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ABSTRACT

Generative adversarial networks (GANs) have made unprecedented
performance in image synthesis and play a key role in various
downstream applications of computer vision. However, GAN mod-
els trained on sensitive data also pose a distinct threat to privacy.
In this poster, we present a novel over-representation based mem-
bership inference attack. Unlike prior attacks against GANs which
focus on the overall metrics, such as the attack accuracy, our at-
tack aims to make inference from the high-precision perspective,
which allows the adversary to concentrate on inferring a sample
as a member confidently. Initial experimental results demonstrate
that the adversary can achieve a high precision attack even if the
overall attack accuracy is about 50% for a well-trained GAN model.
Our work will raise awareness of the importance of precision when
GAN owners evaluate the privacy risks of their models.
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1 INTRODUCTION

Machine learning, including discriminative models and generative
models, has made tremendous progress in a wide range of applica-
tion domains. In particular, generative adversarial networks (GANs)
have made enormous progress in image generation since the sem-
inal work was proposed by Goodfellow et al. [4] in 2014. Since
then, GANSs have achieved impressive performance in a variety of
areas — image synthesis, image-to-image translation, and texture
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generation, etc. However, deploying these state-of-the-art tech-
niques on applications involving sensitive personal data, such as
the human face or healthcare data, has caused severe concerns
about privacy [2, 14, 16]. For instance, adversaries can mount a
membership inference attack against a machine learning model
in order to infer whether a given sample was in the training set,
which directly leads to information leakage of the training set [14].

Early studies about membership inference attacks concentrate
on discriminative models [13, 14], and overfitting is considered
as an important reason causing the leakage of training samples.
Furthermore, Yeom et al. [16] formally illustrate the connection
between overfitting and privacy risks and show that overfitting
is a sufficient condition but not a necessary condition for mem-
bership inference attacks. Indeed, there have been several works
advocating that for the training set of a machine learning model,
there are always some training points that are more vulnerable
to membership inference attacks, no matter whether the model is
overfitting [1, 2, 10, 11, 15]. For example, Carlini et al. [2] reveal
that certain training samples in language models which exhibit
no overfitting can be extracted, such as phone numbers and email
addresses from the victim model GPT-2. Long et al. [11] also show
that there exist vulnerable samples in well-generalized classification
models. Additionally, Leino et al. [10] further advocate that even if
only one training sample is inferred as a member confidently, then
it should be also considered as a privacy violation. Therefore, all
these works motivate us to study membership inference attacks
against GANs from the perspective of precision, i.e., whether the
adversary can infer a sample as a member confidently.

In this paper, we propose a novel membership inference attack
against GANs, which focuses on a high-precision inference. The
precision refers to the proportion of real members among the sam-
ples that are inferred as members. Our attack methodology is based
on the over-representation of GAN models: if the proportion of
training samples (member samples) in some regions is significantly
higher than that in other regions, then it can be abused by the ad-
versary to mount membership inference attacks. Our preliminary
results show that a high-precision attack can be achieved for a
well-trained GAN.

2 METHODOLOGY

2.1 Problem Formulation

Given a target GAN model Gqrger and a target dataset Xiqrget, the
goal of membership inference attacks is to infer whether a sample x;
from Xigrger is used to train the target model Gygyget-

Prior works [3, 5] perform membership inference attacks against
GANs by comparing how close a sample x; from Xigrget is to the
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Figure 1: MC scores for target model StyleGAN.

sample generated by the target model Gygrger. Our attack methodol-
ogy exploits one particular insight: when a generative model learns
the distribution of a data set, there exist over-representation re-
gions [12]. If a sample from Xigrge; falls in a region where the most
training samples of the target model lie, we believe this sample
is more likely to be a member sample. Thus, we define a member
confidence (MC) score to estimate the probability that each region
contains members (see Figure 1). Finally, a sample with MC score
higher than a threshold is predicted as a member. The key step of
our method is to estimate a MC score which represents a region
how frequent training samples occur.

Member Confidence Score. Let m, n be the numbers of mem-
ber samples and nonmember samples, respectively. Here, member
samples also refer to training samples of a target model. Nonmem-
ber samples are from the same distribution of training samples,
but are not used for training. A region is a set of samples, which
can be constructed by clustering algorithms. It is also called a
cluster in our work and k is the number of regions. Member and
nonmember samples are distributed among these regions, where
m=mi+my+...+mgandn = ny +nz + ...+ ng. For the ith
region, there are m; member samples and n; nonmember samples.
Therefore, the ratio of member samples in the i region is defined:
Fmemb (D) = %, and the ratio of nonmember samples in the ith re-
gion is: Mponmemp (i) = %, we define the member confidence score

in the ith region as:

" memb (1) 1)

MCScore(i) = - -
" memb (1) + Tnonmemp (1)

As an example, we show the MC scores for target model StyleGAN
trained on FFHQ in Figure 1. We can observe that different regions
indeed show different proportions of member samples, i.e. different
MC scores.

2.2 Over-representation based Attack

In this work, we assume that an adversary can have access to the
whole GAN model, including the generator and the discriminator.
However, the adversary has no knowledge of the training dataset.
This attack scenario usually occurs when some research institutions
publish their models to the public to avoid directly sharing original
data, or model providers grant their models to their customers
which utilize their state-of-the-art models to develop their own
applications. For attack scenarios that require much less knowledge,
we leave it for future work.

Algorithm 1: Over-representation based attack

Input: target data: Xygyger; target model: G, D; the number of

clusters: k
1 def constructMCScore(G, k):
2 Sample m samples Xonemp from G;
3 Sample n samples Xnonmemp from G;

4 G, D « trainSubstituteModel (Xmemp);
5 @pemp < sigmoid (D (Xmems))s

6 D@onmemp < sigmoid (D (Xpnonmemb) )
7 clusters « cluster (@ memps Pronmemb» K);
8 MCScore « computeMCScore (D memps M, Pronmembs N,clusters)

> based on Eq. 1, MCScore: MC scores of regions ;

9 return MCScore,clusters

10 def assignMCScore (Xiarget, D, MCScore, clusters):

11 Xnmcseore = [] > MC score of each sample from Xarger 5

12 forall x; of Xtarger do

13 D; « sigmoid(D(xz));

14 i « assignCluster(®y, clusters) > i: index of cluster;
15 Xmcscore-append(MCScore|i])

16 return Xyicscore

17 def predictMemb (xascscore, T):

18 L return 1 if xpicscore = 7 else 0 > 7: threshold

Our attack consists of three steps, which is also described in Al-
gorithm 1. In the first step, we construct MC scores that represent
the degree of over-representation in each region. In order to esti-
mate MC scores, we first train a substitute model by querying the
target model. The training process of the substitute model can be
regarded as a model extraction attack against the GAN [7], which
aims to duplicate the target GAN model including its functionality
and implicit data distribution. In this way, data used for training the
substitute model is considered as members of the model, and data
sampled from the target model but not used for training the substi-
tute model is regarded as nonmembers. Therefore, we can know
the members and nonmembers for this substitute model, which is
utilized to construct MC scores. Here, we leverage the discrimina-
tor’s outputs instead of raw samples to split regions (Algorithm 1,
line 5-7). we convert these outputs to a fixed interval through the
sigmoid function because they have different ranges for different
discriminators. Since the discriminator’s output is a single value,
we do not need to perform clustering, instead directly dividing the
range of outputs into k parts, i.e. k regions. Finally, we calculate the
MC score on each part through the substitute model (Algorithm 1,
line 8).

In the second step, we assign the MC score to each suspect sample
from the target dataset Xyqrger, based on the distance between each
suspect sample and each region (Algorithm 1, line 10-16). In the last
step, a sample with MC score higher than a threshold is predicted
as a member (Algorithm 1, line 17-18).

Note that, our method is similar to the membership inference at-
tacks against discriminative models [15] where the top-1 confidence
scores of a discriminative model are used as the features. However,
our attack does not make any assumption about the training set
while the attack against discriminative models needs a shadow
dataset that is from the same distribution of the training set.



Table 1: Attack performance (SD: standard deviation).

Target Model Methods Precision (%) Precision (%) Recall (%) AUCROC/
Accuracy (%)

Mean (SD) Maximum Mean (SD) Mean (SD)

StyleGAN Ours 96.00 (8.00) 100.00 0.03 (0.007) 50.02 (0.003)
StyleGAN LOGAN  55.65 (0.15) 55.85  55.64 (0.15)  55.65(0.15)
PGGAN Ours 59.00 (2.04) 61.17  0.39(0.20)  50.06 (0.04)
PGGAN LOGAN  51.83(0.10) 52.01 51.83(0.10)  51.83(0.10)

3 PRELIMINARY RESULTS

Datasets. We perform all of some experiments with the FFHQ
dataset [9], which contains 70,000 human face images. We split
the dataset into two parts: a training set for model training (60, 000
images) and a test set that is not used for training. A target set is
used to evaluate the performance of membership inference attacks.
It consists of the equal number of member samples (randomly
selected from the training set) and nonmember samples (randomly
selected from the test set). In our experiments, images are resized
to 64 X 64 and the size of a target set is 20, 000.

Target Models. We choose PGGAN [8] and StyleGAN [9] as our
target models to be attacked, considering their excellent perfor-
mance and widespread adoption. In our experiments, target mod-
els with the best Fréchet Inception Distance (FID) [6] during the
training progress are selected. Specifically, the FID of target model
StyleGAN and PGGAN are 5.05 and 6.59, respectively.

Attack Evaluation. We use precision as a key indicator to evaluate
the attack performance because it can better capture the severity of
the leakage of a training set. The precision of an attack refers to the
ratio of real-true member samples in all the positive inferences. We
also report recall, accuracy and AUCROC. We compare our attack
approach with the prior work LOGAN [5], due to the similar attack
scenario. The suggested hyperparameters of LOGAN are used, and
for our method, we set the threshold as 99.99th percentile of all
MC scores of the target set and the number of clusters is 100. In all
experiments, we repeat 5 times to evaluate attack performance.

Results. Table 1 shows a comparison of different attack methods.
Overall, our method can achieve much higher mean precision than
LOGAN on both target models, even if the accuracy or AUCROC is
about 50%. We also report the maximum precision as a reference
because it can be considered as a worst-case for target models.
Our method can achieve 100% maximum precision in some cases,
which indicates these samples predicted as members are all real-true
samples. Our attack method achieves high precision at the expense
of recall because we only consider samples with higher MC scores.
It means that not all training samples can be easily inferred and
there only exist some vulnerable samples in a training set. This
is consistent with observations made on other machine learning
models, i.e., language models or classification models [1, 2, 11].

4 CONCLUSION

In this poster, we have presented a novel membership inference
attack against GANSs from the perspective of precision. Our method
leverages over-representation regions of a GAN model to make
inferences. Initial experimental evaluations showed that our method
can achieve a high-precision membership inference even though
the overall attack accuracy is around 50% for a well-trained model.

We hope that our study highlights the necessity that model owners
should systematically evaluate the privacy risks when sharing their
models, including the worst-case conditions.

As future work, we aim to relax our assumption and generalize
our approach to more challenging attack scenarios. In addition, it
will be interesting to design possible defense measures against our
new attack. In the literature, differential privacy has been shown as a
promising approach to defend against privacy attacks. However, an
effective differential privacy strategy to train a GAN that produces
high-quality images still needs to be developed in the future.
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