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Abstract—The integrated terrestrial and non-terrestrial net-
works in 5G and beyond 5G are envisioned to support dynamic,
seamless, and differentiated services for emerging use cases
with stringent requirements. Such service heterogeneity and
rapid growth in network complexity pose difficulties to net-
work management and resource orchestration. Network slicing
paves the way for delivering highly customized services and
enabling service-oriented resource allocation. In this context,
artificial intelligence (AI) becomes a key enabler for network
slicing management. However, Al-based approaches encounter
critical challenges in adapting to dynamic and complex wireless
environments. In this article, firstly, we aim at providing a
comprehensive understanding of these challenges, open issues,
and future research opportunities. Secondly, we highlight the
investigations on dynamic-adaptive Al solutions for dealing with
the effect of concept drift. Thirdly, we identify typical dynamic
scenarios in case studies and provide numerical results to
illustrate the effectiveness of the discussed AI solutions.

Index Terms—Machine learning, network slicing, satellite-5G
network, resource management, dynamic wireless network.

I. INTRODUCTION

With the deployment of 5G commercial networks, academic
and industrial communities have started to envision 6G com-
munications towards 2030. This early stage of 6G is defined
as beyond 5G (B5G) or 5G+ [1]. The path from 5G to B5G
is foreseen to be evolutionary and enhanced by potential key
technologies, e.g., non-terrestrial network (NTN) integration,
artificial intelligence (AI), and network slicing [1]-[3]. The
evolution towards B5G and 6G is expected to overcome the
drawbacks in 5G terrestrial networks such as high deployment
cost in remote areas and incapabilities of serving air-ocean sce-
narios [2]. Towards the wide coverage, seamless connectivity,
and cost-efficient data services in B5G, the NTN, e.g., non-
geostationary orbit (NGSO) satellites or NGSO constellations,
is studied in the third generation partnership project (3GPP)
[3].

In B5G, this wave of multi-tier and heterogeneous net-
works can exponentially increase the degrees of freedom and
complexity in network optimization and management. In an
attempt to streamline the multi-tier network management,
both the research and industry stakeholders have been pro-
gressively adopting network virtualization and softwarization
technologies [1]. Network slicing, as a form of programmable
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and virtual network architecture, relies on software defined
networking (SDN) and network function virtualization (NFV),
where the former separates the control plane from the data
plane, while the latter decouples hardware infrastructures and
software via running virtual network functions (VNFs) on
virtual machines [4]. By slicing common physical infrastruc-
tures into multiple virtual logical networks, network slicing
creates multiple end-to-end slice instances. Each slice becomes
an independent virtual network that guarantees multiple ser-
vice level agreements (SLAs) and provides complete network
functionalities. In B5G network slicing, multiple tenants (slice
owners), e.g., over-the-top operators or mobile virtual network
operators, need to rent multi-dimensional resources, e.g., radio,
computing, storage resources, from multiple infrastructure
providers (InPs), e.g., ground or satellite telecom infrastruc-
tures, to support diversified and customized services. In this
context, efficient and intelligent solutions become a must for
network slicing management [5].

This predominant trend offers an opportunity to depart from
the conventional paradigm of model-based iterative optimiza-
tion [1], [6]. Towards online network slicing and resource
management, this type of approach may soon reach its limits
in meeting strict real-time requirements. Artificial intelligence
(AD), e.g., deep learning (DL), has been introduced to over-
come shortcomings and has become an important problem-
solving method in the network-slicing toolbox over the past
few years. Reliable and advanced Al solutions are expected to
be integrated into the future B5G or 6G system [1], [5], [6],
mainly relying on the capabilities of sophisticated learning,
knowledge exploitation, and efficient decision making.

An illustrative architecture of Al-assisted satellite-B5SG net-
work slicing is shown in Fig. 1, where the satellite network is
integrated into the 3GPP-based 5G architecture as a transport
network (TN) [4], to provide backhauling services to the
5G next-generation base stations (gNBs), offer broadcasting
services, or relay signals from massive IoT devices to the
core network (CN) in three network slice instances (NSI).
According to the 3GPP definitions [5], a set of network
slice subnet instances (NSSI) form an NSI. An NSSI consists
of a group of network functions from radio access network
(RAN), CN, or TN parts, including physical network functions
(PNF) or VNEF, along with their corresponding resources. The
satellite-based TN part can be connected to 5G RAN/CN by
using the N2 and N3 interfaces [5], where N2 connects the
TN user-plane functions (UPF) with the 5G RAN/CN control-
plane functions (CPF), while the N3 interface establishes links
between the UPF or data-plane functions of TN and the UPF
of 5G RAN/CN [4]. In the management and orchestration
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Figure 1. An illustrative example: Satellite-integrated BSG network slicing with Al-assisted resource management, where the satellite network, as a TN part,

is integrated into the 5G 3GPP-based RAN and CN architecture.

(MANO) part, efficient solutions assisted by Al are expected
to address various challenging optimization problems, such as
resource allocation among slices, virtual network embedding
(VNE), VNFs placement, or intra-slice resource management
[7]. Based on the architecture of Fig. 1, we mainly focus on
two emerging issues in network slicing management:

o When one applies Al to resource management in B5SG
network slicing, what are the potential issues and candi-
date solutions in adapting to dynamic environments?

e When NTN is integrated into BSG systems, what are
the impacts and challenges for resource management in
network slicing?

A. Motivation

The major motivation of this work stems from a common
and practical issue in developing Al-based solutions for many
resource management problems in B5G network slicing. That
is, the classical Al techniques, e.g., deep neural network
(DNN), deep reinforcement learning (DRL), usually fail to
deal with non-ideal cases with unforeseen variations in net-
work slicing management. This issue becomes even severe
when an additional tier, i.e., NGSO satellites with very high
mobility, is integrated into the B5SG system. The reason is
that, on the one hand, the performance of a conventional Al
model closely depends on the adopted training or observed
data sets, and its generalization capability is typically limited
[8]. On the other hand, the realistic wireless environment is
highly complex and dynamic. These facts together cause the
issue of concept drift in machine learning [9]. The new inputs
can become no longer relevant to the statistical properties of
historical data, which may result in unforeseeable changes
in the underlying input-out relationship. As a consequence,

the trained Al model may become invalid for the new en-
vironment, leading to a deep degradation of the learning
performance, e.g., loss, accuracy, convergence. To remedy, one
has to recollect the up-to-date data sets and retrain the model,
which can be time-consuming. This is considered as one of
the main obstacles for applying Al in practical B5G systems
[9], and thus motivates our investigation to avoid re-training
from scratch and achieve a fast response against dynamic
environments towards practical Al deployment.

B. Objective and Contribution

To enable intelligent MANO, significant efforts in develop-
ing novel Al algorithms and enhancing the solution effective-
ness in dynamic scenarios, are essential for the future B5G
network slicing. To this end, the main objective of this work
aims at:

« Outlining fundamental and critical challenges of applying

Al to dynamic network slicing management.

o Characterizing the impact of integrated NGSO on Al-

enabled network slicing.

o Identifying promising dynamic-adaptive Al solutions for

a wide range of optimization problems in network slicing
management.

As a distinctive contribution compared to previous works
[1], [6], we focus on Al solution development for non-ideal
network environments and generalization enhancement of Al
in adapting to dynamic B5G network slicing. It is worth noting
that the considered dynamic-adaptive Al solutions can be
extended and applied to support two classes of problems, i.e.,
complex resource management problems and simple machine-
learning tasks in network slicing management. The former
can include a wide range of resource management tasks, e.g.,
VNF placement, or VNE. The latter can be classification-like



or regression-like predictions during network slicing opera-
tions, e.g., forecasting aggregated data, user preference, traffic
load, or determining the necessity of performing resource re-
configuration or migration among slices.

II. AI FOR SATELLITE-B5G NETWORK SLICING:
STATE-OF-THE-ART AND CHALLENGES

A. State-of-the-Art

Advanced solutions for implementing B5G-satellite net-
work slicing have been investigated in recent works, e.g.,
hierarchical resource-orchestration frameworks [1], integrated
terrestrial-satellite architectures [2], [4]. A variety of practical
implementation issues are widely considered, such as how to
create, activate, maintain, and deactivate slices in an efficient
way and how to accurately abstract and isolate virtualized
network resources [7], [10]. In another line of studies, the
core issues of resource management, i.e., inter-slice and intra-
slice management, have been widely investigated in [6], [7],
[10]. For the former, the InPs are responsible to provide multi-
dimensional resources to slice tenants and to ensure the dif-
ferent slices well coordinated. Once new slice requests arrive,
the network controller will need to determine how to embed
virtual network requests (VNRs) onto the physical network
efficiently. This virtual-to-physical mapping corresponds to
combinatorial optimization problems, e.g., the classical VNE
problem [7]. In intra-slice optimization, once an end-to-end
slice has been instantiated, it becomes a specific collection
of network functions and resource-allocation modules isolated
from other slices. The slice tenant can manage the provisioned
resources individually [10]. Subsequently, service-specific re-
source optimization is required for each module.

A majority of the previous works focus on static and
deterministic algorithm design for network slicing problems,
e.g., VNE, slices configuration, isolation [7]. Namely, the de-
terministic optimization problem is solved on a static network
snapshot without considering spatio-temporal variations. How-
ever, B5G systems are highly heterogeneous and dynamic, and
require efficient online solutions. To this end, Al techniques,
e.g., DNN, RL, DRL, have triggered considerable research
attention in network slicing [1], [5]-[7]. Beyond the state-of-
the-art of deterministic optimization and Al solutions, the main
challenges are outlined by the following two aspects.

B. Challenges of Applying Al to B5G Dynamic Network
Slicing

Despite the promise of new paradigms, the Al-based B5G-
NGSO network slicing in meeting heterogeneous services
and operational requirements is challenging. In practice, Al-
enabled methods may require large amounts of data in training
or re-training if supervised learning applies. With the grow-
ing network scale and service-oriented requirements, Al ap-
proaches could be difficult to achieve satisfactory performance
in realistic operations. In general, many open challenges are
emerging, such as how large-amount of labeled data can be
collected and processed, which features can be learned, and
how the features can be extracted from raw data.

Moreover, one major shortcoming in existing Al algorithms
is the lack of resilient capabilities in adapting to dynamic
environments. An Al model approximates the input-output
mapping based on the historically observed/trained data and
provides the best prediction in the inference phase. In most
cases, this mapping is presumed to be static, which means that
the statistical property of data and the underlying relationship
may not be changed over time in an unforeseen way [9]. In
general, satisfactory performance in a dynamic environment
can be likely achieved if the inputs are structured or follow
certain probability distributions, e.g., Rician distribution for
satellite-channel fading or Poisson distribution for traffic re-
quests [11]. However, in realistic scenarios, the input data
can be dramatically changed due to, e.g., topology variations
in physical networks, bursty traffic demands in some slices,
frequent user departure/arrival, an explosion of slices’ access
requests, and dramatic fluctuation in channel conditions. Deal-
ing with such unforeseen changes in the context of online
network-slice management is an essential challenge.

The fast-response and resilient capabilities of an Al model
are of importance. In practice, an Al model, e.g., DNN or an
agent in DRL, may require a long time to converge [12], which
can result in long-term degraded performance. This is because
the dynamic scenarios can lead to fast parameter variations
over time, e.g., delay, capacity, link failure probability. Such
time-varying nature could make the AI model vulnerable to
the upcoming unknown data if the adopted AI model is not
continuously optimized and adjusted in new circumstances.
Confronted with the varying environments, Al performance
can deteriorate and need a considerable amount of time to
adjust due to lacking up-to-date knowledge.

C. Challenges of the Integrated NGSO for B5G Network
Slicing

Apart from the intrinsic limitations of Al itself and the
inherently dynamic nature of wireless environments, we also
outline the distinctive impacts and challenges of the integrated
NGSO for network slicing management and Al applications.

Frequent typology variations and handovers: During the life
cycle of a slice, the very high mobility of NGSO satellites can
result in several issues, e.g., frequent variations in network
typologies and handovers [11]. Some terminals in a slice may
periodically lose the visibility of their serving satellite and
have to switch to other satellites. To avoid service interruption,
timely optimization or computations for updating the flow-
forwarding tables in the SDN data plane is needed and can
be a challenging task in real-time network slicing. Moreover,
in multi-orbit satellite systems, terminals within a satellite
slice are able to connect to multiple orbits at the same
time by relying on their advanced beamforming capabilities
[11], which results in another type of highly dynamic issue
for the RAN part in network slicing. In addition, how to
meet strict energy requirements in some massive-IoT slices
is an issue. This is because longer round-trip time in satellite
communications and frequent switches of IoT-satellite links
can lead to a longer wake-up period and thus more energy
consumption for IoT devices to perform access procedures and
data transmission.



Availability, isolation, and reconfiguration of virtual re-
sources: With the NGSO motion, the originally allocated
virtual resources for a slice may become unavailable. This
might fail to satisfy the slice’s quality of service (QoS) or
quality of experience (QoE) requirements. The slice’s isolation
requirement may become hard to meet due to the shortage
in resource preservation [10]. Thus, the network controller
has to react, namely, measuring the impact first to see if the
current network-slicing solution is immune to the variation
or a reconfiguration process is needed, and how high the
reconfiguring cost will be. In addition, with the satellite move-
ment, when a new link is established, the antenna alignment
needs to consume a certain amount of time and energy to
adjust the angle [11]. All of these additional issues typically
mean solving a set of optimization problems that can be
computationally heavy. This also renders a difficult learning
task for Al models.

Onboard limitations: The characteristics of satellites and
limited onboard resources, e.g., energy, bandwidth, computa-
tion, and storage, can introduce new dimensions in resource
orchestration and Al solution development [11]. These limi-
tations could force the constraints in resource management to
be more tight and sensitive, which may pose great obstacles
in developing QoS-guaranteed Al solutions. In addition, in a
dynamic environment, there is a need to collect and monitor
the network status, e.g., topology, link parameters, resource
demand, and the usage of NGSO’s residual energy and storage,
for slice resource management. The detection and reporting
of slice status information are real-time for conventional
terrestrial-based network slicing, whereas the relatively long
propagation delay between a satellite and ground nodes may
limit the timely interaction between the data and control
planes.

III. PROPOSED SOLUTIONS FOR DYNAMIC NETWORK
SLICING

Herein, we divide the dynamic network variations into two
general categories, i.e., predictable and unpredictable. Then
we consider tailored solutions for each of them.

A. Predictable Network Variations

Thanks to the periodic movement of NGSO satellites, this
type of variation is time-varying but predictable, e.g., satellite
position over time, network topology, and transmission delay
[4], [5], [11]. To cope with this case, we apply the concept of
time-expanded graph (TEG) to facilitate a direct application
of existing Al solutions. To illustrate, we present TEG for
solving a VNE problem in Fig. 2 as an example, where in
the substrate (or physical) network, the NGSO nodes, saying
node 2, are time-varying and predictable, and the ground
nodes are stationary during a life cycle of VNRs. In TEG,
the substrate network topologies in multiple time intervals can
be represented by a single time-varying graph, consisting of a
series of static snapshots of each time interval, and expanded
by replicated nodes across time. Each node has store-and-
forward capabilities in transmission, e.g., node 2 can receive
the data from node 1 at time 1 and store it for certain time

The n-th VNR

TEG based substrate
network

Network topology variation

Figure 2. An illustrative example of TEG based VNE: representing time-
varying topologies by a static expanded graph to facilitate Al applications.

intervals, then forwards it to another node later on when a
lower-cost path is established [13]. As a result, the VNE
problem is solved only once based on TEG rather than making
multi-round decisions at each time interval. By foreseeing the
upcoming topologies in TEG, the solution has a global view to
achieve better performance. For example, virtual nodes v1 and
v2 are embedded to physical nodes 1 and 6, respectively. A
better path, e.g., the red-solid path in Fig. 2 with a lower cost
than the path from node 1 to 6, can be obtained. By employing
TEG, the existing Al solutions for static VNE problems, e.g.,
Al-based node-link embedding solutions for max-flow or min-
cost flow, can be simply extended to adapt to this type of
dynamic scenario.

B. Unpredictable Network Variations

In this type of variation, the statistical properties of input
data can be changed significantly. For example, an obstacle
can largely affect line-of-sight channels, or a device may
switch from voice to high-definition video services with the
surged amount of data. The structured data that was previously
trained or observed may become unstructured or noisy. This is
considered as the main cause of Al performance degradation.
In general, there are two schemes, i.e., passive and active, to
address the effect of concept drift [9]. The former periodically
updates the AI model by re-training the model on the most
recently observed data sets, no matter if the update is needed
or not, whereas the latter assesses the necessity first by relying
on a concept-drift trigger mechanism to re-train the model.

In the passive solution, the granularity for periodical re-
training needs to be carefully designed. In the active solution,
the key issue is the drift detection [9]. This can be implemented
by monitoring the online error rate (or loss) in Al operations.
The detection mechanism sets two thresholds for error rate.
One is the warning level and the other is the drift level. When
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Figure 3. Summary of the considered Al models shifting from solving a source task to a new task.

the error rate reaches the warning level at the n-th sample,
this warns the control plane that the statistical properties of
the input data may have been changed. If the error rate falls
back later on, it means a false warning. Otherwise, the re-
training decision can be made if the error rate continuously
increases to the drift level.

It is worth noting that both passive and active strategies
impose a re-fitting procedure, which includes new data collec-
tion and re-training the Al model. Next, we provide candidate
Al solutions, i.e., transfer learning (TL), meta learning (ML),
and combined with RL, in order to achieve a fast response
and collect fewer samples. The general frameworks of the
considered Al solutions are illustrated in Fig. 3, with the
following main characteristics:

The conventional supervised learning, e.g., DNN, in Fig.
3(a) is treated as a baseline scheme that re-trains the AI model
from scratch in the target task (Task B) without utilizing any
knowledge from the source task (Task A). Taking an intra-
slice resource allocation problem [7] as an example, task A
can be the problem under common mathematically-tractable
assumptions, e.g., Poisson-arrival based traffic requests within
a slice, uniform user distribution, Rician-fading channels, or
exponential service time. Task B can be considered as any
non-ideal case that the above assumptions may no longer be
applicable when dramatic variations occur. When the trained
Al model A, e.g., DNN, is adopted to make predictions for
task B, the performance can significantly degrade, thus the
DNN model has to be re-trained to re-fit task B, referred to
as “Model B” in Fig. 3(a).

Transfer learning focuses on how to transfer the knowledge

acquired from task A to task B. The parameters learned from
the source task can be shared with the target task to speed up
the re-training process. With the acquired parameters, training
the target task can avoid starting from scratch, and may not
need a large amount of training data. The difficulty lies in the
definition of the degree of correlations between the target and
source tasks [14].

Meta learning aims at training meta knowledge based on
a variety of learning tasks. With the meta knowledge, the
learning model can solve new learning tasks with fewer
amounts of training data (for supervised learning). In general,
ML resembles TL. It uses previous knowledge and experience
to guide the learning of new tasks. The difference is that
ML does not transfer the knowledge of a certain model to
assist in training a new task but to train a model capable of
well adapting to new tasks that have never been encountered
previously. In general, the difficulty is to collect different
classes of tasks as training data to learn the generalized
initialization in meta optimization [15].

Combining with reinforcement learning enables an agent
to learn from the prior experience without the need for
training data sets [8]. The agent interacts with the underly-
ing/surrounding environment, comprising of states, actions,
state transition functions, and an immediate reward. The con-
cept of ML or TL can be implemented based on an RL frame-
work, which can accelerate the convergence in re-training and
enhance the overall re-fitting capability. For example, in meta-
critic methods [15], a meta critic is added in the agent to
guide the critic to better supervise the actors’ behaviors, which
enables strong generalization abilities to adapt to different



tasks. With a well-trained meta critic, the agent can efficiently
train an actor by consuming fewer learning episodes and
saving the re-fitting time.

IV. CASE STUDY AND NUMERICAL RESULTS

In this section, we demonstrate the effectiveness of the
considered Al solutions in dealing with dynamic network
environments. As an example, we consider a typical RAN
slicing problem [10] under two typical dynamic scenarios,
i.e., bursty traffic and devices’ arrival/departure in slices. The
objective is to minimize the overall cost of slices, defined as a
composited utility function consisting of weighted energy and
bandwidth consumption in NGSO and ground segments, while
satisfying users’ QoS and inter-slice isolation requirements.
The key issue is to appropriately determine which users to
simultaneously access the same radio resources, e.g., band-
width, on each time slot. We then use Al models to learn and
mimic the scheduling behaviors, e.g., optimized user groups.
In simulations, we consider 3 slices and 3-10 associated users
per slice, where the physical NGSO-ground infrastructures
are logically mapped to the virtual networks (slices), and the
spectrum resources are aggregated to form a resource pool
[10]. Each individual slice may own the RAN resources from
terrestrial base stations, NGSO satellites, or both.

In the first case study, Fig. 4 shows the evolution of loss
and cost (or objective) values in reacting to an event of
bursty demand among five Al schemes, where a convolutional
neural network (CNN) is adopted for conventional supervised
learning; TL and ML are implemented based on a CNN
framework; DRL is implemented without re-fitting process or
combined with ML in DRL-ML. The bursty traffic occurs
at the 250-th time slot, which makes the upcoming inputs
irrelevant to the statistical properties of the historical data.
As a result, the loss values in CNN, TL, and ML schemes
deteriorate significantly and trigger the drift-level warning,
then start remedying by the subsequent re-collecting and re-
training procedure. After convergence, the loss value returns
to previous levels by consuming around 100, 70, 40 elapsed
time slots, which suggests the faster recovery capabilities
in TL and ML than the baseline CNN scheme. Note that
this consumed time in re-fitting can increase rapidly with
the problem’s scale growth. In contrast, the loss value in
DRL moderately increases, but consistently undergoes higher
loss and cost, which is undesirable for long-term operations.
The combined DRL-ML scheme shows promising trade-off
performance, e.g., less sensitive to the variation than three
NN-based solutions, and lower loss value than DRL. This
combined approach can be enhanced to further reduce the loss
and cost values.

In Fig. 5, we conduct the second case study to evaluate
the capability of adapting dynamic and frequent slice-user
entry/leave. The comparisons are among CNN, ML, and an
optimal solution which can be obtained offline as a benchmark.
From the 250-th time slot, we assume random entry/leave
events happening every 100 time slots which is also the
deadline for completing a re-fitting procedure in CNN and
ML. From the results, ML is able to converge in re-training
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Figure 4. Effectiveness of Al solutions in adapting bursty demands.

within roughly 60 slots before the deadline. In contrast, CNN
leads to an undesirable case. That is, the re-trained model is
not able to converge to react to the first event but the second
has arrived. As a result, CNN is not able to re-fit timely, and
the cost performance fluctuates dramatically with the dynamic
user mobility.
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Figure 5. Performance of Al solutions in dealing with periodic slice-user
arrival/departure.

V. OPEN ISSUES AND FUTURE DIRECTIONS

While the BSG network slicing has been widely studied, the
development of Al-enabled solutions is in its infancy. Towards
maturity, plenty of open issues need further investigations.
Some of them are summarized below.

Firstly, the conventional AI solution has proven its ef-
fectiveness in relatively simple decision-making tasks, e.g.,
traffic prediction, but it typically has limitations in tackling
complicated and constrained optimization problems which are,



however, the major type of many network slicing problems,
e.g., VNE, RAN slicing scheduling, or VNFs replacement with
numerous practical constraints. In this context, any inaccurate
prediction at the inference phase may sensitively violate some
constraints and result in an overall infeasible solution. For
example, the reward function in DRL can be designed to meet
simple constraints but might not have a feasibility guarantee
for a large number of constraints. Thus, current Al solutions
have not lived up to their potentials for guaranteeing QoS or
QoE in B5G networks.

Secondly, in Al-enable B5G network slicing, there are
many trade-off issues that should be carefully investigated and
evaluated. Due to the “no free lunch theorem”, no single Al
solution can outperform any other algorithms on all aspects.
Thus, the trade-off analysis between Al performance and cost
is of importance in selecting an appropriate Al model for solv-
ing a specific problem. In addition, trade-offs among multi-
dimensional resources, e.g., flexible resource configuration
by exchanging storage and computation capabilities, and the
trade-offs between Al cost and other costs in network slicing,
e.g., using clouds to increase available computation resources
for Al but at the expense of raising the overall budget and
security concerns, are also needed to be considered.

Last but not least, the services supported by different
slices in this work might be more suited for latency-tolerant
communications, e.g., eMBB or mMTC services, due to rela-
tively long propagation delay in satellite data transmission. In
addition, the inherent limitations of Al at this early stage pose
obstacles in extending to safety-sensitive communications,
e.g., autonomous driving, and mission-critical communica-
tions, e.g., remote health care. In such challenging scenarios,
high prediction accuracy in Al models, proper representation
of problems, and error-tolerant frameworks are needed for
further investigations.

VI. CONCLUSION

In this article, we have focused on how to make AI
solutions adapting to dynamic NGSO-B5G network slicing.
Beyond state-of-the-art, we have pointed out the major issue of
applying Al and integrating NGSO to network slicing manage-
ment. We have provided tailored solutions to two categories
of dynamic scenarios, i.e., with predictable or unpredictable
variations. A set of dynamic-adaptive Al solutions and their
potentials, benefits, and limitations have been discussed. The
considered Al solutions have been evaluated in two dynamic
scenarios to validate their effectiveness. Numerical studies
suggest promising Al solutions, e.g., combining DRL with
ML or TL, for future BSG network slicing management.
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