). The WKB solution breaks down at
the classical turning point where the group velocity vanishes, which is located across the hori-
zon (V > 1) at finite energies [Eq. (26)]. The group velocity of copropagating (v) modes
never vanishes such that the WKB solution is valid everywhere and the v modes are therefore
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perfectly transmitted in the slowly-varying limit. Indeed, in lowest order an incident v mode
has nowhere else to go since it is decoupled from the u and w modes. Observe also that the
first-order correction in Eq. (36) couples the {u, w1, w2} and v modes since ϕk+ = iσyϕk−.

In the following, we are mostly interested in the lowest-order result, where the copropa-
gating and counterpropagating branches are decoupled. From Eq. (35), we find this generally
holds for

�

�k′/k
�

� ,
�

�v′/v
�

�� 1 , (37)

which by definition is satisfied for a slowly-varying tilt profile away from the turning point.
We now consider a slowly-varying tilt profile with V (−∞) = VL with 0 ≤ VL < 1 and

V (+∞) = VR > 1 that increases monotonically, such that the WKB solutions are valid suffi-
ciently far away from the horizon, where they eventually reduce to the solutions for constant
tilt. To solve the scattering problem for the counterpropagating modes, we need to connect
wave functions on opposite sides of the horizon. Hence, we need to find a solution that is valid
close to the horizon and match it to the WKB solution in a region where both solutions hold
simultaneously.

3.1.2 Solution near a linear horizon

Let us place the horizon at z = 0 such that V (0) = 1. We further restrict ourselves to a linear
horizon, i.e., close to the origin we assume the tilt profile can be approximated as V (z) = 1+αz
with α > 0. In this case, the classical turning point is located at zc = 3|ω|2/3/2α. In the linear
regime, the wave equation becomes

1
2
(α− 2iω)φ +

�

2+αz 0
0 αz

�

φ′ − iσxφ
′′ = 0 , (38)

or explicitly

1
2
(α− 2iω)φ1 + (2+αz)φ′1 − iφ′′2 = 0 , (39)

1
2
(α− 2iω)φ2 +αzφ′2 − iφ′′1 = 0 . (40)

This yields a fourth-order linear differential equation for φ1 or φ2. If we further assume that
|αz| � 1 and α, |ω| � 1, we find

φ
(4)
2 + 2αzφ(2)2 + (3α− 2iω)φ(1)2 ' 0 , (41)

and φ1 ' (i/2) dφ2/dz. Equation (41) can be solved exactly, giving

φ2(z) = c0 +
3
∑

n=1

cnzn−1
1F2

�

an; bn;
−2αz2

9

�

, (42)

where 1F2 is a generalized hypergeometric function with an= (2n− 1)/6−iω/3α, b1 =
�1

3 , 2
3

	

,
b2 =

�2
3 , 4

3

	

, and b3 =
�4

3 , 5
3

	

, and where c0 and cn are constants.

3.1.3 Connection formulas and S matrix

To determine the S matrix, we have to match the asymptotic forms of Eq. (42) to the WKB so-
lutions. To simplify this calculation, we choose a particularly convenient solution that is purely
evanescent outside of the horizon (z < 0) [26, 27]. Physically, this solution corresponds to a
specific linear combination of modes that interfere in such a way that there is no transmis-
sion to the normal region. This requirement fixes the coefficients cn in (42). We will see that
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this solution is already sufficient to determine the whole S matrix. We find up to an overall
constant factor,

φ2(z→−∞)'
e−

2
3

p
−2αz3(−z)−

iω
2α

p
−2αz

, (43)

for c0 = 0 and

c1 =
(2α/9)

iω
6α

p
3π

�

4
3α

�
1
3

Γ (a1) cos
�

π

3

�

1+
iω
α

��

, (44)

c2 =
(2α/9)

iω
6α

p
3π

2 Γ (a2) cosh
πω

3α
, (45)

c3 =
(2α/9)

iω
6α

p
3π

(6α)
1
3 Γ (a3) cos

�

π

3

�

1−
iω
α

��

. (46)

With the integration constants fixed, we find at the other side of the horizon,

φ2(z→ +∞)' cu
z

iω
α

p
αz
+ cw1

e+i 2
3

p
2αz3z−

iω
2α

p
−2αz

+ cw2

e−i 2
3

p
2αz3z−

iω
2α

p
−2αz

, (47)

with

cu =
p

2π (2α)
iω
2α

Γ
�1

2 +
iω
α

� , cw1,2
= ±e±

πω
2α , (48)

which correspond to the matching coefficients of the WKB modes. Indeed, in the linear regime,
away from the turning point, the WKB modes are given by

ei
∫ z

dz′ku(z′)

p
vu

ϕu '
z

iω
α

p
αz

�

− ω
2αz
1

�

, (49)

ei
∫ z

dz′kw1,2
(z′)

pvw1,2

ϕw1,2
'

e±i 2
3

p
2αz3z−

iω
2α

p
−2αz

�

∓
Æ

αz
2

1

�

, (50)

where Eq. (50) holds for ln z� αz/2. Note that we used the low-energy forms of the wavevec-
tors, which hold away from the turning point z� zc .

Hence, we find that the WKB solution and the approximate solution in the vicinity of the
horizon both hold in a region where |z − zc| � 1 and |z| � 1/α are satisfied simultaneously.
We demonstrate this explicitly in Fig. 3 where we show the exact solution, obtained from
numerically solving the stationary wave equation, together with the approximate solution near
the horizon and the WKB solution. Here, the total WKB solution is given by

φ(WKB)
s (z) =

∑

µ

cµφµs(z0)

Æ

vµ(z0)

ϕµs(z0)
ei
∫ z

z0
dz′kµ(z′)

Æ

vµ(z)
ϕµs(z) , (51)

where s = 1,2 corresponds to the spinor components and the sum runs over µ = {w2} with
cw2
= 1 outside the horizon and µ = {u, w1, w2} with the cµ given in Eq. (48) inside the

horizon. Here, φµs(z0) are the WKB modes in the linear regime and the fitting parameter
z0 < 0 (z0 > 0) outside (inside) the horizon. For simplicity, we take the same z0 for all
modes in a given region. We then optimize its value by hand in a region where both solutions
should approximately hold. In the figure, we see that the approximations match reasonably
well to the exact solution. While the WKB solution breaks down near the classical turning
point and the horizon at the origin, the approximate solution near the horizon fits perfectly
in the type-I region, but starts to fail in the type-II region away from the horizon. In general,
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Figure 3: Real and imaginary part of the second spinor componentψ2 for the case of
zero transmission outside of the horizon and the tilt profile V (z) = 1+tanh (αz) with
α = 0.1 and ω = 0.05. Solid curves give the exact solution, while the circles and
crosses give the WKB solutions and the approximate solution near the linear horizon,
respectively. The vertical dotted line marks the classical turning point.

matching becomes worse with increasing |ω| and α as expected from our assumptions. Inside
the horizon, the wave function features an envelope from the u mode which has a relatively
long wavelength, while the oscillations inside the envelope are due to the short-wavelength w
modes (Fig. 2).

The solution that we obtained in the previous section is purely decaying in the type-I region
such that bLu = 0 and the scattering coefficients are related by





0
bRu
bRv



=





tuw1
tuw2

0
ruw1

ruw2
0

0 0 1









aRw1

aRw2

aLv



 , (52)

where we already took into account that the v modes are decoupled from the u and w modes
for a slowly-varying tilt profile. From the first equation of (52), we obtain

tuw2

tuw1

= −
aRw1

aRw2

= e
πω
α , (53)

where we used Eq. (48). Together with the unitarity of the S matrix, we find

Scounter =
(2α)

iω
2α e−

πω
2α Γ

�1
2 −

iω
α

�

p
2π

�

1 e
πω
α

e
πω
α −1

�

, (54)

with scattering probabilities

Tu←w1,2
= Ru←w2,1

=
1

1+ e±
2πω
α

, (55)

which have the form of a Fermi-Dirac distribution with an effective Hawking temperature
TH = ħhvα/2πkB. Corrections to this low-energy result yield an energy-dependent Hawking
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temperature TH(ω) = TH(−ω). These analytical results agree well with numerical lattice
calculations (see App. B).

Note that the transmission saturates for |ω| ≈ α such that tunneling through the horizon
occurs only for |ω| < α. We can understand this by noting that the S matrix has simple poles
at

ω= −iα
�

n+
1
2

�

, (n= 0,1, 2, . . .) , (56)

which correspond to quasi-bound states [28]. Classically, an incoming w1 or w2 particle is
completely reflected at the turning point and the classical contribution to the transmission is
a step function Θ(∓ω). However, quantum-mechanically the w particles can tunnel through
the horizon via a transient state with lifetime 1/α.

Before we proceed with the implications of these results in a two-terminal transport setup,
we first consider the opposite limit where the tilt profile is sharp relative to the Fermi wave-
length. We will demonstrate that in this case the co- and counterpropagating modes are cou-
pled by the horizon. Nevertheless, one can still define a Hawking temperature at low energies,
even though the transmission is not a thermal distribution in this case.

3.2 Sharp tilt profile

When the tilt profile is sharp on the scale of the Fermi wavelength (i.e., the limit α� 1), an
incoming wave packet cannot resolve the precise details of the interface and we can model the
tilt profile with a step function

V (z) = VLΘ(−z) + VRΘ(z) , (57)

where Θ is the Heaviside step function. Assuming the wave function is continuous at z = 0,
we integrate the wave equation H0φ =ωφ over an infinitesimal region of length 2ε centered
at the origin. This gives

[−i∂zφ]
+ε
−ε +

VR − VL

2
σx φ(0) = 0 , (58)

where we used ∂ V/∂ z = (VR − VL)δ(z). These boundary conditions are physically sound since
they keep the current density continuous

jR =
�

φ† (VRσ0 +σz)φ + 2 Im
�

φ†σx∂zφ
��

z=+ε (59)

=
�

φ† (VRσ0 +σz)φ + 2 Im
�

φ†σx∂zφ
��

z=−ε − (VR − VL) |φ(0)|2 (60)

=
�

φ† (VLσ0 +σz)φ + 2 Im
�

φ†σx∂zφ
��

z=−ε = jL . (61)

We now consider a black hole horizon, i.e., we take 0 ≤ VL < 1 and VR > 1. Since the tilt is
constant in each region, the wave function is given by a superposition of plane waves. In the
type-I region (z < 0), we obtain

ΦL(z) =
aLvp
vLv
ϕLveikLvz +

bLu
p

−vLu
ϕLueikLuz + cL ϕLweikLwz , (62)

with Im kLw < 0 and where a, b, and c are coefficients of incoming, outgoing, and evanescent
modes. Here, we also normalized the scattering states such that each mode contributes unit
current. Up to first order in ω, the group velocities are given by

vv ' V + 1 , (63)

vu ' V − 1 , (64)

vw1,2
'

1− V 2

V
±

2+ V−2

p
V 2 − 1

ω. (65)
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In the type-II region (z > 0), we find for |ω|<ωc ,

ΦR(z) =
bRvp
vRv
ϕRveikRvz +

bRup
vRu
ϕRueikRuz +

aRw1
p

−vRw1

ϕRw1
eikRw1

z +
aRw2

p

−vRw2

ϕRw2
eikRw2

z ,

(66)
such that in this case the S matrix can be written as





bLu
bRu
bRv



=





tuw1
tuw2

ruv
ruw1

ruw2
tuv

rvw1
rvw2

tvv









aRw1

aRw2

aLv



 . (67)

On the other hand, for |ω| > ωc , the solution in the overtilted region also consists of two
scattering states and one evanescent mode. We do not discuss this regime here, as we are
mostly interested in the low-energy physics.

The S matrix is then determined as usual. Namely, by setting all but one of the incoming
coefficients zero, and calculating the outgoing coefficients with the boundary conditions at
the origin. Note that one must include the evanescent modes to obtain a unique solution.
In principle, one can obtain closed form expressions for the scattering coefficients but this is
cumbersome as the wavevectors are given by the roots of a fourth-order polynomial. When
the incoming mode comes from the effective black hole region behind the horizon, we find up
to first order in ω,

Tu←w1,2
'

8 (VL + VR)

(VL + VR + 2)2

�

1
2
∓

ω

4kB Tu

�

, (68)

Rv←w1,2
'

(VL − VR)
2

(VL + VR + 2)2

�

1
2
±

ω

4kB Tv

�

, (69)

and Ru←w1,2
= 1− Tu←w1,2

− Rv←w1,2
with

Tu =
1

2kB

�

1− V 2
L

�

(VR − VL)
�

V 2
R − 1

�3/2

2+ V 4
R + 3V 3

L VR + V 2
L

�

1− 4V 2
R

�

+ VLVR

�

2V 2
R − 5

� , (70)

Tv =
1

2kB

(VR − VL)
�

V 2
R − 1

�3/2

3VR

�

V 2
R − 2

�

+ VL

�

V 2
R + 2

� , (71)

which are the effective Hawking temperatures of intrabranch and interbranch processes, re-
spectively, for the sharp tilt profile (α� 1) [3]. This interpretation rests on our results for the
slowly-varying limit (α� 1) and demonstrates that some aspect of analog Hawking radiation
survives for the sharp tilt profile at low energies.

These low-energy expressions are compared to the exact results in Fig. 4. Note that the
sharp horizon couples co- and counterpropagating modes, e.g., through scattering processes
such as w1(w2) → v although these processes are generally suppressed. As we discussed
in the previous section, such processes become negligible in the slowly-varying tilt profile.
Moreover, unlike in the slowly-varying limit, the transmission functions now depend explicitly
on the asymptotic values of the tilt profile. Similar expressions for the transmission functions
can be obtained when the incoming mode is incident on the horizon from the normal (type-I)
region, although the first-order term vanishes in this case. The complete S matrix for the sharp
horizon at low energies is given in App. C.

4 Hawking effect out of equilibrium

In equilibrium, there is no net Hawking current as the particle number is conserved in our
system, unlike for an actual black hole which provides an energy source for particle creation
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Figure 4: Transmission and reflection probabilities for an incoming mode incident on
the sharp horizon from the black hole (type II) region for (VL , VR) = (0.2, 2). Dashed
lines correspond to the first-order analytical results given in Eqs. (68) and (69).

[10,29]. Furthermore, as long as the type-II region is in local equilibrium, the total current out
of the black hole region, summing contributions from w1 and w2 modes, is always ballistic (in
the absence of disorder), and the two-terminal conductance is simply a measure of the density
of states. In order to obtain a net Hawking current, we require a non-equilibrium occupation
in the type-II region. For example, if the type-II phase is induced in a quenched way [10],
V (t) = V0Θ(t) with V0 > 1, one obtains a transient state with excited w1 modes above the
Fermi level and empty w2 states below the Fermi level, giving rise to a net transmission of w
modes.

Here, we propose two alternative ways of achieving a non-equilibrium situation by taking
advantage of the spin structure of the w modes. In particular, we demonstrate that one can
favor populating w1 over w2 by exciting a photocurrent with circularly-polarized light or by
injecting a spin-polarized current from a magnetic lead. In both cases, the occupation of
one of the w modes is favored, which will then tunnel through the horizon from the type-
II region, giving rise to a net Hawking current in the type-I region, assuming relaxation due
to, e.g., disorder, within the type-II region occurs over a sufficiently long time scale such that
the favored w mode can be transmitted across the horizon. In fact, transport lifetimes up to
τ≈ 45 ps have been measured in the type-I Weyl semimetal TaAs [30], giving rise to a rather
long mean free path of 5.2 µm.

4.1 Irradiation by circularly-polarized light

We can favor the occupation of one of the w modes by irradiating the type-II region. This gives
rise to optical transitions inside the overtilted region from v modes to w2 modes for V/vF > 1
(Fig. 2). In this case, there are no states available for optical transitions to the w1 modes (we
approximate optical transitions to be effectively momentum-conserving). This continues to
hold in the presence of more bands as long as the energy separation to the lower bands is of
a different energy range than the photon energy of interest.

For concreteness, we consider circularly-polarized light of frequency Ω traveling in the
z direction, as illustrated in Fig. 1(a). Here, we assume that the light hits the type-II Weyl
semimetal sufficiently far away from the horizon where the tilt V/vF > 1 is essentially constant.
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Figure 5: Out-of-equilibrium occupation nk+ of the conduction band, integrated over
the photon energies, in units of 4πτ(evF A0)2/ħh for ky = 0 (left) and at kx = −k0
(right). The black region for negative (positive) kz denotes an electron (hole) pocket
where optical transitions are forbidden for EF = 0. The occupied states with negative
kz away from the electron pockets have negative group velocities and are transmitted
across the horizon.

The light-matter interaction is treated classically with the vector potential

A(t) = A+e−iΩt + A−eiΩt , (72)

where A± = A0

�

ex ± iey

�

/
p

2. Note that we discard Zeeman coupling which is suppressed
by a factor 10−3 compared to orbital coupling in generic Weyl semimetals [31]. Letting
k → k + eA/ħh in (12) gives the light-matter interaction V± = eJ · A± to first order in the elec-
tron charge −e. These terms describe transitions between occupied and unoccupied modes via
absorption (V+) and emission (V−). Here, we defined the current operator J with components

Jx =
vF

k0
kxσx , Jy =

vF

k0
kyσx + vFσy , Jz =

vF

k0
kzσx + vFσz + Vσ0 . (73)

The rate of change of the distribution function nkλ of the λ = ± band is obtained from the
Boltzmann equation in the relaxation-time approximation [32],

∂ nkλ

∂ t
+ k̇ ·

∂ nkλ

∂ k
+ ṙ ·

∂ nkλ

∂ r
= Γk(Ω) (nk−λ − nkλ)−

nkλ − n0
kλ

τ
, (74)

where the relaxation time τ takes into account intraband impurity and phonon scattering [33]
and Γk(Ω) gives the rates for vertical transitions, calculated with Fermi’s golden rule,

Γk(Ω) =
2π
ħh
|〈ϕk+|V+ |ϕk−〉|

2δ (E+(k)− E−(k)−ħhΩ) , (75)

where the dispersion relation is given by

E±(k) = 2ħhvF k0

�

V
vF

kz

2k0
± d(k)

�

, (76)
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with d =
q

[(k/2k0)2 − 1/4]2 + (ky/2k0)2 + (kz/2k0)2 and k = |k|. If we Fourier transform
Eq. (74) and consider the DC limit, as well as the long wavelength limit (∂r nk ≈ 0), the
non-equilibrium occupation is given in lowest order of A0 by

nkλ ' n0
kλ +τΓk(Ω)

�

n0
k−λ − n0

kλ

�

. (77)

The transition matrix elements writes:

|〈ϕk+|V+ |ϕk−〉|
2 = 2(evF A0)

2 F(k) , F(k) =

�

d + kx kz/(2k2
0)
�2

4d2
, (78)

where 0≤ F ≤ 1 and which at the Weyl nodes k(±)⊥ = (±k0, 0) reduces to

F(kz) =
[c(kz)± sgn(kz)]

2

4c(kz)2
, (79)

where c(kz) =
p

1+ (kz/2k0)2. Since there are no states below the w1 modes, optical tran-
sitions are absent and the occupation above the Fermi energy vanishes at zero temperature,
i.e., ∆nw1

= 0. On the other hand, for w2 modes, at zero temperature, the difference in oc-
cupation between the two bands vanishes inside the electron pocket which corresponds to
kw2
(EF ) ≤ kz ≤ 0 where EF is the Fermi energy and kw2

is given by Eq. (22). The occupation

of w2 modes for k = (k(±)⊥ , kz) is thus given by

∆nw2
=

4πτ(evF A0)2

ħh
F(kz)Θ

�

kw2
(EF )− kz

�

δ (ħhvF |kz|c(kz)−ħhΩ) , (80)

such that a net occupation imbalance is generated. Away from k⊥ = k(±)⊥ , we plot in Fig. 5
the non-equilibrium occupation, integrated over the energy, in units of 4πτ(evF A0)2/ħh. As we
see in the right figure, for the Weyl node at kx = −k0, the occupation probability of the w2
modes with negative group velocity along the z axis increases. Hence, provided the energy
of the photons matches the transition energy, only these w2 modes are transmitted across the
horizon. On the other hand, since n(−kx ,ky ,kz)+ = n(kx ,ky ,−kz)+, the occupation probability for
the second Weyl node at kx = +k0 will decrease for negative kz , as is already apparent from
the left hand side of Fig. 5. As such, only one of the overtilted Weyl cones contributes to the
fermionic Hawking effect out of equilibrium. The non-equilibrium occupation of the u modes
above the Fermi energy in the undertilted region is then given by

nL,u = Tu←w1
nR,w1

+ Tu←w2
nR,w2

= Tu←w2
∆nw2

, (81)

where the first equality holds only for a slowly-varying tilt profile.

4.2 Coupling to magnetic leads

An out-of-equilibrium distribution can also be induced by coupling the overtilted region to
magnetic leads. Here, we assume that the Pauli matrices in Hamiltonian (12) effectively cor-
respond to the physical spin degrees of freedom of the electrons. In fact, for Weyl semimetals
with broken time-reversal symmetry, but with inversion and cubic symmetries, this correspon-
dence is exact [34]. In general, they also contain other degrees of freedom like orbital or
lattice degrees of freedom. Moreover, models for which σ corresponds to the real spin have
been shown to simulate spin textures of Weyl semimetals observed in experiments [35,36].

For simplicity, we consider the 1D effective model for k⊥ = (±k0, 0). In this case, the
electrons will be effectively polarized in the xz plane with different orientations for the w1
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Figure 6: (a) Tu←w1
(solid) and Tu←w2

(dashed) for k⊥ = (±k0, 0) calculated with the
lattice model for the tilt profile V (z) = vF [1+ tanh(αz)] where ωc ≈ 0.6× 2ħhvF k0
in the type-II region. (b) Zero-bias differential conductance at zero temperature G1
(solid) and G2 (dashed) for the same parameters as in (a).

and w2 modes. This is already apparent in Eq. (25) where the modes have different spin
projections along kz . The magnetic leads can be modeled, for instance, by a 1D chiral fermion
with spin-dependent group velocities, giving rise to constant but different density of states for
the two spin bands.

We further assume that the spin-up lead electrons have the same polarization as the w1
electrons at ω = 0. In this case, the spinors ψσ=± of the magnetic lead can be written
as ψ+ = ϕw1

and ψ− = iσyϕw1
, with ϕw1

given in Eq. (25). A bias voltage UDC is ap-
plied between the magnetic lead and the overtilted region by setting the chemical potential
to µR = eUDC inside the lead for both spin species, and to µL = 0 inside the type-II Weyl
semimetal. The overlap between the lead spinors and the Weyl semimetal spinor will then
give rise to an effective tunneling Hamiltonian [37],

HT =
∑

k,k′

∑

σλ

tσkλ ĉ†
kλ f̂k′σ + h.c. , (82)

where f̂k′σ destroys a spin-σ electron with momentum k′ inside the lead, ĉ†
kλ creates a Weyl

mode inside the overtilted region, and tσkλ = t0ϕ
†
kλψσ are the tunneling matrix elements with

tunneling strength t0. By construction, the spin-up electrons couple much stronger to the w1
modes than to the w2 modes. Hence, tunneling between the magnetic lead and the overtilted
Weyl semimetal will give rise to a non-equilibrium occupation. Following the previous section,
the occupation can be modeled with the Boltzmann equation in the relaxation-time approxi-
mation, which essentially leads to Eq. (77). Assuming the density of states of the spin-up lead
electrons g↑� g↓, one finds at zero temperature,

nkλ = n0
kλ +τ

2π
ħh

g↑|t
↑
kλ|

2
�

Θ(eUDC − Eλ(k))−Θ (−Eλ(k))
�

, (83)

where the dispersion is given by Eq. (76). In particular, for our choice of polarization of the
magnetic lead, we have |t↑w2

|2/|t↑w1
|2 ≈ v2

F/V
2 for states close toω= 0. Hence, the occupation

of the w2 modes is suppressed by the tilt V . This again gives rise to a population imbalance
between the w1,2 modes, such that the Hawking signature can in principle be observed.

4.3 Differential conductance

In Section 3, we considered the case of normal incidence with k⊥ = (±k0, 0) whose contribu-
tion dominates at low energies. However, in a transport experiment all transverse channels
contribute to the current. Hence, it is not clear what remains of the Hawking effect even if one
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Figure 7: Position of the local maximum in the zero-bias differential conductance for
the w1 mode, as a function of the Fermi energy EF and the slope of the tilt profile
α, for different tilt profiles (in units of vF ) as detailed in App. B. Here, the solid blue
and green curves are fits of the data to a tanh bα and 2a

π arctan πbα
2 , respectively, with

a ≈ 0.6 and b ≈ 1.2.

can excite an Iwi
(i = 1,2) current by means of a non-equilibrium occupation of w modes, as

described above. We therefore calculate the contribution of the wi mode to the two-terminal
zero-bias differential conductance at zero temperature,

Gi(EF )≡
dIwi

dV

�

�

�

�

V=0,T=0
=

e2

h

∑

k⊥

Tu←wi
(ω= EF , k⊥) (84)

=
e2

h
W 2

2π2

∫ ∞

0

dkx

∫ ∞

−∞
dky Tu←wi

(ω= EF , k⊥) , (85)

where we take a sample with transverse dimensions W ×W and we used H(kx) =H(−kx) in
the second line. Here, we reverted to dimensionful units for clarity. The transmission functions
for general k⊥ are calculated with the KWANT Python package (see App. B).

The transmission of the Hawking channel (kx = ±k0 and ky = 0) obtained with the lattice
model is shown in Fig. 6(a). In the slowly-varying limit (α � 1), the transmission matches
perfectly our analytical results given in Eq. (55). On the other hand, for α� 1, we also find
agreement with our results for the sharp horizon. The conductance for the w1 and w2 current
is shown in Fig. 6(b) as a function of the Fermi energy. Here, the quadratic behavior near
the Weyl node is attributed to the low-energy density of states in the type-I region, given by
g(ω) = vFω

2/[2π2ħh3
�

v2
F − V 2

L

�2
]. Interestingly, we observe that the conductance G1 (G2)

features a local maximum at positive (negative) energies, due to tunneling of w1 (w2) modes
through the effective horizon. The peak position in the (α, EF ) plane is shown in Fig. 7 for
three different tilt profiles. In all cases, the peak position increases linearly for small α at first,
with the same slope EF/ωc ≈ 0.7α/2k0. Furthermore, in the limit of a sharp horizon (α� 1),
the same constant is attained, given by EF/ωc ≈ 0.6 and whose precise value depends only on
the asymptotic values of the tilt profile. Surprisingly, we find that the position of the maxima
as a function of α are fitted reasonably well to functions that are similar to the tilt profile, as
illustrated in Fig. 7, except in the case with the purely linear tilt profile.

We thus conclude that it is in principle possible to induce a stationary non-equilibrium
occupation of w modes, either by irradiation of light in the type-II region, or by coupling the
type-II region to a magnetic lead. In both cases, we assume this takes place in the asymptotic
tilt region far away from the horizon. For sufficiently long mean-free paths this then gives rise
to a net w1 or w2 current. The corresponding two-terminal differential conductance features
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a peak due to tunneling of w1 or w2 modes across the horizon whose height and position
depends in general on all the details of the tilt profile. However, for a slowly-varying (sharp)
tilt profile relative to the Fermi wavelength, the properties of the peak depend only on the
slope α (the asymptotic values of the tilt).

5 Conclusion

In this work, we investigated mesoscopic transport across effective event horizons at the in-
terface of a type-I and type-II Weyl semimetal. To this end, we used a minimal model that
captures all salient features of a Weyl semimetal, and studied type-I/type-II interfaces with
different Weyl node tilt profiles. We solved the scattering problem analytically at normal inci-
dence in the low-energy limit for two cases: a fast and slow varying tilt profile. More precisely,
these two cases are distinguished by the length scale of the tilt profile relative to the Fermi
wavelength.

For a slowly-varying tilt profile, we employed the WKB formalism together with an ap-
proximate solution near a linear horizon. We find that co- and counterpropagating modes are
decoupled in this limit and we calculated the S matrix, which depends only on the energy
and the slope of the tilt profile at the horizon. The irrelevance of further microscopic details
is reminiscent of a “no-hair theorem” for real black holes. Moreover, the transmission func-
tions of counterpropagating modes are given by a thermal distribution with effective Hawking
temperature inversely proportional to the slope. Adding the different contributions of the
counter-propagating modes to transport in a Landauer-Büttiker picture, however, masks all
analogs of Hawking effects.

For the sharp horizon, we solved the scattering problem by first deriving appropriate
boundary conditions for the wavefunction at the horizon. In this case, the S matrix explic-
itly depends on the asymptotic values of the tilt profile. Hence, the black hole analogy breaks
down in this case, even though one can still define a temperature scale.

To circumvent the ballistic nature of transport in the slowly-varying limit, we considered
means to drive a non-equilibrium occupation of w modes, i.e., those modes that tunnel through
the horizon from inside the type-II region. We showed that one can favor populating one of
the w modes over the other by irradiating the type-II region with circularly polarized light, or
by coupling it to a magnetic lead. Given this non-equilibrium occupation, we then calculated
the differential conductance for a single w mode which displays a peak as a function of the
Fermi energy. The peak position becomes universal in the limit of very slowly varying tilts:
it only depends on the slope of the tilt profile at the horizon. In the opposite limit of rapidly
changing tilts, the peak position saturates to a value that only depends on the asymptotic
values of the tilt. However, in the intermediate regime, the details of the whole tilt profile
become important.

The transport experiment we propose can serve as a proof of principle for analog event
horizons in fermionic systems. Additionally, to better distinguish different tilting regimes, one
may apply a magnetic field along the tilting direction, to freeze out all transverse degrees of
freedom save the Hawking channel. In conclusion, we have proposed how to detect signa-
tures of analog Hawking radiation in a type-I and type-II Weyl semimetal heterostructure by
driving the system out of equilibrium. The proposed setup has potential further applications
in terms of electron lensing, which can be readily understood through the effective spacetime
and associated gravitational lensing analogies.
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Appendix

A Covariant form of the Weyl equation

In this appendix, we explicitly demonstrate how the effective Weyl equation for a tilt profile
V = V (z) describing low-energy excitations of a tilted Weyl semimetal can be cast into a
manifestly covariant form using the tetrad formalism [10,20].

Unlike vectors and tensors, the Lorentz transformation rule for spinors in flat spacetime
does not generalize to curved spacetime, because the group of real invertible matrices GL(4,R)
has no spinor representations [21,39]. However, we can introduce local Lorentz frames at each
point in spacetime and define spinors with respect to these frames. To this end, we choose an
orthonormal basis of the tangent space êa(p) (a = 0,1, 2,3) at each point p of spacetime, i.e.,

g(êa, êb) = ηab , (86)

where the vector fields êa(p) are called frame fields or tetrads and ηab is the Minkowski metric
of flat spacetime. Hence, we can think of tetrads as arising from a set of coordinate transfor-
mations xµ→ ξa

p, one for each point p, such that gab(p) = ηab or

ηab =
∂ xµ

∂ ξa
p

∂ xν

∂ ξb
p

gµν

�

�

�

�

�

p

= eµa(p)e
ν
b(p) gµν(p) , (87)

where gµν is the metric in the coordinate basis êµ = ∂µ and we use the Einstein summa-
tion convention. The ξa

p coordinates are called local inertial coordinates and the tetrads

êa(p) = eµa(p) êµ constitute a local Lorentz frame [40]. Note that tetrads are not unique, since a
different choice of local inertial coordinates at each point p of spacetime, ξa

p→ ξ
a′
p = Λ

a′
b(p)ξ

b
p

induces a local Lorentz transformation Λ(p) such that eµa → eµa′ = Λ
b
a′e
µ

b , where Λb
a′ is the

inverse transformation, and which leaves Eq. (86) invariant.
To construct the covariant Dirac equation, we require a covariant derivative Daψ which is

a local Lorentz vector that transforms as a spinor. It follows that [21]

γaDaψ= 0 , (88)
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where Da = eµa
�

∂µ +Ωµ
�

, γa are the Dirac matrices with {γa,γb}= 2ηab, and Ωµ is called the
spin connection. The spin connection ensures covariance since ∂µψ does not transform as a
spinor under local Lorentz transformations. In general, we can write Eq. (88) as

i∂tψ=
�

−iαi∂i − iΥ
�

ψ≡Hψ , (89)

with
αi(p) = (e0

bγ
b)−1ei

aγ
a , Υ (x) = (e0

bγ
b)−1eµaγ

aΩµ , (90)

where the spin connection ensures that the Hamiltonian H is Hermitian [14]. If we compare
this to the Hamiltonian of the tilted Weyl semimetal (1), we identify

eµa(z) = δ
µ
a + V (z)δµ3δ

0
a , (91)

which correspond to the so-called acoustic metric [4]:

gµν = ηabea
µeb

ν =







V 2 − 1 0 0 −V
0 1 0 0
0 0 1 0
−V 0 0 1






, (92)

where ea
µ are the inverse tetrads. Equivalently, it can be obtained from the inverse metric

gµν = ηabeµaeνb. Explicitly, the spin connection is given by

Ωµ =
1
8
[γa,γb]gκλeκa(∂µeλb + Γ

λ
µνeνb) , (93)

which can be derived from infinitesimal local Lorentz transformations [21,39], and where Γκµν
and Γλµν = gκλΓκµν are Christoffel symbols of the first and second kind, respectively. In our
case, the only nonzero Christoffel symbols are

Γ003 = Γ030 = −Γ300 = V V ′ , Γ033 = −V ′ , (94)

with V ′ = ∂ V/∂ z and

Γ
µ
0ν = V V ′

�

V −1
V 2 − 1 −V

�

, Γ
µ
3ν = V ′

�

−V 1
−V 2 V

�

, (95)

where µ,ν= 0,3. After some tedious algebra, the spin connection becomes

Ωµ =
1
4
[γ3,γ0]

�

δ3
µ − Vδ0

µ

�

V ′ , (96)

such that

eµaγ
aΩµ = γ

a
�

e0
aΩ0 + e3

aΩ3

�

(97)

= γ0 (Ω0 + VΩ3) + γ
3Ω3 = γ

3Ω3 =
1
2
γ0V ′. (98)

In our specific case, we have αi = γiγ0 + Vδi
3 and Υ = V ′/2. In the Weyl representation, we

have

γiγ0 =

�

σi 0
0 −σi

�

, (99)

with σi the Pauli matrices and we obtain the Weyl Hamiltonian

Hχ = −i (χσ + Vez) · ∇− iV ′/2 . (100)
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B Lattice model

To solve the scattering problem numerically, we perform a lattice simulation with the KWANT

Python package [24]. To this end, we discretize the continuum Hamiltonian (14) giving a
one-dimensional chain along the z direction with lattice constant a (in units of 1/2k0) and
two orbitals per cell. The dimensionless lattice Hamiltonian becomes

Ĥ =
∑

k⊥

∑

n

ĉ†
k⊥n

��

k2
⊥ −

1
4
+

2
a2

�

σx + ky σy

�

ĉk⊥n (101)

+
§

ĉ†
k⊥n+1

�

1
2ia

�

Vn+1/2σ0 +σz

�

−
1
a2
σx

�

ĉk⊥n + h.c.
ª

, (102)

where n= 0,1, . . . , N − 1 labels the cells of the chain and

ĉk⊥n =
1
p

N

∑

kz

eikz na ĉk , (103)

where ĉk⊥n =
�

ĉk⊥n1, ĉk⊥n2

�t
and Vn = V (na) is the value of the tilt at site n. Here, we take the

average value of the tilt for hopping between sites n and n+ 1. For all calculations, we take a
scattering region of length L = a (N − 1) with N = 201 that is sufficiently long so that the tilt
profile is practically constant at the boundaries which are connected to semi-infinite leads. In
our simulations, we considered three different tilt profiles, all with linear horizons. Firstly, we
used

V (z) = A+ B tanh (Cz + D) , (104)

with

A=
VR + VL

2
, C =

α

2
VR − VL

(V0 − VL) (VR − V0)
, (105)

B =
VR − VL

2
, D =

1
2

ln
�

V0 − VL

VR − V0

�

, (106)

where V (0) = V0 and V ′(0) = α and which is valid for real D, i.e., either VL < V0 and VR > V0
or VL > V0 and VR < V0. Here, V0 = ±1 for a black hole and white hole horizon at the origin,
respectively and VR,L = limz→±∞ V (z). Note that this tilt profile is symmetric about the origin
for VR + VL = 2V0. Secondly, we considered the tilt profile V (z) = 1 + (2/π)arctan (αzπ/2)
for the case VL = 0 and VR = 2. For this profile, the asymptotic values are approached linearly
instead of exponentially. Finally, we also looked at a purely linear tilt profile, given by

V (z) =











VL z ≤ 0 ,

VL +αz 0< z < L0 ,

VR z ≥ L0 ,

(107)

with L0 = (VR − VL)/α.

C Scattering matrix for sharp horizon

Here, we give the complete S matrix at low energies for the sharp black hole horizon where
we take VL = 0 and VR = V . Expressions exist for the general case but they are too unwieldy.
Here, we obtained the low-energy expressions by expanding the spinors, wavevectors, and
group velocity up to third order in ω.
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When the incoming mode comes from the type-I region (v mode), the scattering coeffi-
cients up to second order in ω are found to be given by

ruv = i
2− V
2+ V

−
V 4 − 5V 2 + 8

(2+ V )2 (V 2 − 1)
2ω (108)

+
V 7 + 3V 6 − 4V 5 − 18V 4 + 5V 3 + 43V 2 + 6V − 32

(2+ V )3 (V 2 − 1)2
2iω2 , (109)

tuv = i
2
p

V − 1
2+ V

+
V (V − 1) (3V + 8)− 16

(2+ V )2 (1+ V )
p

V − 1
ω (110)

−
7V 7 + 27V 6 − 17V 5 − 159V 4 + 6V 3 + 432V 2 + 176V − 256

4
p

V − 1 (2+ V )3 (V 2 − 1)2
iω2 , (111)

tvv =
2
p

1+ V
2+ V

−
iV 2p1+ V

(2+ V )2 (V − 1)
ω+

V 5 + 3V 4 − 7V 3 − 7V 2 + 58V + 80

4 (2+ V )3 (1+ V )5/2 (V − 1)2
V 2ω2 , (112)

such that whenever the zeroth-order term is real (imaginary), the first-order term is imaginary
(real). Hence, the first-order term enters only as a phase such that the transmission probability
is constant up to first order. Numerically, we find that this holds at all odd orders such that the
transmission functions Ru←v , Tu←v , and Tv←v are even functions of the energy.

On the other hand, when the incoming mode comes from the type-II region, there are two
possibilities: w1 and w2. Up to first order in ω, we find

tuw1,2
=
p

2
V 2 + V − 2± i

p
V 2 − 1 (2− V )

V (2+ V )
p

V − 1
(113)

±
P1(V )∓ i

p
V 2 − 1

�

16+ 12V − 16V 2 − 7V 3 + 3V 4 + V 5
�

p
2 V (1+ V )3/2 (V 2 + V − 2)2

ω , (114)

ruw1,2
=

V 2 − 4± 4i
p

V 2 − 1
p

2 V (2+ V )
(115)

±
P2(V )∓ i

p
V 2 − 1

�

32+ 40V − 12V 2 − 20V 3 − 4V 4
�

2
p

2 V (2+ V )2 (V 2 − 1)3/2
ω , (116)

rvw1,2
= ∓

V
p

2 (2+ V )
(117)

±
4+ 8V − 8V 3 − 4V 4 ∓ i

p
V 2 − 1

�

12+ 6V − 6V 2 − 3V 2
�

2
p

2 (V − 1)2 (1+ V )2 (2+ V )2
iVω , (118)

where P1 = 16+12V−28V 2−9V 3+12V 4−3V 6, and P2 = 32+40V−44V 2−54V 3−6V 4+5V 5.
Taking the expressions of the scattering amplitudes up to first order in ω, one can check that
SS† = S†S = 1+O(ω2) where S is defined in Eq. (67).
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