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Apps’ pervasive role in our society led to the definition of test automation approaches to ensure their depend-
ability. However, state-of-the-art approaches tend to generate large numbers of test inputs and are unlikely
to achieve more than 50% method coverage.

In this article, we propose a strategy to achieve significantly higher coverage of the code affected by updates
with a much smaller number of test inputs, thus alleviating the test oracle problem.

More specifically, we present ATUA, a model-based approach that synthesizes App models with static
analysis, integrates a dynamically refined state abstraction function and combines complementary testing
strategies, including (1) coverage of the model structure, (2) coverage of the App code, (3) random exploration,
and (4) coverage of dependencies identified through information retrieval. Its model-based strategy enables
ATUA to generate a small set of inputs that exercise only the code affected by the updates. In turn, this makes
common test oracle solutions more cost-effective, as they tend to involve human effort.

A large empirical evaluation, conducted with 72 App versions belonging to nine popular Android Apps, has
shown that ATUA is more effective and less effort-intensive than state-of-the-art approaches when testing
App updates.
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1 INTRODUCTION

The business-critical role played by software applications for mobile devices (Apps) in our soci-
ety [17] has led to the development of dedicated techniques for their automated testing [41]. Since
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most of the code in an App concerns the handling of input values and events, test automation ap-
proaches automatically generate sequences of events and input values (hereafter, input sequences)
that simulate the use of the App under test in its deployed environment. These approaches mainly
differ with respect to the strategy used to create input sequences, such as random, evolutionary,
and model-based approaches relying either on static or dynamic information [41].

Unfortunately, state-of-the-art automated App testing techniques show limited code coverage
capabilities, thus indicating they are unlikely to exercise all the features of the App under test. For
example, they typically exercise about half of the methods implemented by commercial apps [70].
As a result, all methods and instructions that are not automatically tested should be exercised by
manually implemented test cases, an expensive task that may delay the App release. Also, though
existing techniques show a degree of complementarity [70], state-of-the-art approaches do not
attempt to integrate them to achieve better results.

Existing testing approaches do not account for the high release frequency of a typical App’s life-
cycle, which are usually driven by marketing strategies aiming at increasing visibility [13, 22, 44].
As a result, existing work does not include effective means of prioritizing the testing of modified or
newly introduced features and are thus not addressing one of the major needs of App developers.
However, this is an important requirement for any testing strategy, as exercising all the features
of an App in each release is enormously wasteful. Existing work on testing App upgrades is lim-
ited to the selection of subsets of events that may trigger modified code [61] or the selection of
regression test cases [15]. This is, however, not adequate when, to start with, available test cases
do not exercise all the new and modified features of the software.

Finally, the current body of work does not address the oracle problem [11, 41, 57]. More precisely,
testing techniques cannot discover functional failures beyond crashes and the manual verification
of the App outputs is difficult due the large number of inputs they exercise [15]. However, in the
context of frequent App updates, with a test input generation strategy that effectively exercises
updated features, it is conceivable to address the oracle problem by relying on dedicated strategies
to minimize test inputs. Failures affecting unchanged features (i.e., regressions) can be automati-
cally detected by comparing the output of different App versions for a same input [26, 37, 51, 60],
whereas the output of new and modified features can instead be verified, at reduced costs, by rely-
ing on internal or external crowdsourcing [49]. Nevertheless, such solutions are only practical if
the number of test inputs is kept down to a reasonable number.

Keeping the number of test inputs to the strict minimum is important to minimize human inter-
vention, since it may be required when executing the same inputs on different software versions,
e.g., to adapt input sequences to changes in the GUI [40, 47]. Further, screenshots of the results
must be visualized after every input. Unfortunately, state-of-the-art App testing approaches gener-
ate large test suites, while test suite reduction approaches require to perform runtime monitoring
of the App, which slows down execution and diminishes test automation effectiveness [15].

In summary, to address the limitations above, we aim to achieve the following two objectives:
(O1) maximize the number of updated methods and their instructions that are automatically exer-
cised within practical test execution time, and (O2) generate a significantly reduced set of inputs,
compared to state-of-art approaches, thus decreasing human effort.

To achieve the two objectives above, it is necessary to integrate multiple analysis strategies.
Objective O1 can be effectively achieved by means of static analysis, to determine updated fea-
tures (e.g., through the identification of updated methods [61]) and identify the inputs that may
trigger a specific feature (e.g., the input that leads to a particular Window) [77]. Unfortunately,
static analysis alone may not enable the effective testing of Apps; indeed, they typically rely on
APIs dedicated to input handling that are hardly processed by static analysis tools, as discussed
in related work [57]. Random exploration is thus required to discover, at runtime, inputs that may
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trigger a potentially large subset of modified methods. Unfortunately, random exploration might
be particularly inefficient and conflict with objective O2 (e.g., it may require thousands of inputs to
exercise features that depend on specific App states). For this reason it is necessary to determine
which inputs bring the App into distinct program states by relying on dynamically refined state
abstraction functions [29] and by identifying dependencies among App features (e.g., to determine
that an option in the settings page enables a specific feature).

In this article, we present ATUA (Automated Testing of Updates for Apps),1 the first ap-
proach that integrates multiple test strategies to efficiently use the test budget and achieve the two
above-mentioned objectives. The rationale followed by ATUA is that Apps can be cost-effectively
tested by combining static and dynamic program analysis to select the inputs that exercise updated
methods, our test targets. Also, given the complexity of Apps, testing should be performed incre-
mentally, by focusing first on objectives that are easier to achieve. For this reason, ATUA works in
three phases: (1) it exercises all the features that may trigger modified methods (e.g., submitting a
registration form that is processed by an updated method), (2) to maximize coverage in the pres-
ence of data-dependencies, it exercises updated features with diverse input values (e.g., a diverse
set of values in a form), (3) to maximize coverage in the presence of state-dependencies, it exercises
related features (e.g., submit a registration form after changing language settings). ATUA imple-
ments a model-based approach that integrates a dynamically refined state abstraction function and
complementary testing strategies, including (1) coverage of the model structure, (2) coverage of the
App code, (3) random exploration, and (4) coverage of dependencies among App windows.

ATUA generates models of the App under test by combining static and dynamic program analy-
sis. It extends static program analysis approaches [77] to automatically generate extended window

transition graphs (EWTG), i.e., finite state machines that capture which inputs trigger window tran-
sitions and updated methods. Also, it introduces a state abstraction function that refines the states
of the EWTGs to capture differences in the user interface that are not detected by means of static
analysis (e.g., the presence of dynamically disabled buttons). The state abstraction function is au-
tomatically refined to eliminate or, when not possible, reduce non-determinism while minimizing
the number of abstract states.

To automatically exercise Apps, ATUA relies on the generated EWTGs to identify the sequences
of inputs that trigger the execution of updated methods. When there are discrepancies between the
EWTGs and the observed behavior, random exploration is used to refine the former. Code coverage
is used to identify the methods that require additional testing effort. Finally, using information
retrieval techniques [66], ATUA identifies dependencies between App windows that may prevent
the execution of certain methods.

We assume that, for every software version, engineers are interested in testing the updated meth-
ods only. However, the general principles behind ATUA can easily be adopted also for other ways
of characterizing change, e.g., based on impact analysis [58]. Indeed, other criteria for selecting
target methods are straightforward to integrate into ATUA.

An empirical evaluation conducted with nine popular, commercial Apps shows that, compared
to state-of-the-art approaches (i.e., DM2 [12], APE [29], and Monkey [5]), ATUA leads to reduced
test costs. Indeed, it generates less than 70%, 4%, and 2% of the inputs generated by DM2, APE, and
Monkey, respectively. By automatically exercising, on average, 2.6 instructions belonging to up-
dated methods for every generated test inputs, ATUA is the most cost-effective approach. Further,
on average, ATUA, for a same test execution budget (e.g., one-hour test execution time), improves
the method and instruction coverage achieved by the second best, state-of-the-art approach by at
least 10%.

1Atua is also the name of spirits in Polynesia, https://maoridictionary.co.nz/word/494.
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Fig. 1. Overview of the Android Apps’s GUI archi-

tectural components.
Fig. 2. Example of a GUITree. We use different dot-

ted boxes to match widgets in the tree to the pixels

in the screen.

The article is structured as follows: Section 2 introduces background technologies. Section 3
provides the technical details of the proposed approach. Section 4 reports on the results of our
empirical evaluation. Section 5 discusses related work. Section 6 concludes the article.

2 BACKGROUND

2.1 App Design and Architecture

In this article, we target Android Apps, since Android is the most adopted platform and is widely
investigated in research [22]. However, most of the solutions proposed here should be easily tai-
lorable to other platforms.

When an App is running, the end-user interacts with the active Window of the App (i.e., the
Window being rendered on the screen). Windows consist of a hierarchy tree of widgets; in this
article, we use the term GUITree to refer to such hierarchy trees [9, 29, 65, 79].2

A widget extends the class View. Figure 1 shows a portion of the hierarchy tree of the class View.
Figure 2 shows a portion of the GUITree for a window of Activity Diary, one of our case study
Apps (see Section 4).

Each widget has a set of properties associated to it. Widgets can be associated to EventHandlers

that are invoked by the OS when specific InputEvents are triggered by the end-user. Typical In-
putEvents include click, long click, swipe, and keypress.

In Android, the application logic is typically implemented by Activity classes that are instan-
tiated by the framework and act as controllers of the Model-View-Controller design pattern [52].
Inter-process communication, instead, is managed by the Intent resolution mechanism [3]. More
precisely, in Android, a system event (e.g., indicating a battery being low) or a message exchanged
between apps (e.g., a URL sent by the browser to a music player App) is referred to as an Intent. To
handle Intents, an App declares in its XML configuration file an Activity that the OS will instantiate
and execute when a specific Intent type should be received by the App.

2.2 App Testing Automation

System-level testing of an App through its GUI (i.e., GUI testing) is performed through sequences
of test inputs that can be either Events or Intents. Functional GUI testing aims at exercising (i.e.,
render active) all declared Windows, triggering all event handlers, and covering all the code of
the App under test. App testing automation aims to generate input sequences to achieve these
objectives at the lowest cost possible.

For a complete overview of App testing automation approaches, the reader is referred to recent
surveys [41, 67]. Model-based solutions are the most commonly ones reported in the literature [67].

2Other work uses the term GUITree to refer to the sequence of App windows encountered during testing [1].
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In model-based testing approaches, the model used to drive testing is typically a finite state ma-

chine (FSM). It can be formally described as a tuple (S,A,T ,L) [29], where

• S is a set of states.
• A is a set of actions.
• T is a set of state transitions. Each transition has a source state and a target state. It is trig-

gered by an action αϵA.
• L is an abstraction function, which might be used to: (1) assign a Window to a state and

(2) match an InputEvent or an Intent to an action.

Model-based approaches differ regarding the type of analysis adopted to identify states and
transitions (i.e., dynamic [12, 65] or static [77, 78]), the abstraction functions used (i.e., prede-
fined [12, 65] or adaptable [29]), and the model exploration strategies they rely on (i.e., offline [65]
or online [12]). Adaptable state abstraction functions have been shown to lead to more effective
App testing [29] but they have never been used in testing frameworks that enable the effective com-
bination of static and dynamic analysis. Further, existing model-based approaches do not prioritize
the testing of updated methods, which is our objective here, and thus, we require dedicated input
generation algorithms. To leverage the benefits of static and dynamic program analysis, ATUA
integrates (1) Gator, a tool that statically identifies states and transitions, (2) DroidMate2 (DM2),
a model-based framework that performs online testing, dynamic identification of states and tran-
sitions, and enables the combination of static and dynamic analysis, (3) a dedicated algorithm for
test input generation, and (4) a custom and adaptable state abstraction function.

DM2 [12] consists of two main engines for exploration and automation, respectively. The former
drives the interaction with the App and derives the model of the App under test. The exploration
is driven by a set of user-defined strategies. The latter translates actions into concrete commands
on the device. In DM2, an App state is univocally identified by the set of UI elements in the user
interface and their state-related properties. UI elements are identified by means of their descriptive
ID or their image bytes cut from a screenshot. State-related properties are given by the position of
the elements and other widget specific characteristics. ATUA relies on the DM2 automation engine,
which provides an API to send inputs to the App under test and retrieve information about the
displayed UI elements. In ATUA, App exploration is driven by a custom algorithm (see Section 3.5)
that relies on statically derived models and a custom state abstraction function.

Gator [77, 78] is a static analysis tool that creates models of the App under test in the form of win-

dow transition graphs (WTGs). WTGs are FSMs representing the possible window sequences and
their associated events and callbacks. Though WTGs can be used to enable model-based testing,
they have been mostly used to detect resources leaks [75].

3 PROPOSED APPROACH: ATUA

Within an updated App, we can distinguish among existing features (i.e., features present in pre-
vious versions of the App under test) and new features (i.e., features introduced in the App un-
der test). Existing features can be unchanged (i.e., their functional requirements did not change),
modified (i.e., their functional requirements did change), or repaired (i.e., modified because their
implementation did not match its functional requirements).

In our work, we aim to automatically exercise updated features, including new, modified, and
repaired features. More precisely, we focus on features that are implemented either by introducing
new methods or by modifying existing methods.3 In this article, we use the term updated methods

to refer to both new and modified methods, which are our test targets.

3Based on related work, 81% of the updates concern Java files, while only the remaining 19% concern manifest files (e.g.,
permissions) or layout declarations in XML files [61].
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Fig. 3. Overview of the ATUA process to test App updates.

The testing activity performed by ATUA is driven by an App model with the objective of ex-
ercising a set of test targets (i.e., updated methods). The App model is initially created by static
program analysis procedures and then refined during testing.

The App model metamodel is shown in Figure 4 and described in Section 3.1. It consists of three
parts: (1) an Extended Window Transition Graph (EWTG), (2) a Dynamic State Transition

Graph (DSTG), and (3) a GUI State Transition Graph (GSTG). The three graphs are FSMs
capturing how input values trigger changes in the state of the App under test. The EWTG models
the sequences of windows being visualized after specific inputs (Events or Intents). For every input,
the EWTG keeps trace of the name of the handlers associated to the input and the list of test
targets that may be invoked during the execution of the input handler. The GSTG is a fine-grained
model that captures every visual change in the GUI (e.g., the color of a button) that might be
triggered by an action on the GUI. An action is an instance of an input (e.g., click on a specific
Button widget). Finally, the DSTG models the abstract states of the visualized Windows and the
state transitions triggered by events. Abstract states are identified by a state abstraction function to
eliminate possible non-determinism. The DSTG plays a critical role to optimize the test budget and
identify a reduced set of input events; indeed, it helps determine a correct and reduced sequence
of events necessary to reach a specific Window from another one.

Figure 3 provides an overview of the process implemented by ATUA to test App updates. In
Step 1, ATUA compares the previous (App V1 in Figure 3) and the updated (App V2) version of
the App under test to identify the updated methods. In Step 2, ATUA relies on Soot [56], a static
analysis framework, and an extended version of Gator, to generate the EWTG. In Step 3, ATUA
relies on DM2 to generate a version of the App that is instrumented to trace code coverage. In
Step 4, engineers manually specify test inputs that are unlikely to be generated automatically (e.g.,
the login credentials for Apps that require a user to be registered on a remote platform). In Step 5,
ATUA exercises the App under test by relying on an extended version of DM2 that integrates the
ATUA test algorithm. During testing, ATUA refines the App model and relies on it to identify the
actions to perform on the GUI. For example, ATUA uses the App model to identify the action that,
in the current window, may lead to the execution of a test target.

The main output of Step 5 is the sequence of GUI actions performed during testing and the out-
puts (i.e., the screenshot of the active Window and the corresponding GUITree) generated by the
App under test after every action. This sequence is used by engineers to verify if the behavior of the
App is as expected (test oracle). As mentioned earlier, to verify App results, engineers can rely on
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two complementary state-of-the-art approaches, not addressed by ATUA, that, respectively, target
regression failures in unchanged features and failures in newly implemented, repaired, and mod-
ified features. To discover regression failures, engineers can replicate, on a previous App version,
the test input sequences generated for the updated App and automatically compare the generated
outputs. Differences in the outputs generated by the two versions should indicate the presence of a
regression fault. To discover failures in new and repaired features, engineers can visualize the GUI-
Trees or the screenshots of the active Window rendered after each Action. The visual inspection
of the App outputs enables an engineer to determine the presence of functional failures, based on
expected behavior, whether specifications are implicit or documented. For example, the engineer
shall determine if the Window rendered after each Action includes the expected content and is
well positioned. Also, the engineer shall inspect GUITrees to determine if the widgets within a
Window have the expected properties. In Section 4, we discuss to what extent ATUA reduces the
cost associated to the manual activities entailed by the test oracle strategies above, with respect to
other state-of-the-art test automation solutions.

In addition, ATUA provides, as output of Step 5, an App model including the EWTG, the DSTG,
and the GSTG. The App model is generated and continuously refined during testing. Further, it re-
ports coverage information, i.e., the sets of updated methods and instructions belonging to updated
methods that have been exercised during testing.

In the following, we provide additional details about the App model metamodel (Section 3.1)
and describe Steps 1 to 5 (Sections 3.2 to 3.5), except for Step 3, which is already automated by
DM2.

3.1 App Model Metamodel

Figure 4 shows the ATUA metamodel as a UML class diagram. Figure 5 shows an example App
model built when testing Activity Diary.

The EWTG is consistent with the WTG generated by Gator. Each WindowTransition is triggered
by an Input, either an InputEvent or an Intent. An InputEvent is associated to the Widget that
declares its EventHandler. If the EventHandler is not declared by a Widget (e.g., for the event
PressHome), then the InputEvent is not associated to any target Widget. Each Widget belongs to
one Window.

In addition to the concepts captured by the WTG, the EWTG generated by ATUA also captures
the list of modified methods that can be triggered by the Input (i.e., the attribute targetMethods

of class Input), which are used to drive testing. A WindowTransition triggered by Inputs with
associated targetMethods is a target Transition. Similarly, a Window that is the source for at least
one target Transition is a target Window. TargetMethods are identified by our Gator extension (see
Section 3.3). The EWTG also captures the dialogs and menus that can be opened by an Activity
(e.g., association triggeredDialogs). Finally, it also models the HiddenHandlers of a Window, which
are introduced in Section 3.3.

The GSTG captures the same information provided by the models generated by DM2. The state
of a Window is captured by its GUITree, which is a composition of Widgets. For each Widget,
we record the values associated to its properties and derive the Widget hash (to associate an ID
to the current state of the Widget) according to the DM2 strategy. The hash of the GUITree is
then derived from the hash of its Widgets. In addition, the GSTG captures the name of the Ac-
tivity running when the GUITree is visualized (see attribute activityName), which we derive, at
runtime, from logcat [4]. The transition between GUITrees is triggered by an Action, which can
be handled either by the Widget (WidgetAction) or by the visualized Window (WindowAction). The
enumerations WidgetActionType and WindowActionType list the type of actions that can be per-
formed to trigger GUITreeTransitions. Actions might have additional information (i.e., actionData)
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Fig. 4. ATUA metamodel. Colors are used to identify classes belonging to a specific metamodel component:

light blue for EWTG (bottom), light green for DSTG (middle), orange for GSTG (top).

associated to them; for example, the text provided to the App under test by a TextInput action or
the start and end coordinates of a Swipe action.

The DSTG provides abstract states that group together GUITrees in which a same Action triggers
a same App behavior (e.g., leads to a same abstract state). The DSTG enables ATUA to efficiently
test the App under test by determining the shortest sequence of Actions that reaches a target
Window. Also, abstract states capture the conditions under which a specific Action can trigger a
modified method for a certain Window. Abstract states are thus a means to minimize the number
of Actions generated by the test automation approach.

Each AbstractState consists of a number of AttributeValuationMaps, each one abstracting the
state of the widgets belonging to the GUITree that have the same set of attribute valuations. An
AttributeValuationMap is a map of pairs 〈attribute,value〉. The enumeration Attribute in Figure 4
provides the list of attributes appearing in the AttributeValuationMap. The AttributeValuationMap
has a cardinality attribute, which indicates how many widgets have the same attribute valuations.
For example, in Figure 5, the AbstractState as6 includes many LinearLayout widgets (LL in the
figure, cardinality MANY ), one for each item in the displayed list.
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Fig. 5. Example of an App model, represented as a UML object diagram.

Since the DSTG is used to drive testing, i.e., to select the Actions to be triggered at runtime, the
AbstractState captures only the attributes of widgets that are interactive. A widget is interactive

when it is enabled, visible, and is an instance of a class that can be the target of any action of type
WidgetActionType (see Figure 4).

At runtime, during testing, ATUA identifies AbstractStates through a dedicated abstraction func-

tion (L). ATUA automatically defines a distinct L for each Window of the App under test. L relies
on a predefined set of reducers, i.e., functions that extract the value of a property of a widget [29].
Table 1 shows the list of reducers implemented by ATUA. Two AbstractStates differ when at least
one value differs across their respective AttributeValuationMaps or when they have a different
cardinality. For example, in Figure 5, the AbstractStates as1 and as3 differ, because as1 does not
contain the AttributeValuationMaps for the LinearLayouts belonging to the drawer menu (to save
space, we do not report all the AttributeValuationMaps for as3). The AbstractStates as1 and as4

are different, because in as4 the RecyclerView (avm4-5) becomes scrollable.
In the DSTG, state transitions are captured by AbstractTransitions. An AbstractTransition is

univocally identified by the actionType, its source, its target, its destination, and its actionData. The
actionType matches one of the items belonging to the enumerations WidgetActionType or Win-
dowActionType. The actionData is captured only for two actionTypes (i.e., Swipe and Intent) that
usually lead to distinct AbstractStates depending on their action data. In the case of Swipe, the
actionData indicates the direction of the Swipe action (i.e., Up, Down, Left, Right). For Intents, the
actionData matches the Intent input text, because we expect engineers to provide one manual in-
put for each possible Intent type (e.g., one different URL for each of the file types supported by an
App). We leave to future work the definition of functions that provide an abstract representation
for the data associated to other types of actions (e.g., to distinguish between numeric, alphabetic,
or non-alphanumeric data provided to TextInputs).
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Table 1. ATUA Reducers

Reducer Description
1 RRI D Resource ID.
2 RC N Class name.
3 RC D Value of Content description.
4 RP Value of Password.
5 RC Value of Clickable.
6 RLC Value of Long Clickable.
7 RS Value of Scrollable.
8 RCh Value of Checked.
9 RE Value of Enabled.
10 RS Value of Selected.
11 RI True if it is an input field.
12 RT Value of Text.
13 RHC True if the widget contains

one or more children.

We indicate the value of the property

reported by each.

Table 2. Refinement of ATUA State Abstraction Function

Level Reducers applied to inter-
actable Widget

Reducers applied to inter-
actable Widget Children

L1 RRI D, RC N , RC D, RCh, RE,
RP , RS , RI , RC , RLC , RS

L2 RRI D, RC N , RC D, RCh, RE,
RP , RS , RI , RC , RLC , RS , RT

L3 RRI D, RC N , RC D, RCh, RE,
RP , RS , RI , RC , RLC , RS , RT ,
RHC

L4 RRI D, RC N , RC D, RCh, RE,
RP , RS , RI , RC , RLC , RS , RT

RRI D, RC N , RC D, RCh, RE,
RP , RS , RI , RC , RLC , RS

L5 RRI D, RC N , RC D, RCh, RE,
RP , RS , RI , RC , RLC , RS , RT

RRI D, RC N , RC D, RCh, RE,
RP , RS , RI , RC , RLC , RS ,
RT

In blue, we show the reducers introduced in finer granularity level.

A DSTG may include non-deterministic AbstractTransitions, that is, transitions with the same
actionType, outgoing from the same AbstractState, but reaching different AbstractStates. Non-
deterministic AbstractTransitions may prevent us from finding the correct sequence of Inputs
necessary to reach the states in which target methods could be triggered. ATUA detects non-
determinism at runtime, during testing, when an Action does not bring the App into the expected
AbstractState. When this happens, ATUA refines L for the AbstractState in which the action had
been triggered. It does so according to five levels of granularity, which are captured in Table 2.
With level L1, L distinguishes states based on static information about the widgets (i.e., resource
ID and class) and information about how they can be interacted with (i.e., reducers appearing in
rows 3 to 12 of Table 1). With level L2, in addition to the information accounted for in L1, L in-
cludes the text associated to the widget, which often affects the behavior of an app (e.g., invalid
characters in a textbox may prevent a state transition). With level L3, L also reports the number
of children of a widget (i.e., RHC ). L3 is useful, because the interactive widgets captured by L may
include non-interactive children whose state is not captured by L but may characterize the cur-
rent state (e.g, through descriptive labels). With levels L4 and L5, L captures, for every interactive
widget, the same information as L2 and, in addition, for every child, the information captured by
levels L1 and L2, respectively.

Figure 6 shows the result of the refinement of L for the abstractState as3. By applying L with
level L1, all the clickable elements on the Window, which are LinearLayouts with the same prop-
erties, except for the text, resulted into a same AttributeValuationMap with cardinality MANY. At
runtime, ATUA detects non-determinism; indeed, a click on this AttributeValuationMap may lead
to two different AbstractStates: as1 and as6. The refinement of L, which leads to level L2, allows
ATUA to distinguish all the different clickable elements, since the text property is included into
the AttributeValuationMap, thus eliminating non-determinism.

3.2 Step 1. Identify Updated Methods

In the first step, ATUA identifies methods that have been modified or introduced by the new version
of the App (i.e., V2 in Figure 3). This task might be accomplished through source code compari-
son across versions [50]. However, to enable experiments with commercial Apps, we developed a
toolset (hereafter, AppDiff) that compares compiled Android Apps.

AppDiff is an extension of LibScout [18], a lightweight static analysis tool for Android. It first
generates a hashtree over the bytecode for each App. The hashtree is a three-layered Merkle tree
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Fig. 6. Example of refinement of L. For the notation used, see the Legend of Figure 5.

in which parent hashes are generated from their child nodes. The three layers model the flattened
package structure that is preserved in the compiled code, i.e., packages, classes, and methods.

The tree is built bottom up starting with the method hashes. A method hash is computed over the
method signature and the opcodes in bytecode instructions. To identify code-level changes across
App versions, we additionally store package, class, and method names along with the hashes. To
efficiently check for differences, two hash trees are matched top-down starting with the package
hashes. Methods that share the same name but have a different hash have been modified. New
methods appear only in the most recent version.

3.3 Step 2. Generate the Extended WTG

ATUA generates the Extended WTG by means of static program analysis; more precisely, by per-
forming, on the updated App, the analysis implemented by an extended version of Gator and Soot.

The original version of Gator works by processing Android bytecode and XML layout files. For
the analysis of bytecode, Gator relies on Soot. Bytecode analysis is used to identify the types of
Window (i.e., Activity, Dialog, OptionsMenu, and ContextMenu) that are programmatically speci-
fied in the App. Bytecode analysis is also used to identify the widgets that compose a window and
the associated event handlers. Gator identifies widgets that extend the class android.view.View and
its handlers. Event handlers’ code is processed to determine window transitions. XML layout files
are processed to identify additional event handlers.

Our extensions to Gator address some known limitations [39]. More precisely, we support the
identification of window transitions triggered by Fragments and RecyclerView, which are widget
containers that are not identified by Gator as such. Our extensions associate the contained widgets
to the window that declares either the Fragment or the RecyclerView. Also, in the EWTG, we asso-
ciate each WindowTransition with the Input triggering the transition (the information is provided
by Gator).

We rely on Soot to traverse the backward call graph of every updated method m. During the
traversal, when we encounter a method that has been identified by Gator as an event handler e , we
update the EWTG to trace the fact that the inputs associated to the WindowTransition triggered
by the event handler e can lead to the execution of the updated methodm (i.e., we add the updated
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Fig. 7. Manual definition of inputs.

method m to the list of target methods for the Input instance). Also, we rely on Soot to extract
string literals to be used for testing (see Section 3.5).

Finally, we determine if Gator does not identify some of the event handlers of the App, which
is a common problem of static analysis tools for Apps. Indeed, these static analysis tools rely on
hardcoded procedures for the identification of event handlers (e.g., they look for specific method
names [56]); since OS APIs are under continuous evolution, it is unlikely that static analysis tools
will ever be able to identify all the event handlers of an App. To address this problem, we introduced
into ATUA three solutions, one based on static analysis (described in the next paragraph) and two
based on dynamic program analysis (described in Sections 3.5.2 and 3.5.4).

To identify missing event handlers using static analysis, we rely on the observation that if an
event handler is not detected by Gator, then the backward traversal of the call graph performed
by ATUA will not reach any event handler but will terminate in a method that (i) belongs to a
Window class and (ii) is not invoked by any other method of the App under test. Such methods are
likely event handlers invoked at runtime by the Android APIs. We refer to them as hidden-handlers.
We keep track of all the hidden-handlers encountered during the analysis along with the list of
updated methods reachable from them. We rely on this information during Step 5.

3.4 Step 4. Prepare Manual Inputs

Certain input values are unlikely to be automatically generated, consequently certain Apps’ fea-
tures might not be automatically exercised without an appropriate solution to handle such cases.
In related work, these inputs are referred to as Unlocking GUI Input Event Sequences (hereafter,
unlocking inputs, for brevity) [2]. Examples include login credentials, files of a specific type, and
data to be received by the App under test through the Android Intent mechanism. To handle these
cases, in ATUA, engineers specify unlocking inputs in a JSON file capturing a set of input values
and the patterns identifying the Windows requiring such input values. An example of our input
definition format is provided in Figure 7.

According to our format, engineers can specify one or more input insertion patterns (e.g., BookIn-

sertionAndSearch in Figure 7, Line 2). For each pattern, they specify the Windows in which the
pattern should be used (Line 3) and the widgets that should be used to provide the input data
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Fig. 8. App Model for the Activity Diary running example.

specified (i.e., DataFields field in Line 4). Each widget is identified by a name (e.g., isbn in Line 5)
and a regular expression that enables its selection in the GUITree, based on its name (e.g., isbn_txt

in Line 6). Finally, multiple input instances (e.g., book names, in this case) can be specified (see
field Instances in line 13).

Since ATUA relies on software engineers to identify unlocking inputs, its effectiveness might be
affected by engineers’ mistakes. For example, in our experiments, we specify manual inputs only
for login operations and key features on the App under test (see Section 4.2), thus potentially omit-
ting unlocking inputs concerning other App features. The integration of state-of-the-art solutions
to automatically discover unlocking inputs is part of our future work [2].
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3.5 Step 5. Automatically Test the App

ATUA automatically tests the updated App by triggering the Actions required to exercise target
Transitions. When testing starts, the App model consists of an instance of the EWTG for the App
under test. GSTG and DSTG are dynamically constructed and extended at runtime by ATUA.

The test execution process includes three distinct phases, each one relying on a different strategy
for the generation of Actions. In Phase 1, ATUA triggers one Action for every target Input. The
goal of Phase 1 is to handle the simplest scenario, i.e., exercise instructions that are executed every
time data provided through a target Input is processed. In Phase 2, ATUA exercises target Windows
with multiple, diverse sets of Inputs. The goal of Phase 2 is to exercise those instructions that are
executed only when specific constraints on input values provided in a Window are satisfied. In
Phase 3, ATUA exercises both target Windows and Windows they depend on. The goal of Phase 3
is to exercise those instructions that can be executed only when certain constraints on the input
values provided in related Windows (e.g., preferences Windows) are satisfied.

3.5.1 Running Example. To illustrate our approach, we describe part of the actions taken by
ATUA when testing the upgrade to version 134 of Activity Diary. Activity Diary enables end-users
to record a diary for their activities. It includes features to categorize activities, report statistics,
remind users about recurrent activities, and attach notes and pictures to activities.

We consider a subset of the features updated in version 134 of Activity Diary, which aim to
(1) visualize the details of the current activity by clicking on the activity name, (2) edit the current
activity or create a new activity with a long click on the current activity name, (3) automatically
fix a duplicated name for an activity, (4) edit an activity note. Figure 8 shows the App model for
our running example.

In the EWTG of Figure 8, the transition between MainActivity (w1) and EditNoteDialog (w4) is
a target transition, since it triggers one modified method: the handler of the EditNote button (i.e.,
editNoteHandler, not shown in Figure 8). The EditActivity Window (w2) is a target Window, since it
contains three hidden-handlers: saveButtonHandler, quickFixHandlerOne, and quickFixHandlerTwo.
The hidden-handler saveButtonHandler reaches the modified method checkConstraints, while the
other two hidden-handlers are the event handlers for the quick fix buttons appearing in the UI.
ATUA classifies these three methods (i.e., saveButtonHandler, quickFixHandlerOne, and quickFix-

HandlerTwo) as hidden-handlers, because they are not associated by GATOR to any WindowTran-
sition in the EWTG (see Section 3.3). Indeed, GATOR cannot correctly process the control flow
that reaches function setListener, which is the function used to assign the three handlers to their
corresponding buttons.4

The GSTG in Figure 8 captures the sequence of Actions triggered by ATUA during testing.5

They are described in the following sections, where appropriate.

3.5.2 Detection of the Active Window. A building block of our test automation strategy is the
detection of the active Window. More precisely, ATUA should determine if a pop-up (i.e., a Dialog,
an OptionsMenu, or a ContextMenu) is open on top of the active Window. Neither Android nor
DM2 provides such information. To determine if a pop-up is open, ATUA relies on the dimensions
of the active Window on the screen. Indeed, if an Activity is displayed, then its dimensions should
match the dimensions of the screen. Otherwise, the currently displayed Window is either a Dialog,
an OptionsMenu, or a ContextMenu. To determine which Dialog or Menu is open, ATUA identifies
the Window of the EWTG with the highest portion of Widgets visualized on the screen. ATUA

4GATOR does not correctly process control flows starting within event handlers, likely because of their recursive nature; in
our running example, the control flow starts within event handlers triggered by changes in color selectors and text boxes.
5A demo video for the running example is available online [45].
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computes the ratio, Rw , of Widgets belonging to Windoww that appear in the displayed GUITree.
More precisely, ATUA computes Rw for all the Dialogs and Menus that can be triggered by the
current Window. The active Window is the one with the highest values for Rw .

If, due to the limitations described in Section 3.3, static analysis does not detect that, for a certain
Windoww , there is an event handler that will pop-up a certain Dialog or Menu p, then ATUA may
not be able to find a Dialog or Menu to be matched with the displayed GUITree. More precisely,
ATUA may observe that (1) the current Window has no Dialogs and Menus associated to it in the
EWTG or (2) the score computed for every Dialog and Menu of the current Window is zero. To
overcome such a problem, in these scenarios, ATUA updates the EWTG to include a new pop-up
Window.

3.5.3 ATUA Testing Algorithm. At runtime, after detecting the active Window, ATUA automat-
ically derives the current AbstractState according to the procedure described in Section 3.1. The
subsequent activities depend on the current testing phase.

The activities performed in the three phases follow the same algorithm, which is presented in
Algorithm 1. What differentiates the three phases are the strategies adopted to exercise the App
and the test budget allocated. Line 1 in Algorithm 1 shows that the algorithm iterates till the test
budget for the current phase is consumed (function phaseBudgetConsumed), all the targets for the
current phase have been covered (function coverageTargetsExercised ), or it cannot further improve
coverage (function stagnation).

The iteration starts by identifying a test target (function selectTarget, Line 3). The test target is
either a Window or a WindowTransition. A new test target is identified when no target has been
selected yet or the current target has already been fully exercised (Line 2). After identifying the
test target, ATUA relies on the App model to identify the test target path (Line 4), i.e., a sequence
of Actions that makes the App render the target Window or reach the target AbstractState.

The test target path is derived with a breadth-first traversal of the App model. The traversal
starts from the current AbstractState. The traversal proceeds through both AbstractTransitions and
WindowTransitions. A WindowTransition is taken only if an AbstractTransition is not available.
The visit of the model stops when we reach the test target or all the reachable nodes are explored.

So long as a test target is not reached (Line 8), ATUA executes function reachTargetNode (Line 9),
which triggers the next Action in the test target path. For each Action in the test target path, we
know the Window or the AbstractState to expect. After executing an Action, function reachTar-

getNode checks if the App is in the expected Window or AbstractState. If not, then function
reachTargetNode flags the target as not reached and returns to the main execution loop to look
for a different path to reach the test target (Line 5). When a target is reached (Line 10), ATUA
exercises the target according to the Action generation strategy for the current phase (function
exerciseTarget).

Finally, random exploration of the active Window might be triggered by functions reachTargetN-

ode and identifyPathToTarget to improve the EWTG (Line 14). This is described in Section 3.5.4.
To regulate the allocation of the phase budget (i.e., how many Actions each function invoked

by the algorithm is allowed to generate), the ATUA algorithm makes use of three budget variables:
(1) reachabilityBudget, which specifies the maximum number of Actions to be used to reach a target
node, (2) targetBudget, which specifies the number of Actions to be used to exercise the target node,
(3) randomBudget, which specifies the number of Actions to be used for random exploration. At
runtime, when counting the number of Actions performed, we ignore Actions of type TextInput
and Click on checkboxes, since they generally do not trigger WindowTransitions. The budget
variables are initialized with different values, depending on the current test phase. Table 3 provides
an overview of the criteria adopted, which are described in detail in the following paragraphs. To
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ALGORITHM 1: ATUA testing algorithm.

1: while (NOT stagnation()) AND (NOT phaseBudgetConsumed(phaseBudget)) AND (NOT coverageTargetsExercised()) do
2: if target not selected OR target already exercised OR visitBudget exhausted then
3: selectTarget()
4: identifyPathToTarget()
5: else if target unreachable then
6: identifyPathToTarget()
7: end if
8: if NOT targetReached() then
9: reachTargetNode(reachabilityBudget)

10: else
11: exerciseTarget(targetBudget)
12: end if
13: if additional random exploration required then
14: performRandomExploration(randomExplorationBudget)
15: end if
16: end while

Table 3. Strategies Adopted, in Different ATUA Phases, to Define the Budget Allocated

to Distinct Test Activities

Phase Budget Strategy

Phase1
Phase Infinite, i.e., all the target windows are exercised till stagnation is detected or all the targets

are covered.
Reachability Infinite, i.e., all the paths are traversed in this phase.
Target Infinite, i.e., all the target Inputs are tried in this phase.
Random
Exploration

Set to scaleFactor · NumberOfActionsForActiveWindow. NumberOfActionsForActiveWindow

is the number of distinct Actions that can be performed in the active window; it is based
on the interactive information associated to a widget (e.g., we perform a Click Action if the
widget is clickable, or four Swipe Actions—one for each swipe direction—if it is scrollable).
In our experiments, we set scaleFactor to 1 for an overall test budget of one hour, to 2 for
a test budget of five hours. Random exploration is triggered by either reachTargetNode or
identifyPathToTarget.

Phase2
Phase Set to scaleFactor · NumberOfTargetWindows.
Reachability Set to scaleFactor · actionsThreshold. The value is reset every time a new TargetWindow is

identified. We set actionsThreshold to 25.
Target Set to be equal to what remains of the ReachabilityBudget after the target window is

reached. In other words, ReachabilityBudget+TargetBudget = scaleFactor∗actionsThreshold.
Random
Exploration

Set to scaleFactor · randomThreshold. Random exploration is triggered by either reachTar-

getNode or identifyPathToTarget. We set randomThreshold equal to actionsThreshold.

Phase3
Reachability Not used in this phase.
Target Set to scaleFactor · actionsThreshold. It is reset every time a new TargetEvent is identified.
Random
Exploration

Set to scaleFactor · actionsThreshold. Random exploration is triggered (1) to explore the
related Window, (2) when the related Window cannot be reached through the identified
path, (3) when the target Window cannot be reached through the identified path (see Sec-
tion 3.5.7). We set randomThreshold to 5.

define budgets, a scale factor is used to optimally distribute the test budget across phases and test
targets. For example, with a test budget of five hours, we can invest more time in Phase 2 than
with a test budget of one hour.

3.5.4 Random Exploration. Functions reachTargetNode and identifyPathToTarget in Algorithm 1
may trigger the random exploration of the App under test to improve the EWTG. This is done when
Inputs cannot be exercised and a test target cannot be reached.

Function reachTargetNode determines that an Input cannot be exercised when the associated
Widget is not visible or enabled in the GUITree. It happens, for example, when the content of a
NavigationDrawer varies based on the buttons pressed in the active Window. To make the required
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Table 4. ATUA Input Generation Procedures

Widget type Input generation procedure

Any widget Trigger an InputEvent among the ones for which an event handler has been declared.
Textarea Randomly apply one of the following: (1) leave it empty, (2) reuse a string already used in the

past, (3) reuse a string already used for the same widget, (4) reuse a string literal extracted with
static analysis, (5) use a randomly generated alphabetic string [12], (6) use a randomly generated
non-alphabetic char.

Radio buttons
and check boxes

Randomly select one of the possible options (e.g., checked/not checked, for check boxes).

Widgets with
manual input

Randomly select one of the available InputInstances, if more than one is available, and then assign
the specified value.

Intent If the current activity declares an Intent, then it triggers the Intent specified by the engineer.

Widget visible, function reachTargetNode randomly exercises the active Window. This is done by
iteratively and randomly selecting one widget among the ones that have been exercised less fre-
quently in the active Window. The selected widget is then exercised according to the strategies
listed in Table 4. The exploration of the active Window terminates when the desired widget is
found or when the test budget for random exploration is exhausted.

Function identifyPathToTarget may determine that it is not possible to find a path to a test target.
This happens when the EWTG does not include all the WindowTransitions, which is due to the
limitations of static analysis tools mentioned in Section 3.3. For example, Gator does not detect
the Animation design pattern [31], which leads to a WindowTransition. When a test target path
is not found, ATUA performs a random exploration of the active Window and then resumes the
execution from the beginning of the main execution loop. ATUA records of all the unreachable
targets identified.

3.5.5 Phase 1. In Phase 1, a test target is any Window with target Inputs that have not been
triggered yet. Function selectTarget randomly selects a Window with such characteristics (Line 3
in Algorithm 1).

After selecting the target Window, ATUA follows the path to reach the test target.
Function exerciseTarget, first produces user-like inputs (i.e., input values for text areas, radio but-

tons, and check boxes), as specified in Table 4. Then it triggers an Action that exercises a randomly
selected target Input. Function exerciseTarget keeps triggering Actions that exercise target Inputs
until all the target Inputs have been exercised or another Window has been visualized. ATUA then
resumes the execution of the main loop (i.e., Line 1 in Algorithm 1). When the target Window
is associated to hidden-handlers that can reach target methods, ATUA also performs a random
exploration of the Window. If an Action triggers the execution of an hidden-handler, then ATUA
introduces a corresponding WindowTransition into the EWTG.

To maximize the chances of exercising every target Input, which is the objective of Phase 1,
the phase, reachability, and target budgets are infinite. More precisely, we try to reach every
TargetWindow (infinite phaseBudget) by trying every possible path (infinite reachabilityBudget);
furthermore, we exercise every TargetWindow with all the target Inputs (infinite targetBudget).

In Phase 1, we observe stagnation when all the remaining targets either cannot be reached or
all their target Inputs cannot be exercised.

Running Example. In Phase 1, ATUA triggers one Action for every target input. By default, Ac-
tivity Diary starts by rendering the MainActivity with a predefined set of activities and no cur-
rent activity being selected. Since MainActivity is a target Window, ATUA exercises it. First ATUA
clicks on the edit note button (Action A1 in Figure 8) and, since there is no current activity selected,
Action A1 partially covers the target methods (indeed, Activity Diary does not open the EditNote
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Window, which will be achieved in Phase 2). Then, ATUA triggers a long click on the current ac-
tivity widget (A2), which leads to an instance of the EditActivity Window. Since EditActivity is a
target Window, ATUA aims to exercise it. However, EditActivity contains only hidden-handlers,
not target Transitions. For this reason, ATUA performs a random exploration of the window; dur-
ing the random exploration, after filling the window with random inputs, ATUA clicks on the save
button (A3), which triggers the execution of one of the updated methods (i.e., checkConstraints)
and thus ATUA introduces into the DSTG a new AbstractTransition associated to the updated
method (i.e., the abstract transition between avm2-2 and as1 in Figure 8, which does not have a
corresponding WindowTransition in the EWTG). After these three actions, ATUA has exercised
both the MainActivity and the EditActivity and can thus move to Phase 2. In Phase 1, ATUA has
thus exercised all the easy-to-reach target methods in a few steps.

3.5.6 Phase 2. In Phase 2, we aim to maximize the coverage of those target methods that have
not been fully covered. To this end, the target Window shall be the one that can trigger the exe-
cution of the highest number of uncovered instructions. Also, since the AbstractState of an App
might affect the reachability of a target method, we should give higher priority to Windows with
target methods exercised in fewer AbstractTransitions.

To achieve the above-mentioned objectives, we select as target Window the one that maximizes
the score WSw ,

WSw =
∑

mϵMTw

cw · um ,

where MTw is the set of target methods associated to the target Inputs of Window w . Term um is
the number of uncovered instructions belonging to methodm. A target Window x can thus be any
Window with WSw > 0. A Windoww is selected as target with a probability proportional to WSw .

In the formula above, cw is a weight introduced to focus first on those methods that have
been covered less. It is the complement of the proportion of AbstractTransitions that exercise
the method:

cm = 1 − AAm

AA
,

where AAm is the number of AbstractTransitions that covered methodm and AA is the number of
AbstractTransitions in the App model.

To select the test target path, ATUA identifies the AbstractState with the highest number of
uncovered instructions belonging to interactive widgets, which is captured by the ASasw

score:

ASasw
=

∑
mϵMT asw

cw · um ,

where asw is an AbstractState for the Window w , and MTasw
is the set of target methods that

might be covered through asw . The set MTasw
consists of all target methods triggered by either

(1) an Intent or (2) an InputEvent for an interactive widget in asw .
Function exerciseTarget works in the same way as in Phase 1. However, Phase 2 differs from

Phase 1 with respect to the target, phase, and reachability budgets. Indeed, to uniformly distribute
the phase budget across the selected target Windows, in Phase 2, the budget for reaching a test
target and exercising it is set to “scaleFactor ·actionsThreshold,” with actionsThreshold representing
a number of Actions that, based on preliminary experiments, is sufficient to reach a target and
exercise it (in our experiments, we set its value to 25). In Phase 2, the phase budget is exhausted
when ATUA has exercised a number of windows that is equal to “scaleFactor · overall number of

TargetWindows.” Also, a same Window can be selected as a target multiple times. By repeatedly
generating different sets of Actions for a same Window, ATUA covers different combinations of
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user-like inputs, which may include combinations that lead to the coverage of different sets of
instructions.

In Phase 2, we observe stagnation when, after exercising all the available targets, the coverage
of target methods has not increased.

Running Example. Phase 2 is necessary to maximize the coverage of updated methods reached
through the MainActivity and the EditActivity Windows. The target Window with the highest
WSw score is EditActivity, because some of the instructions of method checkConstraints and all
the instructions implementing the quick fix feature have not been exercised in Phase 1. MainAc-
tivity has a lower WSw score, since only a few instructions of the EditNote button handler are not
covered.

ATUA selects the EditActivity Window as first target; at this stage, it has only one AbstractState
(i.e., as2 in Figure 8). ATUA reaches the EditActivity Window with a long click (Action A4) on the
current activity (an activity with an empty name). EditActivity includes one target AbstractTran-
sition, the one exercising checkConstraints. While generating inputs to maximize the coverage of
method checkConstraints, ATUA clicks on the button that deletes the activity and brings the App
back to the MainActivity (A5). From the main Activity, ATUA performs again a long click on the
currentActivity widget (A6), which leads to an instance of EditActivity for the definition of a new
activity where the quick fix buttons are visualized. In this case, the quick fix buttons are visualized,
because an activity with an empty name (the default for new activities) had been selected and Ac-
tivity Diary already contains an activity with an empty name (i.e., the one deleted by Action A5).
Because of the presence of the two quick fix buttons, ATUA introduces a new abstract state into
the DSTG (i.e., as5).

To cover the hidden-handlers of EditActivity, ATUA exercises the quick fix button that automat-
ically renames the activity having a conflicting name (A7). Finally, ATUA selects MainActivity as
target and exercises the EditNote button (A9), which pops up the EditNote Dialog, thus covering
the missing lines. In Phase 2, ATUA successfully covered all the target methods triggered within
a target Window (i.e., EditActivity) by repeatedly exercising it.

3.5.7 Phase 3. In Phase 3, we aim to cover those target method instructions that exhibit data
dependencies from state variables defined by Windows different than the one reaching a target
method. Examples include instructions that can be executed only after enabling specific options
in the preferences Window of the App. For this reason, in Phase 3, the test target is a Window-
Transition presenting associated targetMethods that remain to be fully covered. Also, for each
WindowTransition to be tested, we need to identify a set of related Windows that should be exer-
cised before executing it.

Function selectTarget returns a WindowTransition belonging to a target Window selected ac-
cording to the same criteria as for Phase 2, i.e., with a probability proportional to its WS score. To
minimize the effort spent in reaching target Windows, once a target Window has been selected,
function selectTarget iteratively returns each target WindowTransition belonging to it.

When a test target has been selected, in function exerciseTarget, ATUA (1) identifies the related
Window that should be exercised first, (2) identifies a path to this related Window, (3) reaches the
related Window and randomly exercises it, (4) identifies a path to the closer AbstractState for the
target Window in which the target WindowTransition is enabled, and (5) reaches the identified
AbstractState and triggers a target Input. In Phase 3, function identifyPathToTarget is not invoked,
because testing starts from the related Window. Consistent with Phase 2, the targetBudget is set
to scaleFactor · actionsThreshold.

Function exerciseTarget relies on random exploration (1) to explore the related Window, (2) when
the related Window cannot be reached through the identified path, (3) when the target Window
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cannot be reached through the identified path. The random exploration budget is set to scaleFactor ·
randomThreshold. Since random exploration has been largely used in previous phases and to limit
the time spent in related windows, in Phase 3, we set randomThreshold to a value lower than the
one used in Phase 2 (e.g., we used five in our experiments).

To identify related Windows, we rely on information retrieval techniques. We do not rely on
traditional data-flow analysis [8], because data dependencies might be implemented in many dif-
ferent forms (e.g., setting a state variable in a shared object or saving a property in a key-value
registry) that are not fully identified by such analysis.

Related Windows are retrieved through the computation of the term frequency (TF) and in-

verse document frequency (IDF) metrics, which are standard information retrieval metrics [42].
In the following, we discuss how we compute these metrics.

Since dependencies between Windows are due to either state variables defined in shared ob-
jects or property values in key-value registries, the executable code of Windows presenting such
dependencies should share a subset of class attributes and literals. For this reason, the terms used
to identify dependencies are class attributes and literals appearing in the implementation of the
methods of the App (extracted with Soot).

We compute TF (t ,h), the frequency of the term t for an Input handler h, as the number of meth-
ods in which the term appears, considering the handler itself and any of the methods invoked by
the handler. To include only terms that characterize the functionality triggered by the Window-
Transition, we consider only methods declared in the same class of the handler or in its inner or
outer classes.

The frequency of the term t for a WindowTransition wt is computed as the sum of the term
frequency for all the handlers of the Input (HIwt ) that triggers the transition,

TF (t ,wt) =
h∈H Iwt∑

TF (t ,h).

The frequency of the term t for a Window w , TF (t ,w), instead, is computed as the number of
methods in which the term appears, considering the methods that are either declared in the class
that implements the Window or in its parent class.

The inverse document frequency of a term is computed as

IDF (t ) = log

(
total number of Windows

number of Windows in which t appears

)
.

The related Windows for a WindowTransition wt can be identified by computing a dependency
score for every Window w of the App, as follows:

DS (w,wt) =
t ∈T∑

NW (t ,w) · NW (t ,wt),

whereT is the set of terms for the App, and NW (t , d) is the normalized term weight, which captures
the extent to which a term is representative for either a Window or a WindowTransition. NW (t , d)
is computed according to a standard formula [42]:

NW (t , d) =
TF (t ,d ) · IDF (t )

EL(d )
,

where EL(d) is the Euclidean Length of the element d (i.e., a Window or a WindowTransition). It
is computed as the square root of the sum of the terms’ weight squared [42].
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ATUA randomly selects related Windows using the dependency score as probability
distribution.

Phase 3 terminates when the overall test budget is exhausted or all the instructions of the target
methods have been covered.

Running Example. Phase 3 enables ATUA to test the Activity Diary feature that visualizes the
details of the current activity after a click on the activity name. This feature requires a specific
configuration to be enabled in the settings page (by default, a click on the activity name termi-
nates the activity). After selecting the MainActivity as target Window (EditActivity had been fully
exercised in Phase 2), ATUA selects the SettingsActivity as related Window to be exercised first
(it is reached with Actions A10 and A11 in Figure 8). While exercising the SettingsActivity, it de-
selects the option Terminate activity by click (Action A12). After exercising the related Window,
ATUA reaches the MainActivity (A13) and triggers the Action that exercises the modified feature
(i.e., click on current activity widget—A14). Phase 3 thus enabled ATUA to test the updated fea-
ture (i.e., visualize the current activity’s details after a click) in a few steps, which is unlikely with
random-based, state-of-the-art approaches (see Section 4.5 for additional examples).

4 EMPIRICAL EVALUATION

The objective of the empirical evaluation is to compare ATUA with state-of-the-art approaches in
terms of cost-effectiveness. It is motivated by our need to achieve high test coverage (effectiveness)
while enabling the verification of test results within an acceptable budget (cost) in a CI context.

When a new release is ready for testing, a test automation technique is effective when it enables
engineers to verify updated features in the App under test automatically; more precisely, when it
extensively exercises updated methods and their instructions. Measuring the effectiveness of App
testing techniques in terms of method and instruction coverage is common practice [16]. Although
engineers may aim to exercise all the methods that could be impacted by the changes (e.g., the
ones identified by means of change impact analysis as mentioned in Section 3), in our empirical
evaluation, we focus on updated methods, since exercising them is the minimum requirement of
any testing criterion targeting software updates.

What we refer to as cost comes in two forms, (1) test execution time and (2) human effort , which
we define as the time spent by a trained engineer to execute the manual tasks required by a test
automation technique. In general, test execution time does not necessarily need to be minimized,
but it should be practical. For example, we expect a test budget of one hour to be practical in a
continuous integration context, while a budget of five hours might be acceptable when testing
overnight.

Human effort, in our context, is mostly driven from the absence of a solution to automate test
oracles, even in the presence of automated test input generation. More precisely, it is not possible
to define automated oracles working with any feasible test input; consequently, the evaluation of
the correctness of App outputs should, in general, be done manually. As described in Section 3,
to address the oracle problem in the context of App updates, engineers can rely on two comple-
mentary state-of-the-art approaches that, respectively, address regression failures and failures in
newly implemented, repaired, or modified features. To discover regression failures, engineers can
replicate, on a previous App version, the test input sequences generated for the updated App. With
ATUA, input sequences correspond to the sequences of Actions generated by ATUA to test an App.
In such context, they address the oracle definition problem by verifying that the outputs generated
by the two App versions match. To discover failures in new, repaired, and modified features engi-
neers should visualize the screenshots of the Windows or the GUITrees generated for the provided
inputs. The effort in doing so can potentially be reduced through crowdsourcing. In this context,
the oracle definition problem remains unaddressed; a manual oracle can be defined (i.e., a human
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can decide if an output is correct based on the App specifications) but oracle evaluation remains
manual and, therefore, expensive. Regardless of the situation and context, human effort, given the
scarcity of qualified human resources, should in general be minimized.

We assume that human effort is proportional to the number of inputs generated by test automa-
tion. Indeed, to overcome execution errors due to changes in the GUI and be able to replicate test
input sequences in a different App version, engineers may need to manually repair the sequence
of inputs (e.g., by changing the ID of a widget to be clicked). A large number of inputs may thus
lead to numerous repair operations and make test oracle automation infeasible.6 Also, the number
of outputs that shall be visually inspected by an engineer is proportional to the number of inputs;
indeed, an engineer shall visualize the GUITree or the screenshots of the active Window rendered
after each Action (see Section 3). The effort required to inspect a Window or a GUITree depends
on the specific output generated by the App and the specification of the App. For example, in our
running example (Figure 8), it is reasonable to believe that it is simpler to inspect the Window
rendered after Action A4, which contains only a text box and a color selector, rather than inspect-
ing the output of Action A10, which leads to a menu dialog with many textual items. However,
the specifications of the App may also impact the required human effort. For example, the color
visualized when editing an activity (i.e., A4) depends on the color previously selected for the same
activity, which requires the engineer to verify such consistency based on execution history. The
menu dialog visualized with Action 10, instead, does not depend on execution history and thus
may require less human effort for verification. For these reasons, the cost for the visual inspection
of results can be estimated only through an experiment involving human subjects. However, since
our objective is to compare the human effort required by different test generation techniques, not to
estimate the cost of failure detection approaches, we can rely on the number of inputs. Indeed, un-
der the assumption that the distribution of the effort for visually inspecting an output is similar for
different test automation techniques, we can conclude that techniques leading to a larger number
of inputs may lead to proportionally increased costs for output verification. For our experiments,
such assumption holds because all the considered approaches exercise a common subset of target
methods and we expect a same method to lead to similar outputs across different executions. In-
deed, we have observed that more than 50% of the target methods exercised in our experiments
are covered by all the testing techniques and more than 80% of them are covered by at least two
techniques (see Section 4.5).

Our research questions are organized according to the two cost measures above. They evaluate
the extent to which we have achieved the objectives mentioned in the introduction; RQ1 addresses
O2, while RQ2 addresses O1. Further, beyond comparisons, RQ3 aims to characterize how ATUA
and state-of-the-art approaches complement each other.

RQ1. Can ATUA reduce the human effort required for testing Apps, compared to state-of-the-art ap-

proaches? We aim to determine if the number of inputs generated by ATUA is significantly
lower than the number of inputs generated by state-of-the-art approaches, for a same execu-
tion time budget. A lower number of inputs makes test automation more widely applicable in
practice, since it reduces the effort related to the definition of test oracles and repair of input
sequences. Also, to determine if the effort of using ATUA is justified by practical benefits, we
aim to verify if ATUA provides higher effectiveness per unit of effort than state-of-the-art
approaches.

RQ2. Can ATUA effectively test Apps within practical time budgets, compared to state-of-the-art ap-

proaches? This research question aims to determine if ATUA performs significantly better

6Related work reports that repairing a single test input takes 15 minutes, on average [30].
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than state-of-the-art approaches in terms of coverage of updated methods and their instruc-
tions, for a same execution time budget.

RQ3. Is there any difference in the functionalities that are automatically exercised across test au-

tomation approaches? We aim to determine if the testing approaches considered in our em-
pirical evaluation are complementary and to what extent. Specifically, we aim to determine if
there are differences in the inputs triggered by the different approaches (e.g., input sequence
length, widgets being exercised, or program states being reached) that lead to a diverse and
complementary set of functionalities being exercised.

A replicability package is made available online [45].

4.1 Study Subjects

To perform our experiments, we considered as experimental subjects a number of Apps available
on the Android Play Store that are highly popular (i.e., more than 100,000 downloads, on average)
and that were used for validation in recent papers reporting on related techniques, i.e., APE [29]
and DM2 [12]. We considered only the Apps that can be executed on the recent Android simulator
version supported by our toolset (i.e., Android API Level above 23). For each App, we considered
the latest 10 released versions at the time of running our experiments (hereafter referred to as V0,
. . . , V9), when available.7 In Table 5, for each version of each subject, we report the overall number
of methods, the number of updated methods, the overall number of bytecode instructions, and the
number of bytecode instructions belonging to the updated methods. In total, we downloaded and
processed 83 App versions, 74 being updated versions.

For all subjects, we treat version V0 as the first released version. The number of updated methods
ranges from one (e.g., version V8 of subject App 2) to 1,430 (e.g., version V6 of subject App 1), thus
being representative of a wide variety of release scenarios (i.e., from simple bug fixes to major
releases). The number of bytecode instructions, ranging from 3,667 to 165,747, shows that the
considered Apps have varied degrees of complexity. Further, the growing number of instructions
belonging to the different versions of the Apps (e.g., from 32,208 to 69,856 in the case of Wikipedia)
suggests that they are representative of typical Apps where features are incrementally introduced
at every release, thus further motivating the adoption of ATUA.

4.2 Experimental Setup

In our experiments, we compare ATUA with three state-of-the art test automation tools, i.e., DM2,
Monkey, and APE. These tools do not specifically target updated methods, but simply aim to max-
imize the coverage of the whole App.

DM2 has been selected, because it is the framework on top of which we implemented ATUA. We
configured it to use the biased-random testing strategy, which matches the random input selection
strategy of ATUA. The comparison with DM2 enables us to determine if the additional analyses
performed by ATUA (i.e., static program analysis, adaptable state abstraction function, and inputs
generation based on information retrieval) contribute to generating better results than a simpler
solution based on dynamic program analysis only.

Monkey is a program that runs on the Android emulator and generates pseudo-random streams
of events. It is used as baseline for App testing approaches and surprisingly fares better in many
benchmarks [70]. The reason is that the time saved by not processing the App GUITree can be
used to further explore the App state space.

7Preliminary experiments to set up ATUA had been conducted with Jamendo, a music streaming App [35].
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Table 5. Overview of Subject Systems

Subject App Details: (V0) V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
1 Wikipedia V 110 144 146 159 190 198 10239 10263 10264 10269

AM 3,767 5,009 5,646 6,435 6,943 7,477 8,814 8,751 8,759 8,793
UM 3,767 446 195 108 370 292 1,430 535 13 94
AI 32,208 38,913 43,753 48,761 51,147 54,759 68,207 69,471 69,533 69,856
UI 32,208 11,000 4,157 2,441 6,606 6,345 24,536 12,724 281 2,698

2 Activity Diary V 105 111 115 117* 118 122 125 130 131 134
AM 260 333 333 333 333 450 479 540 540 659
UM 260 18 3 7 12 117 39 28 1 49
AI 3,667 4,832 4,831 4,834 4,880 6,613 7,052 8,247 8,251 10,622
UI 3,667 558 21 295 599 3,393 2,027 1,535 15 2,459

3 File Manager V 44 53 77 79 82 84
AM 2,042 2,132 3,422 3,430 3,648 3,648
UM 2,042 306 415 11 644 2
AI 34,389 34,931 48,241 48,294 51,755 51,789
UI 34,389 14,510 13,744 703 24,960 143

4 Nuzzel V 302 303 318* 323 325 328 329 330 331 333 334
AM 4,223 4,220 4,524 4,498 4,527 4,650 4,771 4,832 4,833 4,833 4,834
UM 4,223 8 717 75 33 41 21 21 1 1 1
AI 40,522 40,449 43,309 43,083 43,403 44,234 45,331 45,908 45,913 45,916 45,940
UI 40,522 151 18,335 2,952 1,593 1,990 647 1,378 35 69 45

5 Yahoo weather V 1.16.0 1.16.1 1.16.2 1.17.3 1.18.1 1.19.1 1.20.1 1.20.3 1.20.5 1.20.7
AM 2,932 2,904 2,904 2,630 3,105 3,109 3,178 3,255 3,255 3,303
UM 2,932 5 4 243 10 16 118 101 12 9
AI 38,015 37,867 37,857 34,220 38,219 38,211 39,086 39,439 39,439 39,462
UI 38,015 417 272 10,198 857 588 4,295 3,842 689 961

6 Wikihow V 2.7.3 2.8.0 2.8.1 2.8.3 2.9.1 2.9.2 2.9.3
AM 333 333 333 333 325 322 319
UM 333 111 1 1 65 4 18
AI 3,704 3,992 3,941 3,944 3,808 3,761 3,657
UI 3,704 2,279 39 42 1,370 93 543

7 BBC Mobile V 5.1.0 5.10.0 5.11.0 5.12.0 5.13.0 5.4.0 5.5.0 5.6.0 5.8.1 5.9.0
AM 10,706 8,724 8,792 8,902 8,926 9,945 10,380 10,696 10,200 8,939
UM 10,706 649 27 44 25 603 242 553 77 95
AI 76,649 61,604 62,078 62,937 63,232 71,053 73,082 73,950 72,439 61,618
UI 76,649 11,182 1,557 2,288 2,101 10,637 6,324 9,484 1,638 3,274

8 VLC player V 3.1.4 3.1.5 3.1.7 3.2.12 3.2.2 3.2.3 3.2.6 3.2.7 3.2.9
AM 6,796 6,843 6,854 8,681 8,544 8,551 8,621 8,641 8,676
UM 6,796 672 26 3 149 13 51 33 42
AI 86,266 87,560 87,886 117,207 115,344 115,412 116,409 116,647 117,071
UI 86,266 34,086 1,522 150 9,611 1,163 3,527 1,961 3,010

9 City-mapper V 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0
AM 9,629 9,499 9,599 9,491 9,602 9,761 9,868 9,929 9,884 10,050
UM 9,629 51 37 55 73 119 76 73 12 69
AI 155,117 154,086 157,036 153,200 155,950 161,914 164,267 165,747 165,747 163,303
UI 155,117 2,726 2,286 2,075 3,160 6,262 2,756 2,340 1,372 3,775

Legend: V: ID of the version under test. AM: number of methods implemented in V (All Methods). UM: number of
Updated Methods in V. AI: number of instructions in V (All Instructions). UI: number of instructions belonging to
updated methods. An asterisk (*) is used to indicate not tested versions.

APE is a state-of-the-art App testing toolset that overcomes existing approaches, thanks to an
adaptable state abstraction function (see Section 5).

In our experiments, we considered two possible execution scenarios with, respectively, test bud-
gets of one hour (a practical choice in a continuous integration context) and five hours (a reasonable
choice for overnight execution).

To use ATUA, for three subjects, we specified a set of manual inputs necessary to exercise the
primary features of the Apps (e.g., to login and use the App). Support for manual inputs is a neces-
sary feature of test automation tools, because Apps often require domain-specific information that
cannot be derived automatically (e.g., login data). Table 6 provides a summary of the manual inputs
defined; for each, we provide a description and the number of windows in which the manual input
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Table 6. Case Studies with Manual Inputs

Case study Feature tested # Windows # Data fields # Instances

Wikipedia
Log-in functionality 1 2 1
Creation of a new account 1 4 14

VLC
Play a video stream using a URL 1 1 2
Populate the library with all the videos on the device 1 1 1

Nuzzel Request an e-mail newsletter 1 1 1

might be triggered. For Wikipedia, we configured two manual inputs, one with the information
for creating a new account, another one with information to log-in. In the case of VLC, we provide
the URL of a stream to be reproduced and the indication of a checkbox to be checked to populate
the library with device data (otherwise, no content can be played and testing is limited). Regarding
Nuzzel, we provide the email address to receive a newsletter. The effort required to define manual
inputs is limited; indeed, for each input, we have specified a single Window where it is applied,
between one and four data fields, and a very limited number of input instances, that is, one for ev-
ery tested feature except for the creation of a new Wikipedia account and the playback of a video
stream with VLC. When creating a new account, it is necessary to specify a larger set of inputs to
exercise the feature under test multiple times; indeed, a same e-mail address cannot be shared by
distinct Wikipedia accounts. As for VLC, since one of its main features is to play video streams, it
makes sense to test it with both a working and a corrupted video stream. This example illustrates
that the effort required to specify manual inputs is negligible.

To account for randomness, we executed each tool against each updated version 10 times. We
report results for 72 of the 74 versions available, since, for two App versions of Nuzzel and Activity
Diary (indicated with an asterisk in Table 5), it was not possible to execute all the testing tools.
More precisely, for version 318 of Nuzzel, the App starts but gets stuck in the first Activity, while
version 117 of ActivityDiary can be tested only with ATUA and DM2, but not with Monkey and
APE. In total, we executed 5,760 test sessions (4 tools × 72 versions × 10 runs × 2 test budgets)
for a total of 17,280 test execution hours. To perform our experiments, we relied on the Grid 5000
infrastructure [10, 32], which provides access to 800 compute-nodes grouped into homogeneous
clusters. We rely on nodes with 16 × 2.1 GHz and 18 × 2.2 GHz CPU cores.

In the following sections, we analyze differences in results using a non-parametric Mann Whit-
ney U-test (with α = 0.05). Particularly, we discuss the p-values computed by the Mann Whitney
U-test to reject null hypotheses stating that there is no difference between ATUA and each of the
state-of-the-art solutions, a common practice in software testing research [6, 7]. We discuss effect
size based on Vargha and Delaney’s A12 statistics [68], a non-parametric effect size measure. The
A12 statistic, given observations (e.g., code coverage, in our context) obtained with two treatments
X and Y (testing tools, in our context), indicates the probability that treatment X leads to higher
values than treatment Y. Based on A12, effect size is considered small when 0.56 ≤ A12 < 0.64,
medium when 0.64 ≤ A12 < 0.71, large when A12 ≥ 0.71. Otherwise, the two populations are con-
sidered equivalent [68]. In contrast, whenA12 is below 0.50, it is more likely that treatment X leads
to lower values than treatment Y. Symmetrically to the case above, effect size is small when 0.36
< A12 ≤ 0.44, medium when 0.29 < A12 ≤ 0.36, large when A12 ≤ 0.29.

4.3 RQ1: Human Effort

4.3.1 Experimental Setup. In line with the discussion concerning human effort reported above,
to address RQ1, we count the number of inputs generated by each testing tool, for each test execu-
tion run. For DM2 and ATUA, we rely on the CSV file generated by the ActionTrace component
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of DM2, which reports all the inputs triggered during testing. For Monkey and APE, we record the
number of test inputs reported by the tool at the end of execution.

Metrics. For each subject App, we compare distributions of the number of inputs generated across

tools. We also analyze the target instructions/input ratio, that is, the ratio between the number of
target instructions (i.e., instructions belonging to updated methods) that are automatically exer-
cised and the number of inputs triggered by the test automation tool. This ratio captures how
useful it is for a software engineer, on average, to invest time in repairing a single input of the test
sequence or verifying the output produced by an input. For example, a target instructions/input
ratio of five indicates that, for every input, the test automation approach exercises, on average, five
instructions belonging to updated methods.

To answer positively this research question, ATUA, compared to other tools, should generate
less test inputs and have the highest target instructions/input ratio.

4.3.2 Results. Figures 9 and 10 show boxplots capturing the number of inputs generated by
each approach in every run, for every subject App, for the two distinct test budgets consid-
ered (i.e., one hour and five hours). Please note that, in all the boxplots presented in this article:
(1) horizontal dashed lines show the average across the data points of the boxplot (i.e., average for
the subject App), (2) horizontal dotted lines traversing the whole chart show the average across
all the runs, (3) whiskers are used to report min and max values across runs for all versions.

Figures 9 and 10 show that ATUA generates, on average, the lowest number of inputs: 876.53
for one hour, 4,608.57 for five hours. ATUA is thus the most suitable approach to minimize test
automation effort. Monkey generates the largest number of inputs (i.e., 57,888.79 for one hour,
291,614.69 for five hours), because it does not invest any of the time budget into analyzing execu-
tion data but simply generates purely random inputs. APE relies on Monkey to generate inputs;
however, APE generates less inputs than Monkey (i.e., 27,505.89 for one hour, 134,640.71 for five
hours), because it spends time refining the state abstraction function (see Section 5). Finally, DM2
generates a number of inputs (i.e., 1,325.71 for one hour, 6,858.16 for five hours) that is closer to
those generated by ATUA. This is mostly due to the fact that both approaches are model-based
and share the same dynamic analysis infrastructure; however, on average, ATUA generates less
inputs, because it invests more of the time budget into the analysis of runtime data.

Figures 11 and 12 present the same boxplots as Figures 9 and 10 but zoom in on ATUA and
DM2 data to highlight their differences. Table 7 reports the p-value and A12 statistics obtained
with the Mann Whitney U-test and the Vargha and Delaney’s method, respectively. Recall that
we aim to minimize the number of inputs and are thus interested in effect sizes below 0.46, i.e.,
the probability that ATUA generates a number of inputs higher than another approach should be
below 0.46, ideally close to zero.

For a budget of one hour, for all the subject Apps, ATUA generates, on average, less inputs than
DM2. Differences are statistically significant (i.e., we reject the null hypothesis that there is no

difference in the number of inputs generated by ATUA and the state-of-the-art approach) and effect
size is always in favor of ATUA and large for seven of the nine subjects. Differences with Monkey
and APE are always significant, and effect size is always large except for subject 5 (YahooWeather),
in which APE does not interact properly with one App version, apparently because of a bug in
APE.

With a budget of five hours, ATUA also generates, on average, less inputs than DM2 across
subjects. But in the case of Wikipedia, effect size is not in favor of ATUA (i.e., it is likely to generate
more inputs than DM2). However, this is due to a bug in DM2 rather than a feature; indeed, in the
presence of WebViews, the communication between the DM2 device daemon and the DM2 client
are delayed, thus reducing the number of inputs being generated. In the case of ATUA, which
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Fig. 9. Number of inputs generated (budget =

1 hour).

Fig. 10. Number of inputs generated (budget =

5 hours).

Fig. 11. Number of inputs generated (budget =

1 hour). Zoom on ATUA and DM2 data.
Fig. 12. Number of inputs generated (budget =

5 hours). Zoom on ATUA and DM2 data.

is built on top of DM2, this problem is less evident, because such communication is triggered
less frequently. The differences between the number of inputs generated by ATUA and the ones
generated by APE and Monkey are always statistically significant with a large effect size in favor
of ATUA (except for YahooWeather, as already discussed above).

Figures 13 and 14 show, for each subject, the distribution of the target instructions/inputs ratio.
ATUA has the highest ratio: 2.26 for one hour, 0.49 for five hours. For the one-hour budget, ATUA’s
test automation effort (i.e., manual repair of a GUI input, visual inspection of outputs) is thus more
beneficial, because each input enables the verification of 2.26 additional target instructions. As a
comparison, other state-of-the-art approaches yield lower ratios: 1.34 (DM2), 0.03 (Monkey), and
0.10 (APE). These results show that, though Monkey and APE are known for effectively triggering
crashes, they are unlikely to be applicable in a testing context where the number of generated
inputs should be minimized. For a time budget of five hours, average differences are less pro-
nounced, but the same trends hold.
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Table 7. Statistical Significance and Effect Size for Figure 9 and 10

1 hour budget 5 hours budget

p-value A12 p-value A12

S D M A D M A D M A D M A
1 <0.05 <0.05 <0.05 .018 .000 .000 <0.05 <0.05 <0.05 .630 .000 .000
2 <0.05 <0.05 <0.05 .000 .000 .000 <0.05 <0.05 <0.05 .020 .000 .000
3 <0.05 <0.05 <0.05 .039 .000 .000 <0.05 <0.05 <0.05 .093 .000 .000
4 <0.05 <0.05 <0.05 .099 .000 .000 <0.05 <0.05 <0.05 .278 .000 .000
5 <0.05 <0.05 <0.05 .074 .000 .397 <0.05 <0.05 0.81 .090 .000 .490
6 <0.05 <0.05 <0.05 .360 .000 .000 0.15 <0.05 <0.05 .425 .000 .000
7 <0.05 <0.05 <0.05 .117 .000 .000 <0.05 <0.05 <0.05 .123 .000 .000
8 <0.05 <0.05 <0.05 .405 .000 .000 <0.05 <0.05 <0.05 .075 .000 .000
9 <0.05 <0.05 <0.05 .048 .000 .000 <0.05 <0.05 <0.05 .001 .000 .000

Legend: S, subject. D, comparison with DM2, M, Monkey, A, APE. We underline the
few cases in which statistics indicate that ATUA shows no significant difference (i.e.,
p-value ≥ 0.05) or no higher chances of generating less instructions (A12 > 0.44)
than state-of-the-art approaches.

Table 8 provides p-values and A12 statistics. Since we aim to determine if ATUA is likely to gen-
erate a higher target instructions/inputs ratio, we look for A12 values above 0.50. For a one-hour
budget, effect size is always in favor of ATUA (i.e., is more likely to generate a higher instruction-
s/inputs ratio); effect size is always large with respect to Monkey and APE. Even if in a few cases
differences are not statistically significant (i.e., we cannot reject the null hypothesis that there is no

difference between ATUA and the state-of-the-art approach concerning the ratio between instructions

covered and inputs being triggered), effect size trends provides a clear picture of the benefits: ATUA

is likely to yield a higher instructions/inputs ratio. The same conclusions can be drawn for a
five-hour budget, though for two subjects (Wikipedia and VLC) ATUA performs similarly to DM2.

To summarize, regarding the human effort required for practical execution time budgets, ATUA
performs better than the other approaches, since it saves around 33.8% (1-hour budget) and 32.8%
(5-hour budget) of the effort compared with DM2, while it shows huge savings compared to the
other two approaches. As for the effectiveness per unit of effort, ATUA provides tangible gains of
68.7% (1 h) and 63.3% (5 h) compared with DM2, and huge differences with the others. ATUA there-

fore significantly decreases the human effort required for repairing inputs and defining

oracles when compared to state-of-the-art approaches.

4.4 RQ2: Effectiveness within Time Budget

4.4.1 Experiment Design. To address RQ2, we focus on code coverage results obtained with the
updated versions of our subject Apps, i.e., versions V1 to V9. More precisely, we keep trace of
the updated methods (hereafter, target methods) and instructions belonging to updated methods
(hereafter, target instructions) that are exercised by the test automation tools considered in our
study. To collect data for ATUA and DM2, we rely on the Soot-based code coverage extension
integrated into DM2; for Monkey and APE, we rely on MiniTracing, a toolset developed to measure
code coverage with APE [28]. Since all these code coverage tools measure the coverage of the
whole App under test, to determine the coverage of target methods and instructions, we filter
results based on the list of updated methods generated by AppDiff.

Since ATUA and state-of-the-art approaches require a different degree of human effort (see
RQ1) and human effort is measured in terms of inputs generated, we shall set an identical limit
to the number of inputs that might be generated by the test generation techniques. The rationale
is that we try to emulate, in our experiments, realistic conditions where testers are limited by
both execution time and human resources. This is thus expected to yield unbiased comparisons of
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Table 8. Statistical Significance and Effect Size for Target

Instructions/inputs Ratios

1 hour budget 5 hours budget

p-value A12 p-value A12

S D M A D M A D M A D M A
1 0.10 <0.05 <0.05 .728 1.00 .975 0.69 <0.05 <0.05 .555 .963 .901
2 0.17 <0.05 <0.05 .703 .906 .875 0.14 <0.05 <0.05 .719 .938 .875
3 0.29 0.09 0.09 .700 .820 .820 0.25 0.08 0.17 .720 .840 .760
4 0.33 <0.05 0.05 .636 .895 .772 0.38 <0.05 <0.05 .623 .895 .747
5 0.17 <0.05 <0.05 .691 1.00 .901 0.17 <0.05 <0.05 .691 .950 .827
6 0.63 <0.05 <0.05 .583 1.00 1.00 0.52 <0.05 <0.05 .611 1.00 1.00
7 0.27 <0.05 <0.05 .654 1.00 1.00 0.27 <0.05 <0.05 .654 1.00 1.00
8 0.60 <0.05 <0.05 .578 1.00 .953 0.92 <0.05 <0.05 .516 .968 .906
9 0.39 <0.05 <0.05 .642 1.00 1.00 <0.05 <0.05 <0.05 .914 1.00 1.00

Legend: S, subject. D, comparison with DM2, M, Monkey, A, APE. We underline the
few cases in which statistics indicate that ATUA shows no significant difference (i.e.,
p-value ≥ 0.05) or no higher likelihood of achieving a higher instructions/inputs
ratio (i.e., A12 < 0.56) than state-of-the-art approaches.

Fig. 13. Target instructions/inputs ratio (budget =

1 hour).

Fig. 14. Target instructions/inputs ratio (budget =

5 hours).

practical value. It is also consistent with our objective, stated earlier, of minimizing human effort
while keeping execution time within acceptable bounds. More precisely, for each software version
v , we define an inputs budget equal to the maximum number of inputs generated, over 10 runs, by
ATUA, which is the approach generating the fewest test inputs for a given time budget, based on
RQ1 results.

Though the fault detection rate (i.e., the proportion of faults being detected by a test automation
technique) would be a useful, complementary metric to evaluate test automation effectiveness, it
is inapplicable in our context, since an important subset of our subject Apps (BBC, YahooWeather,
Wikihow, Nuzzel) are not open source, a choice made to include representative Apps. Indeed, the
unavailability of source code and bug repositories prevented us from determining if a failure was
due to a fault introduced by an App upgrade. Further, supporting the use of coverage for our
experiments, it has been recently shown that there is moderate to high correlation between code
coverage and the detection of real faults [36]. Finally, without automated functional oracles, in
existing studies, effectiveness is typically measured by looking at runtime failures (i.e., due to
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Fig. 15. Percentage of updated methods covered for

each version of the case studies (budget = 1 hour).

Fig. 16. Percentage of updated methods covered for

each version of the case studies (budget = 5 hours).

uncaught exceptions or crashes), which represent only a small proportion of the failures that are
typically observed in the field [27].

Metrics. Since the number of target methods and instructions varies across App versions, ATUA
and state-of-the-art approaches shall be compared in terms of percentage of target methods and
percentage of target instructions covered. In addition, such coverage metrics shall be obtained
when testing a subject App for a maximum and practical execution time budget (i.e., one hour and
five hours, as discussed in Section 4.2), while not exceeding a maximum input budget determining
human effort.

To positively answer this research question, ATUA should, in statistical terms, exercise a larger
percentage of target methods and instructions than the other approaches.

4.4.2 Results. Figures 15 and 17 show the distribution of the percentage of target methods and
instructions that have been covered by the selected testing tools for the subject Apps, with a test
budget of one hour. Figures 16 and 18 report the same measurements for a budget of five hours.

With a test execution budget of one hour, ATUA is the approach with the highest percentage
of target methods and instructions being exercised on average, with 66.34% and 56.14%, respec-
tively. The largest differences are observed when ATUA is compared to Monkey; indeed, on aver-
age, ATUA exercises 33.46% and 27.42% more methods and instructions than Monkey, respectively.
Since Monkey implements a pure random exploration strategy, our results show that a limit on
the number of inputs generated by Monkey highly affects its performance. In contrast, the APE
state abstraction function enables a more effective generation of test inputs, thus leading to, on
average, higher coverage than Monkey. However, ATUA outperforms APE; indeed, on average,
ATUA exercises 21.66% and 18.41% more target methods and instructions than APE, respectively.
Though DM2 fares better than Monkey and APE, as it relies on a model-based approach lever-
aging dynamic analysis, ATUA exercises 7.50% and 6.37% more target methods and instructions.
Note that the increase achieved by ATUA is particularly significant, +12.74% (i.e., +7.50%/58.84%)
and +12.79% (i.e., +6.37%/49.77%) for methods and instructions coverage, respectively. This is ex-
plained by the transition-driven exploration based on static analysis (ATUA Phase 1 and 2) and
information retrieval (Phase 3), which are not part of DM2.

When executed with a test budget of one hour, for all the subject Apps, both the median and
the average obtained with ATUA are higher than those obtained with other approaches.
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Fig. 17. Percentage of instructions belonging to up-

dated methods that are covered for each version of

the case studies (budget = 1 hour).

Fig. 18. Percentage of instructions belonging to up-

dated methods that are covered for each version of

the case studies (budget = 5 hours).

To discuss differences across subjects, we report in Table 9 the p-value and A12 statistics ob-
tained with the Mann Whitney U-test and Vargha and Delaney’s method, respectively. Overall,
differences are statistically significant8 but there are exceptions: when ATUA is compared to APE
for Nuzzel (subject 4), and when ATUA is compared to DM2 for Nuzzel, File Manager (subject 3),
Wikihow (subject 6), and VLC (subject 8). However, for most of the subjects, ATUA is likely to
exercise more target methods and instructions than other approaches; this is shown by theA12 sta-
tistics being always above 0.56, except for File Manager, Wikihow, and VLC in the case of DM2.9

Regarding VLC, the effectiveness of ATUA is limited by the need for setup operations that re-
quire some human effort. Indeed, since certain features can be tested only on specific devices (e.g.,
an Android TV), identifying target methods through static analysis is of limited usefulness and
ATUA performs similarly to DM2. However, such limitations could be surmounted after investing
some effort to carefully set up ATUA. For example, by configuring ATUA to be executed on an
Android TV in addition to a mobile emulator (i.e., what we used in our experiments). Concerning
File Manager and Wikihow, ATUA is affected by some limitations of static analysis, which cannot
determine that certain WindowTransitions are associated to specific data types provided as input.
More precisely, in the case of File Manager, a number of updated features can be exercised only
through specific files (e.g., the decompress operation can be executed only with files having ZIP or
RAR filename extension). The static analysis currently implemented in ATUA cannot determine
that certain features are enabled only in the presence of specific runtime data (e.g., file names) and
thus ATUA, similar to DM2, exercises such features only if it accidentally triggers them, thanks to
random exploration. A similar but more evident problem occurs also in the case of Wikihow, where
static analysis does not identify the WindowTransitions triggered by the inputs sent to WebViews.
Indeed, the input handlers executed after sending an input to a WebView (e.g., a click on an anchor)
depend on the content of the page (e.g., the file type appearing in the URL of the anchor) and thus
cannot be identified by static analysis, which does not process the content of the HTML pages

8We can reject the null hypothesis that there is no difference in the number of target methods and instructions exercised by

ATUA and the ith state-of-the-art approach.
9Average A12 is 0.77 for target methods and 0.76 for target instructions coverage; median is 0.80 for target methods and
0.77 for target instructions coverage.
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Table 9. Statistical Significance and Effect Size for RQ2

One-hour budget Five-hour budget

p-value A12 p-value A12

C D M A D M A D M A D M A
Coverage of target methods

1 <0.05 <0.05 <0.05 .857 .994 .956 <0.05 <0.05 0.14 .703 .935 .564
2 <0.05 <0.05 <0.05 .733 .868 .703 <0.05 <0.05 <0.05 .774 .832 .623
3 0.41 <0.05 <0.05 .548 .795 .684 0.61 <0.05 0.99 .529 .767 .501
4 0.16 <0.05 0.07 .560 .852 .577 0.16 <0.05 0.08 .560 .760 .575
5 <0.05 <0.05 <0.05 .735 .814 .920 <0.05 <0.05 <0.05 .713 .702 .841
6 0.08 <0.05 <0.05 .587 .838 .689 0.2 <0.05 <0.05 .564 .719 .681
7 <0.05 <0.05 <0.05 .614 .836 .762 0.78 <0.05 <0.05 .488 .879 .879
8 0.23 <0.05 <0.05 .554 .997 .972 0.05 <0.05 <0.05 .588 .995 .892
9 <0.05 <0.05 <0.05 .587 .981 .878 <0.05 <0.05 <0.05 .685 .992 .918

Coverage of target instructions

1 <0.05 <0.05 <0.05 .853 .991 .936 <0.05 <0.05 0.15 .735 .884 .562
2 <0.05 <0.05 <0.05 .707 .843 .783 <0.05 <0.05 <0.05 .756 .829 .721
3 0.31 <0.05 0.14 .559 .774 .585 0.18 <0.05 0.70 .577 .705 .478
4 <0.05 <0.05 0.07 .600 .861 .579 0.05 <0.05 <0.05 .584 .764 .594
5 <0.05 <0.05 <0.05 .684 .748 .886 <0.05 <0.05 <0.05 .659 .623 .822
6 0.42 <0.05 <0.05 .542 .788 .827 0.47 <0.05 <0.05 .538 .727 .786
7 <0.05 <0.05 <0.05 .598 .735 .695 0.65 <0.05 <0.05 .480 .780 .780
8 0.06 <0.05 <0.05 .586 .999 .984 0.33 <0.05 <0.05 .633 .999 .936
9 0.05 <0.05 <0.05 .584 .980 .822 <0.05 <0.05 <0.05 .671 .988 .896

Legend: C, case study; D, comparison with DM2; M, Monkey; A, APE. We underline
the few cases in which statistics indicate that ATUA shows no significant difference
(i.e., p-value ≥ 0.05 ) or no higher likelihood (i.e., A12 < 0.56) of covering more
targets than state-of-the-art approaches.

displayed at runtime. For this reason, ATUA cannot fully take advantage of static analysis results
in the presence of WebViews. In such cases, similar to DM2, ATUA exercises App features, thanks
to random exploration. However, current ATUA results with Apps using WebViews largely depend
on the proportion of features implemented through WebViews. For example, in the case of Wiki-
How, which mainly relies on WebViews (five out of eight content types are displayed through a
WebView), ATUA performs similarly to DM2; instead, in the case of Wikipedia, which implements
only one out of 35 Windows using a WebView,10 ATUA outperforms all the other approaches
(A12 ≥ 0.56). To overcome the limitations of static analysis and thus improve ATUA results, it
might be necessary to develop dedicated strategies relying on dynamic analysis; for example, by
extending the state abstraction function of ATUA to use reducers dedicated to HTML anchors or
file objects.

With a test budget of five hours, all the approaches achieve better coverage results; however,
the ranking observed for a one-hour budget remains unchanged. ATUA is the approach with the
highest percentage of exercised target methods and instructions, on average, with 70.37% and
60.18%, respectively. The largest differences are still observed when ATUA is compared to Monkey;
indeed, on average, ATUA exercises 27.24% and 22.73% more target methods and instructions than
Monkey, respectively. ATUA exercises 18.38% and 15.77% more target methods and instructions
than APE. The second-best approach remains DM2, as ATUA exercises 6.45% and 6.25% more
target methods and instructions than DM2, with a gain of +10.09% (+6.45%/63.92) and +11.59%

10In Wikipedia, WebViews are used to display Wikipedia pages, while other Views are used for other features such as
displaying news, image galleries, or editing the content of a page.
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(+6.25%/53.93%) in the number of target methods and instructions covered with respect to DM2,
respectively.

A larger time budget enables ATUA to achieve higher coverage. This is set with the scaleFactor

configuration parameter (see Section 3.5.3), which we increase for a five-hour budget, thus aug-
menting the time spent to perform random exploration, reach the test target, and exercise targets.
We leave to future work the study of the effect of different configuration values for the scaleFactor

parameter of ATUA.
With a test budget of five hours, the difference between ATUA and other approaches decreases,

though. Unsurprisingly, with a larger test budget, random-based approaches can more easily reach
updated features than with a one-hour budget, for which leveraging static analysis is more impor-
tant. For example, in subject App 7 (BBC Mobile), in five hours, DM2 achieves the same average
coverage as ATUA.

To discuss differences across subjects, we refer to the p-value and A12 statistics reported in the
rightmost columns of Table 9. Because of the larger test budget benefiting random exploration,
differences between ATUA and other approaches are not significant in 7 out of 27 cases (i.e., 3 ×
9, which is the number of pairwise comparisons between ATUA and the other approaches), two
cases more than with a one-hour budget. However, ATUA is still likely to exercise more target
methods and instructions than other approaches. Indeed, for both method and instruction cover-
age, the A12 statistics are above 0.56 for 24 out of 27 cases. In general, effect size is slightly lower
than for a one-hour budget, with an average A12 of 0.73 and 0.72 for the coverage of target meth-
ods and instructions. In particular, we observe that the larger time budget enables random-driven
approaches to achieve the same effectiveness as ATUA when ATUA is negatively affected by static
analysis limitations. This happens for File Manager (subject 3), where APE performs similarly to
ATUA, Wikihow (subject 6), where DM2 performs similarly to ATUA, and BBC mobile (subject 7),
where the additional time budget enables DM2 to exercise the few updated features depending on
WebViews (in BBC Mobile, WebViews are used to display BBC Web pages).

To summarize, ATUA is the approach that, on average, most effectively test updated

Apps within practical time budgets and human effort. It tends to cover more target methods
and instructions than other approaches. The second-best approach is DM2. For a one-hour budget,
on average, ATUA automatically exercises 7.50% and 6.37% more target methods and instructions
than DM2, with a gain of +12.74% and +12.79%, respectively. With a five-hour budget, on average,
ATUA automatically exercises 6.45% and 6.25% more target methods and instructions than DM2,
with a gain of +10.09% and +11.59%, respectively. For seven out of nine subjects, for both time
budgets, ATUA tends to exercise more target methods and instructions than DM2. For the remain-
ing two subjects, DM2 and ATUA are comparable, due mostly to the current limitations of static
analysis.

4.5 RQ3 - Complementarity of Testing Approaches

4.5.1 Experiment Design. A software testing approach is complementary to other approaches
if it exercises a set of functionalities not exercised by the others. Since we measure effectiveness
based on method coverage, to determine complementarity, we look for methods that are univocally
covered by each testing approach considered in our experiments. A method is univocally covered

by approach A for version V of a subject App S if it is exercised by A in at least one of the 10 test
execution runs on versionV and is not exercised by any other approach in any test execution run
of that same version. We cannot compare testing approaches based on instruction coverage, be-
cause some of our subjects are commercial Apps released without source code (e.g., to understand
the semantics of the covered instructions). Since the number of target methods varies for each
App version, we compare the percentage of target methods that are univocally covered by each
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Fig. 19. Proportion of methods that are univocally

covered by one testing approach, distribution across

all the tested subject versions (budget = 1 hour).

Fig. 20. Proportion of methods that are univocally

covered by one testing approach, distribution across

all the tested subject versions (budget = 5 hours).

approach. Finally, it shall be possible to identify common characteristics in the inputs triggering
the univocally exercised methods.

Metrics. To compare testing approaches, we thus report (1) the overall number of univocally cov-

ered methods across all the subject App versions and (2) the distribution of the percentage of tested

methods that are univocally covered by each approach, across all the subject App versions. Further-
more, we manually inspect the list of univocally covered methods. Based on their signatures11 and,
for ATUA, the data collected in the GSTG, we (3) determine the characteristics of the inputs and up-

graded functionalities that are better targeted by each of the testing approaches. Since the test budget
affects the performance of testing approaches, we discuss the results achieved for one-hour and
five-hour budgets, separately.

For each testing approach, we analyze if (1) it covers a large number of methods not covered
by other approaches across all Apps, (2) its distribution, across Apps, of the percentage of tested
methods not covered by other approaches has a significantly larger average than that of other
approaches, and (3) we can characterize the situations in which the approach univocally exercises
some updated App methods.

4.5.2 Results. For the one-hour budget, a total of 6,982 methods belonging to the different App
versions have been exercised in our experiments. Overall, 784 out of 6,982 methods (11%) are ex-
ercised only by one testing approach, 6,198 methods (89%) are covered by at least two approaches,
while 3,648 methods (52%) are covered by all the approaches. ATUA exercises the largest number
of methods not exercised by other approaches, 518 (66%); it is followed by APE (156, i.e., 20%), DM2
(78, i.e., 10%), and Monkey (32, i.e., 4%).

Figure 19 shows the distribution of the percentage of methods exercised in our experiments that
are univocally covered by one testing approach, across versions, for a one-hour budget. On average,
7% of the methods exercised in our experiments are covered only by ATUA, while the other ap-
proaches univocally cover only 1% or less. Differences are statistically significant. Also, we report
that for 52% of the App versions, ATUA exercises more univocally covered methods than other

11Since most of our subject Apps are commercial Apps released without source code, the functionality implemented by a
method is inferred from its signature.
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approaches (92% if including versions with the same number of univocally covered methods).
These results show that, across a majority of individual versions, ATUA provides coverage ca-
pabilities that cannot be obtained with other approaches.

The effectiveness of ATUA is primarily due to its capability of reaching target Windows and
target Widgets that are difficult to reach by solely relying on random exploration. We identify
three distinct cases. First, ATUA can trigger complex sequences of inputs that enable the visual-
ization of target Widgets. This is the case of SettingsActivity for Nuzzel, which requires opening
a drawer, swipe up, and then click on the settings button. Similarly, in Yahoo Weather, it is neces-
sary to swipe up the weather information fragment and click on the map to trigger methods on
the WeatherMapView. Other similar cases concern the renaming of files and the opening of the
preferences activity in File Manager. Such complex sequences of events are unlikely to be triggered
by approaches relying on random exploration; instead, they are selected by ATUA, thanks to the
use of the App model to identify both the sequence of events that reaches a target Window and
the target events that exercise the updated methods. The second case concerns ATUA being able to
bring an App into a specific state required for testing, which is enabled by the fact that, in Phase 2,
ATUA exercises the inputs that trigger updated methods multiple times, when the App has likely
reached different App states. For example, ATUA is the only approach exercising the method un-

deleteActivity of class ActivityHelper in Activity diary, which requires to first create an activity,
then delete it, and finally undelete it. The third case concerns ATUA’s capacity to select the Apps’
options required to exercise certain Apps’ features, which is the objective of Phase 3. For example,
in BBC mobile, to exercise the methods in class MyNewsByTimeFragment, it is necessary to reach
the settings window, enable the option My News By Topic, and then open the tab My News.

The methods not covered by ATUA but covered by other approaches, instead, are generally the
ones whose triggering Actions cannot be identified by ATUA because of the limitations of static
analysis. We have identified three different scenarios in which ATUA is less effective than state-of-
the-art approaches. First, though ATUA can trigger complex input sequences, it cannot, in certain
cases (e.g., in classes extending SettingsActivity), identify the events that trigger specific Window-
Transitions, which APE can instead trigger. By relying on an adaptable state abstraction function,
APE can direct random exploration towards App states that contain the widgets required to test
the updated methods, which Monkey and DM2 do not achieve. For example, this happens when
testing the updated methods of AboutActivity in File Manager. Second, in the case of WebViews,
instead, DM2, by investing more budget on random exploration, can reach Windows that cannot
be reached by ATUA, because static analysis does not identify the required WindowTransitions in
the EWTG. Also, based on the observed results, the specific random exploration strategy imple-
mented by DM2 appears to be more effective than the one of APE and Monkey. Finally, Monkey
performs better than ATUA and the other approaches when the execution of updated methods de-
pends on specific environmental conditions; for example, the internet connection being disabled,
which is the case for testing methods onGoOffline and onPageLoadError in Wikipedia.

Similar findings can be observed for a test budget of five hours. Overall, a total of 7,326 methods
have been exercised in our experiments, which is expectedly higher than for the one-hour budget.
Overall, 675 out of 7,326 methods (9%) are exercised only by one testing approach, 6,767 methods
(92%) are covered by at least two approaches, while 4,308 methods (58%) are covered by all ap-
proaches. Although the larger test budget enables all the approaches to exercise a larger common
set of methods, we still observe a high degree of complementarity (i.e., 9% of the covered methods
are univocally covered). In particular, ATUA remains the approach that exercises the largest num-
ber of methods not exercised by other approaches: 478 (71%); the other approaches, instead, show
similar numbers of univocally covered methods: 71 for APE, 64 for DM2, 62 for Monkey.
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Figure 20 depicts the distribution of the percentage of covered methods that are univocally cov-
ered by one testing approach, across versions, for a budget of five hours. On average, across ver-
sions, 5% of the methods exercised in our experiments are covered only by ATUA, while the other
approaches univocally cover only 1% or less, thus confirming that, even for a test budget of five
hours, ATUA complements all the other approaches. Differences are statistically significant. Such
complementarity is also stressed by the fact that for 42% of the App versions, ATUA covers more
univocally covered methods than other approaches (81% if including versions with the same num-
ber of univocally covered methods).

Also, for a five-hour budget, ATUA confirms its capacity to trigger complex sequences of inputs
not generated by other approaches. This is the case for File Manager, where ATUA successfully
starts the FTP client by (1) clicking on the “add” button, (2) then clicking on “Cloud connection,”
(3) then clicking on SCP/SFTP connection, and (4) finally, within the SCP/SFTP connection dialog,
filling all the compulsory fields and (5) clicking on the “Create” button. Such a complex sequence
of inputs (including filling FTP connection information) is unlikely to be generated by random
approaches. ATUA, instead, once it finds the sequence of inputs that reaches the SCP/SFTP con-
nection dialog, can, in Phase 2, trigger multiple sequences of inputs until it (randomly) finds the
one that successfully starts the FTP client. For APE, Monkey, and DM2, we can observe the same
characteristics observed as for a one-hour test budget.

To summarize, for both one-hour and five-hour budgets, ATUA is the approach that exercises

the largest number of univocally covered methods. Across versions, the percentage of exer-
cised methods univocally covered by ATUA is significantly larger than that of other approaches.
In practice, the results above also suggest that it might be useful to combine approaches, since they
may complement each other to cover a larger number of methods. However, ATUA should always
be included in the selected combination, since it exercises a larger set of upgraded functionalities
that cannot be exercised using other approaches.

4.6 Discussion

Human effort. RQ1 results have shown that ATUA performs better than the other approaches,
since it saves around 33.8% (one-hour budget) and 32.8% (five-hour budget) of the effort compared
with DM2, the second-best approach. Hereafter, we discuss practical implications concerning test-
ing costs based on related work about the nature of App upgrades [44] and the maintainability of
GUI test cases [48].

On average, ATUA generates 450 (one hour) and 2,251 (five hours) fewer inputs than DM2 for
each App version across all subject Apps. Since related work [44] has shown that roughly 35%
of the updates concern the introduction of new features, under the assumption that inputs are
uniformly distributed across updated features, we can estimate that ATUA generates, on average
for each App version and across all subjects, 158 (one hour) and 788 (five hours) fewer inputs
than DM2 for testing new features. Consequently, ATUA generates 292 (one hour) and 1,463 (five
hours) fewer inputs than DM2 for testing bug fixes and improved features (i.e., changes concerning
non-functional requirements).

When testing new features, the output generated by each input should be manually verified; for
example, by inspecting the screenshots of the GUI trees visualized after triggering an input (they
are automatically captured by ATUA) and determining if they match the expected results. Unfor-
tunately, the software engineering literature lacks studies about the cost of manual verification of
GUI trees; assuming, for the sake of illustration, that visual inspection of GUI trees takes a few min-
utes, say, ranging from one minute to five minutes, ATUA may lead to savings within the following
intervals of [158–790] and [788–3,940] minutes, respectively, the for one-hour and five-hour test
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budgets. In the App development context, where Apps are frequently released (e.g., weekly or
bi-weekly) and, additionally, test cases might need to be executed every day following continuous
integration practices, such effort savings appear to be particularly beneficial, especially consider-
ing that testing should be performed by highly trained engineers with a deep understanding of the
App’s features.

When testing updated features, engineers can re-execute the generated test input sequences
on previous App versions to compare results and, ideally, eliminate oracle costs. However, we
have to expect that a number of maintenance operations are required to adapt test sequences to a
different App version. Pan et al. [48], for example, report that 26.5% of the test inputs need to be
repaired. ATUA will thus save engineers from manually repairing 77 and 388 inputs, respectively,
for the one-hour and five-hour test budgets. Under time pressure, which is the case when Apps
are frequently released, this is a significant advantage.

Effectiveness. ATUA is the approach that, on average, most effectively tests updated Apps within
practical time budgets and human effort. For the one-hour budget, better than competing ap-
proaches, it exercises more than 60% of target methods and 50% of target instructions. With a
five-hour budget, it exercises more than 70% of target methods and 60% of target instructions.
Higher percentages can probably be reached with longer execution budgets, which were not pos-
sible in our context given the computational costs of our experiments. Based on these results, we
can claim that ATUA can contribute to reducing development costs; indeed, engineers would then
be able to focus their manual testing effort on a reduced portion of the developed App.

When comparing with other approaches, we observed that for both one-hour and five-hour
budgets, on average, ATUA achieves method and instruction coverage results increased by at least
10% with respect to the second-best approach (DM2), a practically significant improvement. The
effectiveness of ATUA is comparable to the effectiveness of DM2 and APE only when ATUA cannot
fully leverage static analysis to determine the relation between inputs and WindowTransitions, i.e.,
when Apps integrate input handlers that are selected at runtime based on the nature of input data,
which happens, for example, in the presence of WebViews. For the six subjects for which static
analysis can effectively be exploited, the percentage of improvement rises above 8%. Among our
subject Apps, in the worst case (i.e., five-hour budget), ATUA is comparable to other approaches
for one-third of the subjects and otherwise fares better; considering that (1) no single competing
approach achieves similar coverage as ATUA for these three subject Apps (e.g., DM2 achieves the
same results as ATUA for at most two), (2) competing approaches never outperform ATUA but
at best reach the same effectiveness, ATUA remains the best choice. To further improve ATUA
effectiveness, part of our future work concerns the development of an additional set of reducers
that will enable the ATUA state abstraction function to distinguish between widgets containing
different types of data.

Finally, ATUA has shown to be complementary to other approaches. Indeed, for both one-hour
and five-hour budgets, it can exercise 518 and 478 target methods not covered by other approaches,
three and six times the number of the second-best approach. Thus, when combining testing ap-
proaches to cover higher target method coverage, ATUA should be included. Finally, as an expla-
nation of the above results, we have observed that the three testing phases integrated in ATUA
enable the generation of complex input sequences, specific App states, or diverse App settings that
are required to test updated features.

4.7 Threats to Validity

We discuss internal, conclusion, construct, and external validity according to standard practice [24,
53, 74].
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4.7.1 Internal Validity. To address threats to internal validity, we should ensure that the ob-
served outcome (inputs and code coverage, in our case) depends on the treatment (i.e., the test
automation approaches) and not external factors (e.g., implementation errors and diverse experi-
mental conditions) [24].

To minimize implementation errors, we have carefully inspected and tested ATUA before running
our experiments. Also, for the state-of-the-art approaches, we relied on the software released by
their authors, which had been used in several experiments.

To ensure the same conditions for all the experiments, we executed each tool on a clean instance of
the same Android emulator with newly installed Apps. However, the same experimental conditions
may not be guaranteed for Apps that depend on external data sources (e.g., to visualize news) [19];
indeed, in the presence of external data source, test results may depend on the content being
visualized at a specific instant (e.g., the presence of a video in the latest news). Our case study
subjects include six Apps loading external data (i.e., Nuzzel, Wikipedia, Yahoo weather, Wikihow,
BBC Mobile, and Citymapper), because they are highly popular and representative.

To address this threat, taking advantage of our Grid infrastructure, for each test budget (i.e., one
hour and five hours), for each subject App version, we executed all the testing tools in parallel in
five batches with two sequential executions each. In practice, for each subject App’s version, for
each tool, we ran 10 executions distributed over a time frame of two hours (for a one-hour budget)
and 10 hours (for a five-hour budget). Our experimental configuration should minimize the threat
for Apps (i.e., Wikipedia, Wikihow, and Citymapper) loading remote content that unlikely changes
in the time frame of our executions (i.e., 10 hours max). In addition, we believe that our config-
uration also addresses the threat for the remaining three Apps (i.e., Nuzzel, Yahoo weather, BBC
Mobile) because, by running all the different testing tools in parallel, we maximize the likelihood
of processing the same remote content (i.e., news or weather forecasts) when triggering the same
Actions.

4.7.2 Conclusion Validity. Threats to conclusion validity concern the statistical power of our
results, invalid statistical test assumptions, reliability of measurements, and random irrelevan-
cies [74].

Since the underlying distribution of the data (i.e., code coverage achieved with test automation
approaches) is not known in our context, for statistical significance, we rely on the Mann Whitney
U-test, which has high statistical power for different underlying distributions, even for a small
number of samples [62]. Also, to let the readers draw conclusions in context about the proposed
approach, we report both p-values and effect sizes.

To avoid violating the assumptions of parametrical statistical tests, we rely on a non-parametric
test and effect size measure (i.e., Mann Whitney U-test and the Vargha and Delaney’sA12 statistics,
respectively).

To ensure reliability, our measurements (i.e., code coverage) have been collected through widely
used, open-source tools.

In our context, the only source of random irrelevancies might be the workload of the machines
used to run the experiments, which may slow down the performance of some of the tools. To
mitigate this threat, in addition to relying on a Grid infrastructure with guarantees for the provided
service level, we manually inspected execution logs to exclude the presence of anomalies biasing
results (e.g., exceptions due to the host environment).

4.7.3 Construct Validity. According to standard practice, we discuss construct validity in terms
of face, content, convergent, and predictive validity [53]. The constructs considered in our work
are effectiveness and cost. Effectiveness is measured through two reflective indicators, which are
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target method coverage and target instruction coverage. Cost is measured in terms of the number
of inputs being generated, for reasons that were carefully discussed.

Face validity concerns the selection of appropriate reflective indicators. For effectiveness, we
rely on method and instruction coverage, which is common practice [16, 19]. For cost, we measure
the number of inputs being generated. At the beginning of Section 4, we have discussed that, in
our context, the number of inputs is a good surrogate to enable the comparison of testing cost.

Content validity concerns the adequacy of reflective indicators to cover the breadth of the con-
struct. We rely on code coverage, since it has been recently shown that there is moderate to high
correlation between code coverage and detection of real faults [36]. Also, code coverage is a neces-
sary condition to uncover faults and, therefore, it remains a priority for test engineers. Concerning
the breadth of the cost construct, in the introduction to this section, we have discussed that a di-
rect and precise cost estimate can only be obtained with experiments involving engineers using
the selected testing techniques in the field under controlled conditions, which we leave to future
work.

Concerning convergence, we have computed the non-parametric Kendall’s correlation coeffi-
cient, for all the pairs of reflective indicators, for each subject. Unsurprisingly, target method and
target instruction coverage are highly correlated (i.e., τ ≥ 0.7, for all the subjects), which is ex-
pected for reflective indicators used to infer the same construct. Instead, a low correlation (i.e.,
τ < 0.35, for all the subjects) is observed between inputs being triggered and target coverage,
which is expected, since these two reflective indicators are used for distinct constructs.

To address predictive validity, we reported statistics for all our research questions.

4.7.4 External Validity. To address threats to external validity, we have considered nine popular
Apps, downloaded thousands of times worldwide, that have been considered in the empirical eval-
uation of related work. Also, for each App, we considered up to 10 App versions, based on their
availability, for a total of 72 App versions tested. The considered Apps greatly vary regarding the
overall number of lines of code and updated lines between versions. Because of their diversity, we
believe our subjects to be representative of the Apps landscape.

To account for randomness, we tested each App version 10 times with every testing tool consid-
ered; more than the usual practice of three to five repetitions [29]. Despite the high computational
cost (17,280 test execution hours, in total), this enabled us to derive solid statistical results for the
comparison of different tools.

In our experiments, we considered only Android Apps, which is standard practice in most App
testing research papers. The prevalence of Android in research papers is mostly due to its world-
wide dissemination and the availability of a larger set of tools to test and analyze Android exe-
cutable bytecode [22]. In our work, the choice of relying on Android Apps enabled the comparison
of ATUA with tools working for Android Apps (i.e., Monkey, APE, and DM2). However, since we
do not exercise OS-specific features, results should generalize also to Apps running in different
execution environments (e.g., HarmonyOS and IOS).

5 RELATED WORK

In this section, we discuss related work, which covers automated App testing tools, App regression
testing techniques, incremental testing approaches, testing based on information retrieval, and test
oracle automation.

5.1 App Testing Tools

Automated App testing tools can be grouped according to the strategy adopted to generate
test inputs [41, 67]. The most common ones are random, model-based, and evolutionary [67].
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Representative approaches of these three categories used in empirical evaluations are Monkey,
Stoat [65], and Sapienz [43], respectively. Monkey has been introduced in Section 4. Other re-
cent and effective approaches either rely on Q-Learning [38, 46], execution traces [69], or state
cloning [23].

Stoat performs stochastic model-based testing. It relies on dynamic analysis based on a weighted
UI exploration strategy to derive a stochastic finite state machine (FSM) of the App’s GUI in-
teractions. Stoat relies on the FSM to generate test suites using an objective function that aims to
maximize code coverage, model coverage, and test diversity. The test generation process relies on
Gibbs sampling to iteratively mutate and refine the FSM, based on the fitness of the generated test
suite.

Sapienz is an evolutionary approach that uses Pareto multi-objective search to automatically ex-
plore and optimise test sequences, minimizing length, while simultaneously maximizing coverage
and fault detection. Sapienz combines random fuzzing, systematic exploration, and search-based
exploration.

Independent empirical evaluations performed by Choudhary et al. [16] and Wang et al. [70] have
reported that the three aforementioned testing strategies are complementary. Further, both stud-
ies show that the method and instruction coverage achieved by all test automation approaches
are relatively low, that is, below 50%. Choudhary et al. [16] note that model-based approaches
complement random approaches regarding fault detection, while for code coverage, random ap-
proaches fare better. Wang et al. [70] confirm these results. They report that random and evolu-
tionary approaches are complementary regarding method coverage, while both evolutionary and
model-based approaches complement random approaches in terms of fault detection. However,
the validity of these findings has been weakened by recent advances in model-based approaches.
Indeed, more recent results show that model-based approaches that either integrate advanced
exploration strategies (i.e., biased random in DM2) or adaptable state abstraction functions (i.e.,
APE [29]) fare better than random approaches or state-of-the-art model-based approaches. APE,
for example, is the most recent technique and has been reported to perform better than Monkey,
Sapienz, and Stoat.

In APE, each window is modeled with sets of attribute paths that univocally identify the widgets
of the window. Attribute paths resemble the AttributeValuationMaps of ATUA with the difference
that ATUA considers a larger set of attributes than APE, which only accounts for type, position
with respect to siblings, and appearance (e.g., text). APE and ATUA differ for the strategy used
to generate inputs (i.e., ATUA relies on the combination of static and dynamic analysis). They
both rely on an adaptable state abstraction function L. However, the state abstraction functions
integrated in the two approaches present key differences. In APE, a single L is defined for the
whole app, while ATUA specifies oneL for each window of the App. Also, APE’sL is implemented
by means of a decision tree (DT), which enables APE to not rely on a predefined set of reducer
functions. The main limitation of APE is that it relies on a global abstraction function for the
whole App and thus uses part of the test budget to perform L refinements that may be avoided by
relying on static analysis (i.e., GUITrees belonging to different windows should be characterized
by different abstract states). By relying on a different L for every window, ATUA overcomes such
limitation. In addition, our empirical evaluation has shown that the combination of static and
dynamic program analysis enables ATUA to outperform APE in terms of coverage of updated
methods, while minimizing the human effort required by testing.

Approaches not relying on random, model-based, or evolutionary solutions make use of either
Q-Learning [38, 46], execution traces [69], or state cloning [23]. Q-testing [46] relies on Q-learning
(a model-free reinforcement learning algorithm [72]) to trigger events that enable the exploration
of features that are not yet tested. In Q-testing, an event is rewarded if it leads to an App state
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not visited before. A siamese neural network is used to compare states. QBE is a less recent
approach based on Q-learning, which relies on automated App exploratory testing to identify
App states [38]. We did not select Q-testing [46] for our empirical evaluation, because there is
no empirical evidence demonstrating it outperforms APE. For QBE, however, existing evidence
shows it does not outperform state-of-the-art approaches. Combodroid works by combining test
input sequences derived from execution traces [69]. It can work with either traces collected by
automated testing tools (e.g., APE) or traces collected when end-users exercise the App under test.
In the first case, results show that Combodroid achieves higher code coverage than APE when
using more than six hours of test budget, which is not feasible in continuous integration contexts
where test cases are always executed after code commits. The need for execution traces collected
with humans in the loop makes the second usage scenario of Combodroid inapplicable in our con-
text. For these reasons, we did not compare ATUA with Combodroid. TimeMachine implements
a metaheuristic approach that relies on a pool of App states [23]. New App states are reached by
triggering random events. An App state is added to the pool only if it is reached after exercising
code not covered yet; App states are captured by cloning the state of the virtual machine running
the App under test. When lack of progress is detected, TimeMachine resets the execution from
the state with the highest fitness, which is computed by balancing the number of times the state
has been visited and the number of interesting states generated from it. Similar to Combodroid,
TimeMachine overcomes Monkeys, Stoat, and Sapienz when executed for more than five hours;
however, as discussed above, this setting makes it inapplicable in some continuous integration
contexts. For the reasons above, we did not consider ComboDroid, Q-testing, and TimeMachine to
be suitable candidates for our empirical evaluation.

Most importantly, none of the existing App testing approaches prioritize the testing of App
updates. ATUA is the first solution addressing App updates by focusing on updated meth-
ods. To efficiently test updated methods, ATUA integrates a model-based approach that combines
static and dynamic program analyses. In the App context, static analysis is the most appropriate
solution to efficiently identify test inputs, because (1) Apps architecture enables the extraction
of models capturing window transitions through static analysis, and (2) call graph analysis en-
ables the identification of the inputs that trigger event handlers reaching modified code. Dynamic
analysis, instead, enables overcoming static analysis limitations; for this reason, ATUA associates
abstract states derived through model-based exploration (i.e., dynamic analysis) to windows in
EWTGs derived with static analysis.

Alternative potential solutions, based on augmenting exiting approaches, can be considered
to test updated Apps. For example, APE might be extended to spend more test budget on states
triggering updated methods, Q-testing might be extended by increasing the reward for updated
methods, ComboDroid by increasing the chance of exercising use cases related to changed classes,
while TimeMachine’s fitness could be adjusted to prioritize change-related states. However, such
solutions will unlikely reach updated code efficiently if they are not combined with the innovative
contributions provided by ATUA, that is, procedures to combine information collected with static
and dynamic program analysis.

To test updated Apps, APE needs to be extended with the Phase2 and Phase3 strategies imple-
mented by ATUA. More precisely, APE natively works by prioritizing inputs (called model actions
in APE) not exercised in an App state, and extending APE to prioritize target inputs based on
static program analysis data (e.g., the list of target inputs generated by Extended gator, one of
our contributions) may not be sufficient to efficiently test upgrades. Indeed, based on our results,
when testing an updated App, it is often necessary to exercise a same Window multiple times
with a same target input to reach the desired abstract state (this happens in ATUA’s Phase 2, as
shown in our running example); also, it may be necessary to exercise related windows to cover a
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target method (this happens in ATUA’s Phase 3, and it makes ATUA more effective than related
approaches, as discussed in RQ3). Considering that APE does not even track coverage information
(e.g., what inputs increase coverage) this would basically lead to a re-implementation of ATUA
with a different state abstraction function (i.e., the one used by APE, which, however, does not
support integration with static analysis). Concerning ComboDroid, in addition to static program
analysis, it would be necessary to extend it with a dynamically refined state abstraction function
like the one implemented by ATUA. Indeed, for both automatically and manually derived use
cases, ComboDroid relies on a static state abstraction function to transform a sequence of events
(automatically generated or manually triggered by engineers) into an extended labeled transition
system that is similar to ATUA’s DSTG. However, ComboDroid’s state abstraction function im-
plements a transformation that is similar to the one achieved with ATUA’s abstraction level L1,
that is, it ignores text content and children widgets. As shown in our running example, which is
based on our case study subjects, a dynamically refined state abstraction function is necessary to
reach the abstract states required to exercise updated features. Moreover, in the App upgrade con-
text, where new features may be introduced into the App under test, the need for traces manually
recorded by engineers may largely limit the benefits of test automation; indeed, to record such
traces, engineers may need to exercise all the features introduced into the App under test, that is,
manually perform system-level testing of the App, which is what we aim to automate with ATUA.
TimeMachine, similar to APE, would also need to integrate the ATUA’s strategy for the selection
of test inputs; an alternative is to extend ATUA to rely on TimeMachine’s time travel features to
quickly reach abstract states previously visited (e.g., at the beginning of testing); we leave it for
future work. Q-testing, instead, is unlikely to achieve the results obtained with ATUA’s Phase 3;
indeed, without a predefined strategy to select related windows it is unlikely to automatically dis-
cover them by means of trial and error (i.e., what Q-learning does in its training phase). Indeed, as
shown in our discussion for RQ3, randomly generated inputs do not enable test automation tools
(i.e., Monkey, APE, and DM2) to reach some of the updated methods that need to be enabled in
Windows different than the one with a target Widget.

To summarize, state-of-the-art techniques are unlikely to achieve ATUA’s performance by aug-
menting them with simple input selection strategies based on static program analysis (e.g., pri-
oritize inputs that may trigger modified methods, based on static program analysis); also, they
cannot be efficiently integrated with all the solutions provided by ATUA: (1) APE does not track
code coverage, which is required to drive testing, nor has a state abstraction function been inte-
grated with static program analysis. (2) In our context, the manual recording of traces required
by ComboDroid requires manual testing of the updated App features (i.e., what ATUA automates).
(3) Q-testing is based on a paradigm (i.e., reinforcement learning) that cannot make use of a static
analysis model and cannot be integrated with the three ATUA’s phases. (4) The time travel feature
proposed by TimeMachine might be integrated into ATUA but, since it has shown to be effective,
such integration may be the focus of future work.

5.2 App Regression Testing Techniques

Regression testing techniques for Apps concern the selection of events that may trigger modified
code [61], the selection of regression test cases [15], and the repair of existing test suites [63].
QADroid is a static analysis toolset that identifies the events (i.e., the Inputs of ATUA EWTG) that
may trigger the execution of modified methods. It implements the features of Steps 1 and 2 of
ATUA, except that QADroid does not generate EWTGs. QADroid differs from ATUA regarding
the underlying static analysis framework used to identify Inputs. It relies on FlowDroid [8], while
ATUA relies on Gator because of its capability to generate WTGs. Also, empirical results show that
Gator performs better than FlowDroid in identifying valid sequences of callbacks [71]. Different
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from ATUA, to select the Inputs that may trigger modified methods, QADroid performs a forward
traversal of the App control flow graph obtained with Soot (i.e., it starts the traversal from event
handler methods) and selects all the Inputs that reach modified methods. Consequently, QADroid
cannot determine the presence of HiddenHandlers identified by ATUA. In addition, QADroid re-
quires the source code of the App, while ATUA works with the bytecode. QADroid has never been
applied to automated testing and cannot identify the concrete input values to be used with certain
Inputs (e.g., the data to write into a TextArea).

Redroid selects a regression test suite for an updated version of an App [20, 21] from an existing
test suite. It relies on state-of-the-art static analysis procedures [55] to perform change impact anal-
ysis and uses code coverage information to select any test case that cover modified blocks of code.
Redroid does not support the generation of a minimal test suite. DetReduce [15], instead, creates a
small regression test suite for an App from a test suite generated by a model-based test automation
tool. It identifies and removes redundant method call traces and subtraces within the test suite and
redundant loops within a test case. Redundancy is identified based on a state abstraction function
that considers actionable widgets and their visible attribute values. Widgets are identified by their
path in the GUITree. Since executable test suites are often unavailable and state-of-the-art App
testing tools can cover only a narrow set of modified methods, the applicability of Redroid and
DetReduce remains limited. However, DetReduce might be applied to ATUA App models to further
reduce the generated test cases; we leave to future work the integration of ATUA with DetReduce
and its evaluation. Another solution for the generation of reduced test suites is the one proposed
by Jabbarvand et al. [33] in the context of energy-aware test-suite minimization. In their work,
they stop and restart the execution of Monkey every 500 events; a sequence of 500 events is a test
case. When the test budget is exhausted, a greedy algorithm identifies the minimal set of test cases
that maximize the coverage of energy-greedy parts of the App. Such solution might be adapted
to work with ATUA and the state-of-the-art approaches considered in our experiments; for exam-
ple, by restarting test generation after a predefined number of events and then by relying on the
greedy algorithm to select the minimal set of test cases (e.g., up to 2,000 inputs) that maximizes
the coverage of updated methods. However, though such an approach might reduce the size of the
generated test suites, it might not be feasible to identify a configuration that maximizes the bene-
fits for a range of Apps. Indeed, for some Apps, 500 events might not be sufficient to reach an App
state that enables exercising updated methods, especially for random approaches (e.g., if updated
methods require long, specific sequences of events to be exercised), while a much larger number
of events would greatly reduce the benefits of test suite reduction (e.g., for one-hour budget, the
test cases generated by ATUA consist of less than 2,000 events; see Figure 11). We therefore leave
to future work the integration of such test suite minimization solution into ATUA.

Automated repair techniques for the GUI test scripts of mobile Apps are still preliminary [47,
48, 63]; to repair test scripts they include strategies ranging from static program analysis [63],
to model-based [40] and computer vision techniques [47, 48]. Existing approaches either leave
between 5% [48] and 8% [63] of the test scripts to be manually repaired or do not preserve all
the test actions (i.e., the test semantic [40]). Though these results show that automated GUI script
repair techniques might be adopted to support the oracle automation approach we suggested for
the identification of regression failures, manual intervention would still be required, as indicated
in Section 4.6.

5.3 Incremental Testing Approaches

Campos et al. [14] have been the first to propose a technique to incrementally test the units in
a software project, leading to overall higher code coverage while reducing the time spent on test
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generation. They apply an evolutionary approach (i.e., EvoSuite [25]) and optimize test generation
by providing more test budget to the modified portions of the code and reuse already generated
test cases for seeding (i.e., they re-run all the test cases that compile). The main difference with
ATUA is that they do not target the GUI testing of Apps but the unit testing of Java libraries. In
our context, the reuse of existing test cases is complicated by the presence of a GUI, which is likely
updated across versions and may break existing test sequences.

5.4 Testing Based on Information Retrieval

In the software testing literature, information retrieval techniques applied to the processing of
program files have been integrated into fault localization [73, 80], test case prioritization [59], and
test input selection approaches [54, 66]. Concerning test input generation, TestMiner relies on
information retrieval to select from a large corpus of existing test cases the input values to use in
newly generated tests cases, which differs from our purpose [66]. Poster applies a similar approach
to derive sequences of Inputs for App testing [54]; different from ATUA, it relies on existing test
suites developed for similar Apps.

5.5 Test Oracle Automation

Like all the state-of-the-art approaches for App testing [41, 57], ATUA does not address the oracle

problem [11]. Oracle automation is part of our future work; however, we have presented in Sec-
tion 4 two solutions to alleviate the oracle problem in the context of App updates. One solution is
the automated detection of functional regression faults based on the identification of unexpected
changes to outputs across different software versions [26, 37, 51, 60]. The other solution consists
in relying on crowdsourcing, a popular solution adopted by industry to reduce the costs of manual
GUI testing for Apps [64, 76]. Related work has shown that it is feasible for crowd workers to
identify errors after visualizing the inputs and outputs of the functions under test [49]; in the App
context, crowd oracles may lower testing costs while test coverage is addressed by test automation.
In addition, ATUA could be integrated with approaches that automatically generate in-program
logical assertions [34] or solutions relying on system-independent GUI oracles [81].

5.6 Summary

From the above, we can see that existing work lacks a model-based approach combining adaptable
state abstraction functions with information retrieved from static program analysis. In ATUA, this
is done to maximize the coverage of updated methods while minimizing the number of inputs
required for testing. The latter is necessary to make the verification of Apps results feasible. Indeed,
fully automated test oracles are currently not an option, and human effort is necessary to identify
both regressions and failures in new features. Regression testing approaches, which typically target
test case selection and prioritization, are of limited applicability in this context, when test suites
covering large portions of the Apps code are not available. ATUA leverages incremental testing to
effectively invest the test budget and maximize the coverage of updated methods.

6 CONCLUSION

State-of-the-art App testing techniques are affected by two limitations: limited effectiveness (i.e.,
low code coverage) and absence of automated oracles. To address the first limitation, given the high
release frequency of Apps, we propose a solution (objective O1) to effectively focus the test budget
on updated (i.e., modified and new) methods. In other words, within practical test execution time,
we aim to maximize the coverage of updated methods and their instructions. To address the second
limitation, we aim (objective O2) to generate a significantly reduced set of test inputs, compared
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to state-of-art approaches, thus proportionally saving the corresponding human effort required to
visualize test outputs or correct test scripts.

To achieve the two objectives above, we developed ATUA, an automated App testing technique
that integrates multiple analysis strategies. To achieve O1, it combines static analysis, to determine
the inputs that execute updated features, and random exploration, to overcome the limitations
of static analysis. To achieve O2, it relies on dynamically refined state abstraction functions, to
determine when distinct inputs lead to a same program state, and relies on information retrieval
techniques, to identify dependencies among App features.

We performed an empirical evaluation where we compared ATUA with state-of-the-art ap-
proaches implementing testing strategies based on dynamically derived models (DM2), random
exploration (Monkey), and dynamic state abstraction (APE). For our experiments, we considered
practical execution time budgets of one and five hours, corresponding, respectively, to approxi-
mate time constraints in the context of continuous integration and overnight testing. Concerning
human effort (objective O2), ATUA is the approach that generates the smallest set of inputs with
the highest coverage per input. ATUA, on average across subject Apps, saves around 32.6% of the
effort, compared to the second-best approach (DM2). Further, it exercises 38.5% more instructions
than DM2 per input. Differences with APE and Monkey are much larger. Concerning effectiveness
within time budget (objective O1), on average, ATUA automatically exercises up to 70% of updated
methods and 60% of instructions belonging to updated methods, 6% more than the second-best
approach (i.e., DM2). These results show that the analysis strategies integrated in ATUA can drive
testing towards an efficient use of the test budget (execution time and effort), thus providing clear
benefits when upgrading and testing an App.

APPENDIX

A ATUA TOOLSET

The ATUA Toolset includes four main components: AppDiff, which identifies the updated methods
for the App under test; Extended Gator, which generates the EWTG part of the AppModel; Extended

DM2 Instrumenter, which instruments the App under test; and ATUA Tester, which implements the
ATUA testing algorithm. The UML component diagram in Figure 21 shows the ATUA Toolset.

The features of AppDiff and Extended Gator have already been presented in Sections 3.2 and 3.3,
respectively. In this section, we focus on the description of the Extended DM2 Instrumenter and
the ATUA Tester.

ATUA Tester has been implemented as an extension of DM2. DM2 consists of six components
(i.e., DM2 Instrumenter, DM2 Exploration Engine, DM2 Automation Engine, Coverage Monitor
Client, Coverage Feature, and Widget Counting Model Feature) that are executed on the host en-
vironment and two components (i.e., DM2 Control Device Daemon and DM2 Coverage Monitor
Server) that are deployed on the Android emulator running the App under test. The DM2 com-
ponents are part of ATUA Tester, which automatically deploys and executes them transparently
from the end-user. ATUA Tester integrates two additional components that implement the ATUA
algorithm (i.e., ATUA Testing Strategy and ATUA Model Feature). The integration between ATUA
Tester components and DM2 is performed through the interfaces provided by DM2 (i.e., ModelFea-
ture and ActionSelector). ATUA Tester and DM2 rely on three additional components provided
by the Android development environment: the ADB Client, the ADB Daemon, and the Android
Automation Framework.

The Extended DM2 Instrumenter is used before testing to create an instrumented version of the
App under test that integrates the functions required to collect code coverage. We have extended
the DM2 Instrumenter to collect method coverage information in addition to instruction coverage.
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Fig. 21. Overview of the ATUA toolset.

Method coverage is used by ATUA to quickly determine at runtime which methods have been
covered.

At runtime, during testing, the DM2 Exploration Engine acts as a controller that queries the
ATUA Strategy component, which implements the DM2 ActionSelector interface, used by DM2 to
select the next Action to trigger during testing. The ATUA Strategy component implements the
ATUA’s testing algorithm. The DM2 Exploration Engine relies on the ADB Client installed on
the host to set up the Android emulator and deploy the App under test. The interaction with the
App under test is managed by the DM2 Automation Engine, which sends commands to the DM2

Device Control Daemon installed on the Android emulator. The DM2 Device Control Daemon em-
ploys the Android Automation Framework to execute the requested Action on the App under test
and to derive the GUITree for the active Window. After triggering an Action, the DM2 Automa-

tion Engine receives the current GUITree, a screenshot of the Android emulator GUI, and some
additional information (e.g., exception trace from Logcat) from the DM2 Device Control Daemon.
It then derives the GUITreeTransition performed on the GSTG and sends this information to all
the registered Model Features, including the Widget Counting Model Feature, the DM2’s Coverage
Feature, and the ATUA App Model. The Widget Counting Model Feature calculates the frequency
of Actions on GUI widgets, used to drive ATUA’s random exploration. The DM2 Coverage Feature

is responsible for tracking code coverage during testing. It associates to each Action the set of
instructions covered when executing the Action; code coverage is provided by the Coverage Mon-

itor Server instrumented by DM2 within the App under test. The ATUA Model Feature updates the
App model consistently with the description provided in Section 3.1; for example, it implements
the ATUA state abstraction mechanism. The ATUA Model Feature is queried by the ATUA Strategy

to determine the Actions to trigger (e.g., to identify the shortest sequence of Actions required to
reach a TargetWindow). The ATUA Model Feature relies on the DM2 Coverage Feature to acquire
the coverage data and associate them with the App Model. At the end of the testing, the ATUA
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Model Feature generates ATUA’s outputs (i.e., coverage report, execution traces, and the final App
model).
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