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Abstract Recent advances in computer vision and deep learning have lead to imple-
mentations in different industrial applications such as collaborative robotics, making
robots able to perform harder tasks and giving them consciousness of their envi-
ronment, easing interaction with humans. With the objective of eliminating physical
barriers between humans and robots, a security system for industrial collaborative
robots based on computer vision and deep learning is proposed, where an RGBD
camera is used to detect and track people located inside the robot’s workspace. De-
tection is made with a previously trained convolutional neural network. The position
of every detection is fed to the tracker, that identifies the subjects in scene and keeps
record of them in case the detector fails. The detected subject’s 3D position and
height are represented in a simulation of the workspace, where the robot’s speed
changes depending on its distance to the manipulator following international safety
guidelines. This paper shows the implementation of the detector and tracker algo-
rithms, the subject’s 3D position, the security zones definition and the integration of
the vision system with the robot and workspace. Results show the system’s ability
to detect and track subjects in scene, and the robot’s capacity to change its speed
depending on the subject’s location.

1 Introduction
Even though nowadays it is increasingly common to find human-robot collaborative
work environments in the industry, there is still the fear of being injured by working
next to a robot. Collaborative robots count with certified safety systems and follow
the international standard ISO 10218-1 / -2 and the technical specification ISO TS
15066. The first, deals with the safety of industrial robots and the second, with
industrial robots designed for collaborative operations [8]. However, according to
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the ISO 10218-1 standard, the robot is only one component of a robotic system and
by itself is not sufficient to guarantee safe human-robot interaction [9]. Therefore,
the need arises to design an external safety system to avoid as many accidents as
possible caused by collisions between humans and robots.

Different implementations in the manufacturing industry have been made with
the goal of creating vision-based safety systems that work in environments of col-
laboration between humans and robots (specifically robotic arms or manipulators)
to increase the flexibility of assembly processes. Different approaches related to this
human-robot collaboration using computer vision are summarized in [1]. In [2], a
ToF (time of flight) camera is used to detect obstacles in the robot’s path and re-
calculate the trajectory to avoid contact. Other sensors such as 2D cameras [3] or a
RGBD camera, used to recreate a virtual environment for the robot and the human,
and monitor possible collisions [4] have been used. Developments have also been
made by using multiple RGBD cameras to monitor the human and robot movements
to predict possible collisions in real-time [5]. Others, such as [6] have used different
sensors (sensor fusion) like RGBD cameras and ToF sensors to create a “volumetric
evidence grid” divided in three different regions. In that way, they can define a dan-
ger zone depending on the robot’s position and trajectory, that, when met with the
human’s defined safety zone, stops the robot immediately.

The safety system described in this paper is a continuation of [7], whose goal was
to create a safety system for human-robot collaboration in a recycling plant. In their
work, people were detected around a robotic manipulator using a RGBD camera
and traditional computer vision, and were classified into one of three calculated
safety zones. Based on the zone’s closeness to the robot, the manipulator stopped its
movement.

Compared to the system of [7], the implemented system in this paper, uses a
single RGBD camera to detect people with deep learning techniques and is capable
of tracking them and estimating their 3D position. This information is used to change
the robot’s speed according to the security zone where the subject may be located.

The novelty stands on the combination of the detector and the tracker, which
made the computer vision system robuster, meaning a more sustained source of
information for the safety system. The possibility of calculating the 3D position,
hence the height of the subject, lead to the generation of a 3D representation of the
body, which handed a closer to reality perception of the environment to the collision
avoidance algorithm inside the safety system than using only the 2D position of the
subject.

The paper is organized as follows. Section 2 introduces the implemented solution.
Section 3 explains the components of the vision system. Section 4 describes the tests
made on the vision system and the results obtained. Finally, Section 5 presents the
conclusions of this work.

2 Vision-Based Safety System
The system is based on an scenario where a robotic manipulator is on a table
developing a Pick and Place routine. The robot used is the collaborative robot UR3
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[11].The purpose of this system is to facilitate the interaction between an operator
and the robot, protecting the operator’s safety by avoiding collisions with the robot,
and maintaining the robot’s functions.

The system was planned under the speed and separation monitoring method
(SSM), in which the robot’s speed depends on the constant evaluation of the hori-
zontal distance of the operator relative to the robot [18]. Here the distance analysis
is performed by a computer vision system that communicates with the UR3 control
system to variate its current speed.

2.1 System architecture
Fig. 1 presents the architecture of the proposed vision-based safety system. The
proposed system integrates a computer vision system with the robot control system.
In the first one, the data from the scene is acquired by a RGBD camera and used to
detect and track people with a convolutional neural network (CNN). The 3D position
of each person is estimated in real-time and is classified into one of three security
zones relative to the robot, that were calculated based on the risk level of a collision
between the human and the robot. This information is sent to the control system,
where each person is related to a collision object to the robot by creating 3D figures
in a simulated space. Finally, an evaluation is made so that the robot varies its speed
or stops its movement to avoid a collision, by making a re-planning of the trajectory
based on the new speed.

Fig. 1: System architecture

2.2 Security Zones
The security zones dimensions were calculated following the technical specification
ISO/TS 15066:2016 and adapted to the characteristics of the UR3 robot to find a
minimum separation distance between the robot and the operator, as shown in Fig. 2.

The limits of the security zones are described in Table 1, where ( represents the
operator’s distance from the robot’s base (for ease of implementation of the vision
system, rectangular areas were assumed, keeping theminimum established distance).
The speed of the robot when a person is detected at the low-risk zone was determined
estimating a speed that would allow it to stop when a person went from the low-risk
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Fig. 2: Security zones dimensions

zone to the high-risk zone. At this speed, the stop time of the robot is lower than the
collision time between the robot and a person.

Table 1: Security zones limits

Zone Color Limits Speed

Safe zone Green S > 1550 mm 100 %
Low-risk zone Yellow 800 mm < S ≤ 1550 mm 50 %
High-risk zone Red S ≤ 800 mm 0 %

When a person is detected in the safe zone, the robot will move at 100 % of its
speed, if he moves to the low-risk zone, the robot will decrease its speed by 50 %,
and if he enters to the high-risk zone, the robot will stop its movement. The opposite
occurs if the person moves from the high-risk zone to the safe zone. If more than one
person is detected in the scene, the robot will move according to the closest person.

3 Computer Vision System
The implemented computer vision system is in charge of 3 main processes: subject
detection, tracking, and 3D position estimation.

3.1 Framework
As seen on Fig. 1 the computer vision system begins with the image acquisition
using a RGBD camera. Each frame is given to the detector, which uses a trained
convolutional neural network to detect heads.

The detector is not able to detect where the person is all the time. This is dangerous
because if this happens when the subject is on a collision path with the robot, the
safety system will not work. Due to this possible scenario, a tracker was added to the
vision system. For every frame, the coordinates of the bounding box of the detected
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heads are sent to a tracker, which will use the received information to predict the
subject’s position whenever the detector does not work.

The 3D position of the subject is its x, y and z position relative to the center of
the scene and it is calculated by using the coordinates of the bounding box found by
the detector and the depth camera data at those same coordinates. With the location
of the bounding box, the security zone where the subject is located is defined. In
the end, the 3D position and the security zone where the subject is, are sent to the
robot’s control system where the relative distance between the subject and the robot
is obtained and the manipulator’s speed is modified.

3.2 Detection
To detect people from above, a CNN needed to be implemented. Tensorbox, which
is a TensorFlow implementation that was designed to detect people in crowded
environments by decoding the input image into a set of bounding boxes as an output
directly, without having to evaluate the bounding boxes with a classifier and merging
the results into a complete set of detections [12].

Tensorbox was the chosen pre-trained CNN and it was further trained using
footage of people entering and exiting a bus station. This trained network was used
in a project where the objective was to count the number of people that entered and
exited a bus station every time a bus arrived there by detecting and tracking the
people’s head movement around the scene. Since the detection system implemented
for that project fitted the framework of this security system, it was selected to be
employed as a people detector within the robot’s workspace.

Fig. 3: Examples of images from the dataset

The dataset used to train the CNNwas divided in three, where 70 % of the footage
was used to train the network, 20 % was used for testing and 10 % for validation.
Table 2 shows the division in numbers of the dataset. The dataset consisted of images
such as the ones displayed in Fig. 3.

Table 2: Numeric division of dataset

Division Images Total Tags

Training 11293 33543
Test 6216 4664
Validation 3713 9452
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The dataset was divided into images of each frame and CVAT [13] was used to
tag the heads in each image using a bounding box.

The CNN performance was measured, and it was found that it was capable
of detecting 92 % of the heads using the test dataset images. due to this result, the
detector was considered to be used in a different environment (such as the workspace
shown in Fig. 4).

3.3 Tracking
Two different trackers were tested for this system. CSRT, a tracker based on the
properties of the pixels inside the bounding box [14] and SORT, which is a tracker-
by-detection that predicts the subject’s position based on the position of previous
detections using a Kalman filter and the Hungarian algorithm to fulfill this objective.
[15].

SORTwas chosen to be the tracker for this system, because after the tests described
in section 4.2 it was confirmed that this tracker had advantages over CSRT regarding
tracking speed and path similarities to the reality when compared.

3.4 3D Position Estimation
The neural network used in this project was trained to detect heads from above, thus
the camera was located on the ceiling looking downwards. A Kinect sensor [10] was
located on the ceiling of the laboratory, pointing downwards to an open space that
represents the work zone where the robot is located, as seen in Fig. 4. The camera
was located 3.45 m above the floor and its scope was a rectangle of 4.2 m by 3.1 m.

Since the vision system needs to work in a 3-dimensional environment, height of
the subject in scene and their 3D position must be calculated in order to represent it
on a 3D simulation. By using the intrinsic parameters of the RGB camera (Kinect)
and the distance between the sensor and the subject obtained by the depth camera,
3D position of the subject relative to the scene and height were calculated using
Eq. 1 as used in [16].

% = (-A , .A , /A ) =
(
/

(
D − G0
5G

)
, /

(
E − H0
5H

)
, 3.45 − /

)
(1)

Variables D and E are the position of the central pixel of the bounding box with the
image’s top left corner as reference. G0 and H> are the image’s central pixel position,
5G and 5H are the horizontal and vertical focal distance of the camera and / is the
distance between the lens and the subject.

The results obtained in Eq. 1 correspond to the position of the subject relative to
the center of the scene. In order to obtain the relative position of the subject to the
robot, a coordinate transform was made using ROS [17] that allowed to translate the
coordinate system of the camera to the coordinate system of the robot’s base.

Fig. 4 shows the setting and explains graphically how the height or Z position of
the subject was calculated.
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Fig. 4: Detection obtained by Tensorbox (left) and graphic calculation of a subject’s 3D position

4 Experiments and Results
Tests were made to find out the performance of the vision system. They are divided
in 2 sections: Detector and integration of the vision system with the robot system.

4.1 Detector
The detector went through two tests to find its performance under different conditions
(light and subject’s occlusion) as well as with a different number of subjects in scene.

4.1.1 Detection performance under different conditions

This test consisted of finding the number of detections obtained, while using 3
different lighting conditions on the scene and changing the subject’s head coverage
(uncovered, partially, and fully covered). Nine videos with 200 frames each for every
combination of conditions were recorded. The subject made a similar path and was
always inside the scene.

A luxmeter was used to measure the illumination conditions of the scene, where
43.5 lux, 320 lux, 613 lux corresponded to low, medium and high illumination
conditions respectively. Regarding the head’s coverage, a white helmet was used as
full cover and a piece of paper was used as a partial cover.

Performance was measured by comparing the number of frames where the person
was detected with the number of total frames the subject was actually on scene. The
results are summarized in Table 3.

Table 3 shows that the lowest error happens when the head is uncovered and there
is low illumination. These results may be due to the fact that the detector was trained
using images of a bus station, whose illumination conditions were not controlled
and oftentimes were similar to a low lighting scene. Also, people had their head
uncovered in most of the captures used to train the model.

4.1.2 Detector performance with multiple subjects in scene

A possibility of more than one subject in scene must be evaluated. Three videos of
200 frames each were recorded, using medium lighting conditions (same used in
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Table 3: Behavior of the system under different test conditions

Low
ilumination

Medium
ilumination

High
ilumination

Heads total

Real frames 148 154 153 455
Detected frames 128 114 103 245

Uncovered
head

% Error 13.5% 25.9% 32.7% 46.1%
Real frames 143 146 194 483

Detected frames 53 64 26 143
Partially
covered
head % Error 62.9% 56.2% 86.6% 70.4%

Real frames 113 158 146 417
Detected frames 96 46 49 191

Covered
head

% Error 15.3% 70.9% 66.4% 54.2%
Real frames 404 458 493 1355

Detected frames 277 224 178 679
Ilumination

total
% Error 31.4% 51.1% 63.3% 49.9%

Sect. 4.1.1). Each video had a different number of subjects moving. Fig. 5 shows
captured frames of every video.

Fig. 5: Frames of footage with different number of subjects.

Each video had a confusion matrix, comparing how many people were detected
versus howmany people were actually in scene. Performance results are summarized
on Table 4.

Table 4: Summary of performance measurements

Measure Case: 1 subject Case: 2 subjects Case: 3 subjects
Accuracy 88.40% 34.67% 22.61%

0
subjects

1
subject

0
subjects

1
subject

2
subjects

0
subjects

1
subject

2
subjects

3
subjects

Precision 62.50% 98.60% 34.55% 7.84% 100% 43.90% 14.95% 2.44% 100%
Recall 94.59% 87.04% 100% 25.00% 23.38% 48.65% 64.00% 5.56% 8.40%
F-score 75.27% 92.46% 51.35% 11.94% 44.21% 46.15% 24.24% 3.39% 15.50%

The accuracy displayed on Table 4, shows that the detector on its own can con-
stantly detect a subject but struggles when there are more people in the scene. This is
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reflected on the precision scores, where the score was higher for the largest number
of subjects of each case. Recall values show that the number of frames where an
amount of people were detected, was lower than the number of frames with that
number of people in scene. These results reinforce the idea that a tracking system is
needed to keep a constant notion of the location of the subject.

4.2 Tracker
For the tracking system, a test was performed where two different trackers (SORT
and CSRT) were given the same footage as in the test described in Sect. 4.1.2, and
their performance was evaluated by calculating tracker speed and their RMSE and
IoU which was compared with the ground truth (manually tagged bounding boxes).
root mean square error (RMSE) between the paths obtained by both trackers with
the real path, and the Intersection over union (IoU) between the bounding boxes
obtained by both trackers and the ground truth (manually tagged bounding boxes per
frame), as well as observing the tracking speed of both trackers.

Table 5 summarizes themeasurementsmade. It can be noticed that althoughCSRT
has a higher tracking speed with one subject, this value decreases when the number
of subjects in scene rises, while SORT keeps this value constant independently of
the subjects. This happens because while SORT only depends on the bounding box
location, CSRT needs the properties of the pixels within the bounding box, which
has a higher cost in processing speed.

Table 5 also shows that the RMSE between the SORT path and the ground truth
path is in average, lower than the one obtained for CSRT. This is due to the way both
trackers work. While SORT depends on the detections made in every frame, which
are located similarly to the real subject, CSRT uses the first detection bounding box
properties to track the subject, this means that as time passes, the bounding box
obtained by the tracker will drift from the real position of the head and the path will
differ from the real one.

The IoU results show that the bounding box obtained by the trackers (and detector
to some extent) are not similar to those of the ground truth, meaning that the trackers
bounding boxes either they were bigger than the head of the subject, or that they
drifted, which would explain why CSRT has a lower IoU in general.

Table 5: Results obtained for each tracker

Tracker
Speed
(fps)

RMSE between trackers
and ground truth (pixels)

IoU of bounding boxes
(%)

CSRT
1 subject 25 9.13 16.8%
2 subjects 13 6.53 26.9%
3 subjects 9 14.62 16.9%

SORT
1 subject 13 9.53 33.0%
2 subjects 13 8.08 41.2%
3 subjects 13 8.37 37.1%
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Because of these results, SORT was chosen to be the tracker for the implemented
vision system.

4.3 Integration with ROS

4.3.1 Interaction with the simulated space

The system was implemented in ROS (Robot Operating System) in order to be able
to handle and communicate with the robot. The detected subjects are used to generate
3D figures in the simulated space of the robot, with their estimated real height and
the color of the zone where they were in. These figures are considered by the robot
as collision objects. This way the robot “sees” if there is a person around it.

Fig. 6 shows the interaction of the vision system with the robot’s control system
in the simulated space. The scene with the security zones is seen in the lower-left
window. The system has detected a person, which has been marked with a yellow
box (low-risk area). This generates a change in speed and creates a cylinder in the
simulated space, in the same position and with the person’s real height.

Fig. 6: Frames of footage for every possible lighting and head coverage combination

4.3.2 Occupied zones analysis

It is determined by a test how accurate the vision system classifies people in scene
in the security zones in comparison to the real zones where they are. With a correct
classification of occupied areas, the correct speed change of the robot is obtained,
ensuring the person’s safety. For this test, a 900 frames video was employed. A
confusion matrix was made for each zone and with the information registered,
different performance measurements were calculated and summarized on Table 6.

Table 6 shows that the three situations exceed 85 % for accuracy and 97 % for
precision. This means that overall, the system classifies correctly the security zone
of the detected subjects.
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Table 6: Results obtained for each security zone

Measure Green zone Yellow zone Red zone

Accuracy 85.6 % 91.9 % 97.9 %
Precision 97.7 % 99.4 % 99.5 %
Recall 57.4 % 81.9 % 91.5 %
F-score 72.3 % 89.8 % 95.3 %

A low recall percentage was obtained for the green zone; indicating that, only
57.4 % of the cases were detected correctly. Most of false negatives are caused by the
absence of detections and not by the classification in another area. This is attributed
to the Kinect’s disparity effect, which reduces the usable field of view (no depth data
on the borders of the image), reducing the number of correct detections in the green
zone and therefore decreasing the recall score.

5 Conclusions
A vision-based safety system was designed and implemented on a scene where a
collaborative industrial robot was located. The vision system can detect and track
multiple individuals while they are in the scene of interest under controlled lighting
conditions. The security zones were designed applying the standards of industrial
robots and collaborative industrial robots.

Using a tracker improved the performance of the vision system when more than
one subject is in the scene. The vision system can also estimate the position of these
people and classify them in safety zones relative to the robot, being accurate 98 %
of the time inside the most critical zone.

The vision system interacts with the robot control system, generating 3D figures in
the simulated space of the robot to represent the people detected as collision objects
and make the robot stop or vary its working speed according to the area of the
detected subjects. With this work it was confirmed that it is feasible to eliminate the
use of physical barriers and multiple sensors around an industrial robot, to promote
collaborative work between robots and humans.
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