

Aim of the study

- **Mathematics** is the fundament of modern societies and the starting point for all STEM-related fields
- Math skills are key predictors of academic success (e.g. Lyons & Ansari, 2015)
- At the center of educational Large-Scale Assessments
- Math skills are multidimensional (e.g., Bräuning et al. 2020; Clements, et al. 2008; Gnaldi, 2017; Milburn et al. 2019; Saβ et al. 2017)
- But psychometric analyses often focus on one general mathematical ability (single latent factor) (Saβ et al. 2017)
- How and to what extent does this simplification affect educational studies that rely on these data?

The Luxembourgish national school monitoring (ÉpStan) has numerous aims

Test framework: Mathematical dimensions assessed throughout the grades 1-5 (and 7)

- The content of the math tests build on the **national curriculum**
 - "Number & Operations" and "Shape & Space"
- Different difficulty levels

Test framework: item examples : Grade 5

Both items measure "difficulty level 5"

Item 1 measures "number and operations" Item 2 measures "space and shape"

Research questions

- Can we find the two mathematical dimensions Space & Shape and Number & Operations also in our data?
- Is the latent structure of the mathematics abilities as assessed by our national school monitoring program stable over elementary school, ranging from Grade 1 to Grade 5?
- Does it matter how we conceptualize math ability when studying the relation to known relevant variables, such as gender, language background or socioeconomic status?

Sample and Test Description

■ Full cohorts for G1-3-5 of 2019

	N	Mean age in years (SD)	Girls
Grade 1	5807	6.4 (.52)	2845 (49.9%)
Grade 3	5456	8.5 (.62)	2639 (49%)
Grade 5	5200	10.6 (.68)	2565 (49.8%)

■ Test Booklets of 2019

	n items	Space & Shape	Numbers & Operation
Grade 1	48	16	32
Grade 3	69	27	42
Grade 5	60	23	37

→ Items typically scaled using a 1-PL model and screened for infit (>.80 & <1.20), rit (>.25), Cohort DIF

Confirmatory factor analysis

- Two SEM are tested
 - Single latent math construct (1FM)

Two related latent constructs: (2FM)
Space & Shape (SS) and Number & Operations (NO)

- Parameter were estimated with Mplus 8.4 (Muthén & Muthén, 1998-2019)
- homogenous item parcels captured the dimensional structure underlying the items (see Hall, Snell, & Singer Foust, 1999)
- Model fit evaluated according to the following fit indices (cut-off criteria in parentheses, see Fan & Sivo, 2007; Hu & Bentler, 1998):

Results CFA Grade 1

	Chi ²	df	р	CFI	SRMR	RMSEA
1 Factor model	470.66	35	< .01	.98	.02	.05
2 Factor model	470.58	34	< .01	.98	.02	.05

- Very good fit of both models
- Space & Shape not distinguishable from Numbers & Operations

Results CFA Grade 3

	Chi ²	df	р	CFI	SRMR	RMSEA
1 Factor model	772.17	54	< .01	.97	.02	.05
2 Factor model	735.37	53	< .01	.97	.02	.05

- (Again) Very good fit of both models
- Space & Shape empirically distinguishable from Numbers & Operations but almost identical

Results CFA Grade 5

	Chi ²	df	р	CFI	SRMR	RMSEA
1 Factor model	697,67	35	< .01	.97	.03	.06
2 Factor model	426,52	34	< .01	.98	.02	.05

- Good fit of both models BUT!
- Space & Shape empirically distinguishable and differentiates from Numbers & Operations

Relations between math abilities and subject-specific variables in G5

	Model 1F: one factor	Model 2F: two factors		
Criterion	Math	Space & Shape	Number & Operations	
Mathematics related constructs anxiety interest self-concept	23 .19 .47	20 .13 .37	25 .22 .51	

- Structure of mathematical construct captured by ÉpStan makes a difference
- Math-related personality variables are more strongly linked to Number & Operations
- Number & Operations is cognitively overrepresented in associations with mathematics

Relationship between math abilities and sociodemographic variables in G5

Criterion		Model 1F: one factor	_,	Model 2F: two factors		
		Math	Space & Shape	ape Number & Operations		
		Latent correlation coefficients		ients		
Socioeconomic status (HISEI)		.37	.38	.36		
		Late	ent regression coeffic	ients		
Gender	(1 = boys)	.12	.02	.17		
Migration background $(1 = yes)$		14	16	13		
Home language	(1 = Lux./Ger.)	.17	.19	.15		

- General math factor masks differential relations to sociodemographic variables
- Unexpected relation between gender and math subdomains
- Language and migration background more strongly influence Space & Shape domain

Summary & Outlook

- Math abilities captured by ÉpStan differentiate with increasing age despite unidimensional test development
- Math competencies become more specific over time (Deary et al., 1996)
- Results hint at importance of spatial language and vocabulary in Space & Shape items (Georges, Cornu, & Schiltz, 2020; Hornung et al., 2014)
- Mathematics subcompetencies should be considered (analyses, feedbacks, etc.)
- Multidimensional IRT-models for scaling might be promising

Feedback & Contact

philipp.sonnleitner@uni.lu

caroline.hornung@ext.uni.lu

Home of our research: https://wwwen.uni.lu/research/fhse/lucet

Test description and item examples: https://epstan.lu

More on our work: https://learn.uni.lu/

