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Abstract
The concept of n-distance was recently introduced to generalize the classical defini-
tion of distance to functions of n arguments. In this paper we investigate this concept
through a number of examples based on certain geometrical constructions. In partic-
ular, our study shows to which extent the computation of the best constant associated
with an n-distance may sometimes be difficult and tricky. It also reveals that two
important graph theoretical concepts, namely the total length of the Euclidean Steiner
tree and the total length of the minimal spanning tree constructed on n points, are
instances of n-distances.

Keywords Metric geometry · n-distance · Simplex inequality · Chebyshev ball ·
Euclidean minimal spanning tree · Euclidean Steiner tree · Smallest enclosing ball
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1 Introduction

Let X be a set containing at least two elements. Let also n ≥ 2 be an integer and
set R+ = [

0,+∞[
. Recall that an n-distance (see Kiss et al. 2016) on X is a map

d : Xn → R+ that satisfies the following three conditions:

(i) d(x1, . . . , xn) = 0 if and only if x1 = · · · = xn ,
(ii) d is a symmetric function, i.e., invariant under any permutation of its arguments,
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(iii) d satisfies the simplex inequality (triangle inequality if n = 2), i.e.,

d(x1, . . . , xn) ≤
n∑

i=1

d(x1, . . . , xn)
z
i , x1, . . . , xn, z ∈ X ,

where d(x1, . . . , xn)
z
i stands for the function obtained from d(x1, . . . , xn) by

setting its i th variable to z.

The best constant associated with an n-distance d on X is the number K ∗
n ∈ ]

0, 1
]

defined by

K ∗
n = sup

x1,...,xn ,z∈X|{x1,...,xn}| ≥ 2

d(x1, . . . , xn)∑n
i=1 d(x1, . . . , xn)

z
i

.

Thus defined, K ∗
n is the infimum of the set of numbers Kn ∈ ]

0, 1
]
for which the

condition

d(x1, . . . , xn) ≤ Kn

n∑

i=1

d(x1, . . . , xn)
z
i , x1, . . . , xn, z ∈ X ,

holds.
To give an example, recall that the cardinality based n-distance (see Kiss et al.

2016, 2018) is defined on X by

d(x1, . . . , xn) = |{x1, . . . , xn}| − 1.

Its associated best constant is K ∗
n = (n − 1)−1 and it is attained, e.g., when x1 �= x2

and x2 = · · · = xn = z.
Although various definitions of n-variable distances have been proposed thus far in

the literature on metric spaces (see, e.g., Deza and Deza 2014, Chapter 3), the concept
of n-distance was introduced recently by the authors (see Kiss et al. 2016, 2018) as an
n-ary generalization of both the concepts of distance (i.e., 2-distance) and D-metric
(see Dhage 1992) (i.e., 3-distance).

One of the interesting features of this new concept is the existence of the associated
best constant K ∗

n , which is generally not easy to compute (see Kiss andMarichal 2020;
Kiss et al. 2018). For instance, we show in this paper that the map that gives the total
length of a minimum spanning tree of the complete Euclidean graph constructed from
n points in R

q is an n-distance. We also show that the associated best constants for
n = 2 and n = 3 are given by K ∗

2 = 1 and K ∗
3 = 1/

√
3, respectively. However, the

exact value of K ∗
n remains unknown for any n ≥ 4.

It was observed (see Kiss and Marichal 2020) that the best constant associated
with an n-distance is always greater than or equal to (n − 1)−1. An n-distance whose
associated best constant has precisely the value (n − 1)−1 is said to be standard (see
Kiss and Marichal 2020); otherwise, it is said to be nonstandard. For instance, the
cardinality-based n-distance defined above is standard.
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In this paper we explore various examples of nonstandard n-distances based on
geometrical constructions and, in some cases, we provide the associated best constants.
These examples, as well as many other examples already investigated in Kiss and
Marichal (2020), Kiss et al. (2018), show that when a map d : Xn → R+ satisfies
conditions (i) and (ii) of the definition of an n-distance, it is generally not easy to check
whether it also satisfies condition (iii). Beyond this difficulty, we also observe that
finding the best constant associated with a given n-distance is typically a challenging
problem, often leading to tricky arguments that strongly dependon then-distance itself.
This observation seems to show that this class of problems defines a relatively new
direction of research and that general results along this line would be most welcome.
We hope that by providing various examples of nonstandard n-distances here wemight
attract researchers and make this exciting topic better known.

This paper is divided into six sections as follows. In Sects. 2 to 5, we present
and discuss four different examples of n-distances; thus these sections can be read
independently of each other. In Sect. 2we introduce an n-distance based on the concept
of the Chebyshev ball in any finite-dimensional Euclidean space. We show that it
is nonstandard for any n ≥ 3 and provide the exact value of the associated best
constant. In Sect. 3 we introduce a Euclidean version of this latter n-distance, namely
the diameter of a largest inner Euclidean ball associated with n points. We also prove
that this latter n-distance is nonstandard for any n ≥ 3. However, its associated best
constant is not knownwhen n ≥ 4. Sections 4 and 5 are devoted to two graph-theoretic
based n-distances. The first one is defined as the length of a minimum spanning tree on
the complete Euclidean graph constructed on n points.We show that it is an n-distance.
It is nonstandard for n = 3 and n = 4 and we conjecture that it is nonstandard for
any n ≥ 3. The second one is defined as the length of the Steiner tree on the complete
Euclidean graph constructed on n points. We show that it is an n-distance and that it
is standard for n = 3. Here again, the exact value of the best constant is not known
when n ≥ 4. Finally, we end this paper in Sect. 6 with some concluding remarks and
open problems.

The simplex ratio (triangle ratio if n = 2) Rd associated with an n-distance d on
X is defined for any x1, . . . , xn, z ∈ X such that |{x1, . . . , xn}| ≥ 2 by

Rd(x1, . . . , xn; z) = d(x1, . . . , xn)∑n
i=1 d(x1, . . . , xn)

z
i

.

We will often use this concept throughout.

2 Edge length of a largest inner Chebyshev ball

In this section, we define a nonstandard n-distance based on Chebyshev balls in R
q ,

where q ≥ 1 is any fixed integer, and we provide the associated best constant. The
special case when q = 1 was already considered by the authors in Kiss and Marichal
(2020) and can be stated as follows.
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Fig. 1 A largest inner square
constructed from five points in
R
2

Proposition 2.1 (Length of a largest inner interval, Kiss and Marichal 2020) Let
d : Rn → R+ be the map defined by

d(x1, . . . , xn) = max
i=1,...,n−1

(x(i+1) − x(i)),

where the symbol x(i) stands for the i th smallest element among x1, . . . , xn. Then d is
an n-distance onR. Its best constant is K ∗

n = 2/n and is attained at any (x1, . . . , xn; z)
such that x1 < x2 = · · · = xn and z = (x1 + x2)/2.

Suppose now that q ≥ 2. Recall that a (closed) Chebyshev q-ball in R
q of radius

r > 0 centered at a point c ∈ R
q is the hypercube defined by

Br [c] = {x ∈ R
q : ‖x − c‖∞ ≤ r},

where ‖ · ‖∞ is the Chebyshev norm in Rq . Each face of this hypercube is parallel to
one of the coordinate hyperplanes.

Definition 2.2 Let q ≥ 2 be an integer and let x1, . . . , xn be n points in R
q . We say

that a Chebyshev q-ball B inRq is an inner Chebyshev ball associated with x1, . . . , xn
if it satisfies the following two conditions.

• The interior of B contains none of the points x1, . . . , xn .
• At least one point lies on one face of B and at least one point lies on the opposite
face.

In the following proposition, we show that the map d : (Rq)n → R+ that carries the
n-tuple (x1, . . . , xn) into the edge length of a largest inner Chebyshev ball associated
with x1, . . . , xn is an n-distance on R

q . We also provide its associated best constant.
In Fig. 1 we illustrate this n-distance through an example based on 5 points in the
plane (q = 2).

Proposition 2.3 The map d : (Rq)n → R+ that carries (x1, . . . , xn) into the edge
length of a largest inner Chebyshev ball associated with x1, . . . , xn is an n-distance
on R

q . Its best constant is K ∗
n = 2/n and is attained at any (x1, . . . , xn; z) such that

x1 �= x2 = · · · = xn and z = (x1 + x2)/2.

Proof If n = 2, then d is the Chebyshev distance on Rq . Now suppose that n ≥ 3 and
let x1, . . . , xn, z ∈ R

q be such that |{x1, . . . , xn}| ≥ 2. Modifying the coordinate axes
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if necessary, we can assume without loss of generality that a largest inner Chebyshev
ball associated with the points x1, . . . , xn is given by the set

Br [0] = {x ∈ R
q : ‖x‖∞ ≤ r}

for some r > 0 and that x1 lies on one face and x2 lies on the opposite face of the ball.
Thus, we have

d(x1, . . . , xn) = ‖x2 − x1‖∞ = 2r

and ‖xi‖∞ ≥ r for i = 1, . . . , n. We then have two exclusive cases to consider.

• Suppose that ‖z‖∞ < r . Let B1 (resp. B2) be an inner Chebyshev ball associated
with x1 and z (resp. x2 and z), with edge length �1 = ‖x1 − z‖∞ (resp. �2 =
‖x2 − z‖∞). These balls can always be taken so that B1 ∪ B2 ⊂ Br [0]. We then
have 2r = ‖x2 − x1‖∞ ≤ �1 + �2 and hence max{�1, �2} ≥ r . It follows that

d(x1, . . . , xn)
z
i ≥

⎧
⎪⎨

⎪⎩

�2, if i = 1,

�1, if i = 2,

max{�1, �2}, otherwise.

Therefore,

n∑

i=1

d(x1, . . . , xn)
z
i ≥ 2r + (n − 2)r = n

2
d(x1, . . . , xn).

• Suppose that ‖z‖∞ ≥ r . Set xn+1 = z and let k ∈ {3, . . . , n + 1} be such that
‖xk‖∞ ≤ ‖xi‖∞ for i = 3, . . . , n + 1. Then, like in the previous case, we can see
that

d(x1, . . . , xn)
z
i ≥

⎧
⎪⎨

⎪⎩

‖xk − x2‖∞ , if i = 1,

‖xk − x1‖∞ , if i = 2,

2r , otherwise.

Therefore,

n∑

i=1

d(x1, . . . , xn)
z
i ≥ 2r + (n − 2)2r = (n − 1) d(x1, . . . , xn).

To summarize, we have

K ∗
n ≤ max{(n − 1)−1, 2/n} = 2/n.

To complete the proof, it suffices to observe that the best constant is attained at any
tuple having the claimed properties. 
�
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Fig. 2 A largest inner ball
constructed from five points in
R
2

3 Diameter of a largest inner Euclidean ball

The following definition provides a Euclidean version ofDefinition 2.2. This definition
seems more natural than the concept of the inner Chebyshev ball in the sense that it is
independent of the location and inclination of the coordinate system. However, as we
will see, it is much more difficult to investigate.

Recall that a (closed) Euclidean q-ball in R
q of radius r > 0 centered at a point

c ∈ R
q is defined by the set

Br [c] = {x ∈ R
q : |x − c| ≤ r},

where | · | = ‖ · ‖2 is the Euclidean norm in R
q .

Definition 3.1 Let q ≥ 2 be an integer and let x1, . . . , xn be n points in R
q . We say

that a Euclidean q-ball B inRq is an inner ball associated with x1, . . . , xn if it satisfies
the following two conditions.

• The interior of B contains none of the points x1, . . . , xn .
• Two of the points x1, . . . , xn are the endpoints of a diameter of B.

In this section we show that the map d : (Rq)n → R+ that carries (x1, . . . , xn)
into the diameter of a largest inner ball associated with x1, . . . , xn is an n-distance on
R
q . Figure 2 illustrates this map through an example based on 5 points in the plane

(q = 2). We show that this n-distance is nonstandard if and only if n ≥ 3. We also
provide the value of K ∗

3 and show that K ∗
n > 1/π for any n. The value of K ∗

n for any
n ≥ 4 remains unknown and finding this value seems to constitute an interesting open
question.

Let us explore this problem carefully by first considering the cases when n = 2 and
n = 3. If n = 2, then d is the usual Euclidean distance on R

q , and so it is standard.
Let us now consider the case when n = 3. Any pairwise distinct points x1, x2, x3 ∈

R
q are the vertices of a (possibly degenerate) triangle. It is then clear that if this triangle

is right or acute, then

d(x1, x2, x3) = max{i, j}⊂{1,2,3} |xi − x j |.

Now, if the triangle is obtuse, then d(x1, x2, x3) is necessarily the second highest side
length of the triangle, that is,

d(x1, x2, x3) = median{i, j}⊂{1,2,3} |xi − x j |.
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In both cases, it is then geometrically clear that

d(x1, x2, x3) ≥ 1

2
max{i, j}⊂{1,2,3} |xi − x j | , x1, x2, x3 ∈ R

q . (1)

Now, let x1, x2, x3, z ∈ R
q satisfying |{x1, x2, x3}| ≥ 2 and suppose without loss

of generality that x1 and x2 are the endpoints of a diameter of a largest inner ball
associated with x1, x2, x3. Using (1) and then the triangle inequality for | · |, we obtain

3∑

i=1

d(x1, x2, x3)
z
i ≥ 1

2

(|x2 − x3| + |x3 − x1| + |x1 − x2|
)

≥ |x1 − x2| = d(x1, x2, x3),

which shows that d is a 3-distance. To see that it is nonstandard, consider x1 �= x2 = x3
and z = (x1 + x2)/2. We then obtain K ∗

3 ≥ 2/3 ≈ 0.667.
We actually have the stronger inequality K ∗

3 ≥ ρ, where

ρ = 1

7

√
20 + 2

√
2 ≈ 0.683,

which provides a better lower bound for K ∗
3 . Indeed, consider the points x1 = (−1, 0),

x2 = (1, 0), and x3 = (
√
2/2,

√
2/2) in R

2. Let also ε > 0 be sufficiently small and
let zε = (0,

√
2 − 1 + ε). Thus, the points x1, x2, x3 form a right triangle, with

�x2x1x3 = π
8 , and zε is obtained by lifting to a height of ε the y-intercept of the line

joining x1 and x3 (see Fig. 3). We then have

2 = |x1 − x2| = d(x1, x2, x3) ≤ K ∗
3

3∑

i=1

d(x1, x2, x3)
zε
i

≤ K ∗
3

(|x2 − x3| + 2 |x1 − zε|
)
,

for small values of ε > 0, where

|x2 − x3|2 = 2 − √
2 and |x1 − zε|2 = 1 + (

√
2 − 1 + ε)2.

This shows that K ∗
3 ≥ ρ. Moreover, the value ρ is not attained in this example.

Although the value of K ∗
3 seems difficult to obtain, most likely due to the fact that

the map d is rather discontinuous, we now prove that the value of K ∗
3 is precisely

equal to ρ.

Proposition 3.2 We have K ∗
3 = ρ and this value is not attained.

Proof Let x1, x2, x3, z ∈ R
q such that |{x1, x2, x3}| ≥ 2. We can assume without loss

of generality that q = 2 and that x1 = (−1, 0) and x2 = (1, 0) are the endpoints of a
diameter of a largest inner ball associatedwith x1, x2, x3.We then have d(x1, x2, x3) =
|x1 − x2| and |x3| ≥ 1.
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Fig. 3 An example involving
three points x1, x2, x3 of R2

Using (1) and then the triangle inequality for | · |, we have

d(z, x2, x3) + d(x1, z, x3) ≥ 1

2
(|x2 − x3| + |x1 − x3|) ≥ 1

2
|x1 − x2|.

If |z| ≥ 1, then d(x1, x2, z) ≥ |x1 − x2| and hence Rd(x1, x2, x3; z) ≤ 2
3 . Thus, to

ensure that Rd(x1, x2, x3; z) > 2
3 , we have to assume |z| < 1. In this case, we also

have

d(x1, x2, z) = max{|x1 − z|, |x2 − z|} ≥ 1

2
|x1 − x2|. (2)

Now, let x3,1 denote the first coordinate of x3 and let us show that if |x3,1| ≥ 1, then
Rd(x1, x2, x3; z) ≤ 2

3 . Suppose that x3,1 ≤ −1 (the other case is similar). We have

d(z, x2, x3) + d(x1, z, x3) ≥ |x2 − z| + min{|x1 − z|, |x3 − z|}
≥ min{|x1 − x2|, |x2 − x3|} = |x1 − x2|.

Combining this result with (2), we see that Rd(x1, x2, x3; z) ≤ 2
3 . Thus, to ensure that

Rd(x1, x2, x3; z) > 2
3 , we have to assume that |x3,1| < 1.

Now, let x3,2 (resp. x0,2) denote the second coordinate of x3 (resp. z). Let us show
that if x3,2x0,2 ≤ 0, then Rd(x1, x2, x3; z) ≤ 2

3 . Since x1 and z are the endpoints of
a diameter of an inner circle associated with x1, z, x3, we must have d(x1, z, x3) ≥
|x1 − z|. We show similarly that d(z, x2, x3) ≥ |x2 − z|. We then have

d(z, x2, x3) + d(x1, z, x3) ≥ |x1 − x2|.

Combining this result with (2), we see that Rd(x1, x2, x3; z) ≤ 2
3 . Thus, to ensure that

Rd(x1, x2, x3; z) > 2
3 , we have to further assume that x3,2x0,2 > 0. Using a symmetry

argument, we can assume that x3,2 > 0 and x0,2 > 0.
Now, let us show that if z lies in the (closed) triangle with vertices x1, x2, x3, then

Rd(x1, x2, x3; z) ≤ 2
3 . If �x1zx3 ≤ π

2 , then

d(x1, z, x3) = max{|x1 − z|, |x3 − z|, |x1 − x3|} ≥ |x1 − z|.
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If �x1zx3 > π
2 , then

d(x1, z, x3) = median{|x1 − z|, |x3 − z|, |x1 − x3|} ≥ |x1 − z|.

Similarly, we show that d(z, x2, x3) ≥ |x2 − z|. We then have

d(z, x2, x3) + d(x1, z, x3) ≥ |x1 − x2|.

Combining this result with (2), we see that Rd(x1, x2, x3; z) ≤ 2
3 . Thus, to ensure that

Rd(x1, x2, x3; z) > 2
3 , we have to further assume that z does not lie in the triangle

with vertices x1, x2, x3.
Now, let us show that if |x3| > 1, then there is x ′

3 ∈ R
2, with |x ′

3| = 1, such that
Rd(x1, x2, x ′

3; z) > Rd(x1, x2, x3; z). Suppose that |x1 − z| ≤ |x2 − z| (the other case
is similar) and let x ′

3 ∈ R
2 the unique point on the line through x1 and x3 such that

|x ′
3| = 1. We observe that �x1zx ′

3 > π
2 and hence �x1zx3 > π

2 , which implies that

d(x1, z, x3) ≥ d(x1, z, x
′
3).

We also observe that |x ′
3 − z| < |x3 − z| and |x2 − x ′

3| < |x2 − x3| and �x2x ′
3z > π

2 .
Thus, if �zx3x2 > π

2 , then

d(z, x2, x3) = max{|x2 − x3|, |x3 − z|} > max{|x2 − x ′
3|, |x ′

3 − z|}
= d(z, x2, x

′
3).

If �zx3x2 ≤ π
2 , then

d(z, x2, x3) ≥ |x2 − z| > max{|x2 − x ′
3|, |x ′

3 − z|} = d(z, x2, x
′
3).

We then have

d(z, x2, x3) + d(x1, z, x3) > d(z, x2, x
′
3) + d(x1, z, x

′
3),

that is, Rd(x1, x2, x ′
3; z) > Rd(x1, x2, x3; z).

Thus, to approach the supremumof Rd (x1, x2, x3; z), we have to assume that |x3| =
1. We then have

d(z, x2, x3) + d(x1, z, x3) + d(x1, x2, z)

= max{|x2 − x3|, |x3 − z|} + max{|x1 − z|, |x3 − z|} + max{|x1 − z|, |x2 − z|}.

Let z′ be the orthogonal projection of z onto the line through x1 and x3. We observe
that the value of Rd(x1, x2, x3; z) strictly increases as z moves closer to z′. It follows
that the value K ∗

3 cannot be attained.
Now, writing x3 = (cosα, sin α) for some α ∈ ]

0, π
[
and z′ = t x1 + (1 − t)x3

for some t ∈ ]
0, 1

[
, we have |x1 − z′| = 2(1 − t) cos α

2 , |x3 − z′| = 2t cos α
2 ,
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|x2 − x3| = 2 sin α
2 , and

|x2 − z′|2 = |x2 − x3|2 + |x3 − z′|2.

It is then a basic calculus exercise to see that the map (α, t) �→ Rd(x1, x2, x3; z′) has
a global maximum at (α, t) = (π/4,

√
2 − 1) with value K ∗

3 = ρ. This corresponds
to x3 = (

√
2/2,

√
2/2) and z′ = (0,

√
2 − 1), that is |x1 − z′| = |x2 − z′|. 
�

We now consider the general case for any n ≥ 2 and show in a rather tricky way
that the map d is an n-distance. We first consider a lemma that uses the concept of the
minimum spanning tree of a graph. For background on this concept, see, e.g., Cieslik
(2005), Wu and Chao (2004).

Lemma 3.3 Let x1, . . . , xn ∈ R
q . Let T = (V , E) be a minimum spanning tree of the

complete Euclidean graph whose vertex set is V = {x1, . . . , xn}. Then every edge in
E is a diameter of an inner ball associated with x1, . . . , xn.

Proof For any i, j ∈ {1, . . . , n}, denote the edge {xi , x j } by ei, j . Suppose that there
exist i, j ∈ {1, . . . , n} such that the edge ei, j is in E and is not a diameter of an inner
ball associated with x1, . . . , xn . This means that there exists k ∈ {1, . . . , n} \ {i, j}
such that xk is in the interior of the ball whose ei, j is a diameter. It follows that either

(V , E ∪ {ei,k} \ {ei, j }) or (V , E ∪ {e j,k} \ {ei, j })

is a spanning tree that is shorter than T . This contradicts the definition of T . 
�
Proposition 3.4 The map d : (Rq)n → R+ that carries (x1, . . . , xn) into the diameter
of a largest inner ball associated with x1, . . . , xn is an n-distance on R

q .

Proof We have seen that the result holds for n = 2 and n = 3. We can therefore
assume that n ≥ 4. Let x1, . . . , xn, z ∈ R

q satisfying |{x1, . . . , xn}| ≥ 2 and suppose
without loss of generality that x1 and x2 are the endpoints of a diameter of a largest
inner ball B associated with x1, . . . , xn . Thus, we have d(x1, . . . , xn) = |x1 − x2|.
We then have two cases to consider.

• Assume that z is not in the interior of B. In this case, we simply have

n∑

i=1

d(x1, . . . , xn)
z
i ≥

n∑

i=3

d(x1, . . . , xn)
z
i ≥ (n − 2) |x1 − x2|

≥ d(x1, . . . , xn).

• Assume that z is in the interior of B. Set xn+1 = z and let G be the complete
Euclidean graph whose vertex set is {x1, . . . , xn+1}. We can assume that this graph
has at least 4 distinct vertices (otherwise, the problem is trivial). By Lemma 3.3,
there is a simple path P in G connecting x1 to x2 with the property that every edge
in P is a diameter of an inner ball associated with x1, . . . , xn+1. Let �1 be the
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length of a longest edge in P and let �3 be the length of a third longest edge in P .
Let j, k ∈ {1, . . . , n + 1} such that {x j , xk} ∈ P and |x j − xk | = �1. Then

d(x1, . . . , xn)
z
i ≥

{
�1, if i /∈ { j, k}
�3, otherwise.

We then have

n∑

i=1

d(x1, . . . , xn)
z
i ≥ (n − 2)�1 + 2�3 ≥

∑

e∈P

�e > |x1 − x2|

= d(x1, . . . , xn),

where �e denotes the length of e.

To summarize, we have shown that the simplex inequality holds in both cases. This
completes the proof. 
�
Remark 3.5 The last two inequalities in the proof of Proposition 3.4 are actually rather
fine. To illustrate this observation, in the Euclidean plane R

2 take the points x1 =
(−1, 0), x2 = (1, 0), x3 = (−1, ε), x4 = (1, ε), and z = (0, ε) for some ε > 0. Then
we have

d(x1, x2, x3, x4)
z
i =

√
1 + ε2, i = 1, . . . , 4

and

2�1 + 2�3 =
∑

e∈P

�e = 2(1 + ε) > 2 = ‖x1 − x2‖2.

As mentioned in the beginning on this section, the best constant K ∗
n associated

with the n-distance defined in Proposition 3.4 is not known when n ≥ 4 and finding
its value seems to be a challenging problem. However, the next proposition provides
a lower bound for K ∗

n , which reveals the surprising observation that the inequality
K ∗
n > 1/π always holds. This shows in particular that this n-distance is nonstandard

when n ≥ 3. For any integer p ≥ 0, let Tp be the pth degree Chebyshev polynomial
of the first kind.

Proposition 3.6 Let n ≥ 4 be an integer and let p = �n/2� − 1. Then, we have

K ∗
n ≥ 1

nλn
>

1

n sin π
2p+4

>
2p + 4

nπ
>

1

π
≈ 0.318 ,

where λn is the unique solution to the equation

Tp(
√
1 − x2) = 2x
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Fig. 4 An example with n = 9

lying in the open interval ]0, sin π
2p+4 [. Moreover, we have

lim
n→∞

1

nλn
= 1

π
.

Proof Consider the points x1 = (−1, 0) and x2 = (1, 0) in R
2. Let also x3, . . . , xn

placed clockwise on the upper part of the unit circle so that

• x2i = x2i−1 for 2 ≤ i ≤ p,
• xn = xn−1 if n is even and xn = xn−1 = xn−2 if n is odd,
• |x4 − x1| = 1

2 |xn − x2| and |x2i+2 − x2i | = |x4 − x1| for 2 ≤ i ≤ p.

We then have p + 2 distinct points. Let also z = (x2 + xn)/2. Figure 4 illustrates this
construction for n = 9 (which implies p = 3).

The distances between two consecutive points on the circle can be computed as
follows. Setting λ = 1

2 |x4 − x1| = sin α
2 , where α = �x10x4, we necessarily have

α < π
p+2 and hence λ < sin π

2p+4 . We then obtain

2λ = 1

2
|xn − x2| = sin

π − pα

2
= cos

pα

2
= Tp(cos

α

2
) = Tp(

√
1 − λ2).

It is actually a basic exercise to show that the function f p(x) = Tp(
√
1 − x2) − 2x

has exactly one zero in the interval ]0, sin π
2p+4 [.

Now, we observe that

2 = d(x1, . . . , xn) ≤ K ∗
n

n∑

i=1

d(x1, . . . , xn)
z
i = nK ∗

n 2λ,

which shows that K ∗
n ≥ 1/(nλ), where λ can be replaced with λn to express its

dependency on n. The other three inequalities follow trivially.
Let us now prove the last part of the proposition. It is geometrically clear that the

length (�n/2� + 1)2λn tends to the length π of the upper half circle as n increases to
infinity. We then have

lim
n→∞

1

nλn
= lim

n→∞
2�n/2� + 2

nπ
= 1

π
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Table 1 Values of 1/(nλn) for various n

n 4 5 6 10 20 50 80

K ∗
n ≥ 0.559 0.447 0.455 0.391 0.352 0.331 0.326

and this completes the proof. 
�
Table 1 provides the lower bound 1/(nλn) for some values of n. We believe that

this lower bound could likely be improved. However, as an intermediate challenge,
we conjecture that limn→∞ K ∗

n = 1/π .

4 Length of a minimum spanning tree of the complete Euclidean
graph

Let q ≥ 2 be an integer, let x1, . . . , xn ∈ R
q , and let G(x1, . . . , xn) be the complete

Euclidean graph whose vertex set is V = {x1, . . . , xn}. In this section, we show that
the map d : (Rq)n → R+ that carries (x1, . . . , xn) into the total length of a minimal
spanning tree of G(x1, . . . , xn) is an n-distance on R

q . We also show that K ∗
2 = 1,

K ∗
3 = 1/

√
3, and K ∗

4 ≥ √
2/4. The exact value of K ∗

n for any n ≥ 4 remains unknown.
Let us first consider the special cases when n = 2 and n = 3. If n = 2, then d is

the usual Euclidean distance on R
q , and so it is standard (i.e., K ∗

2 = 1).
Assume now that n = 3. Let x1, x2, x3, z ∈ R

q such that |{x1, x2, x3}| ≥ 2. Setting
�i, j = |xi − x j | for all i, j , we then have

d(x1, x2, x3) = �1,2 + �2,3 + �3,1 − max{�1,2, �2,3, �3,1}.

It is then clear that d(xi , x j , z) ≥ �i, j for any {i, j} ⊂ {1, 2, 3}. It follows that
3∑

i=1

d(x1, x2, x3)
z
i ≥ �1,2 + �2,3 + �3,1

and hence d is a 3-distance. To see that it is nonstandard, just take x1, x2, x3 as the
vertices of an equilateral triangle and x0 as the centroid. This example shows that
K ∗
3 ≥ 1/

√
3 ≈ 0.577. We now prove that K ∗

3 is exactly 1/
√
3.

Recall that the Fermat point of a triangle ABC is the point F = F(A, B,C) that
minimizes the distance |F − A| + |F − B| + |F − C |. For background, see, e.g.,
(Boltyanski et al. (1999), Chapter II). The Fermat point can be easily constructed.
If there is an angle greater than 2π/3 at some vertex, then that vertex is the Fermat
point. Otherwise, draw equilateral triangles on each of the sides of ABC . Connect the
far vertex of each equilateral triangle to the opposite vertex of triangle ABC . Doing
this for each of the three equilateral triangles results in a single common point of
intersection for all three lines, which is the Fermat point.
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Lemma 4.1 For any x0, x1, x2, x3 ∈ R
q such that |{x1, x2, x3}| ≥ 2, we have

Rd(x1, x2, x3; x0) = max
z∈R2

Rd(x1, x2, x3; z) (3)

if and only if x0 = F(x1, x2, x3).

Proof (Necessity) Let us first show that x0 must be inside or on the edge of �x1x2x3.
Suppose that the point x0 that satisfies (3) is outside �x1x2x3 and let x̃0 be the
orthogonal projection of x0 onto �x1x2x3. Then we have |xi − x0| > |xi − x̃0| for
i = 1, 2, 3 and hence d(x0, xi , x j ) > d(x̃0, xi , x j ) for {i, j} ⊂ {1, 2, 3}. If follows
that Rd(x1, x2, x3; x0) < Rd(x1, x2, x3; x̃0), a contradiction.

Let us now prove that x0 = F(x1, x2, x3). There are two exclusive cases to consider.

(a) Suppose that max{�i, j , �0,i , �0, j } = �i, j for {i, j} ⊂ {1, 2, 3}. Then
3∑

i=1

d(x1, x2, x3)
x0
i = 2(�0,1 + �0,2 + �0,3),

which is minimized only for x0 = F(x1, x2, x3).
(b) Suppose that max{�1,2, �0,1, �0,2} > �1,2, which implies that �x1x0x2 < π/2.

We then have �x2x0x3 ≥ π/2 and �x3x0x1 ≥ π/2 and hence

max{�i, j , �0,i , �0, j } = �i, j , for {i, j} ∈ {{2, 3}, {3, 1}}.

We then have

3∑

i=1

d(x1, x2, x3)
x0
i = (�0,1 + �0,2 + �0,3) + (�1,2 + min{�0,1, �0,2} + �0,3)

= (�0,1 + �0,2 + �0,3) + w(x0, x1, x2, x3),

where w(x0, x1, x2, x3) is the total length of a minimum spanning tree of the
graph G(x0, x1, x2, x3). We know that the sum �0,1 + �0,2 + �0,3 is minimized
only for x0 = F(x1, x2, x3). Now, considering the classical Euclidean Steiner
tree for x1, x2, x3, it is known (see, e.g., Cieslik 1998, p. 4) that the corresponding
Steiner point is F(x1, x2, x3), which means that w(x0, x1, x2, x3) is minimized
only for x0 = F(x1, x2, x3).

(Sufficiency) This results from existence and uniqueness of the Fermat point. 
�
Proposition 4.2 The map d : (Rq)3 → R that carries (x1, x2, x3) into the total length
of a minimal spanning tree of G(x1, x2, x3) is a 3-distance on Rq . Its best constant is
K ∗
3 = 1/

√
3 and is attained at any (x1, x2, x3; z) such that �x1x2x3 is an equilateral

triangle with centroid z.

Proof Let x1, x2, x3, z ∈ R
2 be such that |{x1, x2, x3}| ≥ 2. By Lemma 4.1, the unique

optimal choice for z is F = F(x1, x2, x3) and hencewe can assume that q = 2.We can
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also assume that F /∈ {x1, x2, x3}, for otherwise the simplex ratio Rd(x1, x2, x3; F)

would be 1
2 . We now prove that �ABC can always be transformed into an isosceles

triangle whose simplex ratio is higher than Rd(x1, x2, x3; F). We can assume without
loss of generality that �1,2 = max{�1,2, �2,3, �3,1}. Let x ′

1, x
′
2 ∈ R

2 be such that
|x1− x3| = |x ′

1− x3|, |x2− x3| = |x ′
2− x3|, and max{|x ′

1− x3|, |x ′
2− x3|} = |x ′

1− x ′
2|.

Thus, �x ′
1x

′
2x3 is isosceles. If we assume further that F ∈ �x ′

1x
′
2x3, which is always

possible, then it is not difficult to see that

|xi − F | ≥ |x ′
i − F | for i = 1, 2,

and hence that

|x1 − F | + |x2 − F | + |x3 − F | ≥ |x ′
1 − F | + |x ′

2 − F | + |x3 − F |
≥ |x ′

1 − F ′| + |x ′
2 − F ′| + |x3 − F ′|,

where F ′ = F(x ′
1, x

′
2, x3). It follows that

Rd(x1, x2, x3; F) = |x1 − x3| + |x2 − x3|
2(|x1 − F | + |x2 − F | + |x3 − F |)

≤ |x ′
1 − x3| + |x ′

2 − x3|
2(|x ′

1 − F ′| + |x ′
2 − F ′| + |x3 − F ′|) = Rd(x

′
1, x

′
2, x3; F ′).

To conclude the proof, we now show that from among all isosceles triangles, only
the equilateral one reaches the highest simplex ratio. Fix two distinct points x1 and
x2 and let the point x3 vary so that �x1x2x3 is always an isosceles triangle with
|x1 − x3| = |x2 − x3|. Again, we can assume that F /∈ {x1, x2, x3}. We can also
assume that |x1 − F | = |x2 − F | = 1. We then have |x1 − x2| = √

3. We now
set t = |x3 − F | and determine the value of t that maximizes the simplex ratio
f (t) = Rd(x1, x2, x3; F). Setting a(t) = |x1 − x3| = |x2 − x3|, the law of cosines
provides the identity a(t)2 = t2 + t + 1. We then have

f (t) =
⎧
⎨

⎩

√
t2+t+1+√

3
2(t+2) , if t ≥ 1,

√
t2+t+1
t+2 , if t ≤ 1.

We immediately see that this function has a unique global maximum at t = 1, which
corresponds to an equilateral triangle. Thus, K ∗

3 = f (1) = 1/
√
3. 
�

We now consider the general case for any n ≥ 2 and show that the map d is an
n-distance. The proof uses a similar argument as in the proof of Proposition 3.4.

Proposition 4.3 The map d : (Rq)n → R+ that carries (x1, . . . , xn) into the total
length of a minimal spanning tree of G(x1, . . . , xn) is an n-distance on R

q .

Proof We have seen that the result holds for n = 2 and n = 3. We can therefore
assume that n ≥ 4. Let x1, . . . , xn, z ∈ R

q satisfying |{x1, . . . , xn}| ≥ 2. Let also
T = (V , E) be a minimal spanning tree of G(x1, . . . , xn).
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Let � be the length of the longest edge in T and suppose without loss of generality
that � = �1,2.We then have d(x1, . . . , xn)

z
i ≥ � for i = 3, . . . , n. Now, let T1 and T2 be

minimal spanning trees of G(z, x2, x3, . . . , xn) and G(x1, z, x3, . . . , xn), respectively.
The union of these trees contains a path from x1 to x2 through z. By definition of �,
the length of this path is at least �. It follows that

d(x1, . . . , xn)
z
1 + d(x1, . . . , xn)

z
2 ≥ �.

In total, we obtain

n∑

i=1

d(x1, . . . , xn)
z
i ≥ � + (n − 2)� = (n − 1)� ≥

∑

e∈E
�e ≥ d(x1, . . . , xn),

where �e denotes the length of e. 
�
Finding the exact value of K ∗

n for n ≥ 4 remains an interesting open question.
Proposition 4.2 suggests that K ∗

n could be attained by considering a regular n-gon with
vertices x1, . . . , xn and centroid z. For n = 4, this provides the inequality K ∗

4 ≥ √
2/4.

However, for n ≥ 5, the corresponding simplex ratio is lower than (n−1)−1 and hence
not useful. Nevertheless, we conjecture that d is nonstandard if and only if n ≥ 3.

We end this section with the following proposition, which provides both an alter-
native proof of Proposition 4.3 and an upper bound for the best constant K ∗

n .

Proposition 4.4 The map d : (Rq)n → R+ that carries (x1, . . . , xn) into the total
length of a minimal spanning tree of G(x1, . . . , xn) is an n-distance on Rq . Moreover,
we have K ∗

n ≤ 2
n and this inequality is strict whenever n ≥ 3.

Proof Wecan assume thatn ≥ 3.Let x1, . . . , xn, z ∈ R
q satisfying |{x1, . . . , xn}| ≥ 2.

Let T = (V , E) be a minimal spanning tree of G(x1, . . . , xn). Let also T1 and T2 be
minimal spanning trees of G(z, x2, x3, . . . , xn) and G(x1, z, x3, . . . , xn), respectively.
Clearly, T1 ∪ T2 is a connected graph with x1, . . . , xn, z as vertices. By definition of
T , the sum of the lengths of T1 and T2 is always greater than or equal to the length of
T . That is,

d(x1, x2, . . . , xn) ≤ d(z, x2, . . . , xn) + d(x1, z, . . . , xn).

This immediately shows that d is an n-distance.
Now, proceeding similarly for the pairs (T2, T3), (T3, T4), . . . , (Tn, T1), and then

adding the resulting inequalities, we finally obtain

n d(x1, . . . , xn) ≤ 2
n∑

i=1

d(x1, . . . , xn)
z
i ,

from which we immediately derive K ∗
n ≤ 2

n . It is then easy to see that this inequality
is strict whenever n ≥ 3. 
�
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5 Total length of the Euclidean Steiner tree

The Euclidean Steiner tree problem is a variant of the Euclidean minimum spanning
tree problem that can be described as follows (see, e.g., Brazil et al. 2014; Cieslik
1998).

Given n points x1, . . . , xn in the plane R
2, the problem consists in finding the

shortest network (in the Euclidean sense) connecting the points, allowing the addition
of auxiliary points (called Steiner points) to the set with the purpose of minimizing
the total length.

A very simple argument can be used to establish that the length of this shortest
network is an n-distance.

Proposition 5.1 The map d : (R2)n → R+ that carries (x1, . . . , xn) into the length
of the Euclidean Steiner tree constructed on the points x1, . . . , xn is an n-distance on
R
2.

Proof Clearly, it is enough to establish the simplex inequality. Let S denote the Steiner
tree constructed on x1, . . . , xn . For any z ∈ R

2 and any i ∈ {1, . . . , n}, let Si denote the
Steiner tree constructed on x1, . . . , xi−1, z, xi+1, . . . , xn . Then

⋃
i Si is a connected

graph containing the points x1, . . . , xn . It follows that the sum of the lengths of the
Si ’s cannot be lower than the length of S. 
�

For n = 3, there is only one Steiner point, and it is known and easily seen that
this point is precisely the Fermat point. We then see that the map d : (R2)3 → R that
carries (x1, x2, x3) into the length of the Euclidean Steiner tree constructed on the
points x1, x2, x3 is defined by

d(x1, x2, x3) = min
x∈R2

3∑

i=1

|xi − x | .

It was shown (see Kiss et al. 2018) that this map is a 3-distance with the property that
1
2 ≤ K ∗

3 ≤ 8
15 ≈ 0.533. We now show that K ∗

3 = 1
2 , which means that this 3-distance

is standard.

Proposition 5.2 We have K ∗
3 = 1

2 and this value is attained.

Proof Let x1, x2, x3, z ∈ R
2. We can assume without loss of generality that the points

x1, x2, x3 are not collinear so that they form a nondegenerate triangle T . Suppose
first that z lies in the triangle T , including the sides. Using repeatedly the triangle
inequality, it is geometrically clear that

3∑

i=1

d(x1, x2, x3)
z
i ≥ 2 d(x1, x2, x3),

that is, Rd(x1, x2, x3; z) ≤ 1
2 . Suppose now that z lies outside T and let z∗ ∈ R

2 be
the closest point to z that lies in T . The point z∗ exists and is unique by convexity of
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T . It is then also geometrically clear that

3∑

i=1

d(x1, x2, x3)
z
i ≥

3∑

i=1

d(x1, x2, x3)
z∗
i ≥ 2 d(x1, x2, x3),

so Rd(x1, x2, x3; z) ≤ 1
2 again. Thus, we must have K ∗

3 = 1
2 . This value is attained if

T is an equilateral triangle with centroid z. 
�
In the following proposition, we provide both an alternative proof of Proposition 5.1

and an upper bound for the best constant K ∗
n .

Proposition 5.3 The map d : (Rq)n → R+ that carries (x1, . . . , xn) into the length
of the Euclidean Steiner tree constructed on the points x1, . . . , xn is an n-distance on
R
q . Moreover, we have K ∗

n ≤ 2
n and this inequality is strict whenever n ≥ 3.

Proof The proof can be immediately adapted from that of Proposition 4.4. 
�

6 Concluding remarks

We have explored four examples of n-distances based on geometric constructions.
These examples share the common feature that proving the simplex inequality is
not immediate and that finding the value of the associated best constant is rather
challenging.

It is likely that there are many other interesting examples that can be considered
and examined. Actually, there must be plenty of natural ways to construct maps that
look like n-distances. However, for many of them it may be very tricky to establish
that they are genuine n-distances and find their associated best constants.

For example, considering the planar version (i.e., q = 2) of the map introduced
in Definition 3.1, we could relax the second condition for a circle to be inner by
considering the following property.

• The circle goes through at least two points xi and x j for which ‖xi − x j‖2 is
the diameter of the circle or it goes through at least three pairwise distinct points
xi , x j , xk that are the vertices of an acute triangle.1

This new condition may provide a better intuition of what a circle “bounded” by n
points should look like, but it might make the problem more difficult to solve, even
when n = 3.

In conclusion, we observe that more general results on how to prove the simplex
inequality andfind the exact value of the associatedbest constantwill bemostwelcome.
This area of investigation seems to be very intriguing and our hope, after examining
some interesting examples in this paper, is to spark the interest and enthusiasm of
researchers in this theory.

Let us end this paper with a few interesting examples that constitute very natural
open problems.

1 We consider acute triangles only to avoid highly discontinuous situations (e.g., when considering the
three points x1 = (−1, 0), x2 = (0, 0), x3 = (1, ε) in R2 for a small value of ε).

123



Beitr Algebra Geom (2023) 64:107–126 125

• Number of lines defined by n points in the Euclidean space. Let q ≥ 2 be an
integer. Any two distinct points x, y ∈ R

q define a unique straight line through
these points. It was shown (see Kiss et al. 2018) that the map d : (Rq)n → R

that carries (x1, . . . , xn) into the number of distinct lines defined by the points
x1, . . . , xn is an n-distance on R

q . Also, the associated best constant K ∗
n satisfies

the inequalities

(n − 2 + 2/n)−1 ≤ K ∗
n < (n − 2)−1,

where the upper bound (n − 2)−1 is defined only when n ≥ 3. After examining
this question carefully, we conjecture that K ∗

n = (n − 2 + 2/n)−1 for any integer
n ≥ 2, which would imply that d is nonstandard if and only if n ≥ 3. This value
is attained, e.g., when x1, . . . , xn are pairwise distinct and placed clockwise on a
circle and z = x1.

• Diameter of the smallest enclosing ball in the Euclidean space. Let q ≥ 2 be an
integer. For any points x1, . . . , xn in Rq , we let S(x1, . . . , xn) denote the smallest
(q − 1)-dimensional sphere enclosing the points x1, . . . , xn . We conjecture that
the map d : (Rq)n → R that carries (x1, . . . , xn) into the diameter (or equivalently
the radius) of the sphere S(x1, . . . , xn) is a standard n-distance. This statement
was actually proved in Kiss et al. (2018) when q = 2. The value K ∗

n = (n − 1)−1

is attained, e.g., when x1 �= x2 = · · · = xn = z.
• Volume of the smallest enclosing ball in the Euclidean space.Consider the smallest
enclosing ball defined in the previous example and assume that n ≥ 3 − 21−q .
We conjecture that the map d : (Rq)n → R that carries (x1, . . . , xn) into the
q-dimensional volume of the ball bounded by the sphere S(x1, . . . , xn) is an n-
distance for which K ∗

n = (n−2+21−q)−1. This statement was proved inKiss et al.
(2018) when q = 2. Moreover, this value of K ∗

n is attained, e.g., when x1 �= x2
and x3 = · · · = xn = z is the midpoint of x1 and x2.
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