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Abstract—In this paper, we propose a new deep learning based
approach for disentangling face identity representations from
expressive 3D faces. Given a 3D face, our approach not only
extracts a disentangled identity representation, but also generates
a realistic 3D face with a neutral expression while predicting its
identity. The proposed network consists of three components; (1)
a Graph Convolutional Autoencoder (GCA) to encode the 3D
faces into latent representations, (2) a Generative Adversarial
Network (GAN) that translates the latent representations of
expressive faces into those of neutral faces, (3) and an identity
recognition sub-network taking advantage of the neutralized
latent representations for 3D face recognition. The whole network
is trained in an end-to-end manner. Experiments are conducted
on three publicly available datasets showing the effectiveness of
the proposed approach.

Keywords— 3D Face Recognition, 3D Shape Modelling, Genera-
tive Adversarial Networks, Graph Convolutions

I. INTRODUCTION

Automatic recognition of faces is a non-intrusive technology that,
if performed accurately, can open the door to many innovative
applications and revolutionize the interactions of humans with in-
frastructures and services. With the recent advances in acquisition
systems, impressive face recognition systems have been deployed in
real-world applications [1], [10], [14]–[16], [18], [21]. In particular,
3D sensors played an important role in making these advances thanks
to the rich geometrical information and their robustness to multiple
real-world constraints (e.g., pose variations, illumination changes, etc)
[19].

Another important constraint in real-world scenarios consists of
recognizing faces under different facial deformations usually termed
as facial expressions [2], [10]. Indeed, the captured information when
acquiring faces encodes different attributes, e.g., identity, expression,
pose, etc [2], [3], [13]. Recognizing faces usually requires decoupling
identity attributes from other attributes. Following this direction,
multiple works tried to build 3D face parametric models disentangling
identity attributes from expression ones. In particular, 3D Morphable
Models (3DMM) have been widely used in different forms to achieve
this goal [2]–[4]. Such models usually assume linear combination of
the different attributes which limits their disentanglement abilities
due to the natural non-linearity of face shape variations. Aware
of such limitations, recent works proposed non-linear models to
model 3D face shapes [5], [8], [13], [20]. [20] proposed a Graph
Convolutional Autoencoder (GCA) making use of spectral graph
convolutions [6] to encode 3D face shapes into non-linear latent
representations. [8] presented an intrinsic Generative Adversarial
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Network (GAN) architecture named as MeshGAN operating directly
on 3D face meshes using a similar strategy as [20]. Their proposed
method allows the generation of new identities and expressions.
Similarly, [5] introduced spiral convolutions on meshes and used
them within a GAN-based architecture to synthesise face meshes.
Taking another direction, the authors in [13] decoupled identity
and expression representations by building two separate branches
of networks, one for identity and the other for expression. Their
proposed networks were based on spectral graph convolutions and
were applied on deformation representations computed on the face
meshes in advance. In order to control the distribution in latent
space, they used a variational strategy when training each branch.
More recently, the authors in [23] proposed a variational auto-encoder
for disentangling identity information from expressive 3D faces and
added an additional regulariser on the identity part to solve the issue
of imbalanced information over the expressive input faces and the
reconstructed neutral faces. While obtaining impressive perforfmance
on two datasets, the reported results are not applicable in real-world
settings since the method has not been tested on unseen identities.

The main focus of this paper is to effectively disentangle iden-
tity attributes from expression ones and use them within a face
recognition scenario. Accordingly, we learn a non-linear mapping
translating expressive 3D faces to neutral ones. This is achieved
at the level of latent representations obtained using a Graph Con-
volutional Autoencoder (GCA) [20]. The latent space translation is
learned using a Generative Adversarial Network (GAN) applied on
pairs of expressive and neutral latent representations [12]. Moreover,
additional modules and constraints are proposed to better preserve
identity features when neutralizing expressions. The whole pipeline
is trained on 3D faces of specific subjects (identities) then tested on
unseen ones. Figure 1 shows an overview of the proposed approach.
The main contributions of this paper are:

• An end-to-end network allowing joint face expression neutral-
ization and face recognition. Given an expressive 3D face, the
proposed network can also synthesise the corresponding realistic
neutral 3D face;

• A novel data-driven disentangled identity representation ob-
tained by a realistic translation from expressive faces to neutral
ones;

• An experimental validation of the proposed approach which is
consistent with real-world settings on three publicly available
datasets. The identities used for training are not used for testing.

The rest of the paper is organized as follows: Section II describes
the proposed approach. In Section III, we provide the network
architecture and details on the training. The experimental evaluation
is reported in Section IV. Finally, Section V concludes the paper and
draws some perspectives.



Fig. 1. Approach Overview. In training phase: pairs of expressive and neutral 3D faces of the same identity are collected. These pairs are fed to a two-branch
autoencoder sharing the same weights. A GAN-based module consisting of a generator and a discriminator is introduced in the latent space to learn a valid
translation from expressive to neutral representation. An identity recognition module is adopted to learn better identity representations. In testing phase: An
expressive 3D face is given as input to the network. The encoder encodes the 3D face into a latent representation. Then, the generator of the GAN module
translates this latent representation into neutral one which is then decoded into a neutral 3D face. The output features of the face recognition module can be
also used to conduct face recognition. The figure is best viewed in color.

II. PROPOSED APPROACH

Let us consider a set of m face meshes {Fj}mj=1. A face mesh is
defined as a graph structure, F = (V,A). Here, V = [v1, v2, . . . , vn]
denotes the 3D coordinates of n vertices and A represents an n× n
adjacency matrix with Aij = 1 if an edge connection exists between
vertex vi and vj , and Aij = 0 otherwise.

A set of pairs of expressive and neutral 3D faces are collected such
that each pair (F ei , F

n
i ) involves an expressive 3D face F ei and its

neutral counterpart Fni (i.e., a neutral 3D face of the same identity).
The main objective of our approach is to translate the expressive face
F ei into a neutral face F̃ni that approximates well the ground truth
neutral face Fni , while allowing the prediction of an identity code ỹi
that should match the ground truth identity label yi of both F ei and
Fni .

A. Graph Convolutional Autoencoder
The first step to our approach is to to embed the input 3D

face meshes into a low-dimensional latent space that encodes the
expression and identity attributes of the input face meshes. To do
so, we use a mesh-based autoencoder consisting of an encoder
Enc and a decoder Dec. The encoder Enc maps the input face
pair (F ei , F

n
i ) into latent representations (zei , z

n
i ). The decoder Dec

directly maps back the neutral latent representation zni into a neutral
face mesh F̃ni and also maps the neutralised version of the expressive
latent representation zei into the same neutral face mesh F̃ni . The
neutralization of the latent representation will be explained in the next
section. From an implementation point of view, the proposed auto-
encoder can be seen as two branches of Encoder-Decoder sharing the
same weights.

Due to the graph structure of the input face meshes, standard
convolutions cannot be used in Enc and Dec. As a solution, we
use the spectral graph convolutions proposed in [6]. In what follows,
we recall the background related to these convolutions.

Spectral Graph Convolutions: These convolutions are defined
on the graph Fourier transform domain. The Fourier transform of
the vertices V is given by Vw = U tV , where U ∈ Rn×n whose
columns are the orthogonal eigenvectors of the associated Laplacian
matrix L, while the inverse Fourier transform is defined as V = UVw.
The associated Laplacian to a graph F is defined as L = Λ − A,
where Λ is a diagonal matrix representing the degree of each vertex
in V with diagonal elements Λii =

∑n
j=1Aij . The convolution

operator in Fourier space can be defined as a Hadamard product of the
Fourier transforms of the graph and the filter. For efficiency matters,
it is common to use a recursive Chebyshev polynomial of order P
[9], [20] to approximate a kernel kθ(L) =

∑P−1
p=0 θpTp(L̂), where

L̂ = 2L/emax − In is the scaled Laplacian matrix, emax maximal
eigenvalue of L, θ ∈ RP is a vector of Chebyshev coefficients that
should be learned, and Tp ∈ Rn×n is the Chebyshev polynomial of
order p that can be computed recursively [9]. The spectral convolution
is finally defined as,

cj =

nf∑
i=1

kθi,j (L)V:,i ∈ Rn, (1)

where cj is the j-th feature of the output c ∈ Rn×nof (nof is the
number of output features), V:,i is the i-th feature of the input V ∈
Rn×nf (nf is the number of input features), and θi,j ∈ RP are
the Chebyshev trainable coefficients. For more details about spectral
graph convolutions, readers are refereed to [9], [20].



For notation simplicity, we will use in the following zei =
Enc(F ei ) to denote the expressive latent representation and zni =
Enc(Fni ) to represent the neutral latent representation.

B. Latent Space Translation

Given a set of pairs of latent representations (zei , z
n
i ) learned from

the expressive and neutral face meshes (F ei , F
n
i ), we aim to find a

mapping function G : zei → zni that translates the expressive latent
representation into its corresponding neutral latent representation.
To approximate this function we use a neural network G on the
expressive latent representation zei and constrain its output to be close
to the neutral latent representation zni by minimizing the L1 distance:

LL1 = ‖G(zei )− zni ‖1 . (2)

For a more realistic translation, we further constrain the distri-
bution of expressive latent representations to match that of neutral
latent representations. This is achieved by employing a conditional
Generative Adversarial Network (cGAN) [12], [17] on these latent
representations. The generator of this cGAN is given by the network
G that takes the expressive latent representations as input and tries
to generate the corresponding neutral latent representations. The
discriminator D is defined as another network that considers the
neutral latent representations G(zei ) as fake examples, while taking
the neutral latent representations zni as real examples. Furthermore,
the discriminator D is conditioned using the expressive latent rep-
resentation zei as proposed in [12] for image-to-image translation.
This condition is established by concatenating the condition zei to
the inputs of the discriminator (i.e., zni or G(zei )). The adversarial
loss to be minimized is then defined as,

LGAN = Ezei ,zni [logD(zni , z
e
i )] +

Ezei ,zni [log(1−D(G(zei ), z
e
i ))] .

(3)

The total loss function for latent space translation is given by,

Ll2l = λL1LL1 + λGANLGAN , (4)

where λL1 and λGAN denote the weights of LL1 and LGAN ,
respectively.

C. Face Recognition Module

In order to conduct face recognition, we take advantage of
the generated neutral latent representation for an expression-robust
face recognition. Specifically, we use a neural network R on the
generated neutral latent representation G(zei ) to predict the identity
ỹi = R(G(zei )) of the expressive face F ei . The same network is also
used on the real neutral latent representation zni to obtain a prediction
ỹi = R(zni ). The standard cross-entropy loss is used for training over
the identities as follows,

Lid = −
s∑
j=1

yji log ỹji , (5)

where s denotes the number of subjects (i.e., classes) and yji is is the
j-th value of the ground truth label yi.

It is important to mention that the face recognition module is not
only used for predicting identities but also for a better preservation
of the identity information when neutralizing the expression. We
experimentally validate this claim in Section IV-A.

III. FINAL OBJECTIVE AND NETWORK ARCHITECTURE

In addition to the loss functions of latent space translation and
face recognition module defined in Eq. 4 and Eq. 5, respectively, we
further define two loss functions at the end of the decoder Dec. The
first one enforces the autoencoder to reconstruct an input neutral face
Fni , while the second constrains the whole network to reconstruct,
starting from an expressive face F ei , an output neutral face that is
close to the input neutral face Fni . These reconstruction losses are
formulated using an L1 loss as follows,

Lrec = ‖Dec(Enc(Fni ))− Fni ‖1 +

‖Dec(G(Enc(F ei )))− Fni ‖1 ,
(6)

The final objective to be minimised is finally defined as,

Ltot = λl2lLl2l + λidLid + λrecLrec, (7)

where λl2l, λid, and λrec represent the weights of the loss functions
Ll2l, Lid, and Lrec, respectively.

Inference details: As mentioned in Section II, it is crucial for
the training phase of our approach to collect pairs of expressive
face meshes and their corresponding neutral faces. These pairs are
used to train the latent space translator introduced in Section II-B.
During testing phase, the only required input is an expressive face
mesh F ei that is encoded using Enc to obtain an expressive latent
representation zei . The latter is then fed to the generator G to
generate a neutral latent representation zni . The generated neutral
representation is finally passed to the face recognition module R to
predict the identity of the input expressive face and also decoded to
produce a neutralized face mesh.

Network architecture: The encoder Enc has four Chebyshev
convolutional layers. The first three layers have 16 output features
per vertex and the last layer has 32 output features. The output of
the last convolutional layer is fed into a (Fully Connected) FC layer
to obtain a vector latent representation of size 25. The decoder Dec
consists of a FC layer that transforms back the latent representation
to a graph representation of n vertices with 32 features per vertex.
The output of this FC is then passed to four Chebyshev convolutional
layers with a number of output features 32, 16, 16, and 3, respectively.
Each Chebyshev convolutional layer in Enc and Dec is approximated
using P = 6 polynomials and is followed by a biased ReLU [11].
Regarding the latent representation generator G, we use a succession
of four FC layers with a number of output features 100, 200, 50,
and 25, respectively. Each layer is followed by a ReLU activation.
A similar architecture is employed for the discriminator D which
consists of four FC layers of output size 100, 200, 50, and 1,
respectively. The first three FC layers are followed by Leaky ReLU
activations and the last layer is followed by a Sigmoid activation.
Finally, the face recognition module R consists of two FC layers, the
first one has an output size 100 and is followed by a ReLU activation,
and the second one has an output size equal to the number of training
subjects and is followed by a Softmax layer.

In all our experiments we empirically set the weights of the loss
function terms as follows: λl2l = 0.5, λL1 = 0.4, λGAN = 1,
λid = 0.05, and λrec = 2

IV. EXPERIMENTS

We experimentally validate the proposed approach on three pub-
licly available datasets. On one hand, we evaluate the face neutral-
ization and compare it with some state-of-art methods. On the other
hand, we conduct face recognition based on the disentagled identity
representations and compare our results with baselines. The used
datasets are the following:

COMA dataset [20]: is a dataset designed for dynamic 3D face
analysis. It contains more than 20k 3D faces collected from 12
identities. Each subject performed 12 facial expressions showing
different challenges.
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Fig. 2. Face expression neutralization results on FaceScape, COMA, and FWH datasets. The first row shows different input expressive 3D faces, the second
row presents the predicted neutralized 3D faces, the third row depicts the corresponding ground-truth neutral 3D faces, and the last row depicts the errors of
the neutralization computed using per-vertex Euclidean distances between predicted neutral (second row) and ground-truth neutral (third row) 3D faces. Best
viewed in color.

FaceWareHouse (FWH) dataset [7]: is a 3D face shape dataset
including 47 expressions (including neutral) performed by 150 differ-
ent identities. The intensity of the expressions involved in this dataset
varies from very weak to very strong expressions.

FaceScape dataset [22]: consists of a dataset of 938 subjects,
each one performed 21 expressions inspired from the FWH dataset
(including neutral).

A. Face Expression Neutralization
We evaluate the effectiveness of the expression neutralization by

comparing the neutralized expressive face to its ground-truth neutral
counterpart.

Experimental protocol: We split the three datasets into training
and testing set following a cross-subject protocol. 70% of the subjects
were used for training and the rest for testing. The fitted base
models given by the considered datasets have been employed since
the proposed approach assumes registered 3D face shapes. The pairs
of expressive and neutral 3D faces are directly given by the FWH
and FaceScape datasets since both involve static 3D face shapes
with different expressions (including neutral). In the dynamic COMA
dataset, we take the first frame of each 3D face sequence as neutral
face and select 12 expressive faces from other frames.

Results and discussions: In Figure 2, we report qualitative results
of the face expression neutralization process. In particular, given some
input expressive faces selected from the three considered datasets,
we present the predicted neutralized faces and compare them to the
corresponding ground-truth neutral faces using a per-vertex Euclidean
distance. Overall, our approach can perfectly neutralize weak and
strong expressions on all the datasets. However, we can observe
that the neutralization on FaceScape dataset preserves better the

identity features. For example, the facial wrinkles were not properly
reconstructed on some examples of COMA and FWH datasets. This
can be explained by the larger number of identities included in the
FaceScape dataset compared to FWH and COMA datasets. This
suggests that the generalization ability of the proposed network
to unseen subjects can be impacted by the number of identities
considered in the training.

In Table IV-A, we quantitatively evaluate the expression neutral-
ization results by computing the mean errors on the testing set of
all datasets between predicted neutral 3D faces and ground-truth
ones. In accordance with the observed qualitative results, the lowest
error was recorded on FaceScape dataset reaching a mean error of
2.02 millimeters (mm). The highest error was obtained the FWH
dataset corresponding to 3.07 mm. On COMA dataset, we obtained
an error of 2.73 mm.

We also compare our results to an adapted version of the Graph
Convolutional Autoencoder (GCA) method [20]. In particular, we
trained the GCA network by considering the prepared pairs of expres-
sive and neutral faces as input and ground-truth faces, respectively.
The mean errors of the adapted GCA were clearly outperformed
by our approach on all the datasets. A further comparison has
been conducted with the Disentagled Representation Learning (DRL)
approach [13]. Specifically, we considered the output of the identity
branch of the DRL network as predicted neutral face and evaluated
the mean errors following the same protocol as our approach. In
Table IV-A, we can note that the DRL approach was more accurate
than ours by more than 1 mm on the FWH dataset. It is important to
note that DRL method relies on an intermediate representation called
Deformation Representation (DR) which needs to be computed before
training and/or inference. Another important step in DRL approach



is the data augmentation performed on the DR representations to
increase the number of identities in the dataset. In particular, 10k
faces were added on top of the original FWH dataset used in our
approach. Note that we did not compare our results with [23] since
their reported results on COMA dataset were obtained by training and
testing on the same subjects. The protocol followed by [23] consisted
of sorting all videos in alphabetical order, and then taking 10 frames
for every 100 frames as the test set and training on the rest. The used
protocol to validate our approach does not include the same identities
in the training and testing sets.

Finally, we conduct an ablation study of the two loss function terms
Ll2l and Lid defined in Eq. 4 and Eq. 5, respectively. In Table. IV-A,
we can observe that dropping one of these terms results in a lower
performance showing their importance in the training.

TABLE I
COMPARISON OF MEAN ERROR OF EXPRESSION NEUTRALIZATION ON

DIFFERENT DATASETS. ALL ERRORS ARE IN MILLIMETERS.

Method COMA FWH FaceScape
GCA [20] 3.28 3.56 2.88
DLR [13] - 1.83 -

Ours w/o Ll2l 3.45 3.92 3.29
Ours w/o Lid 3.06 3.35 2.56

Ours 2.73 3.07 2.02

B. Face Recognition
A direct application of the disentangled identity representation

obtained using our method consists of face recognition. As mentioned
in Section II-C, we introduced a face recognition module that
improved the face neutralization by enhancing identity preservation
as shown in Section IV-A. Such module can also be used to predict
the identity of an input face mesh under different facial expressions.
To validate this claim, we conducted face identification experiments
based on the embedding of the face recognition module R. In
particular, we consider the identity features obtained by the last FC
layer of the face recognition module (before applying softmax) as
an identity representation of an input 3D face. These representations
are then compared using cosine similarity measure to achieve face
identification.

Experimental protocol: For face identification, only FWH and
FaceScape datasets were retained since COMA dataset consists of
only 12 subjects making not useful to evaluate face identification. As
done for expression neutralization experiments, the two considered
datasets were split into training and testing sets following a cross-
subject protocol. The training of the whole network was achieved on
the training set and the testing set of unseen subjects was considered
to evaluate face identification. We considered neutral 3D faces of the
testing set as gallery and the remaining expressions as probe for the
two datasets. The evaluation metric was the rank-1 accuracy.

TABLE II
COMPARISON OF RANK-1 ACCURACIES OF FACE IDENTIFICATION ON

FWH AND FACESCAPE DATASETS.

Method FWH (%) FaceScape (%)
GCA [20] 90.48 95.64

Ours w/o Ll2l 88.75 97.83
Ours 92.34 99.88

Results and discussions: In Table II, we report the rank-1 accura-
cies obtained using our method on FaceScape and FWH datasets. On

the FaceScape dataset which includes a large number of identities,
we achieved a rank-1 accuracy of 99.88%. A lower performance con-
sisting of 92.34% was obtained on the FWH dataset which involves
lower number of identities than the FaceScape dataset. As noticed for
expression neutralization in Section IV-A, face identification results
suggest that the performance of the proposed method is better when
a large number of identities are involved in the training. Similarly to
expression neutralization experiments in Section IV-A, we compare
our face identification results with the adapted GCA method [20].
The considered identity features to conduct face identification with
GCA were the latent representations of the input expressive faces
(i.e., bottleneck of the autoencoder). Our approach outperformed the
GCA method by around 4% and 2% on FaceScape and FHW datasets,
respectively.

We also evaluate our results when discarding the Ll2l loss term.
This means that expression neutralization is only ensured by the
reconstruction losses defined in Eq. 6. Unsurprisingly, face identi-
fication accuracies were lower than those achieved by the retained
approach on the two considered datasets.

V. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a neural network method for learning
disentangled identity representations. Given an input expressive 3D
face, the proposed network neutralizes the facial expression and
also provides relevant identity features for face identification. This
is achieved by translating expressive latent space representations
of 3D faces obtained using spectral graph convolutions to neutral
ones. The obtained results of face expression neutralization and
face identification on three publicly available datasets showed the
effectiveness of the proposed approach. However, some limitations
were also noticed when the number of identities is not sufficient
which resulted in less generalization abilities to unseen subjects.
A data augmentation step increasing face shape variations before
training can be introduced in the future to overcome this problem. As
additional future work, the collection of expressive and neutral pairs
can be avoided by considering an unpaired translation of the latent
space such as in [24].
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