
Article
Multiomic profiling of the li
ver across diets and age in
a diverse mouse population
Graphical abstract
HiSeqX™

illumina

Welcome

SEQUENCE

WASH

CHECK

√

Placeholder text goes here

Sample

Labeling

Text

Textings

Label

Input

Names

A Sequence Run Name 2019

Mockup of Screen

Mockup 2
Highlights
d Generation of a large multivariate, multiomic study on GxExA

in liver

d Isogenic cohort study, allowing separation of each variable’s

contribution to variance

d Ctsd and St7 are aging associated in mice and causally affect

lifespan in C. elegans

d Stability selection and regression provide causal inference to

supplement covariation
Williams et al., 2022, Cell Systems 13, 43–57
January 19, 2022 ª 2021 Elsevier Inc.
https://doi.org/10.1016/j.cels.2021.09.005
Authors

Evan G. Williams, Niklas Pfister,

Suheeta Roy, ..., Collin Y. Ewald,

Robert W. Williams, Ruedi Aebersold

Correspondence
evan.williams@uni.lu

In brief

Genetic and environmental (GxE) factors

interact and, over a lifetime, lead to

diverging metabolic phenotypes and

lifespans across diverse populations. We

have collected livers from 662 individuals

from the BXD isogenic strain family

across two diets over their natural

lifespan and performed multiomic

profiling of their transcriptome,

proteome, and metabolome. These data

allow us to examine the molecular basis

of GxE and aging and to define genes and

pathways, which diverge in tandem with

metabolic variation.
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SUMMARY
We profiled the liver transcriptome, proteome, and metabolome in 347 individuals from 58 isogenic strains of
the BXDmouse population across age (7 to 24months) and diet (low or high fat) to linkmolecular variations to
metabolic traits. Several hundred genes are affected by diet and/or age at the transcript and protein levels.
Orthologs of two aging-associated genes, St7 and Ctsd, were knocked down in C. elegans, reducing
longevity in wild-type and mutant long-lived strains. The multiomics data were analyzed as segregating
gene networks according to each independent variable, providing causal insight into dietary and aging ef-
fects. Candidates were cross-examined in an independent diversity outbredmouse liver dataset segregating
for similar diets, with �80%–90% of diet-related candidate genes found in common across datasets.
Together, we have developed a large multiomics resource for multivariate analysis of complex traits and
demonstrate a methodology for moving from observational associations to causal connections.
INTRODUCTION

Aging is a dynamic and multifaceted process driven over a life-

time of interactions among genetic variants, environmental fac-

tors, and stochastic processes. Despite its complexity, longevity

is a heritable trait, with genotype explaining 30%–50%of its vari-

ation across laboratory mice (Belknap, 1998; Hook et al., 2018)

and �25% in humans (Hook et al., 2018). Age is a prominent

‘‘risk factor’’ for a wide range of diseases, such asmetabolic syn-

drome, diabetes, heart disease, neurodegeneration, and most

cancers (Kraja et al., 2006; White et al., 2014). Cells and tissues

display common perturbations with increasing age, such as a

diminished capacity for proteostasis (Labbadia and Morimoto,

2015; Santra et al., 2019) and the accumulation of mitochondrial

defects (Srivastava, 2017). These and other common endpoints

are recognized, but there is substantial diversity in the mecha-

nisms and timelines connecting individuals’ chronological age

(calendar age), their biological age (health span), and their ex-

pected lifespan (longevity) across different environmental condi-

tions (Horvath, 2013), let alone across organisms. It is now

possible to measure biomarkers of both biological and chrono-

logical age, such as by DNA methylation signatures (Bell et al.,
2019). However, it is unclear whether interventions that directly

affect the dynamics of aging biomarkers, such as methylation

sites, would causally improve either longevity or health span

(Jazwinski and Kim, 2019; Levine et al., 2018).

Given the inherent challenges of longitudinally obtaining tissue

biopsies in human clinical cohorts, populations of model organ-

isms provide a reproducible system to study the varying biomol-

ecular processes of aging. Additionally, isogenic cohorts permit

‘‘paired’’ tissue biopsies to be collected across multiple times

and environments. This allows the creation of resources, such

as the Tabula Muris Senis project (Tabula Muris, 2020), which

establish baseline knowledge for molecular changes over time,

such as how transcript expression changes across cell types

and time in C57BL/6 mice. Further research is necessary to

test how genetic variation and environmental interactions (GxE)

influence molecular clocks, the extent to which relations are

congruent between cognate mRNA and protein, and how

changes in molecular levels link with aging and age-associated

phenotypes. Getting at the causality of these relations is critical

for developing more sophisticated interventions to reduce dis-

ease burden and enhance health and longevity. However, causal

inference requires multiple simultaneous axes of variation and/or
Cell Systems 13, 43–57, January 19, 2022 ª 2021 Elsevier Inc. 43
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longitudinal sample acquisition (Kesmodel, 2018; Lancaster

et al., 2020), a relative rarity for population-scale studies of

gene expression, which tend to focus on cross-sectional anal-

ysis for single independent variables.

In this study, we have generated transcriptome, proteome, and

metabolome profiles in liver samples from 58 strains of the large

and genetically diverse set of isogenic BXDmice, across their nat-

ural lifespans and in two different diets. These data were gener-

ated in 347 individuals belonging to 300 distinct genotype, age,

diet, and sex-matched cohorts and combined with phenotypes

collected across the entire family, including blood biomarkers, or-

gan weights, longitudinal body weight, and longevity. We devel-

oped this dataset to examine relations between genetics, dietary

environments, and age (GxExA) on gene expression. We show

that the experimental design and data provide a platform for de-

tecting, evaluating, and testing how and to what extent biomole-

cular processes and phenotypes vary as a function of GxExA.

Moreover, we use the dataset to highlight an approach to iden-

tify causal relationships in gene expression networks. Themultiple

independent variables segregating in this study (diet, age, and ge-

notype) allowed us to apply a causal inferencemethodwe recently

developed (Meinshausen et al., 2016; Pfister et al., 2021) called

stabilized regression. Thismethod starts with supervised learning,

using as input a target of interest (e.g., gene expression or a

phenotype), searches next for any measurements which covary

with the target, then evaluates how these associations change ac-

cording to at least two independent variables. Regression coeffi-

cients for each independent variable are combined with a stability

score that estimates whether the selected target is more likely to

be upstream of a canonical pathway (i.e., causal), downstream

(i.e., a biomarker), or ambiguous (i.e., a connection not affected

by the secondary independent variable). We perform causal infer-

ence analysis for 23 core metabolic gene sets that are known to

vary as a function of diet or age and search for modifier genes

outside the canonical gene sets that explain differences in gene

expression networks as a function of genotype, age, and diet.

Roughly 20% of the detected gene-pathway associations were

specific to an age or dietary environment, indicating a causal rela-

tionship between these genes, the target pathway, and the inde-

pendent variables (i.e., genotype and either age or diet).

Here, we have generated one of the largest coherent, repli-

cable, and extensible sets of aging multiomics gene expression

data in a model population. This provides two key resources for

the study of aging, metabolism, and complex trait analysis. First,

these data were generated in the isogenic BXD population, thus

providing a reproducible platform and extensible reference for

further examining the mechanisms by which GxExA affect gene

expression, metabolites, and core physiological phenotypes.

Second, this multivariate study design demonstrates the capacity

for new advances in statistics for the study of complex networks:

stabilized regression can calculate the causality for associations

that are impacted by two or more independent causal variables.

RESULTS

Clinical analysis of lifespan as a function of genotype
and diet
In this study, we initially followed 2,157 mice from 89 strains of

the BXD family across their natural range of lifespan of which a
44 Cell Systems 13, 43–57, January 19, 2022
subset of 662 individuals from 60 strains were sacrificed for tis-

sue collection. Individuals were placed in the colony around

5 months of age, after which cohorts were evenly segregated

into two dietary cohorts, one fed a low-fat ‘‘chow’’ diet (CD; Har-

lan Teklad 2018, 6% calories from fat) and the other a high-fat

diet (HFD; Harlan 06414, 60% calories from fat). Pairs of individ-

uals from each cohort (i.e., strain and diet matched) were sacri-

ficed at 7, 12, 18, and, if possible, 24months of age to collect the

tissue biobank from662 individuals, belonging to 309 distinct co-

horts balanced according to age, diet, and genotype (Figure 1A;

Table S1; Figure S1A) of which omics data were eventually

generated for 300. The liver was selected as the primary organ

of interest due to its central role in metabolism and the wide

range of liver-related clinical and molecular phenotypes known

to vary across the BXDs as a function of diet, sex, and genotype

(Andreux et al., 2012; Williams et al., 2016). The liver was pulver-

ized in liquid nitrogen and aliquoted in parallel for transcriptom-

ics, proteomics, and metabolomics (Figure 1B).

Earlier studies have demonstrated that expected lifespan

across the BXD family of mice varies by �3-fold—from 11 to

32 months (De Haan and Van Zant, 1999; Gelman et al., 1988;

Lang et al., 2010). These differences among strains are consistent

across studies, even 20 years apart (r = 0.77, Figure S1B, Gelman

et al., 1988; Hook et al., 2018; Lang et al., 2010). Correspondingly,

we find significant correlations between our CD lifespans (Roy et

al., 2021) and those of the previous studies (r = 0.53 and r = 0.69,

for the 1988 and 2010 studies, respectively, Figure S1B). In this

study, we calculated longevity using 1,336 individual female

mice, which lived out their natural lifespans, permitting compari-

sons across diets (n_diet = 2, Figure 1C) and strain (n_strain =

66, Figure 1D; Table S1), with 48 strains having sufficient data in

both diets for dietary comparisons (R 6 natural deaths in each di-

etary cohort; Table S1). Genetic variation across the population

explained 71% of variation in expected cohort median lifespan,

versus 14% by diet and 15% by gene-diet interactions (Fig-

ure S1C). Conversely, body weight at sacrifice was explained

largely by diet (41%), with a significant contribution fromgenotype

(21%) and interactions between the two (7%) (Figure S1C).

Overall mean strain lifespans (merging dietary cohorts) vary

from 314 ± 37 days (mean ± SEM for BXD13, n = 20) to 870 ±

39 days (BXD91, n = 14) (Figures 1D and S1D). Although HFD

feeding causes amean 10%decrease in longevity, themagnitude

of decrease varies by strain: BXD9’s lifespan is unaffected,

whereas BXD65s tend to live nearly an additional year longer on

CD than HFD (log-rank test, p = 3e–6, Figure S1E). HFD leads to

a significant decrease in lifespan in 40% of the strains (p %

0.05), and 64% have at least a tendency to have shorter lifespans

on HFD (p % 0.10). These differences notwithstanding, the HFD

effect is generally consistent across strains, with mean strain life-

span correlating between diets at r = 0.68 (Figure S1F). Although

diet has a relatively modest effect on longevity, it has a substantial

impact onweight (Figures 1E and 1F); strains had an average 78%

increase in body mass, and 89% of strains gained weight signifi-

cantly upon HFD feeding by 18 months of age (p < 0.05,

comparing areas under the curve). As with lifespans, the effect

of HFD on body weight varies depending on genetic background:

BXD16s gained the least with an average increase of 11%,

whereas BXD100s gained an average of 133% (Figures S1G

and S1H).
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Figure 1. Overview of aging colony

(A) Study overview. Animals entered the aging program at around 150 days of age and were set into dietary cohorts. 662 individuals were selected for sacrifice at

7, 12, 18, and/or 24 months of age for sacrifice.

(B) Study design and workflow. The 662 individuals are from 309 cohorts according to diet, age, sex, and strain. 347 individuals were selected for omics profiling,

corresponding to 300 distinct cohorts out of the 309 originally acquired. Of the 1,495 natural deaths, 1,336 were used for lifespan calculations (see STAR

Methods).

(C) Kaplan-Meier survival curves for CD and HFD females, irrespective of strain. Significance indicated by a Fleming-Harrington weighted log-rank test.

(D) Kaplan-Meier survival curves for all 66 BXD strains with at least 8 natural deaths in the female cohorts, irrespective of diet.

(E) Weight-over-time for 212 CD (left) and 90 HFD (right) individuals that reached R 800 days of age. All animals were weighed bimonthly.

(F) Violin plots of body weight at 18 ± 1.8 months of age in each diet, significance indicated by t test.

(G) ALPL serum metabolite levels across BXD strains as a function of several cofactors, significance indicated by t test. B6 indicates strains which have the

C57BL/6 allele of Alpl. DBA indicate strains which have the DBA/2 allele of Alpl. Black lines show the mean ± standard deviation.
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In addition to body weight and longevity, we also measured 18

plasma metabolites commonly used in clinical settings, such as

cholesterol, iron, glucose, and alkaline phosphatase (ALPL)

levels (Table S1). We observed that HFD reduces the circulating

serum level of ALPL, as reported previously in the BXDs (Williams

et al., 2016), along with an increase in circulating ALPL in old

mice (Figure S1I), as has been observed in humans (Fenuku

and Foli, 1975). Strains with the B6 allele of Alpl are known to

have lower ALPL levels than those with the D2 allele (Andreux

et al., 2012), which we again observed in typical control condi-

tions (i.e., CD, young) (p = 0.0009, Figure 1G). However, the ge-

notype effect is dependent on environment: for old females, the

effect caused by Alpl sequence variants is masked by environ-

mental interactions between age and diet (p = 0.52, Figure 1G).
These interactions between age, genotype, and diet on ALPL

are known (Andreux et al., 2012; Williams et al., 2016), but this

illustrates the challenge of GxE and causal discovery for com-

plex traits: a single circulatingmetabolite is affected by genotype

(Alpl allelic variants), diet, and age.

Multiomic molecular analysis of the aging liver
We hypothesized that transcriptome, proteome, and metabo-

lome data could indicate molecular networks involved in the eti-

ology of hepatic aging, dietary response, their interactions with

genetic variants across the population, and resulting differences

in metabolic phenotypes. To examine this, we selected livers

from 347 individuals for multiomic gene expression analysis

out of the total collection of 662 individuals, representing 300
Cell Systems 13, 43–57, January 19, 2022 45
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of the 309 collected cohorts for a total of 58 strains, two sexes,

four ages, and two diets (Table S1, sheet ‘‘Cohorts_Harvested’’).

After sample quality control (QC; see STAR Methods), RNA-seq

data were retained from 291 individuals (255 cohorts) and prote-

omics data from 315 individuals (278 cohorts), with 275 individ-

uals overlapping in both datasets (240 cohorts). Untargeted

metabolomics data were generated by flow injection analysis

TOF-MS from 624 individuals (298 cohorts), resulting in a total

of 274 individuals (239 cohorts) with full data in all three layers.

RNA-seq data were generated with 20 million reads per sample

on a HiSeq PE150, with 25,394 distinct transcripts quantified, of

which 20,827 are annotated as protein coding. Proteomics data

were generated using SWATH-MS on an SCIEX 6600 instru-

ment, with 3,940 proteins quantified after QC. Themetabolomics

data were generated on an Agilent 6,550 instrument, with 464

uniquely detected metabolites remaining after QC. The pro-

cessed and normalized set of all omics data are available in

Data S1 (for raw data, see data availability). We focused on

gene expression in this study, primarily for the 3,772 genes,

which were measured at both the mRNA and protein level to

get a comparable multiomic overview of the gene expression

across GxExA. These 3,772 genes belong to some overrepre-

sented ontologies (e.g., mitochondria, cytoplasm, and ribosomal

proteins), whereas others are depleted (e.g., membrane proteins

and secreted proteins) (Table S2, sheet 1). Note that some func-

tional categories are fundamentally absent due to tissue type

(e.g., olfactory receptors) or selection time (e.g., developmental

proteins), whereas other depletions are due to technical reasons,

e.g., membrane-bound proteins are difficult to extract, separate,

and digest in proteomics (Whitelegge, 2013; Williams

et al., 2018).

Diet has a significant impact on the expression of 893 tran-

scripts and 1,352 proteins (Figure 2A, adjusted t test between

discrete groups), whereas 1,562 transcripts and 998 proteins

significantly covary with age (Figure S2A, correlation coefficient,

adjusted p value). ANOVA determines an average 64% of

observed variation in transcripts to be explained by genotype

(‘‘strain’’), diet, age, and their interactions (Figure 2B). Although

genotype has the largest individual effect (�30%), the data

come from 58 genotypes, compared with 2 diets and a range

of ages in adulthood. To standardize this difference in degrees

of freedom for each independent variable, we calculated the F

statistic, which finds diet and age to have stronger median ef-

fects than genotype (2.87, 2.38, and 1.78, respectively). Howev-

er, genotype has themost transcripts with significant F statistics;

1,361 out of the 3,772 overlapped transcripts are significantly

impacted by genotype, versus 625 by diet and 680 by age (p <

0.001). Similar trends are observed for both protein and metab-

olite data (Figure S2B). Diet or age have relatively consistent ef-

fects on a gene’s mRNA and protein expression (r = 0.42 and r =

0.50, respectively; Figure 2C), whereas the effects of diet and

age on gene expression are themselves independent (Fig-

ure S2C). Next, we examined the relationships between mRNA

and protein levels. Across all samples, mRNA are moderately

predictive for the relative abundances of their proteins (r =

0.44, Figure 2D)—that is, more-abundant mRNAs tend to be

the more-abundant proteins and vice versa. However, we are

generally interested in how genes and pathways respond to per-

turbations (i.e., genotype, diet, or age). In this case, the average
46 Cell Systems 13, 43–57, January 19, 2022
correlation of all 3,772 mRNA with their protein as a function of

GxExA is rho = 0.14, with 33% of mRNA-protein pairs covarying

significantly across all measurements (adj.p < 0.05; Figure 2E).

That is, knowing the variation in mRNA expression across geno-

type, diet, and age provides only a weak predictor for variance in

its corresponding protein.

Despite this low average correlation, additional data can be

used to improve the predictive capacity of an mRNA for its pro-

tein product in some cases. Independent variables with a large

effect size on a transcript’s expression are far more likely to

have a corresponding effect on the protein’s expression. More

highly variable transcripts tended to correlate better with their

proteins—71%of themost abundant decile of transcripts covary

with their protein, versus only 6% of the least-abundant decile

(Figures 2F and S2D). More-abundant transcripts also tend to

correlate better: only 12% of the least-abundant decile of tran-

scripts covary with their protein, compared with 63% of the

most abundant. This could indicate higher levels of noise in

low-abundance transcripts (and proteins, given abundance cor-

relates at r = 0.44), but it is worth noting that abundance and vari-

ability are only weakly correlated (rho = 0.07, Figure S2F). Thus,

measurements of variation within an omics layer indicates some

cases where protein and transcript measurements can be used

as reasonable proxies. For the 60 transcripts that are in the top

decile of abundance and variability, 87% correlate with their pro-

tein significantly and with an average rho = 0.51—versus an

average rho = 0.14 for the average correlation of the 3,772 paired

gene products.

Other factors stemming from prior knowledge can also be

used to predict mRNA-protein covariation. For instance, genes

with significant quantitative trait loci (QTLs) mapping near their

own location—i.e., cis-QTLs—tend to have more significant

transcript-protein relationships (Figure 2F). Such QTLs indicate

nearby sequence variants causing varying transcript expression

(cis-eQTL) or protein expression (cis-pQTL), and these tend to be

highly robust and reproducible (Keele et al., 2021). The knowl-

edge of which genes have cis-QTLs can also provide predictive

information across expression type: transcripts that have strong

cis-eQTLs (logarithm of the odds (LOD) R 4) correlate substan-

tially better with their protein (rho �0.27). Other predictive pat-

terns can be observed using knowledge about a gene’s function.

For instance, genes that are involved in protein complexes (an-

notated by CORUM Giurgiu et al., 2019) have less significant

mRNA-protein covariance (average rho �0.06, Figure 2G). This

is despite that complex-member mRNAs tend to be somewhat

more abundant than average (p = 2e–6) and have no difference

in their variation (p = 0.08). The size of the complex also impacts

the expected correlation: at an adjusted p < 0.05, 34%of the 360

quantified genes in dimers have significant mRNA-protein corre-

lations, against only 4% of the 431 genes in complexes of R 20

subunits (i.e., not more significant than expected by chance)

(Figure S2G).

Finally, we examined the relationships between gene expres-

sion and the varying genetic backgrounds of the BXD population

via QTL mapping on all 3,772 transcript-protein pairs. 216 genes

mapped to a significant cis-eQTL or cis-pQTL at LOD R 4 (Fig-

ure 2H; >99.9% true positive rate using discovery cutoffs, Fig-

ure S2H). Although only 25% of cis-QTLs were observed at

this threshold for both mRNA and protein levels concurrently
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Figure 2. Multiomics overview of mRNA, protein, and metabolite liver expression

(A) Volcano plot for all 3,772 transcripts and proteins measured in both expression types, and the number affected by diet, calculated by t tests, either below a

nominal p value of 0.05 or a Benjamini-Hochberg adjusted p value of 0.05.

(B) ANOVA analysis showing variation explained and F statistic as a function of the independent variables. For variance explained, ‘‘interact’’ is the sum of all

interactions: diet*age, diet*strain, age*strain, age*diet, and age*diet*strain.

(C) Pearson correlation density plot of the relationship between the effects of dietary fold changes (left) and age correlations (right) on all 3,772 paired gene

products. Brighter colors represent higher density data.

(D) Pearson correlation of average mRNA and protein levels across all samples and all genes.

(E) Density plot showing�33% of transcripts covary with their protein (i.e., area under the blue curve but above the black curve of randomized data). Significance

is determined by a paired t test of real correlations compared with randomized labels.

(F) (Left) Density plot of mRNA-protein correlations as a function of themRNA expression variance; (right) density plot showing correlation as a function of cis-QTL

presence and (center-right) as a function of diet. Significance is determined by t test between the groups denoted by the asterisk.

(G) Density plot of correlation as a function of the gene existing in a complex. Significance is determined by t test between the groups denoted by the asterisk.

(H) (Left) Genes with highly significant cis-QTLs (LODR 4) in CD cohorts at the mRNA and protein level. (Middle) Slopegraph showing the change in LOD score

between mRNA and protein; (Right) Venn diagram showing �50% cis-QTL overlap at more permissive cutoffs (LOD R 4 in discovery cohort, R 2 in validation

cohort).

(I) (Left) Across diet at themRNA level, roughly half of cis-eQTLs are found congruently. (Middle) Slopegraph showing the change in LOD score across diet. (Right)

Venn diagram accounting for less strict alignment cutoffs, showing R 90% of cis-eQTLs align across diet.
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(i.e., 53 out of 216), an additional 24% were observed at a sec-

ondary threshold when followed-up with a specific QTL hypoth-

esis (LODR 2, corresponding to a 99.7% true positive rate when

used as a validation cutoff, Figure S2H). Nearly half of cis-QTLs

(49%, i.e., rightmost panel of Figure 2H) are unique to transcript

or protein levels, in line with previous estimates (e.g., Chick et al.,

2016). Next, we examined the reproducibility of cis-QTLs as a

consequence of diet. At discovery cutoffs (i.e., LOD R 4), just

over half of cis-eQTLs (Figure 2I) and cis-pQTLs (Figure S2I)

were observed in common across diets, whereas at validation

cutoffs, more than 90% of cis-QTLs—for both transcripts and

proteins, separately—were observed in both dietary conditions.

However, it is worth noting that some genes only yield cis-QTLs

under certain environmental states, such as Cyp3a11 and

Cyp3a16, which map to robust cis-pQTLs, but exclusively in
HFD, or Akt2, which maps to a robust cis-pQTL, but only in

aged animals (Table S2, sheet 2). Similar general trends are

observed when comparing cis-QTLs across age instead of

diet; 45% of cis-QTLs are concordantly affecting both transcript

and protein within age group, whereas 92% of cis-pQTLs are in

common across age groups (Figure S2J). Thus, although there is

significant correspondence between transcript and protein vari-

ation, certain molecular changesmay only be evident at the tran-

scriptome or the proteome level (e.g., Liu et al., 2019; Williams

et al., 2016), and genes’ mRNA and protein products cannot

be ad hoc assumed to be proxies for one another.

Metabolic characteristics of age
Next, we correlated all gene expression data with the measured

age of the animals to look for molecular signatures of aging, both
Cell Systems 13, 43–57, January 19, 2022 47
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Figure 3. Aging candidate discovery and C. elegans

(A) DAVID analysis of the top transcripts and proteins, which correlate with the measured age of the mouse when the tissue was taken.

(B) GSEA for the 127 genes measured at the mRNA and protein level in the ‘‘NABA’’ matrisome gene set (a superset of ECM genes) showing an enrichment with

age for both mRNA and protein.

(C) Ctsd mRNA (left) and protein (right) expression as a function of age, using a bimodal cutoff, significance determined by t test. Black lines show the mean ±

standard deviation.

(D) Pearson correlation plots of age versus Ctsd mRNA and CTSD protein.

(E) Longevity analysis of RB2035, a mutant C. elegans with the removal of the Ctsd homolog asp-4, compared with wild-type N2 C. elegans with or without the

inhibition of daf-2 for lifespan extension. The sample size is included in parentheses after each group.

(F) Longevity analysis of st-7RNAi knockdown on twoC. elegans backgrounds; the ‘‘normal’’ lifespan of spe-9mutants comparedwith the long-lived glp-1mutant

line. Significances between groups in (E) and (F) are indicated in Table S4 according to Fleming-Harrington weighted log-rank tests.
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within and across dietary cohort (Table S3, sheet 6). We selected

the 100 proteins and transcripts from each diet, which correlated

the strongest with age and analyzed their gene ontologies (GO)

with DAVID (Huang et al., 2009) (corresponding to p < 5e–4 in

both CD and HFD, equivalent to rho > �|0.34|; Table S3, sheets

2–4). This combined list of 158 mRNAs and 176 proteins was

scanned for enrichment in KEGG pathways and in GO cellular

compartments. The extracellular exosome is the most-enriched

cellular compartment with age in both mRNA (45% of genes, p =

2e–20) and protein (60% of genes, p = 8e–44), which is related to

aging-related patterns in the extracellular matrix (ECM, or ‘‘ma-

trisome’’), recently observed in aging literature (e.g., Ewald,

2020). The mitochondria are the second most-enriched func-
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tional category with age (mRNA: 29% of genes, p = 7e–12, pro-

tein: 23% of genes, p = 7e–7) (Figure 3A) and the decline of

mitochondrial function with age is well known in literature (e.g.,

Srivastava, 2017). Only a few functional pathways were en-

riched, such as the steroid hormone biosynthesis highlighted

with mRNA (p = 1e–8) and the lysosome pathway for protein

(p = 1e–5). The enrichment of the lysosome is a notable pathway,

as loss of proteostasis and declining lysosome function has been

recognized as one of the hallmarks of aging (Stoka et al., 2016).

We then examined these relationships in more detail using Gene

Set Enrichment Analysis (GSEA) (Subramanian et al., 2005). For

the 127 genes in the ‘‘NABA Matrisome’’ gene set measured at

the mRNA and protein level, we observed ECM genes are
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disproportionately and directionally associated with age:

increasing at both the transcript and protein level (Figure 3B).

Previous research in collagens (a key ECM component) has

shown that COL1A1 mutant mice have decreased lifespans—

showing that a disbalance in the ECM can in fact drive aging (Va-

faie et al., 2014) rather than being a simple bystander.

With these gene candidates and pathways in mind, we looked

for candidate longevity genes that could be interventionally

tested in C. elegans. 52 of the top aging-associated genes

(�17%) had a single clear C. elegans ortholog according to

WormBase (Harris et al., 2020) (Table S3, sheet 5). Among these,

cathepsin D (Ctsd) was highlighted as a gene of interest due to its

dual involvement in both the lysosome process (i.e., protein

degradation) and ECM (it specifically targets ECM proteins

[Benes et al., 2008]). The single Ctsd ortholog, asp-4 (BLAST

p = 1e–107, score = 386), has not been examined for longevity

in the C. elegans literature. The Ctsb ortholog W07B8.4 has

been shown to increase in expression with age and to affect

reproductive aging, but not lifespan, in wild-type worms and in

long-lived daf-2mutants (Templeman et al., 2018; Wiederanders

andOelke, 1984). Literature inmammals also shows a general in-

crease in lysosome proteins with age (Cellerino and Ori, 2017),

including Ctsd (Sato et al., 2006), despite that lysosome activity

tends to decrease with age. Inhibition of genes involved in auto-

phagy have also been shown to inhibit lifespan extension inter-

ventions (Sun et al., 2020). Thus, Ctsd ties into an aging hypoth-

esis regarding proteostasis, which states that misfolded and

malfunctional proteins increase in relative abundance with age,

triggering an increase in lysosome expression, compounded

by the lysosome itself becoming less able to maintain proteosta-

sis. In our study, we observed significant increases in Ctsd as a

function of age inmRNA and protein data both categorically (Fig-

ure 3C) and in a quantitative correlation with age (Figure 3D).

Given this functional knowledge of the lysosome, we hypoth-

esized asp-4may affect longevity, and that similar to theCtsb or-

tholog W07B8.4, it could interact with daf-2, a gene whose

knockdown leads to decreased protein turnover (around 30%)

and large increases in lifespan (more than 50%) (Visscher

et al., 2016). We found that RB2035 (the asp-4 mutant

C. elegans line) has a significant decrease in lifespan compared

with wild type when both were on empty vector treatment

(L4440), with a median lifespan of 17.2 days, versus 23.7 days

for control (p = 7e–27, Figure 3E). Adulthood-specific daf-2 treat-

ment resulted in the expected doubling of the lifespan

(45.1 days, p = 2e–95) in wild-type animals, whereas in the

RB2035 background, this effect was much reduced, having the

same median lifespan as controls (23.7 days) although with a

far longer lifespan tail, and an overall lifespan extension (p =

1e–15, Figure 3E). These patterns were confirmed in a complete

experimental replicate (Figure S3A; data in Table S4).

We hypothesized that genes that negatively correlate with ex-

pected lifespan (rather than calendar age) in the BXDsmight also

provide candidates for lifespan modification in C. elegans. We

examined correlates for all data with expected lifespan (Table

S3, sheet ‘‘AllCorrs_ExpectedLifespan’’), which yielded �10%

asmany candidates as comparedwith the analysis with calendar

age. Given the paucity of candidates, we chose to look across all

transcripts (not only the 3,772 overlapping) and only a single

gene—suppressor of tumorigenicity 7 (St7)—correlates below
the false discovery cutoff in both CD and HFD cohorts (p <

0.0005; Figure S3B; Table S3). Moreover, St7 does not correlate

withmeasured age (Figure S3B), nor are there categorical differ-

ences between young and old mice (Figure S3C). That is, St7

expression does not change with lifespan, but strains with higher

levels of it tend to live less long. St7 has a single, strong ortholog

in C. elegans, called F11A10.5 (BLAST p = 1e–112, score 403;

referred to here as st-7). No published longevity data nor rela-

tionshipswith lifespan are available for st-7, but we hypothesized

that its suppression may increase expected lifespan. For the

sterile control C. elegans spe-9, st-7 inhibition with RNAi caused

a minor reduction in lifespan of around 11% (p = 0.001, Figures

3F and S3D, Table S3 sheet ‘‘overview’’). When combined with

the long-lived glp-1 mutant model, which loses germline stem

cells, st-7 inhibition halved lifespan (p = 5e–48, Figures 3F and

S3D, Table S3). Therefore, st-7 inhibition did not increase life-

span, but as with Ctsd, the direction of a causal effect can be

different from that expected by correlation analysis. With these

findings in mind, we set out to develop targeted hypotheses

about how GxExA drives divergences in gene expression, meta-

bolic pathways, and phenotypes.

Using gene-environment-age interactions to
understand liver physiology
In addition to the aging-associated pathways detected by DA-

VID, we hypothesized that other core metabolic pathways may

have modifier genes that are GxExA-dependent and can be

used to understand the molecular basis behind metabolic shifts

in the BXD population. In order to reduce multiple testing, we

pre-selected 23 gene sets from GSEA (Subramanian et al.,

2005), which are associated in the literature to at least one of

our independent study variables (diet, age, or BXD genotype; Ta-

ble S5). A further two ‘‘false’’ gene sets were also selected: one

of entirely random genes, and one of random metabolic genes.

Prior hypotheses are detailed in Table S5, including e.g., that

CYP450 gene family is downregulated in HFD-fed individuals

due to a reduction in plant-based xenobiotics (Sadler et al.,

2018), oxidative phosphorylation (OXPHOS) subunits are down-

regulated in aged individuals (Kruse et al., 2016), and DBA/2J ge-

netic variants upregulate supercomplex assembly in the electron

transport chain (Houtkooper et al., 2013). To identify modifier

genes, we first focused on two types of association: (1) molecu-

lar co-expression networks that are significant for our data types

(i.e., mRNA and/or protein) across genotypes and (2) to examine

molecular signatures that vary as a function of age, diet, or data

type. 22 gene sets formed significant protein co-expression net-

works, and 17 pathways formed significant mRNA co-expres-

sion networks (Table S5).

Given the discrepancies between mRNA and protein behavior

for complexes (i.e., Figure 2G), we first examined the OXPHOS

pathway (REACTOME respiratory electron transport), as it is

composed of large protein complexes, is known to decrease

as a function of age (Houtkooper et al., 2011), and has variant

supercomplex assembly across the BXDs due to genetic vari-

ants in Cox7a2l (Williams et al., 2016). Gene expression of both

OXPHOS mRNA and protein corresponds to strong correlation

networks (p < 1e–4, Figure 4A), but no correlation is observed

between the mRNA and protein expression networks (p = 0.54,

Figures 4B and S4A). Furthermore, two key substructural
Cell Systems 13, 43–57, January 19, 2022 49
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Figure 4. Functional gene networks of transcripts and their proteins

(A) OXPHOS Spearman correlation networks for network connectivity between 75 genes with both mRNA (left) and protein (right) measurements. Node color

represents to which component of OXPHOS the gene belongs. Red-highlighted nodes are mitochondrially encoded. NDUFA4 is a Complex IV member, despite

its gene symbol (Balsa et al., 2012). In (A), (C), and (E), edgeswith Spearman correlation p values < 1e-4 are displayed and counted. Overall network significance in

(A), (C), and (E) is determined by comparing the number of edges at p < 1e–4 to 10,000 randomly generated gene networks of the same node number from the

same source data.

(B) Spearman correlation density plot corresponding to (A), now showing all 5,550 correlations for mRNA and protein networks (i.e., 75^2 minus identity) and

‘‘Across’’ for the 11,000 correlations in the mRNA-protein correlation network (i.e., all possible connections between nodes where one node is an mRNA and the

other is a protein). Black lines show the mean ± standard deviation.

(C) Spearman correlation network for both mRNA (blue) and protein (red) in the cholesterol biosynthesis network. Black lines show the mean ± stnandard de-

viation.

(D) Density plot corresponding to (C). Of all 1,088 possible edges (272 within mRNA and within protein, and 544 across), 409 have Spearman correlations with

p < 0.0001 (i.e., the edges drawn in C). (E) Spearman correlation network for the cholesterol biosynthesis and beta oxidation gene networks for mRNA (left) and

protein (right) drawn together.

(F) Spearman correlation density plot for the above graphs. ‘‘Across’’ means within mRNA and protein, but across beta oxidation to cholesterol nodes.

(G) GSEA enrichment for the OXPHOS and cholesterol gene sets as a function of age for mRNA and protein levels.

(H) PCA biplot of the first two principal components of the OXPHOS and cholesterol protein pathways as a function of age and diet, respectively, visualizing the

moderate, significant, separation by these two variables.

(I) Correlation density plot of OXPHOS versus age and cholesterol versus diet.
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elements of OXPHOS are evident. Uniquely at the mRNA level,

the mitochondrially encoded OXPHOS subunits (red-highlighted

triangles, Figure 4A) are distinct from the nuclear-encoded pri-

mary cluster. Uniquely at the protein level, each complex of

OXPHOS forms a distinct subnetwork within the overall struc-

ture, with no difference observed between nuclear and mito-

chondrially encoded OXPHOS proteins (Figure 4A).

Next, we examined the cholesterol biosynthesis process, a

comparatively linear molecular pathway of enzymatic reactions
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driven by individual genes, rather than protein complexes,

such as OXPHOS. For cholesterol biosynthesis, the two layers

of gene expression strongly correlate within expression type

and across from mRNA to protein (Figures 4C and 4D). The

beta oxidation pathway is also found to have a strong negative

correlation with cholesterol biosynthesis genes for both mRNA

and protein (Figure 4E), which is indicative of their complemen-

tary underlying functions (Fungwe et al., 1994). As for choles-

terol, beta oxidation genes yield a significant network for both
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their mRNA and protein (Figure 4F). Gene sets of metabolic path-

ways that are predominantly made of protein complexes tend to

have weaker across-layer correlation than within-layer correla-

tion as compared with pathways that are predominantly non-

protein complexes (e.g., beta oxidation, TCA cycle, Figure S4B).

However, transcripts in all pathways covary more closely with

other transcripts in the same pathway than they do to their pro-

tein equivalents (Figure S4B). Next, we examined the impact of

diet and age on each of the selected functional gene networks.

All pathways except the proteasome were affected by diet or

age at either the mRNA and/or protein level (p < 0.01), a predict-

ably high overall enrichment, given that the sets were selected

with diet and age hypotheses from literature in mind (Figure 4G;

Table S5). Although age and diet had significant impacts on

these pathways, genetic variation across strain still played the

largest role, precluding a reliable categorization of any given an-

imal into an age or diet cohort purely based on PCA of a single

gene set (Figure 4H). Furthermore, even for gene sets impacted

by diet or age with strong effect sizes, e.g., cholesterol biosyn-

thesis induced by HFD, the overall network connectivity across

diet remained similar (Figure 4I). This suggests that genetic

mechanisms driving the networks’ responses to the causal study

variable may lie outside of the canonical gene sets. Thus, we set

out to identify genes interacting with these canonical metabolic

pathways as a function of GxExA.

Data-driven approaches to non-consensus networks
and causal inference
Functional GO analyses provide a crucial platform for moving

from data-driven hypothesis generation to molecular mecha-

nisms. However, gene set annotations necessitate cutoffs for

categorization, which can be arbitrary as metabolic pathways

are subsets of larger sets of interconnected genetic mecha-

nisms. Furthermore, themajority of the genome still remains rela-

tively unexplored in the literature (Stoeger et al., 2018). Data-

driven approaches can identify relationships between gene

expression and other pathways or diseases, including by build-

ing off reference gene sets (Lee et al., 2011). Furthermore, asso-

ciations between genes and a target pathwaymay only be signif-

icant in a subset of the data, such as in aged or HFD-fed

individuals. When covariation between two dependent variables

diverges in response to an independent variable, this can be

used to determine the causal relationship more precisely be-

tween the two dependent variables. To identify such associa-

tions between gene expression and phenotypes and functional

pathways, we developed and applied a machine learning tech-

nique, which compares the effects of multiple independent vari-

ables on a target trait or network (Pfister et al., 2021). This

method allows for a linear regression-based variable selection

(similar to lasso regression [Meinshausen and B€uhlmann,

2006]) and is combined with stability selection (Meinshausen

and B€uhlmann, 2010), which uses resampling to control for false

discovery. This significantly reduces false discovery compared

with correlation networks or hierarchical clustering. Furthermore,

the method performs a causal analysis (Pfister et al., 2021) to

assess if strongly associated candidate genesmediate the effect

of a secondary independent variable (i.e., strain is the primary

variable, then diet or age is the secondary). A conceptual figure

of how stability analysis can be thought of roughly in terms cor-
relation analysis and differential expression analysis is available

(Figure S5A).

We looked across all 3,772 gene products with mRNA and

protein measurements, which associate with traits and path-

ways that were strongly driven by genotype and either diet or

age. We first checked which gene products associate with

body weight as a factor of diet and genotype (Figure 5A). The re-

sulting stability plot indicates on the y axis the permuted proba-

bility that the gene is part of a model, which is the most stable

across body weight in both diets, whereas the x axis indicates

the probability that the gene is among themost predictive factors

of body weight in at least one diet. Thus, genes with high y axis

values will tend to be strongly affected by body weight (e.g.,

Cd81 transcript, FABP2 protein, Figures 5B and 5C). Genes

with high x axis values (e.g., Cd81 and CES2C) will tend to

have strong correlation coefficients with body weight in at least

one diet (Figures 5B and 5D). This indicates three broad ‘‘cate-

gories’’ of hits. First, those in the upper-right (Figure 5A) are

strongly affected by diet and are robustly predictive of body

weight, whether diets are separated or combined (e.g., Cd81).

These gene associations are highly robust, but their causal rela-

tionship with body weight cannot be determined (i.e., diet /

Cd81 variation / body weight gain, diet / body weight gain

/ Cd81 variation, or Cd81 variation ) diet / body weight

gain). Next, we have genes in the upper-left, such as FABP2.

Such genes are also affected by diet, but they are not among

the most predictive genes for body weight in dietary groups

when considered separately, indicating that the causal effect

of diet on their expression happens independently of body

weight gain. Thus, these genes are statistically upstream of

body weight in a causal pathway. Lastly, we have genes in the

bottom-right, such as CES2C. These genes are not part of the

most stable models associated with body weight as a function

of diet; yet, they are part of the strongest predictive model in at

least one diet. Diet causally affects body weight but not

CES2C—yet, CES2C correlates strongly with body weight—

which indicates the gene is distal from the effects of diet on

the target trait and thus it is associated with body weight regard-

less of diet.

Next, we looked for genes associated with the same functional

pathways that we examined for covariation across gene expres-

sion type and the effects of diet and age (i.e., Figure 4). For such

pathways, covarying genes outside the canonical pathway can

inform gene functions (e.g., the cholesterol synthesis and beta

oxidation networks, Figure 4E). Stability analysis allowed us to

scan all pathways across transcripts and proteins as a function

of age and or diet and identify gene products, which are related

to the canonical pathways, and whether the relationship is

consistent across conditions or conditional, such as a relation-

ship only apparent under HFD. All significant and suggestive re-

sults for each pathway are in Table S6 (cutoffs selected empiri-

cally from estimated false discovery rates, Figure S5B). As a

function of diet and age, we detected an average of 23 gene

candidate hits per mRNA network and 19 per protein network,

for a total of 2,101 associations belonging to 748 distinct genes.

Candidate genes appear multiple times, as they can be associ-

ated with multiple independent gene sets and as a function of

diet, age, and mRNA/protein measurement type. 450 of the

2,101 total associations—around 21%—had putative directional
Cell Systems 13, 43–57, January 19, 2022 51
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Figure 5. Network expansion and functional gene discovery
(A) Prediction-stability plot to identify which of the 3,772 target gene products (mRNA, left; protein, right) associate with body weight as a function of diet. The p

value at the top of each stability plot refers to the t test result of comparing the target trait (here, body weight) as a function of the independent variable (here, diet).

(B) Pearson correlation plot of the Cd81 transcript versus body weight in CD, HFD, and across diets, with the dietary effect and t test on Cd81 shown at right.

(C) Pearson correlation plot of the FABP2 protein versus body weight in CD, HFD, and across diets, with the dietary effect and t test on FABP2 shown at right.

(D) Pearson correlation plot of the CES2C protein versus body weight in CD, HFD, and across diets, with the dietary effect and t test on CES2C shown at right.

(E) Prediction-stability plot for the cholesterol biosynthesis pathway in mRNA and protein as a function of diet. The cholesterol biosynthesis pathway has a t test

significance of 1e-4 across diet in mRNA and 1e-20 in protein.

(F) Prediction-stability plot for the CYP450 pathway showing transcript hits as a function of diet or age, with the t test result as a function of diet or age given at top.

(G) DAVID enrichment analysis of the top candidate genes found through stability analysis of the CYP450 pathway.

(H) DAVID enrichment analysis of the candidate genes found through stability analysis of the mitochondrial ribosome pathway.

(I) Prediction-stability plots using data from a 2016 study of DO mice segregating across diet and genotype. The same target gene sets for cholesterol

biosynthesis (top) and CYP450 metabolism (bottom) were examined against the transcriptome data from that study, showing general alignment with candidates

identified in the aging BXD study. The t test significance of the effect of diet on cholesterol biosynthesis gene expression is 2e-17, and 5e-7 for the CYP450

pathway.

(J) Pearson correlation analyses forRdh11 and the cholesterol pathway in the DO study with 96 CD and 94 HFD individuals (top) and a previous, independent BXD

liver study with 41 CD and 40 HFD individuals (bottom).

(K) Equivalent plots for Nipsnap1 and CYP450 pathway in the DO (top) and BXD (bottom) studies.
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relationships to their target pathway (prediction or stability score

ofR 0.50 and at least 0.30 units away from the X = Y linear axis)

(Table S6).

For example, cholesterol biosynthesis genes form a strong co-

expression network in both CD andHFD conditions (Figure S5C),

despite HFD significantly decreasing the general pathway

expression (Figure 4G). Consequently, we expected to find

genes that strongly covary with cholesterol biosynthesis in
52 Cell Systems 13, 43–57, January 19, 2022
both dietary conditions, as well as genes that have diet-depen-

dent associations. Stability analysis highlighted 17 transcripts

and 8 proteins outside of the canonical pathway but which

related closely to it across genotypes as a function of diet (Fig-

ure 5E). For instance, Rdh11was highly stable and highly predic-

tive at both the mRNA and protein level, indicating the expres-

sion of this gene will change as a function of diet and that it will

similarly correlate with the cholesterol biosynthesis pathway in
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both dietary conditions. Conversely Aacs expression is not

affected by diet, but the transcript nevertheless correlates simi-

larly with the cholesterol biosynthesis pathway within and across

dietary states, whereas FABP2 is affected by diet, but its corre-

lation substantially strengthens when using all data. This can be

interpreted directly in the stability plots, but as with body weight,

the finding can be approximated in terms of correlations and

groupwise comparisons (Figure S5D).

To broadly determine the relevance of hits from the stability

analysis of these pathways, we used DAVID (Huang et al.,

2009) to determine GO categories for the hits and their potential

functional relationships. For the CYP450 target gene set, we

identified 35 related candidate transcripts and 22 candidate pro-

teins as a function of diet and age (mRNA shown in Figure 5F).

This set of 52 genes (5 were found by both mRNA and protein

analysis) included 23 were associated with ‘‘oxidoreductase ac-

tivity’’ (p = 1e–10, Figure 5G). This candidate list included those

with clear functional interactions to CYP450 activity, such as two

genes in glutathione metabolism (Gstm6 and Gstm7) and four

carboxylesterase genes (e.g., Ces1e). However, at least two

dozen candidate genes have no clear known connection with

CYP450 or any proximal pathway, such as Nipsnap1, Echdc3,

or Rgn (Figure 5F; Table S6). Similar patterns were seen with

other gene sets. For instance, the mitochondrial translation

gene set (Reactome, M27446) associates with 72 candidate

genes, of which 52 are known to be mitochondria associated,

including 12 in the respiratory transport chain (Figure 5H). The re-

maining candidates had no established functional or positional

connection to the mitochondria, such as Mien1, Nedd8, and

Tmed1 (Table S6).

Lastly, we considered that some of the robust hits with no

known literature relationship should be observable in two previ-

ous population studies of the mouse liver, which had been done

CD and HFD conditions (Chick et al., 2016; Williams et al., 2016).

One such study, on 192 mice from the Diversity Outbred (DO)

cross, allowed sufficient sample sizes for applying stability anal-

ysis on the cholesterol biosynthesis and the CYP450 gene sets

as a function of diets. 10 of the top 17 hits for cholesterol biosyn-

thesis in the BXD liver dataset were also among the most signif-

icant candidates in the DO dataset (Figure 5I top and Table S6,

sheet ‘‘Meta-Analysis’’), and 15 of the 17 candidates (all except

Aacs and Fggy) significantly covaried with the cholesterol

biosynthesis pathway. For the 28 candidate transcripts related

to CYP450, 8 were also top candidates in the DO dataset, and

25 significantly covaried with the pathway (Figure 5I bottom

and Table S6). We also examined data from a 2016 study of

ours on the effects of CD and HFD on liver gene expression in

81 cohorts of young BXD males. Although this sample size was

not sufficient for significant discoveries with stability analysis,

we could examine how target genes covaried with the target

pathway and the effect of diet. Again, 15 of the 17 cholesterol

candidates covaried significantly (all except Aacs and Fggy),

whereas among the 28 CYP450-related candidates, 23 covaried

significantly (Table S6). This substantial enrichment highlighted

several genes with very strong associations across independent

studies and variables but of unknown functional connections,

such as Rdh11 and cholesterol (Figure 5J) or Nipsnap1 and

CYP450 (Figure 5K). Finally, as a general control, we examined

how the 28 CYP450 candidate transcripts covaried with an unre-
lated gene set, that of mitochondrial translation. Only two candi-

dates covaried in the DO data (Ndufa9 and Hagh) and eight can-

didates in the male BXD data, of which only Ndufa9 was in

common across all datasets—which as part of OXPHOS has a

clear mechanistic connection to mitochondrial translation.

Consequently, we can observe that stability analysis can identify

robust and functionally relevant candidate genes to target traits

and pathways.

DISCUSSION

Aging is a dynamic process driven by a complex longitudinal

mixture of genetic predestination, environmental effects, sto-

chastic processes, and their interactions. Despite the relatively

high heritability of longevity and wealth of knowledge about ag-

ing, much remains unknown about molecular causality even for

well-studied aging processes, such as mitochondrial stress,

telomere shortening, andDNAmethylation. For instance, graying

hair and shortened telomeres have strong, clear associations

with age, but it remains a challenge to causally determine

whether a hypothetical telomere-lengthening treatment would

improve lifespan any more than does black hair dye. Even

when causal interventional effects on lifespan have been shown,

such as the effect of caloric restriction (CR) on lifespan, it is

essential to deconvolute the effects of genetic background. In

mammals, CR has been causally shown to both shorten and

extend lifespan, depending on genetic background (Mattison

et al., 2012; Rikke et al., 2010). These phenotypic effects are

highly reproducible, indicating that variant molecular mecha-

nisms may only activate and be evident under certain genotypes

and environments. Here, we provide a large, multiomics aging

dataset and demonstrate howmultivariate experimental designs

can be combinedwith causal data analysis strategies to examine

longstanding questions in howmolecular factors vary and cause

complex traits across GxExA.

We measured the transcriptional, proteomic, and metabolo-

mic landscapes of livers from 300 cohorts of the BXD mouse

population as a function of age, sex, strain, or diet. Genetic dif-

ferences alone explained �30% of variation for all molecular

measurement layers, versus only �5% for age and diet. Howev-

er, the genotype axis contains more degrees of freedom: dozens

of different BXD strains were measured, compared with only two

diets. Additionally, although there is a spectrum of age, all time

points are in adulthood; variance explained by aging that

included developmental time points would likely be significantly

higher. Thus, diet had the strongest adjusted impact in this study

(i.e., the F statistic), but the influence of independent variables on

gene expression will change according to the precise parame-

ters selected for a study. Although a gene’s transcript and pro-

tein respond broadly similarly to the impact of genotype, age,

or diet, that does not mean transcripts are fundamentally a reli-

able proxy measurement for proteins. Further information about

the dependent variable (e.g., high variation) or its function (e.g.,

not in a protein complex) can affect the predicted reliability of

the mRNA-protein correlation. However, the majority of variance

in protein levels caused by an independent variable is not pre-

dictable by mRNA measurements.

We first examined our multiomic dataset to uncover candidate

genes related to age and lifespan and uncovered a few dozen
Cell Systems 13, 43–57, January 19, 2022 53
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candidates (Table S3).We examined the following two candidate

genes, which had not been previously studied in C. elegans: the

Ctsd ortholog (asp-4) and the St7 ortholog (dubbed st-7). On the

surface, the sign of correlation in the BXD data would lead one to

expect their inhibition to extend lifespan (Ctsd is positively corre-

lated with measured age, St7 negatively correlated with ex-

pected lifespan); yet, the reduction of both genes inhibited life-

span. The decrease in lifespan for asp-4 knockdown was

expected due to a wealth of prior literature on its mechanism in

the lysosome, whereas little was known for st-7. This highlights

two challenges when moving forward with aging research. First,

a molecular component that robustly and strongly correlates

with age may itself have no causal impact on age. Second,

even when a causal association is expected, the directionality

may be more unpredictable. For example, a gene pathway that

causally affects lifespan may increase in individuals with shorter

lifespans, but this could be a protective pathway whose diminu-

tion may further shorten lifespan, or it could be a maladaptive

pathway whose diminution would lengthen lifespan.

Numerous studies on aging gene expression have shown that

few genes have large expression differences (e.g., >2-fold) as a

consequence of age (Edwards et al., 2007; Walther and Mann,

2011). However, one should consider gene expression changes

in the context of entire pathways: a 2-fold change in expression

of the entire OXPHOS pathway is a huge impact, as is a 2-fold

change in a phenotype, such as exercise capacity, insulin

response, or lifespan. It is now possible to quantify the transcrip-

tome and proteome across hundreds of samples with sufficient

precision to significantly detect candidate genes with ever-

smaller fold changes (Poulos et al., 2020). By aggregating such

effects together (such as by GSEA), many small effects can high-

light an aggregate shift in an entire pathway. Although an n of

10,000 transcriptomes or proteomics would allow tiny effect

sizes to be determined ‘‘significant’’ (and at enormous project

costs), causally validating such an effect in a traditional mecha-

nistic genetics experiment targeting a single gene remains a chal-

lenge. Causal statistics provide an avenue to determine which

parts of a large network are most proximal to the independent

variable and which have the largest effect on the target trait.

Rather than looking for consensus across input datasets to find

the most stable associations (Marbach et al., 2012), we have

looked for which elements of a network diverge as a conse-

quence of independent study variables. For instance, the genes

that drive body weight variation in response to HFD may not be

apparent by looking at weight variance in CD cohorts. Although

fully unsupervisedmachine learning algorithms require extremely

large sample sizes (e.g., >20,000 transcriptomes), false discov-

ery can be reduced by limiting the possible search space using

prior knowledge, e.g., from literature or exploratory analyses.

Here, we have applied a stability inference algorithm that we

recently developed (Pfister et al., 2021), which takes advantages

of two aspects of this study design. First, the study’s three inde-

pendent variables (i.e., genetics, diet, and age) permit stability

analysis. That is, correlation networks and regression analyses

can be first performed across the large primary axis of genotypes.

Discrepancies in network connectivity as a function of diet or age

can then be quantified by changes in edge strength and centrality.

Stability analysis allows inference forwhen this difference isdue to

the intervention or when it is a response. Second, the study’s
54 Cell Systems 13, 43–57, January 19, 2022
acquisition of both mRNA and protein data provides for a second

type of consensus: results that are consistent across mRNA and

protein gain improved confidence, whereas results that are incon-

sistent can be flagged according to certain criteria (e.g., presence

of target gene in a protein complex). We analyzed these results

across two independent mouse population studies diverging for

similar diets (Chick et al., 2016; Williams et al., 2016) and found

overlap of�80%–90% of associations between the three studies

for candidate genes related to gene sets that were highly modu-

lated by HFD. This combined analysis uncovered some robust

connections for genes with known functional relationships to the

target pathway (e.g., Gstm6 and CYP450), as well as those with

no clear connection in literature (e.g., Rdh11 and cholesterol).

Altogether, this dataset and method demonstrate how the

simultaneous study of howmultiple independent variables impact

gene expression can be used for the study of complex traits.

Candidate genes related to longevity can still be identified through

gene co-expression analysis, such as Ctsd and St7. However,

numerous hurdles are between the selection of candidate genes

related to complex pathways and traits and subsequent mecha-

nistic validation. Study designs that incorporate multiple simulta-

neous independent variables in a full (or nearly full) fractional

design (Bate and Clark, 2014) can be used to identify stable fac-

tors related to a target trait. This allows the implementation of

causal inference to gene expression studies, providing informa-

tion not on only a positive or negative correlation but also whether

it is statistically upstream, downstream, or confounded.With such

developments in biostatistics and study designs in systems

biology, we canmove hypothesis discovery in data-driven studies

from correlation networks to include causal knowledge.
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METHOD DETAILS

Mouse care and handling
All animal care was handled according to the NIH’sGuidelines for the Care and Use of Laboratory Animals and was also approved by

the Animal Care and Use Committee of the University of Tennessee Health Science Center (UTHSC). 2157mice from 89 strains of the

BXD family (including parents and both F1s) were followed in the colony. 159 animals were males and 1998 animals were females.

Animals were maintained in the UTHSC vivarium in Specific Pathogen-Free (SPF) housing throughout the longevity experiment. The

housing environment was a 12-hour day/night cycle in 20–24�C temperature with housing cages of 145 in2 with up to 10 animals per

cage. Diets were either Harlan Teklad 2018 (CD; 24% calories from protein, 18% from fat, 58% from carbohydrates) or Harlan Teklad

06414 (HFD; 18.3% calories from protein, 60.3% from fat, 21.4% from carbohydrates). Water wasMemphis city municipal tap water.

Food and water were ad libitum. All animals were followed from their point of entry into the colony (typically around 5 months of age)

until death. Animals were checked daily for morbidity and were weighed approximately every 2-3 months throughout their lives. 662

animals were sacrificed at specific ages for tissue collection across cohort (i.e. diet, strain, sex, and age) while all other animals lived

out their natural lifespans. For animals living out their natural lifespan, �90% died naturally while the remaining �10% were eutha-

nized according to AAALAC guidelines and made by an independent veterinarian at the UTHSC facility. Euthanized animals were

retained for lifespan calculations, with the expectation that they would have otherwise died shortly thereafter.

Of note: on April 28, 2016 all mice weremoved from the study’s major housing facility ("Nash", which was slated for demolition) to a

new building ("TSRB"). By this point, 94% of sacrificed individuals had been born, raised, and sacrificed in the Nash facility, so only

6%of individuals processed for omics analysis weremoved, all of whichwere sacrificed between 1 September and 26October 2016,

i.e. after 4 to 5 months of acclimatization.

Aging calculations
Lifespan calculations weremade using the "survival" package on Rwith the Surv and survfit functions. Significance tests were calcu-

lated using survdiff in the same package, which uses a weighted-log rank test. 1495 deaths were recorded, of which 1386 were fe-

male. 50 of these female deaths were suppressed prior to lifespan calculations for various reasons, e.g. 7 mice died due to flooded

cages, 2 animals were accidentally entered at far too old an age (>1.5 years), 2 mice were found with broken limbs, 6 were sacrificed

for an urgent revision for an unrelated paper, 3 mice died before the average age of entry into the colony (5 months), and the rest were

removed by the veterinarian for non-definitively-aging related reasons (e.g. seizures noted during body weighings). The 662 animals

which were sacrificed for this study’s tissue collection aim were not used for lifespan calculations.

Cohort sacrifice selection
Animals were selected for tissue harvest with the following aims: 2 animals per strain, diet, and age, for a target of 4 age points, i.e. up

to a target maximum of 16 sacrificed animals per strain (2 replicates * 2 diets * 4 ages). In the final sample collection database, an

average of 11 animals were available per strain (60 strains, 662 animals), with molecular profile data acquired in the end for 58 strains.

The target ages were 7, 12, 18, and 24 months of age. Roughly every 3 months for the duration of the experiment, �40 animals were

selected for sacrifice, with approximately 15 animals sacrificed per day over the course of 3 or 4 continuous days. Animals were

removed from the aging colony the night prior to sacrifice, but they retained access to food and water. Sacrifices started at approx-

imately 9amwith the anesthetic tribromoethanol used via intraperitoneal injection of 2.5 mg per 10 g in a volume of 0.2 mL per 10 g of

bodyweight. Bloodwaswithdrawn from the vena cava and placed in an EDTA-coated tube and then centrifuged for bloodmetabolite

analysis. Animals were perfusedwith ice cold phosphate-buffered saline. The liver was the first organ harvested. The gall bladder was

removed, the liver weighed, and then immediately frozen in liquid nitrogen in 20 mL scintillator vials. When reporting the number of

strains analyzed for each part of this study, we count the two F1s—B6D2 and D2B6—and the parental strains. Although F1 hybrids

are not isogenic (or "inbred’’) strains, they can be reliably and reproducibly generated to provide biological replicates, and thus can be

used as reliably as inbred strains for studies on gene-by-environment interactions. C57BL/6J and DBA/2J are counted as ‘‘BXD

strains’’ for simplicity, although like the F1s, they do not help with QTL analysis in the context of this study. A more detailed break-

down of BXD genetics has been published recently (Ashbrook et al., 2021).

Time points for aging calculations
While CD and HFD comparisons were binary, comparisons across age were somewhat more challenging. For some analyses, linear

regression was used for time at sacrifice (or measurement) against the target variable. However, for other analyses, particularly

GSEA, age-QTLs, and causal inference, discrete bins were used. For binning animals based on age group, animals were binned

by measured age—i.e. not by expected cohort lifespan—with young mice considered those sacrificed before 419 days of age,

and old mice considered those beyond 431 days of age, with a mean±s of 293±80 vs 615±97, respectively. Note that the bins

are more distinct than the standard deviations suggest as the age distribution for sacrificed individuals is not normal; e.g. only 12

animals were sacrificed between the ages of 400 and 500 days; see Table S1 or Figure S1D for more details.

RNA and transcriptomics
Roughly 20 mg of pre-pulverized liver tissue was mixed with 1 mL of TRIzol reagent at 4�C for RNA extraction. The sample was then

further homogenized in TRIzol with a metallic bead for 2x30s at 25 Hz. The homogenate was transferred to a new tube (without the
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bead) and 200 mL of chloroform was added and mixed. Samples were centrifuged at 12,000g for 15 minutes at 4�C. �400 mL of the

clear top phase was taken and added to a tube with 400 mL isopropanol, followed by vortexing and the same centrifugation. The RNA

pellet was observed and the liquid discarded. The RNA pellet was resuspended in ethanol by pipetting, then the samples were centri-

fuged again. The ethanol was removed and the sample was air dried and quantified by Nanodrop. Next, samples were cleaned up

using the RNEasyMinElute kits (Qiagen) as per manufacturing instructions. RNA-seq and RNA integrity (RIN) checks were performed

by an Agilent 2100 Bioanalyzer, and samples with RIN R 6 were retained for RNA-seq, which was run on a NovoGene HiSeq 3000

with 150 bp end paired reads after polyA+ enrichment at theUniversity of TennesseeHealth ScienceCenter transcriptomics platform.

Samplesweremeasuredwith an average of 24±2.7million reads (mean±standard deviation). Raw fastq fileswere aligned to the refer-

ence mouse genome using STAR version 2.6.0c, using the UCSC genome assembly version GRCm38 (mm10). An average of

86.4±2.6% of reads were mapped per sample. Reads were counted using RSeQC version 2.6.4. Read counts were normalized to

RPKM values using gene lengths from ENSEMBL82 v2015-10-02. All RNA-seq data were then scaled by adding 1 to the normalized

counts and then taking the log2. 127 genes were removed from paired analysis due to the measurements being > 50% ‘‘0’’ at the

mRNA level. Transcripts with more than half zeroes were not considered for mRNA–protein correlation due to this high number of

matching values which throw off Spearman correlations. A further 38 genes had up to 100 counts of 0 which have lower than average

(rho = 0.05) correlation with their transcript. Of these 163 genes, twelve of these genes were significantly affected by diet, and one by

age, while all genes had significantly lower than average correlation with their protein level (rho = 0.05). Good data could potentially be

contained for these transcripts, but given the preponderance of noise, we have discounted all mRNAswithmore than half read counts

of zero. All measurements, including those with high ‘‘0’’ counts, are included in Data S1. Note that for multiomics analyses we only

used the 3772 genes with overlapping mRNA and protein data, but all RNA-seq data for all transcripts is included in Data S1.

Protein and proteomics
We have previously published a detailed step-by-step protocol for the protein extraction and peptide digestion (Wu et al., 2017). In

brief: liver samples were first entirely pulverized bymortar and pestle in liquid nitrogen, proteins were then extracted from�20-50mg

of powered liver in 750 mL of RIPA-M buffer. The remaining cell pellet was then lysed fully in 8M of urea. The fractions were combined

and 100 mg of each sample precipitated with acetone overnight at -20�C. The precipitated sample was resuspended in urea, reduced

with dithiothreitol, and alkylated with iodoacetamide. Samples were diluted to 1.5M urea and then digested overnight (22 hours) using

modified porcine trypsin. Peptides were cleaned C18 MACROSpin plates (Nest Group). Roughly 1.5 mg of each peptide sample was

loaded onto a PicoFrit emitter on an Eksigent LC system coupled to an AB Sciex 6600 TripleTOF mass spectrometer and acquired in

SWATH data-independent acquisition mode (DIA) (Gillet et al., 2012) with 100 variable windows in a 60 minute gradient. A recent re-

view also provides more detail on the full DIA pipeline (Ludwig et al., 2018). In brief, the resulting .wiff files were converted to mzXML

using Proteowizard 3.0.5533 before being run through the OpenSWATH pipeline v2.4.0 (Röst et al., 2014). The library used was

merged from our prior mouse library (Williams et al., 2018) together with part of the PanHuman library (Rosenberger et al., 2014).

All peptides in the PanHuman library were BLASTed against the canonical mouse proteome from UniProt, version downloaded

July 2017. Peptides which were found to be proteotypic in mouse, and not already extant in the mouse library, were then merged

with the mouse library. Note that all runs for both human and mouse library generation were acquired with on the same machine

(a TripleTOF 5600+) with the same settings (detailed in (Rosenberger et al., 2014)). This merged "PanMouse" library contains

103,644 proteotypic peptides corresponding to 8219 unique proteins. This library was used to search the mzXML files for the Open-

SWATH pipeline using the msproteomicstools package available on GitHub. Scoring and filtering were done by PyProphet at 1%

peptide FDR, followed by cross-run alignment with TRIC using a max retention time difference of 60 seconds and a target 1%

FDR, 29935 proteotypic peptides were identified which corresponding to 3694 unique proteins, were quantified across the 375 re-

tained MS injections. Proteome data were segregated into batches based on noted changes during mass spectrometry (LC column

change, MS tuning and cleaning). Due to the unexpected complexity of the batch effect correction and normalization, we turned this

approach and technical sample QC into a separate publication (�Cuklina et al., 2021). In brief, all data were log2 transformed and then

quantile normalized. Data were the analyzed for batch effects, including continuous effects (e.g. signal drift over time as the LC col-

umn gets dirtier) and discrete batch effects (e.g. when the LC column is changed by the operator after too much signal attenuation,

also caused by preparation batches as the peptide samples were processed and cleaned in 96 well plates). We observed 7 distinct

batches, all of which corresponded to expected experimental factors (i.e. sample preparation or LC column changes with MS ma-

chine cleanings). We then performed batch effect correction with two steps for the continuous and discrete batch effects, with the

continuous correction done on a batch-by-batch process followed by a discrete correction across all corrected batches. The contin-

uous correction was done by LOESS curve fitting, followed by across-batch normalization with ComBat, a synthetic approach based

off of similar concerns with other large omics datasets.

Metabolomics
Pre-homogenized liver samples of were precisely weighed (to a target of �20 mg) and then extracted in �7 mL of a solution of 40%

acetonitrile, 40%methanol, and 20%water, incubated for 24 hours at -20�C. The suspension was then centrifuged, the supernatant

transferred to a new tube, and then lyophilized. Dried samples were kept at -80�C until ready to be injected on the mass spectrom-

eter, when they were resuspended in water according to the weight of the input tissue sample to a target of 5 mg/mL. The same

extraction of all 621 samples was done in duplicate, starting from the same pre-homogenized liver sample, approximately onemonth

apart, which is detailed by the ‘‘Run1’’ and ‘‘Run2’’ suffix in the data (Data S1). Untargeted metabolomics analysis was performed by
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flow injection analysis with negative ionization on an Agilent 6550 QTOF instrument scanning between 50–1000 Da in 4 GHz

HighResolution mode (Fuhrer et al., 2011). All samples were injected in technical duplicates in both experiments, and nearly all sam-

ples were injected in biological duplicates, i.e. each liver sample was injected 4 times to allowmeasurement stability to be calculated,

so most cohorts had 8 measurements (2 full-process replicates * 2 technical replicates * 2 biological replicates (usually) per age-

strain-diet cohort). Flow injection is special because it omits a chromatographic column. It was preferred over canonical LC-MS

because it is much superior in speed, allowing to analyze all samples in a single day and thereby minimizing drifts and batch effects

common to untargeted mass spectrometry. A shortcoming of the method is that isomers cannot be distinguished. An average of

19,000 features were detected in the runs, of which about 400 could be tentatively annotated as deprotonated metabolites listed

in the Human Metabolome Database by matching accurate mass (tolerance 0.001 Da) and isotopic patterns. According to Metab-

olomics Reporting Standards, this corresponds to Level 4. In case of ambiguous assignment, we enumerate all putative identities.

Both experimental runs were run approximately one month apart, with all samples in each run being extracted and run with back-to-

back technical injection duplicates both times. Technical injection replicates correlated at an average rho = 0.99, significantly better

than back-to-back injections that were not technical replicates (p = 1e-59, Figure S6A). The average metabolite correlated at rho =

0.90 across all technical injection replicates, with around 5%ofmetabolites having rho < 0.70 across injection replicates (Figure S6A).

We previously identified allelic variants between the C57BL/6 and DBA/2 copy of the gene D2hgdh modulate the liver levels of this

metabolite (Williams et al., 2016).We observe in both runs a significant decrease in themetabolite levels for individuals with theDBA/2

allele (p = 1e-19 and p = 3e-12 for run 1 and 2, respectively, Figure S6B), confirming the ability of the metabolomics to detect genetic

signatures. Lastly, we examined metabolites measured in this study and in a previous study of ours on the effects of HFD on young

BXDmales (Williams et al., 2016), finding general congruence in metabolites most affected by diet between the two studies (e.g. py-

ruvate is elevated in HFD cohorts by�1.3-fold, p = 1e-14 and p = 6e-11 in the previous male study and current female study, respec-

tively; Figure S6C). The metabolomics data were quality controlled and are included in the manuscript for data completion, as this

manuscript focuses on genes’ paired mRNA and protein expression, in which metabolites do not neatly fit.

C. elegans testing
For selecting orthologs, each of the top 100 genes from CD and HFD for mRNA and protein—a total of 300 unique genes as roughly

25% of the top 100 were picked up in at least two conditions—was checked in WormBase for orthologs. Genes with a single anno-

tated ortholog were considered for further analysis. Genes such as Cyp4f18 matched to dozens of orthologs—essentially the entire

family of cytochrome P450 genes—and were thus considered too non-specific for reasonable cross-species analysis, but could

potentially be of further use for checking the associations between pathways and aging. To test Ctsd, C. elegans populations

were maintained on NGM plates seeded with Escherichia coli bacteria at room temperature, with the exception that temperature-

sensitive mutants were incubated at 15�C. For this work, we used the C. elegans strains wildtype N2, and mutants TJ1060 spe-

9(hc88) I; rrf-3(b26) II, CB4037 glp-1 (e2141), and RB2035 asp-4 (ok2693) from the Caenhorhabditis Genetics Center (CGC), which

is funded by the NIH Office of Research Infrastructure Programs (P40 OD010440). The following RNAi clones were used as well:

L4440 (empty vector control), F11A10.5 (st-7), and daf-2 (Vidal library (Rual et al., 2004)). Animals were age-synchronized using pop-

ulation lysis (Teuscher et al., 2019) and then transferred at the late L4 stage to plates seeded with the selected RNAi clone and con-

taining 50 mM 5-Fluoro-2’deoxyuridine (FUDR). Depending on the genotype, animals were placed at 15�C (N2 and RB2035) to com-

plete their development. After the L4 stage all animals were shifted permanently to 20�C and their survival was quantified. Manual

survival scoring (by hand) was conducted as described previously (Ewald et al., 2017). Briefly, individuals which did not move in

response to being prodded were classified as dead. Automated lifespan measurements were conducted using air-cooled Epson

V800 flatbed scanners at scanning intervals of 30 minutes as described (Stroustrup et al., 2013). For the automated measurements

the animals were transferred to fresh plates (BD Falcon Petri Dishes, 50x9mm) at day four of adulthood to facilitate the image detec-

tion process by removing asmany eggs as possible. The survival data was analyzed using R in combination with the survival (v3.1-12)

and survminer (v0.3.1) libraries. In the analysis, all animals which were observed to burrow, undergo bagging, explode or have

escaped the agar surfacewere censored, and the L4 stagewas set as the timepoint zero. The survival functionwas estimated utilizing

the product-limit (Kaplan-Meier) approach and the null hypothesis was tested using the log-rank (Mantel-Cox) method.

Stability analysis, hypothesis discovery, and machine learning methods
The stability selection is described inmathematical detail in a separatemethods paper (Pfister et al., 2021), but we provide here a brief

additional summary of how to interpret the graphs and data. Our goal of this analysis was to determine which genes are functionally

related to a target pathway, followed by determining if the gene was varying as a function of a secondary independent variable (e.g.

diet, age), and if it was, then the causal directionality of this association with the target pathway and its sign (positive or negative, i.e.

promotive or inhibitory). To this end, we compute the average expression level of the given pathway and use it as a response variable.

Then, we randomly sample subsets of the pre-selected predictors and regress each subset onto the response resulting in a single

regression coefficient. The individual regression coefficients are finally combined by a weighted average, where the weights are

selected to ensure both good predictive performance and stability across the independent variable (diet, age, or a Mendelian

QTL). By assessing the predictive performance of these regressions, we then rank the genes by their functional relation to the

response (large values indicate a strong functional relation, small values a weak functional relation).

Additional context for reading stability–prediction plots is as follows. Figure S5A shows a target trait that is significantly and caus-

ally impacted by the independent variable of diet (p = 1e-20). This target trait is associated with a number of gene products (dots on
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the graph) which also covary as a function of genotype and diet. The stability analysis looks for the mediating factors transferring the

variation from Diet / [Gene Products] / [Target Trait]. In each stability plot, we have up to 3772 points (each representing a gene

product) arrayed on two axes. The y axis of ‘‘Stability’’ means that the functional relationship of the target trait with respect to these

gene products does not change according to the selected variable (e.g. diet). For instance, if diet has a huge aggregate effect on the

target trait, then genes with large y axis values will also be affected by diet. The y axis is a permuted probability of the predictedmodel

and not t-test results, but it will generally correspond to the effect of the independent variable on the associated gene’s expression.

The x axis corresponds to the probability that a given gene product is part of a model that – in at least one of the diets – is among the

most predictive (i.e., a linear regression model based on a subset of the predictors with a small mean squared error on at least one of

the diets). Simplifying slightly, large x axis values indicate that a gene generally "correlates" well in at least one diet. It does not need to

be that they correlate similarly in both diets, for example if the sign of the correlation would flip but be strongly significant in at least

one environment, this would result in a large x axis value. Gene products with high x but low y axis values will correlate significantly

different between the diets, with the combined analysis providing a less significant correlation coefficient. Such factors are likely

either downstream (Diet / [Target Trait] / [Gene Product]) or confounded ([Target Trait] ) Diet / [Gene Product]). Genes with

high x and high y axis values will correlate in both cases, with the combined analysis providing a more significant correlation coef-

ficient. Such factors are robust but it is undetermined whether they are statistically upstream or downstream. Conversely, genes with

low x but high y axis values will correlate more significantly in the combined test of CD and HFD compared to the two when consid-

ered separately. These genes are expected to be upstream of the target trait (i.e. Diet/ [Gene Product]/ [Target Trait]). Note that

additional unknown factors may lie between the arrows. Genes with a low x and low y axis values will not correlate in any case and

likely have no relationship to the target trait.

For Mendelian separation using COX7A2L and HMGCS2, the 20 heterozygous F1 animals were removed. The selection procedure

also uses stability selection (Meinshausen and B€uhlmann, 2010) in order to control false discoveries and improve reliability. To empir-

ically benchmark the false discovery rate, we perform a permutation based analysis as follows (Figure S5B): We apply the entire se-

lection procedure 100 times by permuting the observations of the response variable in each iteration and keeping everything else

fixed (and hence preserving the correlation structure between the predictors). This analysis was performed for all the pathways

we considered. Note that the gene set ‘‘Random75’’ finds significant correlations—this is expected as the 75 randomgenes are using

their true expression data, thus true correlations are expected, just they are not expected to be related to any specific pathway.

Meta-analysis
Two recent mouse population studies of the effect of CD and HFD on liver gene expression were selected for cross-validation of gene

products related to target pathways affected byHFD. The supplemental data tables were downloaded from these two datasets (BXD:

(Williams et al., 2016); DO: (Chick et al., 2016)) and the file structures were reformatted to fit the same format as the datasets for this

study. These adapted tables are included in the Data S2 section, with the Figure 5 plotting code; two files including the full datasets

for each of those prior studies, and one additional file for the DO mRNA data which was used for stability analysis.

Miscellaneous bioinformatics and statistical tests
All functionswere tested towork in R 4.0.4. QTL calculations were performedwith r/QTL2 v0.22-11 (2020-07-09) (Broman et al., 2019)

using a linear mixedmodel and a kinship matrix generated by the ‘‘leave one chromosome out’’ (loco) method. Genotypes used were

from the 2019 build of the BXD genotypes from GeneNetwork (Mulligan et al., 2017). Transcript QTLs are referred to as eQTLs

("expression’’ QTLs). Protein QTLs are referred to as pQTLs, and metabolite QTLs as mQTLs. The blood serum measurements

are considered as clinical phenotypes rather than as a part of metabolomics or proteomics due partly for historical categorization

standards, and also due to differences in the measurement technologies and (in this particular study) source tissue. QTLs were

declared as ‘‘cis’’ if the peak LOD region was within 10 MB of the gene location. While the BXDs generally have a resolution of under

4 MB (Ashbrook et al., 2021), the empirically calculated false positive rate at LOD > 4 (i.e. Figure S2H) using a 10 MB window was

under 0.1%. All cis-QTLs are included in a supplemental data file as their generation is computationally intensive (Table S2, sheet

2). The code for generating all QTLs (cis or otherwise) is also included (attached code files, filename b_Figure2_HelperFile_QTLs.r).

Distributions (e.g. Figure 4B) were compared using a chi-squared test or Kalmogorov–Smirnov, as indicated. The R package ‘‘corr-

gram’’ v1.13 was used for generating correlation matrices. Two group comparisons were made byWelch’s t-test. The contribution of

each independent variable to trait expression was calculated using the ANOVA (aov) function in R using categorical age (i.e. young

and old, as used for the volcano plots). Correlations were performed using Pearson (r) or Spearman (rho), as indicated. To determine

community structure in correlation networks, the package ggbiplot v0.55 was used. Adjusted p-values were calculated using the

Benjamini-Hochbergmethod of the p.adjust function in the R library stats (v4.0.4). Spearman correlation networks were plotted using

the imsbInfer v0.2.4 library in R (itself based off of the R library called iGraph). Lifespan calculations for mice and significance tests

were made using the "survival" v3.2-7 package on R with the survfit and survdiff functions. Lifespan calculations for C. elegans are

detailed in the C. elegans section. The output longevity data were retained for strains with R 6 recorded natural deaths within a

cohort. To compare lifespan across diet, a minimum of 12 natural deaths were thus necessary. Outliers were removed with the R

library ‘‘outliers’’ (v0.14) using the ‘‘rm.outlier’’ function.

Reference gene sets for the functional analyses in Figures 3, 4, and 5. were taken from the "C2" curated gene set lists on the GSEA

website using version 4.0.0. The exact reference names of all 25 gene sets are in Table S5. Note that this analysis only considers the

3772 genes with both mRNA and protein data. Canonical functional gene assignments were curated either from GSEA (for pathway
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membership) or for CORUM (for complex membership). To determine the significance of correlation networks, random networks

were permuted using the same number of nodes as in the target network, but randomly selected from amongst the 3772 other pro-

teins and mRNA. For networks with multiple categories of gene sets, the target and random networks were computed both on a per-

set basis as well as the total set and the interaction between the sets. 10,000 random networks were permuted for each comparison,

and networks were assigned p-values based on this permutation, according to how many random gene sets had at least as many

edges as the target set at the given cutoff, or assigned p < 0.0001 if no random network had as many edges as the input network

at the cutoff. All figures were generated either in R and refined in Adobe Illustrator, or were hand-drawn in Adobe Illustrator (e.g. Fig-

ures 1B and 3A).

The code necessary for generate all R-output figure panels is included in Data S2, including stand-alone files for each figure (with

the related supplemental figure). The input file format for stability inference is different than for the other analyses. Separate input files

are included for using as input for stability analysis (e.g. b_Figure5_HelperFile_mRNAData.csv). These use the exact same data pro-

vided in Data S1, but they are separated by data type (e.g. mRNA) and use the subset of genes withmeasurements at bothmRNA and

protein.
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