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Abstract

Two dimensional materials, which are systems composed of one or sev-
eral angstrom-thin layers of atoms, have recently received considerable at-
tention for their novel electronic and optical properties. In such systems,
the quasi two dimensional confinement of electrons as well as the reduced
dielectric screening lead to a strong binding of electrons and holes. These
bound electron-hole excitations, termed excitons, control many of the pecu-
liar opto-electronic properties of 2D materials.

In this context we study hexagonal Boron Nitride (hBN) as a prototypical
2D system. hBN layers crystallize in a honeycomb lattice similar to graphene,
with carbon atoms replaced by boron and nitrogen. Contrary to its carbon
cousin, hBN is a wide band gap semiconductor, well know for its UV lu-
minescence properties and its particularly strong excitons. We investigate
theoretically the excitonic properties of single and multilayer hBN.

To describe excitons, we make use of the Bethe-Salpeter equation, which
provides an effective hamiltonian for electron-hole pairs. We show that, owing
to the relatively simple electronic structure of BN systems, it is possible there
to construct a model that approximately maps the Bethe-Salpeter equation
onto an effective tight-binding Hamiltonian with few parameters, which are
in turn fitted to ab initio calculations.

Using this technique, we are able to study in detail the excitonic series in
single layer hBN. We classify its excitons according to the symmetries of the
point group of the crystal lattice, and thus provide precise optical selection
rules. Because our model naturally preserves the crystal geometry, we are
able to characterize the effects of the lattice, and show how their inclusion
affects the excitonic and, in turn, optical properties of hBN compared to a
continuum hydrogenoid model. Further, we can access exciton dispersion,
which is a crucial component for the understanding of indirect processes. We
thus examine the dispersion of the lowest bound state.

Having established the properties of the single layer, we turn our atten-
tion to multilayers. The interaction of several layers leads to a phenomenon
known as Davydov splitting. Under this lens, we investigate how the num-
ber of layers affects the excitonic properties of hBN, with particular focus
on the Davydov splitting of the lowest bound exciton, which is responsible
for the main feature of the absorption spectra. We discuss the effects re-
sponsible for the splitting of excitons in multilayers, and construct a simple



one-dimensional model to provide a qualitative understanding of their ab-
sorption spectra as a function of the number of layers. In particular, we
show that, from trilayers onwards, we can distinguish inner excitons, which
are localized in the inner layers, and surface excitons, which are localized on
the outer layers. Remarkably, the lowest bound bright state is found to be a
surface exciton.

Finally, we briefly present a comparison of tight-binding calculations with
ab initio calculations of the absorption spectrum of bulk hBN. We discuss
its first peaks, and how they are related to the excitons of single-layer hBN.
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Chapter 1

Introduction

1.1 Interactions of light with matter

One of the questions that drove the initial developments of quantum mechan-
ics is the understanding of the absorption and emission spectra of atoms. [T, 2]
Today, more generally, the question of understanding the structure of matter
and, in turn, how it interacts with light remains at the forefront of research.
The reason for this lasting interest is that light (more generally, electromag-
netic radiation) is one of the most precise and efficient tools at our disposal
to probe the structure and behavior of matter.

However, because this probe is not direct, one requires both a physical
model of matter and of its interaction with light in order to make sense of
any spectroscopy experiment. This situation is eminently common in sci-
ence: starting from a model of matter and its interaction with light, we aim
to predict the outcome of a particular experiment involving this interaction.
Experimental evidence then validates or falsifies the model, allowing us to
indirectly access information about the system under investigation. In turn,
sufficiently predictive models can then predict the outcome of other experi-
ments, and more generally the optical properties of matter systems.

The use of such models is manyfold: on the more applied side, a good
theoretical understanding of a system’s optical response opens the door to op-
tical characterization techniques, which let us use spectroscopy to efficiently
and non-destructively assess the nature, properties and/or quality of a sam-
ple. Predictive models also allow the direct computation of a system’s optical
properties without an experiment, or even without synthesizing the system
of interest. This can guide research and save precious time and effort, espe-
cially in the current era where computational resources are becoming more
and more abundant. Finally, since spectroscopy is such a precise probe, the
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interplay of theory and experiment also drives fundamental understanding of
the finer and more complex interactions between the constituents of matter
and light itself.

The discipline of, starting from an elementary description of a matter
system, seeking a theoretical understanding its behavior and its interaction
with light, is known under the name of theoretical spectroscopy. Contributing
to this discipline is the object of the current thesis.

1.2 Ab initio and second principles methods

Loosely speaking, one may distinguish two kinds of investigations in theo-
retical spectroscopy. Ab initio methods, as their name suggests, aim to sim-
ulate matter and light-matter interaction from first principles: given (only)
a collection of atoms, the ultimate goal of ab initio techniques is to under-
stand their collective behavior without introducing extraneous parameters
that would have to be adjusted on experiments. The advantage of such
methods is their high predicting power, and, in a sense, their generality: by
design, they seek to include all possible effects, within the limit of tractabil-
ity. These inestimable advantages, however, come with a certain complexity,
and non negligible computational costs which in practice require computer
implementations and time. This sometimes makes it hard to build intuition
and understanding of a system from ab initio methods alone, and the more
complex matter systems may be out of reach of such techniques because of
the sheer computational resources their simulation would require.

On the other end of the spectrum lie analytical and semi-analytical meth-
ods. These methods, by design, work with simpler models, building approx-
imations and simplifications which may differ from one system to another in
order to keep the computational load light. Because of their simplicity and
specificity, they are not as general as ab initio methods, and often require
parameters which are specific to the system under study. These parameters,
in turn, can be inferred from an experiment, or from an ab initio calculation.
In this sense, such techniques are sometimes called second principles meth-
ods. The strength of such methods is their ability to treat more complex
systems, and to, occasionally, allow for a more direct understanding of the
main physical phenomena at play in a system or a class of systems by varying
the material parameters or isolating the contributions of different effects.

The present work places itself at the level of these “second principles”
techniques. It investigates a particular material, hexagonal Boron Nitride,
which is prototypical for layered materials, through semi-analytical tech-
niques. These investigations were led in close collaboration with ab initio
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studies of the same system by the author’s colleague, Fulvio Paleari.[3]

1.3 Hexagonal Boron Nitride

Hexagonal Boron Nitride (hBN) is a so-called two-dimensional system. It is
a material made of atomically thin layers of boron and nitrogen arranged in
a honeycomb lattice. It can exist either in a monolayer, in a multilayer, or
in bulk form, with different possible stackings of the honeycomb layers.

Out of the family of two-dimensional materials, the most well known is
probably graphene,[4, [5 6] which shares the same honeycomb lattice struc-
ture as hBN, but is composed exclusively of carbon. Its exfoliation, through
the celebrated “scotch tape” method, and its subsequent characterization, by
Geim and Novoselov in 2004 has been rewarded by the 2010 Nobel prize in
physics.E][?] Since then, two dimensional materials have received considerable
attention.

These systems span a wide range of properties,[8] from graphene as a
semimetal, to hBN as a wide bandgap semiconductor, through moderate
bandgap semiconductors such as the well-known transition metal dichalco-
genides (TMDs), phosphorene, [9] germanene, silicene,[10] etc.[I1]

As we have already noted, hBN differs from its carbon based cousin
graphene, which is a semimetal, by the substitution of the carbon atoms
by equal parts boron and nitrogen. Since boron has three valence electrons
and nitrogen five, compared to carbon’s four, and all three atoms are from the
same row of the periodic table, it is not so surprising that hBN and graphene
can adopt a very similar crystal structure and have similar atomic chemistry.
Yet, the replacement of carbon atoms by two different kinds of atoms breaks
the symmetry that gives rise to graphene’s well known semimetal structure,
leading to the opening of a gap. For this reason, the electronic properties
of hBN are very different from that of graphene: it is a wide bandgap semi-
conductor (or, depending on one’s sensibilities, an insulator), with a gap of
about 5 — 8 €V, depending on the particular structure.

Among two dimensional-semiconductors, hBN, in part because of this
wide band gap, has been noted for its potential as an ultraviolet emitter. |12,
13] In addition, it has also attracted interest as an excellent substrate or
encapsulating material for other two-dimensional systems, and for its appli-
cations in photonics.|[I4]

IThe precise Nobel citation is: “for groundbreaking experiments regarding the two-
dimensional material graphene.”[7]
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1.4 Excitons

One of the main differences between two-dimensional (2D) and three dimen-
sional (3D) systems comes from their so-called excitonic properties. Let us
consider a semiconductor in its ground state. At the level of independent par-
ticles, this ground state can be imagined as a Fermi sea of electrons. When
one of them is excited, it leaves behind a hole in the Fermi sea, creating an
electron-hole pair excitation. This situation is depicted in figure [1.1]

Conduction

Valence

Figure 1.1: Excitation of an electron-hole pair: the incidence of a photon ~
of appropriate energy has a certain probability to induce the transition of an
electron e~ from the filled valence band to the empty conduction band. In
doing so, it leaves behind a hole h™.

However, the excited electron is a negative quasiparticle, while the hole
it “left behind” is a positively charged quasiparticle. Therefore, both should
interact. In fact, the attractive Coulomb interaction between them leads
to the creation of bound states, called ezcitons.[15], [16] These electron-hole
bound states are very much an analogue of a hydrogenoid system in the
context of solid state physics. We illustrate this situation in figure [1.2]

In fact, in the limit where the hole and the electron are weakly bound,
this analogy can be made precise. In certain approximations, which we shall
discuss later, the problem of bound electron-hole pairs can indeed be reduced
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Figure 1.2: Schematic representation of an exciton in a crystal: the excited
electron e~ and the hole h* interact together via an attractive Coulomb in-
teraction to create a bound state: an exciton. Other dots and lines represent
a crystal lattice.

to an effective Schrédinger equation in the relative coordinate r = r, — ry:

— L)+ V)g(r) = Eglr) (1.1)

where p = % is the reduced mass of the pair, computed from the effective
masses of the electron (m,.) and the hole (my), V(r) is the so-called direct
electron-hole potential, i.e. the Coulomb potential that binds them, g is
an effective wavefunction for the pairf] and E is the pair’s binding energy,
which is negative. Equation is the celebrated (hydrogenoid) Wannier
model for excitons.[I7] The central approximation here is clear: through the
introduction of effective masses and, in general, of a macroscopic Coulomb
potential for V' (see below), the effects of the crystal lattice are averaged out,

leading to a continuum description of the system.

2Tt is its so-called envelope wavefunction.
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In typical three-dimensional bulk systems, the electron-hole interaction
V(r) is adequately modeled by a screened Coulomb potential V(r) = —<

er’?

where € is the system’s bulk dielectric constant, and so equation yields
the familar hydrogen series, with energy levels:

where Ry &~ 13.6 ¢V is the Rydberg energy, my is the free electron mass, and
the nonzero integer n is the principal quantum number. We therefore expect
the appearance of “two-particle” bound states within the semiconductor’s
gap. For typical values of ;1 and €, the binding energies are rather weak and
the excitons have a large Bohr radius compared to the interatomic distances,
so that the approximations leading to equation [1.1| make sense.

When moving to two-dimensional systems, such as hBN, the situation
changes. Indeed, to a good approximation, in a 2D crystal, the electron and
the hole are effectively confined in a two dimensional sheet, and so equation
[I.1]becomes analogous to a two-dimensional hydrogen atom, which, famously,
exhibits larger binding energies:[18§]

po_ MY (1.2)

1\2
moez(n—g)

n

because of the modification of the Laplacian in two dimensions. In particu-
lar, the binding energy of the lowest bound state in 2D, E?P,  is four times
greater than its 3D equivalent, E32 . Further, screening in a two dimen-
sional sheet embedded in three dimensional space is not well described by a
simple dielectric constant.[19, 20] Indeed, for a freestanding layer, the space
around the sheet is mostly vacuum, which does not screen the electron-hole
interaction. Not only does this modify the excitonic series for 2D systems,
so that the Rydberg series of equation is usually not observed,[21], 22]
but this also favors a stronger electron-hole interaction. Therefore, both the
confinement effect and the stronger binding potential “conspire” to create
strongly bound excitons in two dimensional systems. In hBN, which has
particularly strong excitons[23, 24, 25] binding energies vary from about
—2 €V in a single-layer to —0.6 eV in bulk.

These effects, in addition to other many-body effects which are enhanced
due to the weaker screening of Coulomb interactions, therefore induce a very
strong correction to the electronic structure of two-dimensional systems. This

3Note also that, since hBN systems have large gaps, the dielectric screening is further
reduced.
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has important consequences for their optical properties. In the simple hy-
drogenoid model, the oscillator strength of an excitonic state, which measures
its coupling with light, is essentially given by |¢(0)|>. In other words, more
concentrated excitons absorb more light, to the point where, in hBN, the
strongly bound excitons “siphon” away most of the oscillator strength of the
system. Because excitons are discrete bound states, these features manifest
as discrete peaks in the absorption spsctrum, below the band gap energy.
In two-dimensional materials, therefore, excitons are not just a small
perturbation to the optical properties of the system: they control the prop-
erties of the system. It is therefore crucial to get a physical understanding
of these effects if we are to climb the Technology Readiness Level (TRL)
ladder to reach the promising fruits that are the opto-electronic properties
of two-dimensional materials. Furthering this understanding through semi-
analytical, second principles models, which provide access to a more intuitive
understanding of the phenomena at play, is the object of this work.

1.5 This work

Through the introductory remarks above, we have shown that excitonic ef-
fects play a central role in two-dimensional systems. We have also shown
that excitons in two-dimensional systems are much more strongly bound
than their three-dimensional equivalents. As a result, the continuum ap-
proximations of equation are not always appropriate to describe them.
Indeed, strongly bound excitons do feel the influence of the underlying crystal
lattice. In particular, their kinetic energy is richer than that of an effective
mass particle, and their symmetries, optical selection rules and activites, etc.
are dictated by that of the underlying crystal lattice.

This “full” physics of excitons can be captured through the Bethe-Salpeter
equation,|26], 27, 28] which can also be reduced to an effective hamiltonian
for electron-hole pairs, but is considerably more complex than the simple
weak interaction approximation of the hydrogenoid model. While it can be
solved in the context of ab initio methods,[29] 30, BI], B2] it is not always
straightforward to obtain an intuitive interpretation of the results. It is
therefore of interest to develop second principles approximate models which
take into account the crystal lattice while remaining semi-analytical and thus
deliver complementary insight into such problems.

In this context, hBN has a role to play: it is a prototypical 2D system,
which exhibits very strong excitonic effects, while at the same time having
a simple electronic structure. This simple electronic structure will allow us
to obtain and semi analytically solve a simple approximation of the Bethe-
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Salpeter equation, in which, instead of effective masses, the kinetic energy of
the electron-hole pair is described through an effective tight-binding hamil-
tonian. More precisely, we will show that, starting from a tight-binding de-
scription of hBN’s electronic structure, it is possible to approximately map
the Bethe-Salpeter equation onto the problem of a single particle moving on
a lattice of electron-hole excitations, under the influence of an external field
which represents the direct electron-hole interaction. In fact, the resulting
equations are similar to the ones originally obtained by Wannier.[I7] They
take a particularly simple form in hBN because the relevant Wannier func-
tions are actually well approximated by atomic orbitals: the hole states are
well approximated by nitrogen orbitals, while the electron states are well
approximated by boron orbitals.

This excitonic tight-binding modelf_f] by construction, preserves the sym-
metries of the underlying crystal lattice. It will therefore allow us to intu-
itively explore the effects of the lattice on excitonic properties, classify the
excitons with the symmetry group of the crystal instead of the hydrogenoid
quantum numbers, and derive the appropriate optical selection rules. It will
also provide us with a natural access to the dispersion of excitonic states,
that is to say to the binding energies and excitonic eigenstates for excitons
composed of indirect transitions. These are now of great interest to describe
indirect absorption and emission processes, notably through coupling with
phonons. [33] 34, 35], 36, [37]

Further, since this model is constructed from a tight-binding description
of hBN’s electronic structure, it can naturally describe multilayer systems.
This will allow us to investigate the excitonic properties of coupled hBN
layers. For illustration, in figure 1.3, we show the evolution of the absorption
spectrum of hBN when increasing the number of layers, in the so-called AA’
stacking (boron and nitrogen sites are inverted when going from one layer
to the next). It is immediately apparent that the spectrum is dominated by
discrete bound excitonic peaks. It can be seen that, in a single layer, the
lowest bound exciton corresponds to the brightest peak. When moving to
multilayers, this peak undergoes a non trivial splitting.

This splitting, and its peculiar fine structure, is intimately related to
the number of layers in the system. We will provide a detailed study of
bilayer hBN, treating on equal footing intra- and inter- layer excitons, and
describe their evolution as well as that of the bilayer’s optical properties as
the coupling between the layers is varied. For higher multilayers, we will show
that the splitting of the main peak can be qualitatively understood from a
simple one-dimensional tight-binding model, where each layer is treated as a

40r “tight-binding Wannier model”,
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Figure 1.3: Panels adapted from [38]. Ab initio absorption spectrum of hBN
for one, two, three and five layers in the AA’ stacking (boron and nitrogen
positions are inverted when going from one layer to the next).[38] Labels of
“D” (resp. “B” for the pentalayer) indicate the energy position of dark (resp.
bright) states. Vertical black lines indicate the band gap, i.e. the minimal
(direct) hole-electron transition energy without excitonic effects. It is clear
that the optical properties of the system are determined almost entirely by
the discrete bound excitons below the gap.

site which can accomodate a “copy” of the lowest bound monolayer exciton.
In doing so, we will display the mechanisms that drive this splitting, and
highlight the roles of interlayer excitons, as well as variations in screening
and atomic coordination numbers along the layers. We will see, in particular,
that the lowest bound multilayer excitons are, in fact, localized on the surface
layers, and that they can be optically active.

1.6 Organization

The contents of this thesis are organized as follows. Chapter [2]is devoted to
general theoretical methods, and we describe tight-binding as a way to obtain
the single particle electronic and optical properties of a system. We also
present the Bethe-Salpeter equation and the hydrogenoid Wannier model,
leading to equation [I.1} In chapter [3] we discuss the case of the linear
boron nitride chain as a toy system, where we present the aforementionned
excitonic tight-binding model, i.e. we realize the approximate mapping of
the Bethe-Salpeter equation onto an effective tight-binding problem.
Chapter [4] is then concerned with the study of single-layer hBN. There,
we briefly discuss single-particle properties, before moving on to excitonic
problems. We present the direct excitonic series of single layer hBN at dif-
ferent levels of approximation: in the Wannier model, which can be seen as
the limit of weak electron-hole interaction, in a limit of the excitonic tight-
binding model which correspond to strong interactions, and finally in the
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framework of the full model. We then briefly discuss its excitonic dispersion
in the excitonic tight binding framework.

Chapter [5| deals with the direct excitons of hBN multilayers in the AA’
stacking. We first establish the necessary generalization of the excitonic
tight-binding model, before discussing the case of the bilayer in details. We
then move on to general multilayers, for which we show that the main optical
feature can be ascribed to the splitting of the first monolayer exciton, estab-
lish an effective model for this splitting and use it to discuss the appearence
of surface excitons.

Chapter [6] concerns itself with bulk hBN in the AA’ stacking. It is in-
cluded for complenetess, and contains a brief descriptions of the releveant
excitonic tight-binding model, which can be used to discuss the first excitons
of its direct series as well and provides a way to access the dispersion of its
lowest bound indirect excitons, both in real and reciprocal space.



Chapter 2

General theoretical methods:
tight-binding, Bethe-Salpeter
equation

The aim of this chapter is to provide an overview of the general theoretical
methods that will be used in this work. We will introduce the tight-binding
approximation, which will be central to our discussion. This approximation,
which consists in writing the electronic states of a solid as appropriate linear
combinations of localized atomic orbitals, provides a very tractable descrip-
tion of the electronic properties of solids. Because it is based on atomic
orbitals, it intrinsically preserves the symmetries of the crystal and its lat-
tice properties, therefore making it particularly suited to our goal. Within
this approximation, we will further see how to compute the optical properties
of solids (more specifically, their absorption spectrum).

Tight-binding is intrinsically a one-particle theory: it provides access to
the electronic properties of a solid at the level of independent electrons.
These independent electron states, in turn, will allow us to construct the two
particle electron-hole / transition states that will serve as building blocks for
our description of excitons. To this end, we will briefly introduce the general
Bethe-Salpeter equation, which describes the coupling of these transition
states, and gives rise to the excitonic states. We will further describe the
hydrogenoid Wannier model, which is its weak coupling approximation, in
which lattice effects are neglected. While this model precisely excludes some
of the effects that most interest us in this work, it is a crucial basis to develop
our understanding of excitons, and disentangle what stems from the lattice,
and what is already present in a continuum description. The development
and consequences of a more specific approximation of the Bethe-Salpeter
equation that does include lattice effects for hBN systems will be the focus
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of later chapters.

2.1 Electronic structure in the tight-binding
approximation

2.1.1 Semi-empirical tight binding.

As stated above, we need a way to access the electronic structure of solids
in order to compute the single electron states which will allow us to build
electron-hole pair states. To this end, we will employ (orthogonal) semi-
empirical tight-binding. We will give here only a simple overview, more
detailed discussions may be found in 39, 40, 41].

We are mostly interested here in crystals, i.e. systems which are invariant
under a set of lattice translations. What we mean by this is that there exists
a Bravais lattice:

R = {R = nia1 + Ngds + N3as / Ny, Mo, N3 € Z} (21)

such that translation by any R € R leaves the set of ionic cores invariant.
In this case, the whole system may be constructed by periodic repetition of
a unit cell. We suppose that the unit cell contains a certain number of ionic
cores, indexed by some variable a. We denote their positions by n?, and the
corresponding sublattices:

Ay =1 +R

The central idea of tight-binding is then that we will try to write the
eigenstates of the single electron hamiltonian for the system, H, as linear
combinations of the atomic orbitals associated to these ionic cores:

|\Ij> = Z Z Z|aj7n>

a nely J

where the sum over j runs over the one-electron orbitals associated to an ionic
core of type ae. This “basis” is, of course, overcomplete. The usual practice is
to restrict oneself to only a certain set of atomic orbitals for each core type,
based on the chemical makeup of the system and the properties under study.
In the following, we will drop the sum on j and simply consider the « as
multi-indices (or, without that, we can simply assume that we retain only
one orbital per core, which will be the case most of the time in this work).

The atomic orbitals are by definition localized states, centered on their
ionic core. In position representation, they are given by:

(rlo, m) = ¢ (r —m)
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which quickly (exponentially) decays away from their centers (here n). Typ-
ically, in semi-empirical tight-binding, the exact form of the ¢, is not known.
Indeed, the above properties will suffice for most of this work. We shall fur-
ther assume (this is an additonal approximation) that these atomic orbitals
are orthogonal:

<Oé, m’ﬁ? Il> - 5a,56m,n

This is orthogonal tight-binding.

We are in a similar position with the matrix elements of the Hamiltonian
in this basis. Because of the translational invariance of the system, we assume
that matrix elements between two atomic orbitals depend only on their types
and their relative positions, i.e. we have:

<Oé, m|ﬁ|67 Il> = tﬁlzm

The tﬁém could be called the hopping elements of the system. The ones for
which @ =  and m = n are usually given the name of onsite energies: they
are essentially given by the atomic energies along with a correction for the
crystal potential. All the other tﬁém are more properly called hoppings: they
describe an amplitude for an electron in the orbital |a, m) to “hop” to the
orbital |3, n). Just like the atomic orbitals themselves, the hopping elements
are typically not known in semi-empirical tight-binding. Instead, they are
taken as parameters. Because the atomic orbitals are strongly localized, the
hopping elements are expected to decay quickly with the distance n—m, and
therefore we typically only retain the hopping elements between sites within
a few nearest neighbor distance from one another. In this way, the matrix
elements of the Hamiltonian are detemined by a relatively small number of
parameters.

In order to diagonalize H, it is very convenient to introduce a particular
type of Bloch function, which we call a tight-binding basis function. For each
orbital type «, we define the associated tight-binding basis function as:

|a. k)

\/_ Z e—zkn|an

neA,

where N is the number of unit cells in the system and k is a wavevector / crys-
tal momentum. These functions are useful because they “pre-diagonalize” H,
in the sense that:

<a, k‘]:f‘ﬁ, k/> = Ok i’ Z tﬁéme_“‘"’
pe(Aps—nl)

where we have explicitly made use of the translation invariance of the system.
It follows that the Hamiltonian preserves the crystal momentum k, and is
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block diagonal in it. This leads to the usual band picture: for each value of
k, the blocks of the Hamiltonian are given, in the basis of the tight binding
functions {|a,k)}

H, (k) = (. k|H|f,k)

and the diagonalization of these matrices, which we call the integral transfer
matrices,[39] thus provides the band energies and band states.[] A typical way
to estimate the hopping elements is then to fit the (parameter dependent)
semi-empirical tight-binding band structure on the band structue obtained
from another level of theory, or experiment. In this work, we will often do
the former, and fit our hopping parameters in order to reproduce ab initio
GW band structures

The matrix elements of the integral transfer matrices, the H,g(k) =
ZpG(ABfng) t2% ne~™P deserve a brief word. The set Ag — n is nothing
but the set of neighbors of § type of a given site of o type. It is a shifted
copy of the system’s Bravais lattice, R. Overall, these matrix elements can
be seen as Fourier transforms of the hopping elements on this lattice of
neighbors. Retaining less nearest neighbors therefore amounts to truncating
this series by removing high frequency terms. This point of view shows in
which sense these functions retain information about the real space lattice
geometry (and associated energetics). They are typically split in such a way
that the different nearest neighbor “shells” (first, second, etc.) are separated
and the common hoppings factorized. This is what we will do in the example
below.

2.1.2 Example: the linear BN chain

As an example, let us consider a diatomic chain of boron and nitrogen. To fix
notations, we define three cartesian axes z, y and z such that x is the direction
of the chain, and let a be the nearest neighbor B — N distance. Chemically,
we can expect he optical properties of such a system to be mostly ascribed
to the (hybridized) p orbitals which are perpendicular to the bonds, say here
the p, and p, orbitals of the boron and nitrogen atoms. Since these orbitals
have a different symmetry with respect to, say the xy mirror plane, the sets

'Here, we have made direct use of the orthogonal approximation that we mentionned
above. In non-orthogonal tight-binding, we would instead have to solve a generalized
eigenvalue problem involving an overlap matrix (which here reduces to the identity). It is
for this reason that we reserve a “special” name for H, g(k). See e.g. [39].

2When we come to excitonic problems, we will also have the option to fit some hopping
parameters directly on the exciton binding energies resulting from an ab initio solution of
the Bethe-Salpeter equation. This will be discussed later.
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of p, and p, orbitals do not interact with one another, and it is enough to
discuss only the p, orbitals (since the electronic problem for the p, orbitals
is exactly the same) [

The unit cell of the system contains two atoms: one boron, and one
nitrogen. The system therefore has two sublattices, which we shall call Ag
and Ay, the boron and nitrogen sublattices respectively. Let us therefore for
each n € Ap denote by |B,n) the p, orbital of the boron atom at position
n, and likewise, for all m € Ay, let |V, m) be the p, orbital of the nitrogen
atom at position m.

Let us now write the electronic hamiltonian H of this system in the
basis of localized atomic orbitals defined above. Retaining only first nearest
neighbors hoppings for simplicity, its matrix elements read:

—A ifm=m

(N, m|H|N,m') = ,
otherwise
A A f - !
(Bom|H|Bm) =TS =
otherwise
(N |F[|B ) t if n and m are first nearest neighbors
,m ,n) =

0 otherwise

where A and t are parameters. From there we can write the corresponding
integral transfer matrix for each value of the wavenumber k:

H(K) = (t ‘o tf(ﬁ))

in the {|B, k), |N, k)} basis, and where f(k) = e*® 4+ e~ = 2 cos (ka) is the
geometric function associated to the B-N first nearest neighbor hoppingsﬁ
We can immediately check that H(k) is %’r—periodic, which, as expected, is

3More precisely, we may split the space of states H into Hp, and H, , which are
respectively spaned by the families of p, and p. orbitals, and such that H = H, & H,,.
Our symmetry considerations then allow us to write the hamiltonian of the system as a
direct sum H = ﬁpy @ ﬁpz, where ﬁpy is formally the same hamiltonian as flpz, except
that it operates on the subspace spanned by the p, orbitals. In the following, we shall
simply write H for ﬁpz and H for H,, in order to lighten notations.

4Tt may seem unnecessary to name this rather simple function. However, we do so
because the structure of this integral transfer matrix is exactly the same as the one for
the first nearest neighbor tight-binding for hexagonal single layer Boron Nitride, so we will
be able to highlight similarities and re-use results later on. For the same reason, we may
sometimes write | f(k)|? instead of f(k)® even though both are equal here (for hBN, the
analogue of f is complex-valued).
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the size of the system’s first Brillouin zone. Diagonalization of H (k) yields
two eigenenergies per value of k, respectively the conduction and valence
band energies:

Eu(k) = /A2 + 22| f (k)]
E,(k) = —/A2 4 2[f (k)

and, up to a phase, the corresponding eigenstates:

W) = g [1BR) + k) V. 1)

Wu(k) = | — alk) | B, R) + [N K) |

where:

(- — IO
A+ /A2 4 £2|f (k)|

and A is a normalization constant such that |N(k)[* = 1 + |a(k)|*.

It is very interesting to note that f(g) = 0, i.e. the coupling between
the N and B sublattices vanishes at the high-symmetry point X, where the
system’s direct gap is found, with a value of E, = 2A. More precisely, we
have:

F(X +q) = —2aq + o((ag)*)

Since most optical processes involve states near the gap, this suggests an

approximation of the band energies in the vicinity of X points through an
2

expansion in ‘if(k)’ :

Eu(k) = ~Fulk) = A+ | fR)F 22

which may be further approximated, near a given X point to:

2

B(X +0) = ~Ey(X +g) ~ A+ 2 (ag) (2.3)

Equation [2.3] yields parabolic bands: it is the effective mass approximation,

which is no longer periodic and corresponds to a continuum approximation
where lattice effects have been averaged out.

The behavior of the approximation given in equation [2.2 however, is

very different: it remains periodic, and the geometric function f has been
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—— Tight Binding
—== Perturbation
----- Effective Mass

Energy (units of t)
o

Figure 2.1: The tight binding bands of the BN linear chain (solid lines),
with A = ¢. Compare the approximation from the perturbation expansion in

%I/ (k)| (equation and the effective mass approximation (equation .

preserved. As a result, the geometry (and symmetries) of the lattice is (are)
preserved. This is not a continuum approximation.

Another important consequence of the fact that the coupling between the
two sublattices vanishes near the gap is that the band states can be similarly
approximated; indeed, we find that:

(k) = 51 f(B)

in particular, this entails that, close to the gap, the conduction band is consti-
tuted almost purely of boron orbitals, while the valence band is constituted
almost purely of nitrogen orbitals. This can be understood chemically by
noting that nitrogen is more electronegative than boron, so that electrons
in the ground state will tend to occupy nitrogen orbitals, whence the va-
lence band states should indeed be mostly made of nitrogen orbitals. We
will show later that this approximation, along with that of equation in
one form or another, underpins most of the models developed in this work.
Both approximations are show in figure [2.1

It is fruitful to note that, while this approximation was obtained here
through a simple Taylor expansion, it can actually be obtained in a more
general manner. Indeed, B-N systems usually exhibit a large gap, due to the
electronegativity difference between nitrogen and boron. This translates into
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the idea that A is larger than other, non onsite hopping parameters| Added
to the fact that, in the regions of interest, the coupling between boron and
nitrogen sublattices is weak anyway, this suggests treating non onsite hopping
elements as a perturbation, i.e. writing the electronic hamiltonian under the
form:
H=A+V

where we define A as H with all hoppings (all parameters apart from A)
set to zero, while V = H — A is likewise H with A set to zero. A has
two eigensubspaces: one at low energy, —A, spanned by the all the nitrogen
atomic orbitals, and one at high energy, +A, spanned by all the boron atomic
orbitals. Treating, then, V oas a perturbation up to second order, we can
recover the results discussed above. It turns out that this line of reasoning
and its accompanying approximations are fruitful, and we will pursue it in
later chapters, especially when we come to excitonic problems. In more
“excitonic terms”, we are essentially saying that the “hole” (valence) states
are well approximated by linear combinations of nitrogen states, localized
in the nitrogen sublattice Ay, while “electron” (conduction) states are well
approximated by linear combinations of boron states, localized in the boron
sublattice Ag. This geometric separation between sublatices, which, as we
have seen, is very naturally expressed in tight-binding, will be extremely
useful to us when dealing with excitonic problems.

2.2 Single particle optical properties

2.2.1 Absorption phenomena

Calculating the absorption spectrum of a crystal amounts to computing the
imaginary part of its dielectric matrix, ¢;. At the independant particles level,
in the limit of vanishing photon momentum, i.e. in the dipole approximation,
it can be shown that:[10]

2me

ilw) = ) S ekl Blo,K)PO(EL(k) — By(k) — hw)  (2.4)

mew k,v,c
where:

e ¢ is the elementary charge.

5This is not exactly true, since usually the first nearest neighbor hopping parameter,
t, is of a magnitude comparable to A (although still smaller). However, we have shown
already that the coupling mediated by ¢ vanishes near the gap, i.e. for the regions from
which most of the proprieties we want to study originate from.
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e m, is the mass of the electron.

e hw is the incoming photon energy.

e e is the incoming photon polarization vector.
e P is the momentum operator.

e k, v and ¢ run over the first Brillouin zone, the valence band indices
and the conduction band indices respectively.

e |v,k), |c,k) are the associated valence and conduction band states,
respectively.

« E,(k) and E.(k) are the associated valence and conduction band ener-
gies, respectively.

To build intuition, we can comment a bit on this formula: it describes the
absorption of a photon by a valence band electron, which is “promoted” to
a conduction band state, through an electronic transition. Most of its terms
can be traced back to Fermi’s golden rule: in particular, the momentum ma-
trix elements relate to the probability of optically exciting a transition from
valence band v to conduction band ¢ at a certain wavevector k. Because we
have assumed vanishing photon momentum, momentum conservation man-
dates that only transitions between electronic states of the same momentum
/ wavevector k can be optically excitedﬁ This is usually a good approxima-
tion, since visible light is associated to momenta of the order of 27”, with the
photon wavelength A ~ 500 nm, while the typical length scale of the Brillouin
zone is %”, with the crystal lattice parameter a is on the order of a few A. Fi-
nally, the usual §(E.(k) — E,(k) — fw) factor expresses energy conservation:
to excite a transition, the photon energy hw must match the directﬂ electronic
transition energy E.(k) — E,(k). In particular, a consequence is that, within
equation absorption cannot occur at energies below the band gapﬁ
When it comes to direct single particle semiconductor absorption, these
direct electronic transition energies, E.(k) — F,(k), are perhaps one of the
most important quantity that can be read from the band structure. In-
deed, note that the valence and conduction band energies only appear as

5For electronic states, we are more precisely speaking of crystal momentum, ik. We
will usually drop the factor of i and speak in this context of momentum and wavenumber
interchangeably, for brevity.

"The transition is said to be direct in the sense that it couples states with the same
wavevector, k.

8This is in strong contrast with what happens in the excitonic case, which we shall
discuss later.
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this difference, and not separately. Therefore, when it comes to direct opti-
cal phenomena, it is this difference that has to be captured when it comes
to the system’s energetics, rather than the valence and conduction energies
separately. In fact, it is worth mentionning that in many semiconductors,
the matrix elements | (¢, k|e - p|v, k)|* are not strongly dependant on k, but
in a first approximation, depend only on the band indices, v and ¢,[16] so
that:

2me

) TIPS 0EMR) — Bl ) (25)

v,C k

€i(w) ~ (

MW

Ju,e(hw)
where ]Pv,c]2 is the aforementioned k-independent approximation for the
| (¢,k|e - p|v,k)|*, and we have recognized the joint density of states J,,
at the photon energy Aw, which is in fact nothing more than the density
of states for the “transition band” given by the direct electronic transition
energy.

The approximation provided by equation can be quite useful, espe-
cially in two-band systems such as the linear BN chain, or hexagonal Boron
Nitride[)] as it removes the need to compute momentum matrix elements
since the sum on the band indices disappears and |Pv,c|2 becomes a simple
scaling factor, which can usually be discarded if we are interested in the
absorption spectrum, since optical spectra are usually only determined up
to a multiplicative constant anyway. It also provides qualitative insight on
the spectrum, in particular asserting that absorption at a particular energy
will be controlled by (and in fact roughly proportional to) the number (more
accurately, the density) of available transitions with that transition energy.

2.2.2 Momentum matrix elements in tight-binding

Our tight-binding models give us access to the band energy differences E.(k)—
E.(k), as well as to the expression of the band states |c¢/v,k) in terms of
atomic orbitals, but so far, we are missing a way to compute the matrix
elements of the momentum operator p in a meaningful basis. The purpose
of this section is to display a way to obtain the sought-after matrix elements
for atomic orbitals.

We shall follow the approach described in [40] and start by noting that
momentum can be written in terms of the commutator between the system’s

9Like graphene, the low energy optical properties of hBN are essentially deterlmied by
its m and 7* bands, which are descended from the boron and nitrogen p, orbitals.
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hamiltonian and the position operator t:

The matrix elements of p between two atomic orbitals |, m) and |3, n) then
reads:

N Me A T Fra
(o, m[B|5,m) = [0, mlEA]5,m) — (0, m|AE5m)] (26
Making now the approximation that the set of atomic orbitals for the system,
{la,n)},, , forms a basis of the system’s space of states, we can resolve the
identity and obtain:

(0, m[EA|B,m) =Y (o, m[#|y,1) (3,1|H]5,n)

7.1

We now introduce an approximation:
(a, m[P]7,1) = 0o 0m (@, m|F|a, m)

which amounts to neglecting the intra-atomic polarizability of the atoms in
the system. This is reasonable in semiconductors, where this intra-atomic
polarizability only accounts for a small contribution to the system’s total
polarizability.[40]

We further assume that the expectation value of the position operator r
for the atomic orbital |or, m}), which is centered on m, is m:m

(o, m|t|or, m) = m
Bringing now everything together, equation [2.6] yields:

(@, m|p|B,n) = == (n — m) (. m| H|5, ) (2.7)
which is the sought-after expression: indeed, recall now that the matrix ele-
ments (o, m|H|3,n) are nothing but the hopping elements of our electronic
model. Therefore, this expression allows us to fully determine the matrix
elements of p in the basis of atomic orbitals without introducing any new
free parameters to the model.

In single particle calculations for a periodic system, however, this basis
is not the most convenient, since our band states will be expressed in terms

10Tn a periodic system, the position operator r is usually ill defined. Here, however, we
will obtain an expression which depends on a difference of positions, which lets us avoid
this issue.
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of tight-binding basis functions. However, since these are, in turn, linear
combinations of atomic orbitals, it is rather straightforward to obtain the
matrix elements of p in this basis, and we find:

1M,

h

{a,k|p > (a,mu|H|B,m, + p) pe” P

peAa,/ﬁ

B.K) = b

where m,, is any element of A,, and we have made use of the translational
invariance of the system. Recognizing the gradient of the hamiltonian matrix
elements H, g with respect to the wavevector k, the above can be rewritten
very compactly:

' Me
B.K') = — 7 O VieHo (k)

<a, k P

p

Note the Kronecker delta oy ,: its presence shows that p is block diagonal
in the basis of the tight-binding basis functions, with one block for each
value of the wavevector k as is the system’s hamiltonian. This lets us define
momentum matrices, in analogy to the integral transfer matrices:

m
p(k) = —— Vi H(k)
1h
where the gradient is taken element-wise. The expressions above thus provide
a practical way to evaluate momentum matrix elements, and, consequently,
the absorption spectrum of a system described by a tight-binding hamiltonian

through equation [2.4][]

2.3 Electron-hole interaction

Until now, we have remained at the level of independent electrons. The “re-
ality” of a crystal is, of course, far more complex. One of the main difficulties
is that electrons interact with each other, so that even with fixed nuclei, we
are dealing with a (quantum) many body problem. There exist approximate
methods to, nevertheless, study such problems. Their description is, for the
most part, outside of the scope of this work. An overview can be found in
[3] and references therein.

1Of course, this is not the only way to do so. Notably, other formulations of will
be discussed later, once we have introduced two-body formalism, in which they are more
natural.
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2.3.1 The Bethe-Salpeter Hamiltonian

One method that we will discuss is that of the Bethe-Salpeter equation,
which provides a way to describe electron-hole pair excitations, and will
form the basis upon which we study excitons.[29, B30, B1], 15, B2] It can be
obtained in several ways, but under the usual approximations, reduces to an
effective hamiltonian for electron-hole pairs, which is what we shall endeavor
to succinctly present.

This hamiltonian is typically presented in the so-called transition basis,
which is traditionally used for ab initio calculations. Such a basis can be seen
as composed of tensor products of valence (hole) and conduction (electron)
states{]

|vkv7 Ck6> = |U, kv>h ® |Cv kC)e

where the hole states, |v,k,), can be taken as the complex conjugates of the
associated electronic valence (single electron) states, and the electron states
lc, k), as the electronic conduction statesF_gl Here, v and c are respectively
valence and conduction band indices, while k, and k. are wavevectors.

The Bethe-Salpeter hamiltonian, which we shall call H x, can be conve-
niently decomposed into three parts:[lz]

H X = ﬁﬁ +U+J
The first part, Hy, describes the independent electron and hole pairs: it acts
as a sort of kinetic energy, and we therefore call it the kinetic hamiltonian.
Its expression in transition basis is given by:

<vkv, ck, f]o

U/k'/(ﬂ Clk/c> = 5(1}0),(v’c’)5kv,k2)6kc,k’c (Ec(kc> - E’U(kv))

where E,(k,) and E.(k.) are the band energies respectively associated to the
(electronic) band states |v,k,) and |¢, k.). In other words, H is diagonal in
the basis of transitions, and its diagonal matrix elements are the transition
energies.

The other two terms describe the electron-hole interaction. They are not
diagonal, and will therefore couple transitions from different wavevectors and
valence-conduction pairs. Loosely speaking, this makes it so transitions are

12This is an effective basis, which from the many-body point of view can be taken to
correspond to a singly excited Slater determinant.

3In the following, we shall mostly omit these indices, but keep in mind the necessary
complex conjugation when going from electronic states to hole states.

1Since we will work with BN systems, and both Boron and Nitrogen are rather light
atoms, we remain spin unpolarized. The matrix elements given below are for this case.
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no longer eigenstates of the system, and breaks the single particle bands
picture. The two coupling terms are the direct electron-hole interaction:

A

UK, k) =

5kc—kv,k;—k§) / wi,kc (r)%',kg (r)W(r, r/)%,kv (r’)wi/,kg, (r")drdr’

<vkv, ck.

and the exchange electron-hole interaction:

A

<vkv, ck.|J

vk, c’k’c> =
25kc—kv,k’c—k; / SOZ,kC (1) @ux, (r)o(T, I'/)%',k’c (r/)SOZ',k; (r')drdr’

where v is the unscreened (bare) Coulomb interaction:

62

v(r,r) = ———
e =]

and W is the screened Coulomb interaction in its static limit, while the ¢, x

are the electronic band states |, k) in position representation.

2.3.2 Optical activity

In this framework, excitonic states are naturally written as linear superposi-
tions of transition states:

|\II> = Z \Ijvku,ckc ’Ukvackc>

vky,cke

and the excitons of the system are those which are solutions of the Bethe-
Salpeter equation:
Hx |V) = Ey |¥)

i.e. the eigenstates of the Bethe-Salpeter Hamiltonian Hy, with the corre-
sponding Fy being the associated energies. It should be noted, from the
matrix elements above, that Q = k. —k,, is a good quantum number for Hy.
It corresponds to the center of mass momentum of an excitation of the form
|vk,, ck.) or linear combination thereof, and Hy is therefore effectively block
diagonal in Q. We will come back to this point.

In this framework, the absorption spectrum of a system may be effectively
computed as:

e(E) x ;2%:|((Z)\e~13|\11>|26(E—E\1,) (2.8)
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where the sum runs over an eigenbasis of Hy, |@) is the (many body) vacuum
state, i.e. the state where no electron-hole pairs are excited and Fy, is the
excitation energy for the exciton W, i.e. the difference between its energy
and the vacuum state energy (and so is reference independent), F = hw is
the energy of the incoming photons and e is the corresponding polarization
vector. The interpretation is essentially the same as the one of equation
2.4 except that instead of the momentum matrix element describing the
probability for an electron to be excited from the valence to the conduction
band, it now describes the probability of an exciton being excited from the
vacuuin state.

For an excitonic state of definitite center of mass momentum Q, |¥) =
Yvek Yok [k, c(k +Q)), the usual rules of calculation for two body oper-
ators provide the expression of these matrix elements:

Dle-pl¥) = > U, .k (c,k+ Qle-plv, k) (2.9)

v,c,k

Like in the single-particle case, there is no absorption due to Q # 0 states
in the limit of vanishing photon momentum.

We must note, at this point, that we will not work in the basis of tran-
sitions much: a significant portion of chapter |3| will be devoted to building
up (an approximation of) the Bethe-Salpeter hamiltonian in another basis,
starting from localized electron and hole wavefunctions instead of extended
Bloch functions.

2.3.3 Wannier Model

In systems with parabolic bands and with some additional approximations
which amount to forgetting the system’s lattice structure, the Bethe-Salpeter
hamiltonian can be greatly simplified.[42], (15, 6], [43] This is the so-called
Wannier model, which results in an effective hydrogenoid equation [L.1]

One way to obtain this approximation consists in making use of Bloch’s
theorem and writing the band states as Bloch waves, ie.:

1 —ik-r

Puk(r) = 75 U,k (r)

where () is the system’s Volumeﬂ and the wu, x(r) are lattice periodic func-
tions which consequently contain the information about the system’s lattice

5Volume in the general sense: it would be the area in two dimensions. When we need
it, we will let d stand for the dimension of the system.
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structure. They are taken to be normalized over a unit cell of the system,
ie. ﬁ oo Jtae(r)Pdr = 1, with Q.. the unit cell volume.

We restrict ourselves to working with direct excitons (which we can do,
since Hy is block diagonal in Q), both for simplicity and because they are
the ones which are relevant for (direct) absorption. We therefore consider an
excitonic state of the form:

W) = Z Uy e |0k, ck)

k,v,c

and we will aim to show that we can obtain a simple effective equation for
the Fourier transfom of Wy, ..

Kinetic energy

We start with the kinetic hamiltonian. Its matrix elements read:

<Uk7 ck‘I:IO

V'K K = 6u0) (e S (Ee(k) — Ey(K))

Suppose now that the system has a direct gap, with valence band maximum
and conduction band minimum at ky. We apply the effective mass approxi-
mation there, so that:

2

Eo(k) ~ (ko) + 5 —(k - ko)’
B9 ~ Ey(k) = 5 —(k = ko)’

with m, and m, the electron and hole effective masses associated the the
conduction and valence band ¢ and v respectively. The direct transition
energies, which are the matrix elements of the kinetic Hamiltonian then read:

2

Ee(k) = By (k) = Ee(ko) = Bu(ko) +5 —(k = ko)
Eg ve
where [, = % is the two-body transition effective mass, and E; is

usually the gap energy. The action of H, on our direct excitonic state then
simply reads:

N h2
(vk, K| Ho|¥) = 6oy ey | Eg + W(k — ko)? |y
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Electron-hole interaction

If the band states are written in the prescribed Bloch form, the matrix ele-
ments of the direct interaction read:

<vk, ck‘U

V'K, c/k'> =

1 0 (1 1)
0 /e_’(k _k)'ruzk(r)uc/,k,(r)W(r, r')e’(k k) Uy 1 (1)1 1o (v7)drdr’

The integral over, say, r’, reads:
/ W (r, r')ei(k/_k)'r/ Uy 1 (1)1 4 (x7) dr’!

Lattice terms

where the integrand, as long as the potential is not too strong, is essentially
the product of a slowly varying function (the potential and the plane wave)
and the lattice terms. We replace the latter by their average over the unit

cell:
1

5 [ ttose () ()l
u.c.

and if k and k’ are not too different from each other, the above evaluates
to d,,. With this, the structure information about the lattice present in
the bands has effectively been forgotten. We can do the same thing for
the integration over r. In the same spirit, we assume that the screened
potential is macroscopic, and depends only on r’ — r, i.e. that we have:
W(' —r)=V(r' —r). It follows that:

'k, c’k'> R~ 5”’?220’0/ /ei(k/_k)'(r/_r)V(r’ — r)drdr’

so that within this approximation, the direct potential only couples transi-
tions from the valence conduction pair. Introducing now the relative coordi-
nate R = r’ —r, we have:

<Uk, ck‘f]

<vk,ck‘(7 v’k',c’k’> R~ 6“’;2500, ei<k/_k)'RV(R)dR
~ 51),1}50,0’ V(k/ o k)

where we have recognized the Fourier transform V of V. By way of conse-
quence, we can evaluate the action of U on a direct excitonic state |U) =
>k Ui |vk, ck) = #f\lfk lvk, ck) dk (we do not sum over band indices

since transitions from different pairs are no longer coupled). We find:

2 1 - / /
(k, k|0 W) = W/V(k — k) Wydk
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which is effectively a convolution product between the potential and the
excitonic wavefunction in reciprocal space.

The same approximations can be performed for the exchange interaction,
but there, the associated integrals over r and r’ involve the overlap of valence
and conduction bands, and therefore are negligible:

<vk, ck‘j

V'K, c’k’> ~ 0

Fourier transform to coordinate space

At this point, the Bethe-Salpeter equation in component form reads:

k) () + / W_k)qf(k’)dk’ —(E-E,)¥(k) (2.10)
2m 0 (27)° g '
where, on the left-hand side, the first term corresponds to the kinetic energy,

and the second term to the direct potential, and we have introduced ¥ (k) =
U
(2m)
We now Fourier tansform the equation above. To this end, we introduce
the sought after excitonic wavefunction in the relative coordinate:

U(r) o /e_ik'r\IJ(k)dr

and, because we expanded the band structure around the transition minima
at ko, it is also useful to introduce:

g(r) / e " U (ko + q) dg
—_———
g(q)

so that g(q) describes the excitonic wavefunction in reciprocal space with the
origin at the expansion point ky. The two functions are related by a shift in
reciprocal space, which becomes a phase factor in coordinate space:

U(r) = e ™ 7g(r)
With this, equation is Fourier transformed into:

- ;v2g<r> +V(r)g(r) = Eyg(r) (2.11)

where E, = E' — E,; denotes the exciton binding energy. This is an effective
hydrogenoid Schrodinger equation for g, which can be solved to access both
the excitonic eigenstates and their binding energies.
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From the point of view of optical properties, we note that, if we further
approximate that the optical matrix elements from the electronic transitions
are k-independant, (c,k[p|v,k) ~ p, . then it follows from equation m
that: 15, [16]

| w00 o wo)f = o)

[ (Dle-B|T)| o< |e -,
as claimed in the introduction.

Conclusion

We have already discussed the consequences of this equation in the intro-
duction, and we will discuss the Wannier model further in section [4.4.1} For
now, let us comment on what is to follow. In the derivation of the Wannier
equation, we have made several approximations that effectively amount to
the neglect of the system’s lattice structure, and in particular its geometry.
Among them, the effective mass approximation amounts to disregarding this
structure in the band energies, while our approximations regarding the lattice
periodic components of the band states philosophically amount to its neglect
in the band states. The next chapter aims to show that, in BN like systems,
some of these approximations can be fruitfully relaxed without introducing
too much complexity to the problem. As announced, we will not work in
reciprocal space, but rather with localized electron and hole wavefunctions.
However, it is worth noting that most of our manipulations have reciprocal
space analogues, which do correspond closely to what we have described here.
In essence, they will amount to replacing the band states by tight-binding
basis functions or appropriate approximates to the tight-binding bands, and
the effective mass approximation by an approximation to the tight-binding
band energies. The approximations in question are essentially those described
above for the BN chain. We should note, at this point, that the use of a tight-
binding framework to compute excitonic (and more generally, many-body)
properties in semiconductors and nanostructures is well known.[27, 44l [45]
Our focus here will be on the aforementionned approximations and their
consequences, in particular the fact that, in BN like systems, they allow
the Bethe-Salpeter hamiltonian itself to be (approximately) rewritten as an
effective tight-binding problem.
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Chapter 3

Excitonic tight binding in the
BN linear chain: a toy model

Through the previous chapter, we have come into possession of a way to de-
scribe single particle electron and hole states, via the tight-binding approxi-
mation, and of the Bethe-Salpeter equation, which describes the coupling of
electron-hole transitions. Those are the theoretical ingredients that will let
us describe excitonic properties in this work.

The object of this chapter is to show that, in hBN like systems, it is
possible to approximately map the Bethe-Salpeter equation onto an effective
tight-binding problem.[46], 47, [38, 48] We specialize here to the case of the
linear BN chain for concreteness and simplicity. In particular, the fact that
the chain is one dimensional will be helpful to build and illustrate some of
the geometrical intuition behind the mapping procedure. Indeed, we will
be naturally led to (intermediate, but interesting in their own right) tight-
binding problems for electron-hole pairs, which are naturally expressed in
a dimension that is twice that of the original crystal (so in a plane for the
chain, but in four dimensions for hBN).

We should stress that our aim here is essentially pedagogical, and that
we treat the linear BN chain as a toy problem, in such a way that it is a one-
dimensional analogue to the two-dimensional hBN[| The physics of excitons
in one-dimensional chains, and many-body effects there in general, is very
rich, and we will not discuss its specificities. For an ab initio study of many-
body effects including excitons in one-dimensional chains with a treatment
of the linear BN chain, see for example [49].

In fact, most of the equations presented here transfer directly to hBN with a change
of geometric factors.

39
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3.1 Electronic structure and relevant lattices

3.1.1 Notations

The description of the electronic structure of the linear BN chain was already
discussed as an example in the previous chapter, within section 2.1.2] We
will generalize here slighly by inclunding second nearest neighbors and more
general notations, but overall, the spirit is very much the same, and so we
will endeavour not to repat ourselves too much.

We consider a linear chain of BN. Its unit cell contains two atoms: one
Nitrogen atom and one Boron atom. We call a the nearest neighbor B — N
distance. To fix notations, we let R = {2nae, / n € Z} be the underlying
Bravais lattice of the system, with e, a unit vector in the direction of the
chain. We denote by nz the position of the unit cell atoms, where u runs
over the atomic types (¢ = B or N) and introduce the sublattices A, as:

Auzng—l—R

so that the sites in A, are exactly those which are translationnally equivalent
to the unit cell site ng, and the set of sites of the full crystal lattice is given
by U,A,,.

It is enough to restrict ourselves to, say, the (hybridized) p, orbitals, for
the reasons discussed in section We thus denote by |B,n) and | N, m)
these localized boron and nitrogen p, atomic orbitals, where n € Ag and
m € Ay denote the atomic coordinates. From this basis of localized atomic
orbitals, that we assume orthonormal, we define the associated tight-binding
basis functions:

k) = o= 3 )

IIEAM,a

where N is the number of unit cells in the system.

3.1.2 Electronic hamiltonian

We describe the electronic structure of the system using a tight-binding
hamiltonian Héel) constructed with second nearest neighbor hoppings, which,
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in the basis of localized atomic orbitals, is given by:

A ifn=n’
(B,n|HY"|B,n') = tBB  if n and n’ are 2n.n.
0 else

—-A  ifm=m'
(N, m|A | N, m') = t¥Nif m and m’ are 2n.n.

0 else

(B, n|[:I[()el)|N, m) — t; if n and m are 1n.n. in plane
0 else

where A, t;, t)'V and tPB are parameters, which we shall call the “kinetic”
parameters, in that they describe the system’s band structure.

This hamiltonian is block diagonal in the basis of the tight-binding basis
functions, and leads to the integral transfer matrix:

A+ 75 fo(k) ty f1(k)
H“‘):( tAK) —A+thf2<k>>

in the basis {|B, k), |N,k)}, where:
fik) =" €™ = 2cos (ka)

fo(k) =" e™* = 2cos (2ka)

where k is the wavenumber defined through k = ke,, the 7 are the in-
plane first nearest neighbors nitrogen to boron vectors, i.e. +ae,, and the
i are the second nearest neighbor vectors, i.e. the +2ae,. Here, f; and f;
correspond to the geometric terms for the first and second nearest neighbours
respectively.

Let us now provide a reminder of an important discussion we had in the
previous chapter, in section 2.1.2] As we have already noted, in our B-N
systems, the electronic gap is quite large, which translates here to the idea
that 2A is larger than the other parametersﬂ In other words, the difference
in onsite energy between the nitrogen (—A) and the boron (+A) subspaces is
large. Furthemore, the gap lies in the vicinity of the high-symmetry point X

2 Actually, typically, A ~ |t | in magnitude. However, the electronic couplings mediated
by ¢, are of less importance for excitations near the gap, because f1(X) = 0, as discussed
below.
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and f1(X) = 0, so that the coupling between these subspaces is even smaller
near the gap. This suggests that the valence bands will be constituted mostly
of nitrogen orbitals, while the conduction bands will be constituted mostly
of boron orbitals.
This idea can be formalized by considering the following decomposition
of the hamiltonian:
o =A+v

where we define A as ﬁéd) with all hoppings (every parameter except A)
set to 0, and, consequently, V= ﬁéel) — A is likewise ﬁéd) with A set to
0. A has two eigensubspaces: one at low energy, —A, spanned by all the
nitrogen atomic orbitals, and one at high energy, +A, spanned by all the
boron atomic orbitals. We can now treat V as a perturbation, and perform
degenerate perturbation theory in both subspaces to obtain two separate
effective hamiltonians for the low and high energy eigenstates of ]:I((fl), which
are by definition the valence and conduction bands.

Let us anticipate on excitonic problems by calling the low energy effective
hamiltonian Hj, (h for “holes”) and the high energy one H, (e for “electrons”).
We shall compute them up to second order in V. Two bases are of interest
to express their matrix elements: the basis of localized atomic orbitals, and
the basis of the tight-binding basis functions.

In the basis of localized atomic orbitals, we find:

A—l—n% ifn=n’

(B,n|H,|B,n') = % +¢#P  if n and n’ are In.n. in Ap
0 else
A+ ifm=m
— (N, m|H,|N,m’) = % —t" if m and m’ are 1n.n. in Ay
0 else

with n = 2 is a geometric factor Notice the “—" sign in front of (IV, m|ﬁh\N, m').
We can briefly comment on these effective hamiltonians. First, we note that
both are effective first nearest neighbors tight-binding hamiltonians in their
subspace. We may be surprised that we started with a second nearest neigh-
bors hamiltonian, and now have only effective first nearest neighbors apart
from these terms. This is because second nearest neighbors, by definition in

3We introduce this notation here because the corresponding effective hamiltonian for
single-layer hBN will turn out to be exactly the same as the ones for the chain, except
with n = 3. In fact,  is nothing more than the number of first nearest neighbors of a
given site.
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our lattice, connect atoms of the same type, and therefore are effectively first
nearest neighbors within their subspaces. Note, however, that the second
nearest neighbor interactions in the crystal break the electron-hole symme-
try, even if )’V = 85,

We can, likewise, express these effective hamiltonians in the basis of tight-
binding basis functions where they are block-diagonal in k, either by recon-
structing them from the expression of the effective hamiltonians above, or by
doing perturbation theory on the full integral transfer matrix above. Both
ways are equivalent, and we find the following integral transfer matrices:

t2
709 = 8+ k100 + 1200 | 1
in the basis {|By,k)} for the electron bands, and:
t1 2 NN
Hy(k) = — A+E|f1(k)| — 17" fo(k) | It

in the basis {|/NV1,k)} for the hole bands. Here, I; stands for the identity
matrix in dimension 1, so that this approximate hamiltonians are in fact
diagonal in k. This results from the fact that there is only one “low energy”
and one “high energy” state in the system’s unit cell, and is a characteristic
that is shared between the linear BN chain an the planar hBN. It ceases
to be true for more complex systems, such as multilayers or certain bulk
stackings (notably AA” and AB), in which cases the hamiltonian is “merely”
block diagonal. Both blocks have a similar structure here, and, for a given
value of £, differ essentially by the values of their parameters. Since both
hamiltonians are diagonal, the band energies within this approximation are
immediately given by:

E.(k) = A+ S A0 + 27 (1)
B, (1) = = A+ SR AP + A (k)

We have already discussed the band states for the chain at some length in
section 2.1.2] in chapter [3] We kept then to a first nearets neighbor descrip-
tion, but the takaway remains essentially the same: to a good approximation,
the conduction band is well approximated by the tight-biding basis function
for Boron, and the valence band by the tight-binding basis function for Ni-
trogen:

le,k) ~ |B,k) ; |v.k)=~|Nk)
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to zeroth-order

3.2 Excitonic hamiltonian

3.2.1 The basis of localized pairs
Kinetic hamiltonian

With the single particle band structure described by I:Iéel) ~ H,® H,, we now
turn our attention to the description of excitonic states. We seek to describe
transitions in a way which is compatible with our earlier approximations.
A natural way to do this is to write transition space as a tensor product
between the low (holes / nitrogen) and high (electrons / boron) energy spaces
described earlier:

H=~H,®He

and to describe the non interacting electron-hole pairs by an “independent
transitions hamiltonian”, which we shall call the kinetic hamiltonian:

Hy~H,®1,—1,® H,

where 1, (resp. 1.) is the identity on Hj, (resp. H.). The space of transitions
is therefore naturally spanned by states of the form:

jm,n) = [N, m) ® |B,n)

each of which represents a localized electron-hole pair, where the hole and
the electron are separated by the vector R = n — m. These states play
an important role for us, since our description of the system is naturally
done in terms of localized states. In fact, the kinetic hamiltonian H is
a 2d-dimensional tight-binding hamiltonian for these states, where d is the
dimension of the underlying crystal. In our case, the chain is 1D, so Hy is
the tight-binding hamiltonian of an effective 2D system. This system may be
pictured geometrically by associating to each |m,n) a point of coordinates
(m,n) = m @ n in the space of dimension 2d, i.e. here simply the point of
coordinates (m,n) in the two-dimensional plane. Then, since the m and n
are discrete (countable, in fact), these points form a discrete set, onto which
the states |m,n) act as localized orbitals.

4We could correct the band states, as well as the localized electron and hole states, to
first order in the non-onsite hoppings (since we went to second order in the energies). For
simplicity, we do not do it explicitly here, and retain the zeroth-order notations. We will
discuss the notion further in section [£.3.3] when we evaluate exchange matrix elements for
the monolayer. See also footnote [7|and the associated main text in this chapter.
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We can check this directly using the definition of Hy and the matrix
elements derived for the effective hamiltonians I:Ih and ﬁe above to obtain
the matrix elements of Hy in the basis of pairs. Leveraging the orthonormality
of the basis of atomic orbitals, we find:

2A—|—n% ifm=m’'and n=n'

t2 . .
A, 55 + tP8  if m = m’ and n,n’ are In.n. in Ap
<m,n|H0|m,n> =\ NN . ’ . ’
Sk — if mm’ are In.n. in Ay and n =n
0 otherwise

We can recognize an effective hopping associated to the motion of the electron

2
alone, T! = t—z +tPBand an effective hopping associated to the motion of the

hole alone, T}, = 2 — )N, Note that there is no hopping corresponding to a
“simultaneous” motlon of the electron and the hole. The resulting hopping
structure on the lattice of pairs is depicted in figure
As a consistency check, and to gather additional insight on the problem,
we may diagonalize H,. Treating it as an effective tight-binding hamiltonian
on a square lattice (with a single orbital in its unit cell), we introduce a basis
of tight-binding basis functions{’|

[y ke) = ——= > e i(Romtken) |y )

\ mEAN

neAp

Since there is only one “orbital” per unit cell of the lattice of pairs, this basis
is automatically an eigenbasis of Hy. These functions can be more tellingly
rewritten as:

k.. k) Y e ™|N,m Yo e B | = |vk,, k)
\/_mGAN \/_I’IEAB

|©u (ko)) |®e(ke))

so that these tight-binding basis functions are in fact the transition states
(within the approximations made above), which we thus naturally recover as

50One may wonder why we choose the unusual sign convention e~ #(—kKvm+ken) ingtead
of the more standard e~ i(kvmtken)  [ot yug first stress that this choice is only one of
notation: it does not affect the physics of the system. The reason we make it here is that
hole states are the conjugates of the corresponding electronic states: this sign convention
anticipates on what follows, and will allow us to directly rewrite these basis functions as
transition states with the “standard convention” for the hole and electron wavevectors.
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Figure 3.1: Effective tight-binding system associated to the hamiltonian H,
in the basis of pairs, in the (m,n) representation (partial view: the lat-
tice is infinite in both directions). Each site is associated to a |m,n) pair
state, which acts as an effective orbital for it. Connecting lines represent
the effective hoppings, with vertical grey segments corresponding to electron
hoppings 1) = % + 188 and horizontal green segments corresponding to hole
hoppings T}, = % — tN. Color depicts the hole electron vector R = n —m
for each pair: it will be shown that the direct electron hole interaction is

(only) dependent on R.

eigenstates of Hy. Following through with the tight-binding analysis, we find
that the associated eigenenergies are given by:

2 2 2
Ey(ky,ke) = 28+ + (22 + tf3> falke) + (22 - th> fa (ko)

Noting now that fo(k) = |f1(k)|* — nﬁ and recalling the approximate expres-
sions for the band energies E. (conduction) and E, (valence) obtained from

6This can be shown either directly, through trigonometry, or geometrically, through
the definition of these functions in terms of sums of exponentials. Indeed, noting that
1f1k)]? = >, eik'T}Q = eik('r_",), it then suffices to remark that in our system,
the difference of two first nearest neighbor vectors yields either a second nearest neighbor
vector (yielding terms that contribute to f2) or 0 when 7 = 7/, yielding a constant term
equal to the number of nearest neighbors of a site, n (here n = 2). For this reason, a
similar relation exists between the analogues of f; and fy in two dimensional hBN.
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the approximate hamiltonians H, and H, respectively, we can rearrange this
expression into the more telling form:

ED(kva kc) = Ec(kc) - Ev(kv)

so that the eigenenergies of Hy are nothing but the transition energies (within
our approximations), as expected.

Direct electron-hole interaction

A key interest of the basis of pairs is that the Coulomb interaction can be
approximated in a relatively simple form in this basis. Indeed, if we let U
stand for the direct Coulomb interaction, and ¢, (r — n) stand for the position
representation of the single particle state |u, n), we have:

(m,n|Um’,n') = /ng(r —m)oy(r —m' )W (r,v')op(r' —n)ogp(r’ —n')drdr’

where W (r,r") is the screened Coulomb potential. We note now that, to
zeroth—orderﬂ the ¢, are atomic orbitals, which therefore decay exponentially
away from their centers (here taken to be 0). Therefore, only the terms of
matching centers, i.e. those for which m = m’ and n = n’, contribute
significantly to the integral. We are left with:

(m, n\mm’, 1) X dmmOnn / |on(r — m)|2W(r, r')|op(r — n)]erdr’

which is analogous to the semiclassical interaction between two charge den-
sities. This approximation already provides us with an in interesting result.
Indeed, it means that the Coulomb interaction has become diagonal in the
basis of localized electron hole pairs. Evaluating such an integral, while less
demanding than evaluating the four centers integral above, is still something
which we would like to avoid, especially since the functions ¢, are not known
explicitly in semi-empirical tight-binding. Instead, we again note that the
¢, are peaked around their centers, and therefore their densities may be
approximated as delta functions, so that:

(m, n|U|m’, n') & 8 pmr0n /W (m, n)

"Note that this is an additional approximation. Indeed, since we have gone to second
order in perturbation for the energies, we could also include in this calculation the first
order contribution to the states. This would not modify results for the kinetic hamilonian,
but would induce additional terms in the the direct and exchange electron hole interaction.
We neglect these terms in the direct interaction, U, but we will later show that they are
needed for a good description of the exchange term.
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Importantly, because of the translational invariance of the system, W (m,n)
depends only on R = n — m. In practice, we shall use a model potential
V(R) to approximate W.

Let us take a moment to review our situation. Neglecting exchange for
the moment, the Bethe-Salpeter hamiltonian reads:

Hy =Hy+U

Within our approximations, Hyis a tight-binding hamiltonian in the basis of
localized pairs, while U is diagonal, and so behaves as an effective external
field which modifies the onsite energies. However, this hamiltonian is in
2d dimensions, which adds computational complexity, and further does not
leverage the periodicity of the original crystal.

In the following sections, we will see that we can move to a hybrid repre-
sentation, by treating the relative coordinate R in real space, and going to
reciprocal space for the motion of the origin, which we shall fix on the hole.
This hybrid representation will allow us to leverage both the fact that the
center of mass momentum of the pair is a good quantum number because of
the crystal periodicity, and the fact that U has simple matrix elements when
expressed in relative coordinates.

Exchange interaction

The astute reader will have noted that we still have not discussed the ex-
change electron-hole interaction. Once again, we recall that our goal in these
sections is not so much to provide a study of the physical system of the
BN linear chain, but rather to discuss the implementation of the excitonic
tight-binding model on a toy system.

It turns out that including exchange terms is delicate in one dimension:
while relatively straightforward in the basis of pairs, difficulties emerge when
moving to the hybrid representation, essentially because the Fourier trans-
form of the Coulomb potential % is ill-defined in 1D. These difficulties are
removed in two dimensions, and so we delay our discussion of exchange terms
until the treatemement of the physical system that is hBN. Therefore, we ne-
glect this term in what follows, keeping in mind that such an approximation
will in fact be reasonable in 2D at Q = 0, and more generally in three di-
mensions. As a result, the hamiltonian H x = Ho + U will be, for us, the full
Bethe-Salpeter hamiltonian for the moment.
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3.2.2 The basis of elementary excitations

As announced above, the goal of this section is to establish a hybrid repre-
sentation. To this end, we will describe a new basis and rewrite the excitonic
hamiltonian in this new basis. We will do so in two complementary (and
independent) ways. The first way proceeds by starting from the usual re-
ciprocal space basis of transitions and introducing the new basis from there.
This is, perhaps, the more direct way, and is well suited to more general
problems (it generalizes more easily to problems in higher dimensions and
more than two bands).

The other (equivalent) way leverages the fact that the excitonic hamilto-
nian describes an effective tight-binding problem in the basis of pairs, and
shows that pursuing this line of reasoning naturally yields to the same re-
sults. This second approach is arguably more intuitive and visual than the
first, and provides motivation for the definitions and choices made in the first
procedure, as well as intuition for their results. However, it does not provide
an immediate connection with the reciprocal space quantities, and becomes
more cumbersome for more general problems ]

Elementary excitations as Fourier transforms of transition states

Let us start by noting that a given transition from valence band v at wavevec-
tor k to conduction band ¢ at wavevector k + Q can be written as:

vk, c(k +Q)) = !vk>* ® ek +Q))

ik-m i(k+Q)n
— > ™|N,m > e " |B,n)
\/_mEAN \/_HEAB

Z e—iQ-ne—ik(n—m) |1’Il, Il>
mEAN
neAp

where we have written |m,n) = |N, m)®|B, n) for short, and noted that this
state represents a localized electron-hole pair, where the hole and the electron
are separated by the vector R = n — m. Let us now change variables from
m, n to m, R. A priori, the set of R to be summed upon is A(m) = Agp —m.
However, because the crystal is translationally invariant A(m) is actually
independant of m. This lets us define the lattice of excitations:

%N

A:AB—m?V:R—l—(n%—m?V)

80ne notable difficulty comes from the fact that the effective tight-binding system in
the basis of pairs is 2d dimensional, so already for a system like hBN where d = 2, we
have to contend with a four-dimensional tight-binding problem. Still, the central ideas of
the method remain valid.
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which is therefore the set of all possible hole-electron vectors. With this, we
can permute the sums above, and obtain:

1 , 1 .
vk, e(k + Q) = > ——e YR = H7 7N m m + R)
ReA N NmeAN

|R7Q>

where we have defined the states |R, Q), which can be recognized as tight-
binding basis functions over the localized electron hole pairs’] We shall call
such states “elementary excitations”, and show that they are a convenient
basis to solve the Bethe-Salpeter equation within our approximations. Let
us now inject this expression in the transition basis expression of an indirect
excitonic state with center of mass momentum Q:

Tq) =D > Vet vk, c(k + Q)) (3.1)

v,e k

In our case, there is only one valence band and one transition band, so we
shall omit the corresponding summations. Permuting the sums on R and k,
we can rewrite the state as follows:

1 — )
Vo) =D ﬁz%,cm)e ARIR, Q)
k

ReA

\I/R’Q

=Y YrqlR,Q)

ReA

We therefore see that the |R, Q) define a new basis for the excitonic states,
which can directly be checked to be orthonormal:

<Ra QlRla Ql> = 6R,R’6Q,Q’

Importantly, this approach also provides us with conversion formulas be-
tween the excitonic weights in reciprocal / band space and their analogues
in elementary excitation space:

1 » .
\I’R,Q = ﬁ Z \I’vk,c(k+Q)€ QR (3-2>
k
1 . ,
Yok ek tQ) = Wi Y Upqe' YR (3.3)
ReA

9They are in fact exactly tight-binding basis functions for the localized electron hole
pairs, leveraging the translation invariance on the hole coordinate, m. This will be dis-
cussed in details in the following section.
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Having now obtained the sought-after hybrid basis, where the relative
coordinate is treated in direct space, while the center of mass motion is
treated in reCIprocal space, we proceed to rewrite the excitonic Hamiltonian
Hx = Hy + U in this new basis. The process in relatlvely straightforward,
since we already know the matrix elements of Hy and U in the basis of local-
ized pairs, and know the expressions of the |R, Q) in terms of the localized
pairs. Performing the calculations, we find:

2A + 't if R =R’
(R, Q|Ho|R', Q) =0qq S T! + T, ¥®-R) if R R are In.n. in A
0 otherwise

for the kinetic hamiltonian, and:
(R.QIUIR', Q) = dq.q0rr'V(R)

for the direct electron-hole interaction, which retains a very simple expression
and remains diagonal in the new basis. Crucially, we verify that Hy and U
preserve Q, i.e. they do not couple elementary excitations of a different
Q. As a result, both Hy and U are block- dlagonal in Q. In this sense, we
therefore have one effective hamiltonian, say H x(Q), per value of Q, which
appears as a tight-binding hamiltonian on the lattice of excitations A.

Elementary excitations as tight-binding basis functions in the basis
of pairs

Before dicussing this hamiltonian further, we will consider a complementary
way to arrive at the results presented above, leveraging the perspective that
our system reduces to a 2d dimensional tight-binding problem in the basis of
localized pairs.

We start by changing coordinates from m,n to m, R, with R = n — m
the relative hole-electron vector, as above. In keeping with this, we re-index
the pair states, by writing:

m,R) = [N,m) ® |[B,m+R)
It is then straightforwards to check that:
(m, R|U|m/7 R) ~ Smm Or W (m m+R) = dmmdrr'V(R)

where we have recalled that, because of translation invariance, the direct
electron-hole interaction depends only on R. This is the main reason for the
change of variables.



52 CHAPTER 3. BN LINEAR CHAIN

The matrix elements of the kinetic hamiltonian, ]:IO, can likewise be ex-
pressed in the new coordinate system. We find:
2
2A+7]% if m=m’ and R =R’

(m, R ||, R') = % + P8 if m = m’ and R, R’ are In.n. in A

t2 . .
= —t'V ifm,m’ are Inn. in Ay and R' —R=m’ —m
0 otherwise

The resulting tight-binding problem for the excitonic hamiltonian H X =
Hy + U is depicted in figure .

-0.2
6 -
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= 47
2 0.4
(@}
Q 5
> 2r
. 1058
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c O 0.6 >
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ﬁ )
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o _4 L '
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m/a (hole position)

Figure 3.2: Effective tight-binding system associated to the hamiltonian
Hyx = Hy+ U in the basis of pairs, in the (m,R) representation (partial
view: the lattice is infinite in both directions). Each site is associated to a
lm, R) pair state, which acts as an effective orbital for it. Color depicts the
direct electron-hole potential, which is diagonal within our approximations,
and therefore acts as an onsite term (for clarity, the zero of energies has

2

been set to 2A + 77%, the constant kinetic contribution to the onsite ener-
gies of all sites). Here a model potential of the form V(R) % is taken for
illustration. Connecting lines represent the effective hoppings, with vertical
2

& +P8 and oblique
tNN

J_ .

grey segments corresponding to electron hoppings 77 =
2
green segments corresponding to hole hoppings 7} = ;—Z —
This representation has the advantage of making the remaining periodic-

ity of the system manifest. As can be seen in figure [3.2] the system remains
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periodic in m in the presence of the direct electron-hole interaction U. It
can be seen that the lattice of excitations, A, constitutes a unit cell of the
system. For a given m, say m = 0, each site |m, R) can be seen as a (unit
cell) basis atomic orbital, in such a way that we can naturally construct, for
each R € A, a tight-binding basis function:

1 .

—zQ~m| R>
— g e m,
VN mean

which we recognize as the elementary excitations introduced in the previous
section, so that the wavevector Q that we have introduced has the interpre-
tation of the state’s center of mass momentum. The direct intrepretation of
this state in terms of a tight-binding basis function, however, provides an
immediate verification that Q is a good quantum number for Hy (similar
arguments can be given to show that Hy and U also independently preserve
Q). We also obtain immediately that {|R,Q)}g q forms an orthonormal
basis, since {|m, R)},, g was one itself.

R,Q) =

We can proceed further: as we have shown, Hy is block diagonal in Q,
and, leveraging the standard tight-binding formalism, these blocks are given
by the associated integral transfer “matrices”, which are in fact nothing but
the H x(Q) introduced in the previous section. Here, because A is infinite
(but remains countable), so are these “matrices”. For this reason, we present
them as operators, the matrix elements of which can be computed in the
usual way["] In other words, we have:

Hy =P Hx(Q)
Q

and the above procedure yields:

A 2A+n%+V(R) ifR=R’
(R,QIHx(Q)|R",Q) = T/ + T}’ ¥®-R)  if R R’ are In.n. in A

0 otherwise
with the matrix elements of the full hamiltonian being then given by:
(R, Q|HxR, Q) = dq.q (R,Q|Ax(Q)R', Q)

which, as expected, is the same result as the one found previously.

0For readers familiar with tight-binding calculations, they can be read directly from

figure
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3.2.3 Discussion

Let us survey our situation. We have introduced a new basis, the basis of
elementary excitations, {|R, Q) }g q, and rewritten the excitonic hamiltonian

H x in this new basis. We have shown that H x does not couple elementary
excitations of different center of mass momentum @Q, so that the resulting
excitonic problem can be solved independently for each Q, in analogy with
the way the electronic problem can be solved independently for each value of
the crystal momentum k. For each value of Q, we are reduced to studying
a “transfer” hamiltonian, H x(Q), in analogy with, say, the reduction of the
electronic problem to the study of the integral transfer matrices in the tight-
binding formalism.

These “transfer hamiltonians” can themselves be seen as tight-binding
hamiltonians on the lattice of excitations A. In our case of the linear BN
chain, for a given center of mass momentum Q, the corresponding “transfer
hamiltonian” is given by:

A

Hx(Q) = ZA <2A + 7722 + V(R)) R, QXR, Q|
+ Y Ter(Q)R.QXR.Q|

<R,R'>

where < -, > denotes here summation over nearest neighbors (in A), and
Tar (Q) = T/ + T}e'@®~R) is the effective hopping between nearest neigh-
bor excitations, which is complex in general. The associated tight-binding
problem is depicted in figure 3.3l As we already pointed out, the reulst-
ing equation are similar to the ones obtained by Wannier.[I7] We also note
a model of similar spirit obtained in [50] for single layer transition metal
dichalcogenides.

Further breaking down this effective hamiltonian, we have seen that the
kinetic hamiltonian Hy becomes a “standard” (periodic) tight-binding hamil-
tonian, describing the motion of a fictitious particle on the lattice A, while
the direct electron-hole interaction U acts as a external potential, providing
an R dependent contribution to the effective onsite energies that breaks the
translation symmetry. In fact, the problem can be regarded as that of an
impurity localized at the origin in the tight-binding lattice A.[16]

It is important to note that the potential, V(R), which is in practice
nothing but the real space screened electron-hole potential, is both attrac-
tive and decaying. This has an important computational consequence: to
study A x (Q) numerically, it is enough to include a finite number of elemen-
tary excitations |R, Q), stopping after a certain cutoff R in electron hole
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Figure 3.3: Effective tight-binding system associated to the “transfer” hamil-
tonian Hy(Q) in the basis of elementary excitations (partial view: the lat-
tice is infinite). Each site of the lattice of excitations A is associated to
a |R, Q) excitation state, which acts as an effective orbital for it. Color
depicts the direct electron-hole potential, which is diagonal within our ap-
proximations, and therefore acts as an onsite term (for clarity, the zero of

2
energies has been set to 2A + 17%, the constant kinetic contribution to the

onsite energies of all sites). Here a model potential of the form V(R) x +

is taken for illustration. Connecting lines represent the effective hoppings
Trw/(Q) = T/ + T’ 1),

separation. This cutoff is then a numerical convergence parameter['!] which
should be much larger than the typical Bohr radius of the excitonic states
under study. Since the Bohr radius of the states in a given excitonic series
typically increases as one goes up in energy, studying higher energy states
requires a higher cutoff.

Numerically, diagonalizing such a hamiltonian@ can a priori be done with
any computational tight-binding code (or even any diagonalization routine
in the simplest cases). It should be noted that H x(Q) is sparse, which
is computationally advantageous. For this work, we have mainly used the
Hiickel code of Sylvain Latil, as well as the pybinding Python package.[SZ]H

11 Although it behaves differently, it is the analogue of the Brillouin zone sampling (finite
number of “k-points”) used in reciprocal space methods.

12More generally, since the problem is analogous to an impurity problem, exact diago-
nalization and Green’s functions techniques are known to be very efficient. In this work,
we will mostly use diagonalization techniques, but see e.g. [5I] for the application of
Green’s function and recursion methods to the problem of computing one and two photon
absorption in hBN with the same type of model hamiltonian.

BThe pybinding package was also used to produce some of the figures of the effective
tight-binding problems.
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3.3 Excitonic properties

3.3.1 Model electron-hole potential

Before actually performing calculations, we require a model electron-hole
potential, i.e. a functional form for V(R). The simplest choice may be a
screened Coulomb potential:

2

V(R) = T (3.4)
where R = ||R|| and € would a a dielectric constant for the chain. However,
such dielectric constants are only well defined for three-dimensional bulk
systems: a peculiarity of the screened Coulomb potential in effective one
and two-dimensional systems is that it does not take the simple form of
equation , and thus no dielectric constant e existsE] This has important
consequences on the electron-hole interaction and the resulting excitons in
one dimensional and layered (2D) materials. We will discuss these potentials
and their consequences further when we come to the two-dimensional system
hBN. For the time being, we simply give an overview of a common 1D model
potential, which we shall use to proceed.

Let us thus consider one dimensional systems embedded in the physical
three-dimensional space, such as atomic chains in vacuum. Among others, a
possible model screened Coulomb potential for such systems is given by:[53]
5%1

62

V(R) = — 3.5
(R)= -2 (35)
where, again, R = ||R|| and 2z > 0 can be thought of as a one-dimensional

screening length:

—e—<1 — EO) when R < 2y

when R > zj
When R > z,, the (3D) space between the electron an the hole is mostly
free, so the screening from the one-dimensional system is negligible, and
the effective potential V' (R), becomes an unscreened Coulomb potential. In
contrast, when R < zj, we find that the potential is affine in R. This may be
pictured as follows: when R < 2y, the electron-hole distance is very small,
and the electron-hole interaction can be thought of as “contained” within the
one-dimensional chain, and therefore approximated by a “true” 1D system

14 Although one can formally define a space dependent dielectric screening €(R)).
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(by which we mean not embedded in the physical 3D space), in which the
Coulomb potential of an unscreened point charge is known to be linear in
R[F)55]

Often, when this effective potential is used, the screening length zy is
taken as a fitting parameter, and adjusted to reproduce the experimental
results. [54]

3.3.2 Optical activity
Momentum and oscillator strength

Since our ultimate goal is to obtain the optical properties of the system, we
would benefit from a convenient expression for the absorption spectra of a
system whose excitonic eigenstates are described in the basis of elementary
excitations. The relevant matrix elements are that of the (many body) mo-
mentum operator p: the strength of an optical transition from the ground
state |() to the excitonic state |¥U) = S rep Yr.q|R, Q) of center of mass
momentum Q is governed by the matrix elements (f|p|¥), which we now
shall endeavor to evaluate.

To this end, we shall briefly employ the formalism of second quantiza-
tion. For every basis atomic orbital |, n) (n € {B,N}), let G, denote the
corresponding annihilation operator. The momentum operator then reads:

f) = Z <M7 n|f)|lj’/a Il/> &L,ndu’,n’

Depending on the indices pu, i/, the operators dL,n&M’»n’ come in four types.

Most importantly for us, the operator dTB,ﬂ&N:“‘ can be recognized as the
operator that destroys an electron at m, i.e. creates a hole there, and creates
an electron at n. In other words, it is the creation operator for the localized
electron-hole pair |m,n): &E,n&N,m 0) = |m,n). We will now show that
terms of this form are the only ones which contribute to p |#). We first note
that their hermitian conjugates are the associated annihilation operators,
which therefore return 0 when acting on the ground state (which has no
excited pair to destroy). It then remains to discuss operators where p = p'.
Operators of the form &J[B,n&B,n/ also annihilate the ground state (since it

5 This peculiar feature of “true” 1D systems can be seen by considering a point charge
e in a 1D world, i.e. on the real line, at position z = 0. If we impose Gauss’ law in this 1D
world, then we may construct a 1D Gaussian surface, i.e. two points, which encloses the
charge, at, say, z = £r. Then, Gauss’ law yields for the electric field E(r) + E(—r) = e,
whence by symmetry, E(r) = e/2 is a constant. The electric potential, whose derivative
is the field, must therefore be affine (or, equivalently, linear up to a global energy shift).
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has no excited electron to destroy). Finally, operators of the form &E\,’nd]\/,n/

annihilate the ground state when n # n’ (by trying to create an electron in
states which are already occupied), and when n = n’ the diagonal matrix
elements (u, n|p|u,n) are zero, so these terms vanish as well.

Putting now everything together, recalling the expression of the momen-
tum matrix elements in the basis of localized atomic orbitals, leveraging the
translational symmetry of the system and recalling the definition of the ele-
mentary excitation states, we find:

X /e
ReA

where tg = (N,n%|H"|B,n% + R), the electronic hopping element from a
nitrogen orbital to a boron orbital at R away. From there, (§|p|¥) can be
obtained by scalar product:

VN
Dlp|¥) = _mi\h/_ > trUroR (3.6)
ReA

This formula is general, in the sense that it does not depend on our particular
choices of hopping structure (number of nearest neighbors taken into account,
etc.), nor on the specific geometry of the chain (it also holds for hBN).

Let us discuss this result. First, we note that only states with components
at Q = 0 can couple with light: we recover the usual result that only direct
excitons contribute to absorption. This is not surprising, since already in the
electronic case, we saw that the momentum operator only coupled valence
and conduction states of the same wavevectors (of which Q is the difference),
i.e. that only direct excitons could be excited optically (and a direct exciton
is just that: an excitonic state made of direct transitions).

More specifically to our model, we note that, as electronic hoppings, the
tr are expected to decrease sharply with R = ||R|, so that only the compo-
nents Wg o of short R contribute to the optical activity. In fact, in our de-
scription of the chain, only excitations corresponding to the nitrogen-boron
nearest neighbor vectors 7 = Zae, contribute to the optical matrix ele-
ments. This result is the tight-binding analogue of the usual Elliott theory
result that the oscillator strength of an exciton described in the hydrogenoid
/ Wannier model is proportional to the intensity of its envelope function at
the origin:[56, [16] here, this oscillator strength is controlled by the probability
amplitudes Wg ¢ associated to the “local” electron-hole excitations.
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Selection rules

When it comes to optical activity, the first question we may have about a
state, is whether it is bright or dark, i.e. whether the associated excitonic
transition is allowed or forbidden (respectively). In other words, we call
dark a state which does not generate any signal in absorption, and bright a
state which does, however faintly. In mathematical terms, the question is of
knowing whether, for a given state |¥), (0|p|¥) = 0 (|¥) is dark) or not (]¥)
is bright). Often, symmetry considerations may already provide an answer
to this question.

As an example, let us consider our linear BN chain. This one-dimensional
system exhibits inversion symmetry, i.e. the system is left invariant under the
transformation r — —r. So is the excitonic hamiltonian at Q = O.E Barring
accidental degeneracies, this entails that direct states are nondegenerate,
and must be either odd or even with respect to the origin. In other words, if
|[¥) = > Rrea Yr |R, 0), then we must have either:

VReA Ur=Ugr
in which case |¥) is even, or:
VReA Ur=-Ugr

in which case |¥) is odd.

A well know result for the optical response of systems with inversion sym-
metry is that only odd states can be bright: states which are even cannot
couple with light.[57] This can be formally checked by considering the par-
ity operator, 1" which implements inversion at the wavevector level. Its
eigenfunctions are the even and the odd states, with eigenvalues 1 and —1
respectively. For any state |®) of definite parity s = £1 under inversion,
we have:

(01p|®) = (01" IpI' 1|®) = —sq0 (D[D|P)
—— ——

M A
=(0] =-D =s5|®)

where we have used the fact that I, as a symmetry operator, is unitary,
that the ground state |()) is even under inversion, and that p is odd under

16 As long as the potential V(R) is even, but this is physically mandated by the sym-
metries of the system.

17Some authors use the symbol 15, but we use here I for inversion, which is the more
common group theoretical name and symbol, and to avoid a collision of notations with
the momentum operator.
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inversion[¥) We thus see that, if |®) is even (s = 1), (0|p|®) = — (D|p|®) =
0, and therefore |®) is dark. This result is general, and does not directly
depend on our specific model of the system, which is precious.

Such a result constitutes a selection rule: the symmetries of the system
dictate which optical transitions are disallowed. Of course, this does not
mean that a transition which is allowed by the selection rules (by which we
mean that no selection rule disallows it) actually has (@|p|®) # 0, but this
is often the case.

In particular, we must note the importance of the polarization of incoming
light. If we denote the associated polarization vector by e, then the optical
activity of an excitonic eigenstate |¥) is controlled by e - (f|p|®), so that
having (@|p|®) # 0 is not enough to actually absorb light: it is also required
that (D|p|®) is not perpendicular to the polarization.

While it is often tremendously helpful to know which excitons are dark,
this kind of symmetry analysis only tells us whether the oscillator strength
of a particular excitonic transition is zero. For excitons which actually do
contribute to the absorption, it does not yield information on the actual
intensity of the transition. This is the object of the next section.

Wavefunction dipole

Since only direct states may be bright in absorption, let us consider a direct
excitonic (eigen)state |¥) = Y gep Vr |R, 0)[F] Equation [3.6) behooves us to
discuss the quantity:

dy = ) trUrR (3.7)

ReA
as (D|p|¥) o< dy with a proportionality constant that does not depend on
|W). dg therefore controls the optical activity of the state |U), in the sense
that, if incoming light of polarization vector e is shined at the system, the
oscillator strength associated to the transition from the ground state |()) to
|W) verifies:
fo o le-dg|”

We shall call dy the wavefunction dipole, or, for short, the dipole of the state
|W). Equation [3.7|shows its analogy with an electric dipole moment, with the
quantities tg Vg (which have the dimension of energies) taking the role the
electric charges. We note that, while, in general, the Ug may be complex,

BIntuition for this fact can be found by thinking of the momentum operator as a first
order space derivative, and seeing that, upon reversal of the space coordinates, say ' =
—x, we have % = —%.

19We have dropped the Q index to lighten notations, with the understanding that we
are considering only direct states, i.e. Q = 0, as indirect states are dark in absorption.
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the excitonic hamiltonian at Q = 0 is real, so it does admit a basis of real
eigenvectors.

In the specific geometry of the linear chain, with our choice of hopping
structure, the wavefunction dipole is simply given by:

d\p = CLtJ_(\I/a — ‘If_a)em
so that for a state of definite parity under inversion sg = +1:
d\p = atl\IJa(l — 8@)836

we thus immediately recover the selection rules obtained previously: even
states (sy = 1) are dark. In addition, the selection rules related to the
polarization are immediately apparent, since the direction of dy is directly
available.

The projection of dy on e also provides us directly (up to multiplicative
factors) with the oscillator strength associated to |¥). Within our specific
model of the chain, the intensity of bright states is proportional to |\Ifa|2, or,
more physically, to the intensity of the excitonic wavefunction corresponding
to excitations where the hole and electron are nearest neighbors, as discussed
earlier.

3.3.3 Excitonic states and dispersion

As announced previously, our goal in this chapter is not to produce a detailed
study of the BN linear chain as a physical system, but rather to discuss it as a
toy model through which the excitonic tight binding model can be displayed,
and also as a point of comparison with two dimensional hBN. In this spirit,
we will therefore briefly discuss the excitonic states of the model chain and
their dispersion, but in order to avoid repeating ourselves, we postpone more
detailed study of these phenomena to our study of hBN.

Numerical diagonalization

For illustration, let us start by diagonalizing Hy numerically. This is done,
as usual, by diagonalizing Hx(Q) for all (in fact, a sufficiently dense grid
of) values of Q. While our model is not expected to remain precise at high
energies, we nevertheless compute and show all states to provide a more
complete qualitative overview. Using sample parameters, the resulting bands
are shown in figure 3.4} while the densities of some of the lowest bound states
are displayed in figure [3.5]
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Figure 3.4: Example excitonic band structure for the BN linear chain (solid
black lines), obtained by diagonalization of H x(Q) on a grid of 101 Q-points.
Parameters used were a = 1.5 A (C-C distance in the linear carbon chain),
T! = T} = 0.75 eV (fitted hBN values for a first-nearest neighbor model),
V(R) = _\me%zg? with 1D screening length zy = 1 A (arbitrary value). To
obtain the higher energy bands, a chain of 1500 R-sites was used, with pe-
riodic boundary conditions. The electronic gap, 2A (red dotted line) was
taken as the zero of the energy scale, so that we report binding energies.
The green (resp. orange) dashed solid lines describe the transition energy
envelope, i.e. the minimal (resp. maximal) independent particles transition

energies Ey(k,Q) = E.(k + Q) — E,(k) for each value of Q.
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Figure 3.5: Evolution of the intensities (the |Ug g|?) of the first four excitonic
eigenstates as Q changes from I' to X, represented on A. Intensities are
normalized separately for each state and each Q so that dark blue corresponds
to the maximal intensity and white corresponds to an intensity of zero. The
parameters are the same as in figure [3.4 Note that, at Q = X, states (1,2)
and (3,4) form two pairs of degenerate states. It can be seen that, when Q
approaches X, the states “localize” on excitation sites of a single given |R|.
This is due to the fact that hoppings between excitation sites vanish at X
with a first nearest neighbors parametrization.

Let us first comment on figure |3.4} it depicts an example model excitonic
band structure of the BN linear Chain.m There, we have specifically taken
a very large computation cell (i.e. included excitations of very large |R| in
order to also capture an approximation of states with positive binding energy
Ey = E — Eyq, > 0. More precisely, we have represented in figure , as a
dashed green line, the minimal (single particle) transition energy F,,;,(Q) =
ming (F.(k + Q) — E,(k)) for each value of Q. It corresponds to the lowest
eigenenergy of the kinetic hamiltonian Hyat a given Q: without electron-hole
interaction, no state is expected below this limit. Here, of course, we do see
such states: they are “bound” excitons, and appear as discrete bound states.
Above this limit, we apear to have a continuum of states.@ The energies of
the excitonic bands is effectively bounded by the maximal transition energy
at each Q (orange dashed line in figure , but this is a feature of the

20Periodic boundary conditions are usually not necessary, especially when studying
bound excitons, which is what we usually do. Likewise, we usually do not require that
many R-points for the study of low-lying bound excitons.

2Tn the computation of figure we have used a finite (but large) number of excitation
sites, so we can only expect as many bands. The “solid” black region is therefore made of
a dense concentration of bands.
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model, which contain only m-bands. In “reality”, other orbitals can give rise
to higher energy states. In fact, the simple approximations of the excitonic
tight-binding model typically start to fail when describing high energy states;
we compute them here only for illustration purposes.

An interesting phenomenon shown in figure deserves mention: at X,
all bands appear to become twice degenerate. This can be undestood through
the hopping structure of Hy. Indeed, the only coupling between excitation
sites are the effective first nearest neighbor hoppings between them, which,
within the first nearest neighbor approximation, is given by T r/(Q) =

T’(l + eiQ'(R/_R)). Note now that, for R, R’ first nearest neighbors in A,

we always have R’ — R = +2ae,, so that at the excitonic X point, i.e. at
Q = e, Trr’(Q) = 0. In other words, at X, the hoppings between basis
sites effectively vanish.

As a result, at X, the excitonic hamiltonian becomes@

Hx(X) = (2A +4T")1x + Ux

which is diagonal in the {|R, X)} g, basis. More precisely, assuming the po-
tential is symmetric and Uy is injective on {R € A / R - e, > 0}, its eigen-
values and eigensubspaces are given by:

E, =2A+4T + U,
Ep. = Span(|—z,X> : |Z,X>)

for all z € A with z-e, > 0.

This has interesting consequences: when following an excitonic band from
I' to X, the corresponding state will tend to localize as Q nears X, as can be
seen in figure The effect is particularly striking when considering states
which are rather extended at I'. It also shows that, at X, the excitonic bands
become pairwise degenerate. The existence of a Q point where all kinetic
nearest neighbour hoppings vanish appears to be a peculiarity of the chain:
this does not happen in single layer hBN. However, the phenomenon does
have a 2D analogue in the single layer: there, at the excitonic point M, the
excitonic hoppings in two out of three directions can be suppressed at once,
turning the system into a set of uncoupled linear chains. This is discussed in
section L5.3]

We should note, however, that this vanishing of the effective hoppings
at X in the chain hinges on the precise compensation of the 7y and 7). If
this electron-hole symmetry is broken, for example by the addition of second

22Here, the symbols 1x and Ux stand for the restriction of the corresponding operators
on the subspace corresponding to the wavevector Q = X.
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nearest neighbors, an effective hopping will remain (of tY"Y +¢25 in the case of
second nearest neighbors). Exchange interaction may also provide additional
couplings. Further, in the case of a “real” chain transitions to (or from) non
7 bands may occur at X (see e.g. [49] for an ab initio computation of the
BN chain band structure).

Strong potential approximation

In order to obtain analytical approximations in such tight-binding excitonic
problems, a useful tool is to go to the “strong potential limit”. We will
develop this idea further in section and so only provide the general
idea now. If the direct interaction U is taken to be very strong, then in a
first approximation, the two sites of lowest |R| (corresponding to the excita-
tions |—a, Q) and |+a, Q)) effectively decouple from the rest of the excitonic
lattice, and the excitonic hamiltonian reduces to:

H(@) 20 +4T" + U, T'(1+ ¢%Q2)

AT (14 eP2) 28 44T+ U,

in the {|—a, Q) , |+a, Q) } basis, where we have kept to first nearest neighbors
2
for simplicity and thus wriiten 77 = T, = T} = L > 0. The excitonic

2A
dispersion, in this limit, is then given by:
EL(Q) =2A+4T"+ U, +2T"cos (Q - a)

When Q = X + nle, with n € Z, the two eigenstates are degenerate.
Elsewhere, they are given up to a phase by:@

92(@) = 5 (¥ [ Q@+ [+2.0))

At excitonic T' (Q = 0), we thus have a bonding and antibonding pair, the
lowest bound of which is odd, while the other is even relative to the 1D
inversion about R = 0. The lowest bound state is therefore expected to be
bright, while the following one should be dark.

This approximate dispersion is plotted on figure [3.6, While the lowest
excitonic band is qualitatively reproduced, the upper one, associated to |V, ),
presents a qualitatively wrong dispersion at I', where the curvature of the
band is inverted (although the full state is indeed even, as expected). In a

23Note that, in this presentation, the band corresponding to + = — is not always the
lowest band outside of the first Brillouin zone.
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—— Full TB result
---- Strong potential limit

Binding Energy (eV)

X r X
Q

Figure 3.6: Example dispersion for the lowest bound states in the linear BN
chain. Parameters are the same as figure [3.4] but only the six lowest bound
states are depicted, and only 100 excitation sites were used. Solid black lines
correspond to the full tight-binding result, and are virtually identical to the
corresponding bands of figure |3.4] Dashed red lines correspond to the strong
potential approximation for the two lowest bound states.

sense, this is to be expected, since figure |3.5| shows that this state has non-
negligible intensity on excitations other than |—a, Q) and |+a, Q). Higher
energy states, in general, tend to be more extended, so that the strong poten-
tial approximation is mostly useful for the lowest bound states. Strikingly,
however, the approximation appears very good for both bands in the neigh-
borhood of the excitonic X point: this is due to the fact that, at X, hoppings
between excitation sites vanish, and so the two excitation sites of lowest |R)|
do decouple from the rest of the lattice, making the strong potential limit
exact.



Chapter 4

Excitonic tight binding in
single layer hBIN

We now come to single layer hBN.

4.1 Introduction

The contents of this chapter are mostly derived from [47], as well as [48] for
the discussion of excitons dispersion.

4.2 Electronic structure and relevant lattices

We start this section with good news: almost everything we have done to
establish the electronic and excitonic hamiltonians in the case of the linear
BN chain can be directly applied to the case of single-layer hBN up to a
change in geometry and the corresponding substitutions. The key similarity
between the two systems is the fact that both systems have only one “hole”
(Nitrogen) orbital and one “electron” (Boron) orbital in their unit cell.

4.2.1 Lattices and notations

We consider a freestanding sheet of single layer hexagonal Boron Nitride
(hBN). Its unit cell contains two atoms: one Nitrogen atom and one Boron
atom. We call 7 the nearest neighbor B — N distance. Apart from the
replacement of carbon atoms by boron and nitrogen, our system is therefore
identical to graphene from the point of view of its lattice. See e.g. [39] for
an introductory presentation of the geometry and tight-binding description
of graphene.

67
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Let us denote by e, and e, two cartesian unit vectors in-plane. The
underlying Bravais lattice of the system is triangular, and given by R =
{na; + mas / n,m € Z}, where the direct lattice vectors are conventionally
given as:

a; = acos(m/3)e, + asin (7/3)e,

a; = acos(n/3)e, —asin (7/3)e,

where a = /37 is the lattice parameter. Again, we denote by 1’12 the position
of the unit cell atomsﬂ where p runs over the atomic types (u = B or N):

0:7 —_

ng 3a1—{—3a2
n’ —la +2a
N T3 1 3 2

and we introduce the sublattices A, as:
A, = ng + R

so that the sites in A, are exactly those which are translationnally equivalent
to the unit cell site ng, and the set of sites of the full crystal lattice is given
by U,A,. This lattice structure is depicted in figure .

The associated reciprocal lattice is also triangular, and is given by G =
{uby +vby / u,v € Z}, where:

by, = bcos (7/6)e, + bsin (7/6)e,
by = bcos (7/6)e, — bsin (7/6)e,

with where b = ||by|| = ||ba]| = % are the reciprocal lattice basis vectors.
This reciprocal lattice is represented in figure [4.2l The two basis vectors,
b; and by, subtend a parallelogram Ug that is a possible choice of primitive
unit cell for reciprocal space. Here, we prefer working with the first Brillouin
zone, which is an hexagon obtained from the Wigner-Seitz construction, and
depicted in figure [£.3] The advantage of this representation is that it is geo-
metrically invariant under the symmetries of the system, and it is therefore
more convenient to use when discussing wavefunction symmetries.

1Occasionally, we will write mQ; for the position of the unit cell Nitrogen site, for
consistency with our practice of using the letter m for the positions of hole type sites (i.e.
Nitrogen sites) and n for electron type sites (i.e. Boron sites) when discussing excitonic
problems. We keep the notation ng to avoid having to repeat general definitions twice.
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Figure 4.1: Direct lattice structure of single layer hBN: A sites are occupied
by Nitrogen atoms while B sites are occupied by Boron atoms. The parallel-
ogram subtended by the basis lattice vectors a; and ay is the real space unit
cell. 71, 79 and T3 are the nearest neighbor Nitrogen-Boron vectors, which
will play an imporant role in our tight-binding description of the system.
The scale of the cartesian basis vectors e, and e, is arbitrary.

The conventional high symmetry points are given by:

r=0
1
M = —b,
9
1 1
K= -b;+-b
gP1t b

and when representing quantities on a path in reciprocal space, we will use
the path ' - M — K — T, as can be seen in figure 4.3l The so-called
K points will be important later, and deserve a bit of our time now. There
are six corners of the hexagonal first Brillouin zone, but not all of them are
equivalent, because they are not all linked together by a reciprocal lattice
vector. In fact, they come in two equivalence classes: the K and K’ points.
This can be more easily seen in the primitive cell Ug: it contains exactly
one K and one K’ point (figure . The situation is the same in the first
Brillouin zone: the hexagon has six corners, which alternate between K and
K’ points as one rotates around the hexagon. There are thus three corners
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Figure 4.2: Reciprocal lattice structure of single layer hBN. The shaded
region is the primitive unit cell 4g. The I',, = ub; + vby are the points
of the reciprocal lattice G; their surrounding hexagons are the corresponding
Voronoi tessellation, so that the hexagon centered on I'y  is the first Brillouin
zone. The latter is depicted in more details in figure [4.3|

of each kind, and since each corner is shared between three hexagons, we
recover the fact that our first Brillouin zone contains effectively one K and
one K’ point. It is immediately apparent, in the first Brillouin zone, that for
each K point, the opposite point, —K, is a K’ point. These (K, K') pairs
are therefore images of one another by time reversal symmetry.

Let us finally specify the space of states of interest: we shall restrict
ourselves to the p, orbitals of Boron of Nitrogen, which are responsible for
most of the low energy optical properties of the system, as the ones of carbon
are in graphene.[39] We thus denote by |B,n) and |N,m) these localized
boron and nitrogen p, atomic orbitals, where n € Ag and m € Ay denote
the atomic positions. From this basis of localized atomic orbitals, that we
assume orthonormal, we define the associated tight-binding basis functions:

k) = jﬁ S ek |, m)

neA,

where N is the number of unit cells in the system and k is the wavevector.
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Figure 4.3: First Brillouin zone of single layer hBN and remarkable high-
symmetry points. The I' point corresponds to the origin of the reciprocal
lattice (Tp in figure . The dashed path is the high symmetry path,
which encloses the so-called irreducible wedge. Arrows on the path indicate
the chosen orientation for the representation of reciprocal space quantities
(band structures, etc.).

4.2.2 Electronic hamiltonian

We describe again the electronic structure of the system using a tight-binding
hamiltonian Héel) in second nearest neighbors, which, in the basis of localized
atomic orbitals, is given by:

A if n=n’
(B,n|H\"|B,n') = tPB if n and n’ are 2n.n.
0 else

—-A  ifm=m'
(N, m|A|N,m') = tNif m and m’ are 2n.n.

0 else

t; if n and m are 1n.n.

(B,n|H{"|N,m) = {
0 else

where A, ty, tYN and t7P are the “kinetic” parameters. As claimed, this

hamiltonian is exactly the same as the one for the chain, up to the change in

underlying lattice. Note as well that it reduces to the familiar tight-binding

hamiltonian for graphene[39] in the limit A — 0 and Y'Y = t#5. Moving to

the basis of the tight-binding basis functions, we obtain the integral transfer
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matrices (similar to the ones reported in [58] with a different tight-binding
convention):

H(k) — A + th’YQ(k) tJ.'Yl (k)
tim(k)” —A 4 iV ya(k)
in the basis {|B, k), |N,k)}, with:
nk) = e T

(k) =Y e = (k)" -3

where the 7 are the in-plane first nearest neighbors nitrogen to boron vec-
torsfd

T =Te,
1 V3
Ty = T(—Zex - 2ey>
1 V3
T3 = 7'(261; - 2ey>

and the p are the second nearest neighbor vectors, which are conveniently
given by:

Hij =T — T
for ¢ # j. Here, 7, and 7, correspond respectively to the geometric terms for
the first and second nearest neighbours’| and we see that we have obtained
the same integral transfer matrices as in the linear chain case, up to the
substitutions:

fi—=m
fo—= 7

and the change of first Brillouin zone. Note, in passing, that v; can take
complex values, while its chain analogue, f;, was fully real: this is because
the set of nearest N-B neighbor vectors (the 7s) in hBN is not invariant under
inversion, whereas it is in the chain. A contrario, v, takes real values because
the sets of N-N and B-B nearest neighbor vectors (in both cases, the us) are
invariant under inversion.

2The labels are chosen such that 7, = Tey and To41 = C3T, where Cs is the (in plane,
anticlockwise) vector rotation of angle 27/3.
3Expectedly, they are exactly the same as their analogues in graphene, see [39].
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i >

r M K r

Figure 4.4: Plot of |y |* (solid blue line). Values at the high-symmetry
points are given in equation . Note how |y;|, which characterizes the
coupling between the Boron and Nitrogen sublattices, remains small in the
neighborhood of K (where, in particular, it vanishes).

In analogy with f;, 71 describes, in reciprocal space, the coupling between
the two sublattices (up to a factor of ¢, ). It is therefore useful to analyse its
variations. Because it is complex, we study instead |71]2 which we represent
in figure . Conveniently, this doubles as a study of y5(k) = |1 (k)|* — 3.

Its values at the high symmetry points are given by:
M@F=9 5 mMF=1 ; nE)=0 (4.1)

so that the couplings between the the sublattices vanish at the K/K’ points,
in analogy with the situation at X in the chain.
The band energies are obtained by diagonalization of H (k):

97 + 1Y AT
Pl = By 4 | (A+ ) + ol (42)

where the plus sign corresponds to the conduction band and the minus sign
to the valence band. The direct transition energies, in turn, are given by:

BB NN
tL — tL

SE(K) = E (k) — E_(k) = Q\I (A 4

72<k>) 2P (43)
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and so we note that the direct transition energies (which are the quantities
that will actually enter the Bethe-Salpeter equation at Q = 0 with our
approximations and essentially govern absorption on the kinetic side) only
depend on t78 —t)'N and reduce to the first nearest neighbors (t72 =tV =
0) expression if this difference vanishes. Since 77 and ¢}V are expected to be
close anyway, this means that remaining at the level of first nearest neighbors
will often be a good approximation as long as we are interested only in direct
excitationsﬁ in this chapter, we will thus often keep to this approximation
as it favorably reduces the number of free parameters of the model at little
cost in accuracy.

We note in particular that, within the first nearest neighbors approxima-
tion, the transition energy is bounded from below by 2A, and this bound is
reached whenever 7;(k) = 0, i.e. exactly at the high symmetry K and K’
points: we recover the known ab initio result that the system’s gap is direct,
and realized at the K and K’ points.

Within the first nearest neighbors approximation, the band states are
likewise given by:

.00) = 5[ 1810 + 09 [V.10 ]
(4.4)
1.09) = 5[~ a0 1810 + N 1)

where:

a(k) = t (k) :
A+ /A2 4+ 2|7 (k)]

and N is a normalization constant such that [N (k)[> = 1 + |a(k)|*. This
is the chain result, with f; < 7, and the same commentary applies. In
particular, close to K, where 7, vanishes, a(k) ~ £vi(k) and there the
conduction (resp. valence) bands are expected to be well approximation by
Boron (resp. Nitrogen) tight-binding basis functions to zeroth orderﬂ

Again, we note that the band states depend on the second nearest neigh-
bor hoppings t72 and )"V only through their difference t#Z —t" so that the
first nearest neighbors result is recovered if t75 =tV Indeed, if t}8 = t)'V,
the integral transfer matrix can be rewritten:

H(k) = t779 (k)L + <m1A(k)* Mle(k)>

4But this ceases to be the case when considering indirect excitations, as we will see
later.

5The given approximation for a being the first order correction to the states when the
non-onsite hoppings are re-introduced as a perturbation.
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Figure 4.5: Figure reproduced from [47]. Ab initio band structure for single
layer hBN, along with the various tight-binding fits reported in table [4.1]
Left: first nearest-neighbor fits. Right: second-nearest neighbors fit. Solid
lines correspond to the regons which were included in the fitting procedure,
dashed-lines are their continuation on the rst of the high-symmetry wedge.

where [ is the 2 X 2 identity matrix: the action of second nearest neighbors
is therefore only a global (but k dependent) energy shift, which therefore has
no influence on the direct transition energies or the eigenstates.

4.2.3 Electronic band structure

To estimate the value of the kinetic parameters, we can fit the band energies
provided by equation to the ab initio band structure of a free floating
hBN single-layer. We do so on a band structure computed within the GoW,
approximation by F. Paleari:[47] a number of relevant fits are depicted in
figure [1.5 The corresponding parameters are reported in table [4.1]

The quality of the fit is better for the valence band than for the con-
duction band, which is a common feature of tight-binding models. This can
usually be ascribed to the fact that conduction states are more delocalized.
Two further difficulties are present here. First, we notice that the conduction
band is particularly flat in the optically active MK region, at variance with
the behavior of the valence band. Such an asymmetry is difficult to reproduce
in tight-binding, because two-bands (orthogonal) first nearest neighbor tight
binding models typically have symmetric bandsﬁ In our case, if we keep a

In 2D, two bands E.(k) and E, (k) are symmetric (with respect to a plane of constant
energy) if there exists a constant o such that E.(k) — o = ¢ — E,(k), i.e. if and only
if E.(k) + E,(k) = C*'. However, the band energies are the eigenvalues of the integral
transfer matrix H(k), and thus in the 2 x 2 case, E.(k) + F,(k) = Tr(H (k)). Therefore,
as long as there are no hoppings between atoms of the same species (which would yield
k-dependent diagonal elements in H (k)), the bands are symmetric.



76 CHAPTER 4. SINGLE LAYER HBN

Fit A ty th5 Y
1nn global 3.625 -3.0 0 0
1nn local 3.625 —2.30 0 0
2nn global 3.625 —-3.0 —0.1 —0.1
2nn local 3.625 —2.30 —0.1 —0.1

Table 4.1: Kinetic parameters found through various direct fits of the hBN
band structure by equation[d.2] Energies are given in electron-Volts (eV). The
value of A has been fixed to reproduce the band gap. “Global” fits correspond
to a fit of the full 7 bands, disregarding the nearly free electron states which
occur near I', while “local” fits are performed along the MK line, from the
region of which most of the contributions to the excitonic wavefunctions
orginate. Second nearest neighbor (2nn) fits have been performed with the
simplifying constraint t#5 = ¢tV

first nearest neighbor description, our system displays electron-hole symme-
try, which is not prestent in the ab initio band structure. This difficulty can
be somewhat mitigated by the inclusion of second nearest neighbors, which
breaks this symmetry. This asymmetry will play an important role when
discussing indirect excitonic effects, but as we have seen above, its effects are
relatively minor as long as we restrict ourselves to Q = 0.

A further issue comes from the parabolic conduction bands near I', which
are not at all captured by the tight-binding description. The states responsi-
ble for these are known as nearly free electron-states, highly delocalized states
extending above and below the two-dimensional layer.[59] Consequently, they
are very difficult to describe through linear combinations of atomic orbitals,
and projections of the ab initio states confirm that they have a very small
overlap with the atomic p, orbitals, and therefore cannot be captured in our
model. However, due to their extremely delocalized nature, these states are
expected to couple only very weakly to the localized o or 7 valence states,
and should therefore not contribute significantly to absorption.

We have claimed several times that BN systems, because of their large
gaps, tend to have conduction bands made almost purely of Boron orbitals,
and valence bands made almost purely of Nitrogen orbitals. Since we now
have explicit values for the kinetic parameters for a realistic system, we are
in a position to quantify that claim. To this end, we depict in figure 4.6
the (modulus squared of the) projections of the band states onto the tight-
binding basis functions for Nitrogen and Boron, which can be read from
equation It can be seen that, in the vicinity of the optically active MK
region, the valence (resp. conduction) band is composed at more than 90%
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of Nitrogen (resp. Boron) orbitals, up to a maximum of 100% at the gap,
in K/K', where the states are pure because the coupling between the two
lattices, ¢, v1(k) vanishes. The approximation is therefore very good in the
MK region. It may in fact even be argued that it remains reasonable in the
rest of the Brillouin zone, but care must be taken that the structure of the
conduction band depicted by ab initio calculations there is more complex
than the tight-binding one.

1.00F (B, k|pc(k))?
== (N, k|@y(K))|?

0.95F

0.90

0.85

Band composition

0.80

0.75

Figure 4.6: Compositions of the conduction and valence bands of single layer
hBN in terms of Boron and Nitrogen tight-binding functions (respectively).
Since the band wavefunctions are two-component vectors for a given k, we
have only plotted one component for each, the other being obtained by its
complement to one, e.g. [(N, k|p.(k))|* = 1 — |(B, k|p.(k))|*. Kinetic pa-
rameters were taken from the first nearest neighbors “local 1nn” fit (but

note that the result depends only on the second nearest neighbor hoppings
if 175 # '),

4.2.4 Optical response

As we have noted in previous chapters, the absorption spectrum of the system
at the independent-particle level is given by:

(B) = (2”’”“) S [ e.Kle - plo. ) PS(E(K) - E() —E)  (4.5)

meE k,v,c

where the variable ¥ = hw describes the energy of the incoming photons and
e is their polarization vector. Armed with the tight-binding band states and
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the expressions for the momentum matrix elements derived in the previous
chapters, we can compute this quantity numerically.

Two approximations of interest are also available. The first is to assume
that momentum matrix elements are approximately constant over the Bril-
louin zone, which leads to the approximation that the absorption spectrum
is proportional to the joint density of states divided by the squared photon
energy.

The other approximation is the one discussed earlier, in which we assume
that the valence (resp. conduction) states are well approximated by Nitrogen
(resp. Boron) tight-binding basis functions. We will discuss this approxima-
tion in the case of hBN in details in [4.3.1] but for now, it is enough to know
that it amounts here to:

¢, k) =~ |B,k)
v, k) ~ [N, k)

t2 tQ
E.(K) — E,(K) ~ Bo(k) = 22 + 35 1 (AL s th>72(k)

from which follows the simple result:

Me

k|plv, k) ~
(¢, k|plv, k) -

t1 Vir (k)
The resulting spectra are plotted in figure [4.7, where for simplicity and con-
sidering the arguments given above, we have restricted ourselves to first near-
est neighbors. The most salient feature of these spectra is a van-Hove singu-
larity, situated approximately at E,g = 2A + %, which is the approximate
transition energy at point M, Fy(M), and comes about because v, has a
critical point at M.

We should note, of course, that this single particle spectrum cannot,
by itself, present an accurate representation of the optical properties of the
system. Excitonic effects significantly modify the optical response of hBN.[60]

4.3 Excitonic Hamiltonian

Once again, we start this section with the good news that, apart from a
change of lattice and Brillouin zone, everything proceeds as in the case of
the linear chain, up to a few substitutions which we will outline. We shall
therefore remain brief whenever going through procedures that were already
treated in details in the case of the chain.
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Figure 4.7: Single particle absorption spectra of single layer hBN within
various tight-binding approximations. Solid blue line: spectrum computed
using the joint density of states approximation with the “exact” tight-binding
band energies. Dashed orange line: same, but with the approximated band
energies. Dotted green line: sepctrum computed by calculating explicitely
the momentum matrix elements, as indicated in the text. Vertical dashed
line: approximate position of the van-Hove singularity at E,z = 2A + %.

The presented spectra are normalized so that they enclose the same area.
Parameters used: A = 3.625 eV, t;, = —2.33¢V, t)'VN =P = 0.
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4.3.1 Kinetic hamiltonian

Our first task will be to obtain effective hamiltonians for the electrons and
the holes. This is done by treating the (non-onsite) hoppings as perturbation
of the onsite terms, and, up to second order, we obtain, in the basis of atomic
orbitals:

A—i—n% ifn=n’

(B,n|H.|B,n') = % +¢#P  if n and n’ are In.n. in Ap
0 else
A+n  ifm=m
— (N, m|H,|N,m’) = % —t"V if m and m’ are 1n.n. in Ay
0 else

with n = 3. This is the same result as in the chain case, up to a change of
underlying lattices and the geometric factor n, which counts the number of
first nearest neighbors of an N or B atom, changing from 2 in the linear chain
to 3 in the hexagonal single layer. It is convenient at this point to introduce

2
the notations 7 = “+ as shorthand, and T, = L — V'V and 7! = T + 5P for
the effective hole and electron hoppings (respectively). These hamiltonians
can be expressed in the basis of tight-binding basis functions, in which they

are diagonal, and yield the approximate band energies:
t2
E.(k) = A+ il%(k)\2 + 7775 (k)
t2
Eu(k) = —| A+ () + (k)

By their difference, we can likewise construct the direct transition energies:
Eo(k) = 2A + 3T + (T}, + T) (k) (4.6)

which, as stated above, is the crucial kinetic quantity that will enter the
direct Bethe-Salpeter equation. They are plotted and compared in figure
[4.§ with reference ab initio and “exact” tight-binding results, as well as the
transition energies computed from applying the effective mass approxima-
tion to both (tight-binding) bands, which would enter a hydrogenoid model.
Even remaining at the level of first nearest neighbors, the quality of the per-
turbation expansion can be seen to be very good. In the neighborhood of
the optically active MK region, it matches closely the “exact” tight-binding
result, which itself is in good agreement with the GyWj calculation. A con-
trario, the effective mass approximation, while expectedly very good near the
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gap at K, quickly decays in accuracy and fails to reproduce the transition
energies on the MK segment.
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Figure 4.8: Direct transition energies for single-layer hBN, at various levels
of approximation: ab initio GoWj calculation by F. Paleari (solid line with
markers), tight-binding (solid line), second order perturbation expansion of
the TB result (dashed line), and effective mass approximation (dotted line).
Kinetic parameters were taken from the first nearest neighbors “local 1nn”
fit (but note that the result depends only on the second nearest neighbor
hoppings if tf7 # t{"V). Note the low energy transitions near I' in the GoWj
results: they are transitions from the o valence sates to the (conduction)
nearly free electron states, which are not included in the tight-binding model
(see main text).

The expressions of H, and H, found above allow us to proceed to the
kinetic hamiltonian Hy, = H, ® 1. — 1, ® H, in the basis of elementary
excitations |R, Q) by means of direct calculation, i.e. by directly introducing
the elementary excitation states asﬂ

R, Q) = > 9" mR) (4.7)

\/_ meAy

where the pair state |[m, R) is defined through:
jm, R) = [N, m) @ |B,m +R)

Tt is not particularly illuminating here to explicitly go through the lattice of pairs in
the case of hBN, because its dimension is twice that of the underlying crystal lattice, i.e.
four. It therefore does not quite fit on the page.
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and where the R are the vectors of the lattice of excitations, defined as usual
through:
A:AB—m(])V:R+(n%—m?V)
—_—————
T

which is here nothing but a triangular lattice (R) offset by a nearest neighbor
N — B vector (7). Again, the result is that of the chain, with n = 3:

2A + 3T ifR=R’
(R,Q|H)|R, Q) = dqq { T/ + T}e'@®-R) if R R’ are Inn. in A
0 otherwise

(4.8)
We depict the associated tight-binding problem on the lattice of excitations
in figure 4.9,

4.3.2 Direct electron-hole potential: Rytova-Keldysh
potential

By the same reasoning as in the chain case, we obtain that the direct electron-
hole potential is, to a first approximation, diagonal in the basis of pairs, and
depends only on the relative coordinate R:

<1’I1, R|U|m/a R,> = 5m,m’6R,R’ Ur

from which it follows that it is also diagonal in the basis of elementary exci-
tations:

(R,QIUIR’. Q) = 0q,q0r,r'Ur

The main difficulty here is therefore not so much to perform the change
of basis, but to actually determine the matrix elements Ug, themselves given
by the semiclassical expression:

Ur ~ W (n},nf + R) = V(R)

We therefore need to evaluate the screened Coulomb interaction W in our
system, or, rather, provide a model V(R) for it. Once again, an expression

of the form: .

R
is not adequate for a low-dimensional (1 or 2 D) materials. To see why in the

two-dimensional case, let us introduce a model system. Consider a thin slab
of thickness d and of (bulk) dielectric constant €, representing the monolayer

V(R) x
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Figure 4.9: Lattice of excitations and associated excitonic tight-binding prob-
lem for single layer hBN at Q = 0. At Q # 0, hoppings become direction
dependent, as per equation [4.8] The color scale denotes the onsites energies,
with the zero of energies being set to the constant 2A+ 37" (so that the onsite
energies are just the potential, V(R), taken here to be the Rytova-Keldysh
potential with polarizability radius o = 10 A - see section . The gray
square denotes the origin (for the relative coordinate R).

2D material. We “sandwitch” this slab between two semi-infinite dielectric
media of lower dielectric constants €; and €,, representing the environment
(a substrate, vacuum, etc.). If the thickness of the slab is vanishingly small
(d — 0), i.e. in the strict 2D limit, then the (electrostatic) interaction
potential between two charges ¢; and ¢, within the slab and separated by a

distance R is given by @L m
To

where k = 942 and ry = < with an effective layer thickness d is a material
parameter which describes the polarizability of the two dimensional slab, [61]
Y} is the Bessel function of the second kind of order zero, and Hy is the Struve
function of order zero. This is the celebrated Rytova-Keldysh potential,[19,

kR

To

_ 1492

VRK(R) - 27"0
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20] which has yielded great success in reproducing the typically non Rydberg
excitonic series of two dimensional materials.[21] 22] For a freestanding layer,
the surrounding media is vacuum, and €; = ¢ = 1, so that x = 1. In that
case, an elegant and purely two-dimensional derivation of the above potential
has been provided in [61], along with a remarkably precise approximation in
terms of elementary functions.

The asymptotic behaviors of this potential are revealing. It displays a
natural length scale, py = ™, which we call effective polarizability radius (we
reserve the expression “polarizability radius” for ro, which a priori depends
only on the 2D material, and not its surroundings). It can be shown that:[61]

o If R < pp, then the potential has a logarithmic behavior typical of
purely two dimensional systems:

Vak(R) ~ — L2 [m <2R> + ’y]

Kpo
where v ~ 0.577 is the Euler-Mascheroni constant.

o If R > py, then the screening of the two dimensional layer is inefficient,
and the potential behaves as a Coulomb potential screened by an ef-
fective dielectric constant x associated with the surrounding media:

) = 12

In particular, for a freestanding layer, x = 1 and there is thus no
screening at long distances.

An intuitive understanding of the situation, at least for the case of a free-
standing layer, can be developed as follows:[22] if the two point charges are
close together, most of the field lines associated to the interaction are con-
tained within the layer, and so the screening is effectively two-dimensional,
and therefore logarithmic. However, in the limit where the two charges are
far apart, most of the field lines are outside of the layer, in vacuum, and
therefore the associated dielectric screening becomes negligible so that the
potential behaves as an unscreened Coulomb potential.

Considering the above, we therefore turn to the Rytova-Keldysh potential
to model the direct electron-hole interaction in our system of freestanding
hBN;, i.e. we set:

Ur = Ve (|[R]))

for each R € A. For reference, we present in figure [4.10| a plot of the Rytova-
Keldysh potential for a freestanding layer (k = 1) with o = 10 A. While we
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could have chosen to use py as a unit of length, we chose here this particular
value of ry because it will turn out to provide the best fit to the direct ab
initio binding energies using the present excitonic tight-binding model (see
below).

(eV)

Potential V(R)

—— Rytova-Keldysh
=== Unscreened Coulomb
----- Logarithmic

5 10 15 20 25 30
Hole-Electron separation R (4)

Figure 4.10: The Rytova-Keldysh potential and its asymptotic regimes, for
ro = 10 A. The 1% shell corresponds to the shortest possible value for R in
A, i.e. the first nearest neighbor B — N distance, 7 ~ 1.73 A.

4.3.3 Exchange interaction

We now move to the computation of the exchange part of the electron-hole
interaction .JJ. We will follow a route essentially similar to the one discussed
in [48] (see also references therein). As a remark, the approximate expression
for the exchange interaction developed in this section will vanish for direct
(Q = 0) states, which will be the focus of section , but it will be crucial
in reproducing the correct dispersion for some indirect (Q # 0) states, as
discussed in section 4.5

Basis of pairs

We start from the basis of pairs, i.e. the {jm,R)} .\ gen, for which our
usual definition is:

m,R) = |N,m) ® |B,m +R)
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The exchange interaction can then be computed directly, noting that:

(1, Rl Jlms, R} = 2 [ 107 = (m1 + Ra))e(r — (m + Ro))
v(r — 1), (r — my)l(r' — my)drdr’

where v(r —1’) = is the bare Coulomb potential, and the ¢. (resp. ¢,)

r—r/
are the localized e"lect‘ron (resp. hole) wavefunctions in position represen-
tation. It now appears that, if we keep our zeroth-order approximation of
these functions as Boron (resp. Nitrogen) atomic orbitals, and proceed by
retaining only terms of matching center (i.e. the same approximations we
used to obtain the direct part of the electron-hole interaction), we will have
a problem. Indeed, because the hole sublattice Ay and the electron sublat-
tice Ap are disjoint, the integral above contains, at zeroth-order, no terms
of matching centers in the same integration variable, and therefore applying
the usual approximation of retaining only these terms, evaluates to zero.

This issue is lifted by taking into account the first order corrections to the
localized electron and hole states, which effectively amounts to computing
approximate Wannier functions. For all n € Ag and m € Ay, they are given
to first order in & by: [47]

pelr — ) ~ gp(r —m) + izww— (n - 7))

Yo(r —m) = py(r—m) — 2A2:<p31‘—(r11+7'))

in position representation, where the sum over 7 runs over the Nitrogen to
Boron first nearest neighbor vectors, the ¢p (resp. ¢x) are Boron (resp.
Nitrogen) atomic orbitals (i.e. the aforementionned zeroth-order localized
electron and hole states). In effect, instead of atomic orbitals, we now have
localized electron (resp. hole) wavefunctions, which are still centered on the
Boron (resp. Nitrogen) lattice sites, but also have a significant amplitude on
their nearest neighbor sites in the Nitrogen (resp. Boron) sublattice.

With this, the calculation can proceed. Retaining only terms with atomic
orbitals of matching centers and keeping to second order in t—L (the zeroth
and first order terms vanish), we find:

. t;\?
<m17 R1|J|m27 R2> = (22) Z 5R177'15R277'2
T1,T2

[Lw(my, my) + Loe(ny,n9) — Ipe(ny,n2) — Ie(my, ny)] (4.9)

8Note that in [47], the Nitrogen-Boron hopping was denoted by —t, where here we have
t, instead, leading to a sign change compared to this reference.
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where we have introduced the notation n; = p, + R; for the electron coor-
dinate, the sums on 7 and 75 run over the Nitrogen to Boron first nearest
neighbor vectors, and:

I, (n,m) = / ‘gozt(r — n)‘Qv(r —1')|p%(x — m)‘2drdr’

where p,v = v or ¢ and the ¢ (resp. %) are the Boron (resp. Nitro-
gen) atomic orbitals (respectively ¢p and ¢y from above, relabeled for
notational convenience). It is worth noting that in equation the sum
> ri 12 OR1 71 ORy,7[- - -] has nine terms in general, but that, if R; and Ry are
Nitrogen-Boron first nearest neighbor vectors (i.e. one of the three 7), only
one of these terms is nonzero, and the expression vanishes otherwise.

Equation has an immediate physical meaning: the terms [,,(mj, my)
and I..(nj,ny), which are repulsive, correspond respectively to the hole-hole
and the electron-electron Coulomb interactions between the two pairs, while
the attractive terms —I,.(m;,ny) and —I,.(mo,ny) correspond to a part
the electron-hole interaction between the two pairs (loosely speaking, the
electron-hole interactions “inside” each pair is “contained” in the direct in-
teraction term). We note that, within our approximations, exchange is only
important between the “shortest” electron-hole pairs, i.e. the pairs such that
the electron and the hole are first nearest neighbors. We present a schematic
depiction of these exchange electron-hole interactions alongside the direct
interaction in the basis of pairs in figure [4.11}

Since the atomic wavefunctions gpzt are strongly localized, one may naively
approximate the [, (n, m) as:

2¢?
I,(nm)~vn—-—m)~ —— (4.10)

~ n—m)

in analogy with what we have done for the direct interaction. However, this
expression diverges when n = m, which can happen for the repulsive terms.

Basis of elementary excitations

Nevertheless, the simple expression above (equations and can lead
us to the matrix elements in the basis of elementary excitations as they are
given in [48]. To see this, we proceed as usual by making use of the definition
of the elementary excitations in terms of the localized pair states (equation
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Figure 4.11: Schematic depiction of the electron-hole interaction(s) in the
basis of pairs, between a pair |mj,n;) and a pair |my, ny) (blue squares
figure holes while red disks figure electrons). Straight lines represent the
I,,,(n,m) components of the exchange interaction (J), which are attractive
when p # v (purple lines) and repulsive otherwise (orange lines). Wiggly
lines represent the direct electron-hole interaction (U ). These terms are not
always nonzero: in our approximations, exchange is only important between
the “shortest” electron hole pairs, i.e. when R; and Ry are N — B first
nearest neighbors, while the direct interaction is diagonal, so that it is only
important when m; = ms, and n; = ny, but it has long range in the hole-
electron separation, R.

, and note that:ﬂ

A 1 N N
<R1,Q|J|R2,Q,>:N S eI Am (m Ry |J|m’, Ry)

mm’cAN

t 2
—2¢(15) S X dnumdnan[o(0) + o(Ra — Ry)

—0(Ry) — o(=Ry)]

where we used the fact that (m, R;|J|m’, R,) depends only on m and m’
through p = m’ — m (from which we also obtained that J conserves Q) and
we have defined:

o(z) =}

pER

e_ZQp

p + 2|

90ne may be worried that the sum below contains infinite terms (e.g. when n = n’).
A possible way to avoid this difficulty is by replacing the approximation of equation [£.10]
by, e.g., [,n(n,m) = ‘11_2% for some o > 0 and let « — 0 at the end of the calculation.
Here we proceed formally.
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Noting that the p describe the system’s Bravais lattice, R, we can compute
the above in the two dimensional case using the (2D) Poisson summation

formula{] .
2T e(Q-G)z
o(z) = —

A Geg |Q_G|

where A is the area of the unit cell of Ay, and the sum over G is over the
reciprocal lattice G of R (see section 4.2.1)), so that:

. o ¢i(Q-G)-(R2-Ri1) _ i(Q-G)R2 _ ,~i(Q-G)R1 4 |
Ry, QJ|R,, Q) = 2¢2 ( ) 5
(R1, QIJ[R2, Q) = 2¢" = { 91 QQGZEQ Q - Gl
. ( ) e 3 (ei(Q—G)Rz _ 1) (e—i(Q—G)~R1 _ 1)
A e Geg Q-G

for R; and Ry Nitrogen to Boron first nearest neighbor vectors, and zero
otherwise, which is the result found in [48]. Following the approximation
made there, we can note that only the G = 0 term is singular, and neglect
all others to obtain the final result:

N 27T
e QR2 _ | —iQR1 _ |
Z 5R177‘15R277‘2( )‘é‘ ) (4'11)

In effect, keeping only the G = 0 term amounts to making a long range /
small Q approximation, so that the expression above is expected to be rea-

sonable close to the center of the Brillouin zone, but not necessarily so much
. . (eiQR2—1) (e 1QR1_1)
away from it. Each of the four terms of the expansion of |

can be tracked to their respective origins in equation ' % and ﬁ
correspond respectrvely to the electron-electron and the hole-hole repulsions,
while € ‘Q| and <2 " are the electron-hole (attractive) interactions.

We can remark now that the approximation of exchange given in equation
4.11| vanishes at Q = 0. As a result, it will not affect the direct excitonic
series. It is worth noting that, in a more complete treatment, the exchange
interaction would affect @Q = 0 excitons. We will briefly discuss this point in

section in that same section, see also table which presents ab initio

OFor any suitable function f and Bravais lattice R, Yo oer flp)e=ier =
1 Z gEeR. f (q g), where A, is the area of the unit cell of R, R is the reciprocal lattice

of R and f = [eaf(r)dris the Fourier transform of f. The result below then follows
from the 2D Fourler transform of | and the shift property of the Fourier transform.
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results for exitonic binding energies in hBN with and without exchange. We
will discuss exchange and the consequences of equation further when
we come to the study of exciton dispersion in section [4.5] where it is crucial
in reproducing the linear dispersion of some branches of the exciton band
structure at small |Q].[62, 63] Even though we have an “exact” expression

2
for it, we will then write the prefactor 262%7r (;—Z) of equation 4.11| as % and

take J as a fitting parameter, in consistence with [48].

4.4 Direct excitonic series

Because they are responsible for the system’s absorption, we will start by
studying direct (Q = 0) excitons in details. In this section, we thus restrict
ourselves to first nearest neighbor parametrizations, for the reasons discussed
above. Since we will only study direct states here, we introduce the shorthand

R) =R, Q=0).

4.4.1 Wannier limit

It is instructive to study what happens in the Wannier limit, which corre-
sponds essentially to a continuum / effective mass limit, where lattice effects
are consequently averaged out and interactions between the K and K’ points
are neglected. Related work in similar limits[21], 22] or using more advanced
k - p models, and, notably, massive Dirac models[64] has been published by
several authors (for hBN see eg. [65], 66]). It is nevertheless interesting to
carry out a study using the simple hydrogneoid model in some detail here.
Indeed, this will allow us to intuitively appreciate the importance of lattice
effects and of the interactions between the K and K’ valleys, which are cap-
tured by the TB model proposed above, but not by the usual hydrogenoid
Wannier model relying on the effective mass approximation around one of
the K or K’ points.

Wannier model as an approximation of the excitonic TB model

Before discussing the hydrogenoid model proper, we start this section by
showing that it can be recovered as an approximation of our TB model,
precisely by moving to the effective mass picture.[f] We do so by applying the

1Of course, the hydrogenoid model is more general than our tight-binding model: it can
be obtained in the usual manner for hBN. Our goal in this section is only to show more
explicitly that this can also be done here from the tight-binding model by “forgetting”
about the existence of the lattice.
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effective mass approximation directly to the effective excitonic hamiltonian
Hy in its interpretation as a particle moving on a triangular lattice with
kinetic energy H, under the influence of an external potential U. To obtain
the effective mass of this fictitious particle, we compute the band energies
associated to the kinetic hamiltonian ﬁo, which correspond to the unique
band of a one-orbital triangular lattice, i.e.:

Eo(k) = 2A + 3T + Ty (k) = 2A + T|y, (k)|

We thus recover the independent particle transition energies, as expected by
construction of the model, and the minima of Ey(k) are therefore found at
the K/K' points. To obtain the corresponding effective masses, we compute
the Hessian of Ey(k) at these points, with respect to, say, k, and k,. We
find:
3a*T

2
which are scalar, and independent of whether the minima under consideration
is the one at K or at K'[T] The sought-after effective mass is therefore scalar
as well (i.e. it is isotropic) and likewise the same for both considered minima.
We thus have:

HEO(K) = HEO(K,) =

Iy

B 2h?
" 3a2T
the effective mass of transitions at the K/K' points, or, equivalently, the
effective mass of the fictitious particle involved in our excitonic TB model.

Within our usual approximations, the result is the same as the usual proce-
dure of first calculating the effective hole and electron masses, resp. m; and

* *

mgmy
* * °

me+my,

W

m?, and then forming the corresponding two body mass p =

Intuitively, we see now that if we replace the kinetic energy operator H,
with the corresponding effective mass expression, we will recover the usual
hydrogenoid equation. Formally, we proceed by writing down the (direct)
Bethe-Salpeter equation in components:

VR € A ; Z ho(Rl — R)\I/R/ + UrVYgr = EVR

R'eA

where ho(R'— R) = (R|f]0|R’> In contrast with the reciprocal space

situation, it is the kinetic energy that is expressed as a convolution, while

2This last fact is expected, and is a direct consequence of the system’s time-reversal
invariance.

3The fact that these matrix elements only depend on a difference is ensured by the
transnational invariance of the kinetic energy hamiltonian.
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the potential is a simple product. We now “forget” about the lattice by
introducing a continuous excitonic wavefuncton and turning the sum into an

integralﬂ

> o [

R/eA

The direct electron-hole interaction U converts straightforwardly to the con-
tinuous picture through the electrostatic model V(R). The kinetic energy
can be given a meaning in the continuous setting by noting that the convo-
lution can be rewritten as a product in Fourier space, applying the effective
mass approximation, and going back to direct space. This is the analogue of
the treatment given to the potential in the usual derivation of the Wannier
model. We thus obtain the continuum approximation:

_ ZLVQQ(R) L V(R)g(R) = Esg(R) (1.12)

for both minima kg = K or K', where the eigenvalues Ep are the binding
energies and the exciton wavefunctions are given by ¥(r) = e~*0Tg(r). As
claimed, this continuum approximation is exactly the Wannier limit: we have
recovered the usual hydrogenoid model by taking the continuum / effective
mass approximation for the fictitious particle involved in our TB model.

Energy levels, states and degeneracies

Equation is a typical 2D hydrogenoid equation. It is fruitfully nondi-
mensionalized by introducing the excitonic equivalent of atomic units, which
we may call “excitonic units”:

o Mass: reduced effective mass of the pair: pu.

e Length: exciton Bohr radius: a = %ag.

o Energy: exciton Hartree: ¢ = mLOHa.

where mo ~ 9.11 x 1073! kg and ag ~ 0.529 A are respectively the electron
mass and the Bohr radius and Ha ~ 27.2 €V is the Hartree energy. For hBN,
using the parameters of our 1nn excitonic fit[!"] these take the values:

14Up to suitable normalization factors that will cancel out in the final result.
5By which we mean a fit of T and 7y to reproduce ab initio binding energies though
the diagonalization of Hx. More details in section 4.4.2} fit parameters are reported in

equation |I_2U}
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o Mass: p = 0.54my.
+ Length: a = 0.98 A.
e Energy: ¢ = 14.69 eV.

Performing this change of units, equation becomes:
1
— 5V’ 9(R) +V(R)g(R) = Eg(R) (4.13)

Moving to polar coordinates, since V(R) depends only on R = ||R||, the
problem has cylinder symmetry, and so the equation is separable, and ad-
mits a basis of solutions of the form g(R,0) = e™?®(R), where the radial
wavefunction ® satisfies the following radial equation:

1/1d_d m?

[ 5 <RdRRdR R2> + V(R)](ID(R) = E®(R) (4.14)
and m corresponds to the angular momentum quantum number. This equa-
tion may then be solved numerically with the relevant potentials to obtain
the binding energies and wavefunctions of the excitonic states by imposing
relevant boundary conditions["¥ It can be noted that equation can be
recast in the form of a Sturm-Liouville equation with appropriate boundary
conditions, so that standard results (number of nodes of the solutions, etc.)
apply[T]

If the direct electron-hole potential V(R) is a Coulomb potential, i.e. if

there exists € such that V(R) = —i, this is exactly the problem of the two
dimensional hydrogen atom, whose solutions are known analytically:[1§]

1 1
E=—- . n' eN*

262[71’—1- |m| — %}2 ’

Famously, states sharing the same principal quantum number n = n'4+m are
degenerate, leading to, e.g. the degeneracy of the 2s and the 2p states.[67]
This is a particular property of the Coulomb problem, and ceases to hold
when V(R) is replaced by a more realistic potential. We are, of course,
interested in the case of the Rytova-Keldysh potential.

16The physical requirement is that of finite norm, but it is typically enough numerically
to ask that the wavefunctions vanish at infinity.

1"This is typically done through the change of unknown function u(R) = v R®(R), but
this is not very suitable for numerical calculations, because u may behave badly near the
origin for s states, for which ®(0) is finite.
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Level 1 2 3 4 5 6
Character 1s 2p 2s 3d 3p 3s
Energy  —1.92 —1.00 —0.80 —0.62 —0.54 —0.46
Degen. X2 x4 X2 x4 x4 X2
Strength 1 0 0.14 0 0 0.05

Table 4.2: First few bound states for hBN in the Wannier model. Binding
energies are given in €V, and degeneracies take into account the K/K' valley
degeneracy. The “Strength” value is proportional to the oscillator strength
of the state, normalized so that the value 1 is given to the highest bright
state (the ls state). A value of 0 indicates that the state is dark.

We therefore aim to solve equation [4.14] with the Rytova-Keldysh poten-

tial: )
vim =52 [m(Z) =% ()]
27"0 To To

Equation therefore effectively depends on one material parameter, the
polarizability radius rg. For hBN, we estimate it to be ry ~ 10 A ie. rg=
10.19 in excitonic units. To our knowledge, no simple analytical solutions for
equation [4.14] are known in this case, although there exist approximations
based on the calculation of an effective dielectric constant, [68], lowest bound
state variational approximations[21} [69] and semi-classical approximations. [66]
Here, we solve equation numericallyﬁ in the case of hBN, and report
the eigenenergies of the first few bound states in table [£.2] while the states
are depicted in figures [1.12] (m = 0, i.e. s states) and (m =41, ie. p
states).

It is worth taking a moment to discuss the degeneracies of excitonic states
in the Wannier model with the Rytova-Keldysh potential. It can be directly
seen that equation [4.14] is invariant under the transformation m — —m,
which means that all states with m # 0 are (at least) twice degenerate.
The only exceptions are s states, wich correspond to m = 0. Further, we
must recall that equation [4.14] results from an effective mass approximation
in the vicinity of the K/K’ points, which are inequivalent: each of the two
points yields its own hydrogenoid equation, and thus its own excitonic se-
ries. However, the effective mass is the same at both points, so the effective
hydrogenoid equation attached to both points is exaclty the same: it is there-
fore enough to treat only one hydrogenoid equation (which is what we have

18 Again, this estimate comes from the 1n.n. excitonic fit, see section and in

particular equation

19We made use of Mathematica. Notes on the topic can be found in [70].
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Figure 4.12: Radial wavefunctions for the first three s excitonic states of
hBN within the Wannier model. These correspond to the m = 0 solutions
of equation 4.14l Dashed lines correspond to the binding energies E of each
state, and are also the zero for their respective eigenfunctions. The radial
wavefunctions are represented to scale with one another; note in particular
how the intensity at the origin decreases for higher energy levels, leading to
a decrease in optical activity.

done until now), and multiply all degeneracies by twom Barring accidental
degeneracies, of which it seems there are none, these are all the degeneracies
we expect: s (m = 0) states are twice degenerate, while all others are four
times degenerate.

Optical activities and selection rules

Let us now turn our attention to the optical properties of our system. Within
the approximations of the Wannier model, it can be shown that the oscillator
strength of a given excitonic eigenstate W(R) is proportional to the intensity
of its envelope function at the origin, |g(0)|*[*!| More precisely, within the

20Recall, as we have discussed in section that the system’s first Brillouin zone
contains exactly one K and one K’ point. The linear independence of the solutions aris-
ing from both valleys can be seen from the expression of the excitonic wavefunctions:
Uy, (R) = emkoRg(R), for kg = K or K'. Thus, even if the enveloppe functions g are
the same, the excitonic states are not.

21This result is usually found by assuming that the modulus squared of the interband
optical matrix elements, | (c,k|e - plv, k>|2, are constant. In the tight-binding framework,
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Figure 4.13: Radial wavefunctions for the first two p excitonic states of hBN
within the Wannier model. The states plotted here correspond to the m =1
solutions of equation [4.14], m = —1 solutions being indentical. Dashed lines
correspond to the binding energies E of each state, and are also the zero for
their respective eigenfunctions. The radial wavefunctions are represented to
scale with one another. Note that the intensity at the origin always vanishes
for p states, leading them to be optically dark.

Wannier model, the absorption spectrum is given by: |15} [16]
1
3(E) o = > |(0)*5(Ey — F)
7

where the sum runs over a basis of (eigen)solutions of [4.13] and Ey is the
total excitation energy for the state ¥ (not just its binding energy): Ey =
Eyap + Epinding(¥). This important result, which is a cornerstone of Elliott
theory for excitons, provides an immediate selection rule: only states which
have non-vanishing intensity at the orgin can be bright. This is only possible
for rotationally symmetric states, i.e. states with m = 0 / s states. Indeed,
with our (conventional) choice of basis, hydrogenoid states are of the form:

g(R,0) = ™ d(R)

with our approximations for the bands and exciton wavefunctions obtained from the con-
tinuum / hydrogenoid approximation, this optical selection rule is recovered when 7 — 0,
which is indeed in the spirit of our continuum approximation.
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so that, at the origin, the wavefunction must satisfy ®(0) = e™?®(0) for
all . This is only possible if either m = 0, in which case this condition is
trivial, or if ®(0) = 0 for all other values of m. It can be immediately checked
that our numerical solutions, presented in figures and [£.13], satisfy this
condition.

If the binding potential is strong enough, most of the oscillator strength of
the system is taken by its bound states, and the part of the spectrum due to
the scattering states is minimal. The problem thus becomes essentially that
of computing the intensities at the origin for s states. In two dimensions, if
the potential is of the Coulomb form, these values are known analytically:[1§]

LS ONT (4.15)
-
where n is the principal quantum number: the intensity at the origin becomes
lower for larger values of n, which can be intuitively understood as the wave-
function becoming more delocalized for higher excited states. Therefore, the
oscillator strength of bound states is expected to drop rather sharply as we
move up in energy in the excitonic series.

In the case of the Rytova-Keldysh potential, the same qualitative behavior
can be observed,@ as can be seen in figure , where we have taken care
to normalize the s state wavefunctions and represent them to scale with one
another. To provide a more quantitative picture, we display in figure the
intensities at the origin of the first few s states for hBN within the Wannier
model, with respect to their binding energy, in log-log scale. In turn, we
can use these values to construct the absorption spectrum of hBN within the
Wannier model. This is done in figure .15 using E; = 2A = 7.25 €V as the
value of the electronic gap.

A striking feature, or lack thereof, in these calculations, should retain our
attention. We note that, in the ab initio calculations, the second absorption
peak is visible with a binding energy of about —1 eV, but this peak appears
missing in figure Suspiciously, however, the 2p states have exactly this
binding energy, but, as p states, they are dark within our approximations. It
turns out that these states are indeed responsible for the peak under consid-
eration, as we will show later. For the moment, we will close our analysis of
hBN under the lens of the Wannier model with the following remark: the se-
lection rules that we have enunciated above, in the context of the hydrogenoid
model, rely implicitly on the circular symmetry of the model. However, crys-
tals in general, and hBN in particular, do not enjoy circular symmetry. It

2
|gns(0)]” o

22But recall that the repartition of binding energies are different between the two func-
tional forms for the potential, so that the expected spectrum is, in turn, also different.
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Figure 4.14: Intensities at the origin of the first ten s hydrogenoid wave-
functions for hBN in the Wannier model (Rytova-Keldysh potential), log-log
scale. The choice of the log-log scale is suggested by the known power law
relationship between the binding energies and the intensities at the origin of
s states in the case of the Coulomb potential (equation [4.15)).

is only approximately realized when the underlying crystal structure can be
averaged out and seen as a continuum, i.e. in situations where the typical
exciton radii are significantly larger the the lattice parameters. Outside of
this situation, we expect lattice effects to become important, and a satisfac-
tory model should therefore respect the symmetries of the crystal lattice. In
particular, even though we have obtained satisfactory binding energies from
the above calculations, we will show that, when it comes to the optical re-
sponse, selection rules have to be modified to account for the discrete Cj,
symmetry of hBN.

4.4.2 Excitonic tight-binding

Let us now move back to the “full” excitonic tight-binding model, as pre-
sented in section [4.3] In the sense discussed in section , this amounts
to relaxing the continuum approximation compared to the Wannier limit. In
other words, the lattice structure of the hBN crystal is now explicitely taken
into account. We will start this section with a discussion of the symmetries of
our system, and from there, we will obtain the appropriate optical selection
rules.
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Figure 4.15: Absorption spectrum of hBN below the electronic gap, computed
within the usual approximations of the Wannier model, using the intensities
at the origin of the first ten s states, with a lorentzian broadening of 5 meV.
Note that, compared to the ab initio results, the second peak at a binding
energy of about —1 eV is missing: this is because it originates from a state
of p character, which is dark in the Wannier model, but needs not be in a
crystal without circular symmetry.

Symmetries and selection rules

The excitonic tight-binding model, by construction, has the symmetries of
the underlying crystal lattice. The “true” point group of single layer hBN is
the dihedral group Ds,: hBN has the planar symmetries of the triangle, as
well as a horizontal mirror plane, which coincides with the plane of the layer.

However, this last symmetry is trivial in our case where we are restricted
to fixed atomic positions and p, orbitals. This is especially flagrant when
considering the effective tight-binding hamiltonian (electronic or excitonic),
which is purely planar, so that all representations that are odd under the
horizontal mirror symmetryf| are frustrated (only the zero vector transforms
according to them, i.e. there are no corresponding eigenstates).

It is therefore very convenient to disregard this horizontal mirror, i.e. to

23There is a matter of convention here that we should clarify: when we say that we
move to the tight-binding picture, and that the problem is planar, we mean that the |¥)
are effectively a collection of scalars {Ugr } attached to the R-points of A, which is planar.
In this context, all states that transform oddly under the o; mirror must be zero.
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Csy | B | 2C5(2) | 30y
A, 1] 1 1
Ao 1 1 —1
E 2 -1 0

Table 4.3: Character table of the point group Cs,,[71] the “effective” point
group of single layer hBN (see text).

work only with the planar symmetries of the system. The corresponding
point group is then the subgroup Cj, of Dsgy, i.e. the point group of the
triangle. As it will be useful to our discussion, we partially reproduce the
character table of (5, in table |[4.3|

Within the (3, point group description, group theoretical arguments
mandate that only FE states can be bright. We will recover this result
through a direct calculation of the matrix elements of momentum in the
excitonic tight-binding formalism, which will also yield the associated oscil-
lator strength.

Let us recall the expression of optical matrix elements within the excitonic
tight-binding model. In analogy with the chain case, we have, for a direct
eigenstate |¥) = Y gea Yr |R):

meVN
th

Oplv) = - 3 trUrR (4.16)

ReA

dy

once again proportional to the wavefunction dipole dy, which here reads
simply:
d\p =1 1 Z \I/.,-T

It is at once clear that, within our approximations, the system cannot re-
spond to light polarized out of plane: because A is planar, so is dy. Ab
initio calculations appear to confirm this:[72] when computing the spectrum
for hBN computedlight polarized perpendicular to the plane, the system re-
sponds only at very high energies | and there is no absorption at the energies
we are probing.

More precise selection rules can be extracted from equation through
the possible symmetries of the eigenstates, as summarized in table [£.3] The
case of the one dimensional representations is particularly simple. We note

24This response, in addition to being difficult to measure in practice, is expected be
weak compared to the response from light polarized in-plane, precisely because of the
quasi two-dimensional geometry of the real system.
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immediately that, if U transforms as Ay, then the state is fully symmetric and
V. is independent of 7, and so, by symmetry, dy = 0. The same happens
for A, states, which are odd with respect to the o, mirrors: since each T
is left invariant by one mirror, all ¥.. are zero, and so dg = 0. Thus, all
states transforming according to one of the one dimensional representations
are dark.

The case of the E states is more interesting: they are the only ones that
can be optically bright. Because the representation E is of dimension two,
states transforming according to it come within eigensubspaces of dimension
two. To compute the optical matrix element for a given state, it is therefore
useful to give ourselves a basis’] A convenient choice is to remark that,
since the rotation '3 commutes with the hamiltonian, we can always find a
basis whose elements are also eigenstates of C5. We will discuss this problem
further in section [4.4.2] but for now it is enough to note that we can always
find a basis {U*, ¥~} of an F subspace such that:

At -
where wy = e*%". It follows that we can choose {U" ¥~} in such a way

that there exists a common amplitude Cy such that UF = w3 'Cy, and
therefore the corresponding dipoles are given by:

3
d\p = :FiiTtJ_O\p(ex + iey) (417)

we see therefore that the components of this basis respond to circularly po-
larized light, in analogy with the situation in single layer transition metal
dichalcogenides, which have a similar C5 symmetry.[64] Indeed, if the in-
plane polarization of the incoming light is decomposed in a circular basis:

=l ral)

3
e - d\pi = $§i7tLC\pei

and the oscillator strength associated to the E subspace under consideration
is such that:

then we have:

focle-d, | +]e-du | ocflelICol (4.18)

25Note that the optical matrix element for a single state within a degenerate subspace
is a priori not a meaningful quantity, since it depends on our choice of basis for that
subspace: what is basis independent is the sum of the oscillator strengths of the basis
states. However, it is still useful to choose a basis in order to perform calculations.
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which is independent of the direction of in-plane polarization, a well known
property of hexagonal systems. As in the case of the chain, we recover our
result that the oscillator strength of a bright exciton is proportional to its
intensity on the nearest neighbor excitations. Note that this statement now
has a precise, basis independent meaning: ]C’\p|2 is a characteristic of the
eigensubspace (informally, of the “exciton”), not of a single eigenstate. If one
constructs the (normalized) density associated to the eigensubspace, which
by Born’s rule is (\\Ifa|2 + ]\Ilb]2>/2 for any basis {¥,, Uy}, then the density

on each 7 will be |C'\1/|2-

Strong potential approximation, lowest bound state

Before diagonalizing the full excitonic hamiltonian, it is interesting to ex-
amine a simple approximation, in order to develop some intuition about the
behavior of the model. Noting that the direct potential is essentially a de-
creasing (in absolute value) function of R = ||R||, we may imagine that, if the
potential is particularly strong, this monotonous decay will be sharp enough
that the excitations corresponding to the shortest Rs will be essentially de-
coupled from the rest of the lattice of excitations"] These excitations are
precisely those where R is a nitrogen to boron nearest neighbor vector (one
of the 7s), and can then be treated independently from the rest of the system
to obtain an approximation to the lowest bound state.

We may also picture this approximation as considering the direct poten-
tial as being so strong that the electron and the hole must remain nearest
neighbors for the lowest bound excitons: then, the lattice of excitations re-
duces to the states such that R € {71, 72, 73}. Another way to describe this
approximation formally is by writing:

U~ {U if |R| =7

+00  otherwise

For the reasons outlined above, we call this approximation the “strong
potential approximation”. It is arguably the simplest possible approximation
for our problem that retains the symmetries of the system, and the opposite
of the Wannier limit discussed in section (which could be thought of as

26Taking a step back, f could not physically depend on a choice of basis, since it is
(indirectly) observable through the absorption spectrum.

2TIn more precise terms, this amounts to the condition that |V (7) — V()| > T (where
7 is the B-N In.n. distance and p = a = V37 is the 2n.n. distance): the difference in
onsites between the first shell of constant R and the other excitations is so large that the
kinetic couplings between them are negligible.
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the “weak potential approximation”). Under these conditions, the excitonic
hamiltonian reduces to:

Hx = A +3T+ N1 +T Y |7X7|
T#T!

Which is in fact just a simple LCAO hamiltonian for a triangular molecule.
Pleasantly, this Hamiltonian has almost no “true” dependence on its param-
eters: we do not need to know the model for the potential, or even its value U
on the first shell, nor do we need to know the exact value of T', as all of these
only result in shifts and rescalings of the energy scale. It is only useful to
know the sign of T', and by definition in first nearest neighbors, T' = % > 0.
In matrix form, it reads:

0

11
Hy=(Q2A+3T+U)+T|1 0 1
110

in the {|r1),|7T2),|7T3)} basis. It has two eigenvalues:

Eu =2A+3T+U +2T
Eg=2A+3T+U—-T

The latter of which is twice degenerate. Let us briefly comment about the
first eigensubspace. It is of dimension one, and spanned by:

\IjAlzﬁ 1
1

which clearly transforms according to the fully symmetric A; representation,
and thus is dark. Being 37" in energy higher than the other eigensubspace,
we don’t expect it to provide a particularly accurate picture of a state of the
full system, except as a qualitative prototype of an A; state.@

The second eigensubspace, which we shall call £, is much more interesting.
It is the lowest energy eigensubspace in this low-energy approximation, and
so we expect it to be a qualitative model for the lowest bound exciton. It is
of dimension two@ from which it immediately followﬂ that it transforms

Z8What is remarkable, however is that this state is non degenerate: in the hydrogenoid
limit, this could not occur. The discussion of why this happens here is delicate within the
confines of this simple approximation, so we leave it for later.

Z9More precisely, here, it is the (hyper)plane of equation W, + W, + ¥, = 0.

30Barring a possible accidental degeneracy, which the following will show is not the case.
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according to the E representation, and therefore is bright. As a doubly
degenerate lowest lying bright state, it appears as an analogue of the 1s
state found in the Wannier limit. We will show later that this analogy can
be made more precise.

We thus expect the lowest lying exciton of our system to be twice degen-
erate and bright (which it indeed is). This degeneracy, which will be shared
by all bright states, since they must transform according to the E representa-
tion, leaves us with the following question: is there a natural way to choose a
basis for an eigensubspace associated to the E representation (and therefore
of dimension two)?

Of course, since the subspace is of dimension two, there are infinitely
many possible choices of basis. However, two classes of basis stand out as
“natural”. Indeed, our system has the (3, symmetry, and therefore commutes
with the symmetry operators associated to the three vertical mirrors, o,,
and with the rotation of angle %”, (3. The usual results on simultaneous
diagonalization therefore ensure that any E eigensubspace admits a basis
composed of eigenstates of one of the system’s symmetry operatorsﬂ Let us

now examine these two choices.

Let us start with the mirrors. Without loss of generality, we work with
01, the mirror which lets 7; invariant. It has two eigenvalues, +1 and —1,
and we will therefore obtain a basis with definite parity with respect to oy.
Up to a global multiplicative factor, we find the following basis vectors for

E:

2
Y el - —
3 _

with ;W = £W,. This choice has the advantage of resulting in a real basis.
However, it is somewhat tainted by the choice one has to make of a given
mirror, and the densities of the basis states do not have the symmetry of the

crystal 7]

Let us now consider the rotations. A first fact should retain our attention:
rotations of angle %’T are not diagonalizable in R. We will therefore have to
move to C. This is not a fundamental problem, however, and a basis of £

31But not all at the same time: this is not possible for E eigensubspaces, essentially
because Cf, is not abelian. All other eigensubspaces, which are nondegenerate, do however
enjoy this property.

32Which they certainly need not have.
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which is also an eigenbasis of Cj is given by

2im

where w = 62% and C3Wy = ¢T5 W, This is the basis we used in section
to analyse oscillator strengths. The obvious disadvantage of such a
choice is that is leads to a complex basis. On the other hand, it enjoys
several advantages, the first of which being that it does not set a preferred
direction. Further, since W_ = W, " the two states are in fact connected by
time-reversal symmetry.

An important property of this basis, related to the above, appears when
moving to reciprocal space. This is done through the change of basis formula:

U(k) = \/IN ZTj e Ty,

which yields the remarkable result:

Uy (k) = \/;—N%(iK - k)

or, since —K is a K’ point:
V) xnK-K) (k) xn(K K

and so this choice of basis effectively filters the contributions from the K and
K’ valleysﬁ This also means, by equation , that polarized light excites
selectively one of the two valleys, a fact that has been used to great effect in
transition metal dichalcogenides. [64] Because of its properties, we call a basis
of this kind a chiral basis. We depict these reciprocal space wavefunctions
in figure [4.16 To represent the complex amplitudes, we have chosen a rep-
resentation such that color indicates phase, while the transparency of each
pixel is a function of the density (|¥(k)|?) at this point. This representation
allows us to convey information about the phase of the wavefunction, which
we will see carries useful information both in direct and in reciprocal space
when it comes to understanding the symmetries of a given state.

33Note that here, we do not have to choose one of the two rotations: they commute.

34%We could have chosen any third root of unity different from one (w = 1 results in
W 4,), but note that these are 1, w and w? = w*, so this would only exchange ¥, and ¥_.

35Indeed, recall that |y, (k)| is maximal in T', and vanishes at K and K’. Then, by
geometry of the first Brillouin zone, note that for any pair of K, K’ points, their difference
is a K or K’ point, while the difference of two K (resp. K') points yields a ' point
(possibly outside of the first Brillouin zone).
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Figure 4.16: Reciprocal space wavefunctions for the lowest bound state in the
strong potential approximation. Left panel: total exciton density. Middle
and right panels: chiral basis wavefunctions ¥, (k) and ¥_(k) (resp.) in
the density-phase representation (density controls transparency, while color
indicates phase). Dotted lines are contour levels for the density, which have
been added for lisibility.

In general, i.e. even away from the strong potential approximation, there
is a simple link between the two bases:

o) =502 (2)

which is useful because the o; basis, being real, is easier to construct from an
arbitrary basis (as is typically obtained from a numerical diagonalization).
This therefore provides a simple way to construct a polarized basis from a
numerical diagonalization of Hy.

We end this section with a note about the A, representation: we found
no eigenvector transforming according to it in the strong potential approx-
imation. This is because, there, this representation is frustrated: states
transforming as A, must be odd relative to the o, mirrors, but since each 7
is left invariant by at least one mirror the only possible “ A, state” is zero.

Higher excited states

Having now an idea of what to expect from our excitonic TB model, and a
model for the lowest bound state, we are in position to diagonalize the full
hamiltonian Hx numerically For direct states, in first nearest neighbors,

360f course, we could have done it directly without passing through the limiting cases,
but the analytical insights that we gathered go hand in hand with the numerical calcula-
tion.
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this hamiltonian reads:
2A+3T+V(R) ifR=R’
R|HxR) =T if R,R’ are In.n. in A (4.19)

0 otherwise

where T' = %. A priori, it depends on three parameters: two kinetic param-
eters, which we can choose to be either (A,t,) or (A,T), and one potential
parameter, the polarizability radius Tom However, 2A is the value of the
direct gap, and only a global energy shift, so we can redefine the energy scale
by choosing 2A as its zero: the eigenenergies of Hy will the be the excitonic
binding energies: E, = E — Eg,,. In this case, we only have two effective
parameters: the effective hopping between excitations, 7', which controls the
kinetic energy scale, and the polarizability radius, ry, which controls V', and
therefore the electron-hole binding potential. In this context, we note that
we could non-dimensionalize the problem: we could choose T" as an energy
scale, 7 or a as a unit of length, and, the functional form of the potential be-
ing fixed, the problem would depend only one one dimensionless parameter,
say v = U, /T. Since we discuss here the specific case of hBN and intend to
fit on ab initio data, we instead remain in “conventional” units.

The question at hand is therefore that of determining these parameters.
The kinetic parameters can be naturally estimated from a fit of the band
structure. If we fix A to reproduce the correct value of the gap, we can fit ¢
to reproduce the band energies (or the transition energies) as well as possible
in the regions of the Brillouin zone which will contribute the most to the
excitons we want to study, i.e. the MK region. This is the spirit of the
“In.n. local fit” displayed in table 4.1} Using these parameters, we estimate
2A =17.25 eV (the gap) and 7" = 1.46 V.

It remains to estimate rg, which amounts to estimating the screening of
our crystal. In theory, this can be done through a DFT calculation using
a generalized Clausius-Mossotti relation, as demonstrated in [61]. It is also
possible to directly compute the (macroscopic) static dielectric function €(q)
ab initio and fit its small ¢ (long range) part with the corresponding Rytova-
Keldysh expression, gk (q) = 1+10q.[74, [75] Such estimates in the literature
place 7o for hBN at approximately 6 — 7 A.[74, [76]

3TTechnically, the evaluation of the potential V' (R) also depends on the lattice constant,
a through the coordinates of the elementary excitation sites, and requiring compatibility
with 7o (whose fitted value therefore depends on our value for a) and e? ~ 14.4 eV.A (which
has dimension of energy times length in our unit system). Working here in Angstrom for
concreteness, we have, in consistency with the ab initio calculations, set a to the optimized
bulk value a = 2.5 A.[73] On the other hand, distances do not appear explicitly in the
kinetic part of Hy.
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Here, we take a different approach: since we can write and diagonalize
Hy without actually knowing the band structure of the system, we can fit
our two parameters, T" and ry, directly on the ab initio binding energies,
without intermediaries. We do so by fitting the first four ab initio binding
energies ¥ and obtain best fit parameters of:

T=15¢V ; ro=104A (4.20)

from which the values of the electronic kinetic parameters can be extracted
through the knowledge of the ab initio gap, 2A = 7.25 eV, whence t;, =
2.33 eV. We therefore obtain excellent agreement with the kinetic parameters
estimated from the band structure. While the agreement with estimated
values for the polarizability radius is less satisfying, we must keep in mind
that we are fitting a model continuous potential on a discrete system where
we expect lattice effects to be relevant. In this light, and considering the
approximations we have made in deriving our expression for the potential,
the order of magnitude agreement that we obtain remains acceptable. In any
event, since our model is constrained by the correct crystal symmetries, we
do not expect exact values of the parameters to qualitatively influence our
results for the lowest bound states overmuch.

We will use the parameters of equation from now on. The binding
energies obtained by the diagonalization of Hy with this set of parameters are
reported in table[d.4] along with the corresponding ab initio binding energies,
with and without exchange interaction. We find excellent agreement of the
model values with the reference ab initio data, although we do not exactly
reproduce the ab initio order of states, essentially due to an overbinding of
the fourth state (A;), which will be discussed later. To avoid confusion, we
shall use the ab initio state order when labeling the eigensubspaces.

The excitonic wavefunctions are represented in figure [£.17, Again, we
obtain a satisfying agreement between ab initio and tight-binding. In par-
ticular, in tight-binding, we have represented both the intensities and the
amplitudes of the excitonic wavefunctions. This lets us easily classify the
different states according to the symmetries of the system’s point group.
First, all doubly degenerate states, i.e. excitons 1, 2 and 5, are likelyﬁ E
states, which the tight-binding amplitudes confirm. Excitons 3 and 4 then
belong to representations of dimension one: we need only find which. Since
Ag states transform oddly under the o, mirrors, this strongly hints at the

38Not counting degeneracies: the target values for the fitting were the first four columns
of the “Ab initio” line of table

390nly “likely” at this point because we cannot a priori exclude an accidental degener-
acy.
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Exciton 1(x2) 2(x2) 3 1 5(x2)

Ab initio —-1.932 —-1.076 —-1.045 —-0.980 —0.892

Ab initio (no exchange) —2.018 —1.095 —1.045 —1.358 —0.898

Tight binding 1932 —1.053 —0.999 —1.0944 —0.830
Symmetry E E Ao Ay E

Table 4.4: Binding energies and symmetries for the first five excitons for hBN,
in the order fixed by the full ab initio calculation (first line). Binding energies
are given in eV, and degeneracies are reported in parenthesis. Symmetries
are given in terms of the irreducible representations of the Cjs, point group,
and are extracted from the ab initio and tight binding wave functions. Ab
initio calculations by F. Paleari.[47] The tight-binding calculations used a
box of ~ 10? sites, whuth the potential cut off after the 28" R-shell.

fact that the state 3 transforms like Ay, as it displays zero intensity on the
sites along the o, planes. Again, this is confirmed by the tight-binding am-
plitudes. State 4, which does display intensity along these mirror planes, can
then only be Ay, which the tight-binding amplitudes also confirm.

Having identified and matched the ab initio and tight-binding states, let
us proceed with a global analysis. We can identify three bright subspaces:
excitons 1, 2 and 5. It is tempting, and, indeed, interesting, to compare the
results of the tight binding model, in table[4.4] with the results of the Wannier
model, in table [4.2] A naive comparison of binding energief™| hints at the
fact that excitons 1 and 5 are respectively the 1s and 2s Wannier excitons.
Both are twice degenerate and bright, as is expected from s-like states. This
leaves states 2, 3 and 4. All three are clustered around a binding energy
of about —1 eV, which hints that they are descended from the 2p Wannier
subspace, whose fourfold degeneracy was thus lifted into 2 ® 1 & 1 by the
now accounted for lattice effectsE-] Interestingly, state 2 belongs to the E
representation, and thus is bright, even though it comes from a p subspace
whose brightness was forbidden in the hydrogenoid model. This directly
illustrates the importance of the change of selection rules when lowering the
symmetry of the system through the inclusion of lattice effects.

Exciton 4 still appears to stand out: in tight-binding, it is found below
states 2 and 3, while it is above ab initio. This fact is illuminated when
considering the effects of the exchange interaction. When it is removed from

40The following sections will show that this energy comparison, while naive, does in fact
provide the right picture.

411t is, in fact, possible to make a more precise analysis of the splitting of the 2p subspace.
Details can be found in [47].
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Figure 4.17: Figure adapted from [47]. Direct space excitonic wavefunctions
for single layer hBN. Left: ab initio densities. Right: tight-binding den-
sities (red background) and amplitudes in the density-phase representation
(transparency is proportional to the density while color depicts the phases:
red is opposite to blue). The dark grey dot materializes the position of the
hole. A real basis has been chosen to depict the tight-binding amplitudes;
in particular, we have chosen a basis of definite parity with respect to the
o1 miror plane (in-plane, the vertical line passing through the hole) for the
twice degenerate E subspaces (see section [4.4.2).
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the ab initio calculation, the binding energy of state 4 is strongly increased,
and it falls below states 2 and 3, as can be seen in table .4 The effects
of exchange on other states is much less important. This peculiarity can be
explained by the symmetry of state 4: of the states under investigation, it is
the only one which transforms under the fully-symmetric A; representation.
This means in particular that it is not forbidden for it to have electronic
intensity at the “origin”, i.e. at the “position of the hole”, which indeed it
does. Recalling now the expression of the exchange integrals, we note that
they are maximized when the electron and the hole wavefunctions overlap,
i.e. precisely at the origin of the relative coordinates. The effect of the
exchange interaction is therefore maximal for A; states, as we observe. Since
this interaction is overall repulsive, it shifts exciton 4 up in energy above
exciton 2 and 3. The different ordering of states between ab initio and tight-
binding then stems at least in part from the fact the tight-binding model
neglects the exchange interaction. The fact that the error in energy is not so
great compared to the ab initio results with exchange can be traced back to
the fact that the tight-binding model also neglects the effects of electron-hole
wavefunctions overlap for the direct interaction, which is attractive. This is
discussed in more details in appendix C of [47].

The splitting scheme discussed above is summarized in figure [£.18] We
started with two (one for K, one for K') uncoupled systems of cylinder sym-
metry. At the Coulomb level, an additional symmetry caused the degener-
acy of all states with the same principal quantum number. This symmetry
was then broken by moving to the more realistic Rytova-Keldysh potential,
which physically corresponds to the inclusion of a realistic 2D screening.
This caused the splitting of the s and p states. The inclusion of lattice ef-
fects then transitioned us to one single system of triangular symmetry: they
have effectively coupled the two hydrogenoid equations, and in lowering the
symmetry, have generated further splittings.

4.4.3 Momentum space representation and link with
the hydrogenoid classification

General remarks

In this section, we will move back to reciprocal space. This will allow us to
make our discussion of splittings more precise by linking our tight-binding
states to the Wannier model states computed earlier. In addition, this will
let us verify that the composition of our excitons in terms of electronic tran-
sitions is indeed essentially from the MK region.

For the tight-binding states, the transition from R-space to k-space is
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Figure 4.18: Schematic splitting of excitonic states from the hydrogenoid
model with Coulomb and Rytova-Keldysh potential to the tight-binding and
ab initio descriptions, which include lattice effects (energies are not to scale).
States from the “Coulomb” and “Rytova-Keldysh” columns are to be dou-
bled: as explained in the text, there is one hydrogenoid equation for K and
one for K'. Bright states according the the current model are in red, while
dark states are in black.
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done through the usual change of basis formula:

(k) ox Uy = e* Ry (4.21)

1
VN feh
while the ab initio states are naturally computed in reciprocal space. The
results of this calculation are presented in figure [4.19] Again, we are repre-
senting the tight-binding densities and amplitudes, using the density-phase
representation introduced earlier. For E states, we have used a chiral basis,
for reasons that shall become clear later.

It is at once clear that excitons 1 and 5 are of the same nature, while
excitons 2, 3, 4 belong to a different group. This can already be seen from
the densities alone, by the fact that excitons 1 and 5 have their maxima at
K/K', while excitons 2, 3, 4 instead have vanishing (or low in the case of 2)
intensity there. The corresponding phases reinforce this notion: the states
we have labeled as s-type have constant phases around given K/K' points,
while in the case of the supposed p-type states, the phase rotates by 27 while
going around a given K/K’ point.

It can be checked as well that, for E states, the use of a chiral basis
indeed filters the contribution of the K and K’ points, although this filtering
is only clear in the case of the two s states: while some remarkable separation
of the contributions is also achieved there, the E state of p type shows a
more complex behavior that we will discuss later. Non-degenerate states, as
expected from (time reversal) symmetry, display contributions from both K
and K'. Overall exciton intensities (so, the summed intensities of the basis
states of a subspace) appear to display a hexagonal symmetry. This is a
consequence of the C3 symmetry of the lattice along with the time reversal
symmetry which maps k onto —k and thus creates this apparent sixfold
symmetry.

Analysis of these intensities confirms that the lowest bound excitonic
states are indeed composed mostly of transitions in the neighborhood of
K/K', although contributions from the MK lines are also notable. This
confirms that the these are indeed the regions of interest, which support the
system’s “main” optical activity. Trigonal warping is very noticeable, both in
tight-binding and ab initio, although even moreso in the latter. This shows
indirectly the importance of the actual triangular geometry of the system.

Finally, we can check quite clearly on the s-type states that as we go
higher in energy in a series of excitons of same character, and the direct
space wavefunctions become more spread in the relative coordinate R, the
corresponding reciprocal-space wavefunctions become more localized in k.

This is a good time to remark that, for the lowest bound state, the results
of the “full calculations” actually display features from both the Wannier (low
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Figure 4.19: Figure adapted from [47]. Reciprocal space excitonic wavefunc-
tions for single layer hBN. Left: ab initio densities. Right: tight-binding
densities (red background) and amplitudes in the density-phase represen-
tation (color depicts the phases while transparency is proportional to the
density |¥(k)[?).
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potential) limit, which will be discussed further below, and from the strong
potential limit. In particular, the reciprocal space intensities in the strong
potential limit display strong intensities along MK, i.e. extreme trigonal
warping, which is by nature absent in the effective mass approximation. This
can be understood from the fact that in the strong potential limit, the system
is just a triangle: lattice effects are therefore at their strongest, and so is
trigonal warping. In the real system, the excitonic wavefunctions are more
extended, but not so much that lattice effects are washed out and vanish.

Connection with the Wannier formalism

Many of the behaviors discussed above can be rationalized if we recall the
construction of excitonic wavefunctions in the Wannier model ] For a given
transition energy minmum at a point, kg, the excitonic wavefunction ¥(k)
is Fourier transformed into a “real-space” wavefunction in the relative coor-
dinate:

U(r) = e *0Tg(r) (4.22)

this function g(r) is then the one which is found as the solution of the hy-
drogenoid equation (equation. The s, p, ... nomenclature thus describes
the symmetries of g. The function g itself, owing to the polar symmetry of
the system can be decomposed into an angular and a radial part:

g(r) = ™' (r)

where ®(r) is radial and m is the angular momentum quantum number,
which is then the one containing the s, p, ... symmetry information.

We thus see that the full symmetry of the excitonic state is obtained as the
product of the one of the phase factor e~ °* and the one of the em)elop
function g(r). For example, let us consider the 1s state from the hydrogenoid
equation at K: g5 is radial, i.e. fully symmetric, while the phase factor
e~ ig chiral: the full excitonic state Uk 15(r) = e Tgy(r) is therefore
chiral, and transforms by multiplication by w_ under the C3 rotation. The
corresponding 1s state from the K’ valley is then Wy ,(r) = e &' *g, (r) =
e g (r), which is also chiral, but with the opposite chirality. Note that
under this form, it is clear that Vg ;, and Wk ;, are time reversal images of
one another. These two degenerate chiral states combine in the full system
to form an E subspace, in the C3, nomenclature.

42The interpretation that we follow and adapt here was originally given by F. Ducastelle.

43Some authors call ¥(k) the envelope function, on account of the fact that the full
excitonic state |¥) is written as |¥) = >, ¥(k) |k, v, c), where the |k,v,c) are the tran-
sition states. Here, we prefer calling ¥ the excitonic wavefunction, and g the envelope
wavefunction.
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This analysis can be fruitfully extended to reciprocal space: to obtain the
reciprocal-space excitonic wavefunction W(k) at the Wannier level, i.e. in the
neighborhood of a given k( point associated to the hydrogenoid equation,@
one simply needs - by definition - to Fourier transform \Il(r):ﬁ

W(K) o / R (r)dr o / o100 =T (1 g
ik-r

the real-space phase factor ¢"*" is nothing but a shift by ky in reciprocal
space; writing k = ko + q we find:

U(ko + q) / €97 g (1) dr (4.23)

which incidentally reasserts that g is actually the Fourier transform of ¥ (kg + q).

Suppose now that ¥ has an s type enveloppe, i.e. ¢ is radial. Then,
U(ko + q) is radial in q: its phase is constant around point kg, which is
indeed what we observe for the states of excitons 1 and 5. We can go a bit
further: since g is radial, ¥ (ko + q) o< [, Jo(qr)g(r)dr with J, the Bessel
function of the first kind of order zero and ¢ = ||q||. Then, if the envelope
is peaked at a certain radius r., we find that, approximately, ¥(ko + q)
Jo(req): it is maximal at ¢ = 0, i.e. at k = ko, and decays isotropically in
intensity away from it with a characteristic peak width of 1/r.. In the pure
hydrogenoid model, the s envelopes are not peaked (away from the origin),
but if we consider the tight-binding or ab initio wavefunctions, then, owing
to the system’s geometry, it is sensible to expect r. is at least on the order
of the nearest neighbor distance, 7.

We can in fact perform a similar analysis for envelope functions of ar-
bitrary angular quantum number m. Let indeed g(r) = ¢ ®(r); then the
angular part of the integral of equation [4.23| can be computed analytically,
using e.g. the Jacobi-Anger expansion.[77] We find:

+o00

U(ko+q) x eimeq/o O (1) (qr)dr

where 0 is the angle between e, and q, and the J,, are the Bessel functions
of the first kind of order m. This has two consequences: first, if m # 0,
Jm(0)=0, so that U(ky) = 0. In other words, for non s states, ¥(k) actually
vanishes at the K/K' points. This is indeed what we observe for excitons

44For us, ko is a K or K’ point.

45We have in fact taken the convention ¥(k) o [ eT™7¥(r)dr (note the sign in the ex-
ponential) to ensure compatibility with the discrete tight-binding change of basis formula,
equation so that the latter appropriately reduces to the former in the continuum
limit.
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2 (very approximately), 3 and 4, both in the tight-binding and ab initio
densities, although in the case case of exciton 2, we only have what appears
to be local minimas instead. We will come back to this peculiarity later. The
phase of the wavefunctions contains more information: another consequence
of the above equation is that the phase of ¥ (ko + q) rotates by 2mn as one
describes a circle of constant ¢ in the neighborhood of ky. This provides
a very efficient way to identify the s, p, ... character of a given state, and
confirms now that excitons 1 and 5 are essentially of s character, while 2,
3 and 4 are essentially of p character. Again, if ®(r) is peaked at a certain
radius r., we find that, roughly, ¥(ko + q) o e ], (r.q).

We can push the above discussion a bit further. In figure4.19, we can see
that when moving between two equivalent K points, the “local” structure of
the reciprocal wavefunction remains the same, up to a rotation of +27/3 of
its phase, i.e. multiplication by wy. Overall, this is not surprising: we have
chosen chiral bases for the E states, and excitons of other symmetries are
singly degenerate, so all of the states are eigenfunctions of the C5 rotation
operators, and therefore transform under rotation by multiplication by w..
On the other hand, until now, our predictions based on the Wannier envelopes
have remained at the level of a single kg point. This is expected, since these
expressions are obtained through the effective mass approximation at the
vicinity of a given kq point, and therefore the periodicity of the system is lost.
Note that it is preserved in tight-binding: this is a consequence of the fact
that our approximation for the transition energies preserves the periodicity of
the system. Still, the above suggests investigating how ¥ (ko + q) is modified
when moving from kg, point to an equivalent point, i.e. a point ko + G where
G € G is a reciprocal lattice vector. We will show that we can naturally
recover the remark above about rotations.

To this end, let us recall the change of basis formula [£.2I] After the
discussion above, it is natural to inquire about the correspondance:

\IJR — \I/(I‘)

where the left side is in the discrete tight-binding picture while the right side
is in a continuous picture, e.g. Wannier. Assuming the Wannier form, i.e.
U(r) = e~koTg(r), yields:

Uy o Z e_i(k_kO)'Rg(R)
ReA

x / 3 §(r—R)e ER)Tg(r)dr

ReA

n(r)
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where we have introduced the site density of the lattice of excitations, n(r).
Making use of the Poisson summation formula, and noting that A = R + 7,
i.e. that the lattice of excitations is just the triangular Bravais lattice of
hBN shifted by a nearest neighbor vector, we have n(r) oc Ygeg €',
and therefore{™]

‘Ijk o Z efiGﬂ'/efi(kofok)‘rg(r)dr
Geg

Ig(k)

where the inner integrals all reduce to the one of equation [£.23] with the
substitution kg < ko — G. In particular, if k ~ ko — G¢ for a certain Gy,
i.e. we are in the neighborhood of a point equivalent to kg, we can perform a
macroscopic approximation and neglect all /g (k) for which G # Goﬂ and
we find:

Wiy aurq X €97 [ g(x)dx

where the integral is nothing but the local structure near ky that we have
already discussed above, and the phase factor e 707 which can evaluate to
1, wy or w_ = wi, describes its evolution when moving between equivalent
K /K’ points, which recovers and, in a sense, generalizes the symmetry result
given above.

4.4.4 Absorption spectrum

We now have all elements in hand to produce and interpret the excitonic ab-
sorption spectrum for single layer hBN. Using the states computed in section
to evaluate the formulas of section [£.4.2] we obtain the sought-after
spectrum, which is depicted in figure .20} to be compared with the ab initio
spectrum shown in figure [£.21]

Overall, both in tight-binding and ab initio, the spectrum is dominated
by the first bright peak, coming from the lowest bound exciton. This can be
understood from the fact that, as per equation [4.18] the oscillator strength
of bright states is directly proportional to the intensity on the nearest neigh-
bor excitations. The lowest bound exciton, as expected, is by far the most
concentrated one in direct space, and, therefore dominates absorption.

One notable difference between the ab initio and tight-binding descrip-
tions lies in the second peak, corresponding to exciton number two, the “2p”

46Which particular 7 is chosen does not matter here, since they are all connected by
direct lattice vectors.

4TWe are essentially making use of the Borel-Lebesgue lemma: the integrands of the
Ig (k) for which G # Gy oscillate rapidly, and therefore do not contribute much to the
sum.
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Figure 4.20: Tight-binding absorption spectrum for single layer hBN, with
a lorentzian broadening of 5 meV, computed in the excitonic tight-binding
framework. The GoW, band gap is at an energy of 7.25 €V, or, equivalently,
at 0 eV on the binding energy scale.
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Figure 4.21: Ab initio absorption spectrum for single layer hBN (the band
gap is materialized by a vertical dotted line); calculation by F. Paleari.
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state. This exciton is significantly brighter ab initio, where it is brighter
than the 2s state, while in tight-binding the opposite appears true. We
should note, at this point, that the predictions of the tight-binding model
are already an improvement on the hydrognoid limit, where this state is com-
pletely dark: the fully circular symmetry in this case forbids its coupling with
light. These couplings can therefore be traced back to the lattice symmetries.

This sets the stage for a more detailed analysis of exciton 2, which we have
deferred until now. The envelope wavefunction-based discussions of section
while not in complete disagreement with the numerical results on the
reciprocal space amplitudes, both ab initio and in tight-binding, are not
fully satisfactory either. Indeed, figure clearly shows that the exciton
(subspace) intensity for this state does not vanish at the K/K' points, as
expected from a p-type state. This is the case both in tight-binding, where the
intensity appears locally minimal, but nonvanishing, and ab initio, to a much
greater extent: there, the intensity is even close to maximal at K/K’. Once
again, the amplitdes reveal more information through a careful analysis of the
chiral basis states for exciton E. Focusing one one of the states, we can see
that the phase-rotating components characteristic of p states originate from
point, say, K, while the K’ points house the constant phase contributions
typical of s-type states. For the other basis state, the roles of K and K are
reversed.

This shows rather clearly that exciton 2 is not fully of p character. In-
deed, this observation strongly suggests that it results from the mixing of the
hydrogenoid p states from one valley with the hydrogenoid s states of the
other valley. In a triangular system, this is allowed: the circular symmetry
that gave rise to the s, p, ... states is broken; in other words, m as defined
before is no longer a good quantum number, and states of different m can
mix, as can states of different valleys. This is, of course, not a peculiarity of
exciton 2: all states are affected by the lowering of the symmetry, but exciton
2, perhaps, displays it in the most spectacular fashion. In fact, exciton 5 also
shows, at least in tight-binding, faint contributions evocative of p character.

The analysis above illustrates once again the interest of studying the
phases of the excitonic wavefunctions. Such a study is more difficult, however,
without a semi analytical model. This is due to the fact that the overall
phases of transition states is arbitrary: in a model, one can - as we did
here - make a cogent choice that will make later analysis tractable. If the
transition states are determined numerically, however, their overall phases
are essentially random, hampering further study.

If one only looks at the exciton densities, which do not carry phase infor-
mation, the most prominent signal of this mixing is the intensity at K/K’
for supposedly non s-type states. While indirect, it still provides interesting
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information, especially in the ab initio case where we have no direct access to
the phases. From this indicator, we can see that the s/p mixing for exciton
2 is significantly higher ab initio than in tight-binding, in the sense that it
has a higher s component in the former than in the latter. This resonates
with our earlier remark about its oscillator strength: exciton 2 is brighter ab
initio than in tight-binding.

We can pursue this idea further: since we expect lattice effects to be at
the orgin of the brightness of exciton 2, it would be interesting to somehow
“vary” the influence of the lattice, and see how this affects the states and
absorption spectrum of the system. Intuitively, we expect that, for “weak”
lattice effects, we should tend towards the predictions of a continuous hy-
drognoid description, with states well described by the s, p, ... classification,
with only s states being bright. On the other hand, for “strong” lattice ef-
fects, we should instead tend towards a situation where this description is
poor and hydrogenoid states are mixed and additional peaks appear in the
absorption spectrum, like what happens with exciton 2. Of course, we do not
have a direct “lattice effects” parameter to tune. However, we should recall
that the Wannier limit is essentially that of low electron-hole coupling: if the
potential is weak compared to the kinetic energy, the excitons are dilute in
the sense that their Bohr radii are (much) larger than the lattice spacing,
and consequently, lattice effects become negligible. Conversely, if we make
the potential stronger, excitons will become more concentrated, and there-
fore more sensitive to lattice effects. The natural “lattice effects” parameter
is therefore the strength of the potential compared to the kinetic hoppings
(here T'). In a dimensionless version of the problem, it could be the param-
eter v introduced before. Here, if we keep 1" constant, it thus makes sense
to examine the effects of varying the polarizability radius ry: the shorter rg,
the stronger the potential. With this in mind, we compute the absorption
spectrum of hBN within the excitonic tight-binding model for various values
of 1y and report the results in figure 4.22] For ry = 30 A, which is more
typical of transition metal dichalcogenides,[75] the peak associated to exci-
ton 2 has become negligible compared to the third peak, itself associated
to the 2s state. The hydrogneoid selection rules seem to be validated. The
case 79 = 10 A corresponds to the fitted value: the second peak no longer
has a neglibible intensity compared to the third one. Conversely, when r( is
reduced to 5 A, the second peak becomes more intense than the third (as in
the ab initio results).

4.5 Exciton dispersion
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Figure 4.22: Evolution of the absorption spectrum of hBN in the excitonic
tight binding model as the polarizability radius of the potential is varied
(kinetic parameters are kept fixed to the fitted values 2A = 7.25 eV and
T = 1.5 ¢eV). In each case, the spectrum is computed from the lowest bound
30 excitonic states, with a lorentzian boradening of 5 meV. As rqy decreases,
the binding potential becomes stronger and so the excitons become more
localized, and therefore more sensitive to lattice effects. The intensity ratio
between the second (“2p”) and the third (“2s”) peaks is an optical manifesta-
tion of this. For dilute excitons (large rg), the lattice effects can be averaged
out, and we are closer to the predictions of the Wannier model, which makes
the 2p states dark. A contrario, for strongly bound excitons, the second
peak becomes more intense than the third. At the same time, because the
potential is increased, the much more strongly bound first peak (1s) further
dominates the spectrum.
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4.5.1 Introduction

Until now, we have focused only on direct excitonic states, i.e. states with
center of mass momentum @Q = 0. Our reasons for this were that only
these states could be bright in absorption: in the limit of vanishing photon
momentum, conservation of momentum requires indirect states to be dark.

However, the above ceases to hold if another interaction can supply mo-
mentum. In solid state, this interaction typically comes in the form of
phonons. This leads to indirect absorption and, more crucially, indirect
emission processes, which are now known to be important in bulk hexago-
nal Boron Nitride. This is because, as was demonstrated experimentally[33,
341, 35] and theoretically[37, B6] these materials have indirect excitonic gaps:
their lowest bound excitons are indirect. Their emission spectrum is therefore
dominated by (phonon assisted) indirect effects.

The description of such effects naturally requires the knowledge of indi-
rect excitonic states. There is thus, at present, a need for simple methods
which can provide access to these states and lend themselves to analysis. We
should mention, of course, that such states can also be obtained ab initio,
but as in the case of direct states, this does not obviate the need for sec-
ond principles methods. This is especially true because recently proposed
diagrammatic methods|[3, [7§] for indirect absorption, in opposition to static
finite difference[37, [36] methods, may require knowledge of the exciton dis-
persion and states over a very fine mesh of Q points close to the excitonic
gap. This is an area where second principles methods, properly adjusted
on a coarser ab initio grid, could even be called upon to play an important
computational role.

Our objective in this section is therefore not to develop a theory of indirect
/ phonon-assisted absorption and emission, but rather, since our excitonic
tight-binding model naturally extends to the case Q # 0, to investigate the
excitonic dispersion of single layer hBN. The study of dispersion in bulk in
the AA’, AB and ABC' stackings, is possible within the same model, and,
along with the monolayer is the object of [48]. However, apart from chapter
[6] which introduces the general theory in the AA’ case, it falls mostly outside
of the scope of the present work and so that for detailed results on bulk hBN,
we instead refer the interested reader to [4§].

4.5.2 Analytical estimates

Before going to the numerical diagonalization of the excitonic hamiltonian at
finite Q, we first try to obtain analytical estimate of the system’s behavior.
In this section, we remain in first nearest neighbors for simplicity.
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Strong potential approximation for the lowest bound states

As per our usual strategy, we start with the strong potential approximation,
in order to obtain a first idea of what can be expected from the model. In
this case, the problem reduces to:

(0 he hg g (T Jiz i3

Hx(Q)=2A+3T+U+ = [hey 0 hog|+—= 721 Jo2 Jog3
2 4QT \ . . :

hsi hss 0 J31 J32 J33

where we have kept to first nearest neighbors in order to obtain a minimal
model, and introduced the notation Q = ||Q||, and h, ;(Q) = 1 + €/ (Ti=73),
In the absence of exchange (J = 0), the lowest two eigenergies read:ﬁ

E(Q)=2A+3T+U-T

E,(Q) = 20 +8T + U~ L (1~ |u(Q))

So that the lowest bound exciton, which is doubly degenerate at the excitonic
I' point, splits in two distinct branches when Q # 0. The lowest branchF_g]
remarkably, is non dispersing. This last behavior, while interesting in its
own right,[79] only occurs here exactly in the strong potential limit where
the electron and the hole are constrained to remain nearest neighbors. The
second branch, however, exhibits a parabolic dispersion close to I':

BAQ) = Ba(T) + T(@r)°

4h?
37712

which corresponds to an ezciton effective mass of ux =

Perturbation

Our interest lies mostly in the behavior of the lowest bound exciton. It turns
out that estimates can be obtained, at the price of some approximations. To
this end, we will follow the perturbation methods discussed in appendix D
of [48]. We work in the subspace corresponding to the lowest bound exciton.

“8The third eigenergie is E3(Q) = 2A 4+ 3T + U + Z(1 — [11(Q)|), but, like at Q = 0,
it is unphysical.

49Recall that |y1(Q)| is maximal at Q = T, so E»(Q) actually increases when moving
away from T.
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For this, it is convenient to chose a chiral basis C = {|¥~), [U*)} such that{"]
<7_’ Q‘\I,i> — KT

for the shortest excitations, which, at Q = 0, reduces to the usual chiral
states. In the strong potential approximation, |V, | = %, while in general,
the excitonic states have other components on excitations with R > 7.

Exchange interaction

Treating the exchange interaction as a perturbation, the associated matrix
elements in the basis C are found to be:

:J|\DT|2< K+ Q) 71(K+Q)71(K—Q)> (4.24)
ArQ \ K+ Q)(K—-Q) (K - Q) '

It is convenient, at this point, to perform a small Q approximation (|Q7| <
1). In this case, we can expand v, (K 4+ Q) to first order in Q around K, and
we find:

Ju(Q)

NEKE£Q)~ Q- Vi—km(k)

) Q-Z‘r KT

~
& ()

and we recognize, up to a factor of ¢, the wavefunction dipole for state |U*):

dg+ =t >, (7|¥T) 7. In analogy, we thus define d, = ﬁdqﬁ, which is

proportional to it, and so we have v, (K £ Q) = Q - d. It follows that:

JUQ-d P [ 1 et
Ju(Q) = AT 0 _ 20 1 (4.25)
M(Q)
where ¢ = @9+ ig 5 Q-dependent phase. Drawing on equation 4.17, we

1Q-d+|
have |Q - d|* = %(QT)2, so that the prefactor is linear in Q).

The matrix M (Q) has 0 and 2 as eigenvalues, so that we expect one non-
dispersing and one linearly dispersing branch, the latter of which is typical
of exchange in two dimensions. [62, [63]

50Recall that the e 7 are third roots of unity, i.e. as 7 runs over the first nearest
neighbor Nitrogen to Boron vectors, they run over {1, w, wz}, so the states defined below
are indeed our usual chiral states. This form makes the following calculations (which we
do not detail) much more straightforward, however. The amplitude ¥, is, possibly up to
a phase, the analogue of the quantity C'y introduced earlier.
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Kinetic dispersion

A similar treatment can be given to the dispersion originating from the kinetic
terms. We can define the perturbing operator h(Q) = Hy(Q) — Ho(Q = 0).
In that case, we have:

%(B’Q'(RLR) — 1) if R and R’ are 1n.n. in A

7 /
(RINQIR) {O otherwise
The situation is therefore a priori more complex, because the kinetic “per-
turbation” is not localised on the shortest excitations, so that the result is
expected to depend on the specifics of the excitonic states in C, and not
just their symmetries. Still, we can adapt the treatment above by assuming
that the states of C have most of their intensity on these excitations and
neglect the rest, i.e. by taking \\IIT|2 ~ % This essentially corresponds to
the strong potential approximation, so we expect results similar to those ob-
tained previously. It is nevertheless interesting to perform this calculation in
the perturbative framework.

By the same methodology as in the exchange case, we compute the matrix

elements of h and obtain likewise:

I e (K + Q) NnK+QmK - Q)
MQ) ~ 7 <7T(K+Q)7T(K—Q) (K - Q)P ) (4.26)

2
in the basis C, and performing likewise a small Q approximation, we find:
T 1 _622'9
n@ = a5

M(Q)

with the same definitions as above. We obtain the same matrix, up to the
prefactor, although crucially the prefactor is here quadratic in (), while it
was linear in the case of exchange.

Once again, because the eigenvalues of M(Q) are 0 and 2, we have one
non-dispersing branch, and one which disperses quadratically in ). Keeping
to the strong potential approximation, we have |¥, *|Q - d;|* = 2(Q7)?, so
that we recover the same effective mass for the dispersing branch as we found
by direct calculation.

Discussion

Overall, the perturbing elements for the “kinetic” terms are quadratic, while
those of exchange are linear. For small values of ), we thus expect dispersion
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due to exchange to dominate along branches which are sensitive to exchange.
Such branches will therefore show a linear dispersion. As we have shown
above, some branches are not affected by exchange at the perturbation level.
For such branches, only the kinetic dispersion then remains, and so we expect
a quadratic dispersion.

The estimates above show that, within the strong potential approxima-
tion, we expect the lowest bound exciton to split into one non-dispersing
branch, and one branch whose dispersion is affected by both exchange and
kinetic effects, although exchange is expected to dominate. Outside of the
strong potential approximation (but still remaining in the perturbation regime),
we have no reason to expect the non dispersing branch not to be affected by
kinetic effects, and indeed, numerical diagonalization of H x(Q) shows that
it does display a parabolic dispersion. Such splitting of doubly degener-
ate states into a parabolic and a linear branch has also been predicted in
MoS,.[64, 62]

Lastly, because exchange matrix elements affect only the shortest elemen-
tary excitations (the |7, Q)), we intuitively expect that the slope of linearly
dispersing branches will be higher for states that are more concentrated, i.e.
for the lowest bound states. This is reinforced by the appearance of |\I/T|2
in the prefactors of equation [4.25] showing that this is the case at least for
the linear branch associated to the splitting of direct exciton 1. Indeed, in
the limit of a weak direct electron-hole interaction (U ), which leads to dilute
states, this prefactor decays and consequently reduces the linear slope of the
dispersion.

4.5.3 Numerical results
Exciton band structure

Let us first present the numerical exciton band structure in first nearest
neighbors. This is done in figure both with and without exchange.
The qualitative features of this numerical dispersion within the tight-binding
model are in reasonable agreement with the analytical expectations of section
and the resulting discussion above. We do note that, while the lowest
excitonic branch is indeed almost unaffected by exchange, it is not flat, but
instead displays a parabolic dispersion originating from the kinetic terms.
As discussed above, we expect this branch to flatten (only) in the strong
potential limit: here, it is the fact that the state is extended which allows for
dispersion.

A comparison with ab initio calculations by L. Sponza is provided in [48].
It is shown in figure Satisfying agreement is found for the dispersion of
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Figure 4.23: Exciton dispersion for single-layer hBN computed by numerical
diagonalization of the excitonic tight binding hamiltonian Hy, in first nearest
neighbors. We used the same parameters as in the direct case, with the
addition of J = 5 eV to reproduce exchange. At each value of Q, only the
8 lowest energy states were retained (so that, at excitonic I', only states
of table are shown). Dashed black lines: dispersion without exchange
(J =0). Solid red lines: full dispersion.
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the lowest two branches, although the quality of this agreement quickly wors-
ens for higher energy states. This can be traced back to two reasons. First,
at higher energies, the simple approximations of the tight-binding model be-
gin to fail. Secondly, ab initio calculations reveal that these excitons contain
significant components from the nearly free electron states, which cannot
be captured at all in the w-bands based tight-binding model. To reproduce
the observed linear dispersions in the ab initio bands, a value of J ~ 5 eV
was found. The “exact” value of the prefactor in equation is therefore
an overestimate (at least for our values of the other parameters and current
approximations), although the associated functional form appears satisfying.

Figure 4.24] also displays the effect of adding second nearest neighbors,
by taking ¢tV = t7P = —0.1 ¢V. While we have seen that such an addition
yields almost no correction to the excitonic hamiltonian at Q = 0, it clearly
affects the excitonic dispersion. The origin of this distinction can be seen

in equation 1.8 at Q = 0, the effective hoppings between nearest neighbor
2

o t t2
excitations reads as T. + Ty, where T = % — tYV and T) = 3% + ¢75,

so the effects of second nearest neighbors hgépings compensate each other.
Pictorially, if t78 =tV < 0, the fact that the effective hopping for electrons
becomes weaker (ie. that the conduction band becomes flatter, or from an ef-
fective mass point of view, electrons becomes heavier) is compensated by the
fact the effective hopping for holes becomes stronger (likewise, the valence
band increases in curvature, i.e. the holes become lighter). When Q # 0,
however, the effective hoppings become 77 + T;’LeiQ'(R/_R), and the phase fac-
tor associated to the effective hole hopping breaks this compensation effect.
From the electronic point of view, the situation is that we do not just have to
accurately reproduce the transition band at Q = 0, a task which can be ac-
complished satisfactorily even if the bands are not reproduced faithfully, but
for all values of Q, which is practically equivalent to a correct reproduction
of the bands.

Evolution of the states and remarkable Q-points

The evolution of the wavefunctions of the lowest bound states is discussed
in [48], and depicted in the lower panels of figure In this section, we
focus on the situation at the excitonic high-symmetry points M and K. The
situation at I' corresponds to the direct excitonic series, which has been been
discussed at length in section [4.4]

Let us start with the lowest bound state at K. It can be seen that its
binding energy is practically equal to the energy of the doubly degenerate
1s subspace at I', and likewise its density is almost the same, even though
its is singly degenerate. The coincidence in binding energy is expected on
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ab initio
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Figure 4.24: Figure reproduced from [48]. Top panel: exciton dispersion for
single layer hBN along T'M and T'K. a): ab initio dispersion by L. Sponza.
b): tight-binding dispersion (same parameters as figure[1.23|excpet for second
nearest neighbors). The solid black line corresponds to first nearest neighbor
hoppings with exchange, while the dashed red line corresponds to J = 0 (no
exchange). The solid blue line corresponds to )Y = t#8 = —0.4 eV (both
denoted as to; in [48]). Bottom panel: tight-binding excitonic densities for
the lowest bound pair, along TM (left) and 'K (right). At I', where the
statates are degenerate, the direction of Q is shown as well as a direct space
unit cell (red hexagon).
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electronic grounds. Indeed, the vector I'K connects neighboring K and K’
points, i.e. two valleys, and by time reversal symmetry, the transition energy
between, say, the valence band at K and the conduction band at K’ is the
same as the direct transition energy at, say, K.

The correspondance of their densities is straightforwardly understood
within the strong potential approximation, directly or from the perturba-
tive treatment. The latter provides a straighter route: we are not at “small
Q7, so we turn our attention to the matrices of equations and At
Q = K, we have (K + Q) = 0, while (K — Q) = 7 (I") = 3, and so both

are of the form:
00
01

in the basis C = {|¥~), |¥*)}. As a result, the lowest energy state is just the
chiral state, |V~ (K)) = 3, e 7 |7 K), which indeed has the same density
as the “1s” direct state.

The situation at M may also appear peculiar: there, the system’s eigen-
functions become “elongated”. This can be easily understood by noting that
the effective kinetic hoppings between neighboring excitations are of the form,
in first nearest neighbors:

A T ) )
<R7M|H0|R/’M> — 5(1 + QZM‘(R —R))

so that there are effectively six different values of the hoppings, one for each
nearest neighbor direction in A, or, more preicsely, three values and their
three complex conjugates. What happens at M points is that two of the
aforementioned three kinetic hoppings vanish: this is the 2D analogue of
what happened in one dimension in the chain at Q = X. As a result, the
effective tight-binding system becomes, in the absence of exchange, a collec-
tion of parallel, uncoupled linear chains. The “elongated” wavefunctions are
therefore nothing but the eigenfunctions of these chains. In a more realistic
treatment, exchange interaction, as well as second nearest neighbors break-
ing the exact compensation of electron and hole hoppings, are expected to
couple the chains, but the signs of the phenomenon are still apparent.
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Chapter 5

Multilayers

The contents of this chapter are based on [38].

Having now a better understanding of single-layer Boron Nitride, we turn
our attention to multilayers, i.e. coupled hBN layers. It is indeed relevant
to study their excitonic and optical properties, since experimental results
have been obtained in the synthesis and characterization of few layer BN
systems.[80), T, 82, [35] We must note that other studies on this topic have
already appeared in the litterature for hBN (see notably [83]) although a
majority of these works has focused on single layer or bulk-like systems.

Our aim in this chapter is therefore to investigate the excitonic and optical
properties of few layer hBN systems, with a particular attention to the surface
effects that arise due to their lack of translational invariance in the stacking
direction. We will notably focus on the splitting of the first monolayer peak
and its evolution as the number of layer is increased, since it is the most
prominent feature of the system’s absorption spectrum.

By way of introduction to the phenomena at play in this chapter, let us
consider N identical systems, S;...Sy. If we keep them sufficiently distant
so that they do not interact, then all of them have the same eigenstates and
eigenenergies: if we consider an energetically well separated, nondegenerate
eigenstate of Sp, then the full system will have a degenerate eigensubspace of
dimension N. As the individual systems are brought together, they will start
to interact, and this degenerate subspace will split in up to N eigenstates of
the full system. An example of the case N = 2 is what happens when two
hydrogen atoms are brought together: when they are far from each other,
they each exhibit a 1s orbital (disregarding spin) at the same energy, and
as they are brought together, these orbitals combine into a bonding and
antibonding pair, which are energetically split.

This is a simplified description of the notion of Davydov splitting, which
was first introduced to describe the splittings of energy levels in clusters

133
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of identical molecules,[84] and was also applied to molecular crystals.[85]
Likewise, one can consider a stack of identical layers of two dimensional
materials, and Davydov splitting of phonons has indeed been reported in
few-layer systems of transition metal dichalcogenides.[86], 87, [8§]

Here, our identical systems are naturally the hBN monolayers, and we
are interested in the Davydov splitting of excitons. Our goal is to identify
the interactions between the layers and their consequences.

5.1 General tight-binding model

5.1.1 Crystal lattice

For both concreteness and simplicity, we will focus here on the AA’" stack-
ing of multilayer hBN, which appears to be the most common. We must
note, however, that other stackings, notably AB (Bernal)[89] and ABC
(rthombohedric)[90] are also observed in experiment and are therefore also of
interest. In fact, the tight-binding model can be straightforwardly adapted
to other stackings, and, as we have already mentioned, this is done for bulk
systems in [48].

AA’ hBN can be described as follows: consider a set of N parallel single
layers of hBN, stacked onto one another such that two consecutive layers are
heads to tails, i.e. the Boron sites of layer n + 1 are on top of Nitrogen sites
of layer n, and the Nitrogen sites of layers n+ 1 are are on top of boron sites
of layer n. Technically, the interlayer distance does not need to be a fixed
quantity[]] but within this chapter, we consider it fixed] To set notations,
we therefore let 7 and d be the nearest neighbor B-N distance and interlayer
spacing, respectively. We depict the AA’ bilayer in figure for illustration.

Formally, the multilayer system has a triangular Bravais lattice, R, which
apart from its parameters can be taken to be identical to that of the mono-
layer. The difference is that it has a basis of 2V sites in its unit cell: one

'Not only does it a priori depend on N, couple of consecutive layers since there is no
translation periodicity in the stacking direction.

2This is done for a number of reasons. First, it is not necessarily trivial to accurately
relax the geometry of large multilayers ab initio. Second, taking such a phenomenon
into account would require distance dependent hoppings in the semi-empirical electronic
tight-binding models, which adds significant complexity whose benefits may be dwarfed
by the other sources of error (single particle band structures, finite range hoppings, etc.).
Lastly, we will anyway only treat the AA’ bilayer explicitly before introducing a qualitative
1D model for N > 2, and so we would not benefit from such complications. On the
ab-initio side, the in-plane lattice constant was fixed to the optimized bulk value a =
V37 = 2.496 A [73] while the interlayer distance was set to the experimental bulk value
d = 3.305 A.
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%,
\d)/

Figure 5.1: Schematic crystal structure of hBN bilayer in the AA’ stack-
ing. Filled circles represent Nitrogen sites (A), while hollow circles represent
Boron sites (B). Lines (dashed and solid) connect in-plane B — N nearest
neighbors. The bottom layer is schematized in black, while the top layer is
schematized in red. In a top view Boron sites of the top layer would be right
above the Nitrogen sites of the bottom layer, and vice versa. Inset: partial
side view; e, is the stacking direction and the dashed orange line connects
an interlayer first nearest neighbor B — N pair.



136 CHAPTER 5. MULTILAYERS

Boron and one Nitrogen atom per layer. We denote their positions by m?v’a
for the Nitrogen (hole type) sites and nf 4 for the Boron (electron type) sites,
where «, 5 € [1, N] are layer indicesﬂ They may naturally be taken such
that {1

Vn S H17 N — 1]]a m(]]V,n+1 = noB,n + d ; noB,n+1 = m?\f,n + d

with m%, ; and n% ; lying in an (zy) plane and d = de.. To fix notations, we
will thus consider that the layers are parallel to the (Oxy) plane, and thus
that e, is the stacking direction. This lets us define the Nitrogen (hole) and
Boron (electron) sublattices:

AA@ =R+ m?\m
AB7B - R + n%’ﬁ

From a symmetry point of view, the point groups of multilayers depend on
the parity of the number of layers, N. If N is even, the system has inversion
symmetry, and has the D3y point group, while if N is odd, it has a mirror
symmetry about the central layer, and therefore has the Ds;, point group.
We will later see that this inversion / mirror symmetry plays a central role in
the determination of selection rules for multilayers, which consequently also
depend on the parity of N.

Finally, let us spare a word for the situation in reciprocal space. The
Bravais lattice R of multilayers is still triangular, exactly like the one of a
single monolayer. The only difference is the unit cell basis. Therefore the
reciprocal lattice and the Brillouin zone geometry remain the same as in the
monolayer case. In particular, both the real (Bravais) and reciprocal lattices
remain two dimensional.

5.1.2 Electronic Hamiltonian

Having described their geometry, we are now positioned to give a general de-
scription of the electronic structure of hBN multilayers. Since we will restrict
ourselves to direct states in this chapter, and in the interest of simplicity,
we shall restrict ourselves to a first-nearest neighbor tight-binding model, al-
though it is straightforward to extend the following to include second nearest
neighbors.

For the same reasons as previously, we consider a basis of nitrogen (A)

and boron (B) p, orbitals, {|A,, m), ]Bﬁ,n)}aﬁe[[w], where a, f € [1, N]

3The double bracket notation [1, N] is used to denote the set of integers from 1 to N
(both included).
4But of course, this is by no means the only possible choice.
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are layer indices, N is the number of layers, and m and n run over the
associated nitrogen and boron sublattices (respectively). In this basis, the
general form of the tight-binding Hamiltonian ]fléel)

as follows:
(Aa, m| A |A,m) = —A
(Bs,n| Ay | Bg,m) = +A

for hBN multilayers is

t, if m,n are in-plane 1n.n. (5.1)
(Aq, m|ﬁéel)|B@, n) = ¢t if m,n are out-of-plane In.n.
0 else

where A,t, and ?) are the kinetic parametersﬂ As usual, we assume our
basis of atomic orbitals to be orthonormal.
We can define the corresponding tight-binding basis functions:

——= e M| A,, m)
T

|B 7 —ik'n |Ba7 I1>
B \/— Z

neAp B

|A0mk> =

where M is the number of unit cells (equivalently, the number of Boron or
Nitrogen atoms in a given layer), so that |u., k) is the tight-binding basis
function corresponding to the atoms of type u = A or B in layer «. It is then
possible to construct the integral transfer matrices, whose diagonalization
yields the band structure of the system. While instructive, this step is not
directly needed: we can formulate the excitonic Hamiltonian through second
order perturbation theory starting from the direct space matrix elements
given in equation [5.1} This is particularly useful here, since the integral
transfer matrices are of dimension 2N, and quickly become unwieldy.

5.1.3 Excitonic Hamiltonian

As per our previous strategy, we wish to define a basis of elementary exci-
tations in which we can recast the Bethe-Salpeter Hamiltonian (neglecting
exchange):

Hy =Hy+U

5We have used the symbol L to denote in-plane quantities, because they are associated
to vectors perpendicular to the stacking axis, while the symbol || has been chosen for out-
of-plane quantities, which, in the case of the out-of-plane first nearest neighbor hoppings
in most stackings, corresponds to vectors which are parallel to the stacking axis. This is
the opposite of the notation chosen in [38], but follows the one of [48].
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We proceed, as usual, by approximating the electronic Hamiltonian H (el)
by separating it into an effective low energy (hole) Hamiltonian H; and an
effective high energy (electron) Hamiltonian H., so that:

Hy=1,® H.— H,® 1, (5.2)

which, as mentioned above, are obtained from second order perturbation
theory by considering the hopping elements ¢, and ¢, as perturbation, so
that{f]

. t 2
= 5 (e G m) + i) ) m) fom
meAy
- Y Eamem- Y S em)
cma'>, 2 <m,m’> 2
t
>k lam) (ol | (5.3
[ »nfh

Aom (A SN + M) 1) 5

neA,

tit
Y Bpmeats X m

<nn’> <n,n’ >

+ X 3 il 18 (0| (5.4)

[nn]”

where < -,- > (resp. < -,- >|) denotes summation over in plane (resp. out
of plane) nearest neighbors of the same species, and [, -] | denotes summation
over vertical neighbors of the same species between second nearest layersﬂ
N () (resp. Nj(-)) denotes the number of in plane (resp. out of plane)
nearest neighbors of the opposite species (boron for nitrogen and nitrogen
for boron).

The quantities N\ (-) and Nj(-) depend on the geometry of the system,
and thus on the stacking of the layers. In the case of the AA’ stacking, we

5In the equations below, we omit the A and B sublattice indices and write |a, m)
for the hole state associated to |A,, m), and |3, m) for the electron state associated to
|Bg, m). In any event, H, operates only on the hole subspace and H, only on the electron
subspace.

"For simplicity, we will often neglect these terms, given that they are off-diagonal
elements in the a priori weakest hopping tﬁ.
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get:
/\/l(n) =3

2 if n belongs to the inner (2 to N — 1) layers

Njj(n) = {

1 if n belongs to the outer (1 and N) layers

N (n) and N(n) are, in fact, the in-plane and out-of-plane (respectively)
coordination numbers for the site n, or, in other words, its number of in-
plane or out-of plane nearest neighbors. This is why A (+) is constant, as
it is fixed by the monolayer structure (it is, in fact, the quantity n from the
previous chapters). On the other hand, N(-) is variable: sites in the surface
layers only have one out-of-plane nearest neighbor (one above or one below),
while atoms in the inner layers have two (one above and one below). Each in-
plane nearest neighbor of an electron sites (resp. hole) contributes 2 /(2A)
(resp. —t% /(2A)) to its effective kinetic onsite energy, while each out-of-plane
nearest neighbor contributes ¢{/(2A) (resp —tf/(2A)). Note that, in the AA’
stacking, these coordination numbers of a site depend only on its layer index.
It follows from equation [5.2| that the pair states |A,, m) ® |Bg, n) involving
a site on the surface layer will have a lower kinetic onsite energy than states
which do not. In particular, the difference in effective kinetic onsite energy
between a state for which both the electron and the hole are in the surface
layers (o, 8 € {1, N}) compared to one where both the electron and the hole
are in the inner layers (a, 8 € [2, N — 1]) is ¢{/A, which we will see has an
order of magnitude of about 0.1 eV. This effect is therefore quite significant,
and will have important consequences on the splitting of excitonic states.

To proceed, let us recall the interpretation of states of the form |A,, m)®
| Bg,n): they are localized electron hole-pairs, with the hole in layer o and the
electron in layer 3, separated by a hole-electron vector R = n —m. To move
to the representation of elementary excitations, our strategy is to construct
tight-binding basis functions of translationally equivalent pairs. In the chain
and in the single layer case, this meant grouping the pairs of common R,
as they shared the same matrix elements for the direct interaction and were
translationally equivalent from the point of view of the kinetic Hamiltonian.
In a multilayer system, however, this is no longer the case, because not all
layers are translationally equivalent. The simplest way to generalize this
strategy is to keep track of the layer indices. For all pairs («, 3) € [1, N]?,
we can construct excitation sublattices:

0
Aavﬁ = ABvﬁ - mN7a
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and for all R € A, g, naturally build the tight-binding basis functions:

Ras,Q) = \/_ > e ™4, m) ® |Bsg,m+R) (5.5)

mEAA

which are the (generalization of the) elementary excitations for multilayer
systems: note how such a state is indeed composed of translationally equiv-
alent pairs from the excitation sublattice A, 3. The lattice of excitations is
then the union of all the excitation sublattices:

A= U {Ras / Relys}
o,B€E[1,N]

where we have purposefully introduced indices because the A, g are not nec-
essarily disjoint. Since we will work mostly with direct states here, we set
the notation |R, ) = |Ras,Q = 0). Likewise, when there is no ambiguity,
we will write |a, m) for a hole state localized in layer «, and |3, n) for an
electron state localized in layer f3.

Using the matrix elements of equations [5.3] and [5.4] as well as definition
5.5} it is then straightforward to express the matrix elements of the Bethe-
Salpeter Hamiltonian (neglecting exchange):

ﬁX:ﬁO—i—U

in the basis of elementary excitations. We find, for the kinetic Hamiltonian
(respectively for the diagonal and off-diagonal elements):

A 2 A

if R and R’ are In.n. with o« = o/ and 8 =

if R and R’ are In.n. with (|[o/ —a|=1) VY (|8’ = 6| =1)
if R" — R = +c with (Jo/ —a| =2) Y (| — 8| =2)

A
0 otherwise

(Ras|Ho|Ra) = 2A +3

(B PN

il

(Rl R ) =

(5.6)

where V is the “exclusive or” logical Symbolﬁ and the notion of first nearest
neighbors (“In.n.”) is to be understood in the lattice of excitations, A. The

8Which is to say that, if p and ¢ are propositions, p ¥ g is true in two cases: p is true
and q is false; p is false and ¢ is true. It is false in all other cases: both p and ¢ are false;
both p and ¢ are true. Physically, we are expressing here the fact that the hoppings of H,
only contains terms where either the hole or the electron “moves”, but not both at the
same time. A fortiori, only one of them can thus “change layers”, so that a hopping can
happen between excitations which differ either in « or in 3, but not in both.
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potential remains diagonal in the basis of elementary excitations:
(Ras|U|RY 51) = Orpr00005 5 Vo s(R) (5.7)

Here, the V, g are model potentials to be specified, and B(«, 3) is a geomet-
rical factor, given in the AA’ stacking by:

if o, 8 € {1, N}

ifa € {1,N} and g € [2, N — 1]

it fe{l,N} and a € [2, N — 1]
ifae[2,N—1]and g € [2,N —1]

B(a,p) = (5.8)

-~ W W N

This term relates to the out-of-plane coordination numbers of the hole and
electron sites of the layers a and [ respectively. In fact, we have:

Bla,B) = Nj(m},) + A7 (n )

so that B(a, ) counts the total out-of-plane coordination numbers of a pair
involved in an excitation of the type |Rq, ).

5.1.4 Discussion

The direct excitonic Hamiltonian, given in the basis of elementary excitations
by equations [5.6land [5.7)is a priori more complex in the multilayer case than
in the single-layer case, and therefore requires some discussion.

Lattice of excitations

Let us first examine the lattice of excitations A. In the single layer case,
the set of hole-electron vectors in A is a triangular lattice with the origin
chosen at the center of one triangle, and then attaching to each excitation
site the corresponding amplitude (R, s|¥) of the excitonic state yields (to
zeroth order) the usual fixed hole representation of excitonic states in direct
space. This is because, in the monolayer, all lattice positions of the hole (that
is to say, all nitrogen centers) are equivalent. In other words, the lattice of
exciations is just Ag; = Ag — n%, where Ap is the (triangular) lattice of
Boron sites n%; is any Nitrogen / hole site position.

In multilayers, this is no longer the case: while it is still true that all
positions of the hole within a given layer are equivalent, the layers are trans-
lationally inequivalent, and as a result one has to sweep the position of the
hole over all layers in order to reconstruct the full symmetry of the wave-
function. We may picture the situation as follows: for each couple of layers
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(e, B), select one hole position, say m?vﬂ in layer v (the exact position chosen
does not matter, as all hole positions within that layer are equivalent), and
then consider all the electron hole vectors from this position of the hole to
the possible electron positions (that is to say, all the boron centers) of layer
B, Aps = R+n} . The set of hole-electron vectors associated to the couple
(ar, B) is then simply the shifted triangular lattice R + nf ; — mY ,, which
is by definition the excitation sublattice A, g: the set of all possible vectors
from a hole site in layer « to an electron in layer . It is important to note,
at this point, that the geometrical sets A, g are not necessarily disjoint: a
given hole-electron vector can be realized in several pairs of layers, and so
different excitation sites might have the same position in the lattice’] This
is the reason why the points of the lattice of excitations, A, must be labeled
by the indices (, )]

The existence of these several excitation sublattices, or, more directly,
the inequivalence of the different hole positions, points at a possible problem
in the practice of fixing the hole at one given position when representing real
space excitonic wavefunctions. Indeed, by setting the position of the hole in
a given layer, this amounts to fixing a to a certain «g, and “projecting out”
all excitations outside of the sublattices A, g. This may be extremely prob-
lematic, because there is no a priori guarantee that the amplitudes (R, 5| V)
alone are representative of the full state |¥), and often they are not (we will
present examples). An accurate direct space representation of an excitonic
state therefore requires sweeping over all possible values of o (and, implicitly,

B).

5.2 Bilayer

To make things concrete, and also because it already displays effects which
are important for the general case, we start by discussing the N = 2 case.

5.2.1 Electronic structure

As we already stated, we do not strictly need the electronic bands, but we

include them here for completeness. The integral transfer matrices are ob-
tained by the usual procedure, and, in the {|By,k) ,|A1, k), |Bs, k), | A2, k) },

9In an AA’ trilayer, for example, the geometrical excitation sublattices A; 1 and As 3
contain the same vectors. The situation thus appears as soon as N > 3.

10The situation is formally similar to that of a multi-orbital tight-binding model, with
the layer indices («, 8) playing the role of the orbital index, although this perspective does
not appear particularly useful here.
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read:
A tim 0 1l
) _ [im® =A 0
A4’ 0 L A tim*
t” 0 tJ_’Yl —-A

where v, has its usual definition:

nk) =) ™7

T

where the 7s are the first nearest neighbor Nitrogen to Boron vectors in layer
1. From there, the band energies are found:

Bup (1) = 519/ 8% + (1) + saltn (09)]) (5.9)

where s1, 59 € {—1; 1} are signs: as expected, there are two conduction bands
(s = +1), and two valence bands (s; = —1).

Since 71 (K) = 0, the conduction and valence bands are twice degenerate
at K, and the transition energy between valence and conduction band at K
is simply Ex = 2,/A? +t;?. However, contrary to the monolayer case, the
direct electronic gap is typically not at K, as can be seen easily from a plot
of the bands. Still, the value of the gap can be readily obtained from the
expression of the band energies. Indeed, up to a redefinition of sy, we can
replace t| by gt’ in the expression for Ej, 4, (k) so that the upper valence
and lower conduction bands both correspond to sy = —1. It is clear that the
lowest direct transition energy is between these bands, so that we have to
minimize:

SE(k) = 2\/A2 + (‘t”’ — \twl(k)\)Q

which is clearly bounded from below by 2A. This bound is met if and only
if there exists some k such that |y,(k)| = ’:—‘i , which is guaranteed as long

as ‘f—'i’ < 3 For physical values of ¢, and ¢, this condition should always
hold, so that within the first nearest neighbors approximation, the direct
electronic gap is still:

E, =2A

HBecause 7, is continuous on the 'K segment (which is a compact space), it follows
from the intermediate value theorem that |vy;| takes every value between |y1(I')| = 3 and
|71 (K)| = 0on TK. A fortiori, this also guarantees that the gap is realized on the triangle
T'MK where the bands are plotted. One such particular point where the gap is realized

is given by k4 :K%arccos (—% + %’%‘D %K(l — 2—\/5 tt—'i )
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In figure [5.2) we plot the tight-binding bands and transition energies, using
parameters obtained from a fit on the ab initio exciton binding energies (same
procedure as the monolayer, see next sections for details). The corresponding
GW band structure computed by F. Paleari is also plotted for comparison. [38]

As we have already mentioned, this kind of fit on excitonic binding en-
ergies implicitly “sees” the transition energies rather than the bands. It
produces a reasonable agreement in the neighborhood of K and in the MK
region.@ As in the monolayer, in addition to the m bands, ¢ and nearly
free electron bands are visible in ab initio results, but they are likewise not
expected to contribute much to the optical properties. We should point out
that, since we only kept first nearest neighbors, the transition energies from
the lowest valence band to the lowest conduction band and those from the
highest valence band to the highest conduction band are found equal, so that
the “middle” transition band is twice degenerate in tight-binding. This is not
the case ab initio, where a small splitting can be seen. In tight-binding, the
degeneracy may be lifted (away from K) by the inclusion of out-of-plane
second nearest neighbors. However, the inclusion of in-plane second nearest
neighbors alone, even though it breaks the electron-hole symmetry, is not
enough to lift this degeneracy in the transition band structure.

5.2.2 Excitonic Hamiltonian

The excitonic Hamiltonian is the one of equations [5.6| and for N =2. Tt
reads:

2
i
A

2

% if R and R’ are In.n. with a = o/ and 8 =
<Ra,5’HX‘R/ar75/> = % if R and R’ are 1n.n. with (|[o/ —a|=1)V (|’ — 8] =1)

0 otherwise

(RoslHx|Rag) = 2A +3t, + - + Vo 4(R)

(5.10)

We have B, s = 2 for all o, 3, since there are only two layers, which are
image by inversion of each other so that all coordination numbers are the
same (equivalently, there are no specific surface effects because all layers are
surface layers). Likewise, there are no second nearest layer hoppings because
there are only two layers.

12Tt would be possible to fit the kinetic parameters directly on the band structure. It is
then possible to get a better fit of the valence band at least, but this has the tendency to
deteriorate the agreement with the ab initio transition energies.



5.2. BILAYER 145

125F

10.0Ff )
8
_ 75t s
S 884
S
> 5.0}
g ® Ab initio
& 25} 8
©
C
©
[aa]

14}

13

12

11

10

Transition energy (eV)

® Abinitio
— TB

Figure 5.2: Band structure (top) and transition energies (bottom) for bilayer
hBN in the AA’ stacking. Ab initio data (red dots) is taken from a GW cal-
culation by F. Paleari,[38] while tight-binding data (solid lines) corresponds
to equation [5.9. Parameters used were A = 3.48 eV, t;, = —2.31 eV and
t = 0.685 eV, obtained from the ab initio gap and a fit on the ab initio exci-
ton binding energies. In the absence of second nearest neighbor out-of-plane
hoppings, the transition energies from the lowest valence band to the lowest
conduction band are the same as the ones between the upper valence band
to the upper conduction band. For this reason, the “middle” tight-binding
transition band is twice degenerate here.
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The lattice of excitations, A, over which Hy is an effective tight-binding
Hamiltonian, can be decomposed into four excitation sublattices, viz.:

AMi=R+T1
Ao=R—-T7
As=R+d
Ay =R —-d

where 7 is any Nitrogen to Boron first nearest neighbor vector of layer 1. As
a specificity of the N = 2 case, they are all disjoint. Note in particular that A
is thus composed of three planes: A;; and Ay, are in the z = 0 plane, while
A1 and Ay are respectively in the z = d and 2 = —d planes. This lattice
of excitations, along with the effective hoppings defined by f]o, is depicted
in figure [5.3|

By definition, sublattices of the form A, , contain only intralayer tran-
sitions. We therefore call them in-plane (IP) sublattices, and excitons who
are mainly composed of excitations from these sublattices are called in-plane
excitons. Conversely, the A, g sublattices such that a # [ correspond to
interlayer transitions, which transfer charge from one layer to the other. We
thus call these sublattices the interlayer (IL) sublattices, and the excitons
mainly composed of these exciations are called interlayer excitons. Note that
neither A;; and Ago, nor Ay 5 and Ay can interact directly with each other,
as Hy contains no hoppings that connect them, and U is diagonal. Thus, the
in-plane sublattices can only interact with each other through a second order
process via the interlayer sublattices, and vice versa.

Because N = 2 is even, the system has the D3; symmetry group, which
includes inversion. The two in-plane (resp. interlayer) lattices are image of
each other by inversion. This yields a constraint for the model potential:

VR € A1, Via(R) =Vas(—R)
VR € Ao, Via(R) =151 (—R)

i.e. Vi1 = Vs and Vi = V51 when seen as radial model functions.

5.2.3 Simple model for Davydov splitting

Among all electronic parameters, the weakest one is a priori the interlayer
hopping, ¢, or equivalently, out of all excitonic kinetic parameters, 7} is the
weakest. Crucially, however, these parameters describe the coupling between
the layers (from the electronic point of view) / the excitation sublattices
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Figure 5.3: Lattice of excitations (with sublattices) and excitation hopping
scheme for bilayer AA". This is (up to completion by periodicity and addition
of the potential, which we have not depicted here) the effective tight-binding
problem associated to the excitonic Hamiltonian [5.10] Note that this is a
top view; the system is composed of three planes: A;; and Ag s, the in-plane
sublatices, lie in the z = 0 plane, as they correspond to in-plane excitations,
while the interlayer sublattices A; o and Ay lie respectively in the z = +d
and z = —d plane. Dots and circles correspond to excitation sites. Solid
lines denote in-plane hoppings, of amplitude T, = %, which happen within a
sublattice. On the other hand, dashed lines represent out-of-plane hoppings,
of amplitude T} = %, which connect different sublatices. Pictorially, they
correspond to hoppings in which either the electron or the hole (but not both)
“changes layers”. Importantly, such hoppings only connect the interlayer
sublattices to the in-plane sublattices: there is no (direct) connection between
Ay 1 and Ag o, nor between A 5 and Ay ;. Colors do not correspond to physical
quantities and are used only to distinguish features which would otherwise be
superimposed in top-view: for this reason, the sites of, and hoppings within,
to and from sublattice Ao, have been colored in blue.
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(from the excitonic point of view). We will show, in this section, that treating
either as a perturbation yields a simple model for the Davydov splitting of
the bilayer statesﬁ Suppose, therefore, that ¢ = 0 (or T = 0 while 2A
and T are kept fixed), and let H| be the resulting excitonic Hamiltonian.
Then, all sublattices decouple, i.e. H | is block diagonal with respect to the
sublattices. It is convenient (and possible), at this point, to define a basis
By of H, such that all its components have nonvanishing amplitudes on only
one sublattice, and such that the eigenvectors for the Ay 5 and Ag; blocks are
images by inversion of those of the A;; and A; 2 blocks respectively. Within
this basis, we can speak in a well defined manner of the sublattice of a given
eigenstate, and of its (strictly) in-plane (IP) or interlayer (IL) character.
We now aim to re-introduce ¢ (or 7j) as a perturbatlon of H,, and thus

define the associated perturbing Hamiltonian H | = H x — H . Since each of
the (decoupled) sublattices is its own tight-binding problem of Cj,, (for the
in-plane sublattices) or Cg, (for the interlayer sublattices, and thus a fortior
also C3,) symmetry, the corresponding eigensubspaces are of dimension 2
for E-type states, and 1 for the others. Since sublattices come in inversion-
equivalent pairs of two, the eigensubpaces of H | are therefore of dimension
4 for E states and 2 for all others, barring accidental degeneracies.

We first consider the latter case. Let therefore &y = {|W¥;),|Ws)} be an
eigensubspace of H, with unperturbed energy Fy, where |¥;) and |Wsy) are
extracted from By and therefore images of each other by inversion. Note that,
by construction, |¥;) and |¥9) must both be of the same character (in-plane
or interlayer). Second order degenerate perturbation theory allows us to
build an effective Hamiltonian Hy to express the effects of the perturbation
ﬁH in this basis:

H—Eﬂ-‘-”ﬂ—{— 91,1 91,2
v v A (912 92,2

where the second order terms are given by:

= 3 (Wil Hy ) gl Hy 195)
1,7 -
10)<Bo Ev = By
E.#Ey

(5.11)

Leveraging inversion symmetry, it can be shown that g1 = ¢22 and that
g12 € R, so introducing the notations gg = ¢12 and hy = g1,1 = g2,2, We are

BWhich parametrization we choose is a matter of preference in interpretation here:
both are equivalent, and the zeroth-order (H,) and the perturbating Hamiltonian (H )
are the same in both cases, so it makes no practical difference. Were we taking further
nearest neighbors into account, H, would be chosen to contain the on51te energies and
the in-plane hoppings (with out-of plane hoppigs set to zero), while H = — H, would
contain the out-of-plane hoppings.
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left with: )

N t 0 1

H\p = (E\I/—FA—i-h\p)]l—f‘g\p (1 0)
from which it is clear that the states split into an even and an odd excitonic
state, [U.) = (|¥,) £ |¥,))/v/2, with energies:

t2
E@,i:Ew%m\pig@,

and this constitutes the Davydov splitting, with amplitude sy = 2|gy|. Note
that by construction of By, |V,) is even (gerade) with respect in inversion
symmetry, while |U_) is odd (ungerade). Which one of the odd or the even
state is lowest in energy depends on the sign of gy.

For zeroth-order states of E-type, g is of dimension 2 x 2 = 4. In this
case, we choose the corresponding eigenbasis such that the components on one
of the sublattices are chiral, while the components on the other sublattice
are their image by inversion. Because fI” has the full symmetries of the
system, and in particular the C5 symmetry, it can only couple states of the
same chirality (i.e. of the same irreducible complex repesentation of Cj),
and therefore the corresponding 4 x 4 effective Hamiltonian obtained from
perturbation theory is block diagonal with respect to chirality. These two
“chiral blocks” are complex conjugates of one another, and so both chiral
components have the same energy corrections. Possibly up to a change of
basis (moving to a real basis), this lets us recover the same formalism as
in the non-degenerate case. In-particular, our pair of E-type states splits
into one even E, exciton (twice degenerate) and one odd E, exciton (twice
degenerate). This will have rather important consequences in terms of the
optical properties of the system, as group theoretical selection rules for the
D34 point group mandate that, for light polarized in-plane, only F, states
can be bright.

Because H, | contains only out-of-plane hoppings, i.e. excitations between
in-plane and interlayer excitations, the expression of the coupling matrix ele-
ments, gy, given in equation [5.11] shows that only interlayer states contribute
to the splitting of in-plane states, and wvice versa, as noted by Koskelo and
coauthors. [83] In addition, only eigenstates of H, of compatible symmetries
can couple, i.e., since ﬁ|| has the system’s symmetry, excitons transform-

ing according to the same representation of Dsy. Further, from the matrix
. 2

elements of H), we have that gy oc (%) , so that the amplitude of the

Davydov splitting scales as tﬁ in the perturbative regime. This, as well as

the fact that the splitting is a second order phenomenon in H | can be traced
back to the fact the hoppings in H, | do not allow for the motion of both
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the hole and the electron at the same time, or, equivalently, that in-plane
(resp. interlayer) sublattices not directly connected to each other, but only
indirectly through the interlayer (resp. in-plane) sublattices. Pictorially, to
connect two states of the same character (in-plane or intelrayer) one must go
through two “consecutive” hoppings: one for the electron, and one for the
hole, and, in doing so, go through states of the opposite character.

Formally, if we limit the coupling described in equation to neighbor-
ing states of energy E,, the amplitude of the splitting reads:

ko T}
By — E,

S\I/ZQ‘

where ky ~ 7 (U, |H i[¥2) is a dimensionless quantity. The numerical diag-
i

onalization of Hy shows that, at least early in the excitonic series, F states
exhibit a lower Davydov splitting than A states. It also shows that inter-
layer states of E' symmetry do not occur until relatively high energies, while
in-plane and interlayer A excitons both appear early and at comparable en-
ergies. Assuming ky to be roughly constant, this may give some qualitative
understanding as to why, at least early in the excitonic series, the in-plane
E states are less split than the A states.

We must close this section with a caveat: the description of the influ-
ence of the interlayer coupling and the resulting Davydov splitting that we
have given here was obtained through perturbation theory. As such, it is
expected to be valid only in the perturbative regime, which is to say if the
perturbation remains small compared to the energy separation of £y and
other unperturbed subspaces of the same symmetry and of opposite charac-
ter, with which it may interact. These hypotheses are well satisfied for the
lowest bound Davydov pair of the bilayer, for which this description is rather
accurate. It remains reasonably valid for the first few states of the excitonic
series, approximately up to the second peak (which are the states that we
report in table [5.1f). Further up, the energy separation between states be-
comes smaller, and in some cases the interlayer coupling appears to drive
more complex behaviors. We will briefy discuss these phenomena in section
5.2.6]

5.2.4 Numerical diagonalization

To proceed further to a numerical calculation, we need to specify our model
potentials, say Vi1 and Vi,. A simple choice is to take both as Rytova-
Keldysh potential, but with two different polarizability radii: one for in-plane
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exciations, and one for out-of-plane excitations. In other words, the “usual”
Rytova-Keldysh potential being given by:

Virc(R) = f[Ho(R> - YO(RH

To To To

with R = ||R]|, we introduce an in-plane (resp. interlayer) polarizability
radius prp (resp. prr) such that:

e? R R
2prp pPIP pPIp

2
w22 () ()
PIL PIL PIL
This choice is, in some sense, arbitraryﬂ but it will suffice here to provide
a reasonable description of the first few states of the excitonic series. With
this, the excitonic Hamiltonian has been parametrized, and our next task is
to estimate values for these parameters.

To this end, we employ the same strategy as in the monolayer case. We
start by noting that 2A is nothing but the direct gap of the system, so we im-
plicitly fix it to the ab initio value and shift our energy scale by —2A so that
the eigenvalues of Hy are now the binding energies. The Hamiltonian has
now effectively four parameters. We then have two kinetic parameters, which
are effective hoppings: the hopping of excitations within a given sublattice,
T = %, and the hopping of excitations between different (connected) sub-
lattices, T} = %. This latter quantity corresponds to the “motion” of a
hole or an electron to a different layer. The potential parameters are simply
prp and p;p, as defined above. H x now depends on four parameters, T, Tj,
prp and prp, which we adjust to reproduce the binding energies of the first
eight ab initio excitons (not counting degeneracies). Best fit parameters are

found to be:

T, =153eV ; T, =0454¢V ; pp=123A ; p;,=168A
(5.12)

14Tts long range potential asymptotics are problematic, since we would expect that, for
excitons with a large Bohr radius, the entire bilayer would appear as a thin film, i.e. that
for large R, both Vi ; and V; o would converge to a single Rytova-Keldysh potential, which
is not the case here (although for very large R, both V; ; and Vi 2 do indeed converge to
the unscreened Coulomb potential). In recent years, more sophisticated model potentials
have been developped for Van der Waals multilayers; see e.g. [91], [74], 92} 93], [94]

2 T2
15The quantity % which appears in several places in the Hamiltonian is just %, so it
is not an extra parameter.
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Using the set value of A, we can extract the values of the associated electronic
parameters:

A=348¢eV ; t,=231eV ; t;=0.685eV (5.13)

which were used to compute the electronic and transition band structures
depicted in figure [5.2] yielding reasonable agreement with the underlying
GW calculation.

We report the ab initio and resulting tight-binding binding energies in
table[5.1], as well as the symmetries of the states within the D3, point group.
The latter can be easily determined by accessing the phases of the tight-
binding states, and for some states the same has been done ab initio to
confirm the behavior of the states under inversion (which is not trivial to do
by looking at the densities alone). It can be checked that all reported excitons
do indeed come in Davydov pairs of even (gerade) and odd (ungerade) sub-
spaces, with respect to the system’s inversion symmetry. Numbering excitons
according to ascending ab initio energy levels, these pairs are (1,2), (3,8),
(4,6) and (5,7). Davydov pairs (1,2) and (5,7) are essentially in-plane, and
correspond to the splitting of the first two monolayer excitons, respectively.
The other reported pairs, however, are essentially interlayer states, and are
therefore not obtained from the splitting of monolayer states. In this sense,
they are “new”: from the point of view of the model presented in section
they come from the splitting of unperturbed eigenstates of H, which
were purely interlayer, and therefore have no monolayer equivalent. This is
in contrast to the previously discussed in-plane states which come from un-
perturbed in-plane states, whose sublattices, up to inversion, are equivalent
to the monolayer lattice of excitations.ﬁ

As we have pointed out, because the system has inversion symmetry,
only odd states can be bright, and, further, for in-plane polarized light, only
states with the £ symmetry can be bright. The only optically active states
are therefore those that transform according to the E,, representation of Dsy.
As a result, the lowest bound exciton is dark, and the main absorption peak
comes from exciton 2, which is its Davydov partner, located about 30 meV
above. For completeness, we note that these selection rules are modified when
light is not polarized in-plane. In particular, when light is polarized parallel
to the stacking axis (i.e. when the field is perpendicular to the layers), only
states of As, symmetry can be bright. The first bright state in this case
would therefore be state 4.

16Note, however, that the parameters of H | differ from the monolayer parameters. Still,
the similar geometry leads to similar excitonic states.
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Exciton 1(x2) 2(x2) 3 4 5 (x2) 6 7 (x2) 8
Ab initio -1.644 -1.614 —-1.170 -1.162 —1.022 —-1.000 —-0.943 —0.899
Tight binding —-1.630 —-1.612 —-1.272 —-1.220 -1.003 —-0.891 —-0.977 —0.895
Bright no yes no no no no yes no
Symmetry E, E, Ay A, E, Az E, Ay,
Description IP IP IL 1L IP IL IP IL

Table 5.1: First eight bilayer excitons (ab initio ordering). Listed are the ab
initio and fitted tight-binding energies (all given in eV). The optical activities
and symmetries (in the D34 point group) of the states are also listed, as well
as their description in terms of being in-plane (IP) or interlayer (IL).

Overall, the agreement of tight-binding with ab initio is fairly reasonable.
The agreement in binding energies for the two in-plane pairs is rather good,
and even though we are less accurate for interlayer states, we could still re-
cover the ab initio binding energies within about 10%. This latter difficulty
may originate from our use of a Rytova-Keldysh potential to model the inter-
layer potential. Indeed, the interlayer system is very inhomogenous, and has
a finite thickness (of order d), which is not negligible compared to the char-
acteristic radii of the first few interlayer states. Nevertheless, in both cases,
the qualitative agreement with the ab initio wavefunctions is satisfying, as
can be seen, e.g., in the example wavefunction provided in figure

5.2.5 Analysis of the first bilayer states

Let us now briefly review the first AA’ bilayer excitons, as reported in table
5.1 We discuss them by pairs, and separate the analysis of in-plane and
interlayer pairs.

In-plane pairs

As we mentionned, the in-plane sublattices are of the form R + 7, which,
up to inversion, is the same geometry as the monolayer lattice of excitations,
as can be seen in figure The associated blocks of H, are therefore
effectively monolayer problems, up to a variation of the kinetic and potential
parameters, which, according to the fitted parameters of equation is
mild. For the first few low energy in-plane excitons, we therefore expect pairs
whose components on each sublattice are similar to the monolayer states, and
this is indeed the case with pairs (1,2) and (5,7), which can be associated
the first and second monolayer states.
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We start with the pair (1,2). For illustration, panels (a) and (b) of fig-
ure [5.5| present respectively the wavefunctions two component states from
excitons 1 and 2, both ab initio and in the tight-binding framework. This
pair is descended from the (analogue of the) first monolayer exciton, which is
twice degenerate and of E symmetry. As expected, the excitons of the pair
(1,2) are also of E symmetry: exciton 1 is even, so £, and therefore dark,
while exciton 2 is odd, hence E, and thus bright. Exciton 2 is therefore the
first absorption peak of the AA’ bilayer, and, like the first monolayer exci-
ton, it dominates the absorption spectrum. The magnitude of the ab initio
Davydov splitting for this pair comes out at about 30 meV, and from there
we estimate the associated effective coupling at gg ~ —15 meV < 0. The
tight-binding model moderately underestimates this splitting, and finds a
magnitude of about 18 meV. Overall, this pair is relatively weakly split and,
with a binding energy of around —1.6 eV, it is energetically well separated
from the other excitons of the system, the first of which lies about 0.4 eV
above. Overall, the pair is less bound than exciton 1 of the monolayer, from
which it descends. This can be, in part, attibuted to the additional screening
due to the presence of a second layer.

The case of the (5,7) pair is similar. Inspection of the excitonic wave-
functions suggests that it stems from the splitting of the second monolayer
exciton, which likewise had E symmetry. Here, we thus have a pair of doubly
degenerate excitons, with 5 being E, (even, and thus dark) and 7 being E,
(odd, thus bright). The second peak in the bilayer absorption spectrum thus
originates from exciton 7. The magnitude of the Davydov splitting is larger
this time, at about 79 meV ab initio. Interestingly, we find again the even
state at a lower energy than the odd state, so that the effective coupling
gy ~ —40 meV < 0 is again negative.

Interlayer pairs

Interlayer pairs are, in some sense, “new” states, whose intensity lies mostly
in the interlayer sublattices. In the AA’ stacking, these sublattices are of the
form R + c, and even discounting the vertical translation, do not have the
same geometry as the monolayer lattice of excitationsm Loosely speaking,
we thus expect a different “excitonic series” for the low energy interlayer
excitons, and this is indeed what we observe.

1"We could indeed see the interlayer blocks of H, as independent 2D problems, on which
the potentials are still radial: even then we obtain different problems. See figure[5.3] For
completeness, we point out that the situation is different in, say, the AB stacking, where
one of the interlayer sublattices does have the same geometry as the monolayer lattice of
excitations.
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The lowest bound interlayer exciton is exciton 3, which is part the (3, 8)
pair, which is depicted in panels (c) and (d) of figure 5.5 With an ab initio
binding energy of —0.899 eV, state 8, with its Ay, symmetry, would be the
first absorption peak for light polarized parallel to the stacking axis, lying
about 0.72 eV above the lowest bound (1,2) pair, which contains the first
bright exciton for in-plane polarized light (exciton 2). Remarkably, the (3, 8)
pair exhbits a very large Davydov splitting, of 271 meV. Again, the lowest
bound state of the pair is even, so gy < 0.

The other interlayer pair reported in table [5.1] (4,6), exhibits a lower
but comparatively still large Davydov splitting of 161 meV. Contrary to the
other pairs of table however, analysis of the tight-binding wavefunctions
reveals that it is the odd state which is lower in energy, providing an example
of a case where gg > 0.

To summarize, we provide in figure a schematic representation of the
splitting scheme for the states discussed above.

5.2.6 Optical properties and higher excited states

We now turn our attention to the optical properties of the AA’ bilayer, i.e.
the computation of its absorption spectrum, as well as its higher excited
states. Before we begin, we must note that our simple tight-binding model,
with ad hoc electron-hole potential, is not expected to be particularly pre-
cise when describing high energy states. Still, at least within the model
description, interesting phenomena occur for states above the ones reported
in table 5.1} We therefore briefly discuss them here, not quantitatively, but
as a preliminary qualitative insight on the effects of interlayer coupling.
First, we need an expression for the optical matrix elements, i.e. a general-
ization of formula[3.6] The derivation is overall similar, so we simply state the
result: for an arbitrary (direct) excitonic state |®) = g, ea PR, 5 [Rap)

we have:
mev M

Olple) =~

> tr,,Pr.,R (5.14)

Ra,BeA

where the tg, , = <Aa,m9\,’a‘ﬁéel)
i.e. here t, or ¢ if R is (respectively) an in-plane or interlayer Nitrogen to
Boron nearest neighbor vector (in the crystal lattice), and zero otherwise.
Indirect states are dark.

An important consequence of this formula in the first nearest neighbors
approximation is that, for light polarized in-plane, only exitations in the
in-plane sublattices can contribute to a state’s oscillator strength. This is
because the only out-of-plane excitations for which g, , # 0 are vertical,

Bg, m?\ﬂa + R> are electronic hoppings,
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Figure 5.4: Qualitative splitting scheme for the hBN AA’ bilayer for the
excitons in table [5.1] following the scheme described in section [5.2.3] Left:
excitons without interlayer couplings (eigenstates of H 1). Right: bilayer
excitonic states, in ab initio order. The eigenstates of H, were computed
using the tight-binding model with the interlayer coupling ¢ set to zero, but

other parameters set by equations |5.12| and |5.13l Eigenstates of H | have
been labeled according to the symmetry groups of the intra- and interlayer
sublattices (resp. Cjs, and Cg,), while the excitons of the full system have
been accordingly classified according to the representatiosn of the D34 group.
For clarity, states transforming according to the £, E, or E, representations
have been represented as non-degenerate. States depicted in black (resp.
red) are of in-plane (resp. interlayer) character. The states depicted in grey
do not appear in table : in H, they correspond to the first A; monolayer
state, but the full interlayer coupling brings them to higher energies.
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Figure 5.5: Figure reproduced from [38]. Ab initio results by F. Paleari. The
wavefunctions W(r, ry) have been represented in the “fixed hole” representa-
tion. Here, r corresponds to the electron coordinate and rj; corresponds to
to the fixed hole coordinate, which has been set on a Nitrogen site. Z(ry)
corresponds to its image by inversion. For consistency, tight-binding wave-
functions have been likewise projected, including first-order corrections to
the electron and hole states; the gray disk depicting the position of the hole.
Details of the ab initio calculations and representations can be found in [38].
Panels (a) and (b) depict the (1,2) pair. Since these states have most of their
intensity in-plane, we only show the electronic amplitudes in the same layers
as the hole (the equivalent in the full TB description would be only showing
the IP sublattices). Panels (¢) and (d) depicts components of excitons 1 and
2. Since these states have most of their intensity out-of-plane, we only show
the electronic amplitudes in the layer without the hole (corresponding to only
showing the IL sublattices).
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i.e. along e, and therefore orthogonal to any in-plane polarization vector:
they are the ones that correspond to the first nearest neighbor out-of-plane
electronic hoppings. We therefore expect that, in general, for a state to con-
tribute a significant peak in the absorption spectrum for in-plane polarized
light, it should have significant in-plane intensity on the in-plane sublattices.

Equipped with equation|5.14] we can now compute the oscillator strength
of the bilayer excitons, as well as its absorption spectrum. One of the interests
of having a (computationally efficient) tight-binding model at our disposal,
however, is that we can vary its parameters, in order to gain insight on their
effects. Therefore, we will generalize the idea of section [5.2.3, where we had
seen that the variations of | could be seen as the main drive of the evolution
from the monolayer to the bilayer, and compute the excitonic states, their
oscillator strength and the resulting spectra for a range of values of ¢, from
0 to its fitted value, tﬁpt'.

The corresponding spectra are displayed in figure [5.6f As we have al-
ready discussed in section , when ¢ = 0, the sublattices decouple, and
the problem of the in-plane sublattices is formally similar to the monolayer
problem, up to a moderate variation of the parameters. Adding to this that,
at t| = 0, interlayer states are purely interlayer, and therefore do not con-
tribute to absorption within our approximations, the spectrum for ¢, = 0 is
therefore analogous to the monolayer spectrum. Indeed, we can recognize its
first three peaks, which we have previously classified as the 1s, 2p and 2s
states.

The model evolution happening in the region of the third monolayer peak
is particularly interesting: following the peaks as the interlayer coupling is
increased, we see that the peak that was initially associated to the monolayer
2s state decays in intensity, while another “new” peak rises next to it. The
situation can be clarified by examining the evolution of the excitonic states
while ¢ is varied. To this end, we depict in figure the evolution of the
excitonic binding energies, along with the oscillator strength associated to
their subspaces. Let us now provide a tentative explanation. It can be seen
that this “new” peak comes from what was originally a degenerate set of dark
states at a binding energy of about —0.7 eV. Careful analysis of the corre-
sponding excitonic wavefunctions shows that this is a group of four excitons
of E symmetry (so eight states), which subsequently split into two Davydov
pairs. One of these excitons has the correct symmetries to couple with a
“bare” (t; = 0) bright in-plane state, and as a result the “bare” in-plane ex-
citon and this “bare” interlayer exciton mix. The initially interlayer exciton
therefore acquires intensity in the in-plane sublattices, which, seeing as it
has the right symmetries, allows it to obtain a non-zero oscillator strength
according to equation [5.14] Conversely, the initially “bare” in-plane state ac-
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Figure 5.6: Evolution of the absorption spectrum of hBN AA’ bilayer when
the interlayer coupling ¢ is varied from 0 (monolayer like) to its fitted value
of tﬁp = 0.685 V. Other parameters are kept to their fitted values, as
given in equations and We used a lorentzian broadening of 5 meV,
and have cut viewing range below the maximum of the first peak to better
display the more complex evolution of the subsequent ones. All spectra were
normalized with respect to their highest peak, and their zero lines slightly
displaced for clarity. Note that ¢ is increased as one goes up in the figure, so
that the “true” bilayer spectrum is the one at the “top”. It can be compared
with the ab initio spectrum presented in the N = 2 panel of figure [5.8 The
quantitative agreement does not appear to be very good, but we are here

more after qualitative insight (see text).
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Figure 5.7: Evolution of the binding energies of the excitons of hBN AA’
bilayer and their ocsilator strengths when the interlayer coupling ¢ is varied
from 0 (monolayer like) to its fitted value of ¢}” " = 0.685 eV. Other parame-
ters are kept to their fitted values, as given in equations and [5.13] Left:
all excitons up to a binding energy of —0.6eV; the oscillator strength scale
has been compressed for clarity: without this, the brightness of the exciton
2 overwhelms the scale. Right: same plot, but without excitons 1 and 2. Os-
cillator strength have been scaled to the brightest peak. For the low energy
states, compare with the schematic depiction of figure [5.4l

quires intensity in the interlayer sublattices at the cost of some of its in-plane
intensity, and therefore loses oscillator strength by the same mechanism.
The magnitude of the change in oscillator strength, as well as the analysis
of the excitonic wavefunctions shows that this is not a small perturbative
effect. At these energies, “bare” intra- and interlayer excitons appear to
couple strongly. It is likely that this phenomenon is responsible for the
complexity of the spectra of multilayer (and bulk) hBN above the low energy
peaks: the observed peaks cannot be trivially traced back to a monolayer
peak. Instead, they arise from excitons with a mixed intra- and interlayer
character, which come about through the coupling of bare bright intralayer
excitons with the “new” bare interlayer states, as we have describe above.

5.3 General multilayers

We now come to the general case, with particular interest on the situation
where N > 3, as we expect surface effects. The excitonic tight-binding Hamil-
tonian is theoretically known for arbitrary N, although the determination of
the direct electron-hole potential in that case is not trivial.

We note, however, that the Davydov multiplet associated to the lowest
bound monolayer exciton is expected to account for the dominant structure
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in the absorption spectrum. It is therefore natural, at this point, to focus our
study on this Davydov multiplet. To this end, we shall extend the perturba-
tive model for the Davydov splitting developed in section [5.2.3] Because the
first Davydov multiplet is expected to remain well separated in energy from
other excitons, we expect our perturbative treatment to remain qualitatively
accurate.

5.3.1 Introduction and ab initio results

By way of introduction to the discussion of general multilayers, we display
some ab initio results from F. Paleari. In figure [5.8] the absorption spectra
of N-layers are shown for N = 1,2,3 and 5, along with a qualitative scheme
of the splitting of the Davydov multiplet associated to the first monolayer
exciton. This Davydov multiplet (N-uplet, more precisely) gives rise to the
main structure in the absorption spectrum.

The situation for N = 1 was the object of chapter dl When moving to
N = 2, we have seen in section that the first exciton of the mono-
layer undergoes a Davydov splitting into a bonding and an antibonding pair
(respectively even and odd with respect to inversion) in this order, whose
components are respectively dark and bright. The situation becomes more
complex for N = 3 and N = 5. There, we still observe an alternance of
bright and dark peaks, but they do not split “symmetrically” anymore. It
appears that the N-uplet in both cases displays two structures: two excitons
at low energy, and N — 2 at high energies. As the pentalayer exemple shows,
these two structures are rather well separated in energy.

From our earlier discussions, we do expect surface effects in multilayers
for N > 2: we had seen that excitations involving only sites on the surface
layers had a kinetic energy lower than the ones involving only inner sites, by
about 100 meV. This strongly hints at the fact that the two substructures
we are observing arise because of surface effects. The goal of this section is
to show that this is indeed the case, and to provide a generalization of the
model discussed in that accounts for such effects. We will then use this
model to investigate the optical activity of the resulting Davydov N-uplet,
and how it evolves with the number of layers.

5.3.2 Linear chain effective Hamiltonian

As in section [5.2.3] we wish to construct an effective Hamiltonian using de-
generate perturbation theory. It thus seems natural to define a Hamiltonian
H, from the full tight-binding excitonic hamiltonian Hy by setting the in-
terlayer hopping ¢ to zero and to construct an eigenbasis of H, with the
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Figure 5.8: Top panels adapted from [38]. Ab initio results by F. Paleari;
computational details available in [38]. Top: ab initio spectra for monolayer
(N = 1), bilayer (N = 2), trilayer (N = 3) and pentalayer (N = 5). The
black vertical line indicates the electronic gap. Dark states in the first Davy-
dov N-uplet have been indicated by D. In the pentalayer, bright states have
also been labeled. There, the second bright state (Bz) is not very bright, and
the corresponding peak has been overlayed onto the main spectra for clarity.
Bottom: qualitative depiction of the Davydov splitting of the first monolayer
exciton into the corresponding Davydov N-uplet. Energies are not to scale,
but the orders of magnitude of the main splittings have been reported.
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defining properties of the basis By which we used in the bilayer case.

There is, however, a crucial difference between the N = 2 (bilayer) case
and the general case. Indeed, not all layers are related by symmetry any-
more, and therefore, they are no longer equivalent. In excitonic language,
the blocks of A, that correspond to geometrically equivalent sublattices are
not necessarily identical up to symmetry anymore. There are two physical
reasons for this. First, as we have already pointed out in section|5.1.3| excita-
tions involving sites on the surface (i = 1 or V) layers have a lower kinetic /
single particle contribution to their effective on-site energies when compared
to excitations involving only the inner layers (i € [2, N — 1]). This effect is
proportional to tﬁ, and can be seen in Hy through the variations of B (e, B)

(equations and . It is thus contained in H | = Hy —H,. Secondly,
we expect excitations involving sites on the outer layers to be subjected to
a (gradually) weaker screening of the direct electron-hole interaction than
those involving sites on the inner layers. Consequently, excitations involving
outer sites are expected to be more bound, which again lowers their effective
on-site energies. Algebraically, this effect manifests itself through variations
of V,, 3, and is therefore contained in the direct electron-hole interaction part
of the hamiltonian, U, which is part of H,. Importantly, both effects go in
the same direction: they lower the effective on-site energies of excitations
composed of sites on the outer layers compared to those involving sites on
the inner layers: they are thus expected to drive surface effects.

Formally, we take our zeroth-order Hamiltonian to be a modified version
H, of H, such that all screening variations have been averaged out. Picto-
rially, this zeroth-order hamiltonian H | describes the problem of N identical
hBN layers where the electrons are forbidden to hop between layers. We
thus construct an eigenbasis By of H, with analogous properties to the one
constructed in the N = 2 CaseH In particular, the ground state eigensub-
space of H, is spanned by N copies of the analogue of the lowest bound
monolayer exciton. Using the same technique as in the N = 2 case, we treat
these copies as effectively non-degenerate states [1),]2),...,|N) such that
|4) corresponds to the effective copy on the i’ layer (in excitonic language: in
the A;; excitation sublattice). Using second order degenerate perturbation
theory in the subspace spanned by {|i)}ie[[17 np» We build an effective Hamil-

tonian H 7 to describe its splitting. A detailed derivation of this effective

hamiltonian from the tight-binding excitonic Hamiltonian Hy through the
steps outlined above is given in appendix E of [38]. Neglecting second nearest

18We average the functions V,, 5 over the (a, 3) pairs of geometrically equivalent Aa,p)-
9Which is to say that states on geometrically equivalent sublattices are copies or images
by inversion of each other, accordingly.
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planes hoppings and assuming screening variations are limited to the surface
layers, we find, up to a shift in the global energy scale:

—lgl <Z)| g1+ XL + [NYXNT) (5.15)

where the sum is taken over neighboring layers. The quantity g is analogous
to gy in section [5.2.3] and describes the strength of the coupling between
states of neighboring layers. Based on ab initio results for N = 2, 3, 5 and
oo (bulk), we have taken it here negative. X is a dimensionless quantity
characterizing the surface effects described above, and corresponds to the
energy difference between the “bare” (uncoupled, i.e. g = 0) inner and surface
excitons divided by the interlayer coupling energy. Expressions for g and X
in terms of unperturbed eigenstates of H, can be found in [38]. We only
note here that g, like its bilayer equivalent, describes the coupling of “bare”
in-plane excitons though “bare” interlayer states. Since the electron-hole
potential is diagonal in the basis of elementary excitations, it does not induce
a coupling between states on different sublattices. X accounts for potential
effects as well as surface effects originating from the kinetic Hamiltonian.
Independently of its microscopic origins, H 7 effectively describes the tight-
binding problem of a linear chain with boundary effects: each layer of the
multilayer can be seen as a chain site, while the “copies” of the monolayer
excitons are the corresponding orbitals. This Hamiltonian can be diagonal-
ized using standard methods, and a detailed solution can be found in [95],
including asymmetric boundary conditions. The eigenvalues are given by:

E, = —2|g| cos (k)

where the allowed wavenumbers k,, are determined by the boundary condi-
tions. In the case of an ideal linear chain (X = 0), they would be k, =
nr/(N +1) for n € [1,N]. Here, X # 0 a priori, and they are determined
implicitly from the relation:

(cos (k) — p(X))sin (Nk) = r(X)sin (k) cos (Nk) (5.16)
with: - 21
M0=% 7 5 =%

It can be shown that, for values of X larger than a certain threshold (specif-
ically X > (N +1)/(N — 1)), equation admits N — 2 real solutions in
[0, 7] and two purely imaginary ones, which correspond to surface states, the
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lowest one of which is even with respect to the 1D inversion symmetry of the
chain, while the next is odd |

This behavior can be easily seen if one considers the regime X > 1.
In this case, at zeroth order, the 2 surface layers are decoupled from the
N — 2 inner layers. This approximation is relevant because ab initio results
suggest that this might indeed be the case for N > 3. In this case, we
have two degenerate surface states with energy —|g|X, and the inner layers
behave as an ideal (X = 0) linear chain of N — 2 sites with eigenenergies
E, = —2|g| cos (%) and eigenstates which are, overall, delocalized over the
N — 2 coupled layers.

5.3.3 Inner and surface states

At this point, the coupling between inner and surface layers can be re-
introduced as a perturbation.

Inner states

The situation for the inner states is rather straightforward. Going to first
order in 1/X, we can obtain an effective hamiltonian describing the inner
states:

Hinner = —|g] <Z> |1)] = )1((\1><1\ +N)N])

which has the same structure as H ¢, but with X <« —%. This is, however

a crucial difference, because, at large X, H;pner therefore describes a linear
chain with weak border effects, which only slightly displace the energy lev-
els and modify the states, but are not expected to bring about qualitative
changes.

Surface states

Surface states are more interesting. Since we have only kept “first nearest
layers” interactions in M, the two zeroth-order surface states |1) and |N)
are not coupled by second order perturbation theory as soon as N > 3: we
simply obtain a rigid energy shift of their (degenerate) energies, which lower
slightly to become —|g|(X + 1/X). However, ab initio calculations do show
a splitting of the two surface states, which we can understand as |1) and |N)
interacting through the N — 2 inner states. Instead of going to higher order
perturbation theory, we simply introduce an effective coupling v between

20The exact expression of the associated eigenstates can be found in [95].
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the two surface states as well as an effective on-site energy FE, yielding an
effective Hamiltonian in the subspace {|1),|N)}:

[A{surface = _’g’[ES + 7<|1><N| + ’N><1’)]

which is the general form of a two level system, and describes a splitting into
an even and an odd surface state:
s 1
ws) = SIDEIND 5 o= gl £7)

with a splitting width of 2|g|y. We can estimate Es = —|g|(X + 1/X) from
above, and an asymptotic study of equation yields v ~ 1/XN=2 As
expected, the lowest energy state is even, and the other (higher) one is odd.
The splitting between them, as expected, is predicted to be very weak and
decay rapidly with the number of layers.

5.3.4 Optical activities in the lowest bound Davydov
multiplet

We now turn to the problem of estimating the optical activity of the compo-
nents of a Davydov multiplet.

Theory and selection rules

Let us first notice that the linear chain model of equation exhibits 1D
inversion symmetry. This symmetry corresponds with the mirror (N odd) or
inversion (/N even) symmetry of the multilayer Crystalm Within the chain
model we can write a multiplet eigenstate |¥) as:

W) :;Ai|i>

Because the typical exciton energy is of the order of the gap, which is much
larger than the Davydov splitting, comparing the oscillator strength of the
states in a multiplet essentially amounts to comparing the magnitude of their
momentum matrix elements, i.e. the quantities | (B|e - p|¥)|*, where |@) is
the vacuum state and e is the polarization vector of the incoming light. We

thus have:
N

Oplw) = > A (0]pli)

=1

21This immediately provides a selection rule for even N: in that case, only odd states
can be dark.
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Leaving us to examine the (f|pli). Recall that, for an arbitrary (direct)
excitonic state [®) = Y, ,en PR, 5 [Ra,s), we have:

mev M

(0]pl®) = — "<

Z tRas q)Ra,/aR

R, g€EA

where the tg, , = <Aa,m9v7a‘f[éel)
i.e. here t, or ¢ if R is (respectively) an in-plane or interlayer Nitrogen to
Boron nearest neighbor vector (in the crystal lattice), and zero otherwise.
From there, leveraging the geometry of the lattice of excitations as well as
the definition of the basis {|i)},c; np. it can be seen that:

Bg, m?V,a + R> are electronic hoppings,

Vie[1,N—1], @pli+1) = —(0[pli) (5.17)

which can be understood pictorially as follows: because in the AA’ stacking,
two consecutive layers are “heads to tails”, so are the wavefunction dipoles
of the copies of the in-plane “monolayer” excitons they support. This leads
to the convenient expression:

N

Op|¥) = —d; > (-1)'A; (5.18)

i=1

where d; = (|p|1) is in-plane. If we introduce the auxiliary vector |z) =
— N (=1)™ i), the above can be rewritten very compactly: (|p|¥) =
dy (z|W).

We can go further. Because the chain has inversion symmetry, our eigen-
state |¥) of H 7 can be chosen to have a definite parity with respect to this
symmetry, i.e. such that there exists sy = £1 such that for all i € [1, N],
An_it1 = svA;. Inserting this constraint into equation [5.18 it can be
checked that:

1—se(-1)V Y

Wplw) = ——2

where the extra factor of [1 - Sq/(—l)N} /2 expresses a selection rule for mul-
tiplets of in-plane states:

o if N is even, the even (sy = +1) states are dark.

o if N is odd, the odd (sy = —1) states are dark.

which, as announced, depends on the parity of the number of layers.
With this, we can go back to our initial goal of comparing the oscillator
strengths of the different multiplet states. As we have already pointed out,
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the relevant quantities are the | (|p|®)|?, which, according to the above,
evaluate to |e - d;|*[(z|¥)|*. To make comparisons meaningful, we need to
compute the total optical activity of the multiplet as a reference, i.e.:

N2 S [(0le-plo)f =le-di* > [(2T)

|[¥)eMm |@)eMm

=l *=N

where M is an orthnormal eigenbasis of H #. The latter sum is conveniently
evaluated using the auxiliary vector |z): because we have taken M orthnor-
mal, it is just |||2)||> = N [} Discarding factors that are constant across the
multiplet, we are thus left with the study of the quantities:

WP 1 i

fe="—N—=%

> (—1)'4A

i=1

(5.19)

which are both (approximately) proportional to the oscillator strength of
their associated state |¥) and sum to one over the multiplet: 37 gycpq fo = 1.

The object of the following sections is to explicitly compute the fy in the
limit of strong border effects (X > 1).

Surface states

In this limit, the surface states are the lowest bound states, lying at an energy
of about —|g|X. Their case is rather straightforward: there are only two of
them, one bright, one dark. Since the lowest bound state is always even with
respect to the chain inversion, it is bright if /V is even, otherwise it is the odd
surface state above it which is bright. In either case, the bright state has an
effective oscillator strength of:

2
fsurf - N

This is interesting in itself. Indeed, for large X, the surface states form a
low energy subspace that is well seperated from the “high” energy subspace
corresponding to the inner states, and so by the sum rule on the fg, the
intensity of the peak due to the surface states will decrease approximately
as the inverse of the number of layers with respect to the collective intensity
of the peaks due to the inner states within the multiplet. We will come back
to this idea once we have examined the optical activty of the inner states.

22This result is parameter independant: pictorially, each of the N layers contributes
one unit of oscillator strength to the system, which the different splitting effects then
redistribute between the multiplet states.
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Inner states

The case of the inner states requires slightly more calculations. Taking the
limit X > 1, we can treat the inner layers as an ideal (finite) linear chain
of N — 2 sites, completely decoupled from the surface layers. In this case,
we find the usual eigenenergies and eigenstates, which we can label with
m e [1,N —2]:

mm 2 . mm
E,, = —2|g| cos (N—l) ;A= N 1o (N—l) (5.20)

while effective oscillator strengths are given by:

1= L mr
Jo = "NiN—7) ™ (2(N—1)>

We thus find that odd and even states alternate in such a way that if m
is odd, then |W,,) is even and wice versa, and therefore bright or dark in
accordance with the selection rules presented above.

The energies of the peaks appear at the energies E,, for values of m corre-
sponding to bright states. Further, the inner states and their associated peaks
are concentrated in the energy interval [—2|g| cos (ﬁ), 2|g| cos gNﬂ_l)}, Slo)
that when X is large enough, they are well separated from the surtace states
and their peak. Because fg, , is a sharply increasing function of m and F,,
also increases with m, we expect to see a series of increasingly bright states as
we go up in energy. The last bright state, say |V,,-) is therefore expected to
dominate this part of the absorption spectrum while previous inner states ef-
fectively provide a fine-structured “shoulder” to its “left”. In fact, it is always
the highest energy state of the multiplet, corresponding to m* = N — 2.

We should mention at this point that there is a physical reason for us to
expect the oscillator strength of inner states to increase as energy increases.
Indeed, looking at equations [5.17] and [5.18, we know that the wavefunction
dipoles of the “monolayer” excitons, the d; = (B|p|i) on two consecutive
layers are opposite from one another, because of the AA" geometry. For a
state to have a high oscillator strength, the preferred situation is for the
contributions of each layer to the total dipole ((@|p|¥)), the A;d;, to all
be in phase. But since the d; are exactly anti-aligned, this happens only
if the amplitudes on the layers, the A;, are likewise. In other words, the
brightest states are the most antibonding ones, which (in an ideal chain) are
the highest in energy since the interlayer coupling, g, is negative.
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Discussion and optical estimation of the number of layers

The predicted absorption spectra corresponding to the lowest bound Davydov
mutiplet within the linear chain model are depicted for various values of N
in figure 5.9 The two structures, one due to the surface states, and one due
to the inner states, are clearly visible.

For large but finite IV, it can be shown that:

f W, %L !
™ N

so that a fraction of about ﬂ% ~ 81% of the total oscillator strength of
the multiplet is due to the brightest inner state. In the bulk limit, which
corresponds to N — +o0o, the energy of this state tends towards 2|g| and
more and more bright states appear arbitrarily close to this energy. These
states will contribute the missing ~ 19% to form a single bright peak with all
of the oscillator strength of the multiplet, as expected in the spectrum of bulk
hBN. On the other hand, the effective oscillator strength of the bright surface
state decays quickly with the number of layers, as fs, s = %, while the total
oscillator strength of the inner states takes up the remaining >, fy, = %

These dependencies of the predicted spectrum on the number of layers
opens an interesting avenue of investigation. Indeed, we can think of reversing
the problem, and asking if we can estimate the number of layers from the
knowledge of the absorption spectrum. The most straightforward way to do
so is by comparing the inner features with the surface peak. Using the results
obtained above, if we consider all the inner peaks as one composition peak
of strength finer = X fu,,, then the ratio of intensities between this peak
and the surface state peak satisfies:

N =~ 2<fi”"” + 1> (5.21)
fsurf

If we compare instead intensity of the surface peak with the intensity of the
brightest inner peak W,,«, we have:

Jw,. 1 9 T
mt— 7| —— 5.22
fary N—177" \2(N —1) (5.22)
which can be solved for N if the ratio of intensities };‘P—mf is known. In the
large N limit, this equation can be simplified to:
2
N e (5.23)

4 fsurf
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Figure 5.9: Absorption spectra corresponding to the lowest bound Davydov
multiplet, computed using the linear chain model in the large X limit. For
concreteness, we have taken the parameters |g| = 15 meV and X = 8 > 1,
although the qualitative features of the spectrum are largely independent
(lg| simply sets the energy scale, while X sets the energy position of the
surface states). Top: spectrum for the pentalayer (N = 5), with dotted lines
indictating the positions of the bright (B) and dark (D) states. Labels are
the same as in figure |5.8] Bottom: spectra for various values of the number
of layers N. A lorentzian broadening of 1 meV was used. In the bottom
panel, the spectra were normalized such that the total oscillator strength of
the multiplet is unity (3gyer fo = 1), independently of N. For clarity the
zeros of the spectra were shifted for the different values of N. The zero of
energies is implicitly set for each spectrum, and corresponds to the zero of
energies for H #, 1.e. the energy of the unperturbed multiplet, before splitting.
Notice how, as N is increased, the surface peak decreases in intensity relative
to the main inner peak.
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Using equation with the ab initio oscillator strengths for the penta-
layer (N = 5), we estimate N = 5.6. Equation , which only considers
the brightest inner peak, leads to N ~ 5.0, while its large N approxima-
tion, equation [5.23], yields N = 4.6. Overall, the estimates are rather good,
especially when only the main inner peak is used instead of the full inner
structure. This can be traced back to the fact that the intensities of the
lower energy inner peaks are no so well reproduced by the linear chain model
(they tend to be underestimated).

5.3.5 Comparison with ab initio results and represen-
tation of multiplet states

At this point, we have to verify, more generally, if the approximations we
have made in the preceding sections are in fact justified, and if they provide
at least a reasonable qualitative description of the ab initio results. Likewise,
even though its qualitative results do not depend too much on them, it is
useful to estimate the parameters involved in the linear chain model, g and
X, in order to understand how they vary with the number of layers. At least
three quantities can be fruitfully compared with ab initio: the energies of the
multiplet, the multiplet states, and the resulting absorption spectra.

A direct manner to estimate the parameters of the linear chain hamil-
tonian H ¢ is to adjust its eigenenergies on those of the Davydov multiplet
obtained ab initio. Likewise, the absorption spectra may be compared di-
rectly. The situation for the states is more complex, and is the object of the
following section.

Representation of the multiplet states

The representation of the ab initio states is not so trivial, because of the dif-
ficulties we mentioned in section [5.1.4} we cannot simply fix the position of
the hole on an arbitrary Nitrogen atom, because they are no longer all trans-
lationally equivalent. A possible representation is suggested by the linear
chain model. Indeed, since we expect our states to be of the form:

W) = > Al

i.e. linear combinations of intralayer states, it follows that if we fix the
hole on a Nitrogen atom in a given layer, say i, we should essentially see a
fixed hole representation of the associated “monolayer” state multiplied by
the corresponding amplitude A; |i), up to phases. Letting W(rp,r.) be the
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Figure 5.10: Figure reproduced from [38]. Ab initio calculations by F. Paleari.
Representations (see text) of the ab initio exciton densities of the lowest
bound Davydov multiplets for the bilayer (a), trilayer (b) and pentalyer (c).
Dark excitons have been depicted in gray and bright excitons in blue. The
excitons are represented in order of ascending energy, from left to right, and
the amplitudes of some of the relevant splittings have been reported (the
energy axis is not to scale). Compare with figures and . For the
pentalyer, bright (B) and dark (D) states have been labeled in accordance
with figure [5.8|

position representation of the excitonic state under study, and {r?},eul N]

be a collection a chosen hole positions in each layer, this suggests that a
good representation of the density of the state on the 3D crystal geometry is

given by the quantity SN ’W(rh , )‘2 In this representation, if the linear
chain model was exact, we would expect on each of the layers a copy of
the fixed hole density of the effective monolayer exciton multiplied by the
corresponding layer weight |A;|>. This representation is depicted in figure
[5.10] While the visual representation is telling, it would be of interest to
have a more quantitative comparison. One way to obtain it is to compute,

(1)

2
ab initio, the volume integral of )\Il(rh ,r) , which, again, if the linear chain

model was exact, would correspond to ]Ai|2. This is done for the pentalayer
in figure 5.11
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Norm. intensity

Layer index

Figure 5.11: Figure reproduced from [38]. Ab initio calculations by F. Paleari.
Comparison of the excitonic weights |4;]* on each layer (i = 1,...,5) for the
lowest bound N-uplet of the pentalayer, computed by different methods.
Each panel corresponds to an excitonic state, and the panels are arranged
from left to right in order of ascending energies. Compare with the visual
representation of figure . Blue dots (“TB limit”) correspond to the | A;|*
computed within the linear chain model in the limit of large X. Green dots
(“TB limit”) correspond to the |4;]* computed within the linear chain model
by diagonalization of H ¢ with the fitted value of X = 7.1. Red dots (“ab

initio”) correspond to the volume integrals of the ‘\I/(rgf), r) 2, as explained
in the text. Lines are there only as a guide to the eye. We note that, as
far as the linear chain model is concerned, we are clearly in the X > 1
limit. Agreement between ab initio and tight-binding (TB) data is overall
satisfying, with the notable exception of the third exciton, whose oscillator
strength is also (consequently) poorly reproduced in the linear chain model.
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Discussion

The case of the bilayer effectively reduces to the model discussed in section
for the lowest bound pair, and we consequently find g7, = —15 meV.
The value of X is just a rigid shift (again, there are only surface layers
in a bilayer), and is therefore neither directly accessible (it would require
knowledge of the “bare” ab initio energies), nor immediately pertinent here.

As expected, the case N = 3, the trilayer, is the first one to display border
effects. This can be seen from the asymmetry of the Davydov splitting.
Indeed, let E;, Es and E3 be the triplet’s energies in ascending order, and
ri; = E; — E; denote the associated splittings. The ratio 73/721 of the
“lower” and “upper” splittings is then a relevant quantity here, because it
depends only on X and not ¢, and consequently characterizes the boundary
effects Indeed, in the case where X = 0, H ¢ simply describes an ideal linear
chain, and we would expect a symmetric splitting: 732/721 = 1. Instead, we
observe 732/721 = 4 in the ab initio simulations. This corresponds to a value
of X537, =~ 2, which is not yet in the high X limit. Nevertheless, the asymmetry
of the Davydov splitting is explained, and the results of our analysis which
do not directly depend on X > 1 apply. In particular, the two lowest
bound excitons the the trilayer still have a markedly higher intensity on the
surface layers than on the central layer (although for the secodn state, this is
actually mandated by symmetry). The states alternate between bright and
dark (respectively even and odd) with the first state being bright, as expected
from the one-dimensional model with N odd. The case of the second exciton
is in fact very interesting. It is odd with respect to the inversion symmetry
of the chain, i.e. here odd with respect to the mirror symmetry about the
central layer. As a result, we expect no (or very little) in-plane intensity
on the central layer for this exciton, and this is indeed what is observed ab
initio. This means that, if one were to fix the hole on a Nitrogen atom in
the central layer - a priori the most symmetric position -, one would see at
most diffuse interlayer components which are not at all representative of the
exciton as a whole. This is an illustration of the difficulty we discussed in
sectionp.1.4} for N > 2, not all (Nitrogen site) hole positions are equivalent,
and it is necessary to consider a full set of non-equivalent ones in order to
obtain an accurate representation of an excitonic state. Lastly, we obtain
a value of g3; = —22 meV for the interlayer interaction parameter in the
trilayer.

A direct fit on the energies of the pentalayer multiplet provide the values
gs;, = —17 meV and X ~ 7.1, which is indeed in the large X limit, as is
confirmed by the analysis of the tight-binding states in figure |5.11l Energy-

ZB0Of course, it is not the only such quantity.
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wise, the separation between inner and surface excitons is very clear in the ab
initio simulations: the two structures are separated by about 100 meV, which
could likely be resolved by precise spectroscopic measurements. Indirectly,
we have already discussed the multiplet absorption spectrum in the previous
section when we estimated the number of layers from it. A direct comparison
should be made between figure[5.8] which presents the ab initio spectrum, and
the tight-binding estimate of figure[5.9] Again, we find alternating bright and
dark (resp. even and odd) states starting with a bright exciton first, which is
in agreement with the one-dimensional model for N odd. While, as we have
seen before, the ratio of the brightest inner peak to the surface peak is very
well reproduced by the linear chain model, the agreement is not so good for
the second bright exciton (the first inner exciton), whose density is strongly
underestimated. This can likely be traced back to the state itself: as can be
seen in figure [5.11] exciton 3 is not so well reproduced by the linear chain
model. A probable cause of this lies in the simplifying assumptions we made
in deriving this model, and in particular the assumption that all boundary
variations were limited to the surfaces (including the variations in screening).
The influence of second nearest plane hoppings, that we have neglected, may
also have provided a correction for this state. Still, considering the simplicity
of the model, the overall agreement is rather satisfying.

Finally, we spare a word for the situation in bulk, which corresponds to
the N = 400 limit we have briefly touched upon in section In this
case, there are also no surfaces, and the effective hamiltonian becomes that
of an inifinite ideal linear chain of layers:

17 = ~|g| 3 i)l
(i.5)
whose eigenvalues and eigenvectors can be indexed by a wavenumber k &€
| = m, 7], and are known to be:

E(k) = ~2lg|cos (k) |k:>=jﬁ S e [n)

n=—oo

Since the “true” periodicity of AA’ bulk hBN in the stacking direction is two
layers, this exciton band structure must be folded in two, in accordance with
a two-layer unit cell. We then recover two direct states:

E0)==2lg| ; 10)=

E(m)=2[gl 5 [k)=
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which are respectively even and odd with respect to inversion. It follows
(but this is easily checked by computing the associated oscillator strengths)
that the lowest bound exciton is dark, while the second is brightY] We
thus recover the known Davydov pair of bulk hBN.[83] The amplitude of
the splitting is then given by sy = 4|g|. Assuming ¢ roughly constant,
this is twice the bilayer value, and we thus expect sy ~ 60 meV, which is
indeed in good agreement with the ab initio value of 58 meV. We thus find
Joo = —15 meV as well for the bulk.

24 A1l other excitons in this band structure are indirect and dark.
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Chapter 6
Bulk hBN

For completeness, we now briefly discuss the case of bulk hBN in the AA’
stacking, which corresponds to the limit of an infinite number of layers. We
start by establishing the excitonic tight-binding model for bulk, as it can be
found in [48].

6.1 Electronic structure and relevant lattices

6.1.1 Notations

We consider bulk hBN, in its AA" stacking. It has a periodicity of two layers
in the vertical direction. Its unit cell contains four atoms spread over two
layers, each of which contains one Nitrogen and one Boron atom.

To fix notations, let us denote by R the underlying Bravais lattice of the
system, which is now hexagonal. We denote by ngya the position of the unit
cell atoms, where p runs over the atomic types (u = B or N) and « is the
layer index (o« =1 or 2), and introduce the sublattices A, , as:

0
Ao = n,,+ R

so that the sites in A, , are exactly those which are translationnally equiva-
lent to the unit cell site 1’1276U and the set of sites of the full crystal lattice are
given by U, oA,o. We shall denote by a and c the in-plane and out-of-plane
lattice parameters of the hexagonal lattice R. The in-plane nearest neighbor
B — N distance is then 7 = a/ V3 while the out-of plane nearest neighbor
B — N distance is d = ¢/2, which is the interplane distance. Calling e, a
unit vector along the stacking axis, arbitrarily oriented from a layer of type
1 to a layer of type 2, we define d = de, and ¢ = ce,.

As usual, we restrict ourselves to the p, orbitals, which are responsible
for most of the low energy optical properties of the system. We thus denote

179
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by |B,n) and | N, m) these localized boron and nitrogen p, atomic orbitals,
where n € U,Ap, and m € U,Ay, denote the atomic coordinates. From
this basis of localized atomic orbitals, that we assume orthonormal, we define
the associated tight-binding basis functions:

1
|, k) = N > e " |y, n)

neAy,a

where N is now again the number of unit cells in the system.

6.1.2 Electronic hamiltonian

Per our usual strategy, we describe the electronic structure of the system
using a tight-binding hamiltonian H(()el) up to second nearest nieghbours in
and out of plane, which, in the basis of localized atomic orbitals, is given by:

A ifn=n’

N tBB  if n and n’ are 2n.n. in plane
el 1 P
A

0 else

if n and n’ are 2n.n. out of plane

—A ifm=m'

(N m|ﬁ(el)\N m') — tij if m and m’ are 2n.n. in plane
’ 0 7 t|]|VN if m and m’ are 2n.n. out of plane
0 else

t; if n and m are 1n.n. in plane

(B, n|ﬁéel)|N, m) = (¢ if n and m are In.n. out of plane

0 else

where Aty ¢y, YN, YN #77 and {7 are the kinetic parameters.

This hamiltonian is block diagonal in the basis of the tight-binding basis
functions, and leads to the integral transfer matrix:

A+thPyk)  tim(k) t7 P ye(k) tyhy (K)
H(k) = tim (k)* —A+ t]J\_fN'YQ (k) tth (k) t‘]‘VN’yc(k)*
tPve(k)" t)ha (k) A+ BBy (k) A+t y(k)"

tyha(k) e (k) timk) A+t V(k)
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in the basis {| By, k), |N1,k) , | B2, k), | No, k) }, where:

nk) =) ™7

(k) = mk)* -3
hi(k) = 2cos (k- d)

Ye(k) = 11 (k)hi (k)

where the 7 are the in-plane first nearest neighbors nitrogen to boron vectors
in planes of type 1. Here, v, and v, correspond respectively to the geometric
terms for the first and second nearest neighbours in plane, while h; and
~. correspond respectively to the geometric terms for the first and second
nearest neighbours out of plane. It is interesting to note that, since the 7
are in plane, 7, and 7, depend only on the in-plane component of k, say k| ,
while, since d is along the stacking axis, h; depends only on the out of plane
component of k, say k. Finally, 7. = 71h1, so here the dependance in k
and kj factorizes. For completeness, it should be noted that the AA’ bilayer
is described by an integral transfer matrix of the same form, obtained from
the one above by the substitution h; < 1E|

We now proceed with our usual approximations by considering the de-
composition electronic of the hamiltonian:

A=A+ v

where we define A as I:[éd) with all hoppings (every parameter except A)
set to 0, and, consequently, V= ﬁée” — A is likewise ]:I(()el) with A set to 0.
As a reminder, A has two eigensubspaces: one at low energy, —A, spanned
by all the nitrogen atomic orbitals, and one at high energy, +A, spanned by
all the boron atomic orbitals. We treat V as a perturbation, and perform
degenerate perturbation theory in both subspaces to obtain two separate
effective hamiltonians for the low and high energy eigenstates of ﬁée”, which
are by definition the valence and conduction bands. Consequently, we call
the low energy effective hamiltonian A, (h for “holes”) and the high energy
one H, (e for “electrons”), and compute them up to second order in V. Two
basis are of interest to express their matrix elements: the basis of localized
atomic orbitals, and the basis of the tight-binding basis functions.

Tt can be compared with the integral transfer matrices found in section although
there we had kept to first nearest neighbors, while here we have retained second nearest
neighbors both in and out of plane.
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In the basis of localized atomic orbitals, we find:

2 .
A+35%x+25;5 ifn=n'

2
% + PP if n and n’ are in-plane In.n. in Ag
(B,n|H.|B,n') = % + P if n and n’ are out of plane In.n. in Ag

t2

ﬁ if n/ —n=42d
0 else

2ol :

A+355+255 ifm=m

2

% — if m and m’ are in-plane In.n. in Ay

— (N, m|H,|N,m’) = tzt“ — tﬂVN if m and m’ are out of plane In.n. in Ay

t2

Zk ifm—m = +2d
0 else

Notice the — sign in front of (N, m|H,|N,m’). We can comment a bit on
these effective Hamiltonians. First, we note that both are effective first near-
est neighbours tight-binding hamiltonians in their subspaces, except for a
hopping term in tﬁ that connects second neighboring planes, as in the multi-
layer case. This term, which perturbatively “comes” from a vertical hopping
from (say) B to N and then to B, is relatively small. It is neglected in the
excitonic hamiltonian in [48]. Like in the chain and monolayer cases, we
started with a second nearest neighbour hamiltonian, and now have only ef-
fective first nearest neighbours apart from these terms. This is again because
second nearest neighbours, by definition in our lattice, connect atoms of the
same type, and therefore are effectively first nearest neighbours within their
subspaces. Still, second nearest neighbour interactions in the crystal break
the electron-hole symmetry, even if t)' = t#8 and tﬁv N = tﬁgB.

We can, likewise, express these effective hamiltonians in the basis of tight-
binding basis functions where they are block-diagonal, either by reconstruct-
ing them from the expression of the effective hamiltonians above, or by doing
perturbation theory on the full integral transfer matrix above. Both ways
are equivalent, and we find the following integral transfer matrices:

2

t i
L0 = [+ G+ 2573000 + gl (0| 1
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in the basis {|By, k), |Bs,k)} for the electron bands, and:

2 ti
() = =8+ gk PO = 20 + 5501

“At —tJIVN} <%?k) %(éd*)

in the basis {|Ny,k),|No, k)} for the hole bands. Here, I stands for the
identity matrix in dimension 2. Both have a similar structure, up to hermitian
conjugation, and differ essentially by the values of their parameters. In this
approximation, the conduction and valence band energies are respectively
given by:

ti tit
B0 = At L0004 17720 00) + S 00 £ A0 187, 1)
& ot
Bus() = = |2 S0 = 520 + okl 0] 2 50— %9

where in the £, the — sign corresponds to the lowest energy band of a
subspace, in keeping with usual convention of attributing band index by order
of energy. Figure provides a visualization of the bands at these different
levels of approximation, with parameters taken from a fit of the “exact”
tight-binding bands energie (obtained from H(k)) to a GW calculation by
F. Palearif

Within these approximations, the band states, away from zeros of 7., are
likewise given by:

.00 = 222 [|u1,k> + E(klji |u2,k>] (6.1)

where o, 4+ (k) is such that |a, 1 (k)| =1 and:

L1t

k
A 76( )
tit)

) = = | = ety

Crucially for our purposes here, there are no other restrictions on o, + (k)
that the ones given above. In particular, in the case of a numerical diagonal-
ization of the effective hamiltonians, it depends on the particular numerical

o) = [0 4 ¢

2Best fit parameters for this particular band structure are found to be A = 3.226 eV,
tL = —201¢eV, t) = 0.638 eV, tFF = —0.41 ¢V, tf'N = —04 ¢V, ¢t#P = —0.0.054 eV,

I
tBB = —0.05 eV.
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Figure 6.1: Band structure of bulk hBN in the AA’ stacking in the k; = 0
plane. Dots correspond to the ab initio GW results by F. Paleari, with
the points being used to fit the tight-binding parameters highlighted in red:
here, the fit is essentially done along the MK line. The solid line depicts
the “exact” tight-binding bands computed from H(k), which are fitted to
the ab initio data, while dashed lines correspond to the approximate bands
computed from Hjp(k) and H.(k) with the same parameters.

algorithm. Of course, this affects only the phase of the individual band states,
since the modulus of «,, 1 (k) is fixed to 1. Further sources of discontinuities
in the band states arise from the zeroes of v.. At these points, the coupling
between the planes effectively vanishes, and the bands are degenerate. In
particular, lines of the form K+ sc and K’ + sc for s € R are 1D singularities
in the Brillouin zone in this sense: the phase of 4. rotates by 27 as k describes
an infinitesimal circle around such a lineEL so that there is no way to make the
band states continuous on the full Brillouin zone. Nevertheless, if we choose
a, + (k) continuous, the continuity of the band states will be ensured, except
on the lines and planes mentionned above where the bands are degenerate.
The obvious choice is to take o, +(k) = 1, but this will particularize one of
the real-space planes. We shall come back to this discussion later, but to
make further discussions general and independent on our specific choice of
parameters and number of nearest neighbours, as well as to lighten notations
as we move on to excitonic problems, we will from here on write down the

3Except on the horizontal edges of the Brillouin zone, where +, vanishes identically.
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(approximate) band states as:

(k) = >_b5(k) [Bs, k)

B
|u(K)) = > aj(k) [Na, k)

«

where v and ¢ are valence and conduction band indices, taking on the values
0 for the lowest band (— above) and 1 for the highest (+ above).

6.2 Excitonic hamiltonian

6.2.1 The basis of localized pairs

With the single particle band structure described by ﬁéd) ~ H, ® er, we
move to excitonic states. As per our usual strategy, we write transition space
as a tensor product between the low (holes) and high (electrons) energy
spaces described earlier:

H~H,He

and describe the non interacting electron-hole pairs by the kinetic hamilto-
nian:

Hy~H,®1,—1,® H,

where 1, (resp. 1.) is the identity on Hy, (resp. H.). The space of transitions
is then spanned by the localized pair states:

jm,n) = [N,m) ® |B,n)

each of which represents a localized electron-hole pair, where the hole and the
electron are separated by the vector R = n—m. The kinetic hamiltonian H,
is then a six-dimensional tight-binding hamiltonian in this basis. The direct
electron-hole interaction is treated as usual, and we have:

(m, n|U|m’, n') & 8 m0n /W (m, n)

where we will use a model potential V(R) to approximate W.

6.2.2 Elementary excitations

Having established the matrix elements of the kinetic Hamiltonian H, and
the direct electron-hole interaction U in the basis of pairs (we will, once again,
neglect exchange), we now wish to move to a basis of elementary excitations.
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Because we have an interest in the expression of excitonic states in reciprocal
space, it is fruitful here to establish this basis by generalizing the “Fourier
transform” point of view on elementary excitations discussed in section [3.2.2]
We start by noting that a given transition from valence band v at wavevector
k to conduction band ¢ at wavevector k + Q can be written as:

vk, c(k +Q)) = !vk> ® le(k +Q))
— Y S e N

(o4 mEAN

R c —i(k+Q)n
®mzn€%ﬁb (k+Q)e *|B,n)

Z )o5(k+Q) . eTiQueilen—m) ) )

5 meAN,a
DEABWB

where we have defined |m,n) = |N,m) ® |B,n). We now move to relative
coordinates by changing variables from m,n to m,R. For a given («, /)
pair and m € Ay, the set of R to be summed upon is a priori A, g(m) =
App — m, but because the crystal is translationally invariant, A, s(m) is
the same for any m € Ay,. This naturally lets us define the excitation
sublattices, like we did for multilayers:

0 0 0
Aop=Apg—my, =R+ (nB,,B - mN,a)

which are here the sets of all possible hole-electron vectors from a hole in a
layer of “type” « to an electron in a layer of “type” 5. With this, we can
permute the sums above, and obtain:

vk, c(k+ Q) =>" > T 0l (k)b (k + Qe HQR

1 .
e ¥ e mm )

mEAN’a

[Re.5.Q)

Where we have defined the states |R, g, Q), which are as usual tight-
binding basis functions over the localized electron hole pairs. Inserting now
this expression in the transition basis expression of an indirect excitonic state
with center of mass momentum Q:

Tq) =D > Vueaerq) vk, c(k + Q)) (6.2)

k v,c
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and permuting the sums, we have:

We) =3 j_zz deetier @’ (K)° 5 (k + Q)e AR R, Q)
o, REA, k

v,c

YR, 5.Q

= Z Z \I]Ra,ﬁvQ ’Raﬁa Q)
a,f A

so that we have obtained our elementary excitation states [R5, Q). In do-
ing so, we have also obtained the conversion formulas between the excitonic
weights in reciprocal / band space and their analogues in elementary excita-
tion space:

VR, 5Q = Z 3 Woreeterqai (k)05 (k + Q)e AR (6.3)
k v,c
Yok ck+qQ) = \/— Z al(k)bs(k+ Q)" Y g, el tOR (6.4)
ReA, B

6.2.3 Hamiltonian

Having now obtained the desired hybrid basis, where the relative coordinate is
treated in direct space, while the center of mass motion is treated in reciprocal
space, we proceed to rewrite the Bethe-Salpeter Hamiltonian in this new
basis. Again, the process is relatively straightforward, since we already know
the matrix elements of Hx in the basis of localized pairs, and know the
expressions of the |R, 3, Q) in terms of the localized pairs.

Kinetic hamiltonian

The free transition / kinetic hamiltonian, f[o, becomes itself an effective
tight-binding hamiltonian on the lattice A of the R, . It preserves Q and
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its matrix elements are given by:

~ t2 t2
(Ra s, Q|Ho|Ra s, Q) = 2A + 3= +2-1

A A
2 | /BB 2 NN| _iQ(R'-R) ; / :
< aﬁ,Q‘Ho‘Raﬁ, > [EA +17 | + {m 'V e it R,R’ are In.n. in plane
(1 + eiQ(R’*R)) if R/ — R = +2d
~ RAN
<R1,1, Q| Hy|R ,, Q> ;AH +t if R, R’ are In.n. out of plane
- 'ty t : ,
<R1,1, Q|Ho|Rj Q> = ;AH tH ] 1QR'-R) if R, R’ are 1n.n. out of plane
A 'ty t
<R2,2, Q|Ho|R ,, Q> = ;AH tH ] 1Q(R-R) if R, R’ are 1n.n. out of plane
- bt
<R1,1, Q|Hy|R,, > = ;AH +t if R,R’ are 1n.n. out of plane

and their complex conjugates. They are 0 in all other cases, notably if
Q # Q'. We thus have, as usual, one effective hamiltonian Hx(Q) per
value of Q, which appears as a tight-binding hamiltonian on the lattice of
excitations A = Uq gepi o) {Ras / R € Aapl

It is interesting to point out, here, that out-of-plane second-nearest neigh-
bors play a special role compared to their in-plane equivalents. Because hop-
pings within the same sublattice in A combine contributions from both the
hole and the electron, compensation effects can occur, which decrease the in-
fluence of in-plane second nearest neighbors at Q = 0, as we have discussed
previously. However, no such compensation can occur for out of plane hop-
pings, because changing sublattices can only be done by having the electron
or the hole hop between layers, not both at the same time.

It is also worth noting that the excitation sublattices, the A, g, are hexag-
onal lattices in the bulk case, and therefore unlike in the (finite) multilayer
description, the A, , do not contain only in-plane excitations anymore. They
are still the only excitation sublattices which have excitation sites in the z = 0
plane, so the only ones to contain in-plane excitations, but they also con-
tain excitations between second nearest planes, fourth nearest planes, etc.:
they contain excitations between planes of the same “kind”, i.e. that are
connected by a lattice translation. The A, g with a # 3 contain the other
excitations, i.e. those between first-neighbor planes, third neighbor planes,
etc.
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Direct electron-hole interaction

The direct electron-hole interaction, which depends only on R, s and pre-
serves Q has a particularly simple expression:

(Rays, QUIRY 5, Q') = 0r.Rr0q.q 000055V s (R)

where V,, 3(R) is an appropriate model potential as described in the basis of
localized pairs.

To perform practical calculations, we still need to specify a model for the
potential, i.e. a function V, 3(R).

Since we are dealing with a bulk system, a simple model which can be
used to provide qualitative trends is a screened Coulomb potential, where
the in-plane / out of plane anisotropy is represented by different dielectric
constants €, and ¢:

2

—ejR ifa=p
VosR) = _ﬁ if o # fand R-d==+1
0 else

i.e. we have a Coulomb interaction screened by €, for in-plane pairs, while out
of plane pairs in neighboring planes are screened by €. Interactions between
pairs separated by one plane or more (i.e. such that |R - d| > 2) are neglected
due to the screening from the atomic planes between them. Both €, and ¢
are additional potential parameters of the model. In particular, excitations
between second neighboring planes and up are considered unbound with such
a model.

To perform more accurate calculations, a more sophisticated model po-
tential would probably be needed.[91), [74, 92] In particular, it is desirable to
have a model which is able to describe the direct interaction for excitations
involving pairs spread over more than first nearest layers would be useful to
describe higher energy excitons, which are likely to be spread in the stack-
ing direction; as well a reducing to the monolayer limit in the case of less
extended excitons. To this end, we take a model potential for bulk where
each layer is described as a purely two-dimensional dielectric sheet with po-
larizability radius rg, and solve the corresponding Poisson equation for this
system using the methods introduced by Cudazzo and coauthors in [61]f_f]

4We must however note that, in the context of multilayers, while the strict two-
dimensional limit we adopt here does reproduce some expected behaviors of multilayer
potentials and provides a simple functional form to be fitted, it is known to underestimate
the overall screening. See [74] for details.
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In this macroscopic framework, where the model system has cylinder
symmetry, V does not explicitly depend on o and 3, but rather on m = R -d.
It is useful to decompose R into cylinder coordinates:

R =p+mc

and the problem becomes effectively that of computing the V,, as functions
of p. It can be shown in that case that:

—zkmf
S dk:
/7r 1+ roqf(k

for m € N, where q is conjugate to p and:

e~ 1
- + -
ezk _ efqh 1 — ezkefqh

f(k) =

The real space potential is then obtained by inverse Fourier transform:

/V )Jo(ap)qdq

A numerical evaluation is provided in figure [6.3]

6.3 Direct exciton series

In the same way as it was done for the bilayer, the model can be used to
compute the direct excitonic series for bulk hBN. We present here preliminary
results on this topic. Many works[23, 96|, 97, 08, Q9] exist on the topic,
although often with focus on the first excitonic peak.

6.3.1 Ab initio results

Let us start this section by discussing some ab initio results on absorption
in AA’ bulk hBN. The calculations in question have been performed by S.
Reichardt, using DTF + Scissor shift for the bands, on top of which the
Bethe-Salpeter equation was solved.[I00] In-plane and interlayer lattice pa-
rameters were taken to be a = 2.478 A and ¢ = 6.453 A.

We present the system’s absorption spectrum in figure along with the
corresponding bright states. The first eigenergies are reported in table [6.1]
along with their bright/dark character. Since bulk hBN is obtained by the
repetition of a unit cell composed of two layers in the AA’ stacking, we ex-
pect some similarities with the situation in the bilayer, despite the increased
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screening. This is indeed the case: while bulk excitons are significantly less
bound than their bilayer counterparts, because of the additional screening
induced by the additional layers, the “low energy” excitons of bulk bear a
strong similarity to their bilayer counterparts. This is possibly due to the
fact that, in both cases, these excitons are the smallest in radius, and are
therefore strongly affected - and therefore constrained - by the lattice sym-
metries of the system. Higher excitons tend to be larger, and therefore more
sensitive to the variations of the potential, in addition to the fact that they

can involve excitations between planes that are not nearest neighbors, which
is impossible in the bilayer (in which there are only two planes).

1.0 4 — Broadening = 5 meV
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Figure 6.2: Low energy ab initio absorption spectrum for bulk hBN in the
AA’ stacking. The system’s direct gap is at an energy of 6.4965 eV. In-
sets: densities of the first three bright excitons (B;, By and Bs respectively).
The densities are depicted in the fixed hole representation via an in-plane
cut: Ly corresponds to the layer where the hole was placed, L; is the layer
immediately above. Some of these states also have low intensity of further

layers (L;, i > 2), we do not depict it here here. Ab initio calculations by S.
Reichardt.
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Exciton 1 (x2) 2 (x2) 3 4 5 (x2) 6 7 (x2) 8
Ab initio  —0.81  —0.726 —0.546 —0.461 —0.435 —-0.368 —0.359 —0.358
Bright no yes no no no no yes no

Table 6.1: Ab initio binding energies (in eV), degeneracies and optical activ-
ities of the first eight bulk excitons. Calculations by S. Reichardt.

Analysis of the states displayed in table show that they occur in
Davydov pairs. Again, this is due to the fact that each unit cell contains
two inequivalent layers. The lowest bound Davydov pair is well understood
from the simple model for Davydov splitting discussed in chapter [5] whose
consequences in bulk have been discussed in section [5.3.5] The lowest bound
exciton is its even component, which is dark, while the second exciton is its
odd component, which is bright and constitutes the first peak.

The next two bright states appear more peculiar: they are dominated
by three in-plane excitations, and assume a triangular shape which does not
appear directly reminiscent of a monolayer state. Interestingly, however, their
closeness in energy suggests that exciton 7, to which the second bright peak
is associated, is the Davydov partner of exciton 5, whose density appears
different "] We will come back to this and discuss the origin of this state with
the tools of the tight-binding formalism.

6.3.2 Tight-binding analysis
Optical activity and remarks on symmetries

Bulk hBN has the symmetries of the Dg;, point group. Notable symmetries
included in Dgj, are the inversion symmetry, which provides the usual selec-
tion rule (only excitons transforming according to an ungerade representation
can be bright), as well as a horizontal mirror symmetry, o,. Group theoret-
ical considerations yield that only states transforming according to the Ey,
representation may be bright for in-plane polarized light [

In the tight-binding formalism, this latter symmetry manifests itself as a
mirror symmetry about the z = 0 plane. This has interesting consequences:
it means that states that are odd under o, cannot have any intensity on the
excitations of A which are in the z = 0 plane, i.e. all the in-plane excita-

5A difference between the two states of this pair is, in fact, also visible in the case of
the bilayer.

6F1. is a two-dimensional representation which has character —2 for inversion and 2
for o}, its excitons are thus “odd” under inversion and “even” under the horizontal mirror.
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tions. Such states are therefore expected to have no in-plane components,
i.e. to be purely interlayer.ﬂ Such excitons have been noted by Aggoune and
coauthors. [9§]

Within the tight-binding approximations the optical matrix elements are
given by the usual expression. For a direct excitonic state:

@)= >, Pr.,Rap)

RaﬂeA
we have:
. mevV N
Ople) = == 3 tn, 0n, R
v RaﬁEA

where the tg, , = <Aa,m9v,a‘lfféel)
which are here again ¢, or ¢ if R is (respectively) an in-plane or interlayer
Nitrogen to Boron nearest-neighbor vector (in the crystal lattice), and zero
otherwise. The conclusions are analogous to those given in the bilayer case
in section [5.2.6} for an exciton to be bright in this framework, it must have
some intensity in-plane. We thus recover the group theoretical requirement
that only FEy, excitons may be bright for in-plane polarized light: other F
representations are either gerade (so forbidden by inversion) or odd under
op, which forbids in-plane excitations.

The remarks above suggest that in an E Davydov pair with a mostly in-
plane character the bright component must be F,,, while the dark component
must be Ey, (the only E representation which is even both under inversion
and under oy, the latter being necessary to have intensity in-plane).

Bg, m(])\/,a + R> are electronic hoppings,

Numerical results

To proceed with a numerical diagonalisation of Hy at Q = 0, we make, for
simplicity, the first-nearest neighbors approximation, leaving us with three
effective parameters: T = %, T, = % and 7o, 2A being fixed to the value
of the ab initio gap. We take the effective potential up to m = 3. We adjust
these parameters on the ab initio binding energies reported in table [6.1 We
thus estimate the following effective parameters:

2A=65eV ; T, =147eV ; T;=0548eV ; ry=162A.

"In fact, a similar situation manifests itself in the bilayer case if one keeps to the
first-nearest neighbors approximation. In this case, the excitonic tight-binding problem
exhibits a Dgj, symmetry, even though the crystal itself does not.
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Figure 6.3: Effective bulk potential for up to third nearest planes excitations.
The set of lattice points with V' = 0 corresponds to excitations with m > 3,
which are here kept unbound.

These parameters provide a reasonable agreement for the binding energies.
The corresponding band structure agreement is moderate at best, but this is
sufficient for the purpose of the preliminary results presented here.

The effective potential, in real space, is depicted in figure [6.3] Like in
section [5.2.6], we do not necessarily expect the model to be very accurate
above the level of the second bright peak, at least with this parametrization.
We depict in figure the variations of its optical spectrum as a function
of t), and well as the corresponding binding energy / oscillator strength
diagram. Overall, the situation is analogous to that of the bilayer: it is
the interaction of in-plane bright monolayer state at ¢; = 0% with purely
interlayer states of symmetry Fy, at tj = 0% that give rise to the additional
peaks in the bulk structure compared to the “bare” monolayer.

From the point of view of excitonic wavefunctions, the strongly “trian-
gular” exciton 7 (“B;”) is well reproduced in tight-binding. Its Davydov
partner is now rather clearly exciton 5, which interestingly does not have
this sharp triangular features: instead, it is much more similar to the corre-
sponding monolayer exciton (exciton 2). This is depicted in figure using
tight-binding wavefunctions. A similar phenomenon seems to occur within
the (Eyy, Ey,,) dark/bright Davydov pairs corresponding to higher peaks, but
their detailed analysis is outside of the scope of this work.
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Figure 6.4: Sample evolution of the tight-binding absorption spectrum for
bulk hBN in the AA’ stacking with the variations of ¢|. The system’s direct
gap is at an energy of 6.4965 eV. This behavior of the spectrum after the
first two peaks depends rather significantly on the exact parameters (kinetic
and potential), so the evolution presented here is qualitative.
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Figure 6.5: Tight-binding densities for exciton 5 (top) and 7 (bottom). The
representation is analogue to the ab initio depiction of figure [6.2; the FE
are the tight-binding binding energies, and the A indicate the indices of the
constituent states, in tight-binding order. Excitons (5,7) form a Davydov
pair, with exciton 5 being of symmetry Fs, and thus dark, while its partner
exciton 7 has FEj, symmetry and is thus bright: it is responsible for teh
second peak in the bulk absorption spectrum.
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Figure 6.6: Sample exciton band structure of bulk hBN in the AA’ stacking
along the I'K line of the excitonic Brillouin zone, computed by diagonaliza-
tion of Hy. Kinetic parameters are taken from a fit of the bands as given in
figure [6.1] while potential parameters are manually adjusted such that the
dispersion roughly describes the double minimum structure near %FK; we
have here taken the simple Coulomb potential with e, = 6 and ¢ = 6.8.
Second nearest plane hoppings in tﬁ are neglected. Solid dots correspond to
the calculated points, lines are a guide to the eye. At each Q-point, only the
first five lowest energy sates are depicted.

6.4 Exciton dispersion

This section only presents sample results. See [{8] for a more complete dis-
CUSSION.

6.4.1 Exciton band structure

We can diagonalize the excitonic hamiltonian H (Q) for each value of Q to
obtain a dispersion relation for the excitons. A sample dispersion is presented
in figure [6.6]

The dispersion here is presented along the 'K line, which is the region
which is known to host the system’s indirect excitonic gap.[37] The influence
of the various parameters on the dispersion has been discussed in detail in
[48]. Here, we have manually adjusted the potential parameters to qualita-
tively reproduce the double minima structure around %FK. The rest of the
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exciton dispersion with these parameters is not in very good agreement with
the calculated ab initio dispersion.[4§]

We can likewise extract the excitonic states from the diagonalization of
the above hamiltonian, both in real and in reciprocal space. In the latter
case, in particular, they may be useful as ingredients for the study of indirect
phenomena.ﬂ To illustrate this ability, we briefly discuss the lowest bound
direct exciton, at excitonic I'. This exciton presents the additional difficulty
of being twice degenerate; more precisely, it transforms as the Ey, represen-
tation of the Dgj, point group. We must thus choose a basis to meaningfully
discuss this state. A natural choice, which is well adapted to study in recip-
rocal space, is a chiral basis. A practical way to construct it from a numerical
diagonalization has been discussed in section [4.4.2] and so we assume here
that we have such a basis, say {‘I/)‘Zl \PAZQ}

We can obtain the reciprocal space amplitudes, the Wi .(k+q), from the
knowledge of the Wg, ,q that are computed from the diagonalization of

Hx(I). This can be done via the change of basis formula which can be
rewritten as:

1
= Z VR, ..Q o (k+Q)-R
\/_ REAa B ﬁ

FQ,B(k’Q)

Yok c(k+Q) Za k)b (k + Q)"

Here, the I', g(k, Q) are simply Fourier transforms over the sublattices A, g,
and do not depend on the choice of phases of the band states. However, the
product al,(k)b5(k + Q)" does depend on the choice of band states, and, as
discussed in section [6.1.2 needs not even be continuous.

Before discussing the details of W,y .k, let us first look at |\I’vk,ck|2- A cut
along the I'MK and ALH planes is depicted in figure for ‘\I/’\:1>. Let
us first discuss the situation in the former. There, we find that most of the
density comes from transitions from the highest valence band (v = 1), to the
lowest conduction band (¢ = 0), as expected energetically. Similarly, most of
the intensity is located around the high symmetry K and K’ points, although
for (v =1, ¢ = 0) transitions, the intensity at these points is quite low. This is
not surprising, since, as can be seen from figure [6.1], these points are actually
local maxima for the (v =1,¢ = 0) transition energies. The direct minima
are instead located around these points, and are consistent with the regions

2
of highest densities of ‘\Il)‘zl(vzl)ky(czo)k‘ . The situation is more symmetric
in the ALH plane: this can be understood from the fact that . = 0 on this

8We note that an ab initio calculation of the reciprocal space densties of the first four
bright excitons may be found in [99].
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plane, and so the interplane couplings vanish, leading to a degenracy of the
bands in this region.
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Figure 6.7: Cuts of the reciprocal space densities ‘\Ilf)‘lfik

polarized state ‘\If’\:1> of the twice degenerate lowest bound subspace at
Q = T along the TMK (left) and ALH (right) planes. Note that each
component has its own colorbar. Note also that this is only the density
for one component of the lowest bound excton (which is a twice degenerate
subspace).

To gain further insight, we can consider a simple model, by studying the
real space amplitudes Vg, , . We assume that the interlayer hoppings are
negligible (which is a strong approximation)ﬂ and we concern ourselves only
with states of the lowest bound Davydov pair. These states are mostly in-
plane, i.e. most of their intensity is on excitations in the z = 0 plane. A
fortiori, their components on the A, 3 sublattices such that o # g should be
negligible. Choosing a basis with definite parity 4+ under inversion, we thus
have:

(W) & [Wy) £ [Way)
~ |\I/11> :l:f|‘1111>

where [ is the inversion operator, and we have defined:

Uos=| Y. [RaplRasl|[¥)

REAQ’B

9The comparaison with the direct calculation will hint at the fact that this approx-
imattion (or possibly one of the following) is actually not very good, because it would
yield the same densities on each (v,c) components. It becomes exact if the out of plane
hoppings tend to zero, in which case the bands become degenerate. Still, it appears to be
be in reasonable agreement with observed phase patterns.
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the projection of |¥) on the sublattice A, g. It follows that:
\Ijvk,ck ~ ai’(k)bf(k)*f‘n(k, 0) + ag(k)bg(k)*l—’n(—k, O)

Recalling now the definition of I'1; (k, 0), we note that it is the Fourier trans-
form of |Wy;), which is in-plane and therefore should be similar to the k-space
representation of the chiral 1s states of the single layer: mostly localized
around the three (say) K points, of constant phase around them, and with
phase rotating by 2° when going from one K point to the next. I';;(—k, 0) is
hence expected to exhibit the same behavior, but with the K’ points instead.
In particular, the overlap between the two terms is expected to be limited.
To proceed further, we need to make a choice of phase for the band states.
In fact, to be able analyse the U,k ., it is helpful to control the definition of
the band states.ﬂ To this end, we can use the analytical expressions given
by equation [6.1] and make the simplest choice for their phases by setting
a, (k)= 1B We represent the result for our example state with this choice

in figure [6.8]

W54+ ) (density-phase) W=t v (density-phase)
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Figure 6.8: Cuts of the reciprocal space amplitudes \Ililf L for the chiral state

}‘I/’\:1> of the twice degenerate lowest bound subspace at Q = I' along the
I'MK (left) and ALH (right) planes. Density-phase representation.

In this case, the product a¥(k)b§(k)" is constant, so the vicinity of the K
points should (and does) display the phase pattern expected from I'y; alone.
The situation at the K’ points, whose phase pattern is essentially dependent
on ay(k)vs (k) T'11(—k, 0) is slightly more complex: we see that the phase still
rotates by %’T under a (3 rotation, but now locally winds twice around each
K’ point. The behavior under Cs rotations clearly stems from the I'y;;(—k, 0)

10T his is difficult to do if one only has access to the band states numerically, where
the phases of the band prefactors are essentially random. We have here the advantage of
having analytical expressions.

While this is possibly the simplest choice, its disadvantage is that is breaks the system’s
symmetry by particularizing a plane.
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term, which otherwise only contributes a locally constant phase around the
K’ points. The “local” phase pattern can thus be ascribed to the terms
coming from the band states: a3(k)b5(k)*. These depend on v and ¢, but
from equation this dependence is of the form:

R SR
al(k)b5 (k) :igw(e “®)

where €, is a sign, i.e. only takes the values £1, and is such that ¢, . is
of one sign if v = ¢ and the other if v # c[ and ¢(k) = arg[r.(k)]. As a
result, a}(k)bs(k)" has a phase that locally winds twice around the K’ points,
as observed in figure [6.8] We can further observe that this local pattern is
rotated by m when passing from a component with v = ¢ to a component
where v # c: this stems precisely from the change in the sign of ¢, .

12\Which one is positive and which one is negative depends on the values of the kinetic
parameters.
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Conclusion

7.1 Results

Throughout this work, we have sought to study the influence of lattice ge-
ometry and symmetries on the excitonic effects of hexagonal Boron Nitride,
as a prototypical 2D system with pronounced excitons. To this end, we
have shown that, in BN-like systems, it is possible to approximately map the
Bethe-Salpeter equation onto the problem of a particle moving on an effec-
tive lattice of excitations under the influence of an external field. This tool
presents two main advantages: it is semi-analytical, and therefore compu-
tationally very cheap, and at the same time preserves the crystal geometry,
thus allowing for the aforementioned study of lattice effects and an efficient
identification of symmetries. We have endeavored to adjust its parameters
to state of the art ab initio calculations from collaborators and shown that
both methods are complementary tools of investigation.

Using this model, we have presented a detailed investigation of the exci-
tonic series for single-layer hBN. We have studied both the limits of strong
and weak electron-hole interactions. In doing so, we have classified the states
according to the symmetries of the crystal lattice, clarified the relevant optical
selection rules and obtained estimates of the associated oscillator strengths.
We have provided a connection between this tight-binding description and
the envelope function description of the Wannier model. In particular, we
have highlighted the information that is carried by the phase of the excitonic
wavefunctions, both in real space and in reciprocal space, provided the ba-
sis transition states are chosen carefully. We have shown that the excitons
of hBN are neither quite hydrogenoid Wannier excitons, nor atomically lo-
calized Frenkel excitons: instead, they are strongly bound excitons, which
are extended, yet strongly feel the influence of the crystal lattice and the

201
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interaction between the K and K’ minima. This is particularly visible in the
splitting of the hydrogenoid 2p subspace, which, along with its associated op-
tical peak, strongly depends on the strength of the electron-hole interaction
and actually vanishes in the weak coupling limit.

This model naturally extends to the study of indirect states: the effective
lattice of excitations remains the same, but the hoppings and electron-hole
interactions become dependent on the exciton center of mass momentum Q.
In this work, we have reported and studied the excitonic band structure of
single layer hBN, while the study of bulk hBN in the AA’, AB and ABC can
be found in [48] with the same model.

We have then extended this model to study the problem of several cou-
pled hBN layers. We highlighted the role of couplings between intra- and
inter-layer excitions, atomic coordination numbers and screening variations
in the evolution of the absorption spectra of hBN multilayers. We have re-
ported the excitonic series for the AA’ bilayer, and studied its evolution as
a function of the interlayer coupling. For higher numbers of layers, we have
provided a simple one dimensional, almost parameter free model for the split-
ting of the main peak, by considering the multilayer as a linear chain of layers,
where each layer can accommodate a copy of the lowest bound monolayer
exciton. Notably, we have demonstrated that this peak splits into two ener-
getically separated substructures: one composed of “inner” excitons, which
are localized in the inner layers, and one composed of surface excitons, which
are localized on the surface layers. Further, we have shown that the lowest
bound excitons in multilayers are expected to be localized on the surfaces of
the multilayers and that these excitons can be optically active.

There as well, we have given particular attention to the representation of
excitonic states and their symmetries. This is particularly relevant in mul-
tilayers because there, not all nitrogen sites are equivalent choices of hole
positions. The representation of multilayer states by the standard ab initio
practice of fixing the position of the hole is therefore challenging, and the
“most symmetric” choice of hole position is not necessarily the most judicious
choice. Within the tight-binding model, the lattice of excitations provides
a representation that naturally preserves all the symmetries of the excitonic
wavefunction, and therefore avoids this issue. The linear chain model also
provides insight as to which hole positions are associated to relevant transi-
tions for a given state.

For completeness, we have also presented the excitonic tight-binding model
in the case of bulk hBN in the AA’ stacking. We briefly reported on its ab-
sorption spectrum in comparison with ab initio results, and provided a short
discussion on the dispersion of the excitonic states along with the associated
computation of reciprocal space excitonic amplitudes.
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7.2 Outlook

In the present work, we have mostly remained at the level of defect-free sam-
ples and frozen atoms. Recent works[33, 34, 35, [36, B7] have shown that
phonon assisted indirect phenomena play a crucial role in the optical prop-
erties of hBN, at least in emission spectroscopies. Further, the development
of ultrafast spectroscopy techniques has led to a strong interest in the dif-
fusion of excitons, through phononic channels or through the influence of
defects.[101], 102, [103] In fact, the scattering of excitons off material defects
may also play a role in their relaxation and recombination in emission spec-
troscopies.

Going forward, the direct space techniques that we have described in this
work are in fact well suited for the study of these problems. Let us start
with indirect effects in pristine systems. As we have already mentioned, re-
cently developed diagrammatic methods, [78] that include dynamical exciton-
phonon effects can require knowledge of indirect excitonic states and binding
energies on a very fine mesh of Q points (center of mass momenta). This
is a delicate task ab initio, but tight-binding methods, once adjusted on a
coarse ab initio grid, can overcome this computational barrier. The inclusion
of electron-phonon coupling, either directly in the excitonic tight-binding
model, or through an external calculation, may then provide access to the
sought after results.

The inclusion of defects, is, in a sense, the other side of the same coin.
In a non-pristine system, the exciton center of mass momentum, Q, is no
longer a good quantum number. Indeed, in this situation, the system loses its
translational invariance, and the description through the lattice of excitations
becomes less straightforward. However, the description through the lattice
of pairs remains available: we can still represent a system with defects, at
the price of doubling the crystal dimension. With effective tight-binding
methods, this is not as daunting a task as it may seem. Indeed, for tight-
binding hamiltonians, efficient methods are known which scale linearly with
the number of sites.[104] Our mapping of the Bethe-Salpeter equation on
the lattice of pairs therefore allows for the efficient investigation of exciton
diffusion with a quadratic scaling in the number of crystal atoms.

Be it in pristine or non pristine systems, the capacity of the tight-binding
model to preserve the system’s geometry opens interesting avenues of in-
vestigation when it comes to exciton diffusion. The study of multilayers or
semi-infinite stackings, with their surface states, appears particularly rele-
vant.

Lastly, multilayer systems of 2D materials in general hold great promise,[105]
as do interlayer excitons[106] in such systems. Our studies of the influence
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of layer interactions on excitonic properties could be adapted to other two-
dimensional materials, such as transition metal dichalcogenides. Indeed, even
though the single-layer excitons in these materials are better described by a
continuum picture, the problem of interlayer coupling can be approached by
tight-binding methods. Thus, much of our analysis on Davydov splitting, in-
terlayer and surface excitons could be carried over from hBN to other layered
materials.
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