
The Hidden Lattice Problem

Luca Notarnicola, Gabor Wiese?

notarnicola.luca@internet.lu, gabor.wiese@uni.lu

9th November 2021

Abstract We consider the problem of revealing a small hidden lattice from the know-
ledge of a low-rank sublattice modulo a given sufficiently large integer – the Hidden
Lattice Problem. A central motivation of study for this problem is the Hidden Subset
Sum Problem, whose hardness is essentially determined by that of the hidden lattice
problem. We describe and compare two algorithms for the hidden lattice problem: we
first adapt the algorithm by Nguyen and Stern for the hidden subset sum problem,
based on orthogonal lattices, and propose a new variant, which we explain to be re-
lated by duality in lattice theory. Following heuristic, rigorous and practical analyses,
we find that our new algorithm brings some advantages as well as a competitive al-
ternative for algorithms for problems with cryptographic interest, such as Approximate
Common Divisor Problems, and the Hidden Subset Sum Problem. Finally, we study
variations of the problem and highlight its relevance to cryptanalysis.

Keywords. Euclidean Lattices, Lattice Reduction, Cryptanalysis, Approximate Com-
mon Divisor Problem, Hidden Subset Sum Problem

1 Introduction

The Hidden Subset Sum Problem asks to reveal a set of binary vectors from a given
linear combination modulo a sufficiently large integer. At Crypto 1999, Nguyen and
Stern have proposed an algorithm for this problem, based on lattices, [NS99]. Their
solution crucially relies on revealing, in the first place, the “small” lattice generated by
the binary vectors: this is the underlying Hidden Lattice Problem (HLP). The starting
point of this work is to investigate the HLP independently. For this article, we define
“small” lattices as follows.

Definition 1. Let 0 < n ≤ m be integers. Let Λ ⊆ Zm be a lattice of rank n equipped
with the Euclidean norm. We define the size of a basis B of Λ by

σ(B) =

√
1

n

∑
v∈B
‖v‖2.

For µ ∈ R≥1, we say that Λ is µ-small if Λ possesses a basis B of size σ(B) ≤ µ.

Small lattices naturally occur in computational problems in number theory and
cryptography. For Λ as in Def. 1, we let ΛQ (resp. ΛR) be the Q-span (resp. R-span) of
Λ in Rm. The completion Λ of Λ is ΛQ∩Zm = ΛR∩Zm and we say that Λ is complete
if Λ = Λ. As is customary in many computational problems we also work modulo
N ∈ Z and write v ∈ Λ (mod N) if there exists w ∈ Λ such that v − w ∈ (NZ)m. If
Λ′ ⊆ Zm, then Λ′ ⊆ Λ (mod N) shall mean v ∈ Λ (mod N) for all v ∈ Λ′. We then
define the Hidden Lattice Problem as follows.
? University of Luxembourg, Department of Mathematics, Maison du Nombre 6, Avenue de la Fonte,
L-4364 Esch-sur-Alzette, Luxembourg

Definition 2. Let µ ∈ R≥1, integers 1 ≤ r ≤ n ≤ m and N ∈ Z. Let L ⊆ Zm

be a µ-small lattice of rank n. Further, let M ⊆ Zm be a lattice of rank r such that
M ⊆ L (mod N). The Hidden Lattice Problem (HLP) is the task to compute from the
knowledge of n,N and a basis of M, a basis of the completion of any µ-small lattice
Λ of rank n such that M ⊆ Λ (mod N).

Since M is defined modulo N , we may view M ⊆ (Z/NZ)m. We analyse for which
values of µ ∈ R≥1 a generic HLP can be expected to be solvable. Random choices of M
are likely to uniquely determine the lattice L, thus Λ = L. We will see that L is very
often equal to L: it is the hidden lattice to be uncovered (note that the completion
makes the lattice only smaller). Our definition is more general than the framework
in [NS99] and deviates in two ways: first, we do not require L to possess a basis of
binary vectors as in [NS99], but instead control the size of L by µ. Also, instead of
assuming a unique vector to be public (r = 1), we assume a (basis of a) sublattice M

of arbitrary rank r to be public.

1.1 Our contributions

Our principle aims are to describe algorithms for the HLP, analyse them theoretically,
heuristically and practically, and give applications.

Algorithms for the HLP. We describe two algorithms for the HLP. First, we
adapt the orthogonal lattice algorithm of Nguyen and Stern [NS99], based on the
(public) lattice M⊥N of vectors orthogonal to M modulo N . It naturally contains
the relatively small lattice L⊥, which we can identify by lattice reduction, provided
that the parameters satisfy certain conditions. Our major contribution is to propose
a new two-step alternative algorithm, based on the (public) lattice MN of vectors
that lie in M modulo N . In this case, we first explain how to recognize vectors lying
directly in a relatively small sublattice of the completion of the hidden lattice L

and compute them by lattice reduction. We explain that the second step of our new
algorithm can be designed to only perform linear algebra over finite fields, which is
generally very fast. Therefore, our second algorithm is often faster than the orthogonal
lattice algorithm. As we can directly compute short vectors in L instead of L⊥ (which
avoids the computation of orthogonal complements), it is also conceptually easier
than the orthogonal lattice algorithm. We finally justify that both algorithms are
related by duality. Using celebrated transference results for the successive minima of
dual lattices, we explain how to bridge both algorithms theoretically. Throughout this
paper, we refer to both algorithms as Algorithm I and Algorithm II, respectively. In
cryptanalysis, the orthogonal lattice has been used extensively, since its introduction
in [NS97]. Lattice duality has been used for example in the context of the LWE
Problem, see e.g. [Alb17].

Analysis of our algorithms. We provide a heuristic analysis of our algorithms
based on the Gaussian Heuristic for “random lattices”. For Algorithm I, we follow the
intuition of [NS99]: short enough vectors u ∈ M⊥N (which we compute by lattice
reduction) must lie in L⊥. Since L⊥ has rank m − n, we expect to find m − n such
vectors. For Algorithm II, we derive an explicit lower bound on the norm of the vectors
lying in MN but outside LQ, which gives us a criterion for establishing an explicit
parameter selection. In both cases, it turns out that the HLP is solvable when N is

2

is sufficiently large with respect to µ. Quantifying this difference theoretically and
practically is a natural question. For example, both algorithms detect hidden lattices
of size µ = O(N

r(m−n)
nm) up to some terms which differ according to the algorithm; in

the balanced case m = 2n = 4r, this gives µ = O(N1/4). To quantify the dependence
between N and µ in a compact formula, we propose a definition for an arithmetic
invariant attached to the HLP, which we justify to behave like an inverse-density, a
handy and well-studied invariant for knapsack-type problems (see e.g. [LO85,NS99]).

We next establish proven results for the case r = 1, not conditioned on the Gaus-
sian Heuristic. Such formal statements are not included in [NS99]. For our proofs,
we rely on a discrete counting technique. For a fixed µ-small basis B of L (sampled
from some set of collections of vectors) and a given integer N , we denote by H(B) a
finite sample set of vectors constructed from B and N . To an element of H(B), we
naturally associate a HLP with hidden lattice L. On each of these problems, we “run”
either Algorithm I or Algorithm II, and “count” how often our algorithm successfully
computes a basis of L by using LLL, [LLL82].

At informal level, we can state the following simplified lower bounds for log(N)
in our heuristic and proven analyses. In the proven case (for r = 1), the lower bound
stands for log(Nε), where ε ∈ (0, 1) is fixed such that the success rate of the algorithms
is 1 − ε. Here ι denotes the root Hermite factor depending on the chosen lattice
reduction algorithm (which is LLL in our proven analysis).

Algorithm Lower bound for log(N)

I log(N) > mn
r

log(ι) + mn
r(m−n) log(µ) +

n
2r

log(m− n)

Heuristic
II log(N) > m

m−n
mn
r

log(ι) + mn
r(m−n) log(µ) +

mn
2r(m−n) log

(
n
m

)
I log(Nε) > mn log(ι) + n(n+ 1) log(µ) + n(m−n)

2
log(2(m−n)

3
) + n log(3

√
n) + 1

Proven
II log(Nε) > mn log(ι) + n(n+ 2) log(µ) + n log(3n2) + 1

Table 1. Lower bounds for log(N) as functions of n,m, r, µ

We have implemented our algorithms in SageMath [S+20]. Our practical results
confirm our theoretical findings quite accurately. Moreover, we see that both al-
gorithms practically perform equivalently well, which is heuristically understandable
from the duality between them. In some cases, Algorithm II outperforms Algorithm
I: the second step of Algorithm II is computationally simpler than for Algorithm I,
leading to strongly improved running times.

Variations and applications. Some variations of Def. 2 are of interest to us. First,
we study the case where given vectors lie in a small lattice modulo N only up to
unknown short “noise” vectors; we call this the noisy hidden lattice problem (NHLP).

3

We notice that we can cancel the effect of the noise, by reducing the NHLP to a
HLP with a “larger” (in the sense of size and dimension) hidden lattice, and apply our
previous algorithms without changes. We also consider a decisional version (DHLP) of
the hidden lattice problem, asking about the existence of a µ-small lattice L containing
M modulo N . This problem, although not asking for the computation of L lies at the
heart of many cryptanalytic settings, and may thus be of interest to cryptanalysts.
We recognize that the existence of such L strongly impacts the geometry of M⊥N (or
MN) and, consequently, our algorithms solve the decisional version heuristically.

Finally, we describe applications of the HLP together with some improvements
implied by our Algorithm II. Our applications show that the HLP appears somewhat
naturally in many different frameworks. We mostly refer to the works [CP19,CG20,
CN19,CNT10,BNNT11].

2 Background and notation on lattices

Lattices. Throughout this section we fix a lattice Λ ⊆ Zm of positive rank n. We
denote by Vol(Λ) its volume and by λi(Λ), for 1 ≤ i ≤ n, its successive minima.
Minkowski’s Second Theorem [NV10, Ch. 2, Thm. 5] states that(

r∏
i=1

λi(Λ)

)1/r

≤ √γn ·Vol(Λ)1/n , 1 ≤ r ≤ n , (1)

where γn is Hermite’s constant; one has γn ≤ 2
3n for n ≥ 2, [LLS90]. We also have

Vol(Λ) ≤
∏n
i=1 λi(Λ).

Definition 3. For N ∈ Z we call Λ⊥N = {v ∈ Zm | ∀w ∈ Λ (mod N) : 〈v, w〉 ≡ 0
(mod N)} the N -orthogonal lattice of Λ, and ΛN = {v ∈ Zm | v ∈ Λ (mod N)} =
Λ+NZm the N -congruence lattice of Λ.

The lattices Λ⊥N and ΛN only depend on Λ modulo N since (ΛN)N = ΛN and
(ΛN)⊥N = Λ⊥N . Therefore, we use the same notation for subgroups Λ ⊆ (Z/NZ)m,
and mean ΛN := (π−1N (Λ))N = π−1N (Λ) and Λ⊥N := (π−1N (Λ))⊥N , where πN : Zm →
(Z/NZ)m is the natural projection. Note Λ⊥0 = Λ⊥, the usual orthogonal lattice, and
Λ0 = Λ. Assume now N 6= 0. The map Λ⊥N → HomZ(ΛN , NZ) ' N ·HomZ(ΛN ,Z) '
N · (ΛN)∨ sending w to (v 7→ 〈v, w〉) is an isomorphism. For a basis matrix A ∈ Zm×n

of Λ, Λ⊥N is the kernel of Zm → (Z/NZ)n, v 7→ AT v and thus has volume dividing
Nn. Since the product of the volumes of dual lattices is 1, we conclude that Nm−n

divides Vol(ΛN). If the Gram matrix ATA of A is invertible over Z/NZ, then we have
equalities Vol(Λ⊥N) = Nn and Vol(ΛN) = Nm−n.

Lemma 4. Let Λ be a lattice of positive rank n.

(a) The completion of Λ satisfies (Λ⊥)⊥ = Λ.
(b) If Λ′ ⊆ Λ⊥ is a sublattice of the same rank as Λ⊥, then Λ = Λ′⊥.
(c) (Hadamard) Vol(Λ) ≤

∏
v∈B ‖v‖ ≤ σ(B)n for any basis B of Λ.

(d) Vol(Λ⊥) = Vol(Λ) ≤ Vol(Λ)

Proof. For (a) and (d), see Sec. 2 and Cor. 2 in [NS97]. The inequality in (d) follows
because Λ ⊆ Λ. Statement (b) follows from (a) because Λ = (Λ⊥)⊥ ⊆ Λ′⊥ are of the
same rank with Λ complete. The last inequality in (c) follows from the arithmetic-
geometric mean inequality. ut

4

Lattice reduction. Let Λ be a lattice of positive rank n in Zm. We rely on lattice
reduction; given as input a basis of Λ, a lattice reduction algorithm outputs a reason-
ably short basis of Λ. In practice, one often uses LLL [LLL82] or BKZ [HPS11]. From
a theoretical perspective, BKZ gives slightly better approximation factors than LLL,
but it is widely known that lattice reduction performs much better in practice than
what theory predicts (see e.g. [GN08,NS06,CN11]). We summarize the behaviour of
LLL below, following [LLL82].

Theorem 5. Let {bi}i be a basis of Λ. Let δ ∈ (1/4, 1) and c = 1/(δ − 1/4). The
LLL algorithm with reduction parameter δ outputs a basis {b′i}i of Λ such that ‖b′j‖ ≤
c(n−1)/2λi(Λ) for all 1 ≤ j ≤ i ≤ n.

Let {bi}1≤i≤n be a basis of Λ with Euclidean norms at most X ∈ Z≥2. Recall
from [Gal12, Cor. 17.5.4] that LLL computes, on input {bi}1≤i≤n, a reduced basis
of Λ, in O(n5m log(X)3) bit operations. In [NS09], using the L2-variant of the LLL
algorithm, the complexity was improved to O(n4m(n + log(X)) log(X)), quadratic
in log(X) (hence the name L2) and based on naive integer multiplication. See also
[NSV11] for a variant of LLL with complexity quasi-linear in log(X). In this article,
we mainly rely on the L2 algorithm with naive integer multiplication when analyzing
the complexity using LLL.

Whenever we make a heuristic analysis later, we assume that a lattice reduction
algorithm outputs a basis {b′i}i of Λ with

‖b′i‖ ≤ ιnλi(Λ) , 1 ≤ i ≤ n ,

where the root Hermite factor ι > 1 depends on the reduction algorithm. By Thm. 5,
ιn = c(n−1)/2 for LLL, and ιn = 1/2(γβ)

n−1
β−1 (i+ 3)1/2 for BKZ with block-size β ≥ 2,

[Sch87]. Heuristically, we can bound the complexity of BKZ from below, by means of
an upper bound on ι. Namely, a root Hermite factor ι is (heuristically) achieved within
time at least 2Θ(1/ log(ι)) by using BKZ with block-size Θ(1/ log(ι)), see [HPS11].

3 Algorithms for the HLP

We compare two algorithms for the HLP. The first one follows the orthogonal lattice
algorithm by Nguyen and Stern, [NS99]. We then propose a variant based on the
(scaled) dual lattice, and which has some advantages over the first algorithm.

Let us introduce some notation. For a basis B = {v1, . . . , vn} of L, consider the
coordinate isomorphism cB : L→ Zn, sending

∑n
i=1 aivi to (a1, . . . , an) ∈ Zn. Let πN

be the natural projection Zn → (Z/NZ)n, and denote by cB,N : L → (Z/NZ)n the
composition πNcB. We now assume that L is complete, that is, L = L. Then NL =
L∩NZm, and thus we can extend cB,N to LN → (Z/NZ)n, by setting cB,N (`+Nt) =
cB,N (`) for every ` ∈ L and t ∈ Zm. For M ⊆ L (mod N), that is, M ⊆ LN , define

MB = cB,N (M) ⊆ (Z/NZ)n ,

the image of M under cB,N . For our algorithms, we consider the lattices (MB)⊥N ⊆ Zn

and (MB)N = π−1N (MB) ⊆ Zn of rank n, respectively.

5

3.1 The orthogonal lattice algorithm for the HLP

We adapt the algorithm from [NS99]. Given an instance of the HLP with notation
as in Def. 2, we have L⊥ ⊆ M⊥N . In imprecise terms, the smallness of L implies the
smallness of L⊥. We argue below that in a sufficiently generic case, M⊥N contains a
sublattice NI of L⊥ of the same rank. By Lem. 4, L = N⊥I is a solution to the given
HLP. If NI ⊆ L⊥, then N⊥I = L. The orthogonal lattice algorithm is as follows; we
refer to it as Algorithm I.

Algorithm 1 Solve the HLP using the orthogonal lattice (Algorithm I)
Parameters: The HLP parameters n,m, r, µ,N from Def. 2
Input: A valid input for the HLP: a basis of M ⊆ Z

m of rank r such that M ⊆ L (mod N) where L

is a µ-small lattice of rank n in Z
m

Output: A basis of the lattice L (under suitable parameter choice)
(1) Compute a basis matrix B(M, N) of M⊥N

(2) Run a lattice reduction algorithm on the basis B(M, N) to compute a reduced basis u1, . . . , u`
of M⊥N , where ` = m− r if N = 0 and ` = m otherwise; order the vectors {ui}i by increasing norm
(3) Construct the lattice NI =

⊕m−n
i=1 Zui

(4) Compute and return a basis of N⊥I (see Sec. 3.4)

Identifying L⊥. The decisive point in this algorithm is that NI is expected to lie in
L⊥ due to the smallness of the latter for the following heuristic argumentation. A more
precise discussion follows below. Recall that L⊥ is a “small” sublattice of M⊥N of rank
m−n. One hence expects that lattice reduction identifies m−n linearly independent
“short” vectors in M⊥N . Indeed, in practice one sees a significant jump in the size of
the basis vectors after the first m− n vectors, i.e. NI is the unique “small” sublattice
of L⊥ of rank m − n. In Sec. 6.2 we formulate the decisional hidden lattice problem
(DHLP), asking for the existence of L. This size jump is exactly what is detected
by the algorithm for the decisional version. Let us note that heuristically a “short”
vector orthogonal to M modulo N is genuinely orthogonal over Z. Consequently, if
m− n′ > m− n “short” vectors were found by lattice reduction, then M would lie in
a small lattice of rank n′ < n, which is heuristically not the case.

Prop. 6 makes the smallness of L⊥ precise by giving a lower bound for vectors
lying outside L⊥. For B = {v1, . . . , vn}, we also define the group homomorphism

ΦB : M⊥N →M
⊥N
B , u 7→ (〈u, vi〉)i=1,...,n . (2)

Indeed, by the linearity of the scalar product, it is easy to see that for vectors
u ∈ M⊥N , the vector ΦB(u) is in M

⊥N
B . Note that the kernel of ΦB is L⊥, which is

independent of the choice of basis B. Following [NS99], for short enough vectors in
M⊥N , their image under ΦB inside M

⊥N
B does not become significantly longer (since

{vi}i generate a small basis); if these vectors have Euclidean norm less than the first
minimum of M⊥NB , they must be zero in M

⊥N
B , and hence u ∈ L⊥.

Proposition 6. If u ∈M⊥N \ L⊥, then ‖u‖ ≥ λ1(M
⊥N
B)√
n·µ for any basis B of L.

Proof. The kernel of ΦB is L⊥ and is independent of B. So, for u ∈ M⊥N \ L⊥,
we have λ1(M⊥NB) ≤ ‖ΦB(u)‖ ≤

√∑n
i=1 ‖u‖2‖vi‖2 = ‖u‖

√
nσ(B) by the Cauchy-

Schwarz inequality. We conclude using σ(B) ≤ µ, as L is µ-small. ut

6

3.2 An alternative algorithm for the HLP

We describe a variant of Algorithm I based on the (public) lattice MN for N 6= 0.
For an instance of the HLP as in Def. 2, we have MN ⊆ LN . We argue below that
in a sufficiently generic case, MN contains a sublattice NII of L of rank n. Under the
assumption NII ⊆ L, one obtains a solution to the HLP by NII = L. Our algorithm is
as follows and we refer to it as Algorithm II:

Algorithm 2 Solve the HLP using the congruence lattice (Algorithm II)
Parameters: The HLP parameters n,m, r, µ,N from Def. 2
Input: A valid input for the HLP: a basis of M ⊆ Z

m of rank r such that M ⊆ L (mod N) where L

is a µ-small lattice of rank n in Z
m

Output: A basis of the lattice L (under suitable parameter choice)
(1) Compute a basis matrix B′(M, N) of MN

(2) Run a lattice reduction algorithm on the basis B′(M, N) to compute a reduced basis u1, . . . , um
of MN ; order the vectors {ui}i by increasing norm
(3) Construct the lattice NII =

⊕n
i=1 Zui

(4) Compute and return a basis of NII (see Sec. 3.4)

Identifying L by its smallness. The key point of the algorithm is the existence of
a somewhat small sublattice Q ⊆MN of rank n. Its existence makes lattice reduction
applied on MN output n short vectors. Let

Q := QB,N := c−1B ((MB)N) ∩ L = cB,N
−1(MB) ∩ L . (3)

Note that Q ' (MB)N via the isomorphism cB. The following lemma describes some
properties of the lattice Q.

Lemma 7. (a) The lattice Q is equal to MN ∩ L.
(b) The index (L : Q) is a multiple of Nn−r, and equal to Nn−r if Vol((MB)N) = Nn−r

Proof. (a) To see that Q ⊆MN ∩L, it suffices to show that Q ⊆MN . For q ∈ Q, we
have by definition, cB,N (q) ∈ MB, so cB,N (q) = cB,N (x) for some x ∈ M. Therfore
cB,N (x− q) = 0, i.e., q ∈ x+NZm ⊆MN .

To see that MN ∩L ⊆ Q, let ` = x+Nt ∈MN ∩L with ` ∈ L, x ∈M and t ∈ Zm.
This gives cB,N (`) = cB,N (x) ∈MB, so ` ∈ c−1B,N (MB) ∩ L = Q.
(b) The isomorphism Q ' (MB)N implies (L : Q) = (Zn : (MB)N) = Vol((MB)N),
which is a multiple of Nn−r. If Vol((MB)N) = Nn−r, then (L : Q) = Nn−r. ut

The key point is the following general lemma (Lem. 8). When applied to Λ′ = L ⊆
LN = Λ, it gives Prop. 9.

Lemma 8. Let Λ ⊆ Zm be a lattice of rank m. Let Λ′ ⊆ Λ be a sublattice of rank
1 ≤ n < m. For every basis B′ of Λ′ and every u ∈ Λ with u /∈ Λ′

Q
, we have

‖u‖ ≥ Vol(Λ)∏
v∈B′ ‖v‖ ·

∏m
i=n+2 λi(Λ)

.

Proof. Since u ∈ Λ and u /∈ Λ′
Q
, Λ′ ⊕ Zu is a sublattice of Λ of rank n + 1. There

are linearly independent (ordered) vectors t1, . . . , tm ∈ Λ with ‖tj‖ = λj(Λ) for all j.
Since {tj}j are linearly independent, we can choose m− n− 1 vectors t′1, . . . , t′m−n−1

7

among {tj}j such that Ω = Λ′ ⊕ (Zu) ⊕ (
⊕m−n−1

j=1 Zt′j) is a sublattice of Λ of finite
index. In particular, Vol(Λ) ≤ Vol(Ω). Since

∏m−n−1
j=1 ‖t′j‖ ≤

∏m
i=n+2 λi(Λ), we obtain

by Hadamard’s Inequality that the volume of Ω is upper bounded by (
∏
v∈B′ ‖v‖) ·

‖u‖ ·
∏m−n−1
j=1 ‖t′j‖ ≤ (

∏
v∈B′ ‖v‖) · ‖u‖ ·

∏m
i=n+2 λi(Λ). ut

Proposition 9. Let u ∈MN \ LQ. Then we have

‖u‖ ≥ 1

µn
· Vol(LN)∏m

i=n+2 λi(MN)

Proof. This is Lem. 8, Lem. 4 (c) and the inclusion MN ⊆ LN . ut

As a consequence, short enough vectors in MN , which we seek by lattice reduction,
must eventually lie in LQ, and as they are integral, also in L.

3.3 Relation between the algorithms

Algorithms I and II are related by the duality relations of M⊥N and MN pointed out
in Sec. 2. Therefore, the existence of n short vectors in MN leads to the existence of
m− n short vectors in M⊥N and vice versa, by relying on Banaszczyk’s Transference
Theorem, which we recall first.

Theorem 10 ([Ban93], Thm. 2.1). For every lattice Λ ⊆ Rm of rank m, one has
for all 1 ≤ j ≤ m, the inequality 1 ≤ λj(Λ)λm−j+1(Λ

∨) ≤ m.

Proposition 11. For every lattice M ⊆ Zm, the following hold:

(a)
∏m−n
j=1 λj(M

⊥N) ≤ γm/2m
Vol(M⊥N)

Nn

∏n
j=1 λj(MN)

(b)
∏n
j=1 λj(MN) ≤ γm/2m

Vol(MN)
Nm−n

∏m−n
j=1 λj(M

⊥N)

Proof. (a) Minkowski’s Second Thm. (1) gives

m−n∏
j=1

λj(M
⊥N) ≤ γ

m/2
m ·Vol(M⊥N)∏m
j=m−n+1 λj(M

⊥N)
(4)

and we find a lower bound for
∏m
j=m−n+1 λj(M

⊥N). Thm. 10 with Λ = M⊥N and
Λ∨ = N−1MN gives λj(M⊥N)λm−j+1(MN) ∈ [N,mN] for all 1 ≤ j ≤ m. Taking
the product over j = m − n + 1, . . . ,m yields

∏m
j=m−n+1 λj(M

⊥N)
∏n
j=1 λj(MN) ∈

[Nn, (mN)n] and we conclude by (4). To establish (b), we proceed similarly. ut

Therefore, an upper bound on the first m− n successive minima of M⊥N implies
an upper bound on the first n successive minima of MN , and vice-versa.

3.4 Practical discussion on Algorithm I and II

Algorithm I reveals L by means of orthogonal lattices. On the other side, Algorithm
II is conceptually easier than Algorithm I, in the sense that it recovers L much more
directly. In fact, as explained in Sec. 3.2, Algorithm II solves a “hidden sublattice
problem” in the first place, by recovering the lattice NII ⊆ L. We now detail the
different steps of the algorithms with a practical focus.

8

Bases for M⊥N and MN . Given N and a basis for M, bases for M⊥N and MN are
easily computed. To compute a basis for M⊥N , given a basis matrix M ∈ Zr×m for M
with row vectors, one may proceed as follows: write M = [M1|M2] with M1 ∈ Zr×m−r

and M2 ∈ Zr×r. Let M ′1 and M ′2 be the reductions ofM1 and M2 modulo N . Without
loss of generality, we can assume M ′2 ∈ GL(r,Z/NZ). Let M ′−12 be its inverse and put
M̃ := (−M ′−12 M ′1)

T . Then the block matrix

B(M, N) =

[
1m−r M̃

0r×m−r N · 1r

]
(5)

is a basis matrix for M⊥N , where 1 and 0 denote the identity and zero matrix in
the indicated dimensions. This is the matrix B(M, N) computed in the first step
of Algorithm I (see Alg. 1). Indeed, u ∈ Z1×m lies in M⊥N if and only if u is or-
thogonal modulo N to the rows of M , i.e. MuT ≡ 0r×1 (mod N). Putting u =
(u1, u2) ∈ Z1×m−r×Z1×r, this gives M1u

T
1 +M2u

T
2 ≡ 0r×1 (mod N), or equivalently,

M−12 M1u
T
1 +uT2 ≡ 0r×1 (mod N), which over the integers reads as uT2 = M̃uT1 +N ·1rlT

for some lT ∈ Zr×1. Thus u = (u1, u2) = (u1, l) ·B(M, N) is the image of (u1, l) under
B(M, N).

A basis for MN is constructed similarly, or, one may directly use duality: if B is a
basis matrix for Λ ⊆ Qm of full rank m, then a basis matrix for Λ∨ is B∨ := (BT)−1,
where the inverse is taken over GL(m,Q). Since MN = N(M⊥N)∨, a basis matrix
B′(M, N) for MN is thus NA∨, with A = B(M, N).

The first steps of our algorithms rely on running lattice reduction on these bases.
Subsequently the lattices NI and NII are constructed as indicated. The second steps
differ more substantially. We detail these algorithms below.

Orthogonal of NI. In Algorithm I, once a basis for NI is constructed, one computes
a basis for N⊥I . This can be done using the LLL algorithm following [NS97, Thm. 4
and Alg. 5]; also see [CSV18, Prop. 4.1]. Generally, for a lattice Λ ⊆ Zm of rank n
with basis matrix B ∈ Zn×m (with basis vectors in rows), the technique relies on
LLL-reducing the rows of

[
KB ·BT | 1m

]
∈ Z(m+n)×m for a sufficiently large constant

KB ∈ N depending on B, and then, projecting the first m−n vectors of the resulting
reduced basis on their last m components. For the computation of N⊥I , following
[NS97, Algorithm 5], it suffices to choose the constant KU = d2`

∏m−n
i=1 ‖ui‖e with

` = (m − 1)/2 + n(n − 1)/4 and where U is a basis matrix of NI with row vectors
{ui}i, computed in the first part.

Completion of NII. The completion of Λ ⊆ Zm is the lattice Λ = ΛQ ∩ Zm, which
is {v ∈ Zm | dv ∈ Λ, for some d ∈ Z \ {0}}. In Algorithm II, once a basis for NII is
constructed, we compute a basis for NII. One may compute NII as (N⊥II)

⊥ by using
LLL twice, as in [NS97, Thm. 4 and Alg. 5], and the output is then LLL-reduced.

We describe an alternative method, which in practice works well (see Sec. 8). As
predicted by Lemma 7, the index of Q in L is Nn−r in most of the cases. In practical
experiments with a solvable hidden lattice problem, we observe that NII is exactly
MN ∩ L = Q, thus (L : NII) = Nn−r. Therefore, more directly, we can complete NII

locally at primes p dividing N . For a prime p, define the p-completion of Λ ⊆ Zm by

Λp
∞

:= {v ∈ Z
m | pkv ∈ Λ, for some k ∈ N} .

Let B ∈ Zn×m be a basis matrix (with rows {bi}i) of some lattice Λ ⊆ Zm of rank n;
assume p divides the index (Λ : Λ). We compute a basis of Λp∞ as follows. Let B ∈

9

Fn×mp be the reduction of B modulo p; let α ∈ Fnp be in ker(B), i.e. αB ≡ 0 (mod p).
We represent α ∈ Zn by choosing the entries of α by their unique representatives in
Z∩ [−p/2, p/2). We may assume that one of the coefficients of ᾱ equals 1, say the ith
coefficient. Let x ∈ Zm such that αB = px. Let Λ′ ⊆ Zm be the lattice generated by
B′ ∈ Zn×m where B′ is the matrix obtained from B after replacing the ith row of B
by x; then Λ ⊆ Λ′ and ΛQ = Λ′

Q
. By the choice of x, the rank of B′ over F` for every

prime ` 6= p, does not decrease. We repeat this for every basis vector in the Fp-kernel
of B and update B′ accordingly.

In Sec. 8, we report that the second step for Algorithm II can, in general, be
carried out much more rapidly than the second step of Algorithm I. This also gives
an improved total running time for Algorithm II against Algorithm I.

4 Heuristic analysis of the algorithms

We provide a heuristic analysis and comparison of Algorithms I and II for N > 0. For
N < 0, it suffices to replace N by −N throughout the analysis. We write log for the
logarithm in base 2. Prop. 6 and 9 are the keys in our analysis.

We rely on the Gaussian Heuristic (GH) for the successive minima for random1

lattices. Accordingly, we heuristically approximate λ1(Λ) by √γn · Vol(Λ)1/n. Addi-
tionnally, we heuristically assume all the minima to be roughly equal:

λk(Λ) ≈ √γn ·Vol(Λ)1/n , 1 ≤ k ≤ n . (6)

Since L,L⊥, (MB)⊥N , (MB)N (contrary to M⊥N and MN) do not possess “small”
sublattices, it is reasonable to follow this heuristic for these lattices. As n → ∞, we
will use the approximation γn ≈ n/(2πe).

4.1 Analysis of Algorithm I

Lattice reduction computes short vectors in M⊥N ; let u1, . . . , um−n be the first m−n
vectors in a basis of M⊥N output by a lattice reduction algorithm. Since M⊥N contains
L⊥, one has ‖um−n‖ ≤ ιmλm−n(L⊥) for some ι > 1 depending on the lattice reduction
algorithm. By Prop. 6, if

ιmλm−n(L⊥) <
λ1(M

⊥N
B)√

n · µ
(7)

then um−n ∈ L⊥ and since the vectors {ui}i are ordered by size, we obtain a sublattice
NI =

⊕m−n
i=1 Zui of L⊥ of the same rank. The orthogonal complement N⊥I is then the

completion of L, by Lem. 4.
We rely on the Gaussian Heuristic to estimate λm−n(L⊥) and λ1(M

⊥N
B). Using

Vol(L⊥) ≤ Vol(L) and Lem. 4, we have λm−n(L⊥) .
√
γm−n · µn/(m−n). Assuming

that Vol(M⊥NB) = N r (see Sec. 2), as holds in the generic case, we obtain by (6):
λ1(M

⊥N
B) ≈ √γn·N r/n. Putting the bounds together and approximating γn by n/(2πe)

gives
N r/n > ιm · (m− n)1/2 · µ

m
m−n . (8)

There are more ways to read such an inequality: since our investigation is on the
hidden lattice, we could either bound µ, the size of the small basis of the hidden
1 see e.g. [Ajt06] for a precise setting; here we shall mean “generic” lattices, i.e. lattices with no extra
assumptions, such as the existence of particularly small sublattices

10

lattice L, as a function of the other parameters, or else, consider µ as fixed and bound
the modulus N in terms of the remaining parameters. Following this latter approach,
by taking logarithms, Eq. (7) implies:

log(N) >
mn

r(m− n)
log(µ) +

mn

r
log(ι) +

n

2r
log(m− n) (9)

Eq. (9) is a heuristic sufficient condition that the chosen lattice reduction algorithm
outputs m− n vectors u1, . . . , um−n ∈ L⊥.

4.2 Analysis of Algorithm II

We present two alternative analyses: a “direct analysis” without relying on Prop. 9,
and one using Prop. 9.

Direct analysis. We run lattice reduction on MN ; let u1, . . . , um be the first n vectors
of a reduced basis of MN . The existence of the hidden lattice L implies the existence
of the sublattice Q = MN ∩L of MN (defined in Eq. (3)), which impacts the geometry
of MN in the following way: the first n minima of MN are heuristically of the same
size as the first n minima of Q, and the remaining m− n minima are much larger. In
particular, the first n minima of MN are expected to be significantly smaller than the
quantity predicted by Eq. (6):

√
γm ·Vol(MN)1/m ≈ √γm ·N1−r/m ,

which would heuristically be a valid approximation if MN were a “generic” lattice
(i.e. without the existence of Q). To measure this gap, we introduce a threshold con-
stant θ ≥ 1. We heuristically expect to have u1, . . . , un ∈ LQ under the condition

θ · ‖un‖ <
√
γm ·N1−r/m . (10)

Since MN contains Q, we have ‖un‖ ≤ ιmλn(Q) for some ι > 1 depending on the
lattice reduction algorithm. We assume (L : Q) = Nn−r by Lemma 7 (b). Then
Vol(Q) = Nn−rVol(L). Since

∏n
i=1 λi(Q) ≤ γn/2n Vol(Q), this gives with Vol(L) ≤ µn,

the approximation
n∏
i=1

λi(Q) . γn/2n µnNn−r . (11)

With the heuristic assumption that the successive minima of Q are roughly of equal
size, this implies the heuristic upper bound λi(Q) .

√
γnµN

1−r/n for 1 ≤ i ≤ n. It
follows that

‖un‖ . ιm
√
γnµN

1−r/n . (12)

Consequently, from Eq. (10), we expect to have u1, . . . , un ∈ LQ as soon as θιm√γnµN1−r/n <
√
γmN

1−r/m. Taking logarithms, this gives the condition

log(N) >
mn

r(m− n)
log(µ) +

m

m− n
mn

r
log(ι) +

mn

r(m− n)
log

(
θ

√
n√
m

)
. (13)

11

Analysis using Prop. 9. Following Prop. 9, we compute a heuristic upper bound for
‖un‖ and a lower bound for the quotient Nm−n/(µn

∏m
i=n+2 λi(MN)), as Vol(LN) ≥

Nm−n.
Eq. (12) gives a heuristic upper bound for ‖un‖. To give a lower bound for the

quotient Nm−n/(µn
∏m
i=n+2 λi(MN)), we find an upper bound for

∏m
i=n+2 λi(MN).

Minkowski’s Second Theorem gives
∏m
i=n+1 λi(MN) ≤ γm/2m Nm−r/

∏n
i=1 λi(MN), where

we have assumed that Vol(MN) = Nm−r (see Sec. 2), which is the generic case and
heuristically (almost) always true. The first n minima of MN are heuristically equal
to the n minima of Q, as Q is heuristically the only relatively small sublattice of MN .
We can heuristically consider the upper bound provided in (11) as a lower bound, too.
Indeed, since Vol(Q) ≤

∏n
i=1 λi(Q) ≤ γn/2n Vol(Q), Minkowski’s bound in (11) is loose

by a factor at most γn/2n . Note also that assuming equality in (11) is compatible with
Eq. (6) for the lattice Q.

Therefore
∏n
i=1 λi(MN) ≈

∏n
i=1 λi(Q) ≈ γn/2n µnNn−r. This implies that

m∏
i=n+1

λi(MN) .
γ
m/2
m Nm−r

γ
n/2
n µnNn−r

≈ (2πe)n/2

(2πe)m/2
mm/2

nn/2
Nm−n

µn
=: K(m,n,N, µ) =: K .

Since we expect λi(MN) for n + 1 ≤ i ≤ m to be roughly equal, we obtain that∏m
i=n+2 λi(MN) . K(m−n−1)/(m−n). Thus, we derive the heuristic lower bound

Nm−n

µn
∏m
i=n+2 λi(MN)

&
Nm−n

µnK
m−n−1
m−n

,

which gives,

Nm−n

µn
∏m
i=n+2 λi(MN)

&
N

µ
n

m−n
·

(
nn/2

mm/2

)m−n−1
m−n

·
√

2πe
m−n−1

.

Combined with Eq. (12), Prop. 9 says that if

ιm
√
γnµN

1−r/n <
N

µ
n

m−n
·

(
nn/2

mm/2

)m−n−1
m−n

·
√

2πe
m−n−1

,

then un ∈ LQ (and thus L). Since {ui}i are ordered by size, NII =
⊕n

i=1 Zui is
a sublattice of L of rank n. Thus, the completion of NII is the completion of L.
Simplifying and taking logarithms, gives the approximate condition

log(N) >
mn

r(m− n)
log(µ) +

mn

r
log(ι) +

n

2r
log(n) (14)

+
n

2r
log

(
mm

nn

)
− n(m− n)

2r
log(2πe) ,

where we have used the mild approximation m−n−1 ≈ m−n. Eq. (14) is a heuristic
sufficient condition that the chosen lattice reduction algorithm outputs n vectors in
LQ ∩ Zm = L.

In Sec. 4.3, we will see that, asymptotically (as n→∞), the heuristic bounds for
Algorithms I and II perform very similarly.

12

4.3 Parameter comparison of Algorithms I and II

In light of Eq. (9) and Eq. (13) (resp. Eq. (14)) we deduce that if the term in log(µ) is
dominant, then log(N) > mn

r(m−n) log(µ), and therefore heuristically both algorithms
detect µ-small lattices of size approximately

µ = O(N
r(m−n)
nm) , (15)

when r, n,m are fixed and N tends to infinity. Since r < n and m − n < m, the
exponent is strictly less than 1. In the balanced case m = 2n = 4r, this gives µ =
O(N1/4). Larger values of r make the hidden lattice problem easier (as expected) as
it can be solved with a modulus of r times smaller bitsize. We now turn to a more
detailed comparison of Eq. (9) and Eq. (13). For fixed m,n, r, µ, a sufficiently large
value of N satisfies (9), resp. (13). When m,n, r are considered as constants, then the
right-hand sides of (9) and (13) differ only by a constant. To study the value of N
asymptotically as n→∞, we consider r as constant, and view m as a function of n.
The term log(ι) is constant and relatively small; for example, in practice one achieves
a root Hermite factor ι approximately 1.021 for LLL, so log(ι) ≈ 0.03 is of impact
only in large dimensions. Table 2 shows three cases: when m− n = O(1) is bounded
absolutely (independently of n), when m = O(n), and last, and when m = O(n`) for
` > 1.

log(N)

m Algorithm I Algorithm II

n+O(1) O(n
2

r
log(µ)) O(n

2

r
max(log(µ), n))

O(n) O(n
r
max(log(µ), n)) O(n

r
max(log(µ), n))

O(n`), ` ∈ R>1 O(n
r
max(log(µ), n`)) O(n

r
max(log(µ), n`))

Table 2. Asymptotic lower bounds for log(N) as functions of n, r, µ

When m − n = O(1), our algorithms heuristically require larger (asymptotically
equal) values of N . The last line of Table 2 remains meaningful for ` = 1 and recovers
the case m = O(n); we have separated both for better readability. Alternatively, we
may rewrite (9) and (13) as

∆ := log

(
N r/n

µm/(m−n)

)
> ∆∗(n,m, ι) , (16)

where ∆∗(n,m, ι) with ∗ ∈ {I, II} (depending on whether the bound stands for Al-
gorithm I or II) are the functions depending on n,m and ι, defined by:

∆I(n,m, ι) = m log(ι) +
1

2
log(m− n) (17)

∆II(n,m, ι) =
m2

m− n
log(ι) +

m

m− n
log

(
θ

√
n√
m

)
(18)

We consider ι as a constant once the lattice reduction algorithm is chosen, and
treat m = m(n) as a function of n, thus we just write ∆∗(n) as function of n only. The
number ∆ is regarded as an arithmetic invariant for the (geometric) hidden lattice
problem, depending on all the parameters of the problem.

13

Remark 12. In the language of knapsack-type problems, ∆−1 is regarded as a density
for the HLP. Namely, one commonly attributes a density to knapsack-type prob-
lems as a measure of their hardness. For the classical “binary” subset sum prob-
lem [LO85], asking to reveal x1, . . . , xn ∈ {0, 1} from a sum α =

∑n
i=1 αixi with given

α1, . . . , αn ∈ Z, the density is n/ log(maxi αi). When the {xi}i are not binary, [NS05]
argues that this definition is not “complete” enough, and introduces the “pseudo-
density” (

∑
i x

2
i) · n/ log(maxi αi), taking into account the weights {xi}i. In [PZ11],

the authors study higher dimensional subset sums where k ≥ 1 equations are given;
thereby the density is generalized as (1/k)·n/ log(maxi αi). For the hidden subset sum
problem [NS99] (see also Sec. 7.2), asking to reveal vectors x1, . . . , xn ∈ {0, 1}m and
weights α1, . . . , αn from a given vector v ≡

∑n
i=1 αixi (mod N), the density has been

defined as n/ log(N), which, however, is independent of the dimension m. In light of
this discussion, we believe that the definition of ∆−1 is a more complete definition for
a density of the HLP. For large enough m (say m→∞) and r = 1, our definition (16)
roughly recovers that of [NS99] since ∆−1 → 1/ log(N1/n/µ) = n/ log(N/µn). Our
bounds show that heuristically our algorithms are more likely to succeed for larger
values of ∆ (i.e. larger gaps between N and µ).

Proposition 13. (a) Let m = `n for ` > 1. Then ∆I(n) = O(n) and ∆II(n) = O(n).
(b) Let m = n` for ` > 1. Then ∆I(n) = O(n`) and ∆II(n) = O(n`).

The proof is immediate from growth comparisons in (17) and (18).

4.4 Complexity of lattice reduction

The computations of NI and NII are carried out by lattice reduction. We describe
their complexity by the LLL and BKZ algorithm. We see that the LLL reduction
(L2-reduction) step in Algorithm II is faster than in Algorithm I when r ≥ m/2.

Applying the L2-algorithm in Algorithm I, on a basis of M⊥N given by the matrix
B in Eq. (5). The top right block M̃ in B has size (m−r)×r and entries of size at most
N , so, every row in B has Euclidean norm at most max((rN2 + 1)1/2, N) = (rN2 +
1)1/2. This gives (see Sec. 2), a complexity O(m6 log((rN2 + 1)1/2) +m5 log2((rN2 +
1)1/2)) which approximately is

O(m6 log(r1/2N) +m5 log2(r1/2N)) ,

for computing NI by the L2-algorithm. For Algorithm II, the L2-algorithm is run on
the basis matrix NB∨ of MN , with N · 1m−r in the top left corner. The rows have
Euclidean norm at most max(N, ((m−r)N2 +1)1/2) = ((m−r)N2 +1)1/2. This gives
an approximate time complexity

O(m6 log((m− r)1/2N) +m5 log2((m− r)1/2N)) ,

for computing NII by the L2-algorithm. In particular, this complexity is lower than
that for computing NI when r ≥ m/2. In the case r = 1, computing NI is thus faster
than NII, which we confirm practically in Sec. 8.

When the prime factorization of N is known and p denotes the smallest prime
factor of N , then the complexity can be reduced by replacing N by p in the afore-
mentioned formulae, provided that log(p) satisfies the (heuristic) bounds (9) and (13),
respectively, and by performing the first steps of the algorithms over Z/pZ instead of

14

Z/NZ. Namely, M ⊆ L (mod N) implies M ⊆ L (mod p), which in the first step,
leads to consider the lattices M⊥p and Mp, respectively.

When using BKZ lattice reduction, we rely on our heuristic analyses to obtain a
lower bound on the complexity for computing NI and NII. A root Hermite factor ι is
achieved within time at least 2Θ(1/ log(ι)) by using BKZ with block-sizeΘ(1/ log(ι)). For
both algorithms, log(ι) < r

mn log(N) gives a heuristic time complexity 2Θ(mn/(r log(N)))

to compute NI, resp. NII, with BKZ.

5 Theoretical analysis by counting

5.1 Notation and main results

We restrict to the most basic case r = 1. We fix n,m ∈ Z≥2 with m > n and
µ ∈ R≥1, N ∈ Z>0. Let Ω := Ω(n,m, µ) be the set of collections B = {vi}i of n
Z/NZ-linearly independent vectors in Zm satisfying σ(B) := (1

n

∑
i ‖vi‖2)1/2 ≤ µ.

For B ∈ Ω, let L(B) be the µ-small lattice generated by B; this is the “hidden
lattice”. Consider the homomorphism FB : (Z/NZ)n → (Z/NZ)m sending a = (ai)i to
FB(a) =

∑
i aiπN (vi), where πN : Zm → (Z/NZ)m is reduction modulo N . Let M(a)

be the lattice ZFB(a) generated by FB(a). By construction, M(a) ⊆ L(B) (mod N)
defines a hidden lattice problem, asking to compute a basis of L(B) on input M(a)
and N (and n). We identify FB(a) with this problem and our sample space for the
hidden lattice problems is H(B) = {FB(a) | a ∈ (Z/NZ)n}. Clearly, #H(B) = Nn.
For δ ∈ (1/4, 1], denote by Hδ,I(B) ⊆ H(B) (resp. Hδ,II(B) ⊆ H(B)), the subset of
H(B) for which Algorithm I (resp. Algorithm II) succeeds by using δ-LLL in the first
step.

Theorem 14. Let µ ∈ R≥1 and m > n ≥ 3 and N > 0 be integers. Let δ ∈ (1/4, 1),
c = (δ − 1/4)−1 and ε ∈ (0, 1) such that

log(Nε) >
mn

2
log(c) + n(n+ 1) log(µ) (19)

+
n(m− n)

2
log((2/3)(m− n)) + n log(3

√
n) + 1

For every B ∈ Ω, at least (1 − ε)#H(B) of the hidden lattice problems from H(B)
are solvable by Algorithm I with δ-LLL; i.e. #Hδ,I(B)/#H(B) ≥ 1− ε.

Theorem 15. Let µ ∈ R≥1 and m > n ≥ 3 and N > 0 be integers. Let δ ∈ (1/4, 1),
c = (δ − 1/4)−1 and ε ∈ (0, 1) such that

log(Nε) >
mn

2
log(c) + n(n+ 2) log(µ) + n log(3n2) + 1

For every B ∈ Ω, at least (1 − ε)#H(B) of the hidden lattice problems from H(B)
are solvable by Algorithm II with δ-LLL; i.e. #Hδ,II(B)/#H(B) ≥ 1− ε.

Corollary 16. Let m > n ≥ 3. For every δ ∈ (1/4, 1) and ε ∈ (0, 1), there exist pos-
itive real numbers N †I = Nδ,µ,n,m(ε) and N †II = Nδ,µ,n,m(ε) depending on n,m, µ, δ, ε,
such that for all integers N > min(N †I , N

†
II) and all B ∈ Ω, at least (1− ε)#H(B) of

the hidden lattice problems from H(B) are solvable (by Algorithm I if min(N †I , N
†
II) =

N †I and Algorithm II otherwise) using δ-LLL.

15

5.2 Proof of Theorem 14

Fix integers2 m > n ≥ 3, N > 0 and µ ∈ R≥1. It is enough to show that under the
assumption in (19), we can compute a sublattice NI of L(B)⊥ of rank m−n. A basis
for N⊥I then gives a basis of L(B). To prove Thm. 14 we proceed in three steps. Given
a ∈ (Z/NZ)n, we establish a lower bound for λ1((Za)⊥N) and then an upper bound
for ‖um−n‖ where {ui}i is a δ-LLL reduced basis of (ZFB(a))⊥N . We conclude the
proof by combining with Prop. 6.

Step 1. For a lower bound for λ1((Za)⊥N), we use a counting argument. For t =
(t1, . . . , tn) ∈ Zn, let gcd(t,N) := gcd(t1, . . . , tn, N).

Lemma 17. For every non-zero vector t ∈ Zn with d = gcd(t,N), one has

#{a ∈ (Z/NZ)n | 〈a, t〉 ≡ 0 (mod N)} = dNn−1 .

Proof. If d = 1, then the set in the statement is the kernel of the surjective (as
gcd(t,N) = 1) homomorphism ϕt : (Z/NZ)n → Z/NZ, a 7→ 〈a, t〉 with # ker(ϕt) =
Nn−1. If d > 1, let t′ = (1/d)t. Then 〈a, t〉 ≡ 0 (mod N) if and only if 〈a, t′〉 ≡ 0
(mod N/d), and we represent a as a1 + (N/d)a2 with a1 ∈ (Z/(N/d)Z)n and a2 ∈
(Z/dZ)n. The number of such a with 〈a1, t′〉 ≡ 0 (mod N/d) is (N/d)n−1 · dn. ut

For R > 0, let Bn(R) be the n-dimensional closed ball of radius R centered at the
origin. Let Sn(R) = #{x ∈ Zn | ‖x‖ ≤ R} the number of integral points in Bn(R).
We use the simple upper bound Sn(R) ≤ (2R+ 1)n ≤ (3R)n if R ≥ 1.

Lemma 18. For ε ∈ (0, 1), let kε := kε(n,N) = 1
3(6ε
π2)1/nN1/n. Then

1

Nn
·#{a ∈ (Z/NZ)n | λ1((Za)⊥N) > kε} ≥ 1− ε .

Proof. For R > 0, let αn(R) = N−n · #{a ∈ (Z/NZ)n | λ1((Za)⊥N) ≤ R}; we prove
αn(kε) ≤ ε. Without loss of generality, we let 1 ≤ R < N . As the vectors {Nei}i (for
the canonical basis {ei}i) of norm N lie in (Za)⊥N , and so αn(R) = 1 for R ≥ N .
Then Nnαn(R) = #{a ∈ (Z/NZ)n | ∃ t ∈ Bn(0, R)∩Zn \ {0}, 〈a, t〉 ≡ 0 (mod N)} is
upper bounded by

∑
t #{a | 〈a, t〉 ≡ 0 (mod N)}, which is

∑
d|N,d6=N

 ∑
t,gcd(t,N)=d

#{a | 〈a, t〉 ≡ 0 (mod N)}

 , (20)

where t runs over Bn(0, R) ∩ Zn \ {0}. Note that in the outer sum we omit d = N as
‖t‖ ≤ R < N and therefore every entry of t is less than N . We estimate the number
of terms in the inner sum for a given divisor d of N . By dividing every entry of t by d
we have #{t ∈ Zn \{0} : ‖t‖ ≤ R, gcd(t,N) = d} ≤ Sn(0, R/d) ≤ 3n(R/d)n, if R ≥ d.
Otherwise, the same bound still holds, because we we count non-zero points. Using
Lem. 17, one has #{a | 〈a, t〉 ≡ 0 (mod N)} = dNn−1 for vectors t with gcd(t,N) = d.
Finally, (20) is at most

3n
∑
d

(R/d)n(dNn−1) = 3nRnNn−1
∑
d

d1−n ≤ 3nRnNn−1
∑
d≥1

d−2 ,

where for the last inequality we have used n ≥ 3. This sum equals 3nRnNn−1π2/6
and hence αn(R) ≤ 3nRnπ2/(6N). Taking R equal to Rε := 1

3(6Nε/π2)1/n gives
αn(Rε) ≤ ε. In conclusion, letting kε = min(N,Rε) = Rε, gives the result. ut
2 the condition n ≥ 3 is used for Lem. 18.

16

Step 2. To (B, a) ∈ Ω × (Z/NZ)n, we associate the vector FB(a), which we identify
with an HLP. The first step of Algorithm I computes a reduced basis of (M(a))⊥N . For
δ ∈ (1/4, 1], we consider a δ-LLL reduced basis {u(B,a,δ)i }i of M(a)⊥N . We establish
an upper bound for ‖u(B,a,δ)m−n ‖, by Minkowski’s Second Theorem and a counting argu-
ment similar to Step 1. Using L(B)⊥ ⊆ (M(a))⊥N , δ-LLL (Thm. 5) outputs vectors
{u(B,a,δ)i }i such that

‖u(B,a,δ)m−n ‖ ≤ c(m−1)/2λm−n(L(B)⊥) (21)

where c = (δ − 1/4)−1. We obtain an upper bound for λm−n(L(B)⊥) by Minkowski’s
Second Theorem (Eq. (1)):

λm−n(L(B)⊥) ≤
m−n∏
i=1

λi(L(B)⊥) ≤ ((2/3)(m− n))(m−n)/2Vol(L(B)⊥) , (22)

which gives λm−n(L(B)⊥) ≤ ((2/3)(m− n))(m−n)/2µn, since we have Vol(L(B)⊥) ≤
Vol(L(B)) ≤ µn (Lem. 4). This gives for every a ∈ (Z/NZ)n:

‖u(B,a,δ)m−n ‖ ≤ c(m−1)/2((2/3)(m− n))(m−n)/2µn . (23)

Step 3: Proof of Theorem 14. Let B ∈ Ω and ε ∈ (0, 1). We continue to use the
notation kε introduced above. Eq. (19) implies that log(Nε) is strictly larger than
n(m−1)

2 log(c) + n(n+ 1) log(µ) + n(m−n)
2 log((2/3)(m− n)) + n log(3

√
n) + log(π2/6);

and it is a direct computation to see that this is equivalent to

c(m−1)/2((2/3)(m− n))(m−n)/2µn < kε/(
√
nµ) . (24)

By Lem. 18, kε < λ1((Za)⊥N) for at least (1 − ε)Nn choices of a ∈ (Z/NZ)n. By
Eq. (23), c(m−1)/2((2/3)(m − n))(m−n)/2µn is an upper bound for ‖u(B,a,δ)m−n ‖ where
{u(B,a,δ)i }i is a δ-LLL reduced basis ofM(a)⊥N for every a. Hence, for at least (1−ε)Nn

choices of a ∈ (Z/NZ)n, (24) implies ‖u(B,a,δ)m−n ‖ < λ1((Za)⊥N)/(
√
nµ). Prop. 6 gives

u
(B,a,δ)
i ∈ L(B)⊥ for all 1 ≤ i ≤ m− n. This terminates the proof.

5.3 Proof of Theorem 15

Fix integers m > n ≥ 3, N > 0 and µ ∈ R≥1. It is enough to show that under the
assumption in (20), we can compute a sublattice NII of L(B) of rank n. A basis for
NII then gives a basis of L(B). To prove Thm. 15, we again proceed in three steps,
similarly to the proof of Thm. 14. Given a ∈ (Z/NZ)n, we first establish an upper
bound for ‖un‖, where {ui}i is a δ-LLL reduced basis of M(a)N . We conclude the
proof using Prop. 9.

Step 1. For a given a ∈ (Z/NZ)n, we consider a δ-LLL reduced basis {u(B,a,δ)i }i of
M(a). Note that by construction (M(a)B)N = (Za)N . The lattice Q(a) = M(a)N ∩
L(B) is defined as in Sec. 3 (see Lem. 7). The following lemma gives an upper bound
for ‖u(B,a,δ)n ‖ for almost all a ∈ (Z/NZ)n.

Lemma 19. For ε ∈ (0, 1), let `ε := `ε(n,N) = 3n(π2/(6ε))1/nN1−1/n. Then

1

Nn
·#{a ∈ (Z/NZ)n | ‖u(B,a,δ)n ‖ < c(m−1)/2nµ2`ε} ≥ 1− ε .

17

Proof. Let a ∈ (Z/NZ)n. As Q(a) ⊆M(a)N , we have

‖u(B,a,δ)n ‖ ≤ c(m−1)/2λn(Q(a)) . (25)

The lattice Q(a) contains the n “short” vectors q1 = c−1B,N (x(1)), . . . , qn = c−1B,N (x(n))

with ‖x(j)‖ = λj((Za)N) for 1 ≤ j ≤ n. With B = {v1, . . . , vn}, we can write, for
every 1 ≤ j ≤ n, qj =

∑n
i=1 x

(j)
i vi with x(j) = (x

(j)
1 , . . . , x

(j)
n) ∈ (Za)N . Therefore, for

all 1 ≤ j ≤ n,

‖qj‖ ≤
n∑
i=1

|x(j)i |‖vi‖ ≤
n∑
i=1

λj((Za)N)‖vi‖ ≤ λn((Za)N)
n∑
i=1

‖vi‖2 . (26)

This implies, since B is µ-small,

λn(Q(a)) ≤ max
1≤j≤n

‖qj‖ ≤ λn((Za)N)nµ2 . (27)

Thm. 10 applied with Λ = (Za)N and Λ∨ = N−1(Za)⊥N implies that

λn((Za)N) ≤ nN

λ1((Za)⊥N)
.

By Lem. 18, λ1((Za)⊥N) > kε = 1
3(6ε/π2)1/nN1/n for at least (1 − ε)Nn choices of

a ∈ (Z/NZ)n. Therefore, λn((Za)N) < nN/kε = 3n(π2/(6ε))1/nN1−1/n = `ε for at
least (1 − ε)Nn choices of a ∈ (Z/NZ)n. The bound for ‖u(B,a,δ)n ‖ then follows by
combining (25) and (27). ut

Step 2. We now compute a lower bound for the right-hand side of the formula in
Prop. 9, for every a ∈ (Z/NZ)n. We clearly have:

1

µn
· Vol(L(B)N)∏m

i=n+2 λi(M(a)N)
≥ 1

µn
· Nm−n∏m

i=n+2 λi(M(a)N)
. (28)

Since NZm ⊆ M(a)N , we have λi(M(a)N) ≤ N for every 1 ≤ i ≤ m. Thereby, we
have

∏m
i=n+2 λi(M(a)N) ≤ Nm−n−1, which in Eq. (28) gives, for every a ∈ (Z/NZ)n:

1

µn
· Vol(L(B)N)∏m

i=n+2 λi(M(a)N)
≥ N

µn
. (29)

Step 3: Proof of Theorem 15. Let B ∈ Ω and ε ∈ (0, 1). The assumption in
Eq. (20) implies that log(Nε) > (m−1)n

2 log(c)+n(n+2) log(µ)+n log(3n2)+log(π2/6),
which by a direct computation is equivalent to

c(m−1)/2nµ2`ε <
N

µn
, (30)

where `ε = 3n(π2/(6ε))1/nN1−1/n is as in Lem. 19. By Lem. 19, the left-hand side
is an upper bound for ‖u(B,a,δ)n ‖ for at least (1 − ε)Nn of the choices of a, where
{u(B,a,δ)i }i is a δ-LLL reduced basis of M(a)N . By Eq. (29) the right-hand side is
a lower bound for 1

µn ·
Vol(L(B)N)∏m

i=n+2 λi(M(a)N)
, for every a ∈ (Z/NZ)n. Hence, for at least

(1−ε)Nn of a ∈ (Z/NZ)n, Eq. (20) and Prop. 9 give u(B,a,δ)i ∈ L(B) for all 1 ≤ i ≤ n.
This terminates the proof.

18

5.4 Comparison

We first compare Thm. 14 and Thm. 15. Table 3 summarizes the asymptotic lower
bounds for log(Nε) as n → ∞. It appears that Algorithm II achieves slightly better
bounds.

log(N)

m Algorithm I (Thm. 14) Algorithm II (Thm. 15)

n+O(1) O(n2 log(µ)) O(n2 log(µ))

O(n) O(n2 max(log(µ), log(n))) O(n2 log(µ))

O(n`), ` ∈ R>1 O(n2 max(log(µ), n`−1 log(n))) O(n2 max(log(µ), n`−1))

Table 3. Asymptotic lower bounds for log(N) as functions of n, µ

We compare Thm. 14 and Thm. 15 with the heuristic estimates in Sec. 4 (with
r = 1). The terms in log(c) are to be compared with those in log(ι). As our proofs build
upon non-tight upper bounds (e.g. Minkowski bounds, or the number of integral points
in spheres), our proven formulae are expectedly weaker. The main difference between
our heuristic and theoretical lower bounds for log(N) occurs in the term containing
log(µ). In the case of Algorithm I, this difference comes from our upper bound for
the last minimum of L⊥ by Minkowski’s Second Theorem in Eq. (22). In the case of
Algorithm II, this difference comes from our upper bound for

∏m
i=n+2 λi(M(a)N) in

Eq. (29).

6 Variations of the HLP

In this section we consider variations of the problem in Def. 2. We first consider a
variant including noise vectors. Next, we consider a decisional version.

6.1 HLP with noise

Definition 20. Let µ, ρ ∈ R>0, integers 1 ≤ r ≤ n ≤ m and N . Let L ⊆ Zm be a
µ-small lattice of rank n and {wj}j=1,...,r be linearly independent vectors in Zm such
that there exist linearly independent vectors {xj}j=1...,r in Zm satisfying wj − xj ∈ L

(mod N) and ‖xj‖ ≤ ρ for all j. The Noisy Hidden Lattice Problem (NHLP) is the
task to compute from the knowledge of n,N and the vectors {wj}j, a basis of the
completion of any lattice Λ satisfying the properties of L.

We solve the NHLP by reducing it in the first place to a HLP. Let X be the
rank-r lattice generated by X = {xj}j ; let B be a µ-small basis of L. We assume
that L ∩ X = {0}, so that L ⊕ X has rank n + r. By assumption, L ⊕ X has size
σ(B ∪ X) ≤ σ(B) + σ(X) ≤ µ + ρ and contains {wj}j modulo N . Therefore, the
vectors {wj}j are an instance of HLP with hidden lattice L⊕ X.

We first treat the special case when ρ is larger than µ. The application of either
Algorithm I or Algorithm II to {wj}j , reveals a reduced basis of L⊕ X if the para-
meters are suitable. If ρ is larger than µ, one can distinguish, in a reduced basis of
L⊕ X, the vectors of L from those of X.

19

In the general case, without the assumption ρ > µ, we do not expect a significant
gap between vectors of L and X in a reduced basis of L⊕ X, and thereby, cannot
directly identify L. We overcome this problem via an embedding in larger dimension
and the resolution of a system of linear equations. More precisely, let L′ ∈ Zm+r be
embedded in Zm+r as (L, 0), that is, the vectors (v, 0) ∈ L× {0}r. For 1 ≤ j ≤ r, let
w′j = (wj , ej) ∈ Zm+r and x′j = (xj , ej) ∈ Zm+r, where ej ∈ Zr is the jth standard
unit vector; let M′ ⊆ Zm+r be the rank-r lattice generated by {w′j}j , and X′ ⊆ Zm+r

the rank-r lattice generated by {x′j}j . Clearly, M′ ⊆ L′ ⊕ X′ (mod N), and L′ ⊕ X′

is a small hidden lattice of rank n + r in dimension m + r. We proceed as follows to
compute L. Let π : Zm+r → Zr be the projection onto the last r coordinates. We can
distinguish between vectors in L and X by noticing that for every v ∈ L′, it holds
π(v) = 0, and X′ ∩ {v ∈ Zm+r : π(v) = 0} = {0}. We consequently recover (basis)
vectors v of L from vectors in L′ by solving a system of linear equations, imposing
the condition π(v) = 0.

Practically, letB be a reduced basis matrix of L′ ⊕ X′, sayB = [V |U] ∈ Z(n+r)×(m+r),
where V ∈ Z(n+r)×m and U ∈ Z(n+r)×r, and computed by either Algorithm I or II,
on input M′. By Sec. 4, we expect to compute such B successfully under the heuristic
conditions (9) and (13), with, essentially, replacing n by n + r, m by m + r and µ
by µ + ρ. We next compute the left-kernel of U , that is, K ∈ Zn×(n+r) such that
KU = 0n,r. This implies KB = [KV |0n,r]. Heuristically, the rows in KB must be
in L′, as the last r components are zero. Then the rows of KV form a basis for L.
Namely, we heuristically expect to uniquely recover L′, as it is unlikely in the “generic”
case, that there exists a small lattice Λ 6= L of rank n in Zm such that Λ⊕X contains
M modulo N .

Algorithm 3 Solve the NHLP in general
Parameters: The HLP parameters n,m, r, µ, ρ,N from Def. 20
Input: A valid input for the NHLP
Output: A basis of the lattice L (under suitable parameter choice)
(1) Run Algorithm I or Algorithm II on the lattice M′ ⊆ Z

m+r generated by {w′j}j ; write the
output basis vectors into the rows of a matrix B ∈ Z

(n+r)×(m+r)

(2) Write B = [V |U] with V ∈ Z
(n+r)×m and U ∈ Z

(n+r)×r. Compute K ∈ Z
n×(n+r) such that

KU = 0n×r
(3) Return the basis given by the rows of KV

6.2 Decisional HLP

Definition 21. Let µ ∈ R≥1, integers 1 ≤ r ≤ m and N ∈ Z. Let M ⊆ Zm be a
lattice of rank r. The Decisional Hidden Lattice Problem (DHLP) is the task to decide
from the knowledge of µ,N and a basis of M, whether there exists a µ-small lattice
L ⊆ Zm of rank 1 ≤ n ≤ m such that M ⊆ L (mod N).

The rank of L is not given as input, and our algorithm is able to detect it. Note that
when L exists, then there exist many small lattices of lower ranks (e.g. the sublattices
of L). Therefore, we would like L to be of maximal rank.

A geometric approach. To solve the DHLP forM andN , we consider the successive
minima of MN (resp. M⊥N) and show that the existence of a small lattice L impacts

20

the geometry of MN (resp. M⊥N). Lattices with gaps in their minima and the impact
on cryptosystems are for example studied in [LWXZ11].

Lemma 22. For every lattice Λ ⊆ Zm of rank m and every sublattice Λ′ ⊆ Λ of rank
0 < m′ < m, one has

∏m
k=m′+1 λk(Λ)∏m′
k=1 λk(Λ)

≥ γ−m′m′
Vol(Λ)
Vol(Λ′)2 .

Proof. The quotient can be written as
∏m
k=1 λk(Λ)/(

∏m′

k=1 λk(Λ))2.
One has

∏m
k=1 λk(Λ) ≥ Vol(Λ). The denominator is at most (

∏m′

k=1 λk(Λ
′))2 as Λ′

is a sublattice of Λ. Finally, Eq. (1) gives the result. ut

Corollary 23. Let M ⊆ Zm be a lattice of rank r and N > 0 an integer. Assume that
Vol(M⊥N) = N r. If there exists a µ-small lattice L ⊆ Zm of rank n such that M ⊆ L

(mod N), then ∏m
k=m−n+1 λk(M

⊥N)∏m−n
k=1 λk(M⊥N)

≥ γ−(m−n)m−n
N r

µ2n
. (31)

Proof. Lem. 22 applied to the lattices Λ = M⊥N and Λ′ = L⊥ of rank m − n gives
the lower bound γ

−(m−n)
m−n Vol(M⊥N)/Vol(L⊥)2 on the considered ratio. We conclude

using Vol(M⊥N) = N r, and Vol(L⊥) ≤ Vol(L) ≤ µn by Lem. 4. ut

A similar result holds for MN by either using Lem. 22 with Λ′ = Q or invoking
Banaszczyk’s Thm. 10. We observe that this ratio grows as N gets larger.

Non-HLP instances. We compare with lattices M not lying in a µ-small lattice
L modulo N (we call this a Non-HLP instance). Expectedly, this holds for random
lattices M, when r basis vectors are uniformly chosen from (Z/NZ)m and we rely on
the Gaussian Heuristic (6). If Vol(M⊥N) = N r (which is likely for random M), the
minima are heuristically

√
m/(2πe)N r/m. Therefore, for any 1 ≤ n ≤ m− 1:∏m

k=m−n+1 λk(M
⊥N)∏m−n

k=1 λk(M⊥N)
'

(
√
m/(2πe)N

r
m)n

(
√
m/(2πe)N

r
m)m−n

=

√
m

2πe

2n−m

N
r(2n−m)

m . (32)

For m = 2n, this approximation is 1, and much larger if 2n > m. In particular, we
observe that (32) is in general much smaller than (31), as can be seen when choosing
m > 2n and relatively small values of µ.

Heuristic Algorithm for DHLP. Since we cannot compute the successive minima
efficiently, the ratio in Cor. 23 is not practical. Instead, we approximate the minima
by the norms of the vectors in an LLL-reduced basis. Using Thm. 5, it is immediate
to establish a similar lower bound for the ratio

gm−n(M⊥N) :=

∏m
k=m−n+1 ‖uk‖∏m−n
k=1 ‖uk‖

where {uk}k is an LLL-reduced basis of M⊥N . Such a lower bound gives a necessary
condition for the existence of a µ-small lattice L such that M ⊆ L (mod N). Eq. (31)
shows an explicit dependence on n, the rank of L. Since n is unknown, one first
detects m − n (the rank of L⊥) by computing the successive ratios {gm−`(M⊥N)}`
defined by gm−`(M⊥N) =

∏m
k=m−`+1 ‖uk‖/

∏m−`
k=1 ‖uk‖ for ` = 1, . . . ,m−1 and {uk}k

a reduced basis of M⊥N ; one has g1(M⊥N) ≥ g2(M
⊥N) ≥ . . . ≥ gm−1(M

⊥N). One

21

then identifies the smallest index m− `0 such that gm−`0(M⊥N) is significantly larger
than gm−`(M⊥N) for all ` < `0. In that case, we expect the existence of a hidden small
lattice of rank n = `0. Again, this is easily adapted for Algorithm II when considering
MN instead of M⊥N . Although this approach only solves DHLP in one direction, we
heuristically expect the converse to be true: if these gaps are sufficiently large, then
there exists a small lattice L containing M modulo N .

7 Applications and Impacts on Cryptographic Problems

In this section we address applications of the hidden lattice problem in cryptography
and discuss the impact of our algorithms. In the literature, these problems are typically
solved by means of Algorithm I. Our Algorithm II provides a competitive alternative
for solving these problems.

7.1 CRT-Approximate Common Divisor Problem

The Approximate Common Divisor Problem based on Chinese Remaindering can be
stated as follows (e.g. [CP19, Def. 3] or [CNW20, Def. 5.1]):

Definition 24. Let n, η, ρ ∈ Z≥1. Let p1, . . . , pn be distinct η-bit prime numbers and
N =

∏n
i=1 pi. Consider a non-empty finite set S ⊆ Z∩[0, N) such that for every x ∈ S:

x ≡ xi (mod pi) , 1 ≤ i ≤ n

for integers xi ∈ Z satisfying |xi| ≤ 2ρ.
The CRT-ACD problem states as follows: given the set S, the integers η, ρ and N ,

factor N completely (i.e. find the prime numbers p1, . . . , pn).

An algorithm for this problem was described in [CP19] for #S = O(n), and im-
proved in [CNW20] to #S = O(

√
n). These algorithms build on two steps, where the

first step agrees and is based on solving a hidden lattice problem.

HLP and algorithms for the CRT-ACD problem. We follow [CP19] to recall
the first step of the algorithm. Let S = {x1, . . . , xn, y} and x = (x1, . . . , xn) ∈ Sn, with
#S = n+ 1. The vector b = (x, y · x) ∈ Z2n is public, and by the Chinese Remainder
Theorem, letting x ≡ x(i) (mod pi) and y ≡ y(i) (mod pi) for all 1 ≤ i ≤ n, one has

b ≡
n∑
i=1

ci(x
(i), y(i)x(i)) =:

n∑
i=1

cib
(i) (mod N) ,

for some integers c1, . . . , cn. If {x(i)}i are R-linearly independent, then so are {b(i)}i
and generate a 2n-dimensional lattice L of rank n. Importantly, by Def. 24, {b(i)}i are
reasonably short vectors with entries bounded by 22ρ, approximately. The basis {b(i)}i
of L has size µ := σ({b(i)}i) = (n−1

∑n
i=1 ‖b(i)‖2)1/2 /

√
2n · 22ρ, i.e. µ = O(n1/222ρ).

Since the basis {b(i)}i of L is secret, and b ∈ L (mod N), we view the vector b (or
rather, the rank-one lattice M = Zb) as an instance of a HLP of rank r = 1, with
hidden lattice L of size O(n1/222ρ). Based on this observation, the algorithms in [CP19,
CNW20] rely on the orthogonal lattice attack to compute a basis of L. Therefore,
following Algorithm I, the first step is to run lattice reduction on M⊥N , and construct
the sublattice NI of L⊥. Upon recovery of such a basis, the authors proceed with
an “algebraic attack”, based on computing the eigenvalues of a well-chosen (public)
matrix and then revealing the prime numbers {pi}i by a gcd-computation.

22

7.2 The Hidden Subset Sum Problem

The definition of the hidden subset sum problem (HSSP), as considered in [NS99,
CG20], is as follows:

Definition 25. Let n,m ∈ Z≥1 with n ≤ m, and N ∈ Z≥2. Let v ∈ Zm be such that
v ≡

∑n
i=1 αixi (mod N) with αi ∈ Z and xi ∈ {0, 1}m.

The problem states as follows: given v and N , compute vectors {xi}i ∈ {0, 1}m
and integers {αi}i such that v ≡

∑n
i=1 αixi (mod N).

HLP and algorithms for HSSP. In [NS99], Nguyen and Stern describe an al-
gorithm in two steps. The first step solves a HLP with r = 1: namely, the lattice
L :=

⊕n
i=1 Zxi is µ-small for µ = σ({xi}i) ≤

√
m, and v ∈ L (mod N). Nguyen and

Stern, therefore compute a basis of L, by the orthogonal lattice algorithm. The second
step reveals {xi}i and {αi}i from such a basis. Recently, Coron and Gini [CG20]
argued that, due to the need of running BKZ with increasingly large block-size to
compute a short basis, the second step of the algorithm in [NS99] has exponential
(in n) complexity, and is therefore practical only in low dimension. Moreover, [CG20]
gives an alternative second step, based on solving a system of multivariate equations,
running in polynomial-time, at the cost of a larger dimension m = O(n2). The first
step, i.e. the resolution of the associated HLP, remains unchanged and is solved by
Algorithm I. In dimension m = O(n2), lattice reduction becomes unpractical. There-
fore the authors employ a technique to compute L when m is a lot larger than n
(see [CG20, Sec. 4.1, Sec. 5]), based on computing a reduced basis for (Zv)⊥N ⊆ Zm

by parallelizing lattice reduction over several components of v, of smaller dimension,
say 2n. The idea is to reduce the HLP M ⊆ L (mod N) in dimension m, to mul-
tiple HLP’s πj(M) ⊆ πj(L) (mod N), where {πj}j are projections Zm → Zm

′ onto
block-components, where m′ < m (e.g. when m = O(n2), one can let m′ = O(n) and
O(n) projections {πj}j). One then reconstructs a full basis of L. We note that it is
immediate to adapt this method to our Algorithm II.

In [NS99, CG20], the density is defined as n/ log(N), as analogy to the classical
subset sum problem [LO85] (see Rem. 12). When m = 2n, the density is heuristically
at most O(1/n) and proven O(1/(n log(n))) in [CG20].

Our Algorithm II can in turn be used to solve the HLP in the first step of the
algorithms of [NS99,CG20]. Note that when m = 2n (and µ = O(

√
n)), the density is

heuristically at most O(1/n) and proven O(1/(n log(
√
n))) according to Table 3. This

gives a factor 2 improvement compared to [CG20].

7.3 More applications related to Cryptography

CLT13 Multilinear Maps. The work [CN19] studies the security of CLT13 Multi-
linear Maps [CLT13] with independent slots. This is an example of our NHLP from
Def. 20, as we now explain; we refer to [CN19] for details. The attacker derives
equations wk ≡

∑θ
i=1 αikmi + Rk (mod x0), for 1 ≤ k ≤ d, where {wk}j ⊆ Z`

are public vectors (corresponding to zero-tested encodings), {αik}i,k unknown in-
tegers, {mi}i short secret plaintext vectors, and {Rk}k unknown “noise” vectors. Here,
x0 is a public integer. We interpret this directly as a NHLP with r = d: namely
wk − Rk ∈ L :=

⊕θ
i=1 Zmi (mod x0), for all 1 ≤ k ≤ d, and the basis {mi}i of L

is “small”. As noticed in [CN19], the {αik}i,k carry a special structure, making the
attack more direct. The first step of Algorithm I for the NHLP (Sec. 6.1), reveals a

23

basis of the lattice Λ of vectors orthogonal to {mi}i modulo certain small primes {gi}i
defining the plaintext ring. Therefore, we view Λ as hidden lattice, rather than L.
Upon computing a basis of Λ, the attack proceeds by revealing the (secret) volume∏θ
i=1 gi of Λ.

RSA Signatures. In [CNT10], the authors describe a cryptanalysis on a signature
scheme based on RSA, following an attack similar to [NS98]. In [BNNT11], a very
similar attack is described against RSA-CRT signatures. Following [CNT10, Sec. 3],
by considering ` faulty signatures together with a public modulus N = pq, one derives
an equation ai + xi + cyi ≡ 0 (mod p) for 1 ≤ i ≤ `, where {ai}i are known integers,
and {xi}i, {yi}i, c are unknown. Letting a = (ai)i gives a ∈ L (mod p), where L is the
rank-2 lattice Zx⊕ Zy generated by x = (xi)i and y = (yi)i in Z`. If {xi}i and {yi}i
are sufficiently small, then L is a suitably small lattice, describing a HLP of rank 2 in
dimension `. The authors follow Algorithm I to compute a basis {x′, y′} of L. Upon
recovery of x′, y′, the attack proceeds by simple linear algebra and a gcd computation
to reveal p.

In this case, the hidden lattice has rank only 2. Therefore, Algorithm II is much
more direct in the second step. While ` is not very large in [CNT10,BNNT11], we note
that, in general, computing the completion of the rank-2 lattice NII, is much faster
than computing the orthogonal of the rank-(`−2) lattice NI, as in [CNT10,BNNT11].

8 Practical aspects of our algorithms

We provide practical results for the HLP obtained in SageMath [S+20]. Our ex-
periments are done on a standard laptop. The source code is available at https:
//pastebin.com/tNmgjkwJ using the password hlp_. For a ∈ Z≥2, let p(a) denote
the smallest prime number larger than 2a.

Instance generation. We generate random instances of the HLP and test Al-
gorithms I and II. Given fixed integers r, n,m,N as in Def. 2, we uniformly at random
generate a basis B for a hidden lattice L, where the absolute values of the entries of
each vector are bounded by some positive integer α, i.e. every vector has infinity norm
at most α. We let µ := σ(B), then by construction, L is µ-small. To generate a lat-
tice M ⊆ L (mod N) of rank r, we generate r uniformly random linear combinations
modulo N of the basis vectors in B. For large n,m, µ, the lattice L is likely complete.

Running times. In Table 6 we compare the running times for our algorithms. Here
N = p(a) where a is indicated in the column “log(N)”. For Algorithm I, “Step 1” runs
LLL on M⊥N and computes NI; “Step 2” computes N⊥I following Sec. 3.4. For Al-
gorithm II, “Step 1” runs LLL on MN and computes NII, while “Step 2” computes NII.
For the latter, we compute NII

N∞ ; namely, in these cases we have (L : NII) = Nn−r.
For this step, we compare the running time with Magma [BCP97], which seems to per-
form the finite field linear algebra much faster. The total running times for Algorithm
II are therefore very competitive and constitute a major strength of Algorithm II
against Algorithm I. As observed in Sec. 3.4, the running time for Algorithm II is
largely reduced for larger values of r (e.g. ≥ m/2). In these cases, Algorithm II out-
performs Algorithm I.

24

https://pastebin.com/tNmgjkwJ
https://pastebin.com/tNmgjkwJ

Modulus size. In Table 7, we fix m, r and µ and find, for increasing values of n,
the smallest value for log(N) such that a randomly generated HLP with parameters
n,m, r, µ,N is solvable by our algorithms. We compare the practical values with the
heuristic values from Sec. 4. The columns “heuristic” stand for the lower bounds in (9),
resp. (13). Practically, we observe that the condition in Eq. (10) is already satisfied
for θ = 1, thus we may neglect the last term in Eq. (13), which becomes negative.
We run LLL, so we set log(ι) = 0.03. We study two series (1 and 2) according to
m, r. Conjecturally, we see that the practical bound for log(N) is the same for both
algorithms; this is to be expected from the duality (see Sec. 3.2). An interesting
question is to find a theoretical optimal bound for log(N) fitting best with the practical
behaviour.

Output quality of basis. In random generations, L is complete with high probab-
ility, and we compare µ to the size of the basis output by Algorithms I and II. We
observe that our algorithms compute much smaller (LLL-reduced) bases of L, and in
fact sometimes recover the basis uniquely (up to sign). In particular, they sometimes
solve the stronger version of Def. 2, that of computing a µ-small basis instead of any.
Table 4 is obtained for m = 2n = 4r for increasing values of m; in this case µ is
approximately N1/4, as predicted theoretically by Eq. (15).

Decisional HLP. We test the decisional version of the HLP of Sec. 6.2. Table 5
shows different values for gm−n(M⊥N) if M lies in a µ-small lattice L modulo N (HLP
instance), and if M is randomly sampled (random instance). For the latter, we com-
pare with the heuristic bound (32) and report it in the coulmn “heuristic”. We fix
n = 25 and consider increasing values of r < 35.

Size of output basis
m log(N) log(µ) Algorithm I Algorithm II
76 175 42.335 42.335 42.335
160 325 77.874 79.927 79.814
320 80 13.36 18.132 18.182

Table 4. Sizes of output bases for Algorithms I and II

HLP instance random instance
r m log(N) µ gm−n(M

⊥N) gm−n(M
⊥N) heuristic

1 45 350 581.73 3.52 · 1021 2.74 · 1012 5.73 · 1012
5 70 100 580.11 7.65 · 1049 3.39 · 10−56 7.4 · 10−50

10 50 100 2037.15 2.95 · 10188 1.27 1
20 80 85 2949.66 6.06 · 10305 3.16 · 10−191 4.09 · 10−180

Table 5. Gaps in LLL-reduced bases of M⊥N

25

Running Time
Algorithm I Algorithm II

r n m log(N) Step 1 Step 2 Step 1 Step 2 (Sage) Step 2 (Magma)
60 150 200 140 7 min 13 s 1 min 20 s 10 min 2 s 3 min 4 s 0.37 s
110 150 200 90 6 min 20 s 1 min 29 s 4 min 1 min 33 s 0.24 s
175 180 200 140 6 min 56 s 1 min 24 s 1 min 39 s 20 s 0.19 s
80 100 300 75 3 min 51 s 30 min 17 s 22 min 51 s 30 s 0.12 s
150 200 300 75 145 min 29 s 22 min 23 s 116 min 14 s 6 min 19 s 0.56 s
75 150 400 80 75 min 16 s 326 min 44 s 414 min 51 s 5 min 13 s 0.61 s
235 275 400 80 527 min 43 s 117 min 2 s 304 min 10 s 15 min 39 s 0.95 s

Table 6. Running times for Algorithms I and II; the entries of a small basis of L lie in (−210, 210)∩Z,
which gives log(µ) ≈ 13 in all instances

log(N)
Algorithm I Algorithm II

n heuristic practice heuristic practice
10 52 41 46 41
20 113 92 103 92

Series 1 40 282 241 274 241
(m = 100, r = 5) 80 1486 1384 1643 1384

90 3240 3075 3695 3075

50 57 48 54 48
Series 2 100 139 121 143 121

(m = 250, r = 30) 160 327 296 381 296
200 676 629 857 629

Table 7. Minimal values for log(N) as a function of the other parameters; the entries of a small basis
of L lie in (−215, 215) ∩ Z, which gives log(µ) ≈ 18 in all instances

26

References

Ajt06. M. Ajtai. Generating random lattices according to the invariant distribution. Draft, 2006.
Alb17. Martin R. Albrecht. On dual lattice attacks against small-secret LWE and parameter

choices in helib and SEAL. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Paris, France, April 30 - May
4, 2017, Proceedings, Part II, volume 10211 of Lecture Notes in Computer Science, pages
103–129, 2017.

Ban93. Wojciech Banaszczyk. New bounds in some transference theorems in the geometry of
numbers. Mathematische Annalen, 296(1):625–635, 1993.

BCP97. Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The
user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and
number theory (London, 1993).

BNNT11. Éric Brier, David Naccache, Phong Q. Nguyen, and Mehdi Tibouchi. Modulus fault attacks
against rsa-crt signatures. In Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic
Hardware and Embedded Systems – CHES 2011, pages 192–206, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

CG20. Jean-Sébastien Coron and Agnese Gini. A polynomial-time algorithm for solving the
hidden subset sum problem. In Daniele Micciancio and Thomas Ristenpart, editors, Ad-
vances in Cryptology - CRYPTO 2020 - 40th Annual International Cryptology Confer-
ence, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part
II, volume 12171 of Lecture Notes in Computer Science, pages 3–31. Springer, 2020.

CLT13. Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear Maps
over the Integers. In CRYPTO, pages 476–493. Springer, 2013.

CN11. Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates. In
Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology - ASIACRYPT 2011
- 17th International Conference on the Theory and Application of Cryptology and In-
formation Security, Seoul, South Korea, December 4-8, 2011. Proceedings, volume 7073 of
Lecture Notes in Computer Science, pages 1–20. Springer, 2011.

CN19. Jean-Sébastien Coron and Luca Notarnicola. Cryptanalysis of CLT13 Multilinear Maps
with Independent Slots. In Advances in Cryptology - ASIACRYPT 2019 - Proceedings,
Part II, pages 356–385, 2019.

CNT10. Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Fault attacks against emv
signatures. In Josef Pieprzyk, editor, Topics in Cryptology - CT-RSA 2010, The Crypto-
graphers’ Track at the RSA Conference 2010, San Francisco, CA, USA, March 1-5, 2010.
Proceedings, volume 5985 of Lecture Notes in Computer Science, pages 208–220. Springer,
2010.

CNW20. Jean-Sébastien Coron, Luca Notarnicola, and Gabor Wiese. Simultaneous diagonaliza-
tion of incomplete matrices and applications. Proceedings of the Fourteenth Algorithmic
Number Theory Symposium (ANTS-XIV), edited by Steven Galbraith, Open Book Series
4, Mathematical Sciences Publishers, Berkeley, pages 127–142, 2020.

CP19. Jean-Sébastien Coron and Hilder V. L. Pereira. On Kilian’s Randomization of Multilinear
Map Encodings. In Advances in Cryptology - ASIACRYPT 2019 - Proceedings, Part II,
pages 325–355, 2019.

CSV18. Jingwei Chen, Damien Stehlé, and Gilles Villard. Computing an LLL-reduced Basis of
the Orthogonal Lattice. In Proceedings of the 2018 ACM International Symposium on
Symbolic and Algebraic Computation, pages 127–133, 2018.

Gal12. Steven D. Galbraith. Mathematics of Public Key Cryptography. Cambridge University
Press, USA, 1st edition, 2012.

GN08. Nicolas Gama and Phong Q Nguyen. Predicting lattice reduction. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages 31–51.
Springer, 2008.

HPS11. Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Analyzing blockwise lattice al-
gorithms using dynamical systems. In Phillip Rogaway, editor, Advances in Cryptology
- CRYPTO 2011 - 31st Annual Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 14-18, 2011. Proceedings, volume 6841 of Lecture Notes in Computer Science, pages
447–464. Springer, 2011.

LLL82. A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational
coefficients. Math. Ann., 261(4):515–534, 1982.

27

LLS90. Jeffrey C Lagarias, Hendrik W Lenstra, and Claus-Peter Schnorr. Korkin-Zolotarev bases
and successive minima of a lattice and its reciprocal lattice. Combinatorica, 10(4):333–348,
1990.

LO85. J. C. Lagarias and A. M. Odlyzko. Solving low-density subset sum problems. J. Assoc.
Comput. Mach., 32(1):229–246, 1985.

LWXZ11. Mingjie Liu, Xiaoyun Wang, Guangwu Xu, and Xuexin Zheng. Shortest Lattice Vectors
in the Presence of Gaps. IACR Cryptology ePrint Archive, 2011:139, 2011.

NS97. Phong Q. Nguyen and Jacques Stern. Merkle-Hellman Revisited: A Cryptanalysis of the
Qu-Vanstone Cryptosystem Based on Group Factorizations. In Advances in Cryptology -
CRYPTO ’97, 17th Annual International Cryptology Conference, pages 198–212, 1997.

NS98. Phong Q. Nguyen and Jacques Stern. Cryptanalysis of a fast public key cryptosystem
presented at SAC ’97. In Stafford E. Tavares and Henk Meijer, editors, Selected Areas in
Cryptography ’98, SAC’98, Kingston, Ontario, Canada, August 17-18, 1998, Proceedings,
volume 1556 of Lecture Notes in Computer Science, pages 213–218. Springer, 1998.

NS99. Phong Q. Nguyen and Jacques Stern. The hardness of the hidden subset sum problem and
its cryptographic implications. In Advances in Cryptology - CRYPTO ’99, 19th Annual
International Cryptology Conference, pages 31–46, 1999.

NS05. Phong Q. Nguyen and Jacques Stern. Adapting density attacks to low-weight knapsacks.
In Advances in Cryptology - ASIACRYPT 2005, 11th International Conference on the
Theory and Application of Cryptology and Information Security, pages 41–58, 2005.

NS06. Phong Q. Nguyen and Damien Stehlé. LLL on the Average. In Algorithmic Number
Theory, 7th International Symposium, ANTS-VII, pages 238–256, 2006.

NS09. Phong Q. Nguyen and Damien Stehlé. An LLL algorithm with quadratic complexity.
SIAM J. Comput., 39(3):874–903, 2009.

NSV11. Andrew Novocin, Damien Stehlé, and Gilles Villard. An LLL-reduction algorithm with
quasi-linear time complexity: extended abstract. In Lance Fortnow and Salil P. Vadhan,
editors, Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011,
San Jose, CA, USA, 6-8 June 2011, pages 403–412. ACM, 2011.

NV10. Phong Q. Nguyen and Brigitte Vallée, editors. The LLL Algorithm - Survey and Applic-
ations. Information Security and Cryptography. Springer, 2010.

PZ11. Yanbin Pan and Feng Zhang. A note on the density of the multiple subset sum problems.
IACR Cryptology ePrint Archive, 2011:525, 2011.

S+20. W.A. Stein et al. Sage Mathematics Software (Version 9.2). The Sage Development
Team, 2020. http://www.sagemath.org.

Sch87. Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms.
Theor. Comput. Sci., 53:201–224, 1987.

28

	The Hidden Lattice Problem

