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Abstract

Many software engineering activities process the events contained
in log files. However, before performing any processing activity, it is
necessary to correctly parse the entries in a log file to retrieve the actual
events recorded in the log.

In the case of cyber-physical systems, execution logs are highly im-
portant because such systems integrate multiple third-party components
where their source code is not always available. This limits the visibil-
ity of the system behavior to what is collected in the execution logs.
The increasing amount of logs produced by cyber-physical systems calls
for 1) more advanced techniques for accurate log parsing, 2) scalable
model inference that will enabling efficient program comprehension and,
3) cost-effective software testing to ensuring the quality of complex soft-
ware systems.

In this dissertation, we propose a set of approaches based on system
execution logs to automate cyber-physical system modeling and support
system regression testing.

The main research contributions in this dissertation are:

1. An automated approach to accurately solve the log message format
identification problem using the NSGA-II algorithm.

2. A novel technique for taming the scalability problem of inferring the
model of a component-based system from the individual component-
level logs, especially when only limited information about the sys-
tem is available.

3. An automated technique for slicing complex system test cases us-
ing the global resources usage information available in test case
execution logs.

4. Two log-based test case prioritization approaches. Starting by
building a log-based system model from test cases logs, this model
is used to prioritize test cases, in one way, based on their model-
based coverage scores and, in another way, based on their predicted
mutant killing capability that is learned from a regression model
that was initially trained using log-based features.

5. The implementation of the proposed techniques in prototype tools.

6. An extensive empirical evaluation of the proposed approaches.
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Chapter 1

Introduction

1.1 Motivation

Writing software log messages is a well-established programming practice that
is used to collect run-time information during a program’s execution. Devel-
opers carry out logging by inserting into the source code of the system state-
ments that specify which messages and which run-time information to print
into the entries of log files. Cyber-physical systems, such as satellite telecom-
munication systems, produce a large number of log files because they integrate
multiple physical components. For these component-based systems, log files
are often the only available data source for the developers and practitioners
to diagnose and troubleshoot system failures. This is due to the complexity
of the integrated components and the fact that the source code is not always
available especially with third-party components. Logs are used during vari-
ous software engineering activities such as performance diagnosis [91], process
mining [46,118], invariant inference [11], and fault localization [128].

All software engineering activities carry out some sort of log analysis, which
processes the events corresponding to the entries contained in the log files. But
before performing any processing activity, it is necessary to correctly parse
the unstructured log messages, to retrieve the actual events recorded in the
log. The lack of a structured format for log messages introduced the need for
identifying the different templates used in the log messages contained in the
log to enable automated data extraction and analysis on a large scale. Solving
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1. Introduction

this problem for cyber-physical systems requires tackling several challenging
issues. First, in these systems, log message formats are numerous and changing
on a frequent basis. Second, these systems can produce around 120–200 million
log entries per hour [86]. Therefore, log message formats need to be identified
automatically and in a scalable and accurate way.

Behavior models of software system components play a key role in many
software engineering tasks, such as program comprehension [26], test case gen-
eration [40], and model checking [22]. Model inference techniques have been
proposed as a viable solution to extract finite state models from execution logs.
However, existing techniques do not scale well when processing large logs, such
as system-level logs obtained by combining component-level logs. Additionally,
state-of-the-art techniques cannot infer, from component-level logs, a system-
level model that should capture both the individual behaviors of the system’s
components and the interactions among them. Given the importance of sys-
tem behavior models, it is crucial to address the scalability problem of existing
log-based model inference techniques.

Software testing is another interesting yet challenging software engineering
activity. Regression testing, in particular, is arguably one of the most im-
portant activities in software testing yet extremely challenging especially in
the case of component-based systems because it involves (i) integration and
system testing of heterogeneous components; (ii) manual analysis of the execu-
tion logs by the engineers, to validate the behavior of the various components.
Moreover, the cost-effectiveness of regression testing can be largely impaired
by complex system test cases that are poorly designed (e.g., test cases contain-
ing multiple test scenarios combined into a single test case) and that require
a large amount of time and resources to run. Many techniques have been in-
troduced for cost-effective regression testing, such as test case prioritization
and test suite selection. However, the existing techniques tend to rely only on
the source code, if available, and give less attention to the execution logs of
the system where valuable information about the system states can be used.
To our knowledge, the usability of test cases execution logs was not properly
studied to support regression testing.

The complexity of component-based systems and the increasing amount of
produced logs call for more efficient and accurate techniques to allow log usabil-
ity in software engineering activities. In this dissertation, we propose a set of
approaches based on system execution logs to automate cyber-physical system
modeling and support system regression testing. More specifically, since logs
contain valuable details about interactions taking place between the system
components, event sequences and parameters, different software engineering
activity will benefit from these details to reduce their cost and improve their
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1.2. Research Contributions

effectiveness. The work presented in this dissertation is motivated by a case
study at SES, a world-leading company in the aerospace industry.

1.2 Research Contributions

The ultimate goal of this work is to investigate the usage of system execution
logs to support different software engineering tasks in the context of cyber-
physical systems where large amount of logs are being generated and require
processing. Precisely, we propose a set of approaches to automate system be-
havior modeling from components logs and support regression testing, starting
from an accurate and efficient log parsing.

To overcome the challenges related to the log message formats identification
problem, we first formulated this problem as a multi-objective optimization
one. To accurately identify the different log messages templates, there are two
objectives to meet: 1) match as many log messages as possible (i.e., achieve
high frequency in matching log messages) and; 2) correspond to the largest
extent possible to a particular type of event (i.e., achieve high specificity).
However, these two objectives—high frequency and high specificity—are con-
flicting. To tackle this problem, we introduced MoLFI (Multi-objective Log
message Format Identification), a tool implementing a search-based approach
based on a multi-objective genetic algorithm and trade-off analysis. MoLFI
applies the Non-dominated Sorting Genetic Algorithm II (NSGA-II [30]) on
a given log file to search the space of solutions for a Pareto optimal set of
message templates.

To address the scalability problem of inferring a system model from indi-
vidual component-level logs, we propose a log-based model building approach,
called SCALER, that follows a divide and conquer strategy: it first infers a
model of each component from the corresponding logs using a state-of-the-art
model inference technique, and then it “stitches” (i.e., we do a peculiar type
of merge) the individual component models into a system-level model by tak-
ing into account the dependencies among the components, as reflected in the
logs. The rationale behind this idea is that, though existing model inference
techniques cannot deal with the size of all combined component logs, they can
still be used to infer the models of individual components, since their logs are
sufficiently small. SCALER tames the scalability issues of existing techniques
by applying them on the smaller scope defined by component-level logs.

In the context of regression testing, the cost-effectiveness and usefulness of
re-executing test cases can be largely impaired by complex system test cases
that are poorly designed. One way to mitigate this issue is decomposing com-

3



1. Introduction

plex system test cases into smaller, separate test cases—each of them with only
one test scenario and with its corresponding assertions—so that the execution
time of the decomposed test cases is lower than the original test cases, while
the test effectiveness of the original test cases is preserved. To this end, we
propose a novel approach, called DS3 (Decomposing System teSt caSe), which
automatically decomposes a complex system test case into separate test case
slices. DS3 uses test case execution logs, obtained from past regression testing
sessions, to identify “hidden” dependencies in the slices generated by static
slicing. Since logs include run-time information about the system under test,
we can use them to extract access and usage of global resources and refine the
slices generated by static slicing.
Still in the context of regression testing, we investigate the usefulness of test
cases logs in achieving an effective test case ordering. We propose LoTeCaP, a
tool with two different log-based approaches for test case prioritization. The
first approach is a model-based approach where we build a model from the col-
lected logs and then computes certain coverage criteria to be used to prioritize
the test cases. The second approach uses a machine learning technique where
we build a regression model using different log-based features (extracted from
the log-based model), then we use this regression model to predict the number
of mutants that will likely be killed by each test case.

To summarize, the main contributions of this dissertation are:

1. MoLFI: An automated approach for log message format identification
problem using the NSGA-II algorithm.

2. SCALER: A novel technique for taming the scalability problem of in-
ferring the model of a component-based system from the individual
component-level logs, especially when only limited information about
the system is available.

3. DS3: An automated technique for slicing complex system test cases using
the global resources usage information available in test case execution
logs.

4. LoTeCaP: A log-based test case prioritization tool that leverages the test
cases logs to characterize their fault detection capabilities. It applies
two approaches, one based on model-coverage criteria and one based
on predicting the number of killed mutants using a machine learning
algorithm.

4



1.3. Dissemination

1.3 Dissemination

Our research work has led to the following publications (listed in chronological
order based on their publication date):

• [84]: A Search-based Approach for Accurate Identification of Log Mes-
sage Formats.

• [105]: Scalable Inference of System-level Models from Component Logs.

• [85]: Log-based Slicing for System-level Test Cases.

1.4 Organisation of the Thesis

The rest of this thesis is organized as follows. Chapter 2 introduces some
background concepts which are used throughout this thesis. Chapter 3 presents
the log messages format identification problem and the proposed approach.
Chapter 4 focus on model inference and how system logs can be leveraged to
obtain a scalable inference technique. Chapter 5 illustrates the combination of
static slicing and logs in supporting system level testing. Chapter 6 explains
how test cases logs can be used for test case prioritization. Chapter 7 discusses
the related work and, lastly the conclusions and directions for future work are
provided in Chapter 8.
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Chapter 2

Background

This chapter contains the different background concepts that are used through-
out this thesis.

2.1 System Logs

A log is a sequence of log entries; a log entry contains a timestamp (recording
the time at which the logged event occurred) and a log message (with run-time
information related to the logged event). A log message is a block of free-
form text that can be further decomposed [84] into a fixed part called event
template, characterizing the event type, and a variable part, which contains
tokens filled at run time with the values of the event parameters. For example,
given the log entry 20181119:14:26:00 send OK to comp1 , the timestamp
is 20181119:14:26:00, the event template contains the fixed words send and
to, while the tokens OK and comp1 are the values of the event parameters. More
formally, let ET be the set of all events that can occur in a system program
% and + be the set of all mappings from events parameters to their concrete
values, for all events et ∈ ET ; a log ; is a sequence of log entries 〈41, . . . , 4=〉,
with 48 = (ts 8 , et 8 , E8), ts 8 ∈ N, et 8 ∈ ET , and E8 ∈ + , for 8 = 1, . . . , =. For
component-based systems, we denote the log of a component � with ;� and
we use the notation 4�

8, 9
for the 8-th log entry in the 9-th execution; we drop

the subscript 9 when it is clear from the context.
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When we have a set of test cases TC = {C21, C22, . . . , C2=}, we denote the
set of execution logs of each test case in TC with Logs = {l1 , l2 , . . . , ln }.

2.2 Multi-Objective Optimization Problems

This section summarizes basic concepts of multi-objective optimization and
briefly describes NSGA-II [30].

A multi-objective problem is an optimization problem that involves multi-
ple objective functions.

Let ( be the space (set) of all feasible solutions and � be a vector-valued
objective function � : ( → R: composed of : real-valued objective functions
� = ( 51, . . . , 5:), where 58 : ( → R for 9 = 1, . . . , :; a multi-objective optimiza-
tion problem is defined as max( 51(G), . . . , 5: (G)) subject to - ⊆ (. In other
words, the problem consists in finding a set of feasible solutions that maximize
the objective functions in �.

The goodness of a solution in a multi-objective optimization problem is
defined in terms of the dominance relation and Pareto optimality. More pre-
cisely, a solution - is said to dominate another solution . , denoted as - ≺ . ,
if and only if for all indices 8 ∈ {1, . . . , :}, 58 (-) ≥ 58 (. ) and 5 9 (-) > 5 9 (. ) for
at least one index 9 ∈ {1, . . . , :}. A solution - is called Pareto optimal if there
does not exist another solution in the search space that dominates it. The set
of all Pareto optimal solutions of a given problem is called Pareto front. The
Pareto front can be used to decide which solution to select, according to the
preferences of a decision maker.

NSGA-II The Non-dominated Sorting Genetic Algorithm II (NSGA-II) [30]
is a well-known and efficient technique to solve multi-objective problems. NSGA-
II is a multi-objective genetic algorithm (GA) that provides well-distributed
Pareto fronts and good performance when dealing with up to three objec-
tives [30,61]; it has been widely used in software engineering to solve problems
involving multiple objectives [124] and with chromosome representations that
require complex data structures (as in our case, see Section 3.4.2).

In NSGA-II (and GAs in general), the candidate solutions to a problem
are called chromosomes. The encoding of a chromosome depends on the type
of problem to solve. GAs refine and evolve randomly-generated chromosomes
through subsequent iterations (called generations), mimicking selection and
reproduction mechanisms in nature.

NSGA-II starts with a pool of randomly generated chromosomes (i.e., pop-
ulation). In each generation, the algorithm evaluates the goodness of a chro-
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mosome in the current population based on the objectives to optimize. Chro-
mosomes dominating other chromosomes are considered as fitter solutions and
therefore have higher chances to be selected for reproduction (i.e., for generat-
ing new chromosomes). NSGA-II selects the best solutions (parents) within the
current population by using binary tournament selection [30]. Reproduction is
performed by combining pairs of parents to form new chromosomes (called off-
springs) using two operators: crossover and mutation. The crossover operator
generates two offsprings by exchanging some chromosome parts between the
two parents. The mutation operator applies small changes to each offspring to
get a more diverse solution. Notice that the implementation of mutation and
crossover depends on the problem to solve. The new population for the next
generation is formed by selecting the fittest individuals among parents and
offsprings according to the dominance relation (non-dominated ranking) and
crowding distance (to promote diversity) [30]. The process of selecting and re-
combining chromosomes is repeated multiple times, once for each generation.
It terminates either when a given amount of generations is reached or when a
time-out occurs. The non-dominated solutions contained in the population of
the last iteration represent the final Pareto front.

2.3 Guarded Finite State Machines

We represent the models inferred for a system as guarded Finite State Machines
(gFSMs). A gFSM is a tuple < = ((,ET , �, X, B0, �), where ( is a finite
set of states, ET is the set of system events defined above, � is a finite set
of guard functions of the form 6 : + → {0, 1}, X is the transition relation
X ⊆ ( × ET × � × (, B0 ∈ ( is the initial state, � ⊆ ( is the set of final states.
Informally, a gFSM is a finite state machine whose transitions are triggered by
the occurrence of an event and are guarded by a function that evaluates the
values of the event parameters. More specifically, a gFSM < makes a guarded
transition from a state B ∈ ( to a state B′ ∈ ( when reading an input log entry
4 = (ts , et , E), written as B

4−→ B′, if (B, et , 6, B′) ∈ X and 6(E) = 1. We say that
< accepts a log ; = 〈41, . . . , 4=〉 if there exists a sequence of states 〈W0, . . . , W=〉
such that (1) W8 ∈ ( for 8 = 0, . . . , =, (2) W0 = B0, (3) W8−1

48−→ W8 for 8 = 1, . . . , =,
and (4) W= ∈ �.

2.4 Static Slicing

Static slicing is a technique, using def-use analysis [126], for isolating a “slice”
of a program (i..e, a subset of the original program statements) that affects
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the computation of the value of one or more variables in a specific statement
in the program. More formally, a slice ( of a program % is constructed with
respect to a slicing criterion (B,+) where B is a statement in % and + is a set
of variables in B; a statement in % is removed to form ( if it does not affect
the computation of + at B.
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Chapter 3

Log Messages Format
Identification

Many software engineering activities process the events contained in log files.
However, before performing any processing activity, it is necessary to parse
the entries in a log file, to retrieve the actual events recorded in the log. Each
event is denoted by a log message, which is composed of a fixed part—called
(event) template—that is the same for all occurrences of the same event type,
and a variable part, which may vary with each event occurrence. The formats
of log messages, in complex and evolving systems, have numerous variations,
are typically not entirely known, and change on a frequent basis; therefore,
they need to be identified automatically.

In this chapter, we present the MoLFI approach, which recasts the log
message identification problem as a multi-objective problem. MoLFI uses an
evolutionary approach to solve this problem, by tailoring the NSGA-II algo-
rithm to search the space of solutions for a Pareto optimal set of message
templates.

This chapter is organized as follows. Section 3.1 motivates log messages
parsing. Section 3.2 illustrates the problem of log message format identification
with an example. Section 3.3 illustrate how log message format identification
can be recast as a multi-objective optimization problem. Section 3.4 describes
how MoLFI tailors NSGA-II to solve the log message identification problem.
Section 3.5 reports on the evaluation of MoLFI. Section 3.6 discusses practical
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implications, alternative solutions, and limitations of our approach. Section 3.7
concludes this chapter.

3.1 Overview and Motivation

Logging is a programming practice that is used for gathering run-time infor-
mation of a software system. Developers carry out logging by inserting into
the source code of an application statements that specify which messages and
which run-time information to print into the entries of log files.

Logging is a pervasive activity: recent studies [135,138] show that between
1/30 and 1/58 of the lines of code in large software systems correspond to
logging statements. Furthermore, the importance of logging is also recognized
by developers: a recent survey reported that 96% of a group of experienced
developers from a leading software company “strongly agree/agree that log-
ging statements are important in system development and maintenance” [42].
Indeed, the information contained in log files can be used for a variety of pur-
poses, such as process mining [46,118], anomaly detection [8,41,44], behavioral
differencing [44], fault localization [128], invariant inference [12], performance
diagnosis [91], and offline trace checking [6].

All these activities carry out some sort of log analysis, which processes the
events corresponding to the entries contained in the log files. Before performing
any processing activity, it is necessary to parse the log entries, to retrieve the
actual events recorded in the log. A log entry typically includes a timestamp
(which records the time at which the logged event occurred) and the actual log
message (containing run-time information associated with the logged event).
An example of log entry is the following:
20050605-06.45.36 send RST CORE to addr 0x0000df30

The log message part of a log entry (e.g., the block “send RST CORE to
addr 0x0000df30” in the above example) is a block of free-form text, which
poses a challenge to parsing because it does not have a structured format.
More specifically, a log message is composed of two parts: 1) a fixed part, also
called (event) template1, which is the same for all occurrences of the same event
type; 2) a variable part, which may vary with each event occurrence, containing
tokens filled at run time with dynamic information. In the above example, the
template contains the fixed words “send”, “to”, “addr”, while “RST”, “CORE”
and “0x0000df30” are variable tokens. A template is represented as “send *

1Additional names used in the literature for denoting the fixed part of a log message are
“line pattern”, “log key”, and “message signature”.
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* to address *”, where the asterisks indicate placeholders for tokens of the
variable part.

The lack of a structured format for log messages leads to the definition of
the log message format identification2 problem: given a log file, we want to
identify the different templates used in the log messages contained in the log
in order to enable automated data extraction and analysis on a large scale.

Solving this problem for complex and evolving systems requires to tackle
several challenging issues. First, in these systems log message formats are
numerous, changing on a frequent basis (e.g., in Google systems hundreds of
new logging statements are added every month [130]), and are typically not
entirely known by those who need to analyze log files.

Second, these systems can produce around 120–200 million log entries per
hour [86]. Therefore, log message formats need to be identified automatically
and in a scalable way.

Such requirements rule out the use of regular expressions for extracting the
templates, since it would still require a manual effort, to create and update
regular expressions based on the logging statements contained in the source
code of the application. Manual creation and update of regular expressions
would be a tedious and error-prone task, given the number of logging state-
ments and the fast pace of their updates [130]. Another strategy would be
to statically analyze the application source code, locate logging statements,
and extract the templates from the print operations. However, the definition
of the static analysis would be tedious and require an extensive knowledge of
logging techniques, since logging statements can take different forms in dif-
ferent programming languages and logging frameworks. Furthermore, both
strategies outlined above would require to access the source code, which is not
always possible, especially in the case of complex software systems that rely
on 3rd-party components.

To overcome these limitations, some approaches [33, 41, 49, 78] adopt a
black-box strategy that relies on a combination of clustering and heuristic
rules to group words into templates, based on their similarity and the frequency
within log message blocks. However, our experience on real-world logs shows
that these approaches yield low accuracy, as demonstrated by the empirical
results reported in this chapter. Furthermore, their parameters (e.g., text
similarity) need to be fine-tuned for each log to analyze, usually following
a trial-and-error process; these requirements make such approaches neither

2This problem is often called “log parsing” in the literature; we believe “log message
format identification” is a more specific term, since “log parsing” includes also parsing more
structured elements like timestamps and log verbosity levels.
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scalable nor effective.
Independently from the specific strategy adopted, any technique for ex-

tracting message templates from logs ought to meet two objectives: the gener-
ated templates should 1) match as many log messages as possible (i.e., achieve
high frequency in matching log messages); 2) correspond to the largest extent
possible to a particular type of event (i.e., achieve high specificity). However,
these two objectives—high frequency and high specificity—are conflicting. A
template achieving high frequency will contain many tokens in the variable
part (to match many log messages), but will be too generic (i.e., it will match
messages corresponding to different events); on the other hand, a template
achieving high specificity will have a few or no tokens in the variable part (to
be able to distinguish between different event types), but it will match only
few messages.

Given the presence of conflicting objectives and the limitations of existing
solutions [33, 41, 49, 78], in this chapter we propose to recast the log message
format identification problem as a multi-objective optimization problem, where
frequency and specificity are explicitly considered as two competing objectives
to optimize simultaneously. Our approach, named MoLFI (Multi-objective Log
message Format Identification), leverages an evolutionary approach to solve
this problem. MoLFI applies the Non-dominated Sorting Genetic Algorithm II
(NSGA-II [30]) on a given log file to search the space of solutions for a Pareto
optimal set of message templates. The two main strong points of MoLFI are:
1) it does not require access to the source code of the application producing
the log(s) being analyzed, since it is a black-box technique that works only
on the log files; 2) different from existing approaches, it does not require any
parameter tuning before its execution.

We implemented MoLFI in a prototype tool. We evaluated the accuracy
and efficiency of MoLFI on one proprietary and five publicly-available real-
world datasets, containing log files with a number of entries ranging from 2K
to 300K; we also compared our approach with IPLoM [78] and Drain [49],
two state-of-the-art approaches. The results show that MoLFI achieves by far
the highest precision and recall, outperforming the other approaches with sub-
stantial improvements in both precision (ranging between +14 ?? and +86 ??,
with ??=percentage points) and recall (ranging between +25 ?? and +75 ??)
on all datasets, while keeping a running time of less than 126 s when analyzing
the largest dataset. A higher accuracy in the identification of log message
formats usually has practical implications, in terms of effectiveness, in the
log analysis tasks that rely on log message format identification. For exam-
ple, in the context of anomaly detection—the original motivation for existing
work [41, 49]—log analysis is effective only when the parsing accuracy is high
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1 20050605 -06.45.36 INFO generating core 135
2 20050605 -06.45.36 INFO generating core 198
3 20050605 -06.45.36 INFO generating core 199
4 20050605 -06.45.36 FATAL instruction address 0x0000df30
5 20050605 -06.45.36 FATAL instruction address 0x0000f450
6 20050605 -06.45.36 FATAL machine state register 0x00003000
7 20050605 -06.45.36 FATAL wait state enable 0
8 20050605 -06.45.36 FATAL critical input interrupt enable 0
9 20050605 -06.45.36 FATAL external input interrupt enable 0

10 20050605 -06.45.36 FATAL problem state (0=sup ,1= usr)
11 20050605 -06.45.36 FATAL floating point instr. enabled 1
12 20050605 -06.45.36 FATAL machine check enable 1
13 20050605 -06.45.37 FATAL rts internal error
14 20050605 -06.45.37 FATAL rts panic - stopping execution
15 20050605 -06.59.14 FATAL data TLB error interrupt

Figure 3.1: Excerpt (simplified) of real-world log entries

enough [48].
To summarize, the main contributions of this chapter are: 1) the formu-

lation of the log message format identification problem as a multi-objective
optimization problem; 2) the MoLFI approach for the solution of this prob-
lem, based on the NSGA-II algorithm; 3) a publicly-available implementation
of MoLFI3; 4) the empirical evaluation, in terms of accuracy and efficiency,
of the implementation of MoLFI and its comparison with two state-of-the-art
approaches.

3.2 The Problem of Log Message Format
Identification

We illustrate the problem of log message format identification through the ex-
ample in Figure 3.1, which provides a simplified excerpt of log entries extracted
from an open dataset of logs collected from a BlueGene/L supercomputer sys-
tem at Lawrence Livermore National Labs.

One can see that the log messages of the first three entries in the example
log correspond to the same event type. This event type could be matched with
the template 〈INFO generating core *〉, where the variable part contains one
token (indicated with the placeholder *). Similarly, entries of log messages at

3The evaluation artifacts are available from the following links:
• tool https://github.com/SalmaMessaoudi/MoLFI.git;
• log files https://github.com/SalmaMessaoudi/ICPC-2018-Artifacts.git.
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lines 4–5 could be matched with the template 〈FATAL instruction address
*〉.

However, one could define other templates for the log messages considered
above. For example, another template that could match the messages at lines
4–5 would be 〈FATAL * * *〉, with three tokens in the variable part. Notice
that this template is more general than the previous one, since it matches two
different types of event (one type associated with messages at lines 4–5, and
another type associated with the message at line 13). Another possible tem-
plate would be 〈FATAL * address 0x0000df30〉, which is too specific because
it matches only the log message at line 4 and misses the message at line 5,
even if it is of the same event type.

These examples show that two distinct objectives must be met when iden-
tifying message templates:

• maximizing the number of log messages matched by each template, i.e.,
maximizing the frequency of message matches;

• maximizing the specificity of a template to a particular type of event.

These two goals are conflicting: to maximize frequency, templates should con-
tain many tokens in the variable part (to match many log messages); however,
such templates would have a low specificity (i.e., they would be too generic),
matching messages corresponding to different events. On the other hand, to
maximize specificity, templates should contain only a few or no tokens in the
variable part (to be able to distinguish between different event types); however,
they would match only few messages.

Any method proposed to solve the log message format identification prob-
lem has to deal with the trade-off between these two conflicting goals.

3.3 Log Message Format Identification as A
Multi-Objective Optimization Problem

In this section, we illustrate how log message format identification can be recast
as a multi-objective optimization problem and present our approach MoLFI
for the solution of this problem, based on NSGA-II.

Problem Formulation As discussed in section 3.2, we consider frequency
and specificity as objective functions to optimize simultaneously. The multi-
objective optimization formulation of the log message format identification
problem entails that we find, from the set ( of all feasible solutions, a set
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of templates - = {g1, . . . , g=}, - ⊆ (, such that each template g8 ∈ - with
8 = 1, . . . , =, matches as many log messages as possible (high frequency) and
contains as few variable tokens as possible (high specificity). More formally,

the objective functions are the frequency : Freq (-) = ∑=
8=1

|match (g8 , ") |
= × |" | , and

the specificity: Spec (-) = ∑=
8=1

fixed (g8)
= × tok (gi )

, where = is the number of templates

in -, " is a list of log messages, match (g, ") denotes the list of log messages
in " that match a template g, fixed (g) denotes the number of tokens in the
fixed part of g, tok (g) denotes the total number of tokens in g.

When determining a solution to this problem, there are two important
aspects to assess. First, the templates contained in a (Pareto optimal) so-
lution may not match all the log messages in ". For example, the solution
- = { 〈FATAL instruction address 0x0000df30〉, 〈INFO generating core
135〉 } is Pareto optimal for the log messages in Figure 3.1, since it has the
highest possible specificity (Spec (-) = 1). However, the templates in - match
only two out of the 15 log messages (Freq (-) = 2

15). Second, two different
templates g1 and g2 in the same solution - may match the same log messages,
i.e., match (g1, ") ∩ match (g2, ") ≠ ∅. To avoid this type of solutions, we
introduce two additional constraints to the optimization problem to determine
the set of feasible solutions (. More specifically, a solution - = {g1, . . . , g=} ⊆ (
is feasible if it satisfies the following constraints:

=⋃
8=1

match (g8 , ") = " (3.1)

match (g8 , ") ∩match (g9 , ") = ∅ for all g8 , g9 ∈ -, g8 ≠ g9 (3.2)

3.4 MoLFI

To solve the multi-objective optimization formulation of the log message for-
mat identification problem, we introduce our approach, named MoLFI, which
tailors the standard NSGA-II to our context. In particular, we detail the en-
coding schema and the genetic operators (i.e., crossover and mutation) we use,
the pre- and post-processing procedures we apply, and the procedure we follow
to select one solution from the Pareto front.

3.4.1 Pre-processing

Before starting the search process, we first pre-process the log messages to im-
prove the accuracy of the process; we follow the guidelines by [48,49]. We first
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use regular expressions to identify trivial variable parts within the log messages
based on domain knowledge, e.g., numbers, memory and IP addresses. Strings
in the log messages matching these regular expressions are replaced with a
special variable token #spec# that cannot be mutated in the later stages of
the search. To reduce the computation cost of the template identification pro-
cess, we filter out duplicated log messages, reducing the number of messages
to consider for generating templates. The messages are then tokenized, using
blanks, parentheses and punctuation characters as word-separators. Finally,
messages are grouped into buckets, with each bucket containing messages that
have the same number of tokens; we denote with ": the bucket/group con-
taining messages with exactly : tokens.

3.4.2 Encoding Schema

In our context, a solution is a set of templates - = {g1, . . . , g=} where each
template g8 corresponds to a group of pre-processed log messages having the
same length and sharing all fixed tokens in g8. Therefore, each template g8 is a
list of tokens, where each token can be either variable (denoted by the symbols
* or #spec#) or fixed (i.e., the tokens identified during the pre-processing step).

Although very intuitive, this encoding schema is not efficient for computing
the log messages being matched by each template. Indeed, this procedure
requires comparing every template against all log messages even if most of
them have a number of tokens not compatible with what is prescribed by the
template. To speed-up the matching process, we design a two-level encoding
schema: a chromosome � is a set of groups � = {�1, . . . , �<0G}, where each
group �: =

{
g1, . . . , g?

}
is a set of templates having the same number of tokens

:. This encoding schema guarantees that the matching procedure is applied
only for messages and templates of the same length.

Figure 3.2 shows an example of chromosome for the log messages in Fig-
ure 3.1 based on our encoding schema. It has four groups of templates with
lengths 4, 5, 6, and 12; it also satisfies the constraints for feasible solutions.

3.4.3 Initial Population

MoLFI uses the algorithm InitialPopulation (Algorithm 1) for generating the
initial population. The algorithm takes as input a set of pre-processed log
messages ", the population size #; it returns a population P. Each chromo-
some is randomly generated inside the loop at lines 4–16: after initializing the
chromosome � (line 4), it is iteratively filled with groups of templates (lines
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GroupsTemplates

:=4


FATAL rts internal error

INFO generating core *

FATAL instruction address #spec#

:=5


FATAL machine state register *

FATAL wait state enable *

FATAL machine check enable *

FATAL data TLB error interrupt

:=6


FATAL * input interrupt enable *

FATAL floating point instr enabled *

FATAL rts panic - stopping execution

:=12
{

FATAL problem state ( * = sup , * = usr )

Figure 3.2: An example of chromosome for the log messages in figure 3.1.

5–15), one group of templates �: for each group of pre-processed log messages
": ∈ " with the same length :.

For each group of messages ": ∈ ", the algorithm creates a corresponding
group of templates �: (line 6). Initially, the group �: is empty and therefore it
does not match any log message. The algorithm keeps track of the unmatched
messages in the set unmatched , initialized with ": (line 7). Then, a log
message is randomly selected from unmatched (line 9) and used to generate
a template g (lines 10–12). Template g is a copy of the original log message
with the exception of one single token (randomly selected at line 11), which is
replaced with the variable token “*” (line 12). The newly generated template
is then added to the group �: and used to update the set of unmatched log
messages (line 14). The loop at lines 8–14 terminates when the templates
composing the group �: match all log messages in ": (i.e., when the set
unmatched is empty). Since this condition has to be satisfied for each group
of messages ": ∈ ", the chromosome � is a feasible solution. Therefore,
Algorithm 1 guarantees that all chromosomes in the initial population satisfy
our constraints.
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Algorithm 1 InitialPopulation
Input: Set of pre-processed log messages "

Population size #
Output: Initial population %
1: %← ∅
2: while |% | < # do
3: � ← ∅
4: for each group ": ∈ " do
5: �: ← create an empty group for templates with length :
6: unmatched ← ":
7: while |unmatched | > 0 do
8: log_message ← randomly select one message from unmatched
9: g ← copy (log_message)
10: index ← random integer ∈ [1; :]
11: g[index ] ← “*”
12: �: ← �:

⋃{g}
13: unmatched ← unmatched \match (g, ": )
14: end while
15: � ← �

⋃ {�: }
16: end for
17: %← %

⋃{�}
18: end while
19: return %

3.4.4 Mutation Operators

3.4.4.1 Crossover

We implemented the uniform crossover, which is one of the most popular
crossover operators [108, 111]. It generates two offsprings by shuffling the
different characteristics (groups of templates in our case) of the parents. Let
� = {�1, . . . , �<0G} and � = {�1, . . . , �<0G} be the two selected parents where
each pair of groups �; ∈ � and �; ∈ � matches the same pre-processed log
messages ": ∈ " with length :. The uniform crossover first generates a
random binary vector V (called the crossover mask) with a length equal to
the number of groups in � and �. Then, the two offsprings $1 and $2 are
obtained as follows: when the binary element in V for the group with length :
is zero, offspring $1 inherits group �: while $2 inherits group �: ; otherwise,
$1 inherits group �: while $2 inherits group �: .

Notice that this crossover operator swaps groups of templates between
the two parents without changing the set of templates composing each group.
Therefore, it generates offsprings that are feasible solutions: each group �: ∈ �
and �: ∈ � covers all pre-processed log messages ": ∈ " and they do not con-
tain overlapping templates (i.e., templates that match the same log messages).
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Since �: and �: are not modified by our crossover, the properties above are
preserved independently from which offspring inherits the two groups.

3.4.4.2 Mutation

After crossover, offsprings are mutated using the mutation operator to ran-
domly change the generated templates. Given a chromosome to mutate � =

{�1, . . . , �max }, each group �: =
{
g1, . . . , g?

}
is mutated with probability

1
max . A group �: is mutated by changing one of its templates; the tem-
plate is mutated by adding or removing variable tokens. In particular, let
g = [token1, . . . , token=] be the template to mutate; each token is mutated
with probability 1

=
. The token token 8 is mutated as follows: if it is a fixed one,

it is replaced by the variable token “*”; if it is a variable token, it is replaced by
a fixed token, which is randomly selected among all fixed tokens in position 8
of the log messages that match g; if it is the special token #spec# added during
the pre-processing, it is not mutated. Therefore, our mutation operator either
increases or reduces the number of variable tokens in g. In the former scenario,
it likely increases the frequency of the original template g; in the latter case it
increases its specificity.

Different from the crossover, the mutation operator changes the templates
within the chromosome’s groups. Therefore, it does not guarantee that the
mutated chromosomes satisfy the feasible solution constraints. For this reason,
we developed a correction operator that (i) removes overlapping templates (i.e.,
two or more templates matching the same pre-processed log messages), and (ii)
adds randomly generated templates if a mutated group �: does not match all
messages in ": . Random templates are added following the same procedure
used at lines 7–14 of Algorithm 1. Notice that the correction operator is applied
after the mutation operator and it is applied only to the mutated chromosome’s
groups.

3.4.5 Post-processing

At the end of the search, NSGA-II returns a set of feasible solutions that
are Pareto optimal, i.e., representing optimal trade-off between frequency and
specificity. Due to the random nature of NSGA-II, Pareto optimal solutions
may contain log message templates with spurious variable tokens, i.e., vari-
able tokens that have been inserted by mutation across the generations but
that do not contribute to match more pre-processed log messages. For this
reason, MoLFI post-processes the templates in each Pareto optimal chromo-
some with a greedy procedure, which iteratively removes all variable tokens
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Figure 3.3: The concepts of Pareto front and knee point.

that do not affect the frequency scores. In other words, given a template g
to post-process, the procedure temporarily removes one of its variable tokens
and checks whether the set of log messages matched by g remains unchanged.
If the applied change affects the set of matched log messages, the change is
reverted; otherwise it is maintained. The post-processing procedure ends once
all variable tokens in g have been verified.

3.4.6 Choosing a Pareto Optimal Solution

If the number of solutions in the generated Pareto front is large it may be
difficult to choose one solution (best trade-off) among the different alterna-
tives. For this reason, researchers proposed various guidelines to find and
suggest points of interest in the Pareto front, such as the knee points [15], mid
points [92], or the best point (corner) for each objective [95].

According to Branke et al. [15], the most interesting Pareto optimal so-
lution is the knee point because any other solution in the front leading to a
small improvement in one of the two objectives (e.g., Freq) would lead to a
large deterioration in the other objective (e.g., Spec). To provide a graphi-
cal interpretation of the knee point, Figure 3.3 depicts an example of Pareto
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front for the log message format identification problem. The Pareto front is
composed of seven non-dominated solutions: points � and � are the corner so-
lutions of the front while the other solutions represent intermediate trade-offs.
Point � can be considered as a knee point since any marginal improvement to
Freq will correspond to a large deterioration in Spec, and vice versa. Therefore,
the knee point leads to the lowest loss in both objectives.

To identify the knee point, we measure the distance of each Pareto optimal
solution from the ideal point [108]. The coordinates of the ideal point corre-
spond to the maximum objective values among all solutions in the Pareto front,
considering each objective function separately. For example, for the Pareto
front in Figure 3.3, the ideal point has the coordinates (Fmax , Smax ), where
Fmax = 0.85 (from point �) and Smax = 0.9 (from point �). More formally,
given a Pareto front % =

{
�1, . . . , �?

}
, the knee point �:=44 ∈ % is the so-

lution minimizing the distance
√
(Fmax − Freq (�8))2 + (Smax − Spec (�8))2, for

all �8 ∈ %.

3.5 Evaluation

We have implemented the MoLFI approach as a Python program. In this
section we report on the evaluation of the effectiveness of the MoLFI imple-
mentation in identifying accurate log message formats.

First, we want to assess the performance of MoLFI in comparison with
state-of-the-art techniques, in terms of accuracy and efficiency. Second, there
are various factors that may influence the effectiveness of MoLFI, such as
(1) the number of templates to identify, (2) the population size in NSGA-II;
(3) the removal of duplicate messages from the log file to analyze, performed
as part of the pre-processing step; we want to understand whether and to
what extent these factors affect the effectiveness of MoLFI. Last, in MoLFI
we choose the knee point as most valuable solution from the Pareto front,
following the general guidelines by [15]. However, different trade-offs in the
Pareto front may provide equal or better results in our context; hence, we want
to assess whether the knee point is the best Pareto optimal solution for the
log message format identification problem.

Summing up, we investigate the following research questions:
RQ1: How does MoLFI perform when compared to state-of-the-art techniques

for the log message format identification problem?
RQ2: Which factors impact the effectiveness of MoLFI?
RQ3: Is the knee point the best solution to choose from the Pareto front?
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3.5.1 Benchmark

To evaluate MoLFI, we used a benchmark composed of six different datasets:
five datasets are publicly available and have been used in previous work on
the log message format identification problem [48, 49], while the last one is
industrial and proprietary.

The five public datasets are HDFS, BGL, HPC, Zookeeper (shortened to
“ZK”) and Proxifier (shortened to “PRX”). HDFS consists of logs from the
Hadoop file system that were collected from a 203-node cluster on the Ama-
zon EC2 platform [48]. BGL contains logs generated from the Blue Gene/L
(BGL) supercomputer, collected by the Lawrence Livermore National Labs
(LLNL) [48]. The logs contained in the HPC dataset were collected from a
high-performance cluster with 49 nodes and thousands of cores [48]. The logs
in ZK were collected by [48, 49] from a 32-node cluster. PRX consists of logs
generated by a standalone software [48].

The proprietary dataset (named PR) has been provided by one of our
industrial partners, active in the aerospace industry; it contains logs produced
by a complex system with more than 20 distributed processes.

All datasets contain log files of various size. For the HDFS, BGL, HPC,
ZK, and PRX datasets, we used the same samples of 2K log entries used in
previous studies [48, 49]. In addition, we also selected a sample of 100K log
entries from BGL and a sample of 60K log entries from HDFS. As for the
proprietary dataset, we considered three different log files, generated by three
different sub-systems, containing 2K, 20K, and 300K log entries.

Ground truth definition. In the case of the log message format identification
problem, the ground truth is represented by the actual log message templates.
For our evaluation, we established the ground truth as follows.

For the log files with 2K log entries of the public datasets, we used the
ground truth defined by [48, 49] and publicly available from their replication
package. In the case of the BGL and HPC datasets, the original set of correct
templates contains some mistakes, e.g., templates with unbalanced parentheses
and missing punctuation marks. Therefore, we manually validated and fixed
them before performing our evaluation.

No ground truth is available for the proprietary logs, the 100K log file from
BGL, and the 60K log file from HDFS. Therefore, we had to manually estab-
lish the ground truth. Two validators independently inspected each log file and
extracted the corresponding templates. Then, the two sets of templates inde-
pendently extracted by the two validators were merged into a single ground
truth set, by including only the templates extracted by both validators. Tem-
plates identified by only one of the two validators were discussed and further
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Table 3.1: Precision (Prec), recall (Rec), F-measure (F-m), and execution time
(T(s)) of the three approaches.

Dataset Size #T NTT Drain IPLoM MoLFI

Prec Rec F-m T(s) Prec Rec F-m T(s) Prec Rec F-m T(s)

BGL 2K 114 31% 0.55 0.51 0.53 0.54 0.47 0.46 0.46 0.28 0.83±0.03 0.86±0.03 0.84±0.03 17.38±0.32
100K 57 22% 0.60 0.74 0.66 32.89 0.42 0.53 0.47 5.76 0.83±0.03 0.78±0.04 0.80±0.03 10.91±0.11

HDFS 2K 16 93% 0.86 0.75 0.80 0.29 0.86 0.75 0.80 0.27 1.00±0.00 1.00±0.00 1.00±0.00 3.36±0.02
60K 62 43% 0.79 0.68 0.73 2.11 0.56 0.45 0.50 2.87 0.94±0.02 0.95±0.01 0.94±0.01 10.32±0.09

HPC 2K 42 33% 0.49 0.61 0.54 0.32 0.37 0.52 0.43 0.27 0.92±0.02 0.88±0.04 0.90±0.03 7.56±0.32

PR
2K 286 14% 0.60 0.64 0.62 0.27 0.52 0.51 0.51 0.40 0.77±0.04 0.82±0.03 0.79±0.03 36.80±0.65

20K 394 17% 0.61 0.57 0.59 1.51 0.54 0.47 0.50 2.38 0.71±0.03 0.82±0.02 0.76±0.02 79.59±2.86
300K 52 80% – – – – 0.08 0.13 0.10 49.49 0.94±0.01 0.88±0.00 0.91±0.01 125.84±4.14

PRX 2K 13 61% 0.46 0.46 0.46 0.21 0.45 0.38 0.42 0.26 0.77±0.00 0.77±0.00 0.77±0.00 3.46±0.09

ZK 2K 47 30% 0.77 0.77 0.77 0.22 0.47 0.46 0.46 0.28 0.93±0.03 0.87±0.01 0.90±0.02 6.94±0.26

added to the ground truth only upon agreement between the validators. At
the end of the validation process, we also verified that no log message in our
datasets could be matched by more than one single template in the ground
truth. In total, 486K log messages were manually inspected to establish the
ground truth. The number of log message templates in each log file ranges
from 13 (PRX) to 394 (PR with 20K messages).

3.5.2 Effectiveness of MoLFI

To answer RQ1, we assess the performance of MoLFI, in terms of accuracy
and efficiency, in comparison with DRAIN [49] and IPLoM [78], which are the
two most recent and effective tools for the log message format identification
problem [48, 49]. We use the implementation of DRAIN available in [49] and
the one of IPLoM available in [48].

3.5.2.1 Methodology

The NSGA-II algorithm used in MoLFI requires to set four parameters: crossover
probability, mutation probability, population size, and stopping condition. To
set these parameters, we followed the guidelines proposed in the literature.
More specifically, [3] and [103] have empirically demonstrated that the ben-
efits of fine-tuning the parameters of search-based algorithms often do not
compensate for the required overhead; both studies recommend to use the
default parameters values, since they provide competitive results.

We set the NSGA-II parameters as follows:
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• crossover probability ?2 = 0.70, since the recommended values are within
the interval 0.45 ≤ ?2 ≤ 0.95 [17, 23];

• the mutation probability ?< is proportional to the length of the chromo-
some (see section 3.4.4.2), as recommended in the related literature [30];

• the population size is set to 20 individuals; according to our preliminary
experiments (see section 3.5.3.2), this small value corresponds to the best
compromise between accuracy and efficiency;

• the stopping condition is set to 200 generations [30].

As selection operator, we used binary tournament selection [30], which is
based on dominance and crowding distance.

For DRAIN, in the case of the public datasets, we used the same parameters
values used in [49]; in the case of our proprietary dataset, we used the default
parameter values: depth = 4, similarity = 0.5. We also pre-processed the logs,
as suggested in [49], to identify trivial variable parts within the log messages
based on domain knowledge.

For IPLoM, we used the default parameter values used in [78]: file support
threshold = 0, partition support threshold = 0, upper bound = 0.9, lower bound
= 0.25, and cluster goodness threshold = 0.35.

We ran the three tools on each log file in our benchmark and collected the
generated log message templates. We measured the accuracy of each tool by
comparing the set of generated templates with the ground truth. Furthermore,
we measured the wall-clock time for executing the complete program (includ-
ing pre- and post-processing tasks for MoLFI). To measure the accuracy, we
used the metrics used in previous studies [48,49], i.e., Precision = |CRT∩GEN |

|GEN | ,

Recall = |CRT∩GEN |
|CRT | , and �-<40BDA4 = 2× Precision×Recall

Precision+Recall , where GEN denotes
the set of templates generated by a tool and CRT denotes the set of templates
generated by a tool which are correct, i.e., conform to the ground truth.

To account for the random nature of NGSA-II, we executed MoLFI 50
times on each log and computed the median and standard deviation of the
effectiveness metrics; DRAIN and IPLoM were executed only once due to
their deterministic nature. However, DRAIN generated duplicated templates,
i.e., multiple templates having exactly the same fixed and variable tokens. To
avoid any bias due to duplicated templates, we detected and removed them
before computing the various effectiveness metrics.

Furthermore, we used the Welch’s t-test to verify whether the F-measure
scores achieved by MoLFI are significantly higher than those achieved by the
alternative tools. The Welch’s t-test is a test for statistical significance suitable
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for distributions with different variance. In our case, the variance for DRAIN
and IPLoM is zero as they are deterministic; MoLFI may return a non-zero
variance due to NSGA-II. For this test, we consider a level of significance
U=0.05. Other than simply testing the statistical significance, we estimated
the magnitude of the differences (effect size) using the Vargha-Delaney (�̂12)
statistic [120]. �̂12 takes values in [0; 1]; �̂12 > 0.50 values indicate that
MoLFI outperforms the alternative tool while for �̂12 < 0.50 the contrary is
true. �̂12 = 0.50 if the two tools are equivalent.

3.5.2.2 Results

Table 3.1 shows the results of the three tools, grouped by dataset and log
file size. Column “#T” indicates the number of templates in a file; column
“NTT” indicates the percentage of templates with more than one variable
token in a file; columns “Prec”, “Rec”, “F-m”, “T” indicate, respectively, the
precision, recall, F-measure, and the execution time in seconds. For MoLFI,
the table reports the median results achieved across the 50 runs as well as the
corresponding standard deviation values.

According to our results, MoLFI obtains, on all the log files in the bench-
mark, a better F-measure than both DRAIN and IPLoM.

We compared the effectiveness of our approach with the two state-of-the-art
tools and we present the differences in percentage points (??). The difference
between MoLFI and DRAIN in terms of F-measure ranges between +13 ??
and +36 ??. The values for the difference are always statistically significant
according to the Welch’s t-test (all ?-values are lower than 0.01) and the effect
size is always large (i.e., �̂12 ≈ 1). This difference is due both to better precision
and to better recall. We also remark that DRAIN crashed on the 300K log
from the proprietary dataset, without yielding any message template.

The difference between MoLFI and IPLoM in terms of F-measure ranges
between +20 ?? and +81 ??. For all logs in our study, the differences are
statistically significant (?-values are always lower than 0.01) with a large ef-
fect size (�̂12 ≈ 1). Also in this case, the better F-measure is ascribable to
the substantial improvements in both precision (ranging between +14 ?? and
+86 ??) and recall (ranging between +25 ?? and +75 ??). An interesting case
is represented by the 300K log from the proprietary dataset: MoLFI generates
very accurate templates achieving an F-measure of 0.91while IPLoM obtains
a very low F-measure of 0.1.

Figure 3.4 shows an example of the Pareto front generated by MoLFI for
the dataset HPC on one single run. It also displays the knee point (red point)
and two further points (in black color) corresponding to the frequency and
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Figure 3.4: Pareto front generated by MoLFI and the objectives scores of the
templates generated by DRAIN and IPLoM

specificity values of the templates generated by DRAIN and IPLoM. The knee
point dominates the templates produced by IPloM, meaning that MoLFI gen-
erates templates having both better frequency and better specificity. Instead,
the templates produced by DRAIN are non-dominated neither by the knee
point nor by the other Pareto optimal solutions. Indeed, their objective scores
are located in one of the corners of the Pareto front, meaning that their speci-
ficity is very high (few variable tokens) but their frequency is very low. Similar
results are obtained also for the other logs in the benchmark. To sum up, both
IPLoM and DRAIN are not able to provide optimal compromises between the
two objective functions.

In terms of efficiency, MoLFI is the slowest technique; this can be explained
because of the usage of NSGA-II, which is an iterative algorithm. The fastest
technique is IPLoM, which, however, is also the one with the lowest F-measure
values. DRAIN is faster than MoLFI in all the cases with the only exception
of the 100K log from the BGL dataset: for this file DRAIN takes 32.89 s
while MoLFI takes only 10.91 s. Although MoLFI takes longer to converge
than state-of-the-art tools, the increment of the running time has no practical
implications since it took less than 126 s when analyzing the largest dataset.
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3.5.3 Factors Influencing the Effectiveness of MoLFI

To answer RQ2, we investigate the effect of the following three factors on the
effectiveness of MoLFI: (1) the number of templates to identify in a log file,
(2) the population size in NSGA-II; (3) the removal of duplicate messages from
the log file to analyze, performed as part of the pre-processing step. In the
following, we illustrate the evaluation methodology and the results for each of
these factors.

3.5.3.1 Number of Templates

To test the effect of this factor, we used the one-way permutation test [5] to
assess whether the number of templates to identify in a log file statistically
interacts with the F-measure scores achieved by MoLFI. The permutation test
is a non-parametric test and therefore it does not assume that the data are
normally distributed. We ran this test with a very large number of iterations
(i.e., 108), as suggested in the literature [5].

According to the one-way permutation test, there is no interaction between
the number of templates to be identified in a log file and the F-measure values
obtained by MoLFI (?-value=0.08). This means that our technique yields high
F-measure scores both with log files containing a low number of templates (e.g.,
see the 2K log from PRX in Table 3.1) and with log files containing a high
number of templates (e.g., see the 20K log from PR in Table 3.1).

3.5.3.2 Population Size

Given the nature of NSGA-II, using a large population size may significantly
increase the execution time for finding the best solutions; however, using a
population with few individuals may yield poor results. We test the effect
of this factor by running MoLFI (on each log file of the benchmark) with a
population size of 40 and 80 individuals. We repeated each run ten times
and computed the median F-measure and execution time. We compared these
results with those obtained by the baseline (with a population of 20 individuals,
see Table 3.1).

Table 3.2 shows the results of this comparison. Column “T” indicates the
median execution time in seconds; column “R” is the ratio between the execu-
tion time achieved by the new configurations and the baseline; column “F-m” is
the median F-measure; column “ΔF-m” indicates the difference, in percentage
points, between the F-measure achieved by the new configurations and the
baseline. All these values are shown for the columns labeled “pop=40” and
“pop=80” of Table 3.2.
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In terms of F-measure, MoLFI performs almost equivalently for the three
configurations, with an increase for the majority of log files reaching 4 ?? for
the 2K log file from BGL. We remark two exceptions where the F-measure
decreased with a population size of 80: the 300K log file from PR (-5 ??) and
the BGL log file of size 100K (-1 ??).

Execution time sharply increases as the population size grows. This is to
be expected since a larger population size entails more fitness computations
for NSGA-II.

3.5.3.3 Removal of Duplicate Messages

In the pre-processing step presented in section 4.3.1, we filter out duplicated
log messages, to reduce the number of log messages to consider for generating
templates. However, such a reduction may also directly affect the value of one
of our two objective functions, frequency, which could be further reflected in
changes to the shape of the Pareto front and to its knee point.

To test the effect of this factor, we ran MoLFI by disabling the routine
responsible for removing duplicated log messages in the pre-processing step.
As above, each run was repeated ten times and we computed the median F-
measure and execution time, as well as the ratio between execution times and
the difference in percentage points of the F-measure. The results are shown in
the column “no filtering” of Table 3.2. No data are reported for the 300K log
from the PR dataset, since it timed-out (> 3 hours) when completing the first
generation of NSGA-II.

We compare these effectiveness scores with those reported in Table 3.1 (i.e.,
with filtering enabled). We observe that the F-measure scores obtained by the
two configurations are the same for all log files, with only 1 ?? increase for the
BGLdataset. These results show that filtering out duplicated log messages
during pre-processing does not significantly alter the final F-measure. How-
ever, it results in a substantial reduction of the execution time. For example,
when the filter is enabled, MoLFI requires 126 s to converge for the largest
log file (the 300K log file from the PRdataset), while it times out (after three
hours) for the same log file when the filter is disabled.

3.5.4 Is the Knee Point the Best Solution?

To answer RQ3, we analyze, over the entire benchmark, the F-measure scores
achieved by all solutions in the Pareto front. This means comparing the F-
measure of the knee point with the scores achieved by the other Pareto optimal
solutions. For the sake of analysis, for each log, we selected one single Pareto
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Table 3.2: Comparison between three different configurations of MoLFI: with
population size of 40 (column “pop=40”) and 80 (column “pop=80”) individu-
als, and without filtering the duplicated log messages (column “no filtering”).
“T”: median execution time in seconds, “R”: ratio of execution time values,
“F-m”: median F-measure, ΔF-m: difference of F-measure in percentage points

Dataset Size pop=40 pop=80 no filtering

T R F-m ΔF-m T R F-m ΔF-m T R F-m ΔF-m
(s) (??) (s) (??) (s) (??)

BGL 2K 35.84 2.06 0.86 2 70.97 4.08 0.88 4 25.80 1.48 0.85 1
100K 17.88 1.64 0.80 0 31.90 2.92 0.79 −1 397.76 36.46 0.81 1

HDFS 2K 6.36 1.89 1.00 0 12.48 3.71 1.00 0 13.21 3.93 1.00 0
60K 18.26 1.77 0.94 0 34.32 3.33 0.94 0 175.09 16.97 0.94 0

HPC 2K 15.33 2.03 0.90 0 29.75 3.94 0.92 2 15.43 2.04 0.90 0

PR
2K 75.44 2.05 0.80 1 162.37 4.41 0.79 0 45.39 1.23 0.79 0

20K 157.88 1.98 0.78 2 315.11 3.96 0.76 0 217.43 2.73 0.76 0
300K 155.58 1.24 0.91 0 235.69 1.87 0.86 −5 >3h − − −

PRX 2K 6.55 1.89 0.77 0 12.88 3.72 0.77 0 14.47 4.18 0.77 0

ZK 2K 13.86 2.00 0.90 0 26.56 3.83 0.90 0 15.05 2.17 0.90 0

front among those obtained with 50 independent runs. For the selection, we
first computed the F-measure for the knee point generated in each run; then,
we selected the knee point having the median F-measure across the runs and
its corresponding Pareto front.

Figure 3.5 shows, for all the log files in our benchmark, the F-measure of
the knee points (indicated with red points) when compared with all the Pareto
optimal solutions (represented by the boxplots). One can see that, in all cases,
the F-measure score of the knee point is located at the very top of the boxplot.
This confirms our conjecture that, in the context of the log message format
identification problem, the knee point is the best solution to choose from the
Pareto front.

3.6 Discussion

Practical implications

As discussed in Section 5.4.2, MoLFI achieves a substantial higher accuracy
than alternative algorithms. Such improvements in accuracy represent a con-
siderable reduction in the time needed by analysts to inspect the generated
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Figure 3.5: Comparisons between the knee-point and other Pareto front solu-
tions in terms of F-measure

templates, validate them and eventually modify the incorrect ones. For ex-
ample, MoLFI generates 62 templates for HDFS with the 60K log; on average
across runs, 60 templates are correct (as they match the ground truth). One
incorrect template is )=〈PacketResponder * for block * *〉, which is too
general as it matches log messages belonging to two different log events: (i)
when the PacketResponder for a given block terminated correctly and (ii)
when it has been interrupted. The log messages for these two log events are
very similar as they differ only by one single token. Fixing this template would
need to create two templates, each one with an additional fixed token. Since
) matches only those two log events, fixing it is trivial.

Sum-scalarization vs. multi-objective search

An alternative search-based solution to solve our multi-objective problem would
be applying sum scalarization [29]. Such a strategy combines the objectives to
optimize into one single function by using the sum operator and thus enabling
the use of a single-objective genetic algorithm to optimize the aggregated func-
tion. In our case, the aggregation function combines frequency and specificity,
i.e., 5 (-) = �A4@(-) + (?42(-). To assess this alternative search strategy,
we ran a classical genetic algorithm to optimize the function 5 (-) mentioned
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above on HDFS with the 60K log. The median F-measure obtained over 10
independent runs is 0.65 (± 0.02), which is statistically significantly lower than
the value achieved by MoLFI (i.e., NSGA-II and the knee point), which is 0.94.
Note that for the single-objective genetic algorithm we use the same parameter
values as for NSGA-II.

The role of constraints

In our problem formulation, we consider two constraints: (i) each log message
has to be matched by only one template in a solution -; and (ii) the templates
in - have to match all log messages (100% coverage). The former constraint
is straightforward since templates in a given solution - should not overlap;
the latter is less intuitive but analysts, for some specific applications, could
be interested in solutions not covering all log messages. However, we observed
that the solutions obtained when removing the coverage constraint have only
one single template. For example, if we run MoLFI on HDFS with 60K logs
by disabling the coverage constraint, NSGA-II returns a knee point which
is a solution with only one template having one variable token and 12 fixed
tokens. Such a template has high frequency (Freq=0.06) and high specificity
(Spec=12/13=0.94). No other template is included in the solution because
adding any other template would penalize both frequency and specificity.

Limitations

Our approach may produce incorrect results because of the method we use to
group messages. In particular, log messages whose variable part has a variable
composition (e.g., because of a variable-length argument list), could lead to
different templates even if they have the same fixed part.

3.7 Conclusion

The log message format identification problem deals with the identification of
the different templates used in the log messages. In this chapter, we formu-
lated this problem as a multi-objective optimization one, where the goal is to
generate log message templates with high frequency (i.e., they match as many
log entries as possible) and high specificity (i.e., specific for each log event). To
tackle the problem, we introduced MoLFI, a tool implementing a search-based
approach based on a multi-objective genetic algorithm and trade-off analysis.

An empirical study involving six real-world datasets (five publicly-available
and one proprietary) showed that MoLFI (i) achieved significantly higher accu-
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racy than DRAIN and IPLoM, two state-of-the-art tools; (ii) is highly scalable
to large logs since it requires slightly above two minutes to analyze hundreds
of thousands of messages.
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Chapter 4

Scalable Inference of
System-level Models from
Component Logs

Behavioral software models play a key role in many software engineering tasks;
unfortunately, these models either are not available during software develop-
ment or, if available, they quickly become outdated as the implementations
evolve. Model inference techniques have been proposed as a viable solution
to extract finite state models from execution logs. However, existing tech-
niques do not scale well when processing very large logs, such as system-level
logs obtained by combining component-level logs. Furthermore, in the case of
component-based systems, existing techniques assume to know the definitions
of communication channels between components. However, this detailed in-
formation is usually not available in the case of systems integrating 3rd-party
components with limited documentation.

In this chapter, we address the scalability problem of inferring the model
of a component-based system from the individual component-level logs, when
the only available information about the system are high-level architecture de-
pendencies among components and a (possibly incomplete) list of log message
templates denoting communication events between components.

This chapter is organized as follows: Section 4.1 introduces the current
state and limitations of model inference techniques. Section 4.2 illustrates
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the motivating example. Section 4.3 describes the different steps of the core
algorithm of SCALER. Section 4.4 reports on the evaluation of SCALER.
Section 4.5 concludes this chapter.

4.1 Overview

Behavior models of software system components play a key role in many soft-
ware engineering tasks, such as program comprehension [26], test case gen-
eration [40], and model checking [22]. Unfortunately, such models either are
scarce during software development or, if available, they quickly become out-
dated as the implementations evolve, because of the time and cost involved in
generating and maintaining them [121].

One possible way to overcome the lack of software models is to usemodel in-
ference techniques, which extract models—typically in the form of (some type
of) Finite State Machine (FSM)—from execution logs. Although the problem
of inferring a minimal FSM is NP-complete [13], there have been several pro-
posals of polynomial-time approximation algorithms to infer FSMs [11,13,76]
or richer variants, such as gFSM (guarded FSM) [80,123] and gFSM extended
with transition probabilities [37], to obtain more faithful models.

Although the aforementioned model inference techniques are fast and ac-
curate enough for relatively small programs, all of them suffer from scalability
issues, due to the intrinsic computational complexity of the problem. This
leads to out-of-memory errors or extremely long, unpractical execution time
when processing very large logs [125], such as system-level logs obtained by
combining (e.g., through linearization) component-level logs. A recent pro-
posal [76] addresses the scalability issue using a distributed FSM inference
approach based on MapReduce. However, this approach requires to encode
the data to be exchanged between mappers and reducers in the form of key-
value pairs. Such encoding is application-specific; hence, it cannot be used in
contexts—like the one in which this work has been performed—in which the
system is treated as a black-box (i.e., the source code is not available), with
limited information about the data recorded in the individual components logs.

Another limitation of state-of-the-art techniques is that they cannot in-
fer, from component-level logs, a system-level model that captures both the
individual behaviors of the system’s components and the interactions among
them. Such a scenario can be handled with existing model inference tech-
niques for distributed systems, such as CSight [10], which typically assume the
availability of channels definitions, i.e., the exact definition of which events
communicate with each other between components. However, this informa-
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tion is not available in many practical contexts, where the system is composed
of heterogenous, 3rd-party components, with limited documentation about the
messages exchanged between components and the events recorded in logs.

In this chapter, we address the scalability problem of inferring the model of
a component-based system from the individual component-level logs (possibly
coming from multiple executions), when the only available information about
the system are high-level architecture dependencies among components and a
(possibly incomplete) list of log message templates denoting communication
events between components. Our goal is to infer a system-level model that
captures not only the components’ behaviors reflected in the logs but also the
interactions among them.

Our approach, called SCALER, follows a divide and conquer strategy: we
first infer a model of each component from the corresponding logs using a state-
of-the-art model inference technique, and then we “stitch” (i.e., we do a peculiar
type of merge) the individual component models into a system-level model by
taking into account the dependencies among the components, as reflected in the
logs. The rationale behind this idea is that, though existing model inference
techniques cannot deal with the size of all combined component logs, they
can still be used to infer the models of individual components, since their
logs are sufficiently small. In other words, SCALER tames the scalability
issues of existing techniques by applying them on the smaller scope defined by
component-level logs.

We implemented SCALER in a prototype tool, which uses MINT [123], a
state-of-the-art technique for inferring gFSM, to infer the individual component-
level models. We evaluate the scalability (in terms of execution time) and the
accuracy (in terms of recall and specificity) of SCALER in comparison with
MINT (fed with system-level logs reconstructed from component-level logs),
on 7 proprietary datasets from one of our industrial partners in the satellite
domain. The results show that our approach SCALER is about 245 times (on
average) faster and can process larger logs than MINT. It generates nearly
correct (with specificity always higher than 0.96) and largely complete models
(with an average recall of 0.79), achieving higher recall than MINT (with a
difference ranging between +25 ?? and +56 ??, with ??=percentage points)
while retaining similar specificity.

To summarize, the main contributions of this chapter are:

• the SCALER approach for taming the scalability problem of inferring
the model of a component-based system from the individual component-
level logs, especially when only limited information about the system is
available;
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TC MUXCHK GW

Figure 4.1: The components of the example system and their dependencies

• the empirical evaluation, in terms of scalability and accuracy, of SCALER
and its comparison with a state-of-the-art approach.

4.2 Motivations

In this section, we discuss the motivations for this work using an example based
on a real system from one of our industrial partners in the satellite domain.
We consider a simplified version of a satellite ground control system, composed
of the four components shown in Figure 4.1: TC, the module handling tele-
commands for the satellite, which is also the entry point of the system; MUX,
a multiplexer combining different tele-commands into a single communication
stream; CHK, the module validating the tele-commands parameters before
they are sent to the satellite; GW, the gateway managing the connections
between the satellite and the ground control system. Figure 4.1 also shows the
architectural dependencies among components; for example, the arrow from
component TC to component MUX indicates that TC uses (or invokes) an
operation provided by MUX. Every execution of the system generates a set of
logs, with one log for each component; Figure 4.2 depicts the logs of the four
system components generated in two executions; for space reasons, the format
of timestamps has been compressed.

To infer a model from these individual component logs, one could use ex-
isting model inference techniques for distributed systems, such as CSight [10].
These techniques typically assume the availability of channels definitions, i.e.,
the exact definition of which events communicate to each other between com-
ponents. However, this information is not available in many practical contexts,
including ours, where the system is composed of heterogenous, 3rd-party com-
ponents, with limited documentation. More specifically, the only available
information about the system are high-level architecture dependencies among
components (like those in Figure 4.1) and a (possibly incomplete) list of com-
munication events, without knowing exactly how events communicate with
each other. Due to this limited information, we cannot use existing techniques
for model inference for distributed systems.

Another approach towards model inference would be to reconstruct a system-
level log from the individual component logs and use non-distributed model
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CMP Execution 1 Execution 2

TC
4TC
1,1 = 14:26:01 sending X via f0 4TC

1,2 = 14:30:11 sending Y via f1

4TC
2,1 = 14:26:02 TC accepted 4TC

2,2 = 14:30:12 wait message

MUX

4MUX
1,1 = 14:26:01 initialize 4MUX

1,2 = 14:30:11 initialize

4MUX
2,1 = 14:26:01 commandName = X 4MUX

2,2 = 14:30:12 commandName = Y

4MUX
3,1 = 14:26:01 commandName = X 4MUX

3,2 = 14:30:12 data flow ID = f1

4MUX
4,1 = 14:26:01 data flow ID = f0 4MUX

4,2 = 14:30:12 send = no

4MUX
5,1 = 14:26:02 send= ok

GW 4GW
1,1 = 14:26:01 encrypt TC_01 4GW

1,2 = 14:30:12 reject command

CHK
4CHK
1,1 = 14:26:01 mode 1 4CHK

1,2 = 14:30:11 mode 0

4CHK
2,1 = 14:26:02 automatic config

Log Message Templates

∗tmp1= sending E1 via E2 ∗tmp2= TC accepted ∗tmp3= wait message

∗tmp4= initialize tmp5= cmdName = E1 tmp6= data flow ID = E1

∗tmp7= send = E1 ∗tmp8= encrypt E1 ∗tmp9= reject command

∗tmp10= mode E1 ∗tmp11= automatic config

Figure 4.2: (top) Component logs generated by two executions of the exam-
ple system; (bottom) Log message templates extracted from components logs
(communication events are marked with an asterisk).

inference techniques such as MINT [123] or GK-tail+ [80]. However, such
approaches typically suffer from scalability issues due to the underlying algo-
rithms they use. For example, the main algorithm used in MINT has worst-
case time complexity that is cubic in the size of the inferred model [70]; the
algorithm used for removing non-determinism from models can exhibit, based
on our preliminary evaluation, deep recursion that causes stack overflows and
makes MINT crash. Furthermore, GK-tail+ is not publicly available and the
largest log on which it was evaluated contained 11386 log entries. Since the
system of our industrial partner can generate, when considering all the com-
ponents, logs with more than 30000 entries, there is need for a scalable model
inference technique that can process component logs.

4.3 Scalable Model Inference

Our technique for system model inference from component logs follows a divide
and conquer approach. The idea is to first infer a model of each system compo-
nent from the corresponding logs; then, the individual component models are
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dependencies
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events templates

MINT

Log entries
dependencies
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Slice()
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Components
gFSMs

Log entries
dependencies

System
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Figure 4.3: Workflow of the SCALER technique

merged together taking into account the dependencies among components, as
reflected in the logs. We call this process SCALER. The rationale behind our
technique is that though existing (log-based) model inference techniques can-
not deal with the size of all combined component logs, they can still be used to
accurately infer the models of individual components, since their logs are suffi-
ciently small for the existing model inference techniques to work. The challenge
is then how to “stitch” together the models of the individual components to
build a system model that reflects not only the components behavior but also
their dependencies, while preserving the accuracy of the component models.
For example, simply appending one component model after the other perfectly
preserves the accuracy of the inferred component models, but it significantly
loses the dependencies between components. On the other hand, performing
a parallel composition of automata on the component models (based on the
dependencies between components) loses the accuracy of the component mod-
els because of the over-generalization caused by the parallel composition. To
solve this problem, we develop a set of novel algorithms that take into account
the dependencies between components while preserving the component models
as much as possible.

Figure 4.3 outlines the workflow of SCALER. The technique takes as input
the logs of the different components, possibly coming from multiple executions,
a description of the architectural dependencies among components, and a list
of log message templates denoting communication events between components;
it returns a system level gFSM. The main two stages of the SCALER technique
are pre-processing and stitching. The pre-processing stage includes two steps:

- step 1 infers, for each component, its gFSM based on the corresponding logs;

- step 2 derives, using the architectural dependencies and the message tem-
plates of communicating events, the log entries dependencies of each
execution.
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Figure 4.4: Component-level gFSMs inferred by MINT from the logs shown in
Table 4.2

The intermediate outputs of the pre-processing step are then used in the stitch-
ing stage, which is at the core of our technique: in this stage, we “stitch” to-
gether the different component-level gFSMs, taking into account the log entries
dependencies, to build a system-level gFSM. We describe these two stages in
the following subsections.

4.3.1 Pre-processing Stage

4.3.1.1 Inferring Component Models

We infer component-level models using MINT [123], a state-of-the-art tool that
is publicly available.

MINT takes as input (1) the logs produced by the individual component
for which one wants to infer the model and (2) the templates of the events
recorded in the component logs. The event templates are required to parse the
log entries, to retrieve the actual events and their parameters. Nevertheless,
often such templates are not available or documented. This situation is typical
when dealing with 3rd-party, black-box components—as it is the case for the
ground control system used by our industrial partner—and it is known in the
literature as the log message format identification problem. We use MoLFI [84],
a state-of-the-art solution for this problem, to derive the event templates that
are then used by MINT; as an example, the box at the bottom of Figure 4.2
shows the templates produced by MoLFI from the logs of our running example.

The models inferred by MINT are gFSMs; Figure 4.4 shows the component-
level gFSMs inferred by MINT for the four components of our running example.
We use a compact notation for the guards on the event parameters labeling the
guarded transitions; for example, in the gFSM of TC (i.e., <TC ), the guard
(X, f0) stands for (E1 = “X” , E2 = “f0”).
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4.3.1.2 Identifying Log Entries Dependencies

A system-level model of a component-based system has to capture not only
the behavior of the individual components but also the intrinsic behavioral
dependencies among them. For example, considering the fact that TC invokes
MUX as shown in Figure 4.1, one could speculate that the event recorded in
entry 4)�1,1 could lead to the event recorded in entry 4"*-1,1 in Figure 4.2; if this
is the case, the model should reflect this dependency.

Component dependencies can be extracted from the source code by means
of program analysis or from existing models such as UML Sequence Dia-
grams [16, 127]. However, such techniques require either access to the source
code or the existence of complete documentation with fine-grained informa-
tion. None of these conditions can be fulfilled in the common situation where
systems integrate many 3rd-party components, either because the source code
is not available or because software documentation is limited. This is the case
for the example system provided by our industrial partner: the source code of
3rd-party components is not available, the architectural documentation only
includes coarse-grained dependencies (like those shown in Figure 4.1), and
the only additional information is the knowledge of domain experts, who can
provide an incomplete list of log message templates corresponding to events
related to the “interactions” between components (e.g., “send” and “receive”
events). We remark that this list of message templates, which we call commu-
nication events and are recorded in communication log entries, cannot be used
to define communication channels since we do not know how these events are
used for communication between components. For all these reasons, we need to
extract additional information, in the form of more fine-grained dependencies
that reflect the logged events and their timestamps; we call such dependencies
log entries dependencies.

The idea at the basis of our log entries dependencies extraction process is
that, if there is an architectural dependency from component 2- to another
component 2. (representing the use of 2. by 2- ), then there is at least (an
event recorded in) a log entry of 2. that is the consequence of (an event
recorded in) a log entry of 2- . This is because we can partition the log entries
of 2. in two disjoint classes: (1) externally generated (“ext-gen”), containing
log entries that are produced as the consequence of a communication (event
recorded in a) log entry of 2- ; (2) internally generated (“int-gen”), all the other
log entries, i.e., those immediately following either an “ext-gen” log entry or
another “int-gen” entry. This means that to extract the dependencies of all log
entries between 2- and 2. , we first have to identify the “ext-gen” log entries
of 2. .
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Table 4.1: Extracted log entries dependencies for the running example

Execution Log entry dependencies

Exec1
4TC
1  〈4MUX

1 , 4MUX
2 , 4MUX

3 , 4MUX
4 〉

4TC
1  〈4CHK

1 〉 , 4TC
2  〈4MUX

5 〉
4TC
2  〈4CHK

2 〉, 4MUX
4  〈4GW

1 〉

Exec2
4TC
1  〈4MUX

1 , 4MUX
2 , 4MUX

3 〉
4TC
1  〈4CHK

1 〉 , 4TC
2  〈4MUX

4 〉
4MUX
4  〈4GW

1 〉

The identification of the “ext-gen” log entries of 2. is based on an intuitive
observation: a communication log entry 4H of a component 2. is produced as
the consequence of a communication log entry 4G of a component 2- only if
there is an architectural dependency between 2- and 2. , and the timestamp
of 4G is less than or equal1 to the timestamp of 4H. However, by using only this
observation, we cannot determine the correct pair (4G , 4H) of communication
log entries if there are multiple candidate pairs that satisfy the same constraint
on the timestamp. To illustrate this case, let us consider communication log
entries 〈4-1 , 4-2 〉 of 2- and 〈4.1 , 4.2 〉 of 2. , where the timestamp of 4-1 is C1,
the timestamps of both 4-2 and 4.1 are C2, and the timestamp of 4.2 is C3, with
C1 < C2 < C3. There are three candidate pairs of communication log entries that
satisfy the constraint on the timestamp: (4-1 , 4.1 ), (4-2 , 4.1 ), and (4-2 , 4.2 ). In
such a case, we use an heuristic and select the pair with the smallest timestamp
difference; in the current example, we would select (4-2 , 4.1 ) and say that 4-2
leads-to (inter-component) 4.1 , denoted with 4-2  � 4

.
1 , to represent the inter-

component communication dependency. In our running example, given the list
of templates corresponding to (log entries of) communication events: tmp1,
tmp2, tmp4, and tmp7, if we consider the architectural dependency from TC
to MUX and focus on the first execution, we say that 4TC

1  � 4MUX
1 and

4TC
2  � 4

MUX
5 .

We remark that our heuristic may introduce some imprecisions with logs
in which the timestamp granularity is relatively coarse-grained (e.g., seconds
instead of milli- or nano-seconds) and the communication between components
is fast enough such that often two communication events that logically occur
one before the other are logged using the same timestamp; in such cases, there

1We assume that the clocks of the different components are synchronized, for example
using the Network Time Protocol (NTP) [87].
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would still be multiple candidate pairs2.
After identifying the “ext-gen” log entries of 2. , every “int-gen” log entry of

2. can be related to the most recent “ext-gen” log entry of 2. . More precisely,
if we have a log 〈. . . , 480 , 481 , . . . , 48= , . . . 〉 of 2. where 480 is an “ext-gen” log
entry followed by the sequence of “int-gen” log entries 〈481 , . . . , 48=〉, we say that
480 leads-to (intra-component) 48 9 , denoted with 480  � 48 9 , for 9 ∈ {1, . . . , =}.
In our running example, when considering the logs of TC and MUX in the
first execution, given the “ext-gen” log entries 4MUX

1 and 4MUX
5 identified as

above, we say that 4MUX
1  � 4

MUX
9

for 9 ∈ {2, 3, 4}.
By composing the leads-to (inter-component) and the leads-to (intra-component)

relations, we can finally extract the log entries dependencies. More precisely,
if we have a log 〈. . . , 4-

:
, . . . 〉 of 2- and a log 〈. . . , 4.

80
, 4.
81
, . . . , 4.

8=
, . . . 〉 of 2. ,

such that 4-
:
 � 4

.
80

and 4.
80
 � 4

.
8 9
for 9 ∈ {1, . . . , =}, we say that 4-

:
leads-

to 〈4.
80
, 4.
81
, . . . , 4.

8=
〉, denoted with 4-

:
 〈4.

80
, 4.
81
, . . . , 4.

8=
〉. When considering

TC and MUX in the first execution of our running example, we have 4TC
1  

〈4MUX
1 , 4MUX

2 , 4MUX
3 , 4MUX

4 〉 because 4TC
1  � 4MUX

1 and 4MUX
1  � 4

MUX
9

for 9 ∈ {2, 3, 4} as identified above; also, we have 4TC
2  〈4MUX

5 〉 because
4TC
2  � 4MUX

5 and 4MUX
5 does not lead-to (intra-component) anything. Ta-

ble 4.1 shows all the log entries dependencies extracted for the log entries in
Figure 4.2.

4.3.2 Stitching Stage

In this stage, we build a system-level gFSM that captures not only the compo-
nents’ behavior inferred from the logs but also their dependencies as reflected
in the log entries dependencies identified in the pre-processing stage.

Since the dependencies between components observed through the logs
are different from execution to execution, we first build system-level gFSM
for each execution and then merge these gFSMs together using the standard
DFA (Deterministic Finite Automaton) union operation3. We call this process
“stitching” whereas we call “grafting” the inner process that builds a system-
level gFSM for each execution. The pseudocode of the top-level process Stitch
is shown in Algorithm 2.

We assume that, within a set of components �, there is a component labeled
2main that corresponds to the root component in the system architectural

2Multiple candidate pairs could be addressed by exploring all potential log entries de-
pendencies for the construction of different models; we leave this as part of future work.

3MINT produces a deterministic gFSM < = ((,ET , �, X, B0, �), with X : (×ET×� → (; it
can be easily converted into a DFA <′ = ((,Σ, X′, B0, �) with X′ : (×Σ→ ( where Σ = ET ×�.
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Algorithm 2 Stitch
Input: Set of Components � = {2main , 21, . . . , 2=}

Set of gFSMs " = {<2main , <21 , . . . , <2=}
Set of Logs !main = {;1, . . . , ;: }

Output: System model <sys

1: Set of gFSMs , ← ∅
2: for each ;8 ∈ !main do
3: gFSM <main ← Graft(2main , ;8 , ")
4: , ← {<main } ∪,
5: end for
6: gFSM <sys ← DFAUnion (,)
7: return <sys

diagram (e.g., TC in our running example). Algorithm Stitch takes as input
�, a set of component-level gFSMs " (one model for each component in �),
and a set of logs (one log for each execution) !main for 2main ; it returns a
system-level gFSM <sys . Internally, Stitch uses novel auxiliary algorithms
(Graft, Slice, Insert), which are described further below.

The algorithm builds a system-level gFSM <main for each execution log
;8 ∈ !main , starting from the component-level gFSMs in " (lines 1–4); this
is done by the Graft algorithm, described in detail in § 4.3.2.1. During the
iteration through the execution logs in !main , the resulting system-level gFSMs
<main are collected in the set , . Last, the gFSMs in , are merged into <sys

using the DFA union operation4 (line 6). The algorithm ends by returning the
system-level gFSM <sys (line 7), inferred from all executions in !main .

4.3.2.1 Graft

The Graft algorithm builds the system-level gFSM for an execution by merg-
ing the individual component-level gFSMs, taking into account the log entries
dependencies extracted from the execution, while preserving the component
gFSMs as much as possible. To illustrate the main idea behind the algorithm,
let us consider two components 2- and 2. , whose corresponding gFSMs (in-
ferred in the pre-processing stage) <2- and <2. are shown in Figure 4.5. These

4One could use the standard DFA minimization after the DFA union in line 6 to re-
duce the size of the system-level gFSM. However, our preliminary evaluation showed that
the minimization operation can reduce the gFSM size (in terms of numbers of states and
transitions) by at most 5%, and it increases the execution time of the Stitch algorithm by
more than five times.
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4-2  〈4.3 〉

slice1
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Figure 4.5: The main intuition behind the Graft algorithm (for simplicity,
we use log entries as transition labels)

gFSMs respectively accept log ;- = 〈4-1 , 4-2 〉 and log ;. = 〈4.1 , 4.2 , 4.3 〉. Let us
also assume that in terms of log entries dependencies (expressed through the
leads-to relation) we have 4-1  〈4.1 , 4.2 〉 and 4-2  〈4.3 〉. Taking into account
these dependencies, intuitively we can say that the gFSM resulting from the
merge of <2- and <2. , denoted by <2-�. , should accept the sequence of log
entries 〈4-1 , 4.1 , 4.2 , 4-2 , 4.3 〉. To obtain <2-�. , we first “slice” <2. into two gF-
SMs: slice1 (accepting 〈4.1 , 4.2 〉) and slice2 (accepting 〈4.3 〉); then, we “insert”
1) slice1 as the target of the transition of <2- that reads 4-1 , and 2) slice2

as the target of the transition of <2- that reads 4-2 . Note that the self-loop
transition in <2. is preserved in <2-�. as a result.

Algorithm 3 shows the pseudocode of the Graft algorithm. The algorithm
takes as input a component 2cur , an execution log ;cur = 〈41, . . . , 4I〉, and a
set of component-level gFSMs " = {<2main , <21 , . . . , <2=}; it returns a gFSM
<sl that accepts the sequence of log entries composed of the entries 48 ∈ ;cur ,
with each 48 interleaved with the log entries to which it leads-to.

The algorithm starts by slicing the gFSM <2cur of the input component
2cur into a gFSM <sl that accepts only ;cur (line 2); the actual slicing is
done through algorithm Slice, described in detail in § 4.3.2.2. The rest of
the algorithm expands <sl taking into account the log entries dependencies
(lines 3–14): for each log entry 48 ∈ ;cur , a gFSM <6 that accepts the log
entries sequence that 48 leads-to is built and “inserted” in <sl as the target of
the guarded transition gt that reads 48. More precisely, the algorithm performs
a run of <sl as if it were to accept the log ;cur : starting from the initial state of
<B; (line 3), it moves to the next state B by making the guarded transition gt
that reads 48 (line 5). As part of this move, for each log entry sequence ;3 such
that 48  ;3, we recursively call Graft to build the gFSM <6 that accepts
;3; this gFSM is then added to the set , (lines 7–10) . Since a log entry
48 may lead-to log entries sequences of multiple components, we compose the
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Algorithm 3 Graft
Input: Component 2cur

Log ;cur = 〈41, . . . , 4I〉
Set of gFSMs " = {<2main , <21 , . . . , <2=}

Output: System model for the current execution <sl

1: gFSM <cur ← getComponentGFSM (", 2cur )
2: gFSM <B; ← Slice(<2cur , ;cur )
3: State B← getInitialState (<B;)
4: for each 48 ∈ ;cur do
5: GuardedTransition gt ← getGuardedTran (<B; , B, 48)
6: Set of gFSMs , ← ∅
7: for each log entries sequence ;3 | 48  ;3 do
8: Component 23 ← getComponentFromLog (!3)
9: gFSM <6 ← Graft(23 , !3 , ")
10: , ← {<6} ∪,
11: end for
12: gFSM <pl ← DFAParallelComposition (,)
13: <B; ← Insert(<B; , gt , <?;)
14: B← getTargetState (gt)
15: end for
16: return <sl

individual gFSMs in, using the standard DFA parallel composition operation
(line 12). The resulting gFSM <pl is “inserted” in <sl as the target of gt by
the Insert algorithm (line 13), described in detail in § 4.3.2.3. At the end of
each iteration of the loop, the state B is updated with the target state of the
gt transition (line 14).

As an example, let us consider the case in which the Stitch algorithm
calls the Graft algorithm when processing Execution-2 of our running ex-
ample. Figure 4.6-(a) shows the component-level gFSM and how they are
related when taking into account the leads-to relation listed in Table 4.1. Algo-
rithm Stitch invokes Graft with parameters 2cur = TC , ;cur = 〈4TC

1,2 , 4
TC
2,2 〉,

" = {<TC , <MUX , <CHK , <GW }. The call to Slice yields the gFSM slice1
shown in Figure 4.6-(a); it accepts 〈4TC

1,2 , 4
TC
2,2 〉, using the transitions labeled

with tmp1(., 5 1) and tmp3. Then, starting from B0 of slice1, the invoca-
tion of the auxiliary function getGuardedTran yields the guarded transition
(B0, tmp1, [., 5 1], B2) that reads 4TC

1,2 . Since 4
TC
1,2  〈4MUX

1,2 , 4MUX
2,2 , 4MUX

3,2 〉 and
4TC
1,2  4CHK

1,2 , the algorithm makes a recursive call for 〈4MUX
1,2 , 4MUX

2,2 , 4MUX
3,2 〉,

which returns the sliced gFSM slice2, and for 〈4CHK
1,2 〉, which returns slice3;
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Figure 4.6: Application of algorithm Graft to Execution-2 of the running
example

both gFSMs are shown in Figure 4.6-(a). At the end of the inner loop, we
have , = {slice2, slice3}; their parallel composition is <2,3 and is shown in
Figure 4.6-(b). This gFSM is then inserted in slice1 as the target of the tran-
sition (B0, tmp1, [., 5 1], B2), as shown in Figure 4.6-(c). The algorithm ends
for 4TC

1,2 by inserting <2,3 in B2 and moves on to the next log entry 4TC
2,2 .

4.3.2.2 Slice

This algorithm takes as input a component-level gFSM <2 and a log ;2; it
returns a new gFSM <sl , which is the sliced version of <2 and accepts only ;2.

Its pseudocode is shown in Algorithm 4. First, the algorithm retrieves the
state of <2 that will become the initial state B of the sliced gFSM <sl (line 2).
Upon the first invocation of Slice for a certain gFSM <2, B will be the initial
state of <2; for the subsequent invocations, B will be the last state visited in
<2 when running the previous slice operations. Starting from B, the algorithm
performs a run of <2 as if it were to accept the log ;2: the traversed states
and guarded transitions of <2 are added into <sl (lines 3–6). At the end of
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Algorithm 4 Slice
Input: A component gFSM <2

A component Log ;2 = 〈41, . . . , 4I〉
Output: a sliced gFSM <sl

1: gFSM <sl ← initGFSM ()
2: State B← getSliceStartState (<2)
3: for each 48 ∈ ;2 do
4: Guarded Transition gt ← getGuardedTran (<2 , B, 48)
5: <sl ← AddGuardedTranAndStates (<sl , gt)
6: B← getTargetState (gt)
7: end for
8: updateSliceStartState (<2 , B)
9: return <sl

the loop, the algorithm records (line 8) the last state visited in <2 when doing
the slicing, which will be used as the initial state of the next slice on <2; it
then ends by returning <sl .

4.3.2.3 Insert

We recall that this algorithm is invoked by the Graft algorithm to “insert” a
gFSM <H into a gFSM <G as the target of a guarded transition gt of <G, taking
into account the log entries dependencies. More specifically, let us consider a
log entry 4 and a set of logs ! = {;1, . . . , ;=} where 4  ;8 for 8 = 1, . . . , =; the
transition gt of <G reads 4, and <H is the parallel composition of the gFSMs
that accepts the logs in !. The Insert algorithm merges <H into <G such
that, by “inserting” <H as the target of the guarded transition gt , <G can read
the (entries in the) logs in ! right after reading 4.

We illustrate how the algorithm works through the example in Figure 4.7,
in which the input gFSMs <G and <H are shown on the left side; we will
insert <H into <G as the target of the guarded transition gt , labeled with 0

and having BC as target state. Without loss of generality, we assume that <H
has only one transition (labeled with U) between its initial state B8 and the
final one B 5 . The main idea behind the Insert algorithm is to duplicate both
incoming and outgoing transitions of the target state of gt , and to redirect the
new copies to the initial and finals states of <H. More specifically:

• the incoming transition gt of BC (labeled with 0) is duplicated and the
new copy is redirected, by changing its target state, to the initial state
of <H (i.e., B8);
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Figure 4.7: Example showing the basic idea of the Insert algorithm, when
inserting <H into <G as the target of the guarded transition gt with gt =

(B?, 0, BC ). Step 1 shows the application of duplication and redirection; step 2
applies determinization to merge states BC and B8.

• the outgoing transitions of BC (e.g., the one labeled with 1) are duplicated
and the new copies are redirected, by changing the source state, such that
they originate from the final state of <. (i.e., B 5 ).

The updated <G, resulting from the application of duplication and redirec-
tion, is shown in the middle of Figure 4.7. We remark that we keep the
original incoming and outgoing transitions of BC on purpose, to take into ac-
count the cases in which one of the log entries read by gt does not lead-to
log entries read by the transition labeled with U. Duplication and redirection
operations introduce some nondeterminism in <G; in our example, B? has two
outgoing transitions both labeled with 0. We remove nondeterminism using
a determinization procedure [27], which recursively merges pair of states that
introduces nondeterminism5; in our example, the determinization procedure
will merge BC and B8. The final <G is shown on the right side of Figure 4.7.

Algorithm 5 shows the pseudocode of the Insert algorithm. The algorithm
takes a gFSM <G, a guarded transition gt , and a gFSM <H; it returns the
updated <G that includes <H as the target of gt . In the algorithm, BC is the
target state of gt , B8 is the initial state of <H and �H is the set of the final states
of <H. The core part (lines 4–10) iterates through each guarded transition C
of BC , duplicates it, and redirects the new copy as described above, using the
the auxiliary function duplicateAndRedirectTransitions. Last, the algorithm
removes nondeterminism using determinize (line 11); it ends by returning the
updated gFSM <G (line 12).

5This procedure is different from the standard NFA (non-deterministic finite automaton)
to DFA conversion since it yields an automaton which may accept a more general language
than the NFA it starts from [27].
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Algorithm 5 Insert
Input: gFSM <G

Guarded Transition gt
gFSM <H

Output: Updated gFSM <G
1: State BC ← getTargetState (gt)
2: State B8 ← getInitialState (<H)
3: Set of States �H ← getFinalStates (<H)
4: for each Guarded Transition C of BC do
5: if C = gt then
6: duplicateAndRedirectTransitions (C, BC , {B8})
7: else if C is an outgoing transition then
8: duplicateAndRedirectTransitions (C, BG , �H)
9: end if
10: end for
11: determinization (<G)
12: return <G

Accuracy of the system-level gFSM SCALER has three main sources
of over-generalization that reduce the accuracy: (1) component-level model
inference, (2) parallel composition in Graft, and (3) determinization in In-
sert. The first is essentially inevitable in any model inference algorithm; we
try to compensate it by using a state-of-the-art tool (MINT) to infer compo-
nent models that are as accurate as possible. The second source may become
a problem when the log dependencies identified in the preprocessing stage are
incorrect; nevertheless, over-generalization caused by parallel composition is
limited because the latter is only performed on the sliced gFSMs. The last
source has limited effects because recursive determinization rarely occurs in
practice.

We further discuss the accuracy of SCALER corroborated by experimental
data in the next section.

4.4 Evaluation

We have implemented the SCALER approach as a Python program. In this
section, we report on the evaluation of the performance of the SCALER im-
plementation in generating the model of a component-based system from the
individual component-level logs.
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First, we assess the scalability of SCALER in inferring models from large
execution logs. This is the primary dimension we focus on since we propose
SCALER as a viable alternative to state-of-the-art techniques for process-
ing large logs. Second, we analyze how accurate the models generated by
SCALER are. This is an important aspect because it is orthogonal to scalabil-
ity and has direct implications on the possibility of using the models generated
by SCALER in other software engineering tasks (e.g., test case generation).
Summing up, we investigate the following research questions:
RQ1: How scalable is SCALER when compared to state-of-the-art model infer-

ence techniques?
RQ2: How accurate are the models (in the form of gFSMs) generated by SCALER

when compared to those generated by state-of-the-art model inference
techniques?

4.4.1 Benchmark and Evaluation Settings

We used a benchmark composed of industrial, proprietary datasets provided
by one of our industrial partners, active in the satellite industry. The bench-
mark contains component-level logs recorded during the execution of a satellite
ground control system, which includes six major components. We created the
benchmark as follows. First, we executed system-level tests on the ground
control system 120 times and, in each test execution, we collected the log files
of the six major components. Then, we created seven datasets of size ranging
from 5K to 35K, where the size is expressed in terms of the total number of
log entries. We assembled each dataset by randomly selecting a number of
executions out of the pool of 120 executions, such that the total size of the
logs contained in the dataset matched the desired dataset size. By construc-
tion, each dataset contains logs of the six major components of the system.
The first three columns of Table 4.2 show, for each dataset in our benchmark,
the size and the number of executions included in it. In total, there are 92
unique templates (i.e., unique number of events) for all logs. The experiments
have been executed on a high-performance computing platform, using one of
its quad-core nodes running CentOS 7 on a 2.4GHz Intel Xeon E5-2680 v4
processor with 4G memory.

4.4.2 Scalability

4.4.2.1 Methodology

To answer RQ1, we assess the scalability of SCALER, in terms of execution
time with respect to the size of the logs, in comparison with MINT [123], a
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state-of-the-art model inference tool. We selected MINT as baseline because
other tools are either not publicly available or require information not avail-
able in most practical contexts, including ours (e.g., channels’ definitions; see
section 5.2).

We ran both tools to infer a system-level model for each dataset in our
benchmark. We provided as input to SCALER 1) the logs of the six compo-
nents recorded in the executions contained in each dataset; 2) the architec-
tural dependencies among components; 3) the list of log message templates
for communication events, received from a domain expert. As for MINT, we
provided as input the system-level logs of the system executions contained in
each dataset. We derived these system-level logs by linearizing the individual
component logs in each execution, taking into account the log entries depen-
dencies. To guarantee a fair comparison, these dependencies are the same as
those extracted in the pre-processing stage of SCALER. Since the total num-
ber of possible system-level logs is extremely large due to the linearization of
the parallel behaviors of the components, we only considered one system-level
log for each execution.

We remark that we used two instances of MINT: the one used internally by
SCALER to generate component-level models; the other one for the compari-
son in inferring system-level models. For both instances, we used the default
configuration (i.e., state merging threshold : = 2 and J48 as data classifier
algorithm) [123]. Furthermore, to identify the event templates required by
the MINT instances to parse the log entries, we first used a state-of-the-art
tool (MoLFI [84]) to compute them and then we asked a domain expert to
further refine them, e.g., by collapsing similar templates into a single one. To
take into account the randomness of the log linearization (i.e., only one lin-
earized system-level log) for each execution of MINT, we ran both MINT and
SCALER ten times on each dataset. For each run, we set an overall time out
of 24h for the model inference process both for MINT and for SCALER.

To assess the statistical significance of the difference between the execution
time of SCALER and MINT (if any), we used the non-parametric Wilcoxon
rank sum test with a level of significance U = 0.05. Furthermore, we used the
Vargha-Delaney (�̂12) statistic for determining the effect size of the difference.
In our case, �̂12 < 0.5 indicates that the execution time of SCALER is lower
than that of MINT.

4.4.2.2 Results

The columns under the header “Scalability” of Table 4.2 show the scalability
results for SCALER and MINT. More precisely, column MINT indicates the
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Table 4.2: Execution time (in seconds), recall, and specificity of SCALER and
MINT

Dataset Size Exec
System-level gFSM Scalability Accuracy

States Transitions
MINT

SCALER
SpeedUp

Recall Specificity

MINT SCALER Ratio MINT SCALER Ratio Prep(s) Stitch(s) Total(s) MINT SCALER ΔR(??) MINT SCALER ΔS(??)

D05K 5058 13 617.7 3816 6.2 837.2 7295 8.7 319.6 6.0 5.8 11.8 27.1 0.09 0.65 56 1.00 0.98 -2

D10K 10208 28 1207.3 6647 5.5 1585.4 12720 8.0 2597.0 10.9 15.3 26.2 99.2 0.16 0.63 47 0.99 0.98 -1

D15K 15078 42 1582.6 4184 2.6 2064.4 8868 4.3 7403.8 13.4 19.8 33.2 222.8 0.52 0.82 30 0.99 0.97 -2

D20K 20094 56 2257.0 7463 3.3 2914.7 15851 5.4 16022.2 18.6 32.1 50.7 315.9 0.58 0.86 28 0.98 0.97 -1

D25K 25034 71 3067.2 9496 3.1 3976.3 18767 4.7 35378.6 24.3 58.2 82.5 428.7 0.56 0.83 27 0.98 0.96 -2

D30K 30103 86 2871.3 19467 6.8 3701.8 40204 10.9 59222.7 29.0 129.6 158.6 373.3 0.61 0.86 25 0.98 0.96 -2

D35K 35079 101 N/A 10432 N/A N/A 19707 N/A timeout 32.5 72 104.5 N/A N/A 0.88 N/A N/A 0.97 N/A

Avg 20093.4 56.7 1933.9 8786.4 4.6 2513.3 17630.3 7.0 20157.3 19.3 47.5 66.8 244.5 0.42 0.79 35.5 0.99 0.97 -1.67

execution time of MINT; columns Prep, Stitch, and Total indicate the average
(over the ten runs) execution time (in seconds) and the corresponding standard
deviation of SCALER for the pre-processing stage, the stitching stage, and the
cumulative execution time, respectively; column SpeedUp reports the speedup
of SCALER over MINT computed as TimeMINT

TimeSCALER
[102].

SCALER is faster than MINT for all the datasets in our benchmark; the
speed-up ranges between 27x (for the dataset D05K) and 428x (for the dataset
D25K). The speed-up increases with the size of the datasets and, thus, the
benefit of using SCALER over MINT increases for larger logs. Note that
MINT reached the time out for the largest dataset (D35K) without producing
any model. The Wilcoxon test also confirms that the differences in execution
time between SCALER and MINT are statistically significant (?-value < 0.01
for all datasets) and the Vargha-Delaney statistic indicates that the effect size
is always large (�̂12 < 0.10) for all datasets.

Analyzing the performance of the two instances of MINT, we can say that
when MINT is used for component-level model inference is much faster than
MINT used for system-level model inference because (1) the component logs
are smaller than the system-level logs and (2) there is a higher similarity among
component logs than system-level logs.

4.4.3 Accuracy

4.4.3.1 Methodology

To answer RQ2, we ran both MINT and SCALER to evaluate and compare
their accuracy for each dataset, in terms of recall and specificity of the inferred
models following previous studies [37, 80, 123]. Recall measures the ability of
the inferred models of a system to accept “positive” logs; specificity measures
the ability of the inferred models to reject “negative” logs. We computed these
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metrics by using the well-known :-folds cross validation method, which has
also been used in previous work [37, 80, 123] in the area of model inference.
This method randomly partitions a set of logs into : non-overlapping folds:
:−1 folds are used as input of the model inference tool, while the remaining fold
is used as “test set”, to check whether the model inferred by the tool accepts
the logs in the fold. The procedure is repeated : times until all folds have been
considered exactly once as the test set. For each fold, if the inferred model
successfully accepts a positive log in the test set, the positive log is classified
as True Positive (TP); otherwise, the positive log is classified as False Negative
(FN). Similarly, if an inferred model successfully rejects a negative log in the
test set, the negative log is classified as True Negative (TN); otherwise, the
negative log is classified as False Positive (FP). Based on the classification
results, we calculated the recall (R) as R =

|TP |
|TP |+ |FN | , and the specificity (S)

as S =
|TN |

|TN |+ |FP | .
As done in previous work [37, 80, 123], we synthesized negative logs from

positive logs by introducing small changes (mutations): 1) swapping two ran-
domly selected log entries, 2) deleting a randomly selected log entry, and 3)
adding a log entry randomly selected from other executions. To make sure
a log resulting from a mutation contains invalid behaviors of the system, we
checked whether the sequence of entries around the mutation location (i.e., the
mutated entries and the entries immediately before and after the mutants) did
not also appear in the positive logs.

Note that we needed to derive system-level logs from the individual compo-
nent logs in test sets to check the acceptance of the system-level models inferred
by SCALER and MINT. To this end, as done for the scalability evaluation,
for each execution in the test sets, we linearized the individual component
logs to derive the system-level log. Also, to take into account the randomness
of the derivation of system-level logs, we repeat the 10-folds cross validation
ten times on each dataset and then applied statistical tests as done for the
scalability evaluation.

4.4.3.2 Results

The columns under the header “Accuracy” of Table 4.2 show the results of
MINT and SCALER in terms of recall, specificity, and difference of these
values (in percentage points, ??) between SCALER and MINT.

MINT achieves high specificity scores, always greater than 0.98. However,
recall is low, ranging between 0.09 for the D05K dataset and 0.61 for the D30K
dataset. Notice that no results were obtained for the larger dataset with 35K
log entries because MINT reached the timeout of 24h without generating any
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model. SCALER achieves a slightly lower specificity than MINT, with an
average difference of 1.67??. However, SCALER achieves substantially higher
recall than MINT. The difference in recall values ranges between +25?? (D30K
dataset) and +56?? (D05K dataset), with an average improvement of 35.5??.
Such a result can be explained mainly because MINT takes as input only one
system-level log among all possible instances of the linearization of the parallel
behaviors of the components for each execution, and fails to scale up to take
as input all the possible system-level logs. Related to this, since SCALER
takes as input all the possible system-level logs (in the form of component-
level logs with the log entries dependencies) for each execution, it returns as
output a system-level gFSM having on average 4.6x more states and 7.0x more
transitions than MINT (see the columns under the header “System-level gFSM”
in Table 4.2).

According to the Wilcoxon test, SCALER always achieves a statistically
higher recall than MINT for all datasets (?-value < 0.01) with a large effect
size. However, SCALER achieves a statistically lower specificity than MINT in
five out of seven datasets (i.e., with 5K, 10K, 20K and 30K log entries). While
the difference in specificity are statistically significant, it is worth noting that
the magnitude of the difference is small, being no larger than 2??.

4.4.4 Discussion and Threats to Validity

From the results above, we conclude that, for the large logs typically encoun-
tered in practice, SCALER provides results that are good enough to generate
nearly correct (with a specificity always greater than 0.96) and largely com-
plete models (with an average recall of 0.79).

The incompleteness of the inferred models is due to the limited knowledge
we have on the system (i.e., the incomplete list of message templates char-
acterizing communication events) and to the heuristic used in computing log
entries dependencies, which is affected by the coarse-grained timestamp gran-
ularity of the logs included in our benchmark. In contrast, MINT, when used
as a stand-alone tool on the same large logs, does not scale and fares poorly
in terms of recall, generating very incomplete models.

From a practical perspective, the results achieved by SCALER lead to a
considerable reduction of false negatives, with a marginal increment of false
positives. For example, for the D15K dataset, MINT generates (in about two
hours) a gFSM that accepts only 52% of the true positives (positive logs).
In this case, engineers need to substantially modify the inferred gFSM to
accept the remaining 48% of positive logs. Instead, for the same dataset,
SCALER generates in about 33 seconds a gFSM that accepts 82% of the
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positive logs (and rejects 97% of the negative logs). The marginal decrement
of the negative logs correctly dismissed by the gFSM inferred by SCALER is
largely compensated by (1) a significant reduction of the number of wrongly
rejected positive logs (+30?? in recall), and (2) a substantial reduction of the
execution time (SCALER is about 222 times faster than MINT).

In terms of threats to validity, the size of the log files is a confounding factor
that could affect our results (i.e., accuracy and execution time). We mitigated
such a threat by considering seven datasets with different sizes (ranging from
5K to 35K log entries) and different sets of system executions.

4.5 Conclusion

In this chapter, we addressed the scalability problem of inferring the model of
a component-based system from the individual component-level logs, assum-
ing only limited (and possibly incomplete) knowledge about the system. Our
approach, called SCALER, first infers a model of each system component from
the corresponding logs; then, it merges the individual component models to-
gether taking into account the dependencies among components, as reflected
in the logs. Our evaluation, performed on logs from an industrial system,
has shown that SCALER can process larger logs, is faster, and yields more
accurate models than a state-of-the-art technique.
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Chapter 5

Test Case Decomposition

Regression testing is arguably one of the most important activities in software
testing. However, its cost-effectiveness and usefulness can be largely impaired
by complex system test cases that are poorly designed (e.g., test cases contain-
ing multiple test scenarios combined into a single test case) and that require
a large amount of time and resources to run. One way to mitigate this issue
is decomposing such system test cases into smaller, separate test cases—each
of them with only one test scenario and with its corresponding assertions—so
that the execution time of the decomposed test cases is lower than the original
test cases, while the test effectiveness of the original test cases is preserved.
This decomposition can be achieved with program slicing techniques, since
test cases are software programs too. However, existing static and dynamic
slicing techniques exhibit limitations when (1) the test cases use external re-
sources, (2) code instrumentation is not a viable option, and (3) test execution
is expensive.

In this chapter, we propose a novel approach, called DS3 (Decomposing
System teSt caSe), which automatically decomposes a complex system test
case into separate test case slices. The idea is to use test case execution
logs, obtained from past regression testing sessions, to identify “hidden” de-
pendencies in the slices generated by static slicing. Since logs include run-time
information about the system under test, we can use them to extract access
and usage of global resources and refine the slices generated by static slicing.

The rest of the chapter is organized as follows. Section 5.1 provides the con-
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text. Section 5.2 illustrates the motivating example. Section 5.3 describes the
main steps of DS3. Section 5.4 reports on the evaluation of DS3. Section 5.5
discusses the practical implications of using DS3. Section 5.6 concludes this
chapter.

5.1 Overview

Regression testing is a quality assurance technique applied when changes are
made to an existing codebase. It provides confidence that the performed
changes do not harm the behavior of the existing and unchanged parts of the
code [133]. Although many techniques have been introduced for cost-effective
regression testing, such as test case prioritization and test suite selection, their
usefulness can be largely impaired if individual test cases (1) are poorly de-
signed (e.g., the codebase contains test smells) and (2) require a large amount
of time and resources to run [7, 109].

We observed both phenomena in the context of a collaborative industrial
research project, with a large company in the aerospace domain. Due to the
intrinsic complexity of the system under test (SUT) and to the accumulated
technical debt over several years of software development, system test cases
often contain multiple test scenarios combined into a single test case. These
tests, often called eager tests [119], negatively impact both regression testing
and test evolution. In our industrial context, eager tests are very expensive
as they take several hours to run. This means that, for example, even if a
state-of-the-art test case prioritization technique is applied, no faults could be
detected during the first few hours of test execution. Furthermore, eager tests
are more difficult to read, understand, document, and evolve [119].

However, if such complex system test cases could be decomposed into
smaller test cases without losing their test effectiveness, the execution time
of the decomposed test cases would decrease and the cost-effectiveness of test
case prioritization could improve. Moreover, having smaller test cases would
facilitate fault localization [131] and program maintenance [7, 119] by provid-
ing more granular information about test results. Furthermore, as decomposed
test cases have distinct test assertions, engineers would be able to easily pick
specific test cases of interest and run them efficiently.

To achieve this, ideally, one would decompose a complex system test case
containing multiple test scenarios into separate system test cases, each of them
with only one test scenario and its corresponding assertions. Since system test
cases are software programs too, they could be decomposed using static slic-
ing techniques based on def-use analysis [126]. However, existing static slicing
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techniques cannot identify and deal with “hidden” dependencies between state-
ments, originated from the usage of global resources such as external files or
databases; such missing dependencies would lead to run-time errors in the
resulting decomposed (sliced) test cases. Dynamic slicing [14] could be an
alternative to static slicing, but it requires to instrument the source code and
to collect coverage information. However, this alternative is not feasible for
a system composed of third-party components and it would not address the
problem of handling “hidden” dependencies as they are not captured by code
coverage. Finally, observational slicing [14, 132] would require running each
system test case multiple times. Such an approach is not applicable for typ-
ically long system test case execution times, as it is the case for the system
developed by our industrial partner.

In this chapter, we tackle the problem of slicing a complex system test case
into simpler ones — without missing any “hidden” dependency between state-
ments — by proposing a novel approach, called DS3 (Decomposing System teSt
caSe), which complements static slicing with a log-based analysis. The idea is
to use test case execution logs, obtained from past regression testing sessions,
to identify missing dependencies in the decomposed test cases generated by
static slicing. Since logs include run-time information about the SUT, we can
use them to extract the global resources accessed (e.g., files, databases) and
the actions performed (e.g., read/write file, open/close database) upon exe-
cuting each statement in the original (unsliced) system test case. In this way,
we can reconstruct the additional dependencies between statements as defined
by the usage of global resources.

DS3 first generates test slices (i.e., decomposed test cases) by applying
backward static slicing using individual assertions included in the original sys-
tem test case as slicing criteria. Then, DS3 complements the individual slices
taking into account any missing dependencies identified by the analysis of the
test execution logs.

We implemented DS3 in a prototype tool, on top of an off-the-shelf program
slicing tool. We evaluated DS3 in terms of slicing effectiveness (i.e., ability to
identify all required dependencies) and compared it with the vanilla static
slicing tool. We also compared the test case slices obtained with DS3 with the
corresponding unsliced system test case, in terms of efficiency and effectiveness,
i.e., how quickly we can verify individual assertions and how many faults we
can detect. In our evaluation, we used one proprietary system provided by
our industrial partner and one open-source system. The results show that
DS3 is able to accurately identify the dependencies related to the usage of
global resources, which vanilla static slicing misses. Moreover, decomposed
test cases are much faster than the corresponding original system test case
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(with an average speedup of 3.56G) and there is no significant loss in terms of
effectiveness (fault detection rate). Additionally, both the original system test
cases and the decomposed test cases have the same function coverage with a
small difference in branch coverage.

To summarize, the main contributions of this chapter are:

1. DS3, an approach for slicing complex system test cases using the global
resources usage information available in test case execution logs;

2. the evaluation of DS3 in terms of slicing effectiveness as well as test
efficiency and effectiveness.

5.2 Motivating Example

In this section, we present an example that motivates our log-based slicing idea.
Figure 5.1 shows, on the top, an example system test case C2sys = 〈B1, B2, . . . , B7〉
(where B8 is the 8-th statement). Figure 5.2 shows C2sys ’s corresponding execu-
tion log ;sys = 〈41, . . . , 44〉; for simplicity, we show the structured log instead
of its original, free-formed log and omit log entries not related to the usage of
global resources. Notice that each log entry has a reference to the test case
statement originating it. This example is a simplified version of a system test
case in JSBSim [58], an open-source flight simulator.

The example test case has been designed to cover multiple test scenarios,
with the presence of two assertions (i.e., B4 and B7). Such test cases can become
less than an ideal if an engineer is interested in testing only a specific scenario,
and the execution of both test scenarios is expensive.

Ideally, C2sys could be replaced with two test cases �1 = 〈B1, B2, B3, B4〉 and
�2 = 〈B1, B2, B5, B6, B7〉, as shown at the middle and at the bottom of Figure 5.1,
each of which contains only an assertion referring to a specific test scenario.
In this way, an engineer can select which test scenario to execute, reducing the
overall testing cost. Notice that, though the new test cases are smaller than
the original system test case, executing �1 and �2 is equivalent to executing C2
in terms of code coverage.

An engineer may try to use program slicing to generate �1 and �2 from
C2sys since C2sys is a software program too and �1 and �2 can be seen as slices
of C2sys . In particular, to have one assertion per slice, the engineer could
apply backward static slicing using 〈B4, {ref, sim}〉 and 〈B7, {diff}〉 as slicing
criteria. However, the variable fdm defined in B1 is never used in the following
statements in C2sys , and therefore none of the slices generated based on the
data- and control-flow of the program code contains B1. This is critical because,
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def test_example ( ) :
( 1 ) fdm = create_fdm_setup ( )
(2 ) r e f = read_csv ( ’ output . csv ’ )
(3 ) sim = deploy_proc ( ’ output . csv ’ )
(4 ) s e l f . a s s e r tEqua l ( r e f , sim )
(5 ) new = run_ic ( )
(6 ) d i f f = FindDi f f s ( r e f , new , 1E−8)
(7 ) s e l f . a s s e r tEqua l ( len ( d i f f ) , 0)

def test_example_idea l_s l i ce1 ( ) :
( 1 ) fdm = create_fdm_setup ( )
(2 ) r e f = read_csv ( ’ output . csv ’ )
(3 ) sim = deploy_proc ( ’ output . csv ’ )
(4 ) s e l f . a s s e r tEqua l ( r e f , sim )

def test_example_idea l_s l i ce2 ( ) :
( 1 ) fdm = create_fdm_setup ( )
(2 ) r e f = read_csv ( ’ output . csv ’ )
(5 ) new = run_ic ( )
(6 ) d i f f = FindDi f f s ( r e f , new , 1E−8)
(7 ) s e l f . a s s e r tEqua l ( len ( d i f f ) , 0)

Figure 5.1: A system test case C2sys (top) and its ideal slices �1 (middle) and
�2 (bottom)

as recorded in ;sys , file output.csv needed in B2 is internally generated by
create_fdm_setup() in B1. In practice, this means that the execution of the
sliced test cases generated with vanilla static slicing will result in a crash, due
to the missing resource (file output.csv).

Overall, because of the “hidden” dependency between B1 and B2, static
slicing alone cannot properly generate �1 and �2 from C2sys .

This simple example has shown the need for extending static slicing to
identify hidden dependencies due to the usage of global resources. In the
next section, we will present a method that achieves this goal leveraging the
information contained in test case execution logs.
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ID Statement Template Value

41 B1 read file * setup.xml

42 B1 write file * output.csv

43 B2 read file * output.csv

44 B3 read file * output.csv

Figure 5.2: The execution log ;sys for C2sys

5.3 Log-based System Test Case Decomposition

Our new approach, called DS3, decomposes a complex system test case con-
taining multiple test scenarios into multiple individual system test cases, each
of them with only one test scenario and its related subset of assertions, while
preserving the hidden dependencies due to the usage of global resources. The
main idea is to complement static slicing with a log-based analysis. Since test
execution logs include run-time information about the system under test, we
can use them to extract the global resources accessed (e.g., files, databases)
and the actions performed (e.g., read, write) upon executing each statement in
the original (unsliced) system test case. In this way, we can reconstruct hidden
dependencies between statements generated at run-time by global resources,
which were not identified by static slicing.

DS3 takes as input a system test case, an execution log corresponding to
the test case, and the log message templates related to global resources; it
returns a set of slices, each of them exercising an individual test scenario and
containing fewer assertions. In our running example, DS3 takes the system
test case tcsys (Figure 5.1, top) and its corresponding log ;sys (Figure 5.2) and
returns ideal slices �1 and �2 (Figure 5.1, middle and bottom). The engineer is
only required to mark log message templates related to global resources, such
as output.csv, in the log. For example, the log entry 41 in ;sys indicates that
the “read” operation is performed on file setup.csv. Hence, by looking at each
message template, such as read file *, engineers can easily identify if it is
related to the usage of global resources. Then, DS3 automatically identifies the
hidden dependency between B1 and B2 using a log-based analysis, and generates
�1 and �2 by refining the intermediate slices generated by static slicing.

Note that our approach is black-box: it does not require access to the
source code. Therefore, it can be applied to software systems composed of
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3rd-party components, whose source code is not accessible, as it is the case
for the system developed by our industry partner. Nevertheless, we need two
conditions to be satisfied to apply DS3: 1. there is a traceability information
between statements in the test case and messages in the log and 2. the log con-
tains some information on the usage of global resources. These conditions are
required to identify 1) which messages were logged upon the execution of each
statement of the test case and 2) the global resources used as part of the state-
ment execution. Such conditions are satisfied by the system developed by our
industry partner. In general, such conditions can easily be satisfied by appro-
priately instrumenting test cases and adding a watchdog process (with logging
capabilities) to monitor the usage of global resources at run time. Though
DS3 additionally requires engineers to manually mark message templates re-
lated to global resources, the number of all templates is typically manageable
(e.g., there are 14 message templates in our proprietary system), and it is easy
for engineers with domain knowledge to identify the templates related to the
usage of global resources.

Algorithm 6 provides the pseudo-code of DS3. It takes as input a system
test case tc = 〈s1 , . . . , sn〉, its corresponding execution log ; = 〈41, . . . , 4:〉, and
the set of log messages templates MT� = {et1, . . . , et<} marked as related to
the usage of global resources in ;; it returns a set of decomposed test cases
(i.e., slices) D = {�1, . . . , � 9}.

Algorithm 6 consists of four major stages: 1. assertion-based backward
slicing (lines 1–6), 2. def-use analysis for global resources using logs (line 7),
3. slice refinement (lines 8–14), and 4. slice minimization (line 15). The back-
ward slicing stage generates static slices D from tc. The global resources
def-use analysis stage identifies the relationships between the statements in tc,
the log entries in ; related to global resources, and the actions performed on
the latter, using ; and MT�. The resulting set of triples �du is then used to
refine each of the static slices � ∈ D in the slice refinement stage. Last, the
slice minimization stage removes any redundant slices in D. The algorithm
ends by returning the minimized D. The four stages are described in detail in
the following subsections.

5.3.1 Assertion-based Backward Slicing

Algorithm 6 first performs backward static slicing on the assertions in tc to
generate a set of static slices D (lines 1–6). This guarantees that each � ∈ D
has at most one test scenario by having one assertion. The algorithm starts
by initializing D as an empty set (line 1). For each assertion statement B ∈ tc
(lines 2–6), the algorithm gets the variables +B in B (line 3), performs the
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Algorithm 6 DS3: Decomposing System Test Case
Input: System Test Case tc = 〈B8 , . . . , B=〉

Log l = 〈41, . . . , 4:〉
Set of Templates MT� = {et1, . . . , et<}

Output: Set of Decomposed Test Cases D = {�1, . . . , � 9}
1: Set of Test Cases D ← ∅
2: for Assertion Statement B ∈ tc do
3: Set of Variables +B ← GET-VARS(B)
4: Test Case �B ← BACK-SLICE(B,+B, tc)
5: D ← D ∪ {�B}
6: end for
7: Set of Triples �du ← GLOBAL-DU(;, C2,MT�)
8: for Decomposed Test Case � ∈ D do
9: Test Case �tmp ← �

10: for Statement B ∈ �tmp do
11: Set of Statements , ← DEP-STMTS(B, �du , tc)
12: � ← ADD(�,,)
13: end for
14: end for
15: return MINIMIZE(D)

backward static slicing on tc using 〈B,+B〉 as the slicing criterion (line 4), and
adds the resulting slice � into D (line 5).

In our running example tcsys , for the assertion B4 ∈ tcsys , the algorithm per-
forms the backward static slicing using 〈B4, {ref, sim}〉 as the slicing criterion,
yielding the slice �B4 = tcstatic1 = 〈B2, B3, B4〉, shown at the top of Figure 5.3.
Note that B1 is not included in tcstatic1 because the variable fdm is not used
in any statements in tcstatic1 based on the static def-use analysis. Similarly,
for the second assertion B7 ∈ tcsys , the backward slicing with the slicing crite-
rion 〈B7, {diff}〉 yields another slice �B7 = tcstatic2 = 〈B2, B5, B6, B7〉, shown at
the bottom of Figure 5.3. tcstatic2 does not include B1, B3, and B4 as they do
not affect the computation of the statements in tcstatic2 based on the static
analysis.

5.3.2 Def-Use Analysis for Global Resources

The second stage of Algorithm 6 identifies a set of triples �du in tc using ;
and MT� (line 7) where each triple 〈B, 6, 0〉 ∈ �du indicates that an action
0 is performed on a global resource 6 when the statement B ∈ tc is executed.
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def te s t_example_stat i c_s l i ce1 ( ) :
( 2 ) r e f = read_csv ( ’ output . csv ’ )
(3 ) sim = deploy_proc ( ’ output . csv ’ )
(4 ) s e l f . a s s e r tEqua l ( r e f , sim )

def te s t_example_stat i c_s l i ce2 ( ) :
( 2 ) r e f = read_csv ( ’ output . csv ’ )
(5 ) new = run_ic ( )
(6 ) d i f f = FindDi f f s ( r e f , new , 1E−8)
(7 ) s e l f . a s s e r tEqua l ( len ( d i f f ) , 0)

Figure 5.3: Static slice results: tcstatic1 (top) and tcstatic2 (bottom)

This is done by Algorithm 7.

Algorithm 7 GLOBAL-DU
Input: Log ; = 〈41, . . . , 4:〉

System Test Case C2 = 〈B1, . . . , B=〉
Set of Templates MT� = {et1, . . . , et<}

Output: Set of Triples �du

1: �du ← ∅
2: for Statement B ∈ tc do
3: Set of Log Entries �B ← ENTRY-FOR-STATEMENT(B, ;)
4: for Log Entry 4 ∈ �B do
5: if TEMPLATE(4) ∈ MT� then
6: String 6 ← GET-GLOBAL-RESOURCE(4)
7: Action 0 ← GET-ACTION-TYPE(4)
8: �du ← �du ∪ {〈B, 6, 0〉}
9: end if
10: end for
11: end for
12: return �du

Algorithm 7 starts by initializing �du as an empty set. For each statement
B ∈ tc (lines 2–11), the algorithm identifies the set of log entries �B originated
from B using the traceability information between the statements in tc and the
log entries in ; (line 3). Then, for each log entry 4 ∈ �B (lines 4–10) whose
template is in MT� (line 5), the algorithm identifies the global resource 6 from
4’s parameter value (line 6) and the action type 0 from 4’s template (line 7). If
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the template contains predefined keywords indicating a “use” of the resource,
such as read and access, then 0 = use; similarly, keywords such as write and
update indicate a “definition” of a resource and we have 0 = def. The default
set of keywords characterizing uses and definitions of global resources can be
enhanced by engineers. The identified triple 〈B, 6, 0〉 is added into �du (line 8);
the algorithm ends by returning �du .

In our running example, let us consider the case where GLOBAL-DU is
called with parameters tc = tcsys = 〈B1, . . . , B7〉, ; = ;sys = 〈41, . . . , 44〉, and
MT� = {read file *, write file *}. The algorithm first initializes �du

to ∅ and starts the iteration over statements in tcsys . For B1 ∈ tcsys , the
call to ENTRY-FOR-STATEMENT with B1 and ;sys returns �B = {41, 42},
by checking the reference of each log entry to the test case statement orig-
inating in ;sys . Based on �B, the algorithm starts the inner iteration over
entries in �B. For 41 ∈ �B, since 41’s template, i.e., read file *, is in
MT�, the algorithm identifies the global resource and action type of 41 using
GET-GLOBAL-RESOURCE and GET-ACTION-TYPE. Specifically, the call
to GET-GLOBAL-RESOURCE with 41 checks the parameter value of 41 and
returns 6 = setup.xml. Similarly, the call to GET-ACTION-TYPE with 41
checks the template of 41 and returns 0 = use because read file * contains
the read keyword. The algorithm ends the inner iteration for 41 by adding
the triple 〈B1, setup.xml, use〉 into �du and moves on to the next iteration to
process 42. After processing all statements and corresponding log entries,
the algorithm returns �du = { 〈B1, setup.xml, use〉, 〈B1, output.csv, def〉,
〈B2, output.csv, use〉, 〈B3, output.csv, use〉 }.

5.3.3 Log-based Slice Refinement

The two previous stages of Algorithm 6 compute D and �du . In this stage, we
aim to refine the slices D using the information in �du (lines 8–14). Specifi-
cally, for each slice � ∈ D and for each statement B ∈ �, the algorithm finds
all the statements of tc needed for B using algorithm DEP-STMTS (line 11,
described in detail below) and adds the found statements into � (line 12). As
a result, we ensure that all � ∈ D have no missing statements, and can be
executed without resulting in a crash due to the improper usage of a global
resource (e.g., writing to a file before opening it).

Algorithm 8 presents the pseudo-code of DEP-STMTS, the core of the
slice refinement stage. It recursively finds dependent statements using both
the information in �du and backward static slicing1.

1Note that Algorithm 8 could be called for the same statement multiple times. To reduce
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Algorithm 8 DEP-STMTS
Input: Statement B

Set of (Global Resource def-use) Triples �du

System Test Case C2 = {B1, . . . , B=}
Output: Set of Statements (
1: Set of Variables +B ← GET-VARS(B)
2: Set of Statements (dir ← DEFS(B, �du) ∪ BACK-SLICE(B,+B, tc)
3: if (dir = ∅ then
4: return ∅
5: else
6: Set of Statements (rec ← ∅
7: for Statement Bdir ∈ (dir do
8: (rec ← (rec∪ DEP-STMTS(Bdir , �du , tc)
9: end for
10: return (dir ∪ (rec
11: end if

For a given B, �du , and tc, the algorithm first gets a set of variables +B
in B and calculates a set of statements (dir directly needed for B using DEFS
and BACK-SLICE. Specifically, the call to DEFS with B and �du returns all
statements B′ such that 〈B′, 6, def〉 ∈ �du and 〈B, 6, use〉 ∈ �du . The call to
BACK-SLICE with B, +B, and tc returns all statements in the static slice of
tc constructed by the slicing criterion of 〈B,+B〉. If (dir = ∅, the algorithm
returns ∅ (line 4); otherwise, the algorithm collects another set of statements
(rec needed for each statement Bdir ∈ (dir (lines 6–9) by recursively calling
DEP-STMTS with Bdir (line 8) and then returns (dir ∪ (rec (line 10).

In our running example, let us consider the case where DEP-STMTS is
called with parameters B = B2, �du = {〈B1, setup.xml, use〉, 〈B1, output.csv, def〉,
〈B2, output.csv, use〉, 〈B3, output.csv, use〉}, and C2 = tcsys . Since B2 has
no variables, +B = ∅ and the call to BACK-SLICE returns ∅. On the other
hand, the call to DEFS returns {B1} since 〈B1, output.csv, def〉 ∈ �du and
〈B2, output.csv, use〉 ∈ �du . Thus, (dir = {B1}, and the algorithm recursively
calls DEP-STMTS for B1. Since B1 does not depend on any other statement,
the recursive call returns ∅, leading to (rec = ∅. The algorithm ends by return-
ing (dir ∪ (rec = {B1}.

Recall that the assertion-based backward slicing stage calculated �B4 =

tcstatic1 = 〈B2, B3, B4〉 and �B7 = tcstatic2 = 〈B2, B5, B6, B7〉 for tcsys . Since the call

the execution time, Algorithm 8 internally keeps a cache of the dependency information for
each statement.

69



5. Test Case Decomposition

to DEP-STMTS for B2 returns {B1} as described above, both �B4 and �B7 can
be refined, thanks to the inclusion of B1. Note that, while B3 also depends on B1
according to �du , function ADD in Algorithm 6 (line 12) does not redundantly
add B1 to �B4 and �B7 . As a result, �B4 and �B7 become the same as the ideal
slices �1 and �2, respectively.

5.3.4 Slice Minimization

After the slice refinement stage, D may contain slices that (excluding the
assertions) are subsets of others. A slice �8 is a subset of another slice � 9 ,
denoted by �8 v � 9 , if all statements (except assertions) of �8 are in � 9 . As
we are dealing with test case slices, we make the following assumption, based
on our observations in real-word codebases: �8 v � 9 (or � 9 v �8) holds when
�8 and � 9 belong to the same test scenario and thus share the same test fixture
(e.g., the same setup and teardown code). For example, a test scenario for the
initialization routine of an object can be implemented with multiple assertions
that verify the initialization of the various properties of the object; in such a
case, the assertions will rely on the same setup code. Based on this assumption,
DS3 includes a minimization stage to remove any redundant slices in terms of
test scenarios. Specifically, the MINIMIZE function in Algorithm 6 analyzes
each obtained slice (ignoring assertions) in D, to ensure that the property
∀�8 , � 9 ∈ D, �8 @ � 9 ∧ � 9 @ �8 holds on D.

If MINIMIZE finds two slices �8 , � 9 ∈ D such that �8 v � 9 , it merges �8
and � 9 by moving the assertion from �8 into � 9 (preserving the order among
statements defined in the original test case) and removing �8 from D.

In our running example, when ignoring the assertion statements, �B4 = �1
contains B3 and B4 that are not included in �B7 = �2, and therefore �B4 @
�B7 ; similarly, �B7 @ �B4 . So MINIMIZE returns {�B4 , �B7} = {�1, �2}, and
Algorithm 6 ends by returning D = {�1, �2}.

Note that the minimization stage results in some slices having multiple
assertions since MINIMIZE merges slices without taking them into account.
Nevertheless, based on the aforementioned assumption, the assertions included
in each slice belong to the same test scenario. Furthermore, the assertions of
the original test case will be distributed over the generated slices, thus reducing
the overall number of assertions per slice.

5.4 Evaluation

We implemented DS3 as a Python program, using the Python-Program-Analysis
toolkit [99] to perform static slicing.
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In this section, we report on the assessment of DS3 in slicing system test
cases, and the effectiveness and efficiency of the obtained slices. More specif-
ically, our research is steered by the following research questions:
RQ1: How effective is DS3 in slicing system test cases compared to standard

static slicing?
RQ2: How efficient are the slices produced by DS3 compared to the original

test cases?
RQ3: What is the code coverage and fault detection capability of the slices

produced by DS3 compared to the original test cases?
RQ1 investigates how effective DS3 is in slicing system test cases into

sliced test cases that successfully compile and have no run-time errors (i.e.,
no “hidden” dependency is missing). These two aspects are essential when
decomposing complex system test cases since slices yielding compilation or
run-time errors are useless.

RQ2 assesses the running time (efficiency) of the generated test slices com-
pared to the corresponding original (non-sliced) test cases. Efficiency is im-
portant in the context of regression testing because developers would execute
only a subset of the test cases (and their assertions) to find regression faults
within the available time budget. The efficiency of regression testing depends
on the running time of the test cases that are selected.

RQ3 analyzes the code coverage and fault detection capability of the gen-
erated test slices compared to the non-sliced ones. Since DS3 decomposes
system test cases into slices, a potential drawback is that the latter may be
less effective than the former in terms of structural coverage and fault detec-
tion capability. Thus, it is essential to investigate how structural coverage and
fault detection capability may be affected by applying DS3.

5.4.1 Benchmarks

A candidate benchmark for our evaluation should meet the following require-
ments: (1) it contains system or integration level test cases, (2) the test cases
should generate logs when executed, and (3) the test cases should access/use
global resources (e.g., external files, databases, remote resource).

These requirements are fulfilled by a proprietary benchmark, hereafter re-
ferred to as Prop, provided by one of our industrial partners active in the satel-
lite industry. This benchmark includes 30 complex system test cases written
in Python, each of which takes on average 53 minutes to execute, as it triggers
multiple cyber-physical components2.

2Due to non-disclosure agreements, we cannot divulge more details about this system.
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To increase the diversity of our experimental subjects and support open
science, we aimed to include in our benchmark one open-source system as
well. Among the top 10 trending repositories on GitHub, we filtered out those
that do not satisfy the above requirements, ending up with one open-source
system, namely JSBSim, an open-source flight simulator already introduced in
our running example in section 5.2. It is mainly written in C++ with about
300 source files (in total over 20 KLOC). It also includes 81 system-level test
cases written in Python.

Our approach uses logs to detect dependencies originated from the usages
of global resources. The proprietary test cases generate log messages with
detailed information regarding the usage of global resources (file, database,
and network connection) and the timestamp of each executed test statement.
Therefore, Prop did not require further modifications to generate appropriate
logs.

In contrast, the logs generated by the JSBSim test cases do not include
the usages of global resources by default. Thus, we implemented a watchdog
script that monitors the usage of global resources during test executions. Since
the system test cases in JSBSim access and modify external files only, our
script captured the names of the changed files as well as the timestamp of
each file access. Besides, we also instrumented the test cases to store the
timestamps of each executed test statement. This allowed us to determine
precisely which statement read or wrote which external files. Notice that
implementing a watchdog and instrumenting system test cases can easily be
automated, without requiring access to the code base.

5.4.2 RQ1: Slicing Effectiveness

5.4.2.1 Methodology

To answer RQ1, we considered static slicing (using the same slicing crite-
rion used in the assertion-based backward slicing stage of DS3, see 5.3.1)
as the baseline for comparison; we used the implementation provided by the
Python-Program-Analysis toolkit, since all the test cases in our benchmarks
are written in Python. We consider neither dynamic slicing nor observational
slicing as alternative baselines. The former is not feasible as our proprietary
system Prop includes several third-party components; hence, instrumenting
these components and building the test execution traces is not possible. The
latter is too expensive for system test cases since it requires executing each test
case multiple times, each time by deleting one single test statement and ob-
serving whether the test case fails [14]. Considering the average execution time

72



5.4. Evaluation

of 53 minutes of the system test cases in the Prop benchmark, observational
slicing was not applicable from a practical standpoint.

To assess the slicing effectiveness, we ran both DS3 and the baseline static
slicing tool on the two benchmarks, obtaining two sets of sliced test cases
(one generated by each tool). To measure the slicing effectiveness of the two
approaches, we used the following metric:

Eff (D) = |{D8 ∈ D | D8 has no errors}|
|D|

where D is the set of slices produced by a given approach (DS3 or the baseline).
In the formula, the numerator indicates the number of test slices that do not
lead to compilation or run-time errors; the denominator represents the total
number of generated slices. The value of Eff ranges between 0 and 1; larger
values are preferable as they indicate fewer failing test slices. In our context,
generated slices may fail due to missing dependencies; therefore, larger Eff (D)
values mean that the technique under analysis is more effective in generating
correct slices that do not miss any dependency.

Notice that the same static slicer used in the first stage of DS3 is also used
as baseline static slicer. This means that the comparison between DS3 and
the baseline actually shows the effect of log-based refinement on vanilla static
slicing.

5.4.2.2 Results

Table 5.1 reports the number of slices produced by both our approach and
the baseline. Column “System” indicates the name of the benchmark; column
“# Test Cases” indicates the number of the original test cases to be sliced;
columns “Total”, “Pass”, and “Fail” indicate, respectively, the total number of
obtained slices, the number of test case slices that successfully passed when
executed, and the number of test case slices that failed when executed; column
“Eff (D)” indicates the slicing effectiveness of an approach. We remark that
the total number of test cases to be sliced for JSBSim is 76 because we could
not get the results for five out of 81 test cases: three of them were flaky (i.e.,
passing in some runs and failing in others) and two further test cases could
not be properly parsed by the static slicer.

The results show that the static slicer has lower slicing effectiveness than
DS3 for both subject systems. For JSBSim, the static slicer achieved an effec-
tiveness score of 0.33. Indeed, 67% of the test slices it generated resulted in
compilation or run-time errors; such errors occurred because the static slicer
missed hidden dependencies. For Prop, only 24% of the slices generated by the
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Table 5.1: Comparison between DS3 and static slicing in terms of slicing ef-
fectiveness Eff (D)

System # Test Cases Approach #Slices Eff (D)

Total #Pass #Fail

JSBSim 76
MoLFI 84 84 0 1

Static Slicer 169 56 113 0.33

Prop 30
MoLFI 137 137 0 1

Static Slicer 166 40 126 0.24

static slicer ran successfully, without run-time errors, as they had no missing
dependencies. Instead, all the slices generated by DS3 ran successfully, without
errors, resulting in an effectiveness score of 1. Overall, this means that DS3,
leveraging the global resources usages recorded in the logs, is able to identify
many hidden dependencies that a vanilla static slicer would have missed.

5.4.3 RQ2: Efficiency of the Sliced Test Cases

5.4.3.1 Methodology

To answer RQ2, we compared the execution time of the generated test slices
with the execution time of the original (non-sliced) test cases. As the test case
execution can alter the environment (e.g., by creating or modifying a file), we
reset the environment before running each test case, to avoid any incorrect
results. We ran each test 10 times to account for the uncertainty in test
execution time. We also assessed the overhead of DS3 by measuring, over the
10 executions, the average time taken by DS3 internal stages (see Algorithm 6
in section 5.3) and the total execution time for slicing a given test case.

The JSBSim test cases have a very short execution time (a few seconds),
so they are not adequate to realistically assess the efficiency of the sliced test
cases. For this reason, to answer RQ2, we only considered the results obtained
for the Prop test cases.

All test cases (original and sliced) were executed on an Apple MacBook
Pro computer with a 2.5GHz Intel Core i7 processor and 16G of memory.
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5.4.3.2 Results

Table 5.2 shows the time (in seconds) for running DS3 to generate the test
slices, as well as the time for executing the generated slices and the original
test cases. More specifically, columns “Others”, “Static”, and “Refine” indi-
cate the average time for executing the different stages of DS3: finding global
resources defs and uses and the minimization step (column “Others”), static
slicing (column “Static”), slice refinement (column “Refine”); column “Total”
indicates the average total execution time of DS3; column “Slices” indicates
the number of slices produced by DS3; column “Org” indicates the execution
time of the original (non-sliced) test cases; columns “Sl. Avg” and “Sl. Tot”
indicate the average and the cumulative execution time of the sliced test cases,
respectively, where the latter represents the sum of the execution time of all
slices obtained for each individual system test case; column “Speedup” indi-
cates the speedup ratio between the execution time of the non-sliced test cases
and the cumulative execution time of the sliced test cases.

The results shows that, for 24 out of 30 test cases, DS3 produced test case
slices whose cumulative execution time is shorter than the one of the original
test case, with an average speedup of 3.56x.

The largest speedup (23.14x) can be observed for test case PTC30. In this
case, the cumulative execution time of the five slices is 1004 s (≈ 17 minutes)
on average; instead, executing the original test case requires 23 231 s (≈ 387
minutes, i.e., more than six hours). This large difference is due to the execu-
tion, within the original test case, of an expensive procedure that actually does
not have any dependencies with other statements in the test case; indeed, DS3
successfully determined and excluded this procedure in the test case slices it
generated.

In the remaining six test cases (characterized by a speedup ratio lower than
one), the total execution time of the test slices was higher than the one of the
original test case. We observed the lowest value of the speedup ratio (i.e., the
highest slowdown, 0.53) for PTC5: the execution time of the original test case
was 465 s while the cumulative execution time of the two slices produced by
DS3 was 874 s. To further understand the root cause of this large increase in
execution time, we manually analyzed PTC5 and its corresponding slices. We
discovered that, for this case, DS3 created two independent test slices, each
with the same copy of the test set-up code; executing this set-up code takes a
large portion of the execution time of the text case slice.

Statistical Analysis We further analyzed the results reported in Table 5.2
using statistical and effect size tests. In particular, we used the Wilcoxon
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Table 5.2: Execution time (in seconds) of DS3 and of the original and sliced
system test cases.

STC
DS3 (s)

Slices
Test Cases (s)

Speedup

Others Static Refine Total Org Sl. Avg Sl. Tot

PTC1 2.76 5.06 204.42 212.23 2 1139 520.00 1040 1.10

PTC2 2.19 3.25 108.79 114.21 2 498 342.50 685 0.73

PTC3 0.14 3.08 32.99 36.15 3 245 132.60 398 0.62

PTC4 3.51 3.07 54.11 60.70 1 330 210.00 210 1.57

PTC5 0.10 3.57 84.65 88.35 2 465 437.00 874 0.53

PTC6 2.77 3.07 36.31 42.25 2 2720 139.00 278 9.78

PTC7 13.84 18.53 258.58 290.94 3 3080 372.00 1116 2.76

PTC8 18.78 25.36 260.06 304.18 4 3765 404.75 1619 2.33

PTC9 0.75 5.48 15.49 21.72 1 197 103.00 103 1.91

PTC10 10.24 68.15 89.47 167.62 7 2280 296.43 2075 1.10

PTC11 9.50 4.95 20.13 34.58 3 1041 121.00 363 2.87

PTC12 4.26 9.95 69.89 84.10 3 913 182.67 548 1.67

PTC13 3.65 50.81 28.29 82.74 5 4150 328.60 1643 2.53

PTC14 0.01 27.81 91.25 119.07 7 15480 144.00 1008 15.36

PTC15 4.16 5.66 9.50 19.32 2 541 89.00 178 3.04

PTC16 0.51 49.58 142.25 192.32 6 922 128.50 771 1.20

PTC17 5.08 11.43 596.04 612.53 8 4975 212.50 1700 2.93

PTC18 0.04 11.46 11.14 22.61 5 4091 116.00 580 7.05

PTC19 0.02 5.08 36.11 41.19 3 183 68.33 205 0.89

PTC20 0.08 15.10 223.85 239.02 3 342 70.00 210 1.63

PTC21 0.06 20.79 136.81 157.65 2 4172 953.50 1907 2.19

PTC22 0.03 9.84 27.52 37.37 5 1201 209.00 1045 1.15

PTC23 0.11 15.95 250.19 266.24 3 6383 281.67 845 7.55

PTC24 0.03 9.24 31.20 40.46 7 2173 201.30 1409 1.54

PTC25 0.74 7.79 89.80 98.33 10 1060 187.00 1870 0.57

PTC26 0.05 28.32 312.50 340.85 3 3768 382.33 1147 3.29

PTC27 0.03 217.56 194.08 411.64 13 3051 137.15 1783 1.71

PTC28 0.55 53.06 24.06 77.22 7 2802 120.00 840 3.34

PTC29 1.69 8.83 128.98 138.88 10 680 99.10 991 0.69

PTC30 0.23 5.07 14.94 20.29 5 23231 200.80 1004 23.14

Average 2.86 23.56 119.45 145.82 5 3196 239.66 948 3.56
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rank sum test [25] and the Vargha-Delaney’s �̂12 effect size [120]. Both tests
are non-parametric; therefore, they do not make any assumption on the data
distributions. We used the Wilcoxon test to assess whether the difference
in running time between the original test cases and the corresponding slices
are statistically significant. For the sake of the analysis, we considered the
cumulative execution time for all slices obtained for each individual system
test case. We considered a level of significance U = 0.05.

According to the Wilcoxon tests, the slices generated by DS3 have a statis-
tically significant lower execution time than the corresponding non-sliced test
cases (?-value=0.01). The Vargha-Delaney’s statistic reports a medium effect
size �̂12 = 0.69.

DS3 Overhead As shown in the left side of table 5.2, DS3 takes, on aver-
age, 145.82 s to slice a complex system test case. The most time-consuming
step is the refinement step, which recursively derives the hidden dependencies
and performs backward slicing to guarantee that all related statements are
included. This step takes, on average, 82% of the overall DS3 execution time.
The second most expensive step is the generation of the initial set of slices
using the static slicer; this step takes 16% of the overall DS3 execution time,
on average. The remaining steps take, on average, only 2% of the total DS3
execution time.

It is worth noting that DS3 will be used just once to obtain the test case
slices, so its overhead will be limited in any case. Further, using DS3 is par-
ticularly advantageous for those test cases that are executed many times a
day, a common situation in continuous integration and deployment (CI/CD)
environments, for example [104].

5.4.4 RQ3: Coverage and Fault Detection Capability

5.4.4.1 Methodology

To answer RQ3, we first compared the cumulative coverage of the original test
cases and the test slices obtained through DS3. To measure code coverage,
we used Bullseye Coverage [114], an advanced C++ code coverage tool used
to improve software quality in critical system domains such as industrial con-
trol, medical, automotive, communications, aerospace, and defense. Next, we
used mutation testing to assess the difference in fault detection capabilities
between the original test cases and slices. Mutation testing is widely used in
the literature to systematically assess the fault detection effectiveness of test
cases [19, 45, 59], especially when not enough real-faults have been recorded,
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which is our case. Mutation testing introduces syntactic changes (mutations)
into the production code using well-established mutation rules (mutation op-
erators). The variants of the program produced by the mutation operators are
often referred to as mutants. Effective test suites should pass on the original
program but fail when executed against the mutants. In this scenario, the
mutant is said to be killed ; otherwise, the mutant is said to be alive.

For mutation analysis, we used Mutate++ [73], an open-source mutation
testing tool. Mutate++ provides 15 mutations operators, including arithmetic,
conditional, Boolean, numeric, and line-deletion operators. For our analysis,
we selected six mutation operators based on the following observations. First,
for some mutation operators, the majority of the generated mutants were killed
at the build stage due to compilation errors; an example of such a mutation
operator is the line-deletion operator, which removes a source code statement.
Second, Lin et al. [71] reported that some mutation operators are sufficient in
selective mutation. Selective mutation aims to reduce the number of mutants
to consider without compromising the measurement of test effectiveness [53].
Based on the above observations, in our evaluation we considered the follow-
ing mutation operators: (1) Logical Operator, (2) Conditional Operator, (3)
Increment Decimal Operator, (4) Arithmetic Operator, (5) Boolean Literal
Operator, (6) Decimal Number Operator.

To assess whether the slicing process of DS3 did not impact the fault detec-
tion capability of the test slices (group 1) compared to the original test cases
(group 2), we compared the number of mutants killed by each group. We use
KO to denote the set of mutants killed by the original test cases and KS to
denote the set of mutants killed by the test slices generated by DS3.

We performed mutation testing and coverage analysis only on JSBSim. We
could not consider Prop for the following reasons: (1) the proprietary system
includes a large number of software components, written with different pro-
gramming languages. Analyzing such a heterogeneous codebase would require
a powerful and sophisticated mutation testing tool. (2) We did not have ac-
cess to the system source code. (3) Running mutation testing on Prop would
have required to run the test cases hundreds of times, once for each gener-
ated mutant. One execution for all Prop test cases requires ≈ 26 hours; hence,
mutation testing for Prop would have been prohibitively expensive.

5.4.4.2 Results

Table 5.3 reports code coverage for the original test cases and the generated
test slices. Columns “FunctionCov” and “BranchCov” indicate, respectively,
function coverage and branch coverage scores; sub-columns “Total” indicate
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Table 5.3: Comparison between original and sliced test cases in terms of code
coverage

Subject
FunctionCov BranchCov

Total Original Slices Total Original Slices

JSBSim 2980 1831 1831 13541 5736 5698

Table 5.4: Comparison of the mutation testing results (KO denotes the set of
mutants killed by the original test cases; KS denotes the set of mutants killed
by the test slices produced by DS3)

Subject ALL Mutants  $  (  $ ∩  (  $ \  (

JSBSim 2678 289 288 288 1

the total number of functions/branches in the system source code; sub-columns
“Original” and “Slices” indicate, respectively, the number of functions/branches
covered by the original test cases and by the slices.

In terms of function coverage, both the original test cases and the gener-
ated slices achieved 61% (1831/2980). We observe a very small difference in
branch coverage: the original test cases cover 42.36% (5736/13541) of the code
branches whereas the generated slices covered 42.08% (5698/13541) of them.

We manually analyzed the test slices to understand the root cause of such
(minor) differences in branch coverage. We observed that a few original test
cases contain spurious function calls whose execution results are neither as-
serted nor used as input for other method calls. As such, these function calls
do not contribute to the test scenario under test. Since DS3 uses an assertion-
based slicing criterion, it can successfully identify these spurious statements as
they are not included in any of the generated slices.

Table 5.4 shows the mutation testing results. For the original system test
cases, 289 mutants were killed. The generated test slices were able to kill 288
mutants which, as expected, were all killed by the original test cases. To better
understand why this single mutant was not killed by the generated slices, we
manually analyzed the original (non-sliced) test case that killed that mutant as
well as the slices generated by DS3. We found out that the mutant was injected
within a function that was invoked by the original test case but removed in
the generated slices. The function call was removed by DS3 because it does
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not contribute to the test cases’ assertions; it is not used to create inputs for
other method calls, and it does not access global resources (i.e., it does not
have hidden dependencies). Though the original test case kills the mutant, it
is not due to an assertion failure but rather a run-time error when invoking
the function call after the mutant is injected. This negligible difference shows
that DS3 does not negatively impact the effectiveness in terms of code coverage
and fault detection capability.

5.4.5 Threats to Validity

Threats to construct validity. We evaluated DS3 using different metrics, namely
(1) number of generated test slices with no compilation or run-time error, (2)
running time, (3) code coverage, and (4) killed mutants. These metrics are
widely used in testing [77,133]. To give a reasonable estimate of the test execu-
tion cost, we ran each test (both slices and original tests) 10 times and reported
the average (arithmetic mean) results. To have a more reliable measure of the
DS3 overhead, we also ran our approach 10 times.

Threats to external validity. We assessed DS3 in the context of a collabora-
tive industrial research project with a large company in the aerospace domain.
Hence, we reported the achieved results for one industrial, proprietary system.
To improve the generalizability of our results and promote open science, we
also included an open-source project, namely JSBSim, which implements a
multi-platform, object-oriented Flight Dynamics Model written in C++.

5.5 Practical Implications

Test smells and maintainability We argue that DS3 contributes to ad-
dressing two test smells: assertion roulette and eager tests. Assertion roulette
is a test with multiple assertion statements, which make root cause analysis
more difficult in case of test failure [119]. Eager tests check multiple dif-
ferent functionalities at once, negatively affecting test code readability and
understandability [119]. Executing DS3 on a given system test case will yield
multiple slices, each with fewer assertion statements and one individual test
scenario. Notice that the slice minimization stage further contributes to reduce
the overall number of slices. Thanks to DS3, the assertions of the original test
case will be distributed over the generated slices, thus reducing the number of
assertions per slice (assertion roulette). Furthermore, splitting the test cases
into independent slices helps address eager tests.
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Regression testing Although DS3 has a non-negligible overhead (see Sec-
tion 5.4.3), it is applied only once to generate the test slices. Therefore, its
impact on the testing cost is limited. The advantage of using DS3 is that the
generated slices are less expensive: this plays an important role in regression
testing [133]. Reducing test execution time is one of the objectives of test case
selection and prioritization. Using test slices, lightweight code analysis, and
domain knowledge, test engineers can select and run the slices covering the
changed or impacted portion of the production code, instead of the original
test cases. In addition, test slices can be grouped by setup configuration, input
values, or target functionalities. Slices can be further selected for each group
to run only the most representative test slices and further reduce the overall
test execution cost.

According to the results for RQ3, the test slices generated by DS3 have the
same coverage and fault detection capability as the original test cases. Since
the test slices are also statistically less expensive to run (see RQ2 results),
which positively affects regression testing, there is a clear gain in using DS3.

Two common objectives used in test case selection and prioritization are
coverage (to maximize) and test execution (to minimize) [133]. With DS3,
developers can select test slices that reach the same coverage and mutation
scores as the original test cases but with a significantly lower execution time.

5.6 Conclusion

In this chapter, we addressed the problem of dealing with complex system
test cases containing multiple test scenarios, which negatively impact both re-
gression testing and test evolution. We proposed DS3, a novel approach to
decompose a complex system test case with multiple test scenarios into sepa-
rate sliced test cases, each of them running one test scenario. DS3 leverages
static slicing and the execution logs collected during past regression testing
sessions. The main idea is to use logs containing run-time information about
the SUT to identify dependencies between test statements due to the access
and usage of global resources; these dependencies are used to refine sliced test
cases generated by static slicing, which tend to miss such dependencies. The
evaluation results, conducted on one proprietary system and one open-source
system, show that log-based slice refinement is indeed effective at avoiding, in
the generated sliced test cases, compilation or run-time errors due to missing
dependencies. Furthermore, the generated test case slices are, on average, 3.56
times faster than the original system test case, with no significant loss in fault
detection capability.
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Chapter 6

Log-based Test Case
Prioritization

Regression testing is performed during software evolution to have enough confi-
dence that new software changes do not impact the behavior of the unchanged
parts of the system. However, there could be insufficient resources to re-
execute all existing test cases. Test case prioritization techniques improve the
effectiveness of regression testing by finding an ordering of the test cases that
maximizes a desirable property, such as the rate of fault detection.

Given that faults are unknown before executing the test suite, test case pri-
oritization techniques use heuristics and software metrics that correlate with
fault detection capabilities of test cases. Most of test case prioritization tech-
niques use information like structural coverage, system models, requirements
specifications, or mutation testing. Usually these information are extracted
from the source code or the documentation of the target systems. However, in
real-word systems, the visibility of the system behavior is limited to what is
collected in its execution logs.

In this chapter we study the usage of test cases execution logs in the context
of test case prioritization. Section 6.1 gives an overview of the challenges of
test case prioritization; Section 6.2 illustrates our log-based test case prioriti-
zation tool; Section 6.3 presents the evaluation of our approach and Section 6.4
concludes this chapter.
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6.1 Overview and Motivation

Regression testing is an important but expensive process. It is performed
to have enough confidence that the introduced changes do not impact the
behavior of the existing unchanged parts of the software [134]. Consider-
ing the limited testing resources and expensive test suites, test case priori-
tization techniques have been studied to allow for a cost-effective regression
testing [18, 50]. Test case prioritization is challenging because it attempts
to find an optimal ordering of test cases, before executing them, with the
goal of maximizing the rate of fault detection. Specifically, given a test suite
TC = {tc1 , tc2 , . . . , tcn } composed of = test cases, a test case prioritization
technique aims at finding an order (or permutations) of the test cases TC ′

that satisfy: 1) 5 (TC ′) > 5 (TC ), and 2) 5 (TC ′) > 5 (TC ′′) for all other
possible permutation TC ′′ ≠ TC ′, where 5 is a function used to measure the
rate of fault detection of a sequence of test cases.

Given that faults are unknown before executing the test suite, heuristics
and software metrics that correlate with fault detection capabilities of test
cases have been proposed to tackle the challenges of test case prioritization.
Most of the existing approaches rely on information collected from previous
regression testing sessions like test case execution history [52,137] or structural
coverage [31,74,133]. The historical information are used as prioritization cri-
terion to estimate the fault detection capability of test cases. For example, the
intuition behind using structural coverage is that early maximization of struc-
tural coverage will also increase the chance of early fault detection. However,
such information is based on source code or documentation, which may not be
available especially for third-party components.

Model-based test case prioritization techniques [50, 64, 107] were proposed
to bypass the need for source code availability. Machine learning algorithms [20,
74] and mutation testing [54,75] where mutants are used as surrogate for test
case prioritization were also studied.

The existing techniques have certain benefits but also come with limita-
tions. On one hand, one may think that accessing the source code may help
achieve an effective ordering, however white-box techniques are considered ex-
pensive [82]. On the other hand, black-box techniques, although bypassing
the source code availability requirement, have limited details about the target
system, thus their effectiveness may be impaired.

Execution logs contain valuable information about the system states and
behavior. A test case, when executed, reports a sequence of log messages that
correspond to the log printing statements that were reached when executing
the test case statements. Let SC be a system source code SC = 〈s1 , . . . , sm〉
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with < lines of code or code statements. Some of these statements are log
printing statements PS ⊂ SC , which means they will generate a defined log
message (with or without variable values that change over executions) when
they are reached (or executed). When executing a test case C2, it will produce a
log file with a sequence of : log entries: ; = 〈41, . . . , 4:〉, with 48 = (t8 ,mt 8 , E8),
t8 ∈ N is the timestamp of the event occurrence, mt 8 ∈ MT is the message
template that was produced by a specific log printing statement from PS , and
E8 ∈ + are the variable values that capture the system states, for 8 = 1, . . . , :
(for simplicity reasons, we will only consider the message templates in the rest
of this chapter). In the same way a control flow graph shows the flows be-
tween code statements, the sequence of log entries capture the possible flows
between log printing statements. These log printing statements reveal impor-
tant information about the system state since, in practice, developers do not
write log printing statements after each code statement, but they write them
at important locations where they can get an idea about the changes of the
system states. Since test cases logs reflect, at a certain level, the system status
and they can be collected from previous executions, we find it interesting to
study the usefulness of test cases logs in the context of test case prioritization.

In this chapter, we propose two different approaches, both relying on test
cases logs collected from previous regression testing sessions. The first ap-
proach is a model-based approach where we build a system model [11, 13, 76]
from the collected logs and then use it to compute certain model-based cover-
age [107]. Similar to structural coverage, test cases will be prioritized according
to the number of nodes or edges that are covered by individual test cases. The
difference is that the model we are using covers just the log printing statements
and not the entire source code of the target system. The second approach is a
machine learning approach where we build a regression model using different
log-based features then we use this model to predict the number of mutants
that will likely be killed by each test case. Test cases with the highest predic-
tion values (the number of mutants to be killed) are considered to have high
fault detection capability, thus will be executed first.

The intuition behind using execution logs in this context is that log printing
statements are a subset of the system source code and they reflect a subset of
the covered statements, therefore, we consider that early maximization of log
printing statements coverage will increase the chance of early fault detection.

To summarize, the goal of this chapter is to investigate the usefulness of test
cases logs in achieving an effective test case ordering. We propose a tool named
LoTeCaP that utilizes test execution logs in two prioritization techniques: one
based on the coverage of a log-based model, and the second uses a machine
learning algorithm.
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Figure 6.1: Overview of LoTeCaP

The main contributions of this chapter are:

1. a simplified log-based model that capture the system behavior from the
executed log printing statements.

2. LoTeCaP, a tool for log-based test case prioritization that leverages the
log-based model to measure model-based coverage and predict the mu-
tants kills of each test case.

3. the evaluation of LoTeCaP in terms of fault detection rate.

6.2 LoTeCaP

In this section, we present our tool called LoTeCaP for Log-based Test Case
Prioritization. We propose to build a log-based model from previously collected
test case execution logs then leverage the model to prioritize test cases following
two different techniques: the first technique is based on model coverage, and
the second technique uses a machine learning algorithm to predict the mutant
killing capability of test cases starting from log-based features to be extracted
from the log-based model.

The rationale behind our approach is that execution logs contain valuable
information of the system behavior. Additionally, logs describe a subset of the
target system source code through the log printing statements which allows us
to compute a portion of the code coverage. The challenges are: first how to
model the system behavior using the execution logs in such a way that reflects
the possible paths between the log printing statements and second how to use
this model to prioritize test cases.

Figure 6.1 gives an abstract overview of the proposed approaches. The
tool takes as input the test cases and their corresponding previously collected
execution logs and the set of log message templates that are extracted from
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all log printing statements in the source code of the target system. The main
step is to build a system model from the execution logs. The model we choose,
named Event Template Flow Graph or ETFG for shirt, is like a control flow
graph but only with a subset of the statements, which are the log printing
statements. We propose two ways to use the log-based system model for test
case prioritization: 1) compute model-based coverage (this approach is called
Model-based Test case Prioritization, MTP for short), 2) a machine learning
approach that leverages the log-based model to collect different features and
use them to predict how many mutants a test case is likely to kill (this second
approach is called Prediction-based Test case Prioritization, PTP for short).

In the following sub-sections we further describe the proposed approaches
starting by the proposed log-based system model.

6.2.1 Log-based Model: ETFG

When a test case is executed, specific statements in the target program are
being traversed. The log printing statements that were executed write mes-
sages to a log file. These log printing statements reveal important information
about the system state since, in practice, developers do not write log printing
statements after each code statement, but they write them at important loca-
tions where they can get an idea about the system state. Some log message
templates can be repeated along the log file which means that the same log
printing statement was traversed many times. Log messages can be seen as
an excerpt of the target system source code: they show the possible sequences
of log printing statements. To reconstruct the possible paths connecting log
printing statements, we suggest to build a log-based model from test cases logs.
Two important assumptions to consider: 1) each log printing statement prints
a unique template. This is important when comparing the paths covered by
two different test cases. 2) different executions of the same test case generate
the same sequence of templates. Since log messages will be used to describe
the test case, the sequence of log printing statements should be the same for
each test case (no flaky tests).

Let Logs = {l1 , l2 , . . . , ln } be the set of logs that were generated from the
set of test cases TC = {tc1 , tc2 , . . . , tcn }), and each execution log is composed
of a sequence of log entries li = 〈(t1 ,mt1 ), . . . , (tk ,mtk )〉 (as mentioned above,
we ae not considering the variable parts of log messages). We present ETFG,
the Event Template Flow Graph that summaries all possible paths between
log printing statements as observed in all test cases logs. ETFG = (N ,E ) is
a directed graph where # is a set of nodes and � is a set of edges. # is
defined by the set of templates occurring in all the test cases logs Logs with
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Algorithm 9 Build the Event Template Flow Graph (ETFG)
Input: Test cases executions logs Logs = {l1 , l2 . . . , ln }
Output: Sets Nodes and Edges of the ETFG model
1: Set Nodes ← ∅
2: Set Edges ← ∅
3: for Log ; ∈ Logs do
4: for Message template <C ∈ ; do
5: Nodes ← Nodes ∪mt
6: next ← GET −NEXT −MESSAGE − TEMPLATE (l ,mt)
7: Edges ← Edges ∪ (mt , next)
8: end for
9: end for

10: return Nodes , Edges

two special nodes ‘start‘ and ‘end‘. For all template mtx occurring in !>6B, if
mtx is immediately followed by another template mty , then there is an edge
(x , y) ∈ E where G is the node of mtx and H is the node of mty . Algorithm 9
presents the steps of building the ETFG . It uses the set of test cases logs and
returns the Nodes and Edges of the ETFG . It starts with empty sets of Nodes
and Edges, then it processes each log file of each test case to update the set of
nodes with the newly observed message template <C (line 5). For each log file,
each two consecutive message templates are considered an edge in the ETFG
(lines 6-7).

This model is used to summarize and simplify the processing and manipu-
lation of the test cases logs. The characteristics of this model are: it presents
the paths, including conditional branches and loops, executed by the test cases
as reported in the logs (the sequences of templates) and it is smaller in size
than the control flow graph because it only captures the paths between log
printing statements and not the entire source code statements.

The ETFG will be used in the model-based approach to compute model
coverage, and will also be used in the machine learning approach to generate
log-based features. The rationale behind these approaches is that, similar to
structural coverage, log printing statements are a subset of the system source
code so we can assess the effect of early fulfillment of log printing statements
coverage on the rate of fault detection. Additionally, execution logs combine
the static aspect of the source code and dynamic aspect of the system execution
from which we may extract valuable data about test cases fault detection
capability.

88



6.2. LoTeCaP

6.2.2 Model-based Test Case Prioritization

This first approach is a black-box approach where the only information we have
about the test cases is the log printing statements that were traversed during
their executions and reported in their log files. The ETFG of the test suite
can be used as the target program model. We prioritize test cases according
to certain model-based coverage criteria [107].

Given that the ETFG captures the flows between log printing statements,
one can think of reusing and adjusting some of the well known model-based
coverage criteria, such as additional node coverage and additional edge cover-
age. To measure the coverage of a test case C28 on the ETFG, we traverse the
ETFG using the log ;8 produced by C28 and keep track of the coverage prop-
erties. To prioritize the test cases, we iteratively select the test case C28 that
has the maximum additional coverage score compared to the coverage score
achieved by the already prioritized test cases.

Some of the log messages have a severity level (e.g., WARN, ERROR).
These severity levels are important in various activities like debugging because
they indicate an issue or a possible issue within the system. We also leverage
these details in the proposed log-based coverage criteria. We use the term high
level nodes to refer to nodes of levels: DEBUG, WARN, ERROR, FATAL.

Model-based Coverage Criteria A test coverage criterion can be consid-
ered as a way of defining testing requirement to be fulfilled by test cases in
order to maximize early fault detection during the testing activity. For a given
test case tci and its generated log ;8, we define the following sets: Nodesi ⊂ N
is the set of covered nodes by tci , and Edgesi ⊂ E is the set of covered edges
by tci

The basic model-based coverage criteria [107] can be applied on the ETFG
graph: Additional Node coverage (NodeCov) and Additional Edge coverage
(EdgeCov). During the prioritization process, we consider PTC as the se-
quence of ordered test cases. To count the number of additionally covered
nodes (or edges) by a test case tci , we take into account the set SN (or SE )
that contains the already covered/seen nodes (or edges) by test cases in PTC :

NodeCov (tci ) = |{n ∈ Nodesi | n ∉ SN }|
EdgeCov (tci ) = |{e ∈ Edgesi | e ∉ SE }|
We suggest two variants of the edge coverage criterion that includes the

logging level because we observed that high level nodes are usually placed in
code blocks where there are complex computations and we considered that
covering a high level node is likely to lead to a failure or a crash. We introduce
the set of covered high level nodes for each test case HighLeveli ⊂ N .
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Additional Edge-Level coverage (EdgeLevel) prioritizes test cases that max-
imize the number of covered edges and maximize the number of covered high
level nodes. The EdgeLevel criterion can be seen as a multi-objective function
to maximize:
max ({e ∈ Edgesi | e ∉ SE }) and max ({n ∈ HighLeveli | n ∉ SN }). During the
prioritization process, at each iteration, the selected test case is the one that
maximizes both conditions.

Additional Sum Edge-Level coverage (SumEdgeLevel) prioritizes test cases
with the higher sum of covered edges and covered high level nodes.
SumEdgeLevel (tci ) = |{e ∈ Edgesi | e ∉ SE }|+ |{n ∈ HighLeveli | n ∉ SN }|

We note that the NodeCov measures the covered log printing statements
which is a subset of the statements coverage. The effectiveness of using this
subset of statements for prioritization is discussed in the evaluation section.

6.2.3 Prediction-based Test Case Prioritization

Relying only on the number of covered nodes or edges in a system model is a
basic way of characterizing test cases (we can say it is a static way for describing
the execution paths of test cases). We believe that applying more sophisticated
approaches on the log-based model to extract richer details about test cases can
improve the effectiveness of log-based test case prioritization. Since our goal is
to kill as many mutants as possible earlier during the regression testing activity,
it is interesting to know if a test case will be able to kill mutants or not even
before executing it. The log-based model ETFG presents the covered parts of
the system source code in a concise way and facilitates the processing of the
captured execution details (e.g., the covered nodes, the possible paths between
nodes). We propose to apply a machine learning algorithm on test cases logs
to predict the mutant killing capability of each test case. We consider two
important assumptions: 1) historical data about the number of killed mutants
per test case is provided and 2) the new faults/mutants introduced in the new
version of the system should be similar to the mutants that were used to train
the machine learning model. The key element of machine learning techniques is
the features that are used to perform the prediction. We describe the extracted
log-based features in the next paragraph.

Extracted Log-based Features We have identified different features from
the execution logs that reflect how complex the execution path of a test case
based on the traversed log printing statements.
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1. BinaryCoveredNodes: we specify, for each test case, what nodes in the
ETFG model were covered.

2. BinaryCoveredEdges: we specify, for each test case, what edges in the
ETFG model were covered.

3. NumberCoveredLevels: we consider the different logging levels (e.g., DE-
BUG, INFO) that are observed in all test cases logs. For each test case,
we count how many times a logging level was covered.

4. NodesVisits: we consider how many times a node was visited (different
from the BinaryCoveredNodes where the values are binary for covered
or not covered).

5. EdgesVisits: Similar to the NodesVisits, we consider the number of times
each edge was visited by each test case.

6. NodesVisitsLevels: we combine the NodesVisits and the NumberCov-
eredLevels in this case.

7. EdgesVisitsLevels: we combine the EdgesVisits and the NumberCov-
eredLevels in this case.

To identify these features we used the ETFG model. As explained, the
value to be predicted by our model (target) is the number of killed mutants
by test case.

6.3 Evaluation

We implemented the LoTeCaP tool as a Python program. When using the
program, one can specify what prioritization techniques to run depending on
the available data and the time budget. Our experimental study is designed
to answer five research questions.
RQ1: How effective is MTP technique in early fault detection compared to the

baselines?
RQ2: How effective are the different log-based coverage criteria in early fault

detection?
RQ3: What is the impact of selecting hard-to-kill mutants on the effectiveness

of the MTP approach in early fault detection?
RQ4: What regression model is best suitable for accurately predicting the num-

ber of killed mutants and with which features?
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RQ5: How effective is PTP technique in early fault detection compared to the
baselines and the MTP technique?

The first three research questions assess the effectiveness of the model-
based approach in test case prioritization. RQ1 compares the effectiveness
of the MTP technique against the baselines (random, optimal and white-box
prioritization) in terms of early fault detection. RQ2 assesses the impact of
using different model-based coverage criteria in producing effective test cases
orders. RQ3 studied the case when hard-to-kill mutants are introduced in
the target program and assesses how effective the log-based model can be
when used in prioritization. The fourth and fifth research questions evaluate
the possibility of using the predicted number of killed mutants in test case
prioritization. RQ4 investigates the possibility of applying machine learning
on test cases logs to predict the number of mutants a test case is likely to
kill. The last research question compares the effectiveness of MTP and PTP
in early fault detection.

6.3.1 Benchmark

A candidate subject system should contain test cases that generate log files
when executed. When a test case is executed, certain log printing statements
in the SUT are traversed and generate log messages. Flaky test cases that
generate different sequences of log messages over different executions are ig-
nored because the behavior captured in the log will change and directly impact
the prioritization outcome. Log messages templates (i.e., the strings contained
in log printing statements) are needed to build the ETFG. It is important to
make sure that each log printing statement contains a unique message. This is
important to build an ETFG that correctly reflects paths between log print-
ing statements as if the model was extracted from the CFG of the SUT source
code. We used two open-source systems: Apache Kafka1 a well known publish-
subscribe-based messaging system, referred to as Kafka, having 7538 unit test
cases and, Evosuite2 having 1846 unit test cases. Both systems are written in
Java and they use logging frameworks (Log4J, Logback). Such logging frame-
works enrich log messages by adding the severity level.

To select the appropriate test cases for our evaluation, we executed all test
cases multiple times: 1) to remove test cases that do not generate execution
messages, 2) to identify flaky test cases (by comparing the resulted sequence of
log messages templates between the different executions of the same test case).
Log messages templates were collected from the source code by extracting all

1Apache Kafka: https://kafka.apache.org
2Evosuite: https://www.evosuite.org
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logging statements (e.g., logger.debug(“executed function: foo()”)). We also
checked the uniqueness of log printing statement messages. If a log message
template is printed by more than one log printing statement, the template will
be slightly modified (e.g., add a number or the name of the method to which
the log printing statement belongs) in each of its corresponding log printing
statements to account for the different positions of these log printing state-
ments. We consider 894 test cases for Kafka and 248 test cases for Evosuite.

6.3.2 Mutants

We used the mutation testing tool PIT [24] to generate and execute mutants
against the test suite under study. PIT provides a set of commonly used muta-
tion operators [2,62] including Conditional Operator Replacement, Arithmetic
Operator Replacement, and Relational Operator Replacement. We run PIT
on the subject systems and collected the mutation testing reports that summa-
rize the mutants killing status for each introduced mutant: for killed mutants,
specify all test cases that killed each mutant. We use these details to assess
the effectiveness of our proposed log-based test case prioritization approaches
in early fault detection. We consider 996 mutants for Kafka and 701 mutants
for Evosuite.

6.3.3 Evaluation Metrics

To assess the effectiveness in early fault detection of the proposed prioritiza-
tion techniques, we used the well-known APFD score [36, 101]. It measures
how fast a test suite can detect faults by calculating the weighted Average of
the Percentage of Faults Detected over the life of a test suite. The APFD
value ranges from 0 to 1. A higher score indicates that the first executed
test cases are able to detect a high number of faults. Given a set of test cases
TC = {tc1 , tc2 , . . . , tcn } having = test cases and " different faults (or mutants)
in the SUT, the APFD metric is calculated as follows:

APFD = 1 − %1 + %2 + · · · + %"
= × " + 1

2 × =

where %8 is the position of the first test case that detected the fault 8. This
metric considers all faults as having the same severity.

To assess the accuracy of a regression model in predicting the number
mutants to be killed by each test case, we use the Mean Absolute Error (MAE )
score that represents the average value of error between the predicted values

93



6. Log-based Test Case Prioritization

Optimal
StmCov NodeC

ov
EdgeC

ov
EdgeL

evel
SumEdgeL

evel
Rando

m

0.8

0.85

0.9

0.95

Prioritization technique

A
P
F
D

Figure 6.2: Comparison of the MTP approach and the baseline techniques
applied on the Apache Kafka test cases.

and the oracle. MAE is computed as follows:

MAE =

∑(
8=1 |>8 − ?8 |

(

where >8 is the actual output value, ?8 is the predicted value, and ( is the
number of used data samples. Small values indicate that the predicted values
are, on average, close to the expected (the real) values. In other terms, the
regression model is able to predict accurate values.

6.3.4 RQ1: Effectiveness of MTP in Comparison with
Baseline Techniques

In this first research question, our goal is to assess how effective is the MTP
approach in early fault detection compared to baselines; white-box approach
based on the statement coverage, random order and, optimal order (iteratively
selects a test case that maximizes the number of additional killed mutants).
We first used the test cases logs to build the ETFG model and then we used it
to compute coverage: additional node coverage and additional edge coverage.

Figure 6.2 and in Figure 6.3 summarize the APFD scores of our MTP ap-
proach and the baseline prioritization techniques when applied on the Apache
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Figure 6.3: Comparison of the MTP approach and the baseline techniques
applied on the Evosuite test cases.

Kafka and Evosuite test cases, respectively. We refer to “Optimal” for the op-
timal order, “StmCov” for additional statement coverage-based order, “Node-
Cov” for additional node coverage-based order, “EdgeCov” for additional edge
coverage-based order, “EdgeLevel” for Additional edge-level coverage-based or-
der, “SumEdgeLevel” for additional sum edge-level coverage-based order and,
“Random” for random order.

We focus in this RQ1 on the first four box-plots and the random order box-
plot. As shown in both figures, “NodeCov” and “EdgeCov” orders have, on one
hand, a slightly higher APFD scores than the random order. This is because
most of the introduced mutants were killed by many test cases. which means
that when executing those test cases in almost any order, many mutants will
be killed by the first test cases. On the other hand, “NodeCov” and “EdgeCov”
have a lower but close APFD score compared to the “StmCov” order. This is
explained by the fact that the ETFG model covers only log printing statements
that constitute a small portion of all statements in the target system source
code. The log-based model we built from Kafka test cases is composed of 389
nodes and 1427 edges, while the system has 87302 statements. For Evosuite
system, the log-based model is composed of 364 nodes and 785 edges comparing
to a total of 75931 statements in the system.

Despite the reduced number of covered statements by the ETFG, the ef-
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Table 6.1: Comparison of prioritization effectiveness of the log-based coverage
criteria. For every pair of criterion (C1, C2), we report the p-value based on
the Wilcoxon rank sum test. The average d value is given to represent the
Cohen’s d effect size.

Pair Kafka Evosuite

C1 C2 p-value d p-value d

NodeCov EdgeCov < 2.2 e-16 −2.80 < 2.2 e-16 −8.08
NodeCov EdgeLevel < 2.2 e-16 −4.14 < 2.2 e-16 −5.80
NodeCov SumEdgeLevel < 2.2 e-16 −4.06 < 2.2 e-16 −6.13
EdgeCov EdgeLevel 3.5 e-06 −0.70 < 2.2 e-16 3.80

EdgeCov SumEdgeLevel 1.4 e-07 −0.80 < 2.2 e-16 5.08

EdgeLevel SumEdgeLevel 0.03 −0.32 0.01 0.23

fectiveness of our approach is not badly affected compared to the white-box
technique. This can be seen as a promising result for the usefulness of test
cases logs in effective prioritization. Additional analysis of the distribution
of log printing statements is required to investigate its impact on this testing
activity.

6.3.5 RQ2: Comparing the Effectiveness of Model-based
Coverage Criteria

In this second research question we compare the usefulness of model-based
coverage criteria in obtaining effective test cases orders. We focus on NodeCov,
EdgeCov, EdgeLevel and SumEdgeLevel orders.

From Figure 6.2 and in Figure 6.3, we notice that the APFD scores of
the NodeCov criterion is lower than the other model-based criteria. Our ex-
planation is that EdgeCov coverage subsumes NodeCov and it was proven to
be more effective for test case prioritization. However the APFD scores from
EdgeLevel criterion and SumEdgeLevel criterion are not that different from
the EdgeCov criterion for both subject systems. Furthermore, we used the
Wilcoxon rank sum to verify whether the APFD scores achieved by the model-
based coverage criteria are significantly different, For this test, we consider a
level of significance U=0.05. The Wilcoxon test is a non parametric test that
is suitable for distributions with different variance. Additionally, we estimated
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Table 6.2: Summary of the hard-to-kill mutants for each subject system.

Subject All
Hard-to-kill

10% 1% 1

Kafka 996 972 644 184

Evosuite 701 621 204 113

the magnitude of the differences (effect size) using the Cohen’s d statistic. The
effect size is considered small when 3 = 0.2, and if 3 = 0.8 the effect is large.

Table 6.1 summarizes the statistical tests results. Column “C1” and “C2”
indicate the pair of coverage criteria to compare, columns “p-value” and “d ”
present the Wilcoxon test results and the Cohen’s d effect size, respectively.
the p-value are smaller than the null hypothesis which implies that the effec-
tiveness of the model-based coverage criteria are different. However, the effect
size values are remarkably significant between the node coverage and the vari-
ants of edge coverage. To summarize, the edge coverage and its variants are
significantly more effective in early fault detection than the node coverage
criteria.

6.3.6 RQ3: Impact of Hard-to-Kill Mutants

In this research question, we challenge our MTP approach by using hard-to-
kill mutants. We select three groups of mutants: 1) mutants killed by at most
10% of the test cases, 2) mutants killed by at most 1% of the test cases, and
3) mutants that are killed by just one test case. Table 6.2 summarizes the
number of mutants in each group. Column “All” indicates the total number
of mutants. Columns “10%”, “1%” and, “1” indicate the number of mutants in
each corresponding group.

Table 6.3 presents the effectiveness of the proposed techniques when ap-
plied on hard-to-kill mutants. Columns “10%”, “1%” and, “1” report the average
APFD scores of our log-based prioritization techniques when applied on; mu-
tants killed by at most 10% of the test cases; mutants killed by at most 1%
of the test cases; mutants that are killed by just one test case, respectively.
As shown in Table 6.3, the effectiveness of the MTP approach decreases with
hard-to-kill mutants. This can be explained by the fact that using the number
of covered nodes or edges is a generic metric that misses fine-grained details
about each test case execution. Relying only on the coverage of nodes or edges
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Table 6.3: The effect of using hard-to-kill mutants on the effectiveness of the
applied techniques in early fault detection. The average APFD scores are
reported for each applied technique.

Technique
Kafka Evosuite

10% 1% 1 10% 1% 1

Random 0.78 0.70 0.50 0.76 0.57 0.50

Optimal 0.93 0.91 0.90 0.89 0.81 0.77

StmCov 0.85 0.78 0.65 0.82 0.69 0.64

NodeCov 0.80 0.72 0.54 0.77 0.60 0.52

EdgeCov 0.81 0.73 0.56 0.80 0.62 0.55

EdgeLevel 0.82 0.74 0.56 0.80 0.62 0.54

SumEdgeLevel 0.82 0.74 0.56 0.80 0.64 0.59

is a basic way of characterizing test cases. Extracting additional details from
execution logs could be beneficial for test case prioritization.

We investigate, in the next subsections, the usefulness of seven log-based
features in predicting the mutant killing capability of test cases.

6.3.7 RQ4: Usefulness of Regression Models with Log-based
Features

In this section, we study the possibility of predicting, for each test case, the
number of killed mutants from the log-based model. The number of killed
mutants will be used to correlate with the fault detection capability of test
cases. To find the most adequate regression model in our context, we used
two models: Linear Regression (LR for short) and Random Forest (RF for
short). We used 10-fold cross validation technique to evaluate the accuracy of
these models. as explained in Section 6.2.3, we used seven different log-based
features. To evaluate the accuracy of the regression models, we used the MAE
score that represents the average error between the predicted values and the
true values.

Table 6.4 presents the accuracy of the used regression models in predicting
the number of killed mutants per test case. Column “Features” indicate the
applied log-based features. Column “MAE-LR” indicates the average error
values of the linear regression model and, column “MAE-RF ” indicates the
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Table 6.4: Accuracy of the used regression models in predicting the number of
killed mutants by each test case.

Features
MAE-LR MAE-RF

Kafka Evosuite Kafka Evosuite

BinaryCoveredNodes 7.00 29.05 4.53 18.79

BinaryCoveredEdges 19.24 49.97 4.44 19.27

NumberCoveredLevels 17.34 42.17 6.85 27.78

NodesVisits 8.21 39.29 4.37 18.92

EdgesVisits 19.13 48.86 4.34 19.11

NodesVisitsLevels 8.26 42.82 4.28 19.09

EdgesVisitsLevels 19.11 49.45 4.29 19.32

average error values of the random forest model. As shown in Table 6.4, the
linear regression model has large MAE values compared to the random forest
model for both subject systems. The largest error score for the linear regression
model is when the model is trained with the BinaryCoveredEdges feature. For
the random forest model, the largest error is when the model is trained with
the NumberCoveredLevels feature. This means that these features are not well
suitable to be associated with the mutant killing capability of test cases. The
random forest model has the lowest mean error values: the EdgesVisitsLevels
and the NodesVisitsLevels features produce accurate models with an average
error 4.3 for Kafka data-set and 19.2 for Evosuite data-set. This means that the
random forest model can predict the number of killed mutants with relatively
small errors. We are interested in assessing how effective the test cases will be
in early fault detection when prioritized using the predicted number of killed
mutants.

6.3.8 RQ5: Comparing MTP and PTP

In this research question we aim at comparing the effectiveness of the ordered
test cases based on the predicted number of killed mutants against the MTP
technique and the baselines. To do so, we selected the Random Forest model
and we used the EdgeVisitsLevels and the NodesVisitsLevels features to per-
form the prediction. To train the regression model, we used 70% of the data-set
as training set and the other 30% for testing.
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Figure 6.4: Comparison of the PTP and MTP approaches when applied on
the Kafka test cases.
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Figure 6.5: Comparison of the PTP and MTP approaches when applied on
the Evosuite test cases.
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Figure 6.4 and Figure 6.5 present the effectiveness of the obtained test
cases orders that are generated by the both MTP and PTP approaches. With
the Kafka test cases, the prediction-based prioritization resulted in test cases
orders with similar effectiveness to the model-based technique. For Evosuite
test cases, the APFD values of the prediction-based orders (using EdgeVisit-
sLevels and the NodesVisitsLevels features) are higher than the APFD scores
of model-based orders. This is because the information that is used to corre-
late with the fault detection capability of test cases is more detailed and holds
some dynamic characteristics of the dependencies between the nodes and edges
of the log-based model.

Applying machine learning techniques with log-based features is a promis-
ing way to extract more informative and rich characteristics of test cases.
Compared to code coverage, collecting execution logs is not an expensive nor
difficult task. To summarize, execution logs are a rich and valuable source of
information that can be applied to support software regression testing.

6.3.9 Threats to Validity

The logging granularity in terms of the locations of the log printing statements
and the logging levels have a direct impact on the quality of the used features.
If log printing statements are covered by all test cases, the feature will be
too generic and will not catch the execution characteristics of each test case.
Additionally, our prediction-based approach inherits the limitations of machine
learning techniques. It the model is trained with poorly extracted features, the
predicted results will definitely have a poor quality. In our case, the historical
data related to the number of killed mutants from previous versions limits
the prediction capability of the used regression model when applied on newer
versions of the system with large differences in the code-base.

6.4 Conclusion

With the goal of having a cost-effective regression testing, we introduced a
log-based tool, called LoTeCaP, to assess the usability of execution logs in
the context of test case prioritization. We proposed two approaches, MTP
and PTP, that leverage a log-based model to characterize the fault detection
capability of test cases. MTP relies on model coverage and PTP predict the
mutant killing capability of test cases using regression model that is trained
from log-driven features. Despite the fact that the code coverage of log printing
statements is small compared to statement coverage, our evaluation showed
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that log-based prioritization can result in effective test orders for early fault
detection.
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Chapter 7

Related Work

In this chapter, the related work are presented as follows: Section 7.1 highlights
the related work to problem of log messages format identification (presented
in Chapter 3); Section 7.2 illustrates the related work to model inference (pre-
sented in Chapter 4); and Section 7.3 Section 7.4 present the related work
to regression testing cost reduction and test case prioritization (presented in
Chapter 5 and Chapter 6, respectively).

7.1 Log Message Format Identification

Researchers have proposed various black-box techniques for the log message
format identification problem. Most of these techniques rely on clustering [34,
48]. In [112] authors suggested LogSig, a cluster-based technique that requires
a value : that determines the number of clusters to build. LogSig considers the
case when variable values may have dynamic length. It starts by constructing
a set of pairs of terms from each log message while it preserves the order
between these terms in the original log messages. Next, it creates : random
clusters of log messages and then starts moving log messages from one cluster
to another in order to obtain better representative clusters. LogSig uses a
local search strategy to measure, what they called, “purity” of term pairs.
This measure is computed for each cluster: it is maximized when every pair of
terms is contained in every log message. This measure reflects the number of
common pairs of terms between log messages. Finally, LogSig builds the event

103



7. Related Work

types leveraging the most frequent common term pairs in the final clusters.
This technique relies on the user-defined value : which directly affect the
quality of the obtained message templates. Another clustering technique was
presented in [41]: Log Key Extraction (LKE) . It is a mixture of hierarchical
clustering and heuristic rules. The technique removes trivial dynamic fields
using pre-defined rules to obtain raw log keys. The clustering step groups
raw log keys using a weighted edit-distance metric. This technique proposes
a group splitting algorithm that further splits the initial clusters to ovoid
merging different event types. The last step extracts the common words from
each final clusters and construct the event templates. LKE required an effort
to fine tune its three parameters: the edit distance weight, a content threshold
to determine if a word in the log message to be considered fixed or not and, a
cluster threshold based on the k-means technique. The SLCT technique was
presented in [116] as a three-step density-based approach. It makes a first
pass over the log file to build a word vocabulary based on word frequency. In
the seconds pass, SLCT creates candidate clusters using the data summary.
The last step consists of selecting candidate clusters having more log messages
than the user-defined threshold (frequent words are most likely to represent
the fixed part of the log message template) and abstract them into event
types. SLCT is prone to overfitting with small user-defined threshold values.
IPLoM [78] is an iterative partitioning technique. The first partitioning is
based on the log messages length (number of tokens). The second partitioning
relies on positions of tokens with less unique values (tokens with less unique
values are likely to be fixed tokens). The final partitioning uses a heuristic
to find bijective relationships between tokens at the same position to further
split the clusters. Once the hierarchical partitioning is done, IPLoM counts
the number of unique values of each token in the obtained partitions. A token
position with only one unique value is considered a fixed word otherwise it is a
variable word. A limitation of this technique appears when considering a fixed
word to only have one unique value. This may merge different event formats,
hence resulting in inaccurate message templates. Additionally, it requires fine
tuning of five parameters.

AEL [55] (Abstracting Execution Logs) is a heuristic-based approach. It
follows a similarity detection heuristic to abstract log messages. This tech-
nique is composed of four main steps. First, an anonymization step is applied
to identify dynamic fields (e.g., numbers, IP addresses). The anonymization
uses domain-experts knowledge to specify the format of the dynamic fields.
Next, the anonymized log messages are divided into clusters: log messages
having the same number of words and the same number of estimated variable
fields will be in the same cluster. Then, for each cluster, AEL compares each
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message will all other messages in order to find the most suitable event abstrac-
tion. This step is called categorization. Finaly, AEL performs a reconciliation
step to examine and fix the obtained events because the anonymization step
may not correctly identify dynamic fields. Similar to our approach, AEL does
not have parameters to be tuned but it requires domain experts to hard-code
rules to identify dynamic fields in raw log messages.
A technique using NLP is presented in [63]. It applies a supervised natural
language processing technique (Conditional Random Fields) to classify words
as a fixed/variable parts. This technique uses regular expressions based on do-
main knowledge for data labeling. Another NLP-based technique is proposed
in [115]. This technique uses a character-based neural network to classify
fixed/variable parts of log message. Those supervised NLP-based techniques
have some limitations: the need for domain knowledge to label data and they
require large logs to train accurate models.
Other researchers were focusing on online log parsing [33,49,90]. Online tech-
niques are useful when a large volume of logs must be processed in a stream-
ing manner for monitoring purpose for example. DRAIN [49] leverages a
fixed depth parse-tree to guide the log format extraction. DRAIN uses a
pre-processing step to identify trivial variable fields using regular expressions.
DRAIN build a parse tree with first layer consisting of groups of log mes-
sages, each group represent a different length (number of words). It considers
words at the beginning of the log messages are likely to be fixed and It mea-
sures a similarity score between the log message in each group to identify the
best suitable event formats. The efficiency of online log parsing techniques
depends on the characteristics of the processed data (e.g., number of log mes-
sages, length of log messages, ...) and they have high memory consumption.
An empirical study carried in [48] comparing four techniques for the log mes-
sage format identification problem: SLCT [117], LKE [41], LogSig [113], and
IPLoM [78]. The results of this study revealed that (i) IPLoM produces the
most accurate templates, and (ii) log pre-processing (like the one applied in
MoLFI) is very critical to achieving good clustering performance. Compared
to DRAIN, IPLoM generates incorrect templates. One limitation of the two
best techniques (DRAIN and IPLoM ) is that they require their parameters
to be tuned for each log file. Such parameters, if not chosen carefully, will
significantly affect the performance of the tool. Different from state-of-the-art
techniques, our approach MoLFI uses an automated heuristic to automatically
choose the best compromise between the two objectives of the log message for-
mat identification problem (frequency and specificity) without using a priori,
user-defined thresholds.
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7.2 Log-based Model Inference

Starting from the seminal work of Biermann and Feldman [13] on the k-Tail
algorithm, which is based on the concept of state merging, several approaches
have been proposed to infer a Finite State Machine (FSM) from execution
traces or logs. Synoptic [11] uses temporal invariants, mined from execution
traces, to steer the FSM inference process to find models that satisfy such in-
variants; the space of the possible models is then explored using a combination
of model refinement and coarsening. InvariMINT [9] is an approach enabling
the declarative specification of model inference algorithms in terms of the types
of properties that will be enforced in the inferred model; the empirical results
show that the declarative approach outperforms procedural implementations
of k-Tail and Synoptic. Nevertheless, this approach requires prior knowledge
of the properties that should hold on the inferred model; such a pre-condition
cannot be satisfied in contexts (like the one in which this work is set) where
system components are black-boxes and the knowledge about the system is lim-
ited. Other approaches infer other types of behavioral models that are richer
than an FSM. GK-tail+ [80] infers guarded FSM (gFSM) by extending the
k-Tail algorithm and combining it with Daikon [38] to synthesize constraints
on parameter values; such constraints are represented as guards of the tran-
sitions of the inferred model. MINT [123] also infers a gFSM by combining
EDSM (Evidence-Driven State Merging) [21] and data classifier inference [89].
EDSM, based on the Blue-Fringe algorithm [70], is a popular and accurate
model inference technique, which won the Abbadingo [70] and the StaMinA
competition [122]. Data-classifier inference identifies patterns or rules between
data values of an event and its subsequent events. Using data classifiers, the
data rules and their subsequent events are explicitly tied together. ReHMM
(Reinforcement learning-based Hidden Markov Modeling) [37] infers a gFSM
extended with transition probabilities, by using a hybrid technique that com-
bines stochastic modeling and reinforcement learning. ReHMM is built on top
of MINT; differently from the latter, it uses a specific data classifier (Hidden
Markov model) to deal with transition probabilities. All the aforementioned
approaches cannot avoid scalability issues due to the intrinsic computational
complexity of inferring FSM-like models; the minimal consistent FSM infer-
ence is NP complete [43] and all of the practical approaches are approximation
algorithm with polynomial complexity.

Model inference has also been proposed in the context of distributed and
concurrent systems. CSight [10] infers a communicating FSM from logs of
vector-timestamped concurrent executions, by mining temporal properties and
refining the inferred model in a way similar to Synoptic. MSGMiner [68] is a
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framework for mining graph-based models (called Message Sequence Graphs)
of distributed systems; the nodes of this graph correspond to Message Se-
quence Chart, whereas the edges are determined using automata learning tech-
niques. This work has been further extended [69] to infer (symbolic) class level
specifications. However, these approaches require the availability of channel
definitions, i.e., which events are used to send and receive messages among
components.

Liu and Dongen [72] uses a divide and conquer strategy, similar to the one
in our SCALER approach, to infer a system-level, hierarchical process model
(in the form of a Petri net with nested transitions) from the logs of interleaved
components, by leveraging the calling relation between the methods of different
components. This approach assumes the knowledge of the caller and callee
of each component methods; in our case, we do not have this information
and rely on the leads-to relation among log entries, computed from high-level
architectural descriptions and information about the communication events.

One way to tackle the intrinsic scalability issue of (automata-based) model
inference is to rely on distributed computing models, such as MapReduce [28],
by transforming the sequential model inference algorithms into their corre-
sponding distributed version. In the case of the k-Tail algorithm, the main
idea [125] is to parallelize the algorithm by dividing the traces into several
groups, and then run an instance of the sequential algorithm on each of them.
A more fine-grained version [76] parallelizes both the trace slicing and the
model synthesis steps. Being based on MapReduce, both approaches require
to encode the data to be exchanged between mappers and reducers in the
form of key-value pairs. This encoding, especially in the trace slicing step, is
application-specific; hence, it cannot be used in contexts in which the system
is treated as a black-box, with limited information about the data recorded
in the log entries. Furthermore, though the approach can infer a FSM from
large logs of over 100 million events, the distributed model synthesis can be
significantly slower for : ≥ 2, since the underlying algorithm is exponential in
:.

7.3 Test Case Slicing

The closest approaches to DS3 are those based on test carving techniques [35,
60], which automatically carve unit test cases from system test cases. Such
techniques consist of capturing, for a specific target unit method, the sys-
tem states before (pre-state) and after (post-state) the invocation of the unit
method during the execution of the system test case. From the pre-state,

107



7. Related Work

the unit method is replayed and the resulting state is queried to determine
if there are differences with the recorded post-state. One of the main dif-
ferences between these techniques and ours is that DS3 preserves the system
level characteristics of the obtained (sliced) test cases (which can potentially
entail a very complex usage of the various units), whereas carved tests target
unit methods. Another difference is that carving techniques require to instru-
ment the program code to capture pre- and post-states and to replay the unit
method, whereas DS3 relies on program slicing and on information, regarding
global resource usage, recorded in execution logs.

[131] propose test case purification for improving fault localization, by
separating existing test cases into small fractions (called purified test cases).
Similar to DS3, they use program slicing on assertions in an original test
case to generate single-assertion test cases. Since they mostly target inexpen-
sive, unit test cases (rather than expensive system test cases), dynamic slicing
represents a viable solution for their approach. In contrast, DS3 deals with
system test cases, relies on static slicing extended with log-based refinement
to capture all dependencies in test case statements, and does not require the
execution of test cases. [4] propose to extract unit test cases from system test
cases through the reverse execution (called time travel debugging) of a pro-
gram flow for reconstructing object creation and modification statements from
the source code. The approach also uses differential analysis to identify the
test statements from which the unit test case will be extracted. Different from
DS3, which requires only access to the test cases and to the execution logs,
this approach requires access to the source code of the SUT. Finally, [57] inves-
tigated whether coarser granularity tests could be automatically generated by
aggregating unit tests using Differential Unit Tests (DUT), initially developed
for test carving by [35]. Such a strategy is, conceptually speaking, dual to test
case decomposition.

DS3 represents an enhancement of vanilla static slicing [126]; as discussed
in section 5.2, the latter is most likely to miss hidden dependencies among
statements, originated from the usage of global resources (e.g., external files)
within the test case program. Compared to vanilla static slicing, DS3 requires
one single execution of the test cases (from previous regression testing activi-
ties) to collect and parse the execution log files.

Dynamic slicing [65] is another form of enhancement of static slicing, which
considers only specific executions of the program for a given objective (e.g., to
perform debugging and root cause analysis). Dynamic slicing requires running
test cases and accessing the source code for instrumentation and coverage
analysis. Slices can be generated by analyzing the execution paths and the
dependencies across the executed statements. However, this alternative is
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not feasible for a system composed of third-party components, and it does
not handle “hidden” dependencies. Indeed, code coverage does not include
information about which external resource has been accessed during the test
execution. [14] presents a particular type of dynamic slicing technique, called
observation-based slicing, which aims to slice programs independently from the
programming language used. Although this technique can be used for multi-
language systems that include (3rd-party) binary components, it requires a
large number of executions of the test case under analysis to iteratively slice
candidates and check their validity (i.e., to execute the obtained slice to make
sure it runs without compilation or run-time errors). This requirement makes
observation-based slicing impractical for complex system test cases (especially
those in the cyber-physical system domain [1, 47]), whose execution is time-
consuming. For this type of systems, DS3 is preferable as it does not require
additional test case executions for assessing the validity of the generated slices.

A side benefit of the application of DS3 is the removal of some test code
smells [83]. In this sense, DS3 is related to approaches for (test) code smells
refactoring [81, 119], which introduced catalogues of test smells together with
(manual) refactoring operations to address them. Based on existing catalogues,
there have been proposals [93,97] to automatically detect (rather than refactor)
test smells. These approaches rely on detection rules that raise warnings when
some metrics (e.g., size, number of method calls, number of assertions) in the
test code exceed given thresholds. However, a recent study [96] showed that
detection rules are far less accurate than previously reported, especially when
tests use external resources.

Although the primary goal of DS3 is neither to detect nor to refactor test
smells, by slicing test cases into separate sliced test cases with fewer assertions,
DS3 addresses the eager tests and assertion roulette test smells. Furthermore,
eager tests are identified through static slicing and log analysis, instead of
using detection rules, as proposed in the literature.

7.4 Test Case Prioritization

The test case prioritization approaches proposed in our tool LoTeCaP belong to
the group of black-box model-based test case prioritization techniques [66]. An
EFSM model build from the system specifications was used in [67]. To perform
test prioritization, the original system model and the modified one are used to
identify a set of elementary model modifications (such as a transition addition
or a transition deletion). They present two model-based test prioritization
techniques: 1) selective test prioritization where a high priority is assigned
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to tests that execute one of the modified transitions in the modified system
model while the other tests (that do not cover any modified transition) will
have a low priority, 2) a model dependence-based test prioritization where
they apply model dependence analysis to identify the possible interactions
between the modified transitions and the other parts of the system model. The
main difference with our model-based technique is that they use the system
specifications to build the system model while we simply use test cases logs
from previous executions. In the context of Combinatorial Interaction Testing,
other researches use a model of the system inputs to prioritize test cases [50,
98] by maximizing the interactions between model inputs. In the context of
software product line testing, authors in [51] mutate the constraints of the
input model then prioritize test cases based on the number of model mutants
they kill.

The idea of using execution logs for test case prioritization is studied, to
some extent, in the context of behavior regression testing [39, 88, 129]. The
work presented in [79] uses execution traces of a component-based system to
generate behavioral models in the form of finite state machines labeled with
method invocations. They use the kBehavior engine for model inference. The
derived models represent aspects of component integration like exchanged data
and interfaces invocations. Test cases are grouped based on the interactions
of the system with the tested component, then they are ordered according to
the complexity of the triggered interactions. The main differences between
this technique and ours are the type of the inferred model and the usage of
the model in the prioritization process. Based on our experience, the kBe-
havior engine has scalability issues and a low accuracy score in terms of trace
acceptance. However our ETFG is a subset of the control flow graph which
preserves the static aspect of the source code to make the graph simpler and
easier to produce. ETFG takes advantage of its similarity with the control
flow graph and reuses some of the well studied model-based coverage criteria,
which have been proven effective in many studies. Another tool for automated
behavioral regression testing, called BERT, was presented in [56]. First the
tool executes the same test suite on two versions of the code using test inputs
that focus on the changed parts of the code. Next, it identifies behavioral
differences between the two versions using dynamic analysis. The approach
is related to our work in the way the tool analyzes and orders the behavior
differences. The analysis will help the developers assess which modification
may cause a regression fault. However, this tool has a number of limitations:
first, it mainly relies on the source code which is not always available, second,
the tool is designed to work on localized changes involving few classes and may
not be effective with changes that add new functionalities to a system.
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LoTeCaP is also related to mutation-based techniques where instead of
using model coverage of test cases, mutants are used as surrogate for test
case prioritization [32, 75]. The work presented in [136] is considered the first
mutation testing approach to predict the result of mutation testing (mutant
is killed or survived) without executing the mutants against the test suite.
Their approach is based on a classification model using different features from
previously executed mutants of earlier versions of the project. Differently from
their approach, we use a regression model to predict the number of possibly
killed mutants for each test case and not the status of each individual mutant.
Additionally, the features we used are solely based on previous execution logs of
the test cases. In [106], the authors investigate a new mutation-based test case
prioritization approach that relies on distinguishing the behavior of individual
mutants from each other and that of the original program. The proposed
mutation-based prioritization technique in [75] relies on the difference between
the early version and the latter version of the target system. It takes as
input the source code of two versions of the system, then, as a first step, it
identifies the differences in terms of statements between the two versions of the
source code. The second step is to generate a set of mutants whose mutation
operators occur in the source code difference. The third step is to calculate
the fault detection capability of each test case using two different methods: a
statistics-based model that relies on the number of killed mutants per test case
because the authors consider that the more mutants a test case kills, the higher
the probability of fault detection would be, and a probability-based model that
calculates the fault detection capability based on the distribution of mutants
over the statements difference identified in the first step. Differently from their
approach, LoTeCaP does not require the source code and the only artifacts
we need are the test cases logs and historical information about the number
of killed mutants by each test case.

Machine learning algorithms were also applied to achieve cost-effective re-
gression testing [74]. The technique proposed in [20] aims at accelerating
compiler testing by leverages the characteristics of test cases that trigger bugs
to learn two models: a capability model to predict the likelihood of a new
test case for triggering bugs and, a time model to predict the execution time
of each test case. This technique extracts features from the source code of
test cases (e.g., pointer comparison features, address features) which may be
expensive for the case of cyber-physical systems. The work in [110] presented
a lightweight method for test case prioritization and selection in Continuous
Integration that combines reinforcement learning with historical test infor-
mation like indicators of failing test cases. Existing machine-learning-based
techniques have not taken advantage of potentially available and useful data.
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The features used by most papers are limited to readily available data, such
as code complexity feature or code coverage features. There is lack of tools
that include logs in the prioritization decision [94], as a result, potentially rel-
evant features remain unused. Our tool LoTeCaP includes another source of
data into the test case prioritization process by leveraging previously recorded
execution logs to extract new features.
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Chapter 8

Conclusions & Future Work

8.1 Summary

The goal of this thesis is to investigate the usefulness of system execution logs
in supporting different software engineering tasks. We have addressed sev-
eral challenges when processing and analyzing execution logs of cyber-physical
systems.

In Chapter 3 we formulated the log message format identification problem
problem as a multi-objective optimization one, where the goal is to generate log
message templates with high frequency (i.e., they match as many log entries
as possible) and high specificity (i.e., specific for each log event). To tackle
the problem, we introduced MoLFI, a tool implementing a search-based ap-
proach based on a multi-objective genetic algorithm and trade-off analysis. An
empirical study involving six real-world datasets (five publicly-available and
one proprietary) showed that MoLFI (i) achieved significantly higher accuracy
than DRAIN and IPLoM, two state-of-the-art tools; (ii) is highly scalable to
large logs since it requires slightly above two minutes to analyze hundreds of
thousands of messages.

In Chapter 4 we addressed the scalability problem of inferring the model
of a component-based system from the individual component-level logs, as-
suming only limited (and possibly incomplete) knowledge about the system.
Our approach, called SCALER, first infers a model of each system compo-
nent from the corresponding logs; then, it merges the individual component
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models together taking into account the dependencies among components, as
reflected in the logs. Our evaluation, performed on logs from an industrial
system, has shown that SCALER can process larger logs, is faster, and yields
more accurate models than a state-of-the-art technique.

In Chapter 5 we addressed the problem of dealing with complex system
test cases containing multiple test scenarios, which negatively impact both re-
gression testing and test evolution. We proposed DS3, a novel approach to
decompose a complex system test case with multiple test scenarios into sepa-
rate sliced test cases, each of them running one test scenario. DS3 leverages
static slicing and the execution logs collected during past regression testing ses-
sions. The main idea is to use logs containing run-time information to identify
dependencies between test statements due to the access and usage of global
resources; these dependencies are used to refine sliced test cases generated by
static slicing, which tend to miss such dependencies.

In Chapter 6 we investigated the possibility of using test cases logs to
perform test case prioritization. We presented a tool, called LoTeCaP, that
proposes two log-based approaches for test case prioritization. A model-based
technique, called MTP, where we build a model using test cases logs and then
used it to compute different model-based coverage criteria: we propose two
new criteria combining the logging level with edge coverage. And a second
approach, called PTP, based on a machine learning technique. We used log-
based features to train a regression model and then predict the number of
mutants that each test case is likely to kill and then we used the predicted
values to order the test cases. Logs can indeed be used to extract useful
information to support regression testing.

8.2 Future Work

As part of future work, we plan to improve the proposed log-based techniques
and assess their usefulness in other software engineering tasks. For MoLFI,
we plan to investigate other encoding schemas, experimenting with other for-
mulations of the problem (e.g., by introducing the coverage of log messages
as another optimization objective), and by handling semantically equivalent
templates. We also plan to assess the use of MoLFI for supporting various
software maintenance and testing activities, such as boosting test case genera-
tion techniques through the definition of new seeding strategies [100] based on
input and output values (variable parts) observed in the logs. For SCALER,
we are working on refining the heuristics used for identifying the dependencies
of the log entries between multiple components, to take into account logs with
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imprecise timestamps and out-of-order messages. We also plan to evaluate
SCALER on different data-sets and to integrate it with other model inference
techniques and assess the effectiveness of the inferred models in software en-
gineering activities, such as test case generation. Related to DS3, we plan to
assess the impact of the sliced test cases on the cost-effectiveness of regression
testing activities, such as test case prioritization. And finally for LoTeCaP, we
plan to study other machine learning algorithm on test cases logs to support
regression testing. We plan to investigate other log-based features. Further-
more, we will apply our tool for log-based test case prioritization on industrial
case studies with additional execution constraints.
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