

AWJC Nozzle simulation by 6-way coupling of DEM+CFD+FEM using preCICE coupling library

ECCOMAS Coupled Problems 2021

Prasad ADHAV, Xavier BESSERON, Alban ROUSSET, Bernhard PETERS

University of Luxembourg
Luxembourg XDEM Research Centre
<http://luxdem.uni.lu/>

Contents

- Problem statement & Goals
- Methodology
- Results
- Conclusions
- Next Steps

Contents

- Problem statement & Goals
- Methodology
- Results
- Conclusions
- Next Steps

Problem Statement

- Abrasive WaterJet Cutting Nozzle
- AWJC Nozzle the first target of abrasive particles
- Erosion difficult to capture through experimentation

Previous Work

- DEM+CFD coupling used to identify erosion zones^[1]
- Particle impact velocity and angle of attack ignored

[1] Gas, liquid and abrasive particles flow in a AWJC Nozzle

[1] Pozzetti, Gabriele, and Peters, Bernhard. "Evaluating Erosion Patterns in an abrasive water jet cutting nozzle using XDEM." *Advances in Powder Metallurgy & Particulate Materials* (2017): 191-205.

Challenges and Goals

- Evaluation of erosion in AWJC Nozzle by DEM+CFD+FEM coupling
- Using out of the box resources

Contents

- Problem statement & Goals
- **Methodology**
- Results
- Conclusions
- Next Steps

Methodology

Discrete Element Method

[2] Peters, Bernhard, et al. "XDEM multi-physics and multi-scale simulation technology: Review of DEM–CFD coupling, methodology and engineering applications." *Particuology* 44 (2019): 176-193

[3] Bungartz, Hans-Joachim, et al. "preCICE—a fully parallel library for multi-physics surface coupling." *Computers & Fluids* 141 (2016): 250-258.

6-way DEM+CFD+FEM coupling

6-way DEM+CFD+FEM coupling

6-way DEM+CFD+FEM coupling

6-way DEM+CFD+FEM coupling

Test-case setup

6way coupling OF + CCX +XDEM results: rhoPimpleFoam

Contents

- Problem statement & Goals
- Methodology
- **Results**
- Conclusions
- Next Steps

Nozzle case setup

Nozzle coupled simulation set-up

Nozzle coupled simulation set-up

Water Jet
Inlet = 300 m/s

Nozzle coupled simulation set-up

Nozzle coupled simulation set-up

Nozzle CFD results

Nozzle CFD results

Incompressible
Transient
multiphase: 2
immiscible
phases
isothermal
turbulent flow
(LES)
 $dt_{OF} = 1e-08$
 $dt_{CCX} = 1e-07$
preCICE coupling
 $dt = 1e-07$

Nozzle CFD results (waterjet)

Incompressible

Transient

multiphase: 2
immiscible
phases

isothermal

turbulent flow

(LES)

dt OF = 1e-08

dt CCX = 1e-07

preCICE coupling
dt = 1e-07

Nozzle CFD results (waterjet)

Incompressible
Transient
multiphase: 2
immiscible
phases
isothermal
turbulent flow
(LES)
 $dt_{OF} = 1e-08$
 $dt_{CCX} = 1e-07$
preCICE coupling
 $dt = 1e-07$

Nozzle 2way CFD+XDEM results

2way CFD+XDEM Nozzle test case

2way CFD+XDEM Nozzle test results

Time: 0.002476(s)

2way CFD+XDEM particle drop test results

2way CFD+XDEM particle drop test results

Incompressible
Transient
multiphase: 2
immiscible
phases
isothermal
turbulent flow
(LES)

$dt_{OF} = 1e-04$
 $dt_{XDEM} = 1e-04$
preCICE coupling
 $dt = 1e-04$

2way CFD+XDEM particle drop test results

2way CFD+XDEM particle drop test results

Nozzle 2way XDEM+FEM results

Nozzle XDEM + CCX results

Nozzle XDEM + CCX results

Contents

- Problem statement & Goals
- Methodology
- Results
- **Conclusions**
- Next Steps

Conclusions

- General 6-way coupling achieved
- Strong CFD to DEM coupling
- Weak DEM to CFD coupling
- Particle interaction with Air-Water interface incomplete
- DEM+FEM coupling working as expected

Contents

- Problem statement & Goals
- Methodology
- Results
- Conclusions
- **Next Steps**

Next Steps

- Particle effects in Transport and pressure equations
- Particle volume in CFD
- Validation of CFD+XDEM coupling
- Erosion predictions and calculations inside Nozzle
- Vibrational analysis of Nozzle through FEM

Thank you for your attention!

Luxembourg XDEM Research Centre

<http://luxdem.uni.lu/>

University of Luxembourg

References

- [1] Pozzetti, Gabriele, and Peters, Bernhard. "LES-VOF simulations of a pure water jet developing inside an AWJC nozzle: preliminary observations and guidelines." Proceedings of 2017 WJTA-IMCA (2017).
- [2] Peters, Bernhard, et al. "XDEM multi-physics and multi-scale simulation technology: Review of DEM–CFD coupling, methodology and engineering applications." *Particuology* 44 (2019): 176-193.
- [3] Bungartz, Hans-Joachim, et al. "preCICE—a fully parallel library for multi-physics surface coupling." *Computers & Fluids* 141 (2016): 250-258.
- [4] <https://openfoam.org/> (Online; accessed 01 April 2020)
- [5] Dhondt, G. and Wittig, K., *Calculix*: a free software three-dimensional structural finite element program. MTU Aero Engines GmbH, Munich. (1998)
- [6] Xiao, Heng, and Jin Sun. "Algorithms in a robust hybrid CFD-DEM solver for particle-laden flows." *Communications in Computational Physics* 9.2 (2011): 297-323.