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Delta-kick cooling, time-optimal control of scale-invariant dynamics,
and shortcuts to adiabaticity assisted by kicks
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Delta-kick cooling (DKC) is used to compress the momentum distribution of ultracold quantum matter.
It combines expansion dynamics with the use of kick pulses, designed via classical methods, that bring the
system to rest. We introduce an exact approach to DKC for arbitrary scale-invariant dynamics of quantum gases,
lifting the original restrictions to free evolution and noninteracting systems, to account for the control of atomic
clouds in a time-dependent harmonic trap that can be either repulsive (inverted) or confining. We show that
DKC assisted by a repulsive potential outperforms the conventional scheme, and that sudden trap-frequency
quenches combined with DKC are equivalent to time-optimal bang-bang protocols. We further show that reverse
engineering of the scale-invariant dynamics under smooth trap-frequency modulations can be combined with
DKC to introduce a new class of shortcuts to adiabaticity assisted by kicks.
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I. INTRODUCTION

Delta-kick cooling (DKC) is a technique for preparing
states with low kinetic temperatures (narrow momentum dis-
tributions). It relies on unitary dynamics generated by a
time-dependent Hamiltonian, and it thus preserves the von
Neumann entropy of the system. As a result, it belongs to the
family of techniques that achieve “cooling” preserving phase-
space density [1–4]. DKC can be broadly used for the cooling
of cold atoms [3–8], molecules, and ions. It has found appli-
cations in interferometry and gravimetry with Bose-Einstein
condensates [9,10]. While originally conceived in a time-of-
flight setting [1], variants of it involve pulsing optical lattices
and other potentials [11].

An alternative approach to cooling preserving phase-space
density relies on expansions engineered in isolated systems
confined in a time-dependent trap [12–30]. The modulation
of the trapping frequencies in such expansions can involve
sudden, abrupt changes as in time-optimal bang-bang pro-
tocols. Alternatively, smooth modulations can be designed
using shortcuts to adiabaticity (STA) [31,32] (to be distin-
guished from recent generalizations to open quantum systems
that alter the phase-space density [33–37]). Such STA have
been applied to the cooling of ultracold atoms, including
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thermal clouds [38], Bose-Einstein condensates [39–41], low-
dimensional gases [42], and Fermi gases in the noninteracting
and strongly interacting regimes [43–46]. Though most works
consider harmonic confinement, it is worth emphasizing that
these techniques are also applicable to anharmonic trapping
geometries [17,21,23–26]. The latter can be explored in ul-
tracold gases—e.g., using time-averaged potentials [47] or
digital micromirror devices [48]—as well as trapped ions,
among other platforms.

In this work, we introduce an exact framework to describe
DKC using scale-invariant dynamics of quantum gases, from
which the conventional classical analysis is derived as an ap-
proximation. As a result, we generalize DKC in the presence
of interactions and an arbitrary time-dependent harmonic trap,
identifying the exact pulse parameters to bring the trapped
atomic cloud to rest. We prove the equivalence between the
generalized DKC and bang-bang protocols in time-optimal
control with unbounded frequencies, find exact DKC proto-
cols with realistic pulses of finite duration and strength, and
identify the conditions for the instantaneous-pulse description
to hold. We also introduce a new class of shortcuts to adia-
baticity that exploit a combination of reverse engineering the
scale-invariant dynamics and δ-kicks.

II. DKC and scale invariance

DKC of an atomic cloud admits an intuitive description
in the absence of interparticle interactions using classical
equations of motion [1–4]. The width of a wave packet with
initial size �r0 and momentum dispersion �p0 grows in time
according to �r(t ) ≈ �p0t/m = b(t )�r0 in the absence of
any confining potential. The dynamics are governed by the
kinetic energy and are thus Hamiltonian. Liouville’s theorem
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FIG. 1. Wigner function of a thermal state of a quantum oscil-
lator during a standard DKC protocol. (a) Initial state with inverse
temperature β0 = 1/(h̄ω0). (b) After the expansion time tk = 3/2ω0,
where ω0 is the initial trap frequency. (c) Upon completion of the
protocol, after the kick. During expansion in free space the initial
momentum width is conserved as the width in position grows and in
the long-time limit momentum becomes linearly correlated with po-
sition. A harmonic kick rotates the distribution onto the position axis,
lowering the temperature of the cloud. Further, p0 = √

(h̄mω0 )/2
and r0 = √

h̄/(2mω0).

guarantees that the phase space density is conserved. To bring
the expanding cloud to rest, DKC makes use of a pulsed
harmonic potential V = 1

2 mω2
k r2 for a short duration τk . This

pulse acts as a harmonic lens, applying a force �f = −mω2
k �r.

The resulting kick alters the momentum of the wave packet ac-
cording to δ �p = �f τk = −mτkω

2
k �r. Particles with momentum

m�r/tk are brought to rest by choosing τkω
2
k = 1/tk , where tk

is the instant at which the free expansion is interrupted by the
kick. In doing so, DKC narrows the momentum distribution
by a factor of �r0/�r(t ) = 1/b(t ), as illustrated in Fig. 1.

In what follows we adopt a general framework for quan-
tum systems undergoing self-similar dynamics, also known as
scale-invariant evolution. This kind of dynamics is familiar in
the description of wave packets in a time-dependent harmonic
trap [49,50]. As such, it describes as well noninteracting Bose
and Fermi gases. Yet scale invariance also governs the dynam-
ics of interacting systems, such as one-dimensional gases in
the Tonks-Girardeau regime [51,52], two-dimensional Bose-
Einstein condensates with contact interactions [53], and the
three-dimensional unitary Fermi gas [54,55], among other
examples [17,56]. In the Thomas-Fermi regime, it actually
governs the evolution of Bose-Einstein condensates in any
spatial dimension [14]. Scale invariance is at the core of
time-of-flight imaging techniques, providing the means to re-
construct in-situ properties of a confined atomic cloud, such as
the momentum distribution, from images of its spatial density
after its release [57–60]. Conversely, scale invariance can also
be used to probe properties during time evolution, such as the
mean energy and its fluctuations, when equilibrium properties
are known [30,61,62]. As we shall see, scale invariance can be
used to describe DKC exactly, without approximations, and to
generalize it in the presence of time-dependent confinements.

Consider the family of time-dependent Hamiltonians

H (t ) =
N∑

i=1

[ �pi
2

2m
+ 1

2
mω(t )2�ri

2

]
+
∑
i< j

V (�ri − �r j ), (1)

describing N particles in an isotropic harmonic trap. Particles
interact with each other through a homogeneous pairwise
potential fulfilling V (λ�r) = λ−2V (�r). Due to this scaling
property, the dynamics are self-similar, i.e., scale invariant

[17,56,63], a familiar feature in Bose-Einstein condensates
[57,58]. An energy eigenstate �(0) of the Hamiltonian at
t = 0 with eigenvalue E (0) evolves into

�(t ) = 1

b
DN
2

exp

[
i

mḃ

2h̄b

N∑
i=1

�ri
2 − i

∫ t

0

E (0)

h̄b(t ′)2
dt ′
]

×�

( �r1

b
, . . . ,

�rN

b
, t = 0

)
, (2)

where D denotes the spatial dimension and b(t ) > 0 is the
scaling factor that determines the variation of the atomic cloud
size. The specific time dependence of the latter following an
arbitrary modulation of the trapping frequency ω(t ) can be
found by solving the Ermakov equation,

b̈ + ω(t )2b = ω2
0/b3, (3)

with the boundary conditions b(0) = 1 and ḃ(0) = 0, as �(0)
is assumed to be stationary for t < 0. For instance, in time-
of-flight (TOF) imaging, the typical expansion factor after
suddenly switching off the trap (so that ω(t ) = 0 for t � 0)
is characterized by

bTOF(t ) =
√

1 + ω2
0t2. (4)

By contrast, in the adiabatic limit, setting b̈ ≈ 0 in the
Ermakov equation, one finds

bad =
√

ω0

ω(t )
. (5)

We next leverage the description of DKC to scale-invariant
dynamics, thus allowing for an exact treatment with no ap-
proximations. To this end, consider an initial equilibrium
state of H (t ) at t = 0 when the trap frequency is ω(0) = ω0.
A modulation in time of the trap frequency ω(t ) induces a
nonequilibrium dynamics of the state of the system described
by Eq. (2). In principle, one can match at a given instant tF
the width of the atomic cloud out of equilibrium with that of
a harmonic trap of frequency

ωF = ω0

b2
F

, (6)

whose ground state has the same width. With respect to the
associated Hamiltonian H (tF ) with ω(tF ) = ωF , excitations
under self-similar dynamics are encoded in the phase factor
proportional to ḃ/b in Eq. (2). It can be shown that this
phase modulation is responsible for the broadening of the
momentum distribution; see Appendix A. The cancellation of
this phase factor can be achieved by an instantaneous δ-kick,
described by the “kicked” Hamiltonian

Hk (t ) = H (t ) + δ(t − tk )
1

2
mω2

k

N∑
i=1

�ri
2. (7)

It is well known that the propagator associated with such a
Hamiltonian can be decomposed as

Uδ (t, 0) = U (t, tk + τk )e−iτk
mω2

k
2h̄

∑N
i=1 �ri

2
U (tk, 0), (8)

where U (t, t ′) is the propagator associated with H (t ), and τk

is a small timescale during which the kick is applied (finite
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pulses are discussed in Sec. VIII). Considering the evolution
from t = 0 to time tF = tk + τk [thus setting U (t, tk + τk ) =
I], one can choose the pulse strength such that the time evo-
lution operator reduces to the squeezing operator that dilates
the atomic cloud in coordinate space by a factor b = b(tk )
while compressing it in the momentum representation by a
factor 1/b,

Uδ (tF , 0) = S (b) = exp

(
−i

log b

2h̄

N∑
i=1

{�ri, �pi}
)

. (9)

Indeed, S (b)�(�r1, . . . , �rN) = �(�r1/b, . . . , �rN/b), while
for a function in the momentum representation
S (b)�̃( �p1, . . . , �pN) = �̃( �p1b, . . . , �pNb).

Specifically, this is achieved by choosing the pulse param-
eters τk and ωk such that

exp

(
−i

τkmω2
k

2h̄

N∑
i=1

�ri
2

)
exp

(
i

mḃ

2h̄b

N∑
i=1

�ri
2

)
= 1, (10)

this is

τkω
2
k = ḃ(tk )

b(tk )
. (11)

This is the main result of this work and generalizes DKC in
the presence of interactions and an arbitrary time-dependent
harmonic trap. A further generalization to the case of a non-
harmonic trap preserving scale invariance directly follows
from [21,24,26].

Under time of flight, the pulse condition (11) reads

τkω
2
k = ω2

0tk
1 + ω2

0t2
k

. (12)

For tk � ω−1
0 , the TOF scaling factor (4) approaches b(tk ) =

ω0tk , and one finds the simplified condition used in the long-
time (far-field) DKC [1,4] described at the beginning of this
section,

τkω
2
k = 1/tk . (13)

But this is an approximation that is restricted to (1) free TOF
under sudden switching of the trap and (2) long times of
expansion tk � ω−1

0 . Figure 2 shows in a TOF setting the
difference between the strength of the kick in this limit and
the exact result predicted by Eq. (11).

Figure 3 illustrates the associated modulation of the trap
frequency and the evolution of the scaling factor during the
process. The initial state is in equilibrium with a harmonic trap
of frequency ω0. This can be either considered as a reference
virtual trap or an initial physical trap confining the atomic
cloud. At t � 0 the atomic cloud is released and expands
freely for a time tk when a pulse is implemented. Such a pulse
can be described by a frequency modulation, although it can
be possibly engineered by different means in the laboratory.
The atomic cloud right after the pulse is in equilibrium with a
trap of frequency ωF = ω0/b2

F with bF = b(tk ).
Equation (12) can be rewritten in terms of the final scaling

factor after TOF as τkω
2
k/ω0 =

√
b2

F − 1/b2
F . By contrast, in

the long-time approximation τkω
2
k/ω0 = 1/

√
b2

F − 1 ≈ 1/bF .
The agreement between the exact pulse parameters deter-

FIG. 2. Comparison between the pulse parameters determined by
the exact DKC relation (blue, solid line) and the long-time limit (red,
dashed line). The kick strength is shown as a function of the free time
of flight tk at which the kick is applied. Differences in the strength
between the exact and long-time pulses become significant for
tk � 3ω−1

0 .

mined by these two approaches is naturally fulfilled whenever
the scaling factor is moderately large, as shown in Fig. 4.

III. PHASE-SPACE ANALYSIS OF GENERALIZED DKC

A phase-space description of DKC, generalized for ar-
bitrary modulations of the trapping frequency, makes its
operation particularly transparent. The noncommutativity of
position and momentum operators prompts the use of the
Wigner function, as a quasiprobability distribution [64,65].
Under scale invariance, using (2) we first note that the one-
body reduced density matrix at time t , ρ1(t ) = ρ1(�r, �r ′, t ), is
related to the initial one according to [17]

ρ1(t ) = N
∫

d�r2, . . . , �rN�(�r, �r2, . . . , �rN; t )

×�(�r ′, �r2, . . . , �rN; t )∗

= N

bD
exp

[
i

mḃ

2h̄b
(�r 2 − �r ′ 2)

]
ρ1

( �r
b
,
�r ′

b
, t = 0

)
.

(14)

(a) (b)

FIG. 3. DKC after free expansion. (a) Time evolution of
ω(t )2/ω2

0 during the process, with parameters 1/5ωk = 2ωF = ω0.
(b) Time evolution of b(t ). The kick is considered short enough so
that evolution of the scaling factor is negligible during its implemen-
tation, and the final state is a stationary state of the final trap with
frequency ωF = ω0/b2

F .
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FIG. 4. Pulse parameters for DKC with free expansion as a func-
tion of the final value of the scaling factor, with b(0) = 1. The blue,
solid line corresponds to the exact expression for the kick (12) and
the red, dashed line to the approximated expression (13).

The Wigner function associated with the one-body reduced
density matrix can then be represented as a function of the
coordinate �r and the canonically conjugated momentum �p,

Wt (�r, �p) = 1

(π h̄)D

∫
〈�r − �y|ρ̂t |�r + �y〉e2i �p·�y/h̄ d�y,

where ρ(�r, �r ′) = 〈�r|ρ̂t |�r ′〉 denotes a density matrix in the co-
ordinate representation. The marginals of Wt (�r, �p) correspond
to the probability density in the coordinate and momentum
representation∫

Wt (�r, �p) d �p = ρ(�r, �r) = 〈�r|ρ̂t |�r〉, (15)∫
Wt (�r, �p) d�r = ρ( �p, �p) = 〈�p|ρ̂t | �p〉. (16)

For the description of DKC, it follows from (14) that the
evolution of the Wigner function in a scale-invariant process
is governed by a canonical transformation,(

�r
�p
)

=
(

α β

γ δ

)(
�r ′

�p ′

)
, (17)

belonging to the two-dimensional real symplectic group
Sp(2,R). The phase-space propagator that determines the
evolution of the Wigner function [66]

W (�r, �p; t ) =
∫∫

d�r ′ d �p ′K (�r, �p|�r ′, �p ′)W (�r ′, �p ′; 0) (18)

becomes

K (�r, �p|�r ′, �p ′) = δ[�r ′ − (α�r + β �p)]δ[ �p ′ − (γ �r + δ �p)],

(19)

in terms of the D-dimensional δ function. Under scale invari-
ance (SI), the evolution of an eigenstate at t = 0 following
a modulation of the trapping frequency ω(t ) is described
by [67] (

α β

γ δ

)
SI

=
(

1/b 0
−mḃ b

)
(20)

and the time-dependent Wigner function reads

Wt (�r, �p) = W0

( �r
b
, b�p − mḃ�r

)
, (21)

where we note that W0 need not be positive, i.e., it can describe
a nonclassical state.

The evolution of the Wigner function reflects the fact that
as the expansion occurs the momentum distribution is com-
pressed. In addition, the expansion also leads to a momentum
shift controlled by the rate of change of the scaling factor.
Both DKC cooling and STA aim at engineering an expan-
sion (or compression) such that the initial Wigner function
W0(�r, �p) evolves into Wt (�r, �p) = W0(�r/b, b�p), canceling the
momentum shift. While conventional STA achieve so by re-
verse engineering the dynamics, the evolution under DKC
leads first to the state (21) and then applies a δ-kick (DK),
with phase-space propagator characterized by(

α β

γ δ

)
DK

=
(

1 0
+mbḃ 1

)
, (22)

which implements the momentum boost b�p − mḃ�r → b�p,
slowing down the motion of the atomic cloud. Indeed, the
propagator of the complete sequence associated with DKC is
set by (19) with(

α β

γ δ

)
DKC

=
(

α β

γ δ

)
DK

(
α β

γ δ

)
SI

=
(

1/b 0
0 b

)
, (23)

which guarantees reaching the target state, e.g., with squeezed
momentum distribution by a scaling factor b.

In short, the condition (11) specifies the required kick to
cancel excitations during an arbitrary scale-invariant expan-
sion, with respect to a Hamiltonian H (tF ) with frequency
ωF in (6). This suggests two different strategies to improve
DKC: (1) Combine control techniques to engineer expansions
faster than TOF and apply modified δ-kicks. (2) Keep a trap
turned on at all times and reverse engineer its frequency ω(t )
to prepare the desired target state. Said differently, one can
conceive a new kind of STA: drive ω(t ), cancel excitations
with a δ-kick and trap the kicked state with a harmonic po-
tential of frequency ωF = ω0/b2. Effectively, this approach is
described by a combination of a smooth driving ω(t ) with a
bang-bang protocol with two steps, from ω(tk ) to ωk and from
ωk to ωF = ω0/b2. We discuss these two alternatives below.
Before doing so, we first establish and quantify the advantage
of using DKC over adiabatic protocols.

IV. ADVANTAGE OF DKC WITH FREE EXPANSION
OVER ADIABATIC PROTOCOLS

A natural strategy to meet the goal of DKC is to rely
on adiabatic driving. Under scale invariance dynamics, the
adiabaticity condition was identified by Lewis and Riesenfeld
[49] as

ω̇(t )

ω(t )2
� 1. (24)

Provided that this condition is satisfied one can engineer an
adiabatic expansion to compress the momentum distribution.

To shorten the process, one may consider protocols in
which the nonadiabaticity coefficient is finite, but kept
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constant at all times. A protocol satisfying the condition

ω̇(t )

ω(t )2
= μ (25)

is provided by a time-dependent trap frequency of the form

ω(t ) = ω0tF
tF + ( ω0

ωF
− 1
)
t
, (26)

which varies from ω0 to ωF in a time tF . In such a protocol

μ =
(

1 − ωF

ω0

) 1

ωFtF
. (27)

This driving scheme has been explored in a number of works
[68–70]. The evolution of the scaling factor is then nonmono-
tonic and at specific times {tn}, the rate of change of the scaling
factor vanishes, i.e., ḃ(tn) = 0. At these specific times, the
scaling factor takes the value

b(tn) =
√

ω0

ωF
, (28)

which is precisely the result in a truly adiabatic evolution.
In this sense, protocols with finite μ reproduce the exact
adiabatic dynamics at the specific instants of time {tn}. It is
then possible to stop the expansion at tn by suddenly changing
the trapping frequency from ω(tn) to ωF , without inducing
residual excitations in the final state, which is a stationary state
of the final Hamiltonian with frequency ωF . The shortest time
at which this is possible is given by [70]

t1 = 1 − ωF
ω0

ωF

√
1 + 4π2

ln2
(

ωF
ω0

) . (29)

We note that while the prefactor of the square root is ap-
proximately N/ω0 for N = ω0/ωF � 1, the square root term
cannot be ignored in the experimentally relevant range of
values, e.g., N = 1 − 100. By contrast, relying on DKC with
free expansion, the required time for the scaling factor to reach

the value
√

ω0
ωF

is

tDKC
F = 1

ω0

√
ω0

ωF
− 1 ≈

√
N/ω0. (30)

The ratio of the required times is thus

t1
tDKC
F

=
√

(N − 1)

[
1 + 4π2

ln2 (N )

]
, (31)

which as a function of N takes the minimum value of 8.03 for
N = 4.29. This provides the minimum time gain by DKC over
adiabatic approaches. Figure 5 shows the actual time gain as
a function of N . While asymptotically it approaches

√
N , the

actual expression (31) is required to estimate the advantage
of DKC over a (quasi-) adiabatic protocol for realistic values
of N .

V. SUDDEN TRAP-FREQUENCY QUENCHES AND
TIME-OPTIMAL CONTROL

Consider an initial atomic cloud confined in a trap of fre-
quency ω0 and released into a weaker trap of frequency ω1.
Provided the dynamics is scale invariant, the time evolution

FIG. 5. Time gain in DKC with free expansion over adiabatic
protocols as a function of the ratio N = ω0/ωF .

of the radius of the atomic cloud is governed by the scaling
factor. The solution of the Ermakov equation can generally be
determined as detailed in the Appendix B and in this case is
well known [51,71]:

b(t ) =
√

1 +
(

ω2
0

ω2
1

− 1

)
sin2(ω1t ). (32)

This solution is oscillatory between the minimum value
bmin = 1 and the maximum value bmax = ω0

ω1
with frequency

2ω1 and period T = π/ω1. We note that bmax = b2
ad, where

bad =
√

ω0
ω1

is the solution obtained in the adiabatic limit by

setting b̈ ≈ 0 in the Ermakov equation. Specifically, we note
that at

tn = n
π

2ω1
, b(tn) = ω0

ω1
, ḃ(tn) = 0, (33)

and the time evolving eigenstate becomes a stationary eigen-
state of a trap with frequency ω2

1/ω0. It is thus possibly
to suddenly switch at t = tn between the frequency ω1 and
ωF = ω2

1/ω0 to prepare a stationary state in the final trap with
frequency ω2

1/ω0. The time-optimal sequence involves two
sudden quenches of the trapping frequency, one at t = 0 from
ω0 to ω1, and a second sudden quench at t1 = π

2ω1
from ω1 to

ω2
1/ω0. This is in essence a bang-bang protocol. And it sets

the standards: To beat this protocol one needs to prepare a sta-
tionary state with final frequency ω2

1/ω0 in a time shorter than
t1 = π

2ω1
. As it turns out, this is always possible using STA

provided that an arbitrary ω(t ) can be implemented [13,17].
It is instructive to compare such sudden quench with DKC

using free flight. Considering a thermal state of a harmonic
oscillator with initial inverse temperature β0 and frequency
ω0, phase-space preserving cooling allows one to prepare
final states with frequency ωF and inverse temperature ωF ,
provided that β0ω0 = βF ωF . To reduce the temperature by
a factor N such that TF = T0/N one must target a frequency
ωF = (TF /T0)ω0 = ω0/N , e.g., under adiabatic driving. Using
the above bang-bang protocols with ω1 = √

ω0ωF one can
succeed in a time

t1 = π
√

N

2ω0
. (34)
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Said differently, for a final ωF = ω0/N using ωF = ω0/b2

and b(tn) = ω0
ω1

, one finds ωF = ω2
1/ω0, i.e., ω1 = √

ω0ωF .
This is achieved in a time

t1 = π

2
√

ω0ωF
= π

√
N

2ω0
(35)

while standard DKC requires

ωF = ω0

1 + ω2
0t2

= ω0

N
, (36)

and thus a time

t = 1

ω0

√
ω0

ωF
− 1 (37)

≈
√

N

ω0
. (38)

As expected, the two protocols are approximately equivalent
given the timescales involved. However, there is no need to
perform a kick when releasing the cloud in a weaker trap,
as the later can be used to slow down the particles with an
effect equal to that intended by a perfect kick. Conversely,
DKC replaces the need for a final trap by a pulse.

What is the relation of these protocols to optimal control
theory? The time-optimal bang-bang protocol whenever the
trap frequency is restricted to be positive ω(t ) � 0 and within
the interval ωmin � ω(t ) � ωmax has been provided by Sala-
mon et al. for an intermediate frequency change [12]

ω(t ) =

⎧⎪⎨⎪⎩
ω0 t � 0
ω1 0 < t < t1
ω2 t1 < t < t1 + t2
ωF t � tF = t1 + t2.

(39)

In the limit, ω1 → 0, ω2 → ∞, one finds the fastest pro-
tocol with a total expansion time (37). Indeed, when ω1 → 0
(free expansion), b(t ) =

√
1 + ω2

0t2 for 0 � t � t1. Identify-
ing t1 = tk , the ω2 → ∞ can be implemented by a δ-kick, as
those used in DKC, making τk = t2 → 0. The total expansion
time is then governed by the required time for the scaling
factor under free flight to match the equilibrium value cor-
responding to the target final trap of frequency ωF ,√

1 + ω2
0t2 =

√
ω0

ωF
, (40)

that yields as a solution Eq. (37).
As a result, DKC with free expansion is equivalent to the

time-optimal control with unbounded trapping frequencies.
Said differently, as long as the trap frequency takes only real
values during the expansion within the range [ωmin, ωmax],
DKC with free expansion provides the time-optimal protocol
(provided that a δ-kick can be implemented). As we next
show, the relation between DKC and time-optimal control can
as well be extended to protocols involving trap inversion.

VI. DKC WITH TRAP INVERSION
AND TIME-OPTIMAL CONTROL

Given an initial equilibrium state confined in a trap of
frequency ω0, consider the sudden inversion of the trap, by
making the frequency purely imaginary ω0 −→ ω1 = iωI .

2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

Exact delta kick
Approx delta kick

FIG. 6. Pulse parameters for DKC with trap inversion as a func-
tion of the final value of the scaling factor. The blue, solid line
corresponds to the exact expression for the kick (43) with tk given
by (47) and the red, dashed line to the approximated expression (44),
with the value ωI/ω0 = 2.

This amounts to a repulsive rather than an attractive potential,
with the profile of an inverted parabola. Such a quench can
cause more rapid expansion than conventional DKC and thus
generally leads to faster protocols. To appreciate this, consider
the trajectory of a single particle with the equations of motion
�̇r = �p/m and �̇p = +mω2

I �r. The quantity

�̇z = d

dt

( �p√
m

+
√

mω2
I �r
)

= ωI�z (41)

grows exponentially in time as �z(t ) = �z(0) exp ωI t . As a
result, given an initial phase-space distribution, the nearly
exponential spreading in coordinate space yields a nearly
exponential squeezing of the momentum distribution, given
Liouville’s theorem. In what follows, we provide an exact
account in terms of the scale-invariant dynamics.

The scaling factor following the quench grows as [13]

b(t ) =
√

1 +
(

ω2
0

ω2
I

+ 1

)
sinh2(ωI t )

≈ 1

2

(
ω2

0

ω2
I

+ 1

) 1
2

exp(ωI t ), (42)

where the approximation in the second line holds for t � ω−1
I ,

i.e., in the long-time limit. The resulting nonequilibrium state
has the same width as that of an equilibrium state of the
Hamiltonian H (t ) in a trap of frequency ω(t ) = ω0/b(t )2 and
excitations can be canceled with a δ-kick at t = tk satisfying

τkω
2
k = ḃ

b
= ωI

2

(
ω2

0 + ω2
I

)
sinh(2ωI tk )

ω2
I + (ω2

0 + ω2
I

)
sinh2(ωI tk )

(43)

≈ ωI . (44)

The second line follows from the approximate exponential
growth of the scaling factor for tk � ω−1

I , which makes the
kick robust against errors in the timing of tk . As a function
of the final value of the expansion factor, the comparison
between (43) and (44) is shown in Fig. 6. The modulation of
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(a) (b)

FIG. 7. DKC with trap inversion. (a) The trap inversion corre-
sponds to a sudden quench of the frequency square from its initial
value ω2

0 to a negative one −ω2
I , yielding a nearly exponential ex-

pansion. At time tk , a kick of frequency ωk (vertical gray line) is
applied, bringing the atomic cloud at equilibrium with the final trap
of frequency ωF . (b) The scaling factor approaches an exponential
expansion that is terminated by the kick. In the instantaneous pulse
approaches, the evolution of the scaling factor is considered negli-
gible during the pulse and remains at equilibrium afterwards. Here
ω0 = 1, ω2

k = 200ω2
0, and ωI/2 = 2ωF = ω0.

the trapping frequency for an example protocol is shown in
Fig. 7, together with the evolution of the scaling factor.

Let us compare the free TOF used in the standard DKC
(Fig. 1) with the expansion under trap inversion (TI) (Fig. 8),
fixing the expansion time in both cases equal to tF . Specif-
ically, considering the ratio that governs the gain in the
squeezing of the momentum distribution

�R(tF )

[�R(tF )]TI
≈ 1

2

(
1

ω2
0

+ 1

ω2
I

) 1
2 exp(ωI tF )

tF
, (45)

one finds that the degree of momentum squeezing under trap
inversion greatly exceeds that achievable by standard DKC.
However, it should be taken into account that the strength of
the pulse that is to be applied in DKC with trap inversion is
higher than under free expansion. Indeed, the ratio between
the pulse parameters in both cases is set by the ratio between
(12) and (43), that approximately reduces to

τkω
2
k[

τkω
2
k

]
TI

≈ 1

ωI tk
. (46)

In the laboratory, only pulses with a maximum value of τkω
2
k

can be implemented, usually because of restrictions on the
attainable trap frequency in conjunction with the nonhar-

FIG. 8. Wigner function of a thermal state of a quantum oscil-
lator during a DKC protocol with trap inversion. (a) Initial state
with inverse temperature β0 = 1/(h̄ω0). (b) After the expansion time
tk = 3/2ω0 and with ωI = ω0, where ω0 is the initial trap frequency.
(c) Upon completion of the protocol, after the kick. Note that DKC
with trap inversion increases the momentum spread during expansion
and thus requires a stronger kick.

monic shape of most traps far from their center. Hence, DKC
with trap inversion may impose more demanding practical
requirements.

Alternatively, the comparison between different protocols
can be done by considering the required time for the scaling
factor to reach a fixed, target value b(tF ) = bF . After a sudden
trap inversion, the required expansion time is

tF = 1

ωI
sinh−1

√√√√ b2
F − 1(

ω2
0

ω2
I
+ 1
) (47)

≈ 1

ωI
log

⎛⎜⎝ 2bF(
ω2

0

ω2
I
+ 1
) 1

2

⎞⎟⎠. (48)

By contrast, DKC relying on free TOF expansion requires a
time tDKC

F ≈ bF /ω0 and thus

tF
tDKC
F

≈ ω0

ωI bF
log

⎛⎜⎝ 2bF(
ω2

0

ω2
I
+ 1
) 1

2

⎞⎟⎠, (49)

providing a great speedup as a function of bF and ω0/ωI .
It is worth establishing the relation between such protocol

and the time-optimal bang-bang protocol allowing for trap
inversion, that is, with a purely imaginary frequency. In the
context of STA, Chen et al. [13] proposed a bang-bang pro-
tocol involving a sudden inversion of the trap frequency for
a given time t1, with ω(t ) = iωI and a subsequent sudden
quench to a trap of frequency ω2 with a waiting time t2.
DKC with trap inversion replaces the second stage of the STA
expansion during the time t2 by a δ-kick pulse of vanishing
duration. As a result, DKC with trap inversion shortens the
expansion time with respect to the protocol proposed in [13],
achieving the target state in an expansion time that is solely
given by t1 = tk in Eq. (47). Chen et al. made however no
claim on time optimality in the use of an inverted harmonic
trap. The time-optimal bang-bang protocol with trap inversion
was reported in [15]. In the case of unbounded frequency ω2,
and with ωI � ω0, the time-optimal protocol was shown to
take the form in Eq. (47), which recovers Eq. (36) in [15].
As long as the duration of the δ-kick pulse is negligible, the
protocol involving a sudden trap inversion and a δ-kick is thus
time optimal.

VII. SHORTCUTS TO ADIABATICITY
ASSISTED BY δ-KICKS

In what follows, we consider protocols by easing the re-
quirement for time optimality. As we shall see, this allows
us to introduce a new class of STA combining δ-kicks with
the modulation of the trap frequency based on reverse engi-
neering the scale-invariant dynamics. We term such protocols
δ-STA for short. This new class of STA provides a higher
level of freedom in the design of the control protocol than
that offered by techniques previously reported in the lit-
erature [12–18,20,21,23,24,26]. This feature is particularly
advantageous when the trapping confinement and pulse im-
plementation are achieved by different means, as is often the
case in the laboratory.
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Consider the control task of driving an initial stationary
state of H (0) with frequency ω0 to a target state of a Hamilto-
nian H (tF ) with frequency ωF in a prescheduled time tF . We
choose ωF = ω0/b2

F and reverse engineer the scaling factor
b(t ) so that it matches the usual boundary conditions for an
initial stationary state

b(0) = 1, ḃ(0) = 0, (50)

which make the time-dependent state �(t ) equal to �(0) at
t = 0.

Regarding the evolution of the state at a later time, we
simply consider

b(tk ) = bF =
√

ω0

ωF
, (51)

with no condition on the derivatives ḃ(tk ) and b̈(tk ). A polyno-
mial interpolating ansatz satisfying all these conditions is

b(t ) = 1 + (bF − 1)
( t

tk

)2

. (52)

The associated control protocol consists of three steps. First,
one implements the following driving during the time interval
t ∈ [0, tk ):

ω(t )2 = ω2
0

b4
− b̈

b
= ω2

0

b4
− 2(bF − 1)

t2
k b

, (53)

where we have used the Ermakov equation. Note that ω(tk ) �=
ωF , away from the adiabatic limit. Indeed, at the end of the
interval ω(tk )2 = ω2

F − 2(bF −1)
t2
k bF

.

Subsequently, at t = tk , a δ-kick is applied, fulfilling the
condition

τkω
2
k = ḃ(tk )

b(tk )
= 2(bF − 1)

tkbF
. (54)

Finally, at tF = tk + τk a trap with frequency

ωF = ω0

b2
F

(55)

is turned on.
δ-STA offer advantages with respect to STA designed by

reverse engineering, e.g., [13,17]. In particular, by combining
sudden quenches and δ-kicks they make possible to engineer
driving protocols between the same initial and final states that
lower the required values of the transient interpolating driving
frequency ω(t ), as shown in Fig. 9.

In short, the above protocol involves a sudden quench from
ω0 to ω(0), the modulation ω(t ), a δ-kick, and a final sudden
quench. One can remove the first sudden quench by impos-
ing ω(t = 0) = ω0, which is satisfied if b(0) = 1 together
with the auxiliary condition b̈(0) = 0. Indeed, one can readily
consider supplementary boundary conditions associated with
higher-order vanishing derivatives

b̈(0) = ˙̇ḃ (0) = · · · = bn)(0) = 0, (56)

where bn) denotes the nth time derivative. These are satisfied
by an interpolating polynomial

b(t ) = 1 + (bF − 1)
( t

tk

)n+1

(57)

(a) (b)

FIG. 9. Comparison of δ-STA and STA based on reverse-
engineering. (a) Modulation of the trapping frequency in δ-STA (red
solid line) and STA by reverse engineering (dotted-dashed blue line)
[13]. An “adiabatic” trajectory ω2

0/b(t )4 with b(t ) in Eq. (52) is
shown as a reference (dotted black line). A δ-STA involves a sudden
quench at t = 0 and a pulse before the end of the protocol, with a
rather gentle modulation of the trap frequency in between. A con-
ventional STA involves high transient frequencies in the intermediate
stages, instead of a pulse. Suppressing the sudden quench at t = 0 in
δ-STA with n = 2 (dashed green line) leads to higher values of ωI ,
still below those involved in conventional STA. (b) Evolution of the
scaling factor, showing that a δ-STA achieves higher expansion rates
than a conventional STA during the protocol. While in conventional
STA the process of slowing down extends during the second half of
the protocol, it is sharply localized at tk in a δ-STA (vertical gray
line).

that results from a trap frequency modulation governed by

the Ermakov equation, ω(t )2 = ω2
0

b4 − b̈
b , reaching right before

the kick the value ω(tk )2 = ω2
0/b4

F − n(n + 1)(bF − 1)b3
F /t2

F .
For n � 2, ω(t ) = ω0, thus removing the need for a sudden
quench at t = 0. As for the pulse to be applied at t = tk , it is
characterized by

τkω
2
k = ḃ(tk )

b(tk )
= (n + 1)(bF − 1)

tkbF
, (58)

which increases with n, potentially precluding its implemen-
tation in the laboratory if a maximum value of τkω

2
k is at reach

in a given setup. Upon completion of the protocol, the final
state is the same as with n = 1 and is a stationary state of a
trap of frequency ωF = ω0/b2

F .

VIII. DKC WITH PULSES OF FINITE DURATION
AND STRENGTH

A. DKC as a limit of time-optimal control

So far we have consider DKC associated with an idealized
instantaneous δ-kick (7). However, the implementation in the
laboratory of such pulses generally takes a finite amount of
time and makes use of a finite potential. To explore their
effect, we consider the canonical DKC under free time of
flight as a bang-bang control protocol. In this case, the width
of the atomic cloud matches a harmonic trap of frequency ω0

(virtual or real) that is switched off at t = 0. Free evolution
ensues for a time tk and is interrupted by a pulse of duration
τk associated with a trap of finite frequency. We thus consider

033261-8



DELTA-KICK COOLING, TIME-OPTIMAL CONTROL … PHYSICAL REVIEW RESEARCH 3, 033261 (2021)

a finite-frequency bang-bang control protocol

ω(t ) =

⎧⎪⎨⎪⎩
ω0 t � 0
0 0 < t < tk
ωk tk < t < tk + τk

ωF t � tF = tk + τk .

(59)

The evolution of the scaling factor during the full process
is determined by the Ermakov equation (3) and reads [15]

b(t ) =
{

bTOF(t ) 0 < t < tk,
b2(t ) tk < t < tF

(60)

with bTOF(t ) =
√

1 + (ω0t )2 and

b2(t ) =
√

b2
F +

[( ω0

bF ωk

)2
− b2

F

]
sin2[ωk (t − tF )], (61)

with bF = √
ω0/ωF .

We note that b2(t ) is found by reversing the dynamics from
the target state at the end of the process tF . As detailed in
Appendix C, imposing the continuity condition of the scaling
factor at the time of the kick, bTOF(tk ) = b2(tk ), determines
both the kick time tk and the kick duration τk , that are set by

tk = 1

ω0

√
b2

F − 1 + 1 − b2
F

b2
F

(ω0

ωk

)2
, (62)

τk = 1

ωk
arcsin

√√√√ b2
F − 1

b4
F

ω2
k

ω2
0
− 1

. (63)

Importantly, with access to unbounded frequencies, in the
limit ωk → +∞, τk vanishes and one recovers tk → tF =√

ω0/ωF −1
ω0

, in agreement with Eq. (37). As for the exact finite-
pulse duration (63), in this limit

τkω
2
k =

√
b2

F − 1

b2
F

ω0, (64)

which is precisely the value predicted by the exact instanta-
neous pulse condition Eq. (12), for the chosen tk . This proves
that DKC can be derived as a limit of the bang-bang protocol
when the pulse frequency is unbounded. In this sense, DKC is
time optimal.

Further, we note that (64) differs from the usual DKC con-
dition Eq. (13) derived from the long-time classical dynamics
of pointlike particles [1],

τkω
2
k = 1/tk = 1√

b2
F − 1

ω0 ≈ ω0

bF
. (65)

In Fig. 10 we compare the pulse parameters given by the
different approaches, including the exact treatment with a
δ-kick (12), the long-time (far-field) classical approximation
for a δ-kick (13), and the exact finite-pulse condition (63). The
pulse parameters for the exact finite-kick and δ-kick models
agree for ωk � 2ω0. Note that the parameters are such that
bF = √

2. The validity of the long-time DKC protocol further
requires bF � 1, so that τkω

2
k ≈ ω0/bF .

FIG. 10. DKC with finite pulses. Comparison of the pulse param-
eters in the exact finite-pulse analysis (63), the exact δ-kick treatment
(12) and long-time δ-kick approximation (13), taking ωF = ω0/2.

B. Variation of the scaling factor during a finite pulse

Away from the δ-kick limit, the scaling factor b(t ) may
evolve during the application of a pulse of finite duration.
Using the finite-pulse expression for scaling factor allows
us to quantify this deviation. We thus consider the modula-
tion in (59). Instead of imposing boundary conditions at the
beginning and end of the process and using a mixed forward-
backward interpolation of the scaling factor, as done in the
previous section, we use a forward evolution in which the
magnitude and rate of the scaling factor at tk are used as initial
conditions for the subsequent stage, from tk to tF . The solution
of the Ermakov equation (3) during the full process reads

b(t ) =
{

bTOF(t ) 0 < t < tk,
b2(t ) tk < t < tF

(66)

with bTOF(t ) =
√

1 + ω2
0t2 while for t � tk the evolution of

the scaling factor can be founds from using Pinney’s method
as detailed in the Appendix B and reads

b2 =
{[

bk cos(ωks) + ḃk sin(ωks)

ωk

]2

+ ω2
0

b2
kω

2
k

sin2(ωks)

} 1
2

(67)

with s = t − tk and

bk = bTOF(tk ) =
√

1 + ω2
0t2

k , (68)

ḃk = ḃTOF(tk ) = ω2
0tk√

1 + ω2
0t2

k

. (69)

In the spirit of (37), one can choose the kick time tk such that
bTOF(tk ) = bF , which determines tk =

√
b2

F − 1/ω0 as well as
ḃ(tk ) = ω0

√
b2

F − 1/bF .
The exact variation of the scaling factor during the comple-

tion of the pulse is given by

δbk = b2(tk + τk ) − bk . (70)
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In the instantaneous pulse approximation, τk is chosen accord-
ing to Eq. (12) [see (64)], which yields

τkωk =
√

1 − 1

b2
F

ω0

bF ωk
. (71)

This can be used as a small expansion parameter provided that
bF ωk � ω0. To leading order in ωkτk ,

δbk = b2
F − 1

b3
F

(ω0

ωk

)2
. (72)

For the instantaneous pulse approximation to hold, one re-
quires δbk � 1, which is guaranteed provided that ω0/ωk � 1.

Further, upon completion of the pulse, in the instantaneous
approximation ḃF = ḃ(tk + τk ) = 0. With a finite pulse anal-
ysis, one finds to leading order in τkωk that

ḃF =
√

b2
F − 1

b5
F

ω0

(ω0

ωk

)2
, (73)

which is negligible, ḃF ≈ 0, in the limit ω0/ωk � 1.

C. DKC with trap inversion from optimal control

We demonstrated that the δ-kick is the limit process of
the bang-bang trajectory with positive frequency in Sec. V.
As we next show, the protocol introduced in Sec. VI can
be also understood as the limit of a bang-bang process with
an inverted trap and an intermediate frequency change. The
time-optimal protocol whenever the trap frequency can be
purely imaginary ω2(t ) < 0 and within a given frequency
range ωmin � |ω(t )| � ωmax has been found using Pontrya-
gin’s maximum principle by Stefanatos et al. [15]:

ω(t ) =

⎧⎪⎨⎪⎩
ω0 t � 0
iωI 0 < t < tk
ωk tk < t < tk + τk

ωF t � tF = tk + τk .

(74)

The variation of the width of the cloud is governed by the
evolution of the scaling factor, which can be readily found by
solving the Ermakov equation and takes the form

b(t ) =
{

b1(t ) 0 < t < tk,
b2(t ) tk < t < tk + τk,

(75)

where

b1(t ) =
√

1 +
[
1 +

(ω0

ωI

)2]
sinh2(ωI t ), (76)

b2(t ) =
√

b2
F +

[( ω0

bF ωk

)2
− b2

F

]
sin2[ωk (t − tF )]. (77)

The expansion in the inverted trap occurs for a time

tk = 1

ωI
arcsinh

√
v1
(
b2

F − 1
)(

b2
F v2 − 1

)
b2

F (v1 + v2)(v1 + 1)
(78)

with v1 = ( ωI
ω0

)2, v2 = ( ωk
ω0

)2, as detailed in Appendix C; see
as well [15].

FIG. 11. DKC with finite pulses and trap inversion. The duration
of the kick τk is plotted as a function of the pulse frequency, when
determined by the exact finite-pulse relation (79), the exact δ-kick
(43), and the long-time approximate δ-kick (44), with ωF = ωI/4 =
ω0/2.

The subsequent kick with finite frequency ωk is applied for
a time

τk = 1

ωk
arcsin

√
v2
(
b2

F − 1
)(

b2
F v1 + 1

)
(v1 + v2)(b4

F v2 − 1)
, (79)

which sets the exact relation τkω
2
k for DKC with an inverted

trap with a pulse of finite duration and strength. In particular,
in the limit of an unbounded pulse frequency ωk ,

τkω
2
k = ω0

b2
F

√(
b2

F − 1
)(

b2
F

ω2
I

ω2
0

+ 1

)
. (80)

The explicit form of the kick time tk (78) in the time-
optimal protocol is not a priori known in DKC with δ-kicks.
Targeting a final expansion factor bF , the expansion with the
inverted trap terminates at the kick time (47). In this case,
the DKC condition (11), determined using Eqs. (76) and (47),
reduces precisely to (80). This proves the equivalence between
DKC and time-optimal bang-bang protocols with access to
trap inversion, in the limit of a large pulse frequency.

In Fig. 11 we compare the exact expression for a finite
pulse using (79), the exact expression for an instantaneous
δ-kick (43) and the corresponding long-time δ-kick approx-
imation (44). Due to the effectively exponential expansion
assisted by the inverted trap, the state at the time of the
kick is highly accelerated with respect to the case under free
expansion, and the discrepancy between the instantaneous and
finite pulse approaches is more pronounced.

Before closing this section, we note that while we have lim-
ited the discussion to protocols involving two stages between
ω0 and ωF , time-optimal solutions can be found by increasing
the number of intermediate jumps [15], paving new avenues
to further extend the generalized DKC presented here.

IX. DISCUSSION AND CONCLUSIONS

We have reformulated DKC using the exact self-similar
dynamics of quantum gases, which may be interacting and
confined in a time-dependent harmonic trap, i.e., with-
out resorting to the conventional classical description for
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noninteracting pointlike particles. In doing so, we have found
the exact condition for the strength of the δ-kick required
to suppress (phase) excitations in an arbitrary scale-invariant
evolution. This leverages the use of DKC beyond free flight,
making it applicable in other self-similar expansions (and
compressions) in time-dependent traps. Our results directly
apply to interacting systems exhibiting scale invariance, such
as Tonks-Girardeau gases, two-dimensional Bose-Einstein
condensates, and three-dimensional unitary Fermi gases, to
name some experimental systems in which DKC was pre-
viously not applicable. In addition, this description allows
one to consider control protocols based on a combination of
time-dependent traps and pulses.

We have further established the equivalence between the
resulting generalization of DKC and time-optimal bang-
bang protocols derived from Pontryagin’s maximum principle
[12,15] in the limit in which the frequency of the finite-time
pulse is unbounded. This equivalence has been shown with
and without trap inversion. This analysis also allows us to es-
tablish the conditions for the instantaneous pulse description
in terms of δ-kicks to hold, by estimating the leading correc-
tions for finite-time pulses. In doing so, we have demonstrated
the robust performance of the generalized DKC when realistic
finite pulses are used.

An application of the generalized framework for DKC
in scale-invariant processes concerns the engineering of fast
driving protocols from one equilibrium state to another. Dia-
batic excitations under scale-invariance can occur due to the
presence of (1) a mismatch between the width of the expand-
ing cloud and the target equilibrium state and (2) a spatially
varying phase across the extent of the atomic cloud. Stan-
dard techniques to engineer STA in this context—including
reverse engineering scale laws and counterdiabatic driving
[13–18,20,21,23,24,26,43–45]—are limited by the need to
suppress both kinds of excitations at once. We have introduced
a new class of STA assisted by kicks, in which the modulation
of the trapping frequency suppresses type (1) while a final
δ-kick suppresses phase excitations of type (2). STA protocols
assisted by kicks ease the requirements on the magnitude of
the required trapping frequency and allow for ultrafast expan-
sions in which the width of the cloud grows exponentially as a
function of time. This class of STA can be readily generalized
beyond expansions and compressions of ultracold gases to
other scale-invariant processes in which the application of
kicks provides the means for control, e.g., in transport and
rotation of atomic clouds and other matter waves, such as
trapped ions. Likewise, further applications can be envisioned
in process lacking scale invariance.
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APPENDIX A: HEISENBERG UNCERTAINTY RELATION
UNDER SCALE INVARIANCE: DKC AND STA

Consider the Heisenberg uncertainty relation for an atomic
cloud in a time-dependent harmonic trap. From the definition
of the scaling factor, denoting R2 =∑N

i=1 �ri
2, the variance in

real space of an arbitrary state reads

〈R2(t )〉 = b2〈R2(0)〉, 〈R2(0)〉 = 〈H (0)〉
mω2

0

, (A1)

with the second identity being specific to scale-invariant sys-
tems at equilibrium.

To compute the variance in momentum space, we first
recall that the time evolution can be described by the action
of the unitaries [50,61,62]

S = exp

[
−i

log b

2h̄

N∑
i=1

(�ri · �pi + �pi · �ri )

]
, (A2)

Tr = exp

[
i

mḃ

2h̄b

N∑
i=1

�ri
2

]
. (A3)

Indeed, defining T = TrS ,

�(�r1, . . . , �rN, t ) = eiαt T �n(�r1, . . . , �rN, 0), (A4)

with αt = − ∫ t
0

E (0)
h̄b(t ′ )2 dt ′ and E (0) being the energy eigen-

value of � at t = 0, i.e. H (0)�(0) = E (0)�(0). However, the
following treatment holds for mixed states as well. It follows
that S†T †

r �piTrS = �pi/b + �riḃ and thus

T † 1

2m
P2T = 1

2mb2
P2 + ḃ

b
C + m

2
ḃ2R2 (A5)

with C = 1
2

∑N
i=1(�ri · �pi + �pi · �ri ) = 1

2

∑N
i=1{�ri, �pi}. For an

initial equilibrium state at t = 0, 〈C(0)〉 = 0 and

1

2m
〈P2(t )〉 = 1

2mb2
〈P2(0)〉 + m

2
ḃ2〈R2(0)〉. (A6)

In a scale-invariant dynamics, the Heisenberg uncertainty
relation at time t reads

�R(t )�P(t ) = �R(0)
√

�P(0)2 + m2b2ḃ2�R(0)2, (A7)

provided that 〈R(0)〉 = 〈P(0)〉 = 0. Only when ḃ = 0, one
finds

�R(t )�P(t ) = �R(0)�P(0). (A8)

This is achieved by DKC, STA based on reverse engineer-
ing and adiabatic driving. However, a generic nonadiabatic
expansion with ḃ �= 0 leads to a suboptimal squeezing of the
momentum distribution due to residual excitations associated
with the phase modulations in the final state.

APPENDIX B: SOLUTION OF THE ERMAKOV EQUATION

The Ermakov equation (3) is a second order nonlinear
differential equation which admits an exact solution [71]. To
express it, consider the two independent solutions u and v

of the linear equation b̈ + ω(t )2b = 0, satisfying u(0) = b0,
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u̇(0) = ḃ0, v(0) = 0, v̇(0) = 1/b0. For a real constant fre-
quency ω, these fundamental solutions take the familiar form

u(t ) = b0 cos(ωt ) + ḃ0

ω
sin(ωt ), (B1)

v(t ) = 1

b0ω
sin(ωt ). (B2)

Using them, the exact solution of the Ermakov equation reads
[71],

b(t ) =
√[

b0 cos(ωt ) + ḃ0

ω
sin(ωt )

]2

+
( ω0

b0ω

)2
sin2(ωt )

(B3)
and satisfies b(0) = b0, ḃ(0) = ḃ0.

If the boundary conditions are known at the end of the
evolution t = tF , one can readily find the solution at earlier
times. For example, assuming b(tF ) = bF and ḃ(tF ) = 0, and
shifting the time variable as t → t − tF , the scaling factor for
t < tF reads

b(t ) =
√

b2
F +

[( ω0

bF ω

)2
− b2

F

]
sin2[ω(t − tF )]. (B4)

The above results hold for ω > 0. In the case of the inverted
trap with ω2 = −ω2

I < 0, the fundamental solutions of b̈ −
ω2

I b = 0 read

u(x) = ḃ0

ωI
sinh(ωI x) + b0 cosh(ωI x), (B5)

v(x) = 1

b0ωI
sinh(ωI x). (B6)

The square of the scaling factor is then given by

b(t )2 =
[

ḃ0

ωI
sinh(ωI t ) + b0 cosh(ωI t )

]2

+
( ω0

b0ωI

)2
sinh2(ωI t ). (B7)

For the choice b(0) = 1, ḃ(0) = 0, one recovers the result [15]

b(t ) =
√

1 +
[
1 +

(ω0

ωI

)2]
sinh2(ωI t ). (B8)

APPENDIX C: PULSE DURATION IN OPTIMAL CONTROL

The quantity

α =
(

ḃ

ω0

)2

+ ω2

ω2
0

b2 + 1

b2
(C1)

is a constant of motion for the solution of Ermakov equation
(3) since its derivative is proportional to Ermakov equation,
i.e., it vanishes identically for any t [15]. It can thus be used
to determine the duration of each of the intervals of the bang-
bang protocol presented in Sec. VIII A.

Using the solutions of Ermakov equation denoted by b1

in (0, tk ) and by b2 in (tk, tk + τk ), one can express this
invariant as

α =
(

ḃ1

ω0

)2

− ω2
I

ω2
0

b2
1 + 1

b2
1

= −ω2
I

ω2
0

+ 1, (C2)

α =
(

ḃ2

ω0

)2

+ ω2
k

ω2
0

b2
2 + 1

b2
2

= ω2
k

ω2
0

b2
F + 1

b2
F

. (C3)

Subtracting these two identities, b(t ) can be determined at
the time of the kick tk ,

b(tk ) =

√√√√ω2
k b2

F + ω2
I + ω2

0

b2
F

− ω2
0

ω2
k + ω2

I

. (C4)

Imposing the continuity of the scaling factor b1(tk ) = b(tk )
and b(tk ) = b2(tk ) yields (78) and (80). A similar derivation
for ωI = 0 yields (62) and (63).
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