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Abstract—Relay channels have been heavily studied during the
last years as a means of improving spectral efficiency, availability
and coverage in combination with multiple antenna transceivers.
Relaying systems can comprise many hops but the most practical
approach for the time being would be a dual-hop system. In
addition, the simplest method of relaying in terms of transceiver
complexity is amplify and forward. In this context, we investigate
the MMSE filtering performance of a dual-hop amplify-and-
forward channel MIMO multiple-access channel and we propose
a tight lower bound for the average MMSE based on the
principles of free probability theory. The accuracy of the derived
closed-form expressions and the effect of the normalized system
parameters, such as first/second hop power/load, are evaluated
through numerical results. It is established that the performance
of MMSE receiver greatly depends on the first hop power,
while increasing the second hop power marginally improves the
performance. Furthermore, inequality conditions are expressed
for first/second hop load in order to achieve low average MMSE.

Index Terms—Amplify and Forward Relaying, Multiple Access
Channel, Minimum Mean Square Error, Large System Analysis.

I. INTRODUCTION

The Dual-Hop (DH) Amplify-and-Forward (AF) relay chan-

nel has attracted a great deal of attention mainly due to its

low complexity and its manyfold benefits, such as coverage

extension and decreased outage probability. In addition, the

MIMO Multiple Access Channel (MAC) has been studied

heavily during the last years since it comprises a fundamental

channel model for multiuser uplink cellular [1] and multibeam

return link [2] communications. In this paper, we combine

these two research areas by considering a MIMO MAC where

each user has to go through an array of AF relays in order to

reach the receiver. We consider joint Minimum Mean Square

Error (MMSE) filtering followed by single user decoding and

the figure of merit under investigation is the average MMSE.

In existing literature, the ergodic capacity assuming

Rayleigh channel has been studied in the large system through

Stieltjes’ fixed-point equations [3] and through replica analysis

[4]. Furthermore, authors in [5] have considered AF in a cel-

lular scenario with Base Station cooperation and approached

the problem using replica analysis for determining the ergodic

sum-rate for optimal and MMSE receivers. However, most of

the aforementioned results focus on ergodic capacity [6], while
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the solution is provided in the form of fixed-point equations

containing functionals of correlation and power coefficients.

In this paper, we propose a a tight lower bound for the

average MMSE following a free-probabilistic approach which

can provide solutions by solving a quartic polynomial. This

could be also seen as an extension of the work in [7] about

double-scattering MIMO channels. It should be noted that the

ergodic capacity can be also calculated by solving a quartic

polynomial as shown in [8].

The remainder of this paper is structured as follows: Section

II introduces the system model and provides a review of related

work. Section III describes the free probability derivations

and the main MMSE results. Section IV verifies the accuracy

of the analysis by comparing with Monte Carlo simulations

and evaluates the effect of the channel parameters. Section V

concludes the paper.

II. SYSTEM MODEL

The considered system model includes multiple single-

antenna users (M ), multiple single-antenna relay stations

(K) and a single multi-antenna (N ) receiver1. It should be

noted that relay stations cannot cooperate and thus precoding

optimization [9] is not possible. It is assumed that the relays

are employed for coverage extension and thus the direct link

between users and receiver is negligible and can be ignored.

Gaussian input is considered at the user-side, while neither

users nor relays are aware of the Channel State Information

(CSI). The received signal in vectorial form can be expressed

as follows:

y1 = H1

√
µx1 + z1 and y2 = H2

√
νy1 + z2 ⇔

y2 = H2H1

√
µνx1 +H2

√
νz1 + z2, (1)

where the M×1 vector x1 denotes the user transmitted symbol

vector with E[x1x
H
1 ] = I, y1 denotes the K × 1 received

symbol vector by the relays and the K × 1 vector z1 denotes

AWGN at relay-side with E[z1] = 0 and E[z1z
H
1 ] = I. The

received signal y1 is amplified and forwarded and as a result

y2 denotes the N × 1 received symbol vector by the receiver

and the N × 1 vector z2 denotes AWGN at receiver-side with

E[z2] = 0 and E[z2z
H
2 ] = I. The available power per users

is denoted by µ, while ν represents the amplification power

per relay. Finally, H1,H2 include zero-mean independent

1However, the presented analysis is straightforwardly applicable to multi-
antenna users and relays under uniform power allocation.
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identically distributed (i.i.d.) complex circularly symmetric

(c.c.s.) elements modelling fast fading.

The optimal SIC receiver involves successive interference

cancellation [10] which is highly complex and can suffer from

error propagation. In this direction, we consider a less complex

receiver which involves Mimimum Mean Square Error filtering

(MMSE) followed by single-user decoding. Since, this is a

linear operation on the received vector y2, we assume that

N ≥ M , namely the number of receive antennas is at least as

large as the number of served users. The performance of the

MMSE receiver is dependent on the achieved MMSE averaged

over users and channel realizations and is given by [11]:

mmseavg = EH1,H2

[

1

M

M
∑

m=1

mmsem

]

= E





1

M

M
∑

m=1

[

(

I+ µνHH
1 H

H
2

(

I+ νH2H
H
2

)

−1

H2H1

)

−1
]

m,m





(2)

= E

[

1

M
tr

{

(

I+ νH2

(

I+ µH1H
H
1

)

H
H
2

)

−1 (

I+ νH2H
H
2

)

}]

.

(3)

To simplify notations during mathematical analysis, the fol-
lowing auxiliary variables are defined:

M = I+ µH1H
H
1 , M̃ = I+ νH2H

H
2

N = H1H
H
1 , Ñ = H

H
2 H2

K = H
H
2 H2

(

I+ µH1H
H
1

)

= ÑM

K̃ = H2

(

I+ µH1H
H
1

)

H
H
2

β = M/K, γ = K/N (4)

where β, γ are the ratios of horizontal to vertical dimensions

of matrix H1,H
H
2 with βγ ≤ 1. It should be noted that the

values β and γ characterize the first hop (FHL) and second

hop load (SHL) respectively. In other words, FHL corresponds

to users per relay, while SHL corresponds to relays per receive

antenna.

III. FREE PROBABILISTIC ANALYSIS & MAIN RESULTS

In order to calculate the system performance analytically, we

resort to asymptotic analysis which entails that the dimensions

of the channel matrices grow to infinity assuming proper

normalizations. It has already been shown in many occasions

that asymptotic analysis yields results which are also valid for

finite dimensions [12]–[14]. In other words, the expressions

of interest converge quickly to a deterministic value as the

number of channel matrix dimensions increases. It should be

noted that while the channel dimensions K,M,N grow large

the loads β, γ are kept constant.

Using asymptotic analysis, the average MMSE can be

expressed as:

mmseavg = lim
K,M,N→∞

E
K̃,M̃

[

1

M
tr

{

(

I+ νK̃
)

−1

M̃

}]

(a)

≥ lim
K,M,N→∞

E
K̃,M̃





1

M

M
∑

m=1

λM−m+1

(

M̃
)

1 + νλm

(

K̃
)





→
∫ 1

0

F−1

M̃
(1− x)

1 + νF−1

K̃
(x)

dx (5)

where step (a) follows from [15] and F−1
X

denotes the inverse

function of the asymptotic eigenvalue cumulative density

function (a.e.c.d.f.). In the asymptotic regime, the ordered

eigenvalues can be represented by a continuous deterministic

function given by the inverse function of the a.e.c.d.f. [2], also

known as inverse transform sampling. To calculate the expres-

sion of eq. (5), it suffices to derive the asymptotic densities

of K̃, M̃, which can be achieved through the principles of

free probability theory [16]–[19] as described in the following

paragraphs.

A. Free Probability Results

Free probability (FP) has been proposed by Voiculescu [16]

and has found numerous applications in the field of wireless

communications. More specifically, FP has been applied for

capacity derivations of variance profiled [20], correlated [21]

Rayleigh channels, as well as Rayleigh product channels [7].

Furthermore, it has been used for studying cooperative relays

[22], interference channels [23] and interference alignment

scenarios [24]. The advantage of FP methodology compared

to other techniques, such as Stieltjes method, replica analysis

and deterministic equivalents, is that the derived formulas

usually require just a polynomial solution instead of fixed-

point equations. However, the condition for these simpler

solutions is that the original asymptotic eigenvalue probability

density functions (a.e.p.d.f.) of the involved channel matrices

can be expressed in polynomial form [25]. longequation

Definition 3.1: Considering a Gaussian K × N channel

matrix H ∼ CN (0, I/K), the a.e.p.d.f. of HHH converges

a.s. to the non-random limiting eigenvalue distribution of the

Marčenko-Pastur law [26], whose density functions are given

by

f∞

HHH (x)→ fMP(x, y) (7)

fMP (x, y) = (1− y)
+
δ (x) +

√

(x− a)
+
(b− x)

+

2πx
(8)

where a = (1 − √
y)2, b = (1 +

√
y)2 and η-transform, Σ-

transform are given by [13]

ηHHH (x, y) = 1− φ (x, y)

4x
(9)

φ (x, y) =

(

√

x (1 +
√
y)

2
+ 1−

√

x (1−√
y)

2
+ 1

)2

ΣHHH (x, y) =
1

y + x
and ΣHHH (x, y) =

1

1 + yx
(10)

and y = N/K is the ratio of the horizontal to the vertical

dimension of the H matrix.

Let us assume that H1 ∼ CN (0, I/K) and H2 ∼
CN (0, I/N)2.

Theorem 3.1: The a.e.c.d.f. of N is given by:

2The method described herein could be extended for variance-profiled
Gaussian matrices using the approximation in [20].
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η−1
M

(x, µ, β) =
−xµ− β µ+ µ− 1 +

√

x2µ2 + 2xµ̃2β − 2xµ̃2 − 2xµ+ β2µ2 − 2β µ2 + 2β µ+ µ2 + 2µ+ 1

2xµ
(6)

FN(x) =
1

2
+

1− β

2π
arcsin

(

β + 1

2
√
β

− (1− β)2

2x
√
β

)

+xfMP(x, β)−
β + 1

2π
arcsin

(

β + 1

2
√
β

− x

2
√
β

)

. (11)

Proof: The c.d.f. follows from eq.(7) after integration as

in [27]3.

Theorem 3.2: The a.e.c.d.f. of M is given by:

FM(x) =
1

2
− 1− β

2π
arcsin

(

− β + 1

2
√
β

+
(1− β)2 µ

2 (x− 1)
√
β

)

+xfM

(

x− 1

µ
, β, µ

)

− β + 1

2π
arcsin

(

β + 1

2
√
β

− x− 1

2µ
√
β

)

. (12)

Similarly, the a.e.c.d.f. of M̃ is given by substituting µ = ν
and β = γ.

Proof: Since a monotonic function is used for the change

of variable, the c.d.f. follows from FM(x) = FN

(

x−1
µ

)

.

Lemma 3.1: The a.e.p.d.f. of M converges a.s. to:

f∞

M
(x, µ, β)→

√

(

x− 1− µ+ 2µ
√
β − µβ

) (

µ+ 2µ
√
β + µβ − x+ 1

)

2µπ (x− 1)
.

(13)

Proof: The a.e.p.d.f. can be calculated considering the
chain rule through the transformation z(x) = (1+µx), where z
and x represent the eigenvalues of M and HHH respectively:

f∞

M
(x) =

∣

∣

∣

∣

1

z′(z−1(x))

∣

∣

∣

∣

· f∞

HHH (z−1(x)) =
1

µ
f
HHH

(

x− 1

µ

)

. (14)

Theorem 3.3: The inverse η-transform of M is given by (6)

at the top of the page.

Proof: Due to lack of space only an outline of the proof is

provided. The proof is based on the definition of η-transform

[13] using Cauchy integration after appropriate change of

variables as in [23].

Theorem 3.4: The inverse η-transform of K is given by:

η−1
K

(x) =
1

1 + γx− γ
η−1
M

(x) (15)

Proof: Given the asymptotic freeness between unitarily

invariant matrices Ñ and M, the Σ-transform of K is given

by multiplicative free convolution:

ΣK(x) = Σ
Ñ
(x)ΣM(x)

(a)⇐⇒
(

−x+ 1

x

)

η−1
K

(x+ 1) =
1

1 + γx

(

−x+ 1

x

)

η−1
M

(x+ 1),

where step (a) combines Σ-transform definition [13] and eq.

(10). The variable substitution y = x+ 1 yields eq. (15).

Theorem 3.5: The Stieltjes transform of K is given by the

solution of the quartic polynomial:

3It should be noted that the expression in [27, Eq.(4)] contains an error in
the second term.

2µ2x2SK(x)4

+
(

2µ2x2 + 4 (1− β)µ2x
)

SK(x)3

+
(

2
((

2− β − γ−1
)

µ2 − µ
)

x+ 2 (β − 1)2 µ2
)

SK(x)2

+
(

2
(

1− γ−1
)

µ2x+ 2 (β − 1)
(

γ−1 − 1
)

µ2 + 2 (β − 1)µ
)

SK(x)

+
(

γ−1 − 1
)2

µ2 + 2γ−1µ+ 1 (16)

Proof: The Stieltjes-transform of a positive semidefinite

matrix K can be derived by its η-transform using

SK(x) = −ηK(−1/x)

x
. (17)

Applying suitable change of variables yields:

xη−1
K

(−xSK(x)) + 1 = 0. (18)

Inserting eq. (6) completes the proof after some algebraic

simplifications.

Lemma 3.2: The a.e.p.d.f. of K is obtained by determin-

ing the imaginary part of the Stieltjes transform S for real

arguments:

f∞

K
(x) = lim

y→0+

1

π
I {SK(x+ jy) } (19)

and the a.e.p.d.f. of K̃ is given by:

f∞

K̃
(x) =

(

1− 1

γ

)+

δ (x) +
1

γ
f∞

K
(x). (20)

Remark 3.1: The average MMSE mmseavg is given by eq.

(5) where F−1

M̃
(x) can be calculated using inversion over

the a.e.c.d.f. in Theorem 3.2 and F−1

K̃
(x) using numerical

integration and inversion over the a.e.p.d.f. in lem. 3.2.

IV. NUMERICAL RESULTS

In order to verify the accuracy of the derived expressions

and gain insights on the system performance of the considered

model, some numerical results are presented in this section.

In the context of these simulations, the Gaussian matrices

H1,H2 are randomly generated for 103 fading instances and

the resulting capacity is calculated by averaging according to

eq. (2). Figure 1 depicts the effect of power levels (µ, ν) on

the average MMSE for β = γ = 1. The upper mesh plot

was calculated through Monte Carlo simulations of eq. (2),

whereas the lower mesh plot represents the bound which was

calculated using Remark 3.1. It can be seen that the proposed

bound is tight for all values of µ, ν. It should be noted that

the average MMSE decreases substantially with µ, while it

slowly decreases with ν. Subsequently, Figure 2 depicts the

effect of number of relays K on the average MMSE while

keeping a constant number or users and receive antennas

M = N = 10. Solid curves are plotted analytically, while

points are calculated based on Monte Carlo simulations. It

can be seen that when the number of relays is lower than the

number of users/receive antennas, namely β > 1 and γ < 1,

the average MMSE degrades. Increasing the amplification

level on the relays (ν = 40dB) only provides marginal gain.
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V. CONCLUSION

In this paper, a large system analysis of DH AF MIMO

MAC was considered. We considered the average MMSE

which dictates the performance of single-user receivers after

multiuser MMSE filtering. A tight lower bound for the average

MMSE was proposed based on an eigenvalue-based trace

inequality for products of matrices. The bound has been ex-

pressed using the a.e.c.d.f. of certain functions of first/second

hop channel matrices, which were subsequently calculated

using free-probabilistic arguments. Finally, it was shown that

in a DH AF MIMO MAC deployment with MMSE filtering

the following conditions between first and second hop load

should apply, β ≤ 1 and βγ ≤ 1, in order to achieve low

average MMSE.
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[13] A. M. Tulino and S. Verdú, “Random matrix theory and wireless
communications,” Commun. Inf. Theory, vol. 1, no. 1, pp. 1–182, 2004.

[14] C. Martin and B. Ottersten, “Asymptotic eigenvalue distributions and
capacity for MIMO channels under correlated fading,” IEEE Trans.

Wireless Commun., vol. 3, no. 4, pp. 1350–1359, Jul 2004.
[15] J. Lasserre, “A trace inequality for matrix product,” IEEE Trans.

Automat. Contr., vol. 40, no. 8, pp. 1500 –1501, aug 1995.
[16] D. Voiculescu, “Asymptotically commuting finite rank unitary operators

without commuting approximants,” Acta Sci. Math., vol. 45, pp. 429–
431, 1983.

[17] F. Hiai and D. Petz, “Asymptotic freeness almost everywhere for random
matrices,” Acta Sci. Math. (Szeged), vol. 66, pp. 801–826, 2000.

[18] ——, “The semicircle law, free random variables and entropy,” Mathe-

matical Surveys and Monographs, vol. 77, 2000.
[19] Z. D. Bai, “Methodologies in spectral analysis of large dimensional

random matrices, a review,” Statistica Sinica, vol. 9, pp. 611–677, 1999.

0

10

20

30

40
0

10

20

30

40

−40

−35

−30

−25

−20

−15

−10

µ
ν

m
m

se
a
v
g

Fig. 1. Average MMSE scaling vs. power levels µ, ν in dBs . Parameters
β = γ = 1. The proposed lower bound is tight for all µ, ν.

2 3 4 5 6 7 8 9
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

Number of Relays K

m
m

se
a
v
g

 

 

ν = 0dB Analysis
ν = 0dB Simul
ν = 40dB Analysis
ν = 40dB Simul

Fig. 2. Average MMSE scaling vs. number of relays K. Parameters M =
N = 10, ν = 0, 40dB.

[20] S. Chatzinotas, M. Imran, and C. Tzaras, “On the capacity of variable
density cellular systems under multicell decoding,” IEEE Commun. Lett.,
vol. 12, no. 7, pp. 496 – 498, Jul 2008.

[21] S. Chatzinotas, M. Imran, and R. Hoshyar, “On the multicell processing
capacity of the cellular MIMO uplink channel in correlated Rayleigh
fading environment,” IEEE Trans. Wireless Commun., vol. 8, no. 7, pp.
3704–3715, July 2009.

[22] Z. H. Husheng Li and H. Poor, “Asymptotic analysis of large cooperative
relay networks using random matrix theory,” EURASIP Journal on

Advances in Signal Processing, 2008, article ID 235867.
[23] S. Chatzinotas and B. Ottersten, “Free probability based capacity

calculation of multiantenna Gaussian fading channels with cochannel
interference,” Physical Communication, vol. 4, no. 3, pp. 206 –
217, 2011, Recent Advances in Cooperative Communications for
Wireless Systems. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1874490711000188

[24] ——, “Interference mitigation techniques for clustered multicell joint
decoding systems,” EURASIP Journal on Wireless Communications and

Networking, Multicell Cooperation for Next Generation Communication

Systems Series, vol. 132, 2011. [Online]. Available: http://jwcn.
eurasipjournals.com/content/2011/1/132

[25] N. Letzepis and A. Grant, “Shannon transform of certain matrix
products,” in Information Theory, 2007. ISIT 2007. IEEE International

Symposium on, june 2007, pp. 1646 –1650.
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