
Adversarial Robustness in Multi-Task Learning:

Promises and Illusions

PAPER #2923

Anonymous

Sept 2021

Contents

1 Appendix A: Proofs for the Theoretical Analysis 2
1.1 A.1 . 2
1.2 A.2 . 3
1.3 A.3 . 4
1.4 A.4 . 4
1.5 A.5 . 5

2 Appendix B: Experimental Settings 6

3 Appendix C: Detailed evaluation of the settings and tasks 7
3.1 Relative task robustness of architectures . 7
3.2 Performance over all 11 tasks . 10
3.3 Adversarial Vulnerability and number of tasks 16
3.4 Impact of attack settings . 17

4 Appendix D: Source code 18

1

1 Appendix A: Proofs for the Theoretical Analysis

Definition 1. Let M be a multi-task model. T ′ ⊆ T a subset of its tasks and L′T the joint
loss of tasks in T ′. Then, we call Ex[δL(T ′, ε)] the adversarial vulnerability of M on T ′

to an ε-sized ‖.‖p-attack.
And we define it as the average increase of LT ′ after attack over the whole dataset, i.e.:

Ex[δL(T ′, ε)] = Ex
[

max
‖δ‖p≤ε

| LT ′(x+ δ, ȳ)− LT ′(x, ȳ) |
]

Lemma 2. Under an ε-sized ‖.‖p-attack, the adversarial vulnerability of a multi-task model
can be approximated through the first-order Taylor expansion, that is:

Ex[δL′(x, ȳ, ε,T ′)] ≈ ε · Ex[|| ∂xL′(x, ȳ) ||q] (1)

Proof. 1.1 A.1

From definition 1, we have:

Ex[δL(T ′, ε)] = Ex
[

max
‖δ‖p≤ε

| LT ′(x+ δ, ȳ)− LT ′(x, ȳ) |
]

Given the perturbation δ is minimal, we can approximate δL with a Taylor expansion
up to a second order:

Ex[δL(T ′, ε)] ≈ Ex
[

max
‖δ‖p≤ε

| δ · ∂xL′(x, ȳ) +
δ2

2
· ∂2xL′(x, ȳ) |

]
The noise δ is optimally adjusted to the coordinates of ∂xL′ within an ε-constraint. By

the definition of the dual-norm, we get:

Ex[δL′(x, ȳ, ε,T ′)] ≈ Ex[|| ε · ∂xL′(x, ȳ) +
ε2

2
· ∂2xL′(x, ȳ) ||q

]
(2)

where q is the dual norm of p and 1
p + 1

q = 1 and 1 ≤ p ≤ ∞.
We obtain Lemma 2 by restricting the Taylor expansion to the first-order.

Theorem 3. Consider a multi-task model M where an attacker targets T = {t1, ..., tM}
tasks uniformly weighted, with an ε-sized ‖.‖p-attack. If the model is converged, and the
gradient for each task is i.i.d. with zero mean and the tasks are correlated, the adversarial
vulnerability of the model can be approximated as

Ex[δL′] ≈ K ·

√
1 + 2

M

∑M
i=1

∑i−1
j=1

Cov(ri,rj)
Cov(ri,ri)

M
(3)

where K is a constant dependant of ε and the attacked tasks and ri = ∂xL(x, yi) the
gradient of the task i and Cov (ri, rj) the covariance between the two gradients ri, rj .

2

Proof. 1.2 A.2

let ri = ∂xL(x, yi) the gradient of the task i, with a weight wi = 1
M such as the joint gradient

of M is defined as ∂xL(x, ȳ) =
∑M
i=1 wiri. let p = q = 2

We have:

Ex[|| ε · ∂xL′(x, ȳ) ||22
]

= Ex

|| M∑
j=1

ε

M
· ri ||22


=

ε2

M2
Ex

 M∑
i=1

|| ri ||22 +2

M∑
i=1

i−1∑
j=1

|| ri ||2|| rj ||2


=

ε2

M2

 M∑
i=1

Ex[r2i] + 2

M∑
i=1

i−1∑
j=1

Ex[rirj]


(4)

We know:
Cov (ri, rj) = Ex [rirj]− Ex [ri]Ex [rj] (5)

According to the assumptions, the gradient of each task is i.i.d with zero means: Ex [ri] =
0 Then Cov (ri, rj) = Ex [rirj] and σ2

i = Cov (ri, ri) = Ex
[
r2i
]
.

Ex[|| ε · ∂xL′(x, ȳ) ||22
]

=
ε2

M2

M∑
i=1

σ2
i + 2

i−1∑
j=1

Cov (ri, ri)


∝ 1

M

1 + 2

M∑
i=1

i−1∑
j=1

Cov (ri, ri)

Mσ2
i



Ex[|| ε · ∂xL′(x, ȳ) ||2] ∝

√√√√(1 + 2
∑M
i=1

∑i−1
j=1

Cov(ri,ri)
Mσ2

i

)
M

(6)

Using the first order adversarial vulnerability (Lemma 2), we then have:

Ex[δL′] ≈ K ·

√
1 + 2

M

∑M
i=1

∑i−1
j=1

Cov(ri,rj)
Cov(ri,ri)

M
(7)

with K a constant dependant of ε and the attacked tasks.

Definition 4. Let M be a multi-task model with TM = {t1, ..., tM} tasks, an input x,
ȳ = (y1, ..., yM) its corresponding ground-truth. We denote the set of attacked tasks TN and
TN+1, two subsets of the model’s tasks T such as TN+1 = TN ∪ {tN+1} and N + 1 ≤ M ,
and let L′ be the joint task loss of attacked tasks.

We call marginal adversarial vulnerability of the model to an T ′, ε-sized ‖.‖p-attack the
difference between the adversarial vulnerability over the task set TN+1 and the adversarial
vulnerability over the task set TN .

∆NEx[δL′] = Ex[δL′(x, ȳ, ε,TN+1)]− Ex[δL′(x, ȳ, ε,TN)]

3

Lemma 5. Under an ε-sized ‖.‖p-attack, the marginal adversarial vulnerability of a multi-
task model can be approximated through the first-order Taylor expansion, that is:

∆NEx[δL′] ≈ ˜∆NEx[δL′] = ε · (Ex[|| ∂xL′(x, ȳ, ε,TN+1) ||q]− Ex[|| ∂xL′(x, ȳ, ε,TN) ||q])

Proof. 1.3 A.3

From Definition 4, we have:

∆NEx[δL′] = Ex[δL′(x, ȳ, ε,TN+1)]− Ex[δL′(x, ȳ, ε,TN)]

using the lemma 2 at the first order expansion on each term of the right side, we get:

∆NEx[δL′] ≈ ε · Ex[|| ∂xL′(x, ȳ, ε,TN+1) ||q]− ε · Ex[|| ∂xL′(x, ȳ, ε,TN) ||q]

Lemma 6. For a given multi-task model M , let ri = ∂xL(x, yi) the gradient of the task i,

with a weight wi such as the joint gradient of M is defined as ∂xL(x, ȳ) =
∑M
i=1 wiri. Let

‖.‖q be a norm and p an integer. We have:

Ex[||
M∑
i=1

wiri ||pq] ≤
M∑
i=1

wpi Ex
[
|| ri ||pq

]
(8)

Proof. 1.4 A.4

Ex[||
M∑
i=1

wiri ||pq] ≤ Ex

[
M∑
i=1

|| wiri ||pq

]

≤
M∑
i=1

wpi Ex
[
|| ri ||pq

] (9)

This lemma provides an upper-bound of the average norm of the gradients that we use
to evaluate the upper bounds of the adversarial vulnerability in the following theorem:

Theorem 7. For a given multi-task model M , let ri = ∂xL(x, yi) the gradient of the task
i, with a weight wi and zero mean such as the joint gradient of M is defined as ∂xL(x, ȳ) =∑M
i=1 wiri. The first order marginal vulnerability is bounded as follow:

˜∆NEx[δL′] ≤ ε · ((N + 1) · wN+1Ex[|| rN+1 ||]+
N · max

i<N+1
wiEx[|| ri ||])

4

Proof. 1.5 A.5

Using Lemma 5, we have:

∆NEx[δL′] ≈ ε · Ex[|| ∂xL′(x, ȳ, ε,TN+1) ||q]− ε · Ex[|| ∂xL′(x, ȳ, ε,TN) ||q]
≤ ε (| Ex[|| ∂xL′(TN+1) ||q] | + | Ex[|| ∂xL′(TN) ||q] |)

(10)

We use lemma 6 with p=1 and N+1:

Ex[||
N+1∑
i=1

wiri ||q] ≤ (N + 1)

N+1∑
i=1

wiEx [|| ri ||q]

≤ (N + 1)

(
N∑
i=1

wiEx [|| ri ||q] + wN+1Ex [|| rN+1 ||q]

)

≤ N
N∑
i=1

wiEx [|| ri ||q] +

N∑
i=1

wiEx [|| ri ||q] + (N + 1) · wN+1Ex [|| rN+1 ||q]

(11)

We use similarly lemma 6 with p=1 and N:

Ex[||
N∑
i=1

wiri ||q] ≤ N
N∑
i=1

wiEx [|| ri ||q] (12)

We inject (11) and (12) in (10) and we have:

∆NEx[δL′] ≤ ε

(
(N + 1) · wN+1Ex[|| rN+1 ||] +

N∑
i=1

wiEx[|| ri ||]

)

∆NEx[δL′] ≤ ε
(

(N + 1) · wN+1Ex[|| rN+1 ||] +N max
i<N+1

wiEx[|| ri ||]
)

5

2 Appendix B: Experimental Settings

General training We use the same learning rate schedule for all the models: SGD with
learning rate 0.01 and momentum 0.99. We decrease the learning rate at 100 epoch by 10
times, then successively at epoch=120 and epoch=140, we decrease again by 10 times. We
train all the models for 150 epochs.

We train on 80% of the rooms (9464 images from 1500 different rooms) and test on the
remaining 20%.

Experimental Settings We train different combinations of encoders and task decoders:
Resnet18, Resnet50, W-Resnet50, Resnet152 and Xception. This allows us to check that
our hypothesis of the limited impact of multi-task learning to generalize across different
families of architectures and sizes. Table 1 lists our different settings. We evaluate the cost
of the models as number of FLOPS (Floating Points Operations) required for one image
inference, while the size is the number of weights of the model. Each task is handled by a
specific decoder. The decoders are 8 layers (Convolution Dense).

Setting Encoder Weighted Tasks #Models # Epochs Size Cost

S1 Resnet18 Uniform (s,d,D,n,k,K,e,E,p,r,A) 121 150 14.19M 6.09B
S2 Resnet18 Uniform (s,d,D,n,k,K,e,E,p,r,A) 121 50 14.19M 6.09B
S3 Resnet18 Uniform (s,d,D,n,k,K,e,E,p,r,A) 121 100 14.19M 6.09B
S4 Resnet18 Optimal (s,d,D,n,E) 25 150 14.19M 6.09B
S5 Resnet50 Uniform (s,d,D,n,E) 25 150 29.66M 9.90B
S6 Xception Uniform (s,d,D,n,E) 25 150 4.33M 3.64B
S7 Resnet152 Uniform (s,d,D,n,E) 25 150 64.30M 19.64B
S8 Wide-Resnet50 Uniform (s,d,D,n,E) 25 150 72.99M 19.45B

Table 1: The experimental settings we evaluated.

List of weights for the weighted models For the weighted setting (S4), we use these
weights. For each of the main tasks, we use 1 as a weight and the following for the auxiliary
tasks weights:

• Semantic segmentation (s): 0.01 for sd combination, 0.1 otherwise.

• Z-Depth (d): 0.01 for dn combination, 0.1 otherwise.

• Normal (n): 0.01 for nd combination, 0.1 otherwise.

• Euclidian Depth (D): 0.1 for Ds combination, 0.01 otherwise.

• Edge detection (E): 0.1 for all combinations.

6

3 Appendix C: Detailed evaluation of the settings and
tasks

3.1 Relative task robustness of architectures

We provide in Tables 2 to 6 the clean performance of each task combination. We also provide
the relative task vulnerability against single-task and multi-task attacks.

While the multi-task models are not reliably more robust than single-task models across
all architectures, we see that robust combinations are similar across different models.

Auxiliary → s d D n E

Clean

s 50.50 49.20 47.28 47.02 48.63
d 101.08 97.50 98.48 93.94 100.53
D 96.71 91.30 92.36 91.23 87.08

n (e−2) 71.89 57.66 58.59 54.56 57.41
E (e−2) 16.43 10.30 10.49 11.68 8.78

Single

s 0.81 0.84 0.97 0.96 0.93
d 7.73 7.87 7.46 10.67 10.55
D 7.78 8.92 8.44 10.95 11.78
n 9.43 13.49 11.61 15.02 13.40
E 16.32 26.85 25.43 26.62 31.37

Multi

s 0.81 0.81 0.94 0.92 0.90
d 2.90 7.87 7.71 5.96 4.36
D 3.01 8.91 8.44 5.83 5.61
n 5.97 13.44 11.82 15.02 11.43
E 10.02 24.95 24.15 18.62 31.37

Table 2: Relative task vulnerability (lower is better) for the Resnet18 models. Each row
refers to the main task evaluated and the column to the auxiliary task. In the top half
(Clean), we provide the clean performance (1-mIoU for s, MSE for the rest), in the middle
(Single), we only attack the main task, in the bottom half (Multi), both tasks are attacked.

7

8

Auxiliary → s d D n E

Clean

s 51.63 49.50 49.66 47.48 46.90
d 106.57 98.28 95.92 95.35 94.38
D 99.65 89.81 90.58 89.17 91.26

n (e−2) 73.46 46.47 44.97 49.91 48.34
E (e−2) 15.30 7.48 8.93 9.04 6.99

Single

s 0.82 0.90 0.90 0.97 0.99
d 7.89 6.06 7.73 11.09 10.59
D 3.13 2.19 3.02 4.46 1.76
n 10.36 17.10 18.28 16.26 16.52
E 22.67 29.75 22.11 31.07 28.41

Multi

s 0.82 0.88 0.89 0.94 0.96
d 3.79 6.06 7.78 6.93 4.78
D 1.57 2.16 3.02 2.27 0.89
n 7.46 17.13 18.21 16.26 14.03
E 14.00 28.26 21.95 22.54 28.41

-

Table 3: Relative task vulnerability (lower is better) for the Resnet50 models. Each row
refers to the main task evaluated and the column to the auxiliary task. In the top half
(Clean), we provide the clean performance (1-mIoU for s, MSE for the rest), in the middle
(Single), we only attack the main task, in the bottom half (Multi), both tasks are attacked.

Auxiliary → s d D n E

Clean

s 42.91 42.14 43.19 44.35 44.17
d 109.27 88.66 90.67 92.55 93.21
D 103.55 98.43 85.70 93.51 88.58

n (e−2) 5183.49 3932.54 4065.30 3803.32 4178.78
E (e−2) 1817.37 140453.97 142222.13 2028.51 543.58

Single

s 1.21 1.26 1.20 1.11 1.14
d 7.87 14.39 14.47 28.00 25.66
D 8.18 19.31 12.88 7.33 23.42
n 14.09 20.08 17.40 22.03 19.23
E 18.03 0.15 0.14 22.44 193.38

Multi

s 1.21 1.23 1.16 1.07 1.09
d 3.69 14.39 14.38 15.62 9.43
D 3.58 17.66 12.88 3.91 9.18
n 8.15 19.97 17.49 22.03 16.68
E 11.38 0.10 0.10 22.75 193.38

Table 4: Relative task vulnerability (lower is better) for the Xception models. Each row
refers to the main task evaluated and the column to the auxiliary task. In the top half
(Clean), we provide the clean performance (1-mIoU for s, MSE for the rest), in the middle
(Single), we only attack the main task, in the bottom half (Multi), both tasks are attacked.

9

Auxiliary → s d D n E

Clean

s 46.87 54.05 54.78 54.17 56.42
d 116.91 180.59 403.70 108.81 114.66
D 127.78 160.12 130.55 105.36 117.93

n (e−2) 85.78 52.34 60.13 54.96 52.68
E (e−2) 20.95 11.74 8.66 10.35 14.14

Single

s 1.01 0.75 0.74 0.74 0.67
d 9.88 9.95 3.35 12.61 6.71
D 5.91 9.65 11.65 9.93 12.70
n 9.14 15.62 13.26 17.94 15.10
E 11.95 20.23 30.85 25.41 17.81

Multi

s 1.01 0.74 0.73 0.72 0.65
d 3.76 9.95 3.19 10.64 3.13
D 2.25 8.54 11.65 5.67 6.49
n 6.29 15.11 13.07 17.94 13.58
E 8.16 19.67 32.11 17.73 17.81

Table 5: Relative task vulnerability (lower is better) for the WideResnet50 models. Each
row refers to the main task evaluated and the column to the auxiliary task. In the top half
(Clean), we provide the clean performance (1-mIoU for s, MSE for the rest), in the middle
(Single), we only attack the main task, in the bottom half (Multi), both tasks are attacked.

Auxiliary → s d D n E

Clean

s 46.15 45.17 50.48 51.01 50.86
d 109.27 98.27 107.10 95.34 171.99
D 103.55 92.58 96.60 93.51 90.10

n (e−2) 110.84 48.20 56.71 59.22 116.94
E (e−2) 18.17 18.20 6.97 20.29 10.52

Single

s 1.03 1.07 0.87 0.82 0.87
d 7.87 6.87 6.93 9.03 2.65
D 8.18 7.45 7.19 7.33 8.03
n 11.10 14.29 13.51 10.87 22.06
E 18.03 54.91 16.02 22.44 9.41

Multi

s 1.03 1.05 0.85 0.80 0.85
d 3.69 6.87 7.18 5.60 1.83
D 3.58 7.30 7.19 3.91 3.44
n 8.64 14.35 13.43 10.87 21.94
E 11.38 51.44 15.80 22.75 9.41

Table 6: Relative task vulnerability (lower is better) for the Resnet152 models. Each
row refers to the main task evaluated and the column to the auxiliary task. In the top half
(Clean), we provide the clean performance (1-mIoU for s, MSE for the rest), in the middle
(Single), we only attack the main task, in the bottom half (Multi), both tasks are attacked.

3.2 Performance over all 11 tasks

Figures 1-11 show the performance of the Resnet18 models after attack (25-steps PGD l∞
with ε = 8/255;α = 2/255).

Across all 11 tasks, the multi-task models are not more robust than their single-task
counterparts. Some are, while most are not.

Figure 1: mIoU Semantic Segmentation (s) after adversarial attack. Legends: first combi-
nation of letters are the classes used for training, second combination of letters are tasks
attacked. For instance “sn s” means model trained on both tasks s and n but only task s
attacked. “s s” is the single-task baseline.

10

11

Figure 2: MSE of the Auto-encoder task (A) after adversarial attack. Legends: first com-
bination of letters are the classes used for training, second combination of letters are tasks
attacked. “A A” is the single-task baseline.

Figure 3: MSE of the Euclidian Depth (D) after adversarial attack. Legends: first combi-
nation of letters are the classes used for training, second combination of letters are tasks
attacked. “D D” is the single-task baseline.

12

Figure 4: MSE of the Z-Depth (d) after adversarial attack. Legends: first combination of
letters are the classes used for training, second combination of letters are tasks attacked. “d
d” is the single-task baseline.

Figure 5: MSE of the Edge Occlusion (E) after adversarial attack. Legends: first combi-
nation of letters are the classes used for training, second combination of letters are tasks
attacked. “E E” is the single-task baseline.

13

Figure 6: MSE of the Edge Texture (e) after adversarial attack. Legends: first combination
of letters are the classes used for training, second combination of letters are tasks attacked.
“e e” is the single-task baseline.

Figure 7: MSE of the Edge Normal estimation (n) after adversarial attack. Legends: first
combination of letters are the classes used for training, second combination of letters are
tasks attacked. “n n” is the single-task baseline.

14

Figure 8: MSE of the Keypoints 2d (k) after adversarial attack. Legends: first combination
of letters are the classes used for training, second combination of letters are tasks attacked.
“k k” is the single-task baseline.

Figure 9: MSE of the Keypoints 3d (K) after adversarial attack. Legends: first combination
of letters are the classes used for training, second combination of letters are tasks attacked.
“K K” is the single-task baseline.

15

Figure 10: MSE of the Principal curvature (p) after adversarial attack. Legends: first
combination of letters are the classes used for training, second combination of letters are
tasks attacked. “p p” is the single-task baseline.

Figure 11: MSE of the Reshading (r) after adversarial attack. Legends: first combination
of letters are the classes used for training, second combination of letters are tasks attacked.
“r r” is the single-task baseline.

3.3 Adversarial Vulnerability and number of tasks

In addition to the main paper Figure 1, we evaluate the scenario where the tasks are added
successively and the whole model is trained.

Figures 12 and 13 show how adversarial vulnerability changes when adding additional
tasks. When the tasks are not weighted, the additional tasks do not improve the robustness
of the models. When the tasks are weighted however, we can see that except when adding
vulnerable tasks (s or E in our examples), the models vulnerability tends to decrease when
adding supplementary tasks.

These results confirm our main claims that the number of tasks is not the main factor
of the vulnerability of multi-task models but how we choose the tasks and how we weigh
them.

Figure 12: Adversarial Vulnerability when adding consecutive tasks. The tasks are not
weighted.

Figure 13: Adversarial Vulnerability when adding consecutive tasks. The tasks are weighted
(1/N).

16

3.4 Impact of attack settings

Impact of number of steps Figures in Fig 15 show the impact of iteration steps on
the robustness of the different tasks. The first finding is that while the multi-task models
and the mono-task models display similar robustness on one-step and few step attacks, the
differences across the models widens as we increase the number of steps (nd attack on a nd
model causes a 75% increase in the MSE of z-depth in comparison with a d attack on the
same nd model (figure 14c).

Especially, some combinations of tasks are more sensitive to the number of iterations.
While Ds attack on a Ds model plateau after 15 epochs, D attack on the same Ds model
keeps increasing significantly with the number of steps (figure 14b). Similarly, Es attack on
an Es model plateau after 10 steps, while E attack on the same Es model keeps increasing
(figure 14d). In general, against the same multi-task model, multi-task attacks tend to
plateau much earlier,

Against mono-task attacks, Mono-task models are neither the more robust or the less
across the different tasks. For instance training a model with the two tasks d and D makes
the model 12% more robust than mono-task D (figure 14b, however training the model on
the tasks n and D makes the model 48% less robust than the mono-task model D.

Similar behaviour happens against multi-task attacks. While it is easier to attack a
single task model (task D) than attacking 2 tasks together, other combination of tasks are
easier to attack than attacking one single task (E and s together are easier to attack than
s alone in figure 14a). Conclusion: In general, when given sufficient steps multi-
task models perform as poorly as a mono-tasks models and multi-task attacks
plateau earlier than their multi-task counterparts.

Impact of Epsilon We evaluate our different tasks combinations under different strength
of attacks. We present the results of 4 tasks in figure 16, for each of the main tasks (s,D,E,n),
the boxplots reflects the relative error across various auxiliary tasks,both in the mono-task
attack context and in the multi-task context. Our results show that strength of attacks
impact differently the different tasks. While, the image segmentation task (s) and the
Normal prediction (n) task display a linear error with the increased epsilon, the Edge (E)
and Depth tasks (D) show an exponential vulnerability to the strength of the attack. This
different behaviour reflects both in multi-task attacks and mono-task attacks. It is worth
noticing that this different behaviour cannot be explained by the nature of metric used
(task S uses mIOu error and cross entropy loss while task n uses MSE and L1 loss) nor the
amplitude of error (n and E have closer range of values than E and D).

Our results also hint that under highs attack budgets, mono-task attacks and the multi-
task attacks achieve close performance, while the variance of robustness provided by the
different auxiliary tasks widens.

Impact of Norm We evaluate in this context the impact of using norm L2 in our attacks,
under low perturbation amount (epsilon=4), and limited attack steps (25).

Figure 17 shows that the relative task vulerability introduced by an L2 attack is very
limited in comparison with what we can achieve with an L-infinite under the same configura-
tion. Conclusion: While improving the robustness against L2 attacks, multi-task
learning provides little defense against L-infinite attacks.

17

4 Appendix D: Source code

We provide in the review package a folder Code with 3 components:
Our source code is under the MIT licence.

• MTRobust: cloned from https://github.com/columbia/MTRobust/ and extended
with additional models (Xception, WideResnet). This repository is used to train the
models following the same setting as the original paper of MTRobust. Read their
documentation for more instructions about how to train models. Or use our scripts
in MTRobust/jobs/.

You will need to download the Taskonomy dataset as explained in the original repos-
itory and update the configuration files in MTRobust/jobs/.

• MTVulnerability: Our package to attack and evaluate the vulnerability of the mod-
els. The folder MTVulnerability/jobs contains the script you can run directly. Please
read the specific README file of our package for more details & instructions.

• models: This folder provides one pretrained Taskonomy model for task combination
s (semantic segmentation) and d (Z-depth) to use as a quick test. You can use this
folder for the variable MODEL in the scripts located in MTVulnerability/jobs.

Our experiments use CometML to track and record the results of our experiments. You
will need a valid (free) account from https://www.comet.ml/ and a personal API Key to
send the results of the experiments.

18

https://github.com/columbia/MTRobust/
https://www.comet.ml/

(a) mIoU of Semantic segmentation task

(b) MSE of Euclidian Depth task

(c) MSE of Z-Depth task

(d) MSE of Edge occlusion task

Figure 14: Impact of attack steps on the performance of different tasks .Legend: The first
letters are the tasks the model has been trained on. The second letters are the tasks that
are attacked

(a) mIoU of Semantic Segmentation (b) MSE of Euclidian Depth

(c) MSE of Edge Occlusion (d) MSE of Z-Depth

(e) MSE of Normal

Figure 15: Impact of attack steps on the performance of different tasks: We evaluate the
relative task robustness of models for 3 different attack steps: 5, 15 and 25; for adversarial
attacks against the main task only (mono) or both tasks (multi)

20

(a) mIoU of Semantic segmentation task (b) MSE of Euclidian Depth task

(c) MSE of Edge occlusion task (d) MSE of Z-Depth task

(e) MSE of Normal

Figure 16: Impact of attack strength on the performance of different tasks: We evaluate the
relative task robustness of models for different attack budgets ε: 2/255; 4/255; 8/255 and
16/255.

21

(a) mIoU of Semantic segmentation task (b) MSE of Euclidian Depth task

(c) MSE of Edge occlusion task (d) MSE of Z-Depth task

(e) MSE of Normal

Figure 17: Impact of attack norm on the performance of different tasks

22

	Appendix A: Proofs for the Theoretical Analysis
	A.1
	A.2
	A.3
	A.4
	A.5

	Appendix B: Experimental Settings
	Appendix C: Detailed evaluation of the settings and tasks
	Relative task robustness of architectures
	Performance over all 11 tasks
	Adversarial Vulnerability and number of tasks
	Impact of attack settings

	Appendix D: Source code

