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Abstract

Topology in condensed matter physics is a field that has exploded in the last two
decades. With the realization of its importance, some previously unexplained ob-
servations can now be explained. With the progress of time, many new topological
phases of matter have been discovered, and topological materials have been shown
to be fairly common in nature. Topological materials have further been shown to
have properties that may be extremely useful for new technologies, such as spin-
tronics and fault-tolerant quantum computation. The field is however, still evolving,
and many properties of these materials are still unknown. In this thesis, we inves-
tigate how some of these types of materials react to applied external fields and the
theories that can explain these observations.

First, we investigate systems of coupled Majorana bound states. More specifi-
cally, we focus on the transport properties of the Majorana box and the T-junction
in the presence of charging effects, overlap between the Majorana bound states, and
multiple terminals connected to the system. To obtain the transport properties, we
apply a master equation and calculate the current through the systems as biases are
applied to the different terminals. By tuning the gate voltage, the transport is in-
vestigated in both the regime where sequential tunneling is dominating as well as
the Coulomb blockaded regime, where cotunneling is the leading transport process.
When sequential tunneling is dominating, the transport is mediated by both single
electrons tunneling as well as processes that involve the creation and annihilation of
Cooper pairs. In the Coulomb blockaded regime, transport is driven by cotunneling
processes by transitions via virtual states. The results here show that four-terminal
measurements can be a useful tool to characterize the properties of Majorana bound
states with finite overlap and charging energy.

Secondly, we study the optical activity of tilted nodal loop semimetals. The in-
herent Hall conductivity of topological materials makes the Kerr effect an excellent
tool for investigating their properties. Here we first calculate the full conductivity
tensor for a tilted nodal loop semimetal, where the tilt is in the k, — k; plane. The
conductivity tensor allows us to calculate the Kerr effect. We study this both for
a thin film and a bulk material and we fin, in general, that the Kerr effect is large,
similar to other topological materials.

Finally, we investigate electronic hydrodynamics in anomalous Hall insulators.
First we derive the Navier-Stokes equations for topological materials and show that
they are modified due to the Berry curvature. Secondly, we consider the flow in a

narrow channel and the application of a small electric field. In this case, the Hall
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current can be neglected since it is much smaller than the longitudinal current. Flow
in narrow channels conventionally leads to Poiseuille flow. However, as shown, the
Berry curvature modifies the flow profile and shifts the maximum of the current pro-
tile towards one of the edges. Thirdly, we study the flow in an infinite geometry. In
this case, it is shown that the Berry curvature induces whirlpools as well as causing
an asymmetry in the profile of the electrical potential. Experimentally this can be
observed by measuring the non-local resistance.
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Chapter 1

Introduction

1.1 Introduction

The development of condensed matter physics has been an exciting and blooming
field of research for the last two centuries. One of the early observations came
from the experiment by Edwin Herbert Hall, measuring a transverse voltage due
to applied electric and magnetic fields [61]. The resulting transverse voltage is now
known as the Hall voltage, and the effect itself as the Hall effect. Another important
discovery was made in 1911 by Heike Kamerlingh Onnes, observing a vanishing re-
sistance in mercury upon cooling the material to small temperatures (< 10K) [45].
This effect is known as superconductivity. The experiment has since been followed
by many others.

As the experimental observations progressed, it still took many years before the
effects could be adequately explained, and a theoretical groundwork was laid out.
The Hall effect could first be explained as the electron was discovered but then in
terms of classical physics. Superconductivity, on the other hand, required the frame-
work of quantum mechanics [16]. As quantum mechanics entered the picture, many
other observations were also explained, and a powerful tool now existed to make
new predictions.

With the technological improvements and the demand for better technologies,
the importance of quantum mechanics has become even more evident. First, this
is because many effects cannot be explained from a classical perspective. Second,
many new technological improvements of devices require that they are made smaller.
As we shrink devices, quantum mechanical effects become more evident. This be-
comes clear in, e.g., quantum dots, structures so small that they are essentially zero-
dimensional and can be considered an artificial atom, [10].

A topic of condensed matter physics that has seen a considerable upswing in the
last decades is topology. The importance of the discovery was to the extent that it
awarded David J. Thouless, F. Duncan M. Haldane, and J. Michael Kosterlitz with
the noble prize in 2016. Topology has led to many new exciting features. One impor-
tant example is the quantized Hall conductivity first observed in the integer quan-
tum Hall effect, [84].
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Another interesting feature due to topology is edge and surface states that present
themselves in some two and three-dimensional materials, respectively. An example
of a topologically non-trivial two-dimensional material is the quantum spin Hall
state, also more generally known as the topological insulator, [76, 23]. In three di-
mensions, there are different types of semimetals, such as the Weyl semimetal [166].
One of the essential features of the edge and surface states is that they are what is
denoted as "topologically protected". This makes them stable even in the presence
of different types of perturbations.

It is indeed the case that topology has also been carried over to superconducting
materials. Just like the quasiparticles of topological insulators and those of Weyl
semimetals are analogs to relativistic Dirac and Weyl fermions, respectively, so are
those of topological superconductors. These are due to Ettore Majorana and are now
known as Majorana fermions. The importance of Majorana fermions is that they may
make topologically protected quantum computation realizable [139].

To develop new applications or just to please one’s curiosity, these types of mate-
rials have to be understood. We can do this in many different ways, but as theorists
we should develop a theory that can explain or lead to new experiments. Such ex-
periments might be measurements of the electron transport through the material by
applications of different currents and voltages. Another way is to study how the
material interacts with light. For example, we can do this by measuring the proper-
ties of the reflection and transmission of an incident beam on the material surface.
Some materials may change the properties of the light such that the reflected and
transmitted beams are different from the incident one in more than their propaga-
tion direction. This is what is known as the Kerr and Faraday effects, respectively.

1.2 Outline

This thesis explores a variety of different topics. The structure is in the following
manner: The thesis begins with a brief history and introduction to topology in con-
densed matter physics and how it is related to the concept of topology in mathemat-
ics. A discussion on some of the implications of topology as well as some common
material classes are discussed. This chapter is then followed by three chapters on
which this thesis is mainly based upon, where every chapter includes a small intro-

duction, specific to the material of that chapter.

Chapter 3 is based on the results obtained in the paper titled Transport in coupled
Majorana bound states. The chapter begins with giving an introduction to Majorana
physics and explain how they can possibly be realized. We thereafter discuss two
different setups of hosting Majorana bound states and the transport properties of
these setups. Importantly the effects of finite overlap between the Majorana bound

states and Coulomb interactions are taken into account.
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In Chapter 4 we explore the Kerr and Faraday rotation of Nodal loop semimetals.
This chapter is based on the paper titled Kerr effect in tilted nodal loop semimetals. Here
the conductivity tensor for a tilted nodal loop semimetal is calculated using the Kubo
formalism. With the knowledge of the conductivity tensor, the Kerr angle and ellip-
ticity are calculated for both a thin film and a semi-infinite bulk material. The results
give predictions on what different experimental measurable quantities correspond
to with respect to the properties of the nodal loop. This includes the tilt velocity, tilt
angle, and radius of the nodal loop. The theory we developed to obtain the results
for the Kerr angle along with the theory for calculating the Faraday angle was fur-
ther applied to obtain the Kerr and Faraday angles in the paper Optical properties of
topological flat and dispersive bands.

Chapter 5 discuss the theory of electronic hydrodynamics. At first, an introduction is
given, discussing the applicability of the theory, and furthermore it is presented how
to obtain the hydrodynamic equations. To come to the final equations, we specifi-
cally consider a two-dimensional Hall material. This lead to the results obtained in
the paper Hydrodynamic equations of two dimensional anomalous Hall materials.

Finally, a conclusion and future prospects are presented in Chapter 6.






Chapter 2

Topology in condensed matter
physics

We begin this work by giving an introduction and an overview of the field of topol-
ogy and how to apply it in condensed matter physics. We will further explain some
different materials and how topology plays a role in some of the properties of these
materials where topology plays an important role.

2.1 Topology

Topology originally stems from the field of mathematics and concerns itself with
classifying different geometrical objects. However, the first real-world problem to
which topology was applied was in a study made by Leonard Euler in the 18th
century. The problem is the famous Bridges of Konigsberg problem [148], that was
posed by inhabitants of the city. The problem is as follows: The city was located on
ariver fork with an island in the center. The river hence separated the land into four
areas which had been connected by a set of bridges, as seen in Fig. 2.1. Now, the
question is, can a person stroll through the city and cross the bridges once and only
once?

The problem is of a topological nature because the issue here is the connectivity
rather than the specific geometry or the distance between the bridges and the islands.
The paper that presented the solution was at the starting point of the foundational
papers of modern mathematics. As we shall soon see, the field of topology has
evolved into an essential tool in many areas, not just mathematics but, among others,
the field of condensed matter physics. Before we delve into this, let us briefly discuss
what its meaning is for classifying surfaces.

Two objects or, more precisely, two surfaces have the same topology if one can
deform the surface of one and turn it into the other without tearing, gluing or poking
holes in its surface. This means that a sphere and a torus do not have the same
topology since to turn a sphere into a torus, one has to make a hole in the sphere. On
the other hand, the topology of a torus and a cup is the same since we can smoothly
shape the cup into a torus. The mathematical quantity describing the topology of a
surface is the genus. The genus of a surface essentially states how many "holes" the
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FIGURE 2.1: Cartoon of the city of Kénigsberg. The city is divided

into four islands marked by capital letters. The lowercase letters mark

the crossings. The question stated by the inhabitants reads: Can a

person go on a stroll through the city and only cross the bridges once
and only once?

object has. Hence the genus of a sphere is zero since it has no holes, while the genus
of a torus has a genus of one. The genus is further said to be a topological invariant
since it does not depend on the exact shape of the surface but only on the number of
holes.

To mathematically be able to quantify the genus of a surface, one can introduce
the concept of Gaussian curvature, which we denote by K. The Gaussian curvature
tells how the surface changes locally. By orienting the surface such the point P lies
in the tangent plane described by z(x,y) = 0, K can be defined as

Pe 9.9
K(P) = wzlp :dyz[p) 2.1)

ayaxz‘p aﬁz‘P

A beautiful theorem named after the mathematicians Gauss and Bonnet then states

the the surface integral of K equals the Euler characteristic [114], i.e.

1
X=5- /5 JAK, 2.2)

where x is the Euler characteristic. The Euler characteristic is directly related to the
genus ¢ of the surface by: xy = 2 — 2¢. For example, for a sphere K = 1/R?, with R
the radius of the sphere. Performing the integral, Eq. (2.2), one obtains x = 2, which
further implies that ¢ = 0, as expected for an object without a hole.

This concludes this section where we have presented the essential concepts of
topology in mathematics. These will prove to have analogies in the field of con-

densed matter physics, which we delve into in the next section.
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2.2 Topology in condensed matter physics

Just as topology can be used to classify different objects, it was discovered that topol-
ogy could also be applied in the field of condensed matter physics. The discoveries
led to the Nobel prize being awarded to the physicists David ]. Thouless, F. Duncan
M. Haldane, and J. Michael Kosterlitz. It has been shown to have a significant im-
pact as it serves as a tool to characterize different phases of matter and explain many
properties of different types of materials.

Similar to the geometrical concept of topology, topology in condensed matter
physics has to do with smooth deformations. In this case, insulators are said to be
topologically equivalent if their Hamiltonians can be smoothly deformed into each
other without closing the energy gap.

Not only has the field of topology in condensed matter physics led to a way of
characterizing materials, it has also led to technological advancements beyond just
the characterization. It has turned out to have important implications for electron
transport which in turn can be proven useful for different applications.

Another application of topology in condensed matter physics is towards the cre-
ation of topological quantum computation. This followed with the discovery of
topological superconductors and Majorana bound states. This is still a complicated
field, but if successful could lead to revolutionizing progress for the field of quan-
tum computation. In this context, it must not only involve the band structure of the
material but a general parameter space where we adjust some parameters, of the
system under consideration, adiabatically.

The starting point of the story of topology and its importance in condensed mat-
ter physics can, of course, be discussed, but one recognized starting point is the
quantum Hall (QH) effect . The story then continues with some concepts that play
an essential role for topology in condensed matter physics. This is then followed
by an overview of some more exotic materials such as quantum spin Hall insulators
and topological insulators, and topological semimetals. Thus, let us dive back into
the history of topological materials and as well introducing some of the important

concepts.

2.2.1 Quantum Hall materials

The first step towards the rise of topology in condensed matter physics came from
the discovery of the QH effect. In Hall experiments, a magnetic field is applied per-
pendicular to a sample. As a bias voltage is applied, which generates an electric
field inside the material, it is possible to measure a longitudinal current and a trans-
verse voltage difference. This is readily explained by using a semiclassical picture
to describe the motion of the electrons. When the magnetic field is applied, the mo-
mentum of the electrons is not only proportional to the electric field but furthermore
acquires a term produced by the Lorentz force that is perpendicular to the direction
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I
[¥]

ko b

FIGURE 2.2: Measurement of the (integer) quantum Hall effect. The
figure is adapted from [160]

of the electron trajectory. An interesting result is that the Hall resistivity (transverse

resistivity) is proportional to the magnetic field [44]

b= 3)
where e is the electron charge and 7 is the electron density. Furthermore, the Hall
resisitvity is independent of sample dimensions making it a powerful quantity to
measure for example the electron density of a material.

As technology advanced, the same setup was studied but with the application
of strong magnetic fields. In this endeavor, von Klitzing discovered that the Hall re-
sistivity, p;;, strongly deviates from what one expects, giving the Hall measurements
at small magnetic fields. The result from the measurements is depicted in Fig. 2.2.
For small magnetic fields, the resistivity behaves as one would expect from the clas-
sical formulation and what had been previously observed. However, as the applied
magnetic field is increased, one sees plateaus appearing in p,,. These are shown to

exactly correspond to
h1

=5 (2.4)

Pxy

where v is the filling factor. For the integer quantum Hall effect v € Z. However, in

general, v can take any number. Inverting the resistivity leads to the conductivity

&2

ny - EV. (2.5)

The conductivity is hence quantized and takes, for the integer quantum Hall (IQH)
effect, only integer values times one-half of the conductance quantum, Gy = 2¢?/h.
This is recognized as one of the first observations of topology in condensed matter
physics. Another feature of the QH effect is the formation of edge states. Because
of the magnetic field, the electrons are localized to cyclotron orbits. The cyclotron
orbits are quantized and are the reason for the formation of the so-called Landau
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levels. In a classical picture, the electrons move in cyclotron circles. However, the
electrons that are close to the edge of the sample cannot complete the orbit. This
forces them to move along the edge by skipping orbits. These skipping orbits are
what are now known as the edge states.

The quantized conductivity, Eq. (2.5), is a robust feature of a quantum Hall sys-
tem. The phase transition between the system with quantized conductivity and the
system with continuous conductivity cannot be explained by Landau theory. It can
however be explained by a topological invariant. We delve into this concept in the
following sections!

2.2.2 Berry connection, Berry curvature and Berry phase

One important ingredient in the study of topology in condensed matter systems is
the Berry connection, curvature, and phase. In 1984 Micheal Berry discovered the
Berry phase. It was at that time coined and is to some extent still known as the "Ge-
ometrical phase" [25]. The reason for its importance is not very complicated. The
wave function is, in quantum mechanics, defined up to a phase, which in most cases
is neglected as an irrelevant factor. However, as noticed by Berry, this cannot always
be done. The phase can have observable consequences for a system that undergo an
adiabatic change. Here "adiabatic change" is in the quantum mechanical sense. This
means that a physical system remains in an instantaneous eigenstate if a perturba-
tion is acting slowly and there is a gap between the corresponding eigenvalue and
the rest of the spectrum of the Hamiltonian. To give a more precise mathematical
statement, consider a Hamiltonian H(R) that depends on the collective parameters
R(t). The Hamiltonian satisfies the Schrodinger equation, and the eigenstates at
t = 0 are given by

H(R(0)) [n,R(0)) = Ex(R(0)) [, R(0)). (2.6)

Now we are interested in the time evolution of the eigenstates. By the assumption
of adiabaticity, we know that the system remains in the same eigenstate. As such the
time-evolved state, [¥(f)) can only differ from |1, R(0)) by a phase factor. Hence,
one makes an anzats for the time evolved state and shows that it satisfies the time-

dependent Schrodinger equation. The eigenstate that solves the problem is

¥ (t)) = exp {m(t) - i/otdsEn(R(s))] I, R(t)) . 2.7)

Here the second term in the exponential is the dynamical phase. It is the first term
however that is of special interest. After some further mathematical manipulations
one finds that it can be written as

~ (R(1)
mlt) =i [ o) @R 1 R)| Tr | R(6) 2.8)



10 Chapter 2. Topology in condensed matter physics

This quantity, v, is what is the so-called Berry phase. Now the interesting fact about
the Berry phase is that if we suppose that the system executes a closed loop in R
space, such that R(0) = R(T) then the integral in the expression for the Berry phase
seems to vanish. However, since the integrand is not necessarily a total derivative,
the integral will not always become zero.

The quantity under the integral sign of the Berry phase is the so called Berry
connection. Opposite to the Berry phase this is a gauge dependent quantity and can
hence not be observed in any experiments. We write the Berry connection as

A=—i(nR(t)| Vg |n,R(t)). (2.9)

Assuming that we are considering a 3-dimensional space and that the system exe-
cutes a closed loop, C in R space, then the Berry curvature can be re-written using,
Stokes theorem, to obtain

Yn = / s - Q, (2.10)
S

where
O =V xA, (2.11)

is the Berry curvature and S is the surface with boundary given by C. The Berry
curvature has several important consequences. It for example plays an important
role in the definition of the Chern number as well as it shows up as a modification of
the semiclassical equations of motion. Comparing to Eq. (2.2) we note that the Berry
curvature plays a similar role to the Gaussian curvature. Let us now explore some
of the implications of the Berry curvature, the previously mentioned Chern number
and how it modifies the semiclassical equations of motion.

2.2.3 Chern number - a topological invariant

We will now briefly discuss the Chern number and its relation to the IQH effect,
the Berry phase and also how it is related the to genus of surfaces. For this we will
consider a non-interacting particle on a two dimensional lattice and whose wave

function in k space is described by the Bloch functions

Pic(x) = ¢ Xuge(x), (2.12)

where we assume that uy is periodic on a unit cell. The electron moving within each
band can take momenta given by
T T T T
——<ki<—=, - <k, <+ 2.13
a Yo b YT b @13
where a and b are the distances between the lattice sites in the x and y directions,
respectively. This corresponds to a Brillouin zone (BZ) defined by a tours, T?. Fur-

thermore, apart from assuming that the electrons are non-interacting, we have to as-

sume that the spectrum of the particles forms bands that can each be parameterized
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by k that belongs to the set spanned by T?. We also assume that the Fermi-energy,
EFr lies between the bands such that all bands below Ef are filled, and the ones above
are empty.

Under the above assumptions one can assign, to every band, a topological invari-
ant that is the so-called Chern number. This is a consequence of how the phase of the
states winds as we move around T?. This can be formulated by a Berry connection
over T?,

Ai(K) = —i (1 - 1. (2.14)

We can here draw a parallel to the Berry connection introduced in the previous sec-
tion by identifying the space of parameters, R with the space spanned by k. We now
calculate the field strength that is associated with the Berry connection,

ou ./ du|du

Integrating this quantity over the whole Brillouin zone can result in either that it is

0A, dA, /[ ou
fxy_aky_ak __Z<aky

X

zero or an integer, hence

1
- /B dkudky Fry = C, (2.16)

where C € Z. This is the Chern number. We can furthermore for every band i
associate a Chern number C. Now, we want to somehow relate this with the IQH
effect. This was considered in the seminal work by Thouless, Kohomot, Nightingale,
and den Nijs [159]. By applying the Kubo formula, they could essentially show that
(a detailed calculation can be found in [24])

h
Zci = 30 (2.17)

Hence we see that the conductivity is directly proportional to the sum of the Chern
numbers of the occupied bands. This explains the quantized Hall conductivity ob-
served in Fig. 2.2.

We have already elucidated on its connection to the Berry phase. We further note
that as perturbations to the system remain small, such that the adiabatic theorem
holds, the system will remain in a specific state. Thus the Chern number should
remain invariant as long as the system is not subject to any large perturbations.

Finally, we remark that the Chern number is related to the Euler characteristic by
observing the close relationship between the Gauss-Bonnet theorem, Eq. (2.2), where
essentially the Berry curvature takes the role of the Gaussian curvature.

2.2.4 Modified semiclassical equations of motion

One of the oldest problems in condensed matter physics is that of the dynamics of
Bloch electrons under the applications of various fields. This has long been studied
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and the dynamics that were initially discovered can be written as [9]

. 109¢,
=t (2.18)
hk=—e(E+ixB), (2.19)

where 1 is the electron velocity in the one-band approximation and £ is the energy
spectrum of the nth band. The second equation describes the dynamics of the quasi-
momentum k, which is governed by the Lorentz force, where E and B are the exter-
nal applied electric and magnetic field, respectively. These equations are known as
the semiclassical equations of motion. However, not so long ago it was proven that
these equation are not final [33]. They should in fact be modified to include a term
that involves the Berry curvature.

To derive the semiclassical equations of motion. we consider a wave packet,
write the Lagrangian for it and obtain the dynamics by writing the Euler-Lagrange
equations [33]. First, we define the Hamiltonian that governs the dynamics of the
wave packet. This is given by

He 2 [in? 4 ono(e) - eon(en)] 4 Vi), (2.20)
2m or
where Aj is the vector potential of a uniform magnetic field, —d6A/dt = E and
V x §A = /B are external applied fields that can vary in space and time, and are
small such that they can be considered as perturbations. Finally, V(r) is the periodic
potential. The wave packet is constructed from the Bloch functions |¥,(k)) (for
applied magnetic fields these are the magnetic Bloch functions), such that

Wo) = [ dicw(k,) ¥, (K)), (2.21)
where w(k, t) is the envelope function. The envelope function has to fulfill that
I = /dkk|w(k,t)|2 2.22)

This implies that w(k, t) has a sharp distribution in the Brillouin zone such that
it makes sense to speak about a wave packet. Furthermore, it has to be localized
around its center of mass, 1., in real space, such that

e = <W0| r |W0> . (2.23)

The wave packet is depicted in Fig. 2.3. By a calculation we can obtain

Wolx ) = [ di [w0" ()il + [ () i [0 |, 228
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(a) (b)

; k.

FIGURE 2.3: Illustration of the constructed wave packet in (a) real
space and in (b) momentum space. The wave packet can possibly
rotate due to an orbital magnetic moment.

where 3
Ak) =i {(k)| 5 (k) ey - (2.25)
and |u,(k)) = e ™7 |¥,(k)) (see Eq. (2.12)). Here cell denotes that the integral
should be over the unit cell (if magnetic fields are applied this should be the mag-
netic unit cell). This can clearly be seen to coincide with the Berry connection in
k space (compare this with Eq. (2.9)). We now seek the Lagrangian for the wave
packet. By a time dependent variational principle the Lagrangian can be written
[89]
. . 0
L(re, ke, te, ko) = (W] zh§ W) — (W|H|W), (2.26)
where |W) is a wave packet centered at r. and k. in the presence of external fields. A

gauge can always be chosen such that the vector potential /A is locally gauged away
for a specified point r = r. [33]. The wave packet |IW) can then be approximated by

W(r) = e hOAlt) TN (1), (2.27)

We now evaluate the terms of the Lagrangian. First we expand the Hamiltonian
and neglect terms that are quadratic in JA. For the first term we obtain

<W0’ ihaat ‘WO> — _6(5A . rc + hkC . fc + hkc . A(kc), (2.28)

where we used that the amplitude can be written w(k, t) = |w(k, t)|e~"7!!) and that
|w(k, t)]* ~ 6(k — k.). The second part is given by

e

(W] H W) ~ &(ke) + —0B - (Wo| L |Wo), (2.29)

2m
where L = (r — r.) x P and P is the mechanical momentum operator corresponding

2m
metric gauge for which §A(r,t) = —Et + 30B x r. The second term of Eq. (2.29) is
a correction to the energy due to an orbital magnetic moment of the wave packet.

2
to Hy = {—ih% + er(r)] + V(r) , and where we have explicitly used the sym-
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Assembling the two above equations the Lagrangian is written as

Lﬁmhjwh):—MAﬁJyn+%hpn+hhuA&J—5&J+E%M}L&L
(2.30)
where L(k) = (Wy|L |Wp). This equation can be shown to be gauge invariant be-
cause under a gauge transformation for Ay(r) will only change L by a total time
derivative. This also holds when specifying a different gauge for 6B and implies
that the dynamics are invariant under a gauge transformation. The dynamics are

now found by applying the Euler-Lagrange equation, & (%) — &2 = 0. We then
obtain
'—li(fj (k)+i53-L(k)) ~ k% O (K) (2.31)
"ok Y T o A '
k = —¢E — ef x /B, (2.32)

where 0, (k) = V x A(k) is the Berry curvature. We have here also omitted the
subscripts. From the first equation, we see the modification due to the Berry cur-
vature that will induce a transverse component to the velocity, . Hence, this term
plays an essential role in understanding different transport phenomena. Let us, for
example, consider the current in two dimensions,

ez / Bt (2.33)

where f(k) is the Fermi distribution [147]. Let us assume that all bands below the
Fermi levels are filled, and those above are empty. This results in the first term of
Eq. (2.31) equals zero. The second term defines the Hall current,

Jo = onenpEg, (2.34)

where ¢, is the Levi-Civita symbol and

oy = 271 . Z / Ay .. (2.35)
It furthermore follows that

N, = Wosmh, = ey (2.36)

Because of this the first Brillouin zone forms a torus. The above expression assumes
that the valence band is fully occupied and that there is a gap to the conduction band
that is empty. Integrating over a closed torus gives an integer and hence

2

oy = Vﬁ‘ (2.37)

This again proves the quantization of the Hall conductivity. This is just one example
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of many. For an extensive review on Berry curvature effects on electronic properties,
see for example [177]. Furthermore, in Chapter 5, we extend this to understand the
effects of the Berry curvature in electronic hydrodynamics.

We have now, in the preceding sections, explained a few concepts that are im-
portant for understanding some of the physics that is observed in different materi-
als from a perspective of topology. Importantly we saw that for a 2D system in a
strong magnetic field, the Hall conductivity is directly related to the Chern number.
However, a net magnetic field is not necessary. This was shown when Haldane con-
sidered a system where the lattice is threaded by different magnetic fluxes such that
the net magnetic field is zero [60]. This system is known as a Chern insultor. The key
for the non-zero Hall conductivity is the breaking of time-reversal (TR) symmetry.

2.3 Quantum spin Hall effect and Z,-invariant

In the previous section, we discussed Hall materials as the starting point of topology
in condensed matter physics. We further introduced the concept of Berry curvature
and showed how this leads to the topological invariant, the Chern number. We
finally noted that the critical feature, as discovered by Haldane, [60], is the breaking
of TR-symmetry. However, in 2005, Kane and Mele discovered a new state of matter
that is symmetric under TR and for which furthermore a topological invariant can
be defined. This state of matter is the quantum spin Hall (QSH) state, [76, 77].

The key idea of this state is the spin-orbit coupling, which acts as a magnetic field
that is opposite for the different spin directions. As a result, electrons with opposite
spin experience separate quantum Hall effects. Hence the QSH state can be viewed
as two copies of the IQH state, where electrons with opposite spins propagate in
opposite directions along the edges. Becuase of this the edge states are also known
as being helical.

The fact that TR symmetry is preserved implies that the Chern number equals
zero. However, this state is still not a normal insulator. Another topological invari-
ant can be defined, the Z; invariant, which may take the values v = 0 or v = 1. One
consequence of this is that the edge states should be robust to perturbations. To un-
derstand the Z, invariant, one has to understand the implications of TR symmetry.

Time-reversal means that ¢t — —t. This implies that p -+ —p and ¢ — —o.
Formally this is written 7 1p7 = —pand T 'oT = —o. Here T is the TR operator.
One property of this operator is that it squares to minus one, 72 = +1. When
it squares to plus or minus one, it leads to what is known as Kramer’s theorem,
which states that all eigenstates of a TR invariant Hamiltonian are at least two-fold
degenerate [138]. Because of Kramers theorem, eigenstates with momenta —k and
k, and given that the Hamiltonian has translational symmetry, must have the same
energy. As a result, there are only certain points in the Brillouin zone where a pair
of degenerate states exist, known as TR invariant momenta.



16 Chapter 2. Topology in condensed matter physics

To understand the Z, invariant, we argue from the perspective of the bulk-
boundary correspondence [53]. Consider a band structure with a gap separating
the valence and conduction bands. Inside the gap, bound states may exist, depend-
ing on the Hamiltonian. If they exist, then Kramers theorem requires that they are
two-fold degenerate at the TR invariant momenta. Away from these points, the de-
generacy is split by the SO coupling. If there are an odd number of states inside
the gap, not all can be gapped out without violating TR-symmetry. On the other
hand, if an even number of states reside in the gap, these can be gapped out without
violating TR-symmetry.

The number of edge states in the gap depends on the topological class of the
bulk band structure. Since each band crossing the Fermi level at momentum k has a
Kramers partner at momentum —k, the bulk-boundary correspondence relates the
number of Kramers pairs of edge modes Nj that intersect the Fermi level to the
change in the Z; invariants such that

Ng = Avmod 2. (2.38)

Because of this, the QSH effect has topologically protected edge states. To con-
clude this section, let us mention a few materials that have been discovered belong-
ing to the QSH phase. The first discovery of the QSH effect was based on graphene
with strong SO coupling [76]. Soon after this, the QSH effect was proposed to exist
in HgTe quantum wells [23]. This was later experimentally confirmed [88]. A sug-
gestion for observing the QSH effect in the more conventional InAs/GaSb quantum
wells was proposed [98]. However, experimentally it has been shown that the bulk
remains conducting even at milli-Kelvin temperatures. Another discovery is the ex-
istence of the QSH effect in monolayer WTe; [133]. Another experimental work [175]
shows that the QSH effect in WTe, survives for temperatures as large as 100 K!

The QSH state defines the topological insulator in two dimensions. These can
be generalized to three dimensions, then characterized by four Z,; numbers [53].
We will not discuss these here but instead introduce another type of topological

material, the topological semimetals.

2.4 Topological semimetals

A class of materials discovered not long after the topological insulators are the topo-
logical semimetals [8]. The most common are the Weyl semimetals, Dirac semimet-
als, and nodal line semimetals. These materials are three-dimensional phases of
matter and exhibit gapless electronic excitations, that are induced by the bulk topol-
ogy. Furthermore, topology and symmetries protect the gapless electronic excita-
tions. The specific properties of the band structure further leads to protected surface
states and unusual responses when electric and magnetic fields are applied. These
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responses include a variety of different phenomena such as an anomalous Hall effect
[30] and large thermopower [102].

The gapless excitations of semimetals are equivalent to band crossings in the
band structure. Two different types of band crossings exist, accidental band cross-
ings and symmetry-enforced band crossings. Accidental band crossings are band
crossings that are protected by symmorphic crystal symmetries but can be adia-
batically gapped out by symmetry-preserving perturbations. On the other hand,
symmetry-enforced band crossings are required to exist by certain symmetries and
will protect the band crossing even against large perturbations. These exist due to
nonsymmorphic symmetries or, in other words, screw and glide symmetries, which
leave the crystal symmetric under fractional lattice translations. Let us now look
at two examples of semimetals that exist due to accidental band crossings, Weyl

semimetals and nodal loop semimetals.

24.1 Weyl semimetals

Weyl semimetals are such materials that realize band crossing at single points in k
space. Hence, there exist points where the valence and conduction band touch. An
example of this is presented in the left of Fig. 2.4. These points exist due to acciden-
tal band crossings and may arise due to presence and absence of certain symmetries.
One example of this is if only TR symmetry is present. As we saw for the QSH state
this typically leads to nondegenerate bands and only at the TR invariant momenta
are Kramers degeneracies present. Another case that typically leads to nondegener-
ate bands is when only inversion symmetry is present. As mentioned above, they
are, furthermore, stable against small perturbations. To understand this, we expand

the full material Hamiltonian around such a point. This can be written as [8]
H(k) = fo(k)l2xa + f1(k)ox + fZ(k)‘Ty + f3(k)oz, (2.39)

where fg 1,3 are real functions. Now, for the bands to coincide it is required that
fi = f2 = f3 at the same time. First, this implies the requirement of three spatial
dimensions. Second, the protection against small perturbations can be explained by
considering the stability of the band crossings. Consider first the function f; and
where it vanishes. This is typically spanned by a two-dimensional surface. To si-
multaneously have f; = f, = f3 we do the same for f, and f3, we hence look for
the intersection of three 2D surfaces. Typically this happens at a single point. We
now consider a small perturbation that changes f; by a small amount. As a con-
sequence the intersection point between the planes will change slightly. However,
the intersection persist, hence the band crossings remains but at a different crystal
momentum. By such the band crossings are stable against small perturbations.
Based on the above discussion, it may appear that a Weyl semimetal can be re-
alized simply by breaking appropriate symmetries in 3D crystals exhibiting nonde-
generate bands. Typically one also requires that they are close to the Fermi level, i.e.,
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FIGURE 2.4: (Left) Spectrum of a Weyl semimetal at k, = 0 with

two Weyl nodes (red markers). (Right) Spectrum of a Nodal loop

semimetal for k; = 0. A nodal loop forms in the x — y plane as in-

dicated by the red line (the other half of the loop is cut by the plot
range).

that fp(k) is small. Near the band touching point the Hamiltonian can further be
approximated by a linear model such that

Hyey = tolik - o, (2.40)

where £ denotes the chirality of the band crossing and ¢ is a vector of the Pauli
matrices. This Hamiltonian is similar to the massless Dirac equation or the Weyl
equation and is one example of where condensed matter physics finds analogies to
particle physics. Band crossings that are described by this Hamiltonian are denoted
Weyl nodes.

It is known that Weyl nodes must come in pairs of opposite chirality. This is,
however, not obvious from the preceding discussion. For this, one has to topolog-
ically characterize the Weyl nodes. This is established by the Chern number of a
Weyl node. One can find that this equals £1 given an integration surface enclosing
a single Weyl node with a defined chirality. If the surface is expanded to enclose
the whole Brillouin zone, it becomes, by periodicity, equivalent to a point and must
hence have a Chern number equal to zero. Thus, the sum of the Chern numbers of
the Weyl nodes must vanish.

Some interesting properties of Weyls semimetals are Fermi arc surface states and
the chiral anomaly. Fermi arc surface states exist as a projection of the arc between
the Weyl nodes onto the surface parallel to the arc. The chiral anomaly arises from
the fact that at a quantum level the chiral symmetry is broken and hence, the chi-
ral charge, e(ny — n_) (where ny is the number of electrons at the respective Weyl
nodes), is not conserved. Because of this the, in the presence of electric, E, and mag-
netic fields, B, the number of electrons at a given Weyl node change as

dny e

— = i;}z -B. (2.41)

As a consequence of this, the electric and magnetic fields can pump charge between
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the Weyl nodes. This has some important consequences. It leads to the anomalous
Hall effect in Weyl semimetals and negative magnetoresistance [30].

Finally, let us mention some materials that are or are expected to be Weyl semimet-
als. For example, the materials TaAs, TaP, NbAs an NbP has been theoretically [169,
68] shown to be Weyl semimetals. Experiments has further confirmed that this is
the case for TaAs [180, 181]. Two other compounds that have been proposed to host
Weyl nodes are WTe; [149] and MoTe; [154]. These are of the second class of Weyl
semimetals, the type-II Weyl semimetals, for which the Weyl cones exhibit strong ti-
tling. In contrast to the type-I Weyl semimetal, to which the above discussion apply
to, the type-II Weyls semimetals display an anisotropic chiral anomaly that depends
on the direction of the current [149]. Experimentally, there is strong evidence for that
WTe; is a type-1I Weyl semiemtal [97]. Let us next consider the nodal loop semimet-
als

2.4.2 Nodal loop semimetal

Nodal loop semimetals are similar to the Weyl semimetals, but contrary to the Weyl
semimetal, they do not only realize isolated points in k space where the bands cross
but rather a loop as depicted in the right of Fig. 2.4. These band crossing exhibit TR
symmetry and reflection symmetry. The stabilization of the nodal loop is due to the
reflection symmetry, which protects the band crossing from gap opening perturba-
tions. Materials where the nodal rings has been observed are, for example, in ZrSiS
[141, 161, 34], PbTaSe, [26], NbAs,, [146]. There are further theoretical evidence that
nodal rings would exist in CaszP; [32] and CaAgP [167, 179].

Just like the Weyl semimetal, the stability of the nodal loop is guaranteed by a
topological invariant. In this case by the Berry phase. Consider a loop in momentum
space. One can show that the Berry phase, Eq. (2.8), equals 0 if the loop does not link
with nodal loop. On the other hand, if the loop link with the nodal loop, the phase
equals 7t. Hence, the Berry phase either takes the values 0 or 7. It can furthermore
be shown that reflection and time-inversion symmetry is the reason for this.

Due to the non-trivial topology of the nodal loop is also exhibit surface states.
These are so called drum head surface states. In the configuration seen in Fig. 2.4 (b),
these will live on the (001) surface and encapsulated by the area spanned by the
projected nodal loop. These have shown to display some interesting transport prop-
erties but suffers from that they might require the fabrication of devices that filters
electrons of different momentum [136].

Another observation was made by Martin-Ruiz and Cortijo [106] that by break-
ing time-reversal symmetry by a tilt term in the Hamiltonian, the material becomes
optically active. This, furthermore, motivates the investigation of the optical activity,
in terms of the Kerr effect, in these materials. This is discussed in detail in chapter 4.
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2.5 Topological classification

Contrary to what we have seen above, topological states and phenomena were long
thought to be rare in nature. However, with the discovery of the QSH effect, this
was no longer the case. This discovery also led to a deepened interest in the relation
between symmetries and topology, which is also clear from the previous discussions.
Symmetries are already known to play an important role in Landau-Ginzburg theory
of spontaneous symmetry breaking, which can be used to classify different states of
matter. In combination with topology, this can again be the case —however, this time
in a different way from the Landau-Ginzburg theory. Symmetries can not simply
be used to differentiate topological insulators from topologically trivial insulators.
Neither can their topological nontriviallity be detected by a local order parameter.
[36].

For classifying topological phases, symmetries rather determine whether one can
continuously interpolate between two Hamiltonians (assuming that there exists a
full bulk gap) such that their symmetries are preserved and without closing the bulk
gap. Hence, if this is the case, two Hamiltonians belong to the same equivalence
class. Different equivalence classes with the same symmetries are set apart by the
topological invariants that characterize the global phase of the bulk wave functions.

The first classification was made in terms of non-spatial symmetries and resulted
in the so-called ten-fold way or the Altland-Zirnbauer classification. Non-spatial
symmetries are three; time-reversal (TR) symmetry, particle-hole (PH) symmetry,
and chiral symmetry. The three symmetries can be expressed as operators. These are
denoted 7, C and S = TC, respectively. Note that chiral symmetry is the combina-
tion of TR and PH symmetry. One can prove that the TR and PH symmetry operators
square to £1 whereas the operator for chiral symmetry squares to one [36]. Further-
more, the effect the symmetry operators have on a Hamiltonian are as follows: a
Hamiltonian preserves TR symmetry if TH7 ~! = H, if it preserve PH symmetry,
then CHC™! = —H and if chiral symmetry is preserved, then SHS = —H. By
combining the presence or absence of these symmetries and whether the operators
square to plus or minus one results in ten different possibilities. This is the foun-
dation of the Altland-Zinbauer classification [144]. The classification furthermore
depends on the dimensionality of the Hamiltonian. For every dimension, one finds,
possibly, a different topological invariant corresponding to a given combination of
symmetries. The equivalence classes are presented in Table 2.1.

The different types of materials discussed in the previous sections can be put in
one of the classes presented in the table. For example, the AlI class, in two dimen-
sions, describes systems with neither PH symmetry nor chiral symmetry but with
TR symmetry, for which T2 = —1. The QSH state falls into this class, and we see
that it is indeed protected by a Z, topological invariant.

The classification scheme can be extended to take into account for spatial sym-
metries. These are not considered here, but the interested reader can find the full
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TABLE 2.1: Altland-Zirnbauer classification for topological insulators

and topological superconductors. Here d represents the dimension

of the system. The leftmost column denotes the different symmetry

classes characterized by the presence (£ , 1) or absence (0) of time-

reversal, particle-hole, and chiral symmetry. The entries Z, Z;, 2Z
and 0 marks the presence or absence of a non-trivial phase.

Class 7 C S d=1 d=2 d=3
A 0 0 O 0 Z 0
ATIl 0 0 1 Z 0 Z
Al + 0 0 0 0 0
BDI + + 1 Z 0 0
D 0O + O Z> Z 0
DIII -+ 1 Z> Z> Z
All - 0 0 0 Zy Zy
CII - -1 27 0 Zy
C 0o - 0 0 27. 0
CI + - 1 0 0 27

extension in [36]. We have now presented a brief introduction to topology in con-
densed matter physics. In the following three chapters, we will discuss three differ-
ent topics that are related to what has been discussed in this chapter. We will now

dive into transport in one-dimensional topological superconductors.
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Chapter 3

Transport in coupled Majorana
bound states

This chapter concerns itself with the work that has been done for the paper titled
Transport properties of coupled Majorana bound states in the Coulomb blockade regime. In
this work, we investigated two different structures hosting Majorana bound states
(MBS). MBSs appear as quasiparticles in topological superconductors, and in such
1D systems, they localize at the endpoints where they form bound states. However,
these bound states are not independent of each other but rather a pair of MBSs form a
Dirac fermion. Thinking of the 1D system as a single wire, the MBSs sits on opposite
sides, and hence the Dirac state they constitute is highly non-local.

Majorana bound states are not localized to endpoints of 1D wires but rather de-
cay into the wire. When the wire becomes smaller, the overlap between the wave
functions of the MBSs will increase. In a single wire, there is, evidently, only a single
way they can overlap. However, by combining multiple of these, different structures
can be created. In reality, these structures are physical objects, but in a theoretical pic-
ture, we model the system by different MBSs wave functions overlapping with each
other.

The above-imagined wires are, of course, electronic systems. Hence, as they are
made smaller, a necessary feature to consider is interactions. There are different
ways to describe interactions. One model for describing these is the constant inter-
action model. In this effective model, interactions are taken into account by con-
sidering the total electrostatic potential given by the total charge in the system. To
add another electron to the system, it has to have energy exceeding the electrostatic
potential.

MBSs have been widely researched the last decade [94, 3, 103, 152]. This has its
foundation in that MBSs have been proposed as building blocks for fault-tolerant
quantum computation [82, 117, 140]. Two essential proposed structures that make
up a single qubit are the T5unction and the Majorana box, both of which host four
MBSs. The two different structures have been proposed for different types of quan-
tum computation schemes. The T-junction schemes where the Majoranas are physi-
cally moved around have been suggested for physically braiding Majoranas, whereas
the Majorana box relies on measurement only and has been suggested to implement
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the Toric code. As one wants to perform specific quantum computation protocols,
an important part is understanding how electrons move through these structures.

The dynamics of single wires, i.e., structures with only two MBSs that are pos-
sibly overlapping have been studied in great detail, both when connected to leads
[27, 54, 70, 174, 64, 35, 104] as well as set-ups that include quantum dots [99, 184,
100, 79]. These studies include both non-interacting and interacting systems. In the
transport dynamics this has showed to lead to an interesting effects such as quantum
teleportation [54].

The inclusion of a second wire opens up for other interesting transport features.
In the T-junction geometry, for example, a process dubbed "double-crossed Andreev
reflection” appears [168]. This is a process that involves concurrent Andreev reflec-
tion processes as well as a resonant process. However, this structure has not received
much attention, most likely due to the complexity of realizing it experimentally. The
Majorana box has on the other hand been more widely investigated [22, 21, 6, 5, 56].
In this context the Majorana box has been shown to host a topological Kondo effect
[22,21,5,4,92,107, 20]. The transport properties of coupled boxes have also been
studied in detail in [56].

There is still more to learn about these two structures. The details of the interplay
between interactions and overlap between the MBSs and their implications for the
transport properties have been looked at in less detail. To this end, we investigate
these for the two structures as mentioned above, as they are connected to metallic
leads.

We begin this chapter by introducing the field of MBSs and how they appear
in the context of condensed matter physics. A toy model, the Kitaev chain, is in-
troduced, which demonstrates the formation of MBSs in 1D wires. After that, a
more experimental realizable system is presented. Afterward, the state of the cur-
rent experimental progress is briefly discussed. We highlight some of the pioneering
experiments and some of the difficulties that the community is facing at the moment.

As we have introduced the field of MBSs, we delve into the problem that we have
studied. The different set-ups are introduced, and the constant interaction model is
discussed in more detail. After that, we introduce the theory of master equations,
which has been used to calculate the transport properties of the specific set-ups.
Finally, the results from the investigation are presented with an explanation for the
different physical processes occurring in these types of systems!.

Majorana Physics

The concept of Majorana fermions stems from the area of particle physics by which
it was discovered by Ettore Majorana that there possibly exist particles that are their
own antiparticles. This concept has lately been adopted by the condensed matter

n this chapter we seth = e = kg = 1
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physics community. We are now seeing many proposals for which they can, for ex-
ample, serve as a platform for fault-tolerant quantum computation. Many excellent
reviews already exist on the topic (see for example [3, 17, 152, 85]), and we will here
only give a brief introduction to the important concepts.

3.1 Majorana fermions

In 1937 Ettore Majorana discovered that for particular choice of equation variables
the Dirac equation exhibits solutions for which ¥ (x) = ¥(x)*. The meaning of this
is that the particle must be equal to its antiparticle.

The Dirac equation is given by

[iv#0, —m] ¥ (x) = 0. (3.1)

The equation describes the dynamics of a particle with mass m. x is here a four
vector and # are 4 by 4 matrices. Under the conditions

(Y 7Y = 28" Igna, YO0 = ("), (3.2)

the Dirac equation describes the dynamics of a spin 3 particle. In the above equation
g = diag(1,—1,—1,—1) and I4x4 is the identity matrix of size 4. Commonly the
Dirac equation is solved by using the 7 - matrices as determined by Dirac, however,
Majorana discovered another set of matrices [170],

0 o iocy, O 0 o ioc, 0
70: (Uy Oy>' 71: <0 i0x>' 72: <—0'y Oy>' 73: (O z'az>’
(3.3)
where ¢; denote the Pauli matrices. We note that all the given matrices are now
imaginary. It can further be shown that the above-given matrices indeed satisfy the
relations given by Eq. (3.2) and hence the particles described by the Dirac equa-
tion using the above matrices should still describe the dynamics of a spin 5 particle.
The fact that the new y-matrices are purely imaginary implies that all coefficients
of Eq. (3.1) are real. Hence, the solution to the Dirac equation, given the matrices
defined by Majorana, must be real, i.e. ¥(k) = ¥*(k). As stated above, the solu-
tions correspond to a particle that is its own anti-particle. Particles that obey the
Dirac equation, given the 7;s introduced in Eq. (3.3), are now commonly known as
Majorana fermions. As a proposal, neutrinos have been suggested to be a Majorana
fermion; however, experiments have yet to confirm that this is the case [12].

3.2 Majoranas in condensed matter physics

Instead of searching for fundamental particles with this property, one can turn to
condensed matter physics and instead analogously look for excitations with the
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same property, i.e., if we denote such an excitation by 7 then 7 = ~'. If such an
excitation exists, this further implies that it must be its own "hole". One then has to
ask the question, in what kind of system can one find excitations which obey 7 = 71?2
Although it is not trivial, the answer lies in superconductors.

Excitations in a normal superconductor are Bogoliubov quasiparticles and are
given by the following relation

v = uc$ +vcy, (3.4)

where ¢, ¢! are fermionic annihilation and creations operators and u and v are com-
plex numbers. One notice that even in the case of u = v the excitation does not equal
its conjugate. This is because, as one see from the indices, Bogoliubov quasiparticles
arise from pairing between electrons with opposite spin.

The above-described excitation corresponds to the excitation in the most com-
mon superconductor found in nature, the s-wave superconductor, which exhibits
spin-singlet pairings. On the contrary to s-wave superconductors, p-wave supercon-
ductors exhibit spin-triplet pairing. This means that the Bogoliubov quasi-particles
of a p-wave superconductor are formed by pairing electrons with the same spin di-
rection. Furthermore, the requirement that the excitation should be its own hole

implies that u = v. Hence, the excitation we are looking for is given by
v = uch + u'cy, (3.5)

where ¢ =1, J..

Unfortunately, p-wave superconductors seem to be very uncommon in nature.
There are existing suggestions that the pairing in some iron-based compounds ex-
hibit p-wave pairing [156]. The compound Sr,RuQOj, has been studied and for a long
time been thought of as having a p-wave pairing. There is yet no conclusion about
this [63]. The first step towards the solution of this problem was based on an idea of
engineering the model introduced by A. Kitaev in 2001. The idea was to combine a
nanowire with spin-orbit coupling, apply a magnetic field, and put the nanowire in
proximity to an s-wave superconductor. Before we dive into this, let us briefly look
at the Kitaev model and how MBSs form in this model.

3.2.1 Kitaev chain

In 2001 Alexey Kitaev suggested a simple model which exhibits excitations y = 77,
[81]. The model is based on a one-dimensional (1D) fermionic lattice with nearest-
neighbor hopping and p-wave superconducting pairing, and by such, the model is
"spinless". The Hamiltonian describing this model is given by

N N-1
Hkitaeo = =1 Y i — Y _ [tcjcz#l + Acicit1 + h.c. (3.6)
i

i
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where N is the number of sites of the lattice, u is the chemical potential, n; = c;rci is

the number operator, ¢ is the hopping parameter between different lattice sites and
A is the superconducting gap. The model is presented in Fig. 3.1(a). Now we want
to represent the Hamiltonian in terms of Majoranas operators. A Majorana operator
is constructed by splitting a Dirac fermion into a real and imaginary part. Hence we
can write

1 . R 1 .
=5 (Yia+ivip), & = 5 (7ia —i7B2), (3.7)

where 7y; ; are the Majorana operators corresponding to the Dirac fermion occupying
site i with sublattice sites A and B. Inverting these relations we obtain

Yia=c +ci, Yip= (C* - cl) : (3.8)

From the fermionic commutation relations

{cj,c]} =6ij, {cicj} = {cl,c } 0, (3.9)

it follows that
{7i v} = 264. (3.10)

Kitaev noticed that by tuning the different parameters of the model, different
regimes can be reached. Both a topological and a trivial regime exist. The less inter-
esting trivial regime is easiest obtained by tuning |;| # 0 and A = t = 0. In this case
the Hamiltonian is reduced to

Hiriy = ;42 %A%B (3.11)

This Hamiltonian has a well-defined ground state which corresponds to either all
sites being empty or occupied for u being negative and positive, respectively. One
furthermore notes that all Majoranas on the same lattice sites couple to each other,
and hence there are no de-localized Majoranas, as is also depicted in Fig. 3.1(b).

The more interesting regime is easily obtained by setting 4 = 0 and t = A. For
the given parameters the Hamiltonian can be written

N-1
Hiop = —it ) Yip7Yit1,4- (3.12)
;

By careful inspection it’s seen that the Majoranas 71 4 and 7y g are not present in the
Hamiltonian. The situation is depicted in Fig. 3.1(c). The first consequence of this is
that these operators commute with the Hamiltonian, [Htop, Y1, A] = [Htop/ ’YN,B} =0.
Secondly, these two operators form a de-localized fermionic state at zero energy,

which is written

1 .
=5 (7 —irn2)- (3.13)

From this we make two observations
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FIGURE 3.1: Illustration of the Kitaev toy model, Eq. (3.6). The green
bars marks the coupling between different Majoranas living on the
sublattices A and B and lattice site N. (a) General figure of the Ki-
taev chain where the chemical potential, hopping and superconduct-
ing order parameter are marked in correspondance with the model.
(b) Trivial regime of the Kitaev chain, |¢| # 0 and A = t = 0. The
coupling is between the Majoranas on each lattice and no edge modes
form. (c) Topological regime, u = 0, A = t # 0. The coupling is be-
tween Majoranas on different lattice sites. This leaves two Majoranas
decoupled (sublattice sites marked in red and blue) from the rest, that
forms a non-local states.
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SC
NW

Nam I

FIGURE 3.2: The figure displays a cartoon of a set-up that hosts Ma-

jorana bound states. A nanowire (NW) (grey) with strong spin-orbit

coupling is placed on top of a set of gate-voltages (green) and in prox-

imity to a superconductor (SC) (yellow). Applying a magnetic field

perpendicular to the nanowire, two Majorana bound states (red and
blue) emerge at the nanowire ends.

* The ground state is two-fold degenerate corresponding to either ¢'¢ = 0, 1.

* The fact that the constituents of this fermionic mode are separated by a far
distance makes this state highly non-local. One property of this is that a local
perturbation on one side of the chain will not have an effect on the total state

and hence it should be robust against perturbations.

This model still relies on the p-wave superconductor. Let us now see how this
system can be engineered using the common s-wave superconductor.

3.2.2 Semiconductor-superconductor hybrid structures

The Kitaev chain is only a toy model. Hence it is necessary to find a model that
mimics it but at the same time is experimentally realizable. From an experimental
perspective, the Kitaev chain has two drawbacks. As mentioned previously, it relies
on a p-wave superconductor, and it is still unclear whether this exist or not. Further-
more, it incorporates spinless electrons, which can only be discussed theoretically.

Apart from these two drawbacks, the model seems relatively uncomplicated, yet
it took almost ten years before an experimentally realizable model was proposed
in 2010 [122, 105]. The model consists of a semiconductor nanowire with a strong
spin-orbit coupling in proximity to an s-wave superconductor. The final ingredient
is an applied magnetic field applied perpendicularly to the spin-orbit coupling of
the nanowire. A cartoon of the system is shown in Fig. 3.2.

The Hamiltonian for a nanowire that lies along the x - direction with spin-orbit
interaction Agp in the y-direction and a magnetic field BZ applied in the z-direction
is given by, [3]
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92 .
Hwire = /dylp;(x) [ — — u — iAso0y + Bo Por(x). (3.14)
U—/

- *
2m .

Here 1/]5;) (x) annihilates (creates) an electron with spin direction ¢ =7, |, chemical

potential # and effective mass m* at position x. The spin-orbit coupling strength, Aso

is taken to be positive and favors aligning spins along the y-axis. We furthermore

assume that only the lowest transverse subband is relevant. The full spectrum is

given by

_ K
2m*

When the spin-orbit coupling and magnetic field are turned off, the Hamiltonian

Ey

— p 4/ (Asokx)® + B2 (3.15)

simply models a 1D electron gas (1IDEG) and admits the normal parabolic spectrum,
see Fig. 3.3 (a). Introducing the spin-orbit coupling shifts the bands such that the
energy of the different spins becomes momentum dependent as seen in Fig. 3.3 (b).
Hence the spectrum admits two spin-polarized bands. By instead turning on the
magnetic field, the parabolic bands of the 1DEG are split into two. The Zeeman
splitting, the splitting between the two bands, is equal to 2B. This is demonstrated in
Fig. 3.3 (c). When the system has both spin-orbit coupling and an applied magnetic
field, the two bands observed in Fig. 3.3 (b) hybridize, and a gap opens up. This is
due to the combination of the spin-orbit coupling and the applied magnetic field.
We now introduce the coupling to the superconductor. This is described by

Hgc = /dxAgb}L(x)i,bI(x) +h.c., (3.16)

where A is the superconducting pairing strength that is induced in the wire. If we
denote by 9 (k) the operators that add a particle to the bands E. (k) respectively,
then Eq. (3.16) can be written

o= 5 [Z 2 g (00 (8) + B k)9 (9 (6

+he,  (3.17)

where

AsokA

Ap(K) = , (318)
' \/ (Asok)? + B2
Ag(k) = —— DB (3.19)

v/ (Asok)? + B2

In this picture we directly note the effective p-wave pairing this system admits. The
p-wave pairing stems from the fact that the spins at momenta +k are misaligned.
The spectrum of the Hamiltonian Hwsc = Hwire + Hsc is given by

E2 + E2
E\ (k) = \/A2++eri(E+—E),/A§+y2. (3.20)
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FIGURE 3.3: Spectrum of the Majorana nanowire, given by Eq. (3.15).
(a) Spectrum without magnetic field and spin-orbit coupling. (b) With
the spin-orbit coupling turned on the spectrum splits into two spin
polarized bands. (c) Without the spin-orbit coupling but having the
magnetic field turned on the bands are Zeemann split without a pre-
ferred spin polarization of the bands. (d) As both the magnetic field
and spin-orbit coupling present the spin polarized bands in (b) hy-
bridize and a gap is opened up. As the chemical potential lies within
this gap the system is effectively spinless.
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For k = 0 the energy gap closes, i.e., E1(0) = 0, given that B2 = A? + p2. If the
magnetic field is smaller than this critical value, B, then the system is no longer
spinless and the system is in the trivial state. On the other hand, when

B > /A2 + 12, (3.21)

the system appears spinless and enters the topological regime. Eq. (3.21) defines the
topological criterion, for which the system is in the topological phase.

We have here presented an experimental realizable set-up for realizing MBSs
by engineering a system that acts like a p-wave superconductor. There are, how-
ever, other systems where MBSs should also be possible to be observed. One system
considered even before the "Majorana wire" is a system where an s-wave supercon-
ductor is in proximity to a strong topological insulator, [55]. This system is shown
to host MBSs at vortices. Another system that might host MBSs is an antiferromag-
netically ordered chain of magnetic adatoms. By placing the atom chain on top of
a superconductor, the system realizes Yu-Shiba-Rusinov (YSR) states, [112]. As the
adatoms come close to each other, the YSR states hybridize. Because of this particle-
hole symmetric bands can form. When the negative and positive-energy bands fi-
nally overlap, p-wave correlations can reopen the gap, which turns the atomic chain
into an effective topological superconductor that hosts MBSs.

This concludes the theoretical proposals. Let us now discuss the experimental

progress.

3.2.3 Experimental signatures of Majorana bound states

The theoretical proposals of the existence of MBSs in the nanowire set-up [105, 122]
sparked an immense amount of work for experimentally verifying their existence
[110, 41, 46, 37, 48, 113, 135, 47, 2, 119, 183]. These experiments further also include
the magnetic chains that were briefly discussed at the end of the previous section.

Two features have been proposed to signify the MBSs by either using a grounded
or a floating superconductor. For the set-up with a grounded superconductor, tun-
nel spectroscopy should lead to a zero-bias conductance peak (ZBCP), indicating
the presence of zero energy states. Moreover, the topological origin of these states
should result in a ZBCP that is quantized at 2¢2/h.

The second set-up, using a floating superconductor in the Coulomb blockade
regime (detailed in Sec. 3.4.2) uses two-terminal measurements to determine the
ground state periodicity. In the trivial state, the ground state periodicity should
be of 2e, reflecting that a Cooper pair consists of two electrons. On the other hand,
when the system is tuned to the topological phases, the periodicity should be ap-
proximately le [54]. This is because, in the topological phase, non-local MBSs are
formed, providing a state which does not cost any energy to be occupied. Of course,
the transition from a 2e to le periodicity can be due to that the applied magnetic
tield that drives the system into the topological phase destroys the superconductor,
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and the system is in the normal state. The signature of the MBSs lies in the "approxi-
mately" le-periodicity. Due to finite-length wires, the MBSs will have a finite overlap
causing a small splitting that scales as e~-/¢, where L is the length of the wire and
¢ is the coherence length of the superconductor [42]. This splitting will cause an
even-odd effect, meaning that even valleys are slightly narrower than the odd ones
[2].

It is essential to point out that so far, none of these experiments have been able
to conclusively state that what is observed is due to the existence of MBSs.

Much work is being poured into understanding what is actually observed in
these experiments and what is needed to improve on them [173, 123, 124, 125, 43]. To
explain the differences between the observed conductance peaks Pan and das Sarma
introduced the good, the bad, and the ugly conductance peaks [123]. These generally
classify whether the conductance peaks stem from topologically non-trivial MBSs,
which is the good conductance peak and should be what the experimentalist should
find. However, a "bad" conductance peak is also found. This conductance peak is
due to topologically trivial states; subgap Andreev bound states that merge to form
a zero-bias conductance peak. The zero-bias conductance peak due to these states
is predicted to as well be possible to observe below the point of the transition of
the trivial and topological regime. Finally, they also discuss the "ugly" conductance
peak, which is a disorder-induced conductance peak. Like the "bad" conductance
peak, this is topologically trivial. It is further shown that the disorder can induce a
zero-bias conductance peak that is well-correlated. This is, however, case-dependent
and may or may not happen depending on the disorder configuration.

A more decisive proof of whether these systems host MBSs or not would be
to perform braiding experiments. Such experiments would elucidate on the non-
Abelian statistics that are a feature of the MBSs but not of ABSs.

3.3 Towards quantum computation based on Majorana bound

states

In this section, we briefly discuss quantum computation based on MBSs. There are
two main proposals for realizing quantum computation using MBSs. Either we aim
to move the MBSs around each other or, which at the moment seems more feasible,
to keep the MBSs static and rely on measurement-only based computation [103]. The
second approach is what is has been proposed to be utilized in the implementation
of the Toric code [142, 158, 130].

The first important fact that MBSs might be useful for realizing topologically
protected quantum computation lies in the fact that they are, in two dimensions,
so-called non-Abelian anyons [153]. Anyons are a third class of particles that, in
contrast to bosons and fermions that, upon particle exchange, undergo a multipli-

cation of 41 and —1 respectively, instead are either subjected to an arbitrary phase
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shift (if Abelian) or to a unitary transformation (non-Abelian). By such, exchanging
two Majoranas results in them being subject to a unitary transformation.

Let us now discuss braiding of MBSs. This is a procedure where we exchange
two MBSs, either by physically moving them around, or by performing a set of mea-

surements. From the definition of a Majorana operator and Eq. (3.10) we have that

vi= {7} =20 (3.22)

We furthermore saw that we can create a fermionic state out of Majoranas,

c= 5 (m—im). (3.23)

The fermion number operator can furthermore be defined in terms of Majorana op-
erators and is given by

1 :
ﬁ:dr:§a+nwg. (3.24)

Let us now construct the unitary transformation resulting from the exchange of two
Majoranas. Let us denote it Bj, (commonly known as a braid operator). The result-
ing unitary transformation, B17;B;, must be a Majorana. Furthermore, parity must
be conserved, i.e., [, Bip] = 0. We are left with the following possibilities, [95]

BiamBy = F72, (3.25)
Bi272By, = £, (3.26)
(3.27)

where the signs depends whether the exchange is done in a clockwise or anticlock-
wise manner. It then follows that

1
By = 7 (1+7172), (3.28)
up to some phase factor. The uniqueness of this operator is satisfied by requiring
that in a system with more than two Majoranas, all other Majoranas are unaffected
by the exchange of 7 and ;. If we let this operator act on the subspace spanned by
the eigenstates of the number operator, 71 1) = n |n) we obtain

Biz|0) = —= (1+1)[0), (3:29)

H<ﬂH
N

Bi2[1) = 2 (1—1)[1). (3.30)
This effectively demonstrates that by exchanging two Majoranas we can change the
quantum state. The effect of this is however rather mundane since it only multiplies
the state by a phase factor. To find non-trivial effects one has to consider a system
with at least four Majoranas.



3.4. Coupled Majorana systems 35

(a) (b)

i)
\V
1D]O Of:2| QO ~~~ O ~~—~ O
71 €12 VY2 71 €14 Y4 €24 Y2
€34
B Off4]
Y3 €34 Y4 73|@
T 3] T
T Ny TNy

FIGURE 3.4: Smallest set-ups for a single Majorana qubit. (a) Majo-

rana box, (b) T-junction. v; marks Majorana i, €;; denotes the overlap

between Majorana i and j and y; is the chemical potential of lead i.
The gate voltage is represented by the dimensionless parameter 7.

3.4 Coupled Majorana systems

In the previous section, we have introduced a platform for which MBSs can be ex-
perimentally realizable and that they can be useful for performing quantum com-
putation. We have seen that for performing useful operations on a qubit based on
MBSs, at least four Majoranas have to be present. The simplest structures that host
four MBSs are the T-junction and the Majorana box.

The main purpose of the rest of this chapter is to investigate how these two struc-
tures behave when varying biases are applied to the systems. This is based on what
we report in Transport properties of coupled Majorana bound states in the Coulomb block-
ade regime [50]. In this work, the Tjunction and Majorana box are investigated, not
only in the presence of the finite overlap between the MBS:s but also in the inclusion
of charging energy, a way to take interactions in the structures into account and the
presence of more than two terminals.

Let us now, first, present the details of the T-junction and the Majorana box.
Thereafter we introduce the constant interaction model and the master equation for-

malism to describe transport in these structures.

3.4.1 Set-ups

The specific set-ups for the Majorana box and the T-junction are shown in Fig. 3.4 (a)
and (b) respectively. The Majorana box constitutes two wires placed on top of a
superconducting island. The T-junction, on the other hand, constitutes two wires
that have been crossed such that they form a T shape. This is a more difficult feat
experimentally but is also being pursued by experimentalists [129].

The MBSs that appear in the two systems, given that the systems are in a topo-
logical regime, are represented by 7 - 74 and as described in 3.2.1 localize at the
edges of the wires. As can be seen for the T-junction, one of the MBSs localizes at the
crossing point of the two wires that make up the Tjunction. A general Hamiltonian
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describing a system with 2M MBSs can be formulated as

2M  2M

Hvis = —1 ) Y. €uvcvn (3.31)
k=11=k+1

where € is the coupling energy between the MBSs due to their overlapping wave
functions. As presented in Eq. (3.10) the MBSs satisfy the anticommutaion relations
{7k, 11} = 26k. To simplify the understanding of the system, the MBSs are re-written
in terms of Dirac operators. This can be done in the same fashion as done is in
Eq. (3.8) by the following relations

Y2j-1 = Cj + c}r, Yo = i(c;r —cj). (3.32)
For a system of four MBSs these equations reduce to

+ 4
T1=c+c;, T2=i(c] —c1),

Y3 =+ cz, V4= i(cz — 7). (3.33)

The Hamiltonian describing the MBSs of the system can then be re-written in
terms of Dirac operators by inserting these into Eq. (3.31). Depending on the over-
laps or how the different MBSs couple to each other, the resulting Hamiltonian may
or may not be diagonal. In the case that is is not diagonal, the Hamiltonian can be
diagonalized by a Bogoliubov transform. For a brief but general treatment of this,
see Appendix C. The diagonal Hamiltonian can be written as

M
Hyps = ) §;d]d;. (3.34)
j=1

Here d](.ﬂ are the resulting Dirac operators obtained from the Bogoliubov transfor-
mation. The ¢;s are the corresponding eigenenergies and are related to the overlap
between the MBSs. Advertently, the MBSs can reversely be written in the Dirac op-

erator representation as

M

M=y, ((xl]'dj + Déf]-dD . (3.35)
j=1

The coefficients, a)j, are the elements of a 2M x M matrix that is obtained from the
Bogoliubov transformation. Let us now introduce the Hamiltonians for the two dif-

ferent set-ups.

Majorana box

The Majorana box is the simpler of the two set-ups. As seen from Fig. 3.4 (a) only
the MBSs on the same wire overlap with each other. We write the Hamiltonian for
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TABLE 3.1: Coupling, «;; constants for the Majorana box.

I=1 1 0
=2 i 0
=3 0 1
=4 0 i

the Majorana box in the representation of the MBSs as

Hpox = —i€1271772 — 1€347374. (3.36)

By inserting Eq. (3.33) into (3.36), the Hamiltonian represented by Dirac operators is
directly obtained on diagonal form,

Hpox = &1didy + Eadidy, (3.37)

where 1 = €12 and > = €34. The different coupling coefficients, «;; are collected in
Table 3.1

This describes the Majorana box. So far, it is not evident how the MBSs on the
different wires couple to each other. As will be seen in subsequent sections, the
superconducting island, on which the wires are placed, allows electrons to move via
the superconducting condensate. Hence, the MBSs on the two different wires can
interact with each other.

T-junction

The T-unction (see Fig. 3.4 (b)) is slightly more complicated than the Majorana box.
Since the wave functions of the MBSs decay exponentially [42], we can assume that
only nearest neighbor MBSs couple to each other. We consider a set-up such that the
coupling between the different MBSs are equal, i.e., €14 = €4 = €34 = €. Hence the
Hamiltonian for the MBSs of the T-junction can be written

HTfjunction = —i€ (r)’l + T2 + 73) Y4- (338)

Here we have furthermore assumed that the overlap between the outer MBSs (1 -
73 ) and the central MBSs (74) are equal. The Hamiltonian can be diagonalized in the
basis of the Majorana operators. In this case one obtains two linear combinations of
the MBSs at a finite energy &r = 2v/3€ and two linear combinations at zero energy.
Compared to the Majorana box the T5unction does not take a diagonal form
when Eq. (3.33) is inserted in Eq. (3.38). It can instead be written as %C*HC, where



38 Chapter 3. Transport in coupled Majorana bound states

H is given by
0  —(1+i) 0  (1+i)
o l-a-y 2 —a+i) 0
H=e 0 —(1—1) 0 (1—1) (3.39)
(1—1) 0 (1+1) 2

and the vector Ct = (c{, c}, c1,¢2). Now following Appendix C, we perform a Bo-
goliubov transform by finding a matrix T}, that diagonalizes the Hamiltonian and
such that

C=T,D, (3.40)

where D' = (df,d}, d1,d,). The matrix T} is then found to be

S50 e(-vE) (=) (1+V3)
1 i 1 .

_— ss(1HV3) 5z (l+i) (1 -V3) —j(1+i) a1
ss(1-1) 550+4V3)  2(1+0) 5 =(1-V3)
—R-VE) —-) SR1+vE) —a1-i)

From this, we obtain the diagonalized Hamiltonian
HTfjunction = Od-{dl + éTd;dZ (34:2)
From Eq. (3.33) it follows that
1 00 7
1
o N B NE (3.43)
211 —i 00 73
0 0 1 i Ya
M

Combined with Eq. (3.40) we find a relation between the Majorana operators and the
Dirac operators in the diagonal basis,

T
T2
3
Y4

=M"!T,D, (3.44)

where we have used the fact that T, is a unitary matrix. From this, we can, as for the
Majorana box, construct Table 3.2.

We note from the table that the Dirac fermion described by the d; operator does
not involve the 74 operator, indicating that this operator is highly non-local since it
only involves the Majoranas on the outermost parts of the T-junction. On the other

hand, the d; state involves all Majorana operators. The choice of symmetric overlaps
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TABLE 3.2: Coupling, «;; constants for the T-junction.

oy j=1 j=2
] — \/geiﬂ/lz %
) \/ge—7in/12 %
=3 \/g63in/4 %
=14 0 i

FIGURE 3.5: Mesoscopic island, with discrete energy levels €;, con-
nected to two electron reservoirs.

is clearly shown in the weight given to 1 - 3 (compare Table 3.2 with Eq. (3.35)).

We have now presented the formation of the MBSs in the two systems under
consideration. Another important ingredient in this study is that we want to account
for interactions. As mentioned in the introduction, we apply the constant interaction
model, which is described in the next section.

3.4.2 Constant interaction model

The constant interaction model is a model used to describe interactions in a simple
but effective manner on a mesoscopic "island", a quantum dot, for instance, or as
here considered, a system of nanowiresZ.

A simplified model of the system we have in mind is depicted in Fig. 3.5. For
simplicity, we model the mesoscopic island as a quantum dot with a discrete set of
energy levels and that is connected to a set of leads. We furthermore let the system
be capacitively coupled to a gate electrode, with which the charge on the island can
be tuned.

The constant interaction model now tells us that the energy of the N- electron

state of the island is given by

E(N) = Zei + U(N). (3.45)

2In this section we have re-introduce e for pedagogical purposes.
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Here €; is the energy of the single-particle states, and U(N) is the electrostatic energy
of the system with N particles. To obtain an expression for U(N), we have to con-
sider the details of the set-up. By neglecting the capacitances between the contacts
of the system, we can write the electrostatic potential of the island as

1
(Pisland = CiZ <Q + ZIZVZC1> . (346)

In the above equation Cy, denotes the total capacitance of the system, i.e. Cx =Y ; C;
where C; is the capacitance between the island and the i:th junction, V; is the applied
voltage at the same junction and Q is the total charge on the island. The second term
is to be understood as the contribution from external charges. From here we can
determine the electrostatic energy, U(N). We obtain it as follows

—eN eZNZ Ci
U(N) = /O dQ Pistana = —eN). & Ve (3.47)

2Csy
However, the above expression can be put on a form that is more widely seen in the
literature. As noted, the second term of Eq. (3.46) plays the role of a displacement
charge and can be varied by an external gate voltage, ;. We can then write

(eN — ng)2

U(N) = B Tou + constant. (3.48)

This is written in operator form by introducing an operator that counts the charge
on the island, N. The electrostatic energy of the island can then be represented by

the following Hamiltonian
He = Ec (N +1ng)?, (3.49)

where Ec = ¢?/2Cy is the charging energy. The electron number operator is for a
normal system given by the number of occupied electron states. For a supercon-
ducting system one also have to account for the number of Cooper pairs on the
island. Hence the total charge of a superconducting island is counted by the opera-
tor N = N¢ + 71, where N¢ is the Cooper pair number operator and # is the number
operator for the electrons that occupy the MBSs. In terms of the Dirac operators con-
structed in the previous section it can be written as i = }; d!d;. Hence, the charging
energy is written as

He = Ec (Kc + i+ 1)’ (3.50)

It is important to note that the energy of the island can be tuned via the gate
voltage. Hence it is possible to tune the system such that two states with a different
number of particles can have the same energy. This is depicted in Fig. 3.7 (a). The
opposite situation is also possible to obtain, where a single state on the island with
a given energy is separated from the other states by the charging energy, which is
typically large, see Fig. 3.7 (b). This effect is what is commonly known as Coulomb
blockade. Consider a system as described above. As the gate voltage is tuned such



3.5. Transport in coupled Majorana bound states 41

M1 — K2
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N —2\/N —1 N N 4+ I\/N + 2

FIGURE 3.6: Stability diagrams representing the conductance through
a quantum dot structure as a function of the dimensionless gate-
voltage ny and the difference between the chemical potential of the
leads, pt1 — p2. N marks the number of electrons on the dot. Within
the white areas, known as Coulomb diamonds, the system is non-
conducting due to that the electrons have insufficient energy to tunnel
through the dot. By increasing the bias, the system becomes conduct-
ing (grey areas).

that two charge states on the island have the same energy, electrons can flow freely
through the island. This is because adding an extra electron to the island does not
cost any energy. We refer to this regime as the the sequential tunneling regime be-
cause sequential tunneling is the dominant transport mechanism.

On the contrary, when the system is tuned such that a single charge state is sepa-
rated from the rest by a large energy gap (commonly denoted as a Coulomb valley),
a crude assumption is that there is no flow of electrons unless a large bias is applied.
The system is "Coulomb blockaded". This normally results in stability diagrams,
depicted in Fig. 3.6. A diamond structure pattern is clearly observed, which indi-
cates whether electrons tunnel through the system or not. Inside the white regions,
the system is non-conducting due to that the electrons have insufficient energy to
tunnel through it. By increasing the applied bias, the system naturally becomes con-
ducting, represented by the gray areas. The assumption that there can be no flow
of electrons through the system when it is Coulomb blockaded is however not en-
tirely true. There is a possibility that electrons tunnel via virtual states, which leads
to so-called cotunneling processes. We thus refer to this transport regime as the co-
tunneling regime. This leads to a weak but still existing signal when measuring the

conductance inside the white regions depicted in Fig. 3.6.

3.5 Transport in coupled Majorana bound states

In the previous section, we have set up the models for describing the two systems
we are interested in, the Majorana box and the T-junction and described how inter-
actions can be taken into account. To account for electron transport through these
systems, we have to consider the leads connected to the systems and the tunneling
of electrons between the leads and the island. The metallic leads can be described
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(a) (b)
ng=—1/2 I

N + + + + + N

FIGURE 3.7: Energy of the superconducting island, given by
Eq. (3.50). Two distinct regimes are obtained by tuning the gate volt-
age, ng. (a) As ng = —1/2 +k with k € Z, two charge states are on
the bottom of the parabola. The dominant transport mechanism is
sequential tunneling. (b) On the other hand, by tuning ne = —1+k
the system is Coulomb blockaded. For small biases transitions has to
occur via virtual states since only a single charge state is at the bottom
of the parabola. The leading transport process is cotunneling.

by non-interacting fermions. The Hamiltonian for the leads is given by,
4
Hieads = —i0r ), [ dxgf (x)2.41(x), @51)
1=1

where lpl(ﬂ (x) annihilates (creates) an electron in lead ! and vr is the Fermi velocity.
As we in this study are interested in the low energy properties of these systems,
the leads can be approximated as one-dimensional systems which have a constant
density of states. The electrons of the leads can furthermore be considered spinless
as only one spin orientation of the electrons couple to the MBSs [27]. For further
considerations, the lead will be considered Fermi seas that are held at a chemical
potential ;.

The tunneling of electrons from the leads to the island is described by the tunnel-
ing Hamiltonian. We begin by considering the tunneling of electrons from the leads
into the MBSs of a grounded island and vice versa. The Hamiltonian describing
these processes are given by [27]

4
Hun = Y_ #9] (x =0)y, +hec, (3.52)
1=1

where ¢ is the tunneling amplitude between lead | and the MBS ; to which it is con-
nected. We are now left with two important steps. First, we transform the tunneling
Hamiltonian into the pure Dirac basis, using Eq. (3.35). This gives us the tunneling

Hamiltonian
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2M 2

Hun =)}t (x = 0) (‘ledj + oci}d}) +he, (3.53)
I=1j=1

where a;; are the coefficients that are given in Table 3.1 for the Majorana box and in
Table 3.2 for the T-junction.

As a starting point for the above given Hamiltonian, we chose a grounded su-
perconductor. However, this is not what we want to consider. We want to consider
a system with a floating superconductor. Hence, due to the electrostatic energy, we
cannot allow terms that create electrons at some point in space without taking them
from somewhere else. The fact that this occurs in the above Hamiltonian can be

seen, for example, from the term 1,0?r

d; which creates one electron in lead I and one
electron on the island. However, there is no term present that removes them from
somewhere else, and hence at the moment, the system contains terms that do not
conserve charge. Thus, the Hamiltonian has to be made charge conserving.

Whenever two electrons are created, they arise from the breaking of a Cooper
pair in the superconductor. The operator that creates respectively annihilates a
Cooper pair is given by e*¢, where ¢ is the superconducting phase. The fact that this
is the case follows from that the superconducting phase and the number of Cooper
pairs are conjugate variables, [N, ¢] = i [54] and is proven in Appendix B.

We can now make the tunneling Hamiltonian charge conserving by introducing
the Cooper pair creation and annihilation operators to the terms that either creates
or annihilates two electrons. The tunneling Hamiltonian that now conserves charge
is written [182]

4 M ,
Hi = Y 3 0] (x = 0) (wydj + ajidfe ™) + he. (3.54)
I=1j=1

We have now introduced all the parts of the system and the full Hamiltonian of
the island interacting with the leads can be written as (combining Egs. (3.34), (3.50),
(3.51) and (3.54))

H = Hicads + Hwmss + Heharging + Htuns (3.55)

where Hyps takes the form of the Majorana box Hamiltonian, Eq. (3.37) or of the T-
junction Hamiltonian, Eq. (3.42). We further note that the Hilbert space of the island
Hamiltonian Hyigs + Heparging is spanned by the states In, Nc). Here n represent the
occupation of the Dirac states, n = (n1,12) and n; € {0,1} denotes whether the
Dirac states d; are empty ot occupied and Nc denotes the number of Cooper pairs.

As a next step, we want to consider electron transport through the Majorana box
and the Tjunction. We will begin with considering the sequential tunneling regime
and, after that, consider the cotunneling regime. A theory especially useful for de-
scribing transport when interactions are taken into account is the master equation
formalism. Before we outline the specific calculations for the sequential tunneling
regime, we briefly discuss the general theory for master equations.
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3.6 Transport

This section will present the calculations and the corresponding results for transport
through the structures outlined in the previous section. Through the following calcu-
lations, we will obtain the current and differential conductance of the two structures
when various biases are applied at the different leads. We will furthermore consider
the weak coupling regime such that we can use the master equation approach. This
means that the tunneling amplitudes t; from lead ! to the island are considered to be
small compared to either temperature or the chemical potentials. We will further-
more assume that the temperature is much smaller than the charging energy, i.e.,
T < Ec, which should allow for the Coulomb blockade regime to be observed [118].
Let us now briefly introduce the theory of a master equation.

3.6.1 Master equation

There are many different ways of describing particle transport in mesoscopic physics’.

One way to describe the state of a quantum mechanical system is by writing a mas-
ter equation for the density matrix, i.e., an equation that describes the time evolution
of the system. We consider a Hamiltonian describing a small system coupled to an
environment by some kind of interaction. For the subsequent chapter, this will be
a "coupling" that lets electrons tunnel from the environment to the system and vice
versa. The Hamiltonian describing the full system can then be written as

H = Hs + Hp + Hj, (3.56)

where S denotes the system, B denotes the bath (surrounding environment), and I
denotes the interaction. We will now proceed by working in the interaction picture.
The time evolution of the density matrix is given by the von Neumann equation

which states that p )
i
0l = Z[Hi(5), ()], (357)

The equation can formally be solved by integrating the expression. One obtains

o(t) = p(0) & ["ds [Hy(5),p(s)] (358

to

Solving this integral equation is still a complicated feat, and hence one often turns
to perturbative methods. To this end, we will first derive, starting from Eq. (3.58),
the Redfield equation. The Redfield equation is an equation for the time evolution
of the density matrix to second order in the interaction Hamiltonian.

As a first step we re-insert Eq. (3.58) into (3.57). We obtain

Se0l0) = 3 [F1,p0)] = = [ ds [F1(0), [ (5), ()] (359

3In this section we have re-introduce  for pedagogical purposes.
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We furthermore integrate out the bath degree of freedoms by taking the trace over
the bath, and assume that trg [Hy, p(0)] = 0. This gives us

o) =~ [ dstea 110, [H1(5), ()] 3.60)

We have, at this point, obtained an equation that is second order in the interac-
tion Hamiltonian. Let us assume that the interaction Hamiltonian can be written
H; = AHj. We then observe that the coefficient in front of the integral is of second
order in A. Continuing the process of inserting the obtained integral equation into
Eq. (3.57), we will obtain an expression where every next term produced is of or-
der A"*1, where 7 is the number of iterations. Keep iterating in this manner does
not make the equation easier to solve. One way to proceed here is to perform two
approximations, the Born and Markov approximations.

The Born approximation, also known as the weak coupling limit, assumes that
the coupling between the subsystem and the bath is weak, i.e., A < 1, and due to
this, it is a good approximation to only keep terms that are of second order in A, or
to be more precise, the term of lowest order in A. By assuming that the environment
is essentially not affected by the subsystem, the density matrix can be written as a
tensor product between the environment and the subsystem. The density matrix of
the environment thus also becomes independent of time. Hence

p(t) = ps(t) @ pp. (3.61)

One should however note that this does not mean that there are no excitations oc-
curring in the bath. We however assume that environmental excitations decay over
time scales that are not resolved. This can be seen as a first step of the Markov ap-

proximation. We now insert this expression into Eq. (3.60) and obtain

2 ot
;tps(t) _ —;‘2 /t dstrs [Hi (1), [Hi(s), ps(s) @ ps]] . (3.62)

As a next step we perform the second step of the Markov approximation. First
ps(s) is replaced by ps(t) resulting in

sty =% [ dstes (5400, 165, p5(0) & o] (363)

The above equation now gives the time evolution for the density matrix of the sub-
system and depends only on its value at the present state ps(t). The above equa-
tion is the Redfield equation. The final problem with this equation is that it is not a
Markovian master equation, or in other words, it still depends on the initial prepara-
tion at time ¢¢ (which we can without loss of generality set equal to zero, i.e., ty = 0).
We next substitute s by t — s in the integral. The upper limit of the integral is further-
more pushed to infinity. This is allowed if the integrand disappears sufficiently fast
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compared to the time scale over which the bath correlation functions decay. Hence,
the Markov approximation is valid if the time scale over which the subsystem varies
is much larger than that over which the bath correlation functions decay. The Born-
Markov master equation is finally obtained

d A?

Gies( == [ ds [Hi(0), [Ht =), ps(t) @ pal). (3.64

We will now apply the introduced formalism to the systems we introduced in
the previous section.

3.6.2 Sequential tunneling regime

The previous section introduced the theory for investigating transport through the
considered structures. However, as noted from the theory of the master equation,
we integrate out the bath degrees of freedom. We are left without a possibility to
keep track of the change of electron numbers in the respective leads. To this end,
we introduce an operator that counts the number of electrons in the leads. We there-
fore define the lead number operator N;. This operator is considered part of the re-
duced system and remains as the bath degrees of freedom are integrated out. Hence,
this operator allows for a way to count the number of electrons that have tunneled
from/to the respective leads.

The lead number operator is canonically conjugate to a unitary lowering Y; and
raising Y;r operator and it follows that [38, 143],

[Nl,y,} — Y, (3.65)

(R | =¥, (3.66)

We include the lead raising and lowering operators by straightforwardly attaching
them to any operator that acts on the leads that increases respectively decrease the

number of electrons. The final tunneling Hamiltonian is therefore written

oM M ,
Hl, = ZZt,lpl x=0)Y/ (oq]d +afidle it ) +he. (3.67)

We now write the master equation for the reduced system which constitutes the
Majorana island but for which the leads have been integrated out. The tunneling
Hamiltonian acts as the interaction between the bath and island. Hence, given the

theory introduced in Section 3.6.1, Hy = H. .. The master equation is written

tun-

Los(t) / dstry{ [Hin (1), [p5(6) © ps, Hiun(t = 9)]])
= n;w [ ds ({99, [XEOYAE),p5(0)X (¢ = 5)¥ (= 5)]
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— (pu(O)9h(=5)) [ XHEYa(), Xt = )Y (£ = 5)ps(1)]
T h.c.), (3.68)

where X, = 2?‘:1 (zxnjd i+, jd;f). The time evolution of the operators are evaluated
using the Heisenberg equation of motion. For the bath correlation functions we have

that .
(i (=s)¢i(0)) =  Yonr(vpq)e rTIe, (3.69)
q

where L is the length of the one dimensional leads, i is the chemical potential of
lead k and np(x) = (1 — ef*)~1 is the Fermi distribution with B = 1/T. The sum can
be evaluated in the continuum limit and by applying the following identity:

/O:O dq f(q) /OOO dset =05 = 7f(a) +iP /O:O dq ;(—qzz’ (3.70)
where P denotes the Cauchy principal value. To make progress and to be able to cal-
culate the current of the systems, we need information about the elements of the den-
sity matrix. These are obtained by calculating (n; Nc| £0s(t) [n’; NZ), where 4 05(t)
is given in (3.68). This results in a set of equations for which many involve fast os-
cillating terms. In this study, we are interested in the current in the steady state. In
this limit, fast oscillating terms average out, and by making a secular approximation,
these are neglected. This leads to a set of equations for the occupation probabilities of
the different states P(n; Nc) = (n; Nc|Trg s [n; Nc) which decouple from the off-
diagonal elements. We now seek stationary solutions to the differential equations
ie, $P(n;Nc) = 0. We furthermore have to demand that Yune P(n,Nc) = 1. The
equations are solved numerically. Once the occupation probabilities are obtained the
current can be calculated from

(1) =Te{ Rufes} = & (11 11 Pl Ne), (371)

n,NC

Here Fll’Jr(*) denotes the transition probabilities and arise due to single transitions

to and from the lead. The transition rates are explicitly given by

Fll’+ = Fl\lei\z{z — nr [ — C(n) —Ec (1 — an —4NC) - “I/ll]

— iy [g(n) +Ec (1 —2ng — 4NC) - yl] } (3.72)
I} = TP {ne| - &(n) — Ec (1 - 21y — 4(Ne +1)) =
T [g(n) +Ec (1 —2ng — 4NC) - yl} } (3.73)

where I'; = |t|?/vF and

¢(n) =) gimn (3.74)
j
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is the energy of the state |n). We calculate the local and non-local differential con-
ductance by taking the derivative of the current in lead / with respect to the applied
chemical potential at lead k, i.e. d(I;) /dpi.

Including the charging energy restrict the number of available states unless the
applied bias is large, as explained in section 3.4.2. Furthermore, tunneling in the
sequential tunneling regime depends widely on the energy of the island,

2
E(I‘l, Nc) = C(n) + EC<an +ng + 2Nc> . (3.75)
j

As was explained in Section 3.4.2, the system is periodic in the gate voltage, and we
can hence, without any loss of generality, consider Nc = 0and —1 < ny < 0. We will
furthermore consider, for most cases ¢; > 0, illustrating the finite overlap between
the MBSs, as is of interest here.

Let us first consider the Majorana box. We vary the chemical potential on the
different leads and calculate the differential conductance. The chemical potentials
are chosen such that the chemical potential y1; = p and the chemical potentials of the
other leads are all held at the same value, y» = p3z = ug = p. The overlap between
the MBSs are set finite but unequal, §; = 0.1 and ¢, = 0.3. The stability diagrams
for the Majorana box are presented in Fig. 3.8. Figure 3.8 (a) and (b) represents the
stability diagrams of the first wire (top wire of Fig. 3.2 (a)) with the smallest overlap
between the MBSs and Fig. 3.8 (c) and (d) the stability diagrams of the second wire
(bottom wire of Fig. 3.2 (a)) for which the MBSs have a larger overlap than the MBSs
on the first wire. For an infinitesimal bias we observe two differential conductance
peaks in the stability diagrams. Let us focus on the right one. This conductance
peak occur at ng = — (&1 + Ec)/2Ec = —0.55. This corresponds to the charge states
|00; N¢) and |10; N¢) being degenerate.

As the bias is increased, transport can also be seen to occur in leads 3 and 4. As
they are held at the same bias, we observe, as one should expect, equality between
the two diagrams. One interesting feature here is that the conductance peak for the
smallest possible applied bias is not observed at ng but rather slightly to the right
of it. Furthermore, the peak does not have a symmetric partner to the left of ng.
This is shown by the boxes of Fig. 3.8 (d). The peak appears at n, = —0.45 which
corresponds to — (&1 — {2 + 2E.)/Ec. The presence and absence of the peaks boil
down to the available states at the given gate voltage. Where we were expecting
a peak, ny = —0.65, only the states |00; Nc) and |10; N¢) have a finite occupation
probability and hence only transport involving the d; state is possible. Hence, no
transport can occur on the second wire since there is no involvement of the d, state
neither is there a change in the number of Cooper pairs. On the other, hand given
ng = —0.45 the states |11; N¢c — 1), [00; N¢), |10; Nc) and |01; N¢) can all be occupied

since they all have a finite occupation probability.

0
8

lead 1 to lead 2 without any involvement of the Cooper pairs since only |00; N¢) and

The transport process at 1, = 1, is easy to understand, an electron tunnels from
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FIGURE 3.8: Differential conductances at the different leads for vary-
ing chemical potential and gate voltage, for the Majorana box. The
chemical potential atlead 1, y1 = u. Atlead 2-4, pp = ps = pg = — .
(@) dIy/du, (b) dIx/dy, (c) dI3/dy and (d) dly/dyu. The left box in (d)
marks the value of n¢ for which no peak in the differential conduc-
tance is observed. The right box marks the value for which a peak is
observed. The parameters are §; = 0.1, = 0.3, I; = 1074, Ec =1
and g = 25.

|10; N¢) have finite occupation probabilities for small biases. Contrary to this the
transport process for n; = —0.45 is more complicated. The transport between leads
1 and 2 is still mitigated by the same process as for ny = ng. However, the process
that allows for transport between lead 1 and leads 3 and 4 is mitigated by the Cooper
pairs. The specific transport process is visualized in Fig. 3.9. We explain the process
as follows: an electron initially sits on lead 1. As a large bias is applied, the electron
on lead 1 easily tunnels onto the first wire, moving the system into |10; N¢) state.
Either the electron now tunnels into lead 2, as previously explained, or it is also
possible that a Cooper pair from the condensate splits for which one of the electrons
goes to occupy the d; state, and the other electron moves either to lead 3 or 4. The
system is then in the |11; N¢c — 1) state. Now the electron that occupies the d; state
can form a Cooper pair with an electron from either lead 1 or 2. This moves the
system to the |01; N¢) state. The electron that is occupying the d; state then tunnels
to either lead 3 or 4, opposite to where the first one went. Summing up, we note that
one electron has effectively been transported from the first wire to the second. This
signifies a non-local transport between the first and the second wire that is driven
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FIGURE 3.9: Illustration of transport between the two wires of the
Majorana box, specifically from the first wire to the second wire.
Step 1: The bias configuration is such that first an electron will tun-
nel from lead 1 into the MBSs of the first wire, |00; Nc¢) — |10; N¢).
Step 2: A Cooper pair is split and one of the electrons goes to either
lead 3 or 4 whereas the other occupies the MBSs on the second wire,
|10; Nc) — |11; Nc —1). Step 3: An electron from either lead 1 or 2
forms a Cooper pair with the electron in the MBSs on the first wire,
|11, Nc — 1) — |01, N¢) Step 4: The electron occupying the MBSs on
the second wire finally tunnels to lead, opposite from where the first
electron went, |01, N¢) — |00, N¢).

by the Cooper pairs.

Figure 3.8 (a) shows further interesting transport phenomena. For certain choices
of bias configuration, there are regions where the differential conductance takes pos-
itive values contrary to the rest of the stability diagram. This means that for certain
bias configurations, the amplitude of the current in lead 1 decreases even though the
bias is increased. To highlight this effect we consider a slightly larger overlap config-
uration, ¢; = 0.3 and &, = 0.5. We plot the current and differential conductance in
Fig. 3.10 for which the gate voltage has been tuned to the resonance condition of the
first wire, n ¢ = ng. As seen in the figure, the current is both monotonic and, for cer-
tain biases vanishing. This phenomenon can be thought of as a non-local Coulomb
blockade. The explanation for it is that as the bias on leads 3 and 4 become larger
than the difference ¢, — ¢; the |01; N¢) state will be occupied. As both y3 and 4 are
at biases (in this case, the same) that are larger than the energy of the d, state, the
electron is trapped on the island. Since an extra electron has been added to the sys-
tem, adding another now requires it to overcome the charging energy. Thus, since
the system is now in the state |01; N¢), transport through the first wire requires that
the system makes transitions via the |11; N¢) state. Hence, for transport to occur, a
much larger bias has to be applied between the first and the second lead.
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FIGURE 3.10: (a) Currents and (b) differential conductances for the

Majorana box as the chemical potential is varied. The chemical poten-

tial on lead 1is yy = p. Onleads 2 — 4 we apply 2 = pz = pa = — .

The parameters are §; = 0.3, = 0.5,I; = 1074, Ec = 1and B =50.

The currents vanish in the bias region —0.6 < u/Ec < —0.2 due to
nonlocal Coulomb blockade.

Let us now consider the transport properties of the T-junction in the sequential tun-
neling regime. First we consider the non-interacting regime where the transport
properties are already known [168]. In the non-interacting limit we set Ec = 0. Un-
der the assumption that ||, T < ¢r we find that the current in lead [ is given by

() =Tylan | [1 — np(—w)]. (3.76)

Comparing to [168], where exact results are obtained, we note that we can reproduce
the results that are of linear order in I';. Our results also confirm that up to linear
order in I'; no current is observed in the fourth lead as a4 equals zero for the T-
junction (see table 3.2). The leading process on the fourth lead is double crossed
Andreev reflection, which is of higher order in I';, explained in [168].

Returning to the interacting system, we plot the stability diagrams for the T-
junction in Fig. 3.11. The bias configuration is chosen in the same manner as for
the Majorana box, i.e., y1 = pand po = u3 = us = —pu. We observe zero-bias
conductance peaks on the outer leads as the system is tuned on the degeneracy
points, ng = —1/2 4k, where k is an integer. Transport on the central lead is, on
the other hand, blocked. The transport on the outer leads is here mediated by the is-
land changing between being in the |00; N¢) and the |10; N¢) states. This is depicted
in Fig. 3.12. The fact that transport occurs only on the outer leads indicates a strong
non-locality in the transport features of the Tjunction. The transport is, however,
still mediated by the central MBS, which in this case serve as a bridge for connecting
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FIGURE 3.11: Differential conductances at the different leads for vary-
ing chemical potential and gate voltage, for the Tjunction. The chem-
ical potential atlead 1, 41 = p. Atlead 2-4, yy = ps = pg = —p. The
plots show (a) dI;/du, (b) dly/dy, (c) dI3/du and (d) dly/dy. The
parameters are & = 0.1, & = 0.3, T; = 107*, Ec = 1 and 8 = 25.

the outer MBSs to each other.

We now study the stability diagram as the bias is increased. We observe a con-
ductance peak on the central lead as || > &r. The bias increase further provides
additional transport processes in the outer leads. These presents themselves as the
sidebands observed in Fig. 3.11(a) - (c). The transport is now mediated both by single
electrons as well as by processes that involves creation and annihilation of Cooper
pairs, much in the same way as depicted in Fig. 3.9. The system now changes be-
tween |00; Nc) = |10; N¢), |10; Nc) = |11;N¢c — 1), |01;N¢) = |11;N¢c — 1) and
|00; N¢) = |01; N¢). This is also depicted in Fig. 3.12.

As a final study in the sequential tunneling regime, we consider in more detail
the non-local transport that we have now observed in both the Majorana box and the
T-unction. This non-local transport can be understood as the "teleportation" process
that was first suggested by Liang Fu [54]. The teleportation process is defined as a
non-local current that does not depend on the length of the wires and hence neither
on the overlap between the MBSs. We isolate this process by considering infinite
wires; hence there is no overlap between the MBSs. This corresponds to setting
¢1 = ¢» = ¢t = 0. This then implies that we can not distinguish between the two
structures.
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FIGURE 3.12: The charge states that contribute to sequential tun-

neling in the Tjunction as ng = —1/2. When the applied bias is

small, transitions between |00; 0) = |10;0) are the only allowed ones.

When the bias window is increased, the system can cycle between

100; N¢) = [10; N¢), |10; N¢) = |11; Ne — 1), [01; N¢) = [11; Ne — 1)

and |00; N¢) = |01; N¢), under the condition that the applied bias is
larger than ¢r.

By applying a bias y; on lead y; while keeping the other leads grounded, we
calculate the non-local differential conductance d(I;) /dpu;. A zero-bias conductance
peak is observed at all the leads, as presented in Fig. 3.13. The conductance peak
is a signature that non-local currents are present. However, the sequential tunnel-
ing approximation does not allow for studying phase coherence which is a further
property of the teleportation process [54]. On the other hand, the analogy between
the Hamiltonian in Eq.(3.54) and the one studied in [182] allows us to interpret the
observed transport as teleportation.

We summarize the transport calculations so far by noting that we have here
found all transport processes that are of leading order in I'; and explained the phys-
ical reasons behind the observed signatures. We have furthermore explained the
non-local signatures of the two structures. An important detail to highlight from the
discussion on non-local transport is the fact that the overlap plays a significant role.
As the overlap between the MBSs become zero, the system loses all structure and
can "simply" be regarded as a multiterminal junction where each lead connects to
a single MBS. On the other hand, when the overlap is taken into account, the dif-
ferences in the transport properties between the two structures prove that they are
distinct from each other.

To increase our understanding of the two structures, we will, in the next sec-
tion, consider transport processes that are of second order in I';, i.e., transport that is
dominating in the cotunneling regime.
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FIGURE 3.13: Non-local conductance dI;/dyu; for a system hosting

four MBSs. The bias on lead 1 is y1. The other leads are grounded. In

this case we consider that there is no overlap between the MBSs. The

other parameters are I'j = 1074, T, =T1/2,T3 =T11/3,Ty =T1/4,
Ec=1and p = 25.

3.6.3 Cotunneling regime

As explained in Section 3.4.2, in the cotunneling regime the system is tuned such
that there are no degenerate charge states within a small bias window. Hence, for
transport to occur either a large bias has to be applied, which then gives the results
as seen for large bias in the sequential tunneling regime, or transport can occur via
virtual states. We will consider the second possibility in this section. As in the se-
quential tunneling regime we look for a set of equations that allows us to calculate
the occupation probabilities. We will here write a rate equation. The rate equation
for the occupation probabilities can be written

By=—Y WiP, + Y WEPg, (3.77)
g B

where « denotes the state |a) = |n, N¢) and P, is the occupation probability of this
state. The equation describes how the occupation probabilities changes due to differ-
ent transitions occurring in the system. These transitions are given by the transition
rates Wg. Here the notation is such that Wy describes a transition from the initial
state |a) to a final state |3).

Since we want to remain in the cotunneling regime we restrict ourselves to small
biases, i.e., [y;| < Ec. We tune the system to n; = —1, which is the condition for
the system to be in a Coulomb valley, around which cotunneling processes are dom-
inant. This furthermore allows us to restrict ourselves to only consider the charge
states with the smallest energy. These correspond to |11; Nc — 1), |00; N¢), |10; N¢),
|01; Nc), |00; Nc +1) and |11; N¢). There are in total six since we for each charge
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FIGURE 3.14: Distribution of the charge states in the Coulomb block-
ade. The figure shows the six charge states with the lowest energies
when ne = —1. Here it is assumed that {» > ¢7.

state have to possibility to either occupy the d; or the d, state. The situation is
depicted in Fig. 3.14. From the figure it is obvious that the low energy states are
|10; Nc) and |01; N¢) and the rest makes up the virtual states. We denote by Pjq,_1,
Poo0, P1o,0, Po1:0, Poo;1 and Pi1y the occupation probabilities for the different states.
We furthermore have to require that the occupation probabilities are normalized,
ie,), P, =1

To obtain the transition rates, we apply Fermi’s golden rule. Higher-order tran-
sitions are taken into account in Fermi’s golden rule by writing it in the T-matrix

representation [29]. Hence the transition rates are given by
A 2
Wi = 27:; [(¢, B| T i, )| " 8(Ef,g — Ein)- (3.78)
i,

Here the initial state of the total system, subsystem and leads are given by |¢;, a),
}1,0 iz B) correspond to the final states and E; , and E g denotes the respective energies
of these. The T matrix is written as

N 1 A
T = Hyn + HéuniHO — T, (3.79)
1,0

where H) is the unperturbed Hamiltonian and reads
Ho = Hieads + Hwmps + Hcharging- (3.80)

The tunneling Hamiltonian is the same as in the sequential tunneling regime and
is given in Eq. (3.54). The second order transitions rates can now be obtained if we
expand the T matrix to second order. In total we obtain 14 different transition rates,

_ W, W,
Wiio (I, ) = % /dE”F(E — p)np(—E+ Ec(4 +4ng) — py,)
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&)1 %11 B &1 %01
& T EcB+2n,) —E & —Ec(1+2ng) + E
“112“122 “;;2“112

f:z +Ec(3+2ng) —E - & —Ec(1+ 2ng) + E‘ (3.81)

) W, W,
Wllll;’gl(h,lz) — M/dE (1 —np(E—py,)] [1—np(—E+ Ec(4+4ng) — p,)]

) &1 %1 B &,1%01
g] Ec 1+2Tlg) + E 61 +Ec(3+21’lg) —E
] o012 Xp 02 2
n ! - 2 ( 3.82
Cz—Ec(l—ang)—FE €2+Ec(3+2ng)—E ( )
. W, W,
wgg;f(zl,zz) _ M /dEnF (E — py,)np(—E + Ec(4 +4ng) — )
‘ 01,10 3 11871
—81+Ec(8+2ng) —E  —¢1—Ec(1+2ng) +E
“1120‘122 “122“712 ‘
4 _ 3.83
—&H+Ec(3+2ng) —E  —& —Ec(1+2n,) +E (3.:83)

. Wi, W
Wob (1) = S0 [ dE (1= np(E = )] [1 = np(—E + Ec(4+4ng) — u,)]

« ‘ (xllloc;;l B 0(1210(711
—¢1—Ec(1+2ng)+E —G1+Ec(3+2ny) —E
0611206;“22 04122&712 ‘2
+ — 3.84
—gz—Ec(l—f-an)—i—E —§2+Ec(3+2ng) — E ( )
. W, W[
WiS (1) = S [ dEnp(E = ) (1= np(E+ & — &1 — )
y ‘ “122“1*11 B oqlz(x;;l
—Cl — Ec(3 + an) + E —52 +4 Ec(l + 21’lg) —E
0‘7 1%02 “?1“112 2
+ ! - 2 3.85
2@‘2—61—EC(3+2118)+E §2+EC(1+2ng)—E ( )
. Wi, W,
ol 1) = 7 [ dEnp(E = ) (1= np(E+ & — &2 — )]
« ‘ 0612106?12 B 0([110(722
—8y—Ec(3+2ng) +E  —1+Ec(1+2ny) — E
o] 51 a0 ‘2 (3.86)

_I_ —
201 — G —Ec(3+2ng) +E G+ Ec(1+2ng) —E
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W (I, 1)

T E +2ng) +E  —&+Ec(3+2ng) —E

— Wz]sz/dE [1—np(E — )] [1 = np(—E = &1 — &2 + Ec(4 +4ng) — p,)]

’ X1, B a0,
&+ Ec(3+2n) —E & — Ec(1+2ng) + E
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_|_ —
& +Ec(3+2ng) —E & —Ec(1+2ng) +E

. W, W
wff;g(ll,zz) — % /dEnp(E — i )np(—E + & + & + Ec(4+4ng) — )

« ‘ X182 _ X180
—Go—Ec(1+2ng)+E {1+ Ec(3+2ng) —E
N0 af ]

(3.93)

: : \
—51—EC(1+2ng)+E €2+Ec(3+21’1g)—E

. W, W
W 1y, ) = % /dE 1 —np(E— )] [1 = np(—E+ & + & + Ec(4+ 4ng) — )]

X1,147,2 _ X1,1%1,2
62 + Ec(3 —+ Zﬂg) E —gl — Ec(l + an) +E
X1,2K01 Xp2&1,1

(3.94)

¢§1 +Ec(3+2ng) —E  —& — Ec(1+2ny)

where W, = 27t|;|>D; and D; = 1/(27tvr) as we are assuming a constant density of
states in the leads.

For finite temperatures, the tunneling rates diverge and must be regularized to
remain physical. To this end, one introduces a finite broadening [87, 86], v ~ W;
which shifts the poles away from the real line. Once the broadening has been intro-
duced, the absolute values seen in the transitions rates are expanded in the broad-
ening parameter . The procedure is finished by subtracting the 1/ term. The
procedure leads to integrals of two types,

1 1
E—e—iyE—ey+iy

I(Ey, Bz e1,€2) = lin%Re/dE ne(E— Ey) [1— np(E — Ep)]
Y—

:nB(Ez — El)

€1 — € Re{y(1/2+ip[Er —e1] /27)

—lP(1/2 1,3 [Ez —62] /27'[)
—(1/2+iB[E1 —€1] /2m)
+¢(1/2 —iB[E1 — €] /27) }, (3.95)

J(E1 Ere) = lim UdEnF (E—E1)[1 - ne(E — By)] (E—Szﬂz —0(1/7)
:%ng(Ez —E)Im{y/(1/2 + B [E2 — €] /270)
—¢'(1/2+iB[Ey — €] /27)}, (3.96)

where ng(x) = and (") denotes the polygamma function.

ﬁx 1
Given the calculated transition rates we can now find the occupation probabili-

ties. Like in the case of transport in the sequential tunneling regime we are interested
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in the steady state limit, hence P, = 0. This allows us to write Eq. (3.77) as
WP = 0. (3.97)

The last row is replaced by the normalization condition, ), P, = 1 and the system
of equations is then solved numerically. For the gate voltage tuned to ny ~ —1
and y; < Ec we obtain finite occupation probabilities for the two states lowest in
energy, |10; N¢) and |01; N¢). The other occupation probabilities are Pjq._1 =~ Py, =~
Py = P o e Ec/T x 0. The values of the Pyo9 and Pp0 depends on how the
bias is applied. The fact that Py, and Py, are the only occupation probabilities that
remain finite should be expected since we only apply a small bias. Hence, we do
not supply the electrons with enough energy to be able to occupy states with higher
energy. This does not however mean that transport is completely cut off. Indeed
transitions can occur via higher states by means of virtual transitions.

Similar to Eq. (3.71) the expression for the current taking second order tunneling

processes into account is given by

() =y (W =W ) P, Ne)+2 ) (WPH = WP ) P(n,Ne).  (398)

n,NC n,NC

In this expression Wl1 a correspond to the transition rates found in Eq. (3.78). As

previously explained, these are processes that either increase or decrease the particle
number by one, in contrast to Wl2 ’+(_), which corresponds to a change of number of
particles by two. We further learn from that P,y and Pjg, are the only finite occu-
pation probabilities, that the current is purely driven by elastic (ECT) and inelastic
(ICT) cotunneling processes. An ECT process is such that the initial and final state
of the system remains the same. Hence, these are described by tunneling rates Wll(%)
and ngl;g. The ICT, on the other hand, describes the process where the initial and
final states are different but with the number of particles still being conserved. The
transition rates that describe this effect are W{)(};g and W&%). This implies that the

current, Eq. (3.98) can be written as
() = IFT+ 1T, (3.99)
where

= Z{ [W%&S(Lk) — Wigo (k, l)} Pigp + [nglf(())(l/ k) — nglfg(k/l)] Pow}/
k
(3.100)

and

[T = ;{ (W08 (1K) = Wig8 (k1) | Povo + [ Wt (1, ) = Wal (K, )] Proo ).
(3.101)
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Analytical results for the transition rates can be found in the limit ¢;, || < Ec
and T = 0. For the Majorana box, these are given by

. QW W,
Wi (1K) = =3 (i = )@ (pr — ), (3.102)
C
. QW W,
W&ﬁ’g(l,k) = mlgék (W1 — P+ 81— G2) X O(py — px + 81— G2), (3.103)

where k,I € {1,2} in the first line, and k,I € {3,4} in the second line and for the
T-junction by

2W W,

Wi (1K) = p— (11— )@ (1 — px), (3.104)
C
. QW W,
Worp (1 k) = né% S — pe— Er)O(u — i — &), (3.105)

with k,1 € {1,...,4}. As a consistency check consider zero overlap between the
MBSs, i.e., &1 = & = ¢ = 0. This results in W,g7 (1, k) = W (1 k) = Wy (L k) =
Wfol;;g (I,k) for all k,1 € {1,2,3,4}. We note that the results are in agreement with
what is discussed in the end of the sequential tunneling regime. As the overlap goes
to zero the structures become indistinguishable and hence the transport looks the
same in the two structures.

We now consider the Majorana box in the cotunneling regime. The bias configu-
ration is such that y; = p and yo = u3 = ps = —u. We plot the results in Fig. 3.15.
A current between leads 1 and 2 is observed for an infinitesimal bias, which is due
to ECT. We note that the numerical results are in good agreement with the analyt-
ical calculations. Consider the derivative of the ECT cotunneling rate, Eq. (3.102),
with respect to the chemical potential, and one finds that it is constant as observed
in Fig. 3.15. The fact that no current is observed in leads 3 and 4 is due to that these
do not couple to the d; state. Hence no current between lead 1 and leads 3 and 4 can
stem from ECT.

As the bias is increased and becomes larger than the difference |¢, — &1, a current
is observed in leads 3 and 4. As explained no current between lead 1 and leads 3 and
4 can be due to ECT and hence this current is solely driven by ICT processes. This
is furthermore explained by the analytical results, Eq. (3.103), from which it is clear
that as long as pt < |&2 — 1], W&fjg = W%:g =0.

To help to understand the physical details of the processes that give rise to the
specific currents, we look to Fig. 3.16. The island is initially in the |10; N¢) state.
Now, the electron residing on the island tunnels into lead 2 (see Fig. 3.16 (a)). The
system is now in the |00; N¢) state. An electron from lead 1 can now tunnel onto the
island, bringing the system back to its initial state, |10; Nc¢).

The tunneling from lead 1 to leads 3 and 4 is like in the sequential tunneling
regime driven by Cooper pairs. The transport is depicted in Fig. 3.16 (b). As in the

first case, we consider an electron residing in the d; state. As the bias on leads 3
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FIGURE 3.15: Differential conductance in the Coulomb blockade
regime for the Majorana box. The bias on lead 1 is y; = u. The
biases applied to leads 2 — 4 are yp = y3 = p4a = —p. The differential
conductance is due to (a) elastic cotunneling and (b) inelastic cotun-
neling. Note that in both plots dIs/du = 14/dyu. The parameters are
Ec=1W;=1-10"% ¢ =0.01,& = 0.03, =900 and ny = —1.

and 4 become smaller than — (&> — ¢1), a possibility for a Cooper pair to split be-
comes possible. Upon being split, the two electrons that are being produced are
transferred either to lead 3 or 4 and to the d, state. The system is now in the virtual
state |11; Nc — 1). The electron in the d; state now favorably forms a Cooper pair
with an electron from lead 1, which brings the system to the |01; N¢) state. Hence
an electron has been removed from lead 1, and an electron has been created in either
lead 3 or 4.

We now consider the T-junction. The differential conductance is plotted in Fig.
3.17. Comparing this to the results of the Majorana box, we note that they are in
most regards almost identical. The difference lies in that for the T-junction, a current
due to both ECT and ICT is observed in all leads in contrast to the Majorana box,
for which ECT only occurs between leads 1 and 2 and ICT between lead 1 and leads
3 and 4. A current due to ECT is observed for an infinitesimal applied bias. as |y|
becomes larger than ¢r a current due to ICT is observed as well.

Contrary to the sequential tunneling regime, in the cotunneling regime a current
is observed in the central lead even for |u| < {r. This results from the fact that
cotunneling processes are now possible, and electrons can tunnel via virtual states.
Let us consider the system being in the |10; N¢) state. As all leads couple to the d,
state, let us assume that an electron from lead 1 tunnels onto the island such that it
is in the virtual |11; N¢) state. As lead 4 couple to the d state, the electron can now
simply tunnel into it, and hence an electron has been transferred from lead 1 to lead
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FIGURE 3.16: Examples of (a) elastic and (b) inelastic cotunneling in
the Majorana box. The dashed boxes indicate virtual states. (a) An
electron occupying the MBSs of the first wire is transferred to the sec-
ond lead. After that an electron from the first lead is transferred into
the MBSs. The MBSs goes from being occupied to empty to once again
occupied and an electron has been transferred from the first to the sec-
ond lead. The process of the island is |10; Nc) — |00; N¢) — |10; N¢).
(b) Inelastic cotunneling: initially an electron occupies the MBSs on
the first wire. A Cooper pair is broken and one of the electrons goes
to lead 4 and the other to occupy the MBSs of the second wire. The
electron in the MBSs on the first wire then forms a Cooper pair with
an electron from the first lead. In total an electron has been trans-
ferred from lead 1 to lead 3 or 4. The island has changed between the
following states: |10; Nc) — |11; N¢ — 1) — |01; N¢).
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FIGURE 3.17: Differential conductance in the Coulomb blockade for
the Tjunction. The bias on lead 1 is 41 = u. The biases applied to
leads 2 — 4 are y = pu3 = ps = —p. The differential conductance
is due to (a) elastic cotunneling and (b) inelastic cotunneling. Note
that in both plots In both plots dI, /du = dI3/du. The parameters are
Ec=1,W;=1-10"% &y = 0.05, p = 900 and ng = —1.

4, and energy has throughout the process been conserved.

0.1

As a concluding remark, we note that due to that the d; state couples to all leads,

ECT can drive a current between all leads. This is the reason why no current is
observed due to ECT between lead 1 and leads 3 and 4 in the Majorana box.
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Chapter 4

Light-matter interaction in nodal
loop semimetals

This chapter is devoted to the interaction between light and matter. More specifi-
cally, we will discuss the optical activity in a nodal loop semimetal, introduced in
Section 2.4.2. The interplay between light and matter has for long been, among oth-
ers, an important tool for the understanding of materials. Different optical tech-
niques allow us to obtain information about different properties of the material. In
the same way, knowing how a material reacts under the influence of light can lead
to the creation of new technologies.

With the discovery of topological materials, understanding how light interacts
with these has become a growing topic [145, 11, 74, 127,75, 155, 67, 66]. Many inter-
esting effects have been discovered. Among these are axion electrodynamics [145],
quantized photocurrents [75], photogalvanic effects [66], and large second harmonic
generation [127, 155].

Two optical techniques that have been around for a long time are the Kerr and
Faraday effects. The Kerr and Faraday angles measure, respectively, the rotation of
polarization angles from reflected and transmitted waves with respect to incident
light, due to the interaction between the light and the material. Historically these
techniques required an external magnetic field. However, many topological mate-
rials have an intrinsic Hall conductivity, even without the application of external
magnetic fields. Hence, the Kerr and Faraday effect are promising techniques for
obtaining some of the properties of topological materials.

The Kerr and Faraday effects of topological materials have mainly been under
theoretical investigations. An early study shows that topological insulators should
indeed give rise to large Kerr and Faraday angles [164]. Furthermore, it is shown
that the Faraday rotation takes a universal value at low frequencies proportional to
the fine structure constant, a. The effects have as well been investigated in other
topological phases that are based on the Haldane model [131].

In Weyl semimetals, especially the Kerr effect has been under investigation [78,
151]. Similar to topological insulators, one should be able to observe Kerr angles in
thin-film Weyl semimetals that are of the same order of magnitude as those observed
in topological insulators, indicating a strong optical activity in these materials. A
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model taking into account four Weyl nodes in a magnetic field is studied in [126].
This study further shows how the Kerr effect is modified by magnetic fields and
furthermore shows how features of the chiral anomaly and valley polarization can
be observed in the spectrum of the Kerr angle.

As discussed in the introductory chapter, topological materials exist beyond topo-
logical insulators and Weyl semimetals. In this chapter, we discuss the Kerr effect
of one of those materials, the nodal loop semimetals. The results discussed here are
based on those we obtained in the paper titled Kerr effect in tilted nodal loop semimet-
als [49]. Similar to other topological materials, we find that the nodal loop as well
features large Kerr rotations. On the contrary, the Kerr rotations strongly depend on
the tilt of the nodal loop. We further elucidate on how properties of the nodal loop
can be observed in the Kerr rotation spectrum.

We begin the following sections by discussing Maxwell’s equations and intro-
ducing the Kerr and Faraday effects. After that, we present the model of the tilted
nodal loop semimetal. Maxwells’s equations tell us that to describe the reflected
light due to an incident beam, we must know the conductivity tensor of the material.
We thus introduce the Kubo formula and calculate the full conductivity tensor of the
tilted nodal loop Hamiltonian. With this information and applying Maxwell’s equa-
tions, we obtain the Kerr rotations for a thin film and bulk nodal loop semimetal'.

4.1 Light-matter interaction

The interaction between light and matter has been a long-studied topic. The first
breakthrough came when Maxwell formulated a set of equations, that successfully
describes the interaction between light and matter. The equations have ever since
been the foundation of classical electromagnetism and are, on differential form writ-

ten as

V-D =4mnp (4.1)
10 4t

VXH—EgD— TJ (4.2)
10
V-B=0. (4.4)

where D is the displacement field, H is the magnetic field, E is the electric field and
B is the magnetic flux. The quantities on the right-hand side of the equations are
the charge density, p and the current, J. The first equation is Gauss’ law for electric-
ity. It gives a relationship between the charge density and the displacement field.
Integrating over the whole system, one has a relationship between the total charge
and the displacement field. The second equation is Ampere’s circuit law. It gives a

n this chapter we sete = 11 = 1.
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relationship between the current and the magnetic field it creates around itself. The
third equation is Faraday’s law of inductions. This equation states that a change in
the magnetic field will create a potential difference, which will mean a possibility for
the creation of a current flow. The last equation is Gauss’ law of magnetism. It states
that the divergence of the magnetic flux equals zero. An implication of this is that
there cannot exist any magnetic monopoles. By integrating the equation (over some
region in space), the equation then states that the field lines penetrating the surface
must sum to zero, i.e., the number of field lines going into the encapsulated region
must be the same as the number going out. Hence, no magnetic charge can build up
in space.
The electric field can be related to the current by Ohm’s law,

J = oE, (4.5)

where ¢ is the conductivity tensor which depends on the macroscopic properties of
the material. The constitutive relations give the relations between the electric and
displacement fields and between the magnetic flux and the magnetic field. These
are of importance when considering the propagation of electromagnetic waves in
dispersive media. The displacement field is related to the electric field by

D =¢,E+P, (4.6)

where €, is the static permittivity and P is the polarization. The relation between the
magnetic flux and the magnetic field is given by

H=1B_M, 4.7)

H

where y is the magnetization of the material, not to be confused with the chemical
potential, and M is the magnetization field. For the ensuing discussion we will con-
sider materials that are neither magnetized nor polarized and hence, D = €,E and
H=_B.

Many physical quantities can be obtained from the knowledge of the electromag-
netic field. However, with the above equations it is not always straight forward to
obtain it. Hence we seek another equation which only describes the time evolution
of the electric field. We obtain this equation by combining Maxwell’s equations. First
we take the curl of the third equation, Eq. (4.3) and use the identity for double curls,
V x (V x E) = V(V - E) — V?E. We then obtain

V(V.E)—VZE+i§t(vXB):o. (4.8)
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Next we take the derivative of Eq. (4.2) with respect to time and insert it in the above
equation. Furthermore, Ohm’s law is applied to right hand side such that

V(V-E)-VE="L |¢ aiE+4m73E (4.9)
T2 o ot '

This is the electromagnetic wave equation and describes the time evolution of the elec-
tromagnetic field in time and space. The equation is in Fourier space written as

(k- k) E(k,w) —k (k- E(k,w)) = ”;"’22 {eb + i}ma} E(k,w).  (410)

The term inside the bracket on the right hand side correspond to the permittivity,
€ = ;1 + “o, where here I represents the 3 by 3 identity matrix. Once we have the
knowledge of the electric field, the other fields follow by solving Maxwell’s equa-
tions. By Fourier transforming Eq. (4.3) we have a simple relation between the elec-

tric field and the magnetic flux,
c
B = —k x E. (4.11)
w

As with so many other physical phenomena, these equations have to be accom-
panied by boundary conditions. The details of these are given in Appendix D. There
are in total four conditions. For the following discussion only two of them matters.
Consider the interface between two materials. The first boundary condition tells us
that the electric field parallel to the surface must be equal on both sides, or more

precise it has to be continuous across the interface, hence

E| = El. (4.12)

The second boundary condition relates the magnetic flux on the two sides of the
surface to each other. Contrary to the electric field, the second boundary condition
states that the magnetic flux parallel to the surface is discontinuous. The discontinu-
ity is equal to any induced currents. The boundary condition is written as

I I
B B 4
iz (yi - y> - @19

where fij5 is the unit vector pointing from material 1 to 2.

4.2 Kerr and Faraday effects

The Kerr and Faraday effects are optical effects that describe the polarization of a
reflected and a transmitted beam on a material surface, respectively. The Faraday
effect was first discovered by Michael Faraday already in 1846 [52]. During his ex-

periment, he observed that the polarization plane of a linearly polarized light beam
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was rotated upon transmission through a material, in this case, borosilicate (mix-
ture of silica and boron trioxide) glass, upon the application of a magnetic field.
The effect was quickly confirmed and is nowadays a common tool in the field of
magneto-optics, the field where optical tools are combined with magnetism.

Three decades later, in 1876, it was discovered by John Kerr that, similarly to the
observation of Faraday, the polarization plane of linearly polarized light was rotated
upon the reflection on a material surface [72]. In this experiment, the pole of a mag-
net was used to reflect the incident light. This gave rise to the polar magneto-optical
Kerr effect. Two years later, the effect was observed for an in-plane magnetized piece
of iron, giving rise to the longitudinal magneto-optical Kerr effect.

Note that during the discovery of the Kerr and Faraday effects, the development
of quantum mechanics had yet to begin. Because of this, there did not exist a theo-
retical description of the observed phenomena. One of the early, suggested theories,
was based on the idea that the left- and right-circularly polarized light coupled dif-
ferently to classical electron oscillators in solids.

Once quantum mechanics took a leap, the basic understanding of the Faraday
and Kerr effects was developed. The first proposed model was developed by Hulme,
[69], where he proposed that the Faraday effect arises from the spin-polarized elec-
tron motion due to spin-orbit coupling. He considered how the refractive index
depends on the left and right-handed polarized beams by considering the spin-orbit
induced splitting of the energy eigenvalues. On the other hand, the effect on the
wave functions was neglected.

Later on, it was argued by Kittel [83] that the contribution from the wave func-
tions could be of the same order of magnitude. A few years later, Argyres, [7], devel-
oped a complete formulation of the model. In this case, both the spin-orbit coupling
and the spin-polarization were accounted for. Hence the Kerr and Faraday effects
were in the 1950s understood as being caused by the spin-orbit coupling and the
exchange splitting.

The 50s also saw an improvement in the experimental techniques, and two dis-
coveries created a spark for experimental research in the field. The first one was
the discovery that the magnetic domains could be observed using the Kerr effect
[171]. The second was the discovery that the Kerr effect could be used for reading
out suitably stored magnetic information [172, 39].

The field has since then developed both on the experimental side, with more
powerful equipment, as well as on the theoretical side with the development of lin-
ear response and density functional theory. The Kerr and Faraday effects have now
become a powerful tool for studying materials. They can be used, for example, to
acquire information about the band structure of materials as well as giving informa-
tion about their optical conductivity.

A property of many topological materials is their intrinsic Hall conductivity. As
the Faraday and Kerr effects are directly dependent on the dynamical Hall conduc-
tivity, they should serve as excellent tools for understanding certain aspects of these
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materials. Many theoretical works has indeed shown that we can learn a great deal
about topological materials from Kerr and Faraday measurements [164, 78, 151, 131,
126].

We will in the next section describe the theoretical model used to calculate the
Kerr and Faraday effects. After that, we apply it to the nodal loop semimetal and
describe the behavior of the Kerr effect in this class of materials.

4.2.1 Theoretical model

To describe the Kerr effect, theoretically, we consider the setup depicted in Fig. 4.1.
A linearly polarized incident beam is reflected (transmitted) upon the surface of
the material. Upon reflection (transmission) the reflected (transmitted) beam may
acquire a change of phase such that in general the reflected (transmitted) light is no
more linearly polarized but rather elliptically polarized. The reflected light can be

represented by two circularly polarized light beams
E = (Efé}{ + E}ég) gilkrton), (4.14)

where & | = 14 ij, for some arbitrary directions 1 and j, obeying the direction of the
reflected light. ER and E! are the amplitudes of the right and left-handed reflected
light, respectively. The Kerr angles are now obtained by considering the quotient of
the right and left handed circularly polarized light. Writing the quotient on polar
form amounts to ER/EL = %ei(“””). The change in polarization angle, the Kerr
angle is from this defined as r

1

Ok = E(“R —ar), (4.15)

and the ellipticity, a measure of how circular?” the reflected light is, is defined as

€K = TEI] (4.16)

From the ellipticity one can conclude that: if ex becomes zero or infinite, this means
that the reflected light is either entirely right or left-handed, circularly polarized. If
it is close to one, we need the information of the Kerr angle to fully determine the
polarization of the reflected light.

To obtain the Kerr angle and the ellipticity, we thus have to find the reflected
tields given an incident beam on a material surface. This amounts to solving Maxwell’s
equations in the different materials and match the different fields by using the bound-
ary conditions given by Egs. (4.12) and (4.13). Before defining a specific system, let
us consider a general setup for the Kerr rotations of a thin film and for a bulk mate-

rial.

2The polarization of the reflected light can vary between linear, elliptical and circular.
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Ok /F

FIGURE 4.1: Schematic figure of the Kerr and Faraday effects. (a) An
incoming linearly polarized light beam, E;, is reflected (E;) and trans-
mitted (E;) upon the the material surface. The outgoing light may
have a polarization that is distinct from the incoming one. The polar-
ization rotation of the reflected is denoted the Kerr rotation, whereas
the rotation of the transmitted is denoted the Faraday rotation. (b)
The left part represents the polarization of the incoming light, which
is of linear polarization. The right represents the outgoing light which
might have obtained a polarization rotation depicted by the ellipse.

Thin film

A thin film is characterized by that its thickness is much smaller than the wavelength
of incident light. Because of this, the inside of the material has no influence on
the light propagation, and only the surfaces matter. Let us first consider a normal
incident, linearly polarized beam, on the x — y surface of the thin film. The light
beam thus propagates in the k, direction. The incoming wave is written

Eg

Ep = 7 (éR + éL) eikzz—iwt’ (4_17)

where er/; = X F §. In this notation, the linearly polarized beam has been decom-
posed into a left and right-handed polarized beam, but by summing them corre-
spond to a beam linearly polarized along the x-axis. The reflected beam is given
by Eq. (4.14). As we consider an incident beam traversing in the k, direction, the
reflected beam must be reflected back in the —k, direction. Furthermore, this im-
plies that the electric field can only have components in the X and ¥ directions. The
reflected field is hence written as

E, = (EféR + E}ég) gilkzton) (4.18)

with é}{ = X=* iy. The transmitted field must, according to Snell’s law take the
following form
E — (EF@R 4 EféL) pikez it (4.19)

The magnetic field corresponding to the incident, reflected and transmitted fields
are calculated using Eq. (4.11). We then set E; = E, 4+ Eg and E; = E;; the incident

and reflected beams are present on one side of the film, whereas, the transmitted
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field are present on the other. For the same reasons we set By = B, + By. As stated
above, only the material surface matters for the influence the material has on the
incident beam. Thus, we have to consider the boundary conditions of the material.
The surface conductivity, ¢°, is approximated by the bulk conductivity tensor and
the width, d, of the thin film as (75 = doj; [78]. The boundary conditions, Egs. (4.12)
and (4.13), now give us four equations. These are

|[ER + EF] +2E) = [EF + EF| (4.20)
i [E} - Eﬂ =i [EF - Eﬂ (4.21)
A2 [EF - Eﬂ A [Ef - Eﬂ =], (4.22)
Ao [ER+EF] + A1 [EF + EF] —204B0 =, (4.23)
where
J, = o5, [EF . Eﬂ — oS, [EF + Eﬂ , (4.24)
I = 05, [EF + E}] +idS, [EF - 1—:}} , (4.25)

and Ay = ny/picand Ay = ny/pyc. Solving these equations we obtain the ampli-
tudes of the right respectively left-handed reflected circularly polarized light beams,

ot JpE:
ERL — 2F, [Kz +oS Fil L a,fy] f1~ % (4.26)
K1 — 0, C
(4.27)
where
C=2ki—oy) (21 —03 )+ (2 — 07" ) (21— 03 ),

Uli =0 + iafy,

0y =0y, £ioy, (4.28)

kK1 = A1+ Az and ko = A1 — Ay. Itis now rather clear that the optical conductivity has
a strong influence on the behavior of the reflected light. And so, it also becomes clear
that the Kerr rotation depends on the conductivity of the material. We furthermore
note that if 0y, = 0, no Kerr rotation should be observed as this implies that Ef = ErL.

Here we considered incidence on the x — y surface. If one wants to consider
incidence on another surface, a rotation of the coordinate system is sufficient. This
is equivalent to rotating the conductivity tensor or by permuting the indices. Next
we consider the bulk material.
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Bulk material

We will now consider a semi-infinite bulk material. What sets this apart from the
thin film is that the material now influences the beam as it propagates inside the
material. This is because, opposite to the thin film, the bulk thickness is at least
comparable to the wavelength of the incident light. Compared to a finite but thick
slab, no transmitted field is considered in the semi-infinite slab.

Because the wavelength of the incident light is smaller than the bulk thickness,
one has to determine the allowed field inside the material. Hence, one has to solve
the electromagnetic wave equation, Eq. (4.10). Because of the conductivity being
a 3 x 3 matrix, that in general, can have non-zero components, this is analytically
impossible. However, for many materials the conductivity tensor has at least some
components that are zero and it is possible to find solutions analytically.

We will consider a system for which 0y, = 0,y = 0, = 03y = 0. This is for
example the case for the polar geometry, in which the magnetization is parallel to
the z axis [121]. Similarly it is the case for Weyl semimetals [151], and as will be
shown below, the case for nodal loop semimetals. Thus, the conductivity tensor that

we have in mind has the following structure

Oxx Oxy O
o= |oyx oy 0 [|. (4.29)
0 0 o0y

We consider incidence on the x — y surface and the y — z surface. Light incident
on the x — z surface is equivalent to a rotation and hence is obtained by x <+ y. For
normal incident light on the x — y surface, the light propagates in the k, direction.
Hence the incident and reflected light can be written as

Eo = (Efer + Efe ) e/t (4.30)

E = (EféR + E}ég) eilkztwn), (4.31)
The transmitted light is written as
E(z,1) = Ey(k, w)e' 1, (4.32)

where w > 0. The electromagnetic wave equation, Eq. (4.10), for the transmitted

field now reads

_ (k;)ZZ_’_ ‘C"—;exx ‘zj—gexy 2 0 Ey

0 0 (Z]Tezz E,
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The first solution to this system of equations is E, = 0. The other solutions are found
by first solving the following determinant

(kfz)z + %zexx %;exy —0 (4.34)
~Gey ()4 Gey| '
This has the following solutions
2 2
2w w” |1 2
(k)" = @(exx +€yy) £ cz\/4 (€xx +€yy)” — €xx€yy — €2, = KA. (4.35)

As we see we obtain in total four solutions for k. However, two of these are un-
physical since they correspond to a wave traveling out of the material.

The basis for the electric field inside the material is found by going back to the
electromagnetic wave equation and inserting the allowed wave vectors. The basis
for the electric field inside the material is

el = cli)? + czi)“f, (4.36)
where
= Cxy , (4.37)
v/ €+ +€xy — €Exx
= SE-Cw (4.38)

7
\/ €+ T+ €xy — €xx

and €4 = ‘%ki The transmitted field is then written
E;=E,e/ +E_e;. (4.39)

The reflected field is now found by proceeding in the same manner as for the
thin film, we apply the boundary conditions, given by Egs. (4.12) and (4.13). We now
assume that the light penetrate deep into the bulk such that any presence of surface
states can be neglected, and hence no currents are generated at the interface®. The
reflected light is in this case given by

1 k . 1/ kN, .
Ere =7 ( - af) (cf £icf) Es+ 4 (1 - w) (cf +icy)E_, (4.40)

where subscript z denotes reflection of incident light propagating along the k, axis
and

4E,
ky + C2+ -\’
(4% (o - &)
3For a nodal loop semimetal this is reasonable because the spatial depth of the surface states is

typically a few nanometers whereas the penetration depth of the incident light is usually on the order
of hundred nanometers.

E,= (4.41)
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4E,
k_ - o ’
(1+5) (o - &)

In the case of light incident on the y — z surface, the incident light propagates

E.= (4.42)

along the k, axis. The transmitted light is now written as
Ei(x, 1) = B (K, w)eRex !, (4.43)

Inserting this into the electromagnetic wave equation, Eq. (4.10), we are bound to
solve the following determinant

2 2

L;Texx %exy 0
2 2

Loy — (k) + %ey o = 0. (4.44)
0 0 — (k)" + “rez

The solutions to this equation are of two types,

2

w
(K) = Fe==HK, (4.45)
2 2
2w €y \ _ 2

Each solution further has two solutions due to the square. We again select the pos-
itive solutions since the wave has to propagate into the material. The basis for the
transmitted field is now given by

el =32, (4.47)
€
e = oY% —ay, (4.48)
exx
where a = (1 + |ex,/€xx|*) 71/2. The transmitted field is then given by
E, = E%e? + Ele}. (4.49)

Proceeding in the same manner as for light incident on the x — y surface, we obtain

11— <k, 1— £k
R,L w Y i w z
= = EyF E 4.
r,x 211 ékZQ 0 11 ikl 0~ ( 50)

where Ej and E3 are the components in the i and z directions respectively of the
incident field. It is then clear from the equation that if either Ej or E equals 0,
then ER = EL and neither a Kerr angle nor an ellipticity should be observed. The
above equations are general up to the point that they describe the reflected light
of a material that can be characterized by a conductivity tensor that has the form
given in Eq. (4.29). We will now introduce the tilted nodal loop semimetal. As the
reflected fields depend on the conductivity, we thereafter present the Kubo formula
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for calculating the conductivity tensor and obtaining it for the nodal loop semimetal.

4.3 Titled nodal loop semimetal

In this section, we introduce the tilted nodal loop semimetal that has been studied
in [106, 49]. We then calculate the optical conductivity in the bulk of this material
using the Kubo formula.

The low energy Hamiltonian that describes the nodal loop that was presented in
Section 2.4.2 is described by

1

Hy(k) = N

(k% - kﬁ) Ty + vk, T, (4.51)
where k3 = k3 +kj, Ty y - are the Pauli matrices, here representing an effective orbital
degree of freedom, v, is the Fermi velocity in the k, direction and A represent the
effective electron mass. This Hamiltonian represents a band structure with a nodal
loop in the k, — k;, plane whose radius is given by ko (see Fig. 2.4(b)). The tilt is
added by introducing the following term

Hie (k) = u - k1o, (4.52)

where u = (ux, Uy, uz) defines the tilt in k space and T is the 2 x 2 identity ma-
trix. We will here restrict the tilt to the ky — k, plane. The tilt can then be written
as u = u(cosf,sinb,0), where u defines the tilt velocity and 6 the tilt direction.
This term makes the Hamiltonian break time-reversal symmetry, which is otherwise
preserved. The geometry of the tilt velocity is demonstrated in Fig. 4.2.

The total Hamiltonian for the tilted nodal loop semimetal is given by

Hiot = Ho + Hiiit- (4.53)
The spectrum is given by
1
si:u-ki\/v§k§+w (k%—k%,). (4.54)

A expected the tilt is seen in the spectrum. It has been plotted in Fig. 4.2 (a). The
eigenfunctions are given by

Y, = ! ( —B ) (4.55)
\/|B|2 + (vk, T A)2 vk F A,

where A = \/v2kZ+B2and B = £ (k% - k%). As seen the eigenfunctions are not
affected by the tilt. This will be seen later on to have an important consequence.
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-2 0 2

FIGURE 4.2: (a) Description of the tilt velocity vector and (b) the effect
of tilting the nodal loop, where wy = k3/A.

Before we are able to calculate the Kerr rotations we now have to calculate the
conductivity tensor. The conductivity tensor can be obtained in linear response by
using the Kubo formula. We derive it in the next section.

4.4 Kubo formula

The Kubo formula relates the expectation value of an observable given an external
perturbation in the linear response regime, i.e., when the external perturbation is
weak®. Consider a system governed by the Hamiltonian Hy. We assume that the
eigenenergies and eigenfunctions of it are known. We denote them respectively with
en and |¢,). The expectation value of any observable, A, can now be evaluated

according to

1 1
(A) =trlpod] = - il Algn)e P, (456)

po =e P =Y " Jip,) (e Per, (4.57)

where py is the equilibrium density operator and Zy = tr [pg] is the partition func-
tion. Let us now apply an external perturbation to the system at a time t = ty. The
total Hamiltonian is given by

H = Hy+ H{(H)O(t — ty). (4.58)

41n this section we have re-introduced e and .
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The question we ask now is: what is the expectation value of an observable A for t >
to? To be able to calculate (A(t)) we need to know the time evolution of the density
operator or equivalently the time evolution of the eigenstates of the Hamiltonian,
Eq. (4.58). Once any of these two are know the expectation values are obtained as

follows

(A Zlotr[pam] 72 Dl (1Al (), (459)
o =L lpn(B) (B}l P (4.60)

It will here be convenient to use the interaction picture, where

| (£)) = Ho M|y, (1)) = e EOVAU(E, o) |9 (1)), (4.61)

where |, ()) are the eigenstates given in the interaction picture and U(t, ty) is the
time evolution operator. We now expand the time evolution operator to linear order
in H;(t) and insert it into Eq. (4.59). The first order expansion is written as

U(t t)) =~ 1— % t:dt’HI(t’). (4.62)
We then obtain
=7 [E Pule U (8, to)e! M0 Ae™OMUI(E, to)eiH°t|¢n>] (4.63)
Zi a0 U' (1) AU (1 1) \¢n<to>>] (@64
O—f/ dt' ([A — Hi(t)A(D]), (4.65)
£))o — h/to dt’ ([A(E), Hy(t)]),, (4.66)

where () denotes the expectation value with respect to the unperturbed ground
state. The linear response is then written as

BA() = (A(D)-(AW)o = [ dr'Cyy (1,110, (4.67)

with )
Chp, (L) = —%@(t — ') ([A(t), Hi(t)]), - (4.68)

This is the Kubo formula. We have to Eq. (4.67) added the factor e~(*~*), where 7
is an infinitesimal positive parameter. It is included to make the response at time ¢
due to the perturbation at time ' to decay for t > t'. In the end of the calculation
one hence have to let7 — 07.
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4.4.1 Conductivity tensor

In this section, we derive the conductivity tensor using the Kubo formula introduced
in the previous section”. This will be the important formula for obtaining the optical
conductivity of the system. We derive the conductivity tensor by considering the
response of the system due to a uniform applied electric field. This we write E(t) =
Ee~'“*. According to Ohm’s law, the i:th component of the current can be written

5Ji(t /dta,]t—t (). (4.69)

By Fourier transforming it, we obtain

5Ji(w _/ dt/ dt' oyt — ) E;(¢)
_ /0 dTO’i]'(T)EWT /700 dt//ezwt”Ej(t//)

This defines the Fourier transform of the conductivity. The interaction between the
electrons and the electric field is, in the length gauge (see Appendix E), given by

H = lel = Be 't (4.71)

where r; are the positions of the electrons and B = e}, 1; - E is a time-independent
operator. We furthermore assume that the field vanishes at t = —oo, i.e., the pertur-
bations is turned off. We can now apply the Kubo formula, Eq. (4.67) to Eq. (4.69)

and obtain

5ty = o [t (o), B yye @72)

We now perform an integration by parts. This leads to

i) = [([L'(t),B(t’)DO ] i [ ([, ] )

—iw —iw

:%([}i(t),B(t)])Oefw—,l t dt/ei,wt,<[]i<t),jﬂ3(t')]>0. 4.73)

—iw  ihJ - —iw

Next we treat the time derivative of B, that appears inside the integral. For this we

can use the interaction Hamiltonian, Eq. (4.71). We have that
—B=e¢—) 1-E (4.74)

Note that E is independent of time and position. The time derivative of the position
operator multiplied by the electric charge is related to the current operator, in the

5In this section we have re-introduced e and 7 for pedagogical purposes.
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basis defined in Appendix E, such that

73_ Z

ar; 'E. (4.75)

where ] = —e) ;v = —e}; %, valid for a uniform response. We do not, at this
point, evaluate the first term, but note that, for a Hamiltonian quadratic in p, the
first term becomes Ze “h N d;;E;. We now have that

(5]i(t):ieh<[]i(t)le:7’l,j(t)]> e::tE o / a' ([J:()), ()] ), E’i:; :

(4.76)

By direct comparison with Eq. (4.69) we obtain that

oii(t—t") = % < []i(t)/;fz,j(t)] >0 _1%50 —t') + % (it =1),T3(0)] ), - (4.77)

We now insert this into the definition for ¢;;(w) and obtain

oij(w) = i < [L‘(O)lelrl,j(o)

This is the Kubo formula for the conductivity tensor. This expression is written in

>O b [Tar (e, O] @)

a many-body representation and apart from the linear response we have only as-
sumed a uniform response. We now want to write this expression in the single par-
ticle representation. First we write the operators in second quantization. In general

an observable can be written

O=) (xlol") atay, (4.79)

KK/

where a,(:) is the annihilation (creation) operator. We will take |«) to represent the

single particle states. In second quantization we then have that

= —e) (x| v |x") af (t)a(t (4.80)
KK/

The time evolution of the operators are evaluated using the Heisenberg equation
of motion with Hy = Yo %ijpLipLj + i BipLi + N7, where i € x,y,z and a;; = &,
Bi and 7y are matrix coefficients. This Hamiltonian represents a general Hamiltonian
up to second order in momentum. We thus have that a,(t) = a,(0)e~*!/" Let us
now return to Eq. (4.78). Inserting the expression for the current operator written in
second quantization we have that

o (@) = oo [ (D 0]y e
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[a},ay, ala

_ ie? ZZ " ”]> m\vl‘m> |vj [n) (4.81)
mm’ nn' hw + ”7 +Em

where we have introduced a small 7 to take care of the convergence of the integral.

In the end of calculations 7 — 0. The expectation value is now evaluated using

Wick theorem and that (a}a,), = f(e,). Hence

<[aLamr,a;§an/} >o = OO (f(€m) — f(em)) - (4.82)
This then results in
ze flen) — flew)
Z —hwn+ - 2 (n| v ‘n’> <n’] vj |n) (4.83)

nn'

Let us now turn to the first term,

O'i(]'l)(w) = % < []i(O),Zl:Vl,]'(O)] >0

=== [f(en) = flew)] (n]vi[n") (n'|7j|n). (4.84)

The second term is treated by considering (n'|v;|n) = 1 (n'| [Ho,7;] [n). We have
that

(0| [Hloyri) ) = & [ew (' 1y ) — e (0| )

= % (e —en) (n'|7j|n). (4.85)
This gives us
P @) = 1 T L) g o) (] o (456)

nn’

By combining the two components and putting them on common denominators we
obtain "
€n) — ) (n|o; [n") (n'|vj |n
o) = —iet . ) =) L) o1y, s
n— €y hw +in+e, — ey

nn'
This is the Kubo formula for the conductivity tensor in the single particle formu-
lation. We note that for the following derivation we have only assumed that the
current operator is givenby J = —e} v, = —e ) 5 dn — —%“ [Ho, Y_; 11]. Considering
a system where the states are given in a momentum basis. The conductivity tensor

can then be written, in cylindrical coordinates®, as

0ij(w 27r / dk,k / do / dk, o (4.88)

6This proves to be handy for calculating the conductivity for the nodal loop semimetal.
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where i,j € {x,y,z} and the integral is over all momenta k, written in cylindrical
coordinates. The conductivity kernel is defined as

0’11(]((0) _ —izf(sk's) — f(ek,s’) ]ki]kj (489)

55 €k,;s — €k,s’ hw + €k,;s — €ks’ +i0+ ’

where 35 = —¢ (ks| Vi Hy |ks') [165].

4.5 Optical conductivity of nodal loop

To calculate the optical conductivity of the nodal loop semimetal we apply the Kubo
formula as outlined in the previous section. We first calculate the current operators,
]isl/ We find for s = s’ that

. 2kB . 2k,B . v2k
Jox = Ux + ﬁ, Jry = thy + ﬁ, it = ZZ, (4.90)
and for s # s’
\qq! kv k od! 2k, v,k ved! 0 ’B|
ss’ __ xbzhz ss’ __ y~zhz ss' Yz
]kx - AA ’ ]ky - AA ’ ]kZ — A Iz (491)

With these we are set up to calculate the optical conductivity due to both inter and
intraband transitions. We first note that there is a symmetry between ]f(s; and ]f(sy',
Vs, s'. By letting x — y in j;*, we obtain ]ff;

Before we calculate the exact conductivity tensor, we first interpret the current
operators and what we can expect of this in relations with the Kubo formula, Eq. (4.88).
Based on symmetry arguments and the shape of ji; we can already state some gen-
eral observations about the conductivity tensor. The transverse conductivities, oy,
and 0y are Zero. This follows from that €4 is symmetric in k, whereas the products,
i and i ]f(sy/ are odd in k.. By such Eq. (4.88) implies that 0y, = 0, = 0. The
physical interpretation of this is as follows: An electric field with say polarization
along the y axis excites electrons that carry currents in the +z and —z directions
with equal probability. Hence, the total current is zero. Due to symmetry the same
arguments leads to 0y = 0z, = 0.

The same cannot be applied to oy, which will depend on the tilt. In case of no
tilt (u = 0), the Hall conductivity vanishes due to that the integrand, Eq. (4.89)
is asymmetric under the change, ¢ — ¢ + 71/2. The asymmetry can be seen in
Fig. 4.3. Here we have plotted the product of j;/ ~ jlz;r with an overlay correspond-
ing to f(e;) — f(e—), for a fixed k.. Because of the system is gapped at k; # 0
the overlay has a finite thickness even for ji = 0. In contrast, when the tilt is in-
troduced the Fermi distributions in Eq. (4.89) breaks the polar symmetry. Hence, a
non-vanishing Hall conductivity, oy, may exist. This means that the existence of
a finite 0y, is due to the difference in occupation of electronic states with different
momenta (k, cos ¢, k, sin¢, k) and (—k, cos ¢, =k, sin¢, k).
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FIGURE 4.3: The figure depicts the product of j,\~ jlz;r, in units of

k%/ A2. We have fixed v,k,/wy = 0.4. The shaded overlay depicts
f(ex) — f(e~) = 0for (a) i = 0 and for (b) i = 0 and 6 = 71/4, for a
fixed chemical potential fi = 0.42.

As have been shown in Section. 4.2.1 the Kerr angle is highly dependent on the
existence of the Hall conductivity. Consider first a beam incident on the y — z surface,
hence the beam is propagating along the k. axis. As 0y, = 0 it is directly clear that
there can be no Kerr rotation observed on a thin film since the quotient EX /EL = 1.
If the light is incident on a bulk material, it is more complicated to state whether a
Kerr rotation will be observed or not. In the same manner, we expect the same result
for light incident on the x — z surface.

On the other hand, the situation is different when light propagates along the k,
direction. We assume that the light is polarized along the y direction. If the tilt
is such that Oxy # 0 the induced current due to the incident light will produce a
current that has components in both the x and y directions. Hence a Kerr signal may
be expected in this case.

Let us now quantify these arguments. We will first calculate the full conductivity
tensor. After that, we calculate the Kerr angle and ellipticity for a thin film and a bulk
material. To obtain the explicit expressions for the optical conductivity we calculate
the real and imaginary parts separately. We can separate the real and imaginary
parts of Eq. (4.88) by applying the following identity

1
lim

_ = pl_ ird(x), (4.92)
=0t X + 1y X

where P denotes the Cauchy principal value and J(x) is the Dirac delta function.

From the delta function we obtain the real part of the optical conductivity. The imag-
inary part can then be obtained from the Kramers-Kronig relation

R
Im 07 (w :—49/ do' e”” ). (4.93)

We are now ready to obtain the optical conductivity. As a first step we make a change
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of variables to obtain dimensionless expressions. By letting k, — ko we write the
following,
w o . Au r— kio

w=— =T === =
(JJO, wo k()’ UZA’

(4.94)
where y is the chemical potential and wy = k3/A. We next separate the calculation
into two parts. First, we calculate the contribution to the optical conductivity from
the interband transitions followed by the calculation of the contribution from the
intraband transitions. Interband transitions are a consequence of photons driving
transitions between different bands, whereas intraband transitions are those that
occur within the same band. Normally the intraband transitions can be understood
in simplest terms within the Drude theory. Here we will treat them on the same basis
as the interband transitions and calculate them using the Kubo formula. We begin

by calculating the interband transitions.

4.5.1 Interband transtions

We obtain the interband transitions by letting s # s’ in Eq. (4.88). First we con-
sider the real part from the interband contributions. By applying Eq. (4.92) and then

evaluating the k, and ¢ integrals we are left with
. ko
Re U}fter(w) = dgO(1 - @/2)G;(¢)
k1
ko
+ [T dze@/2-16(@), (4.95)
where k1 = V1 — @/2 and k, = /1 + @/2 results from the Dirac delta function in

the integration and which furthermore represents the conservation of energy. The
functions G;; = g;(g) — g;;(¢) are given by

r 2+ a 2 & 2@\

Six = W{n_ {zamms< Zﬁ§w> _2C0529< yzaé‘w) \/l_ ( Zﬁ§w>

cofi- 2] Lp

r 2+ a 2 & 2@\

Sy = W{”_ {Zar‘ms( yzagw> +2C0529< HZﬁ;) \/1 - ( V2ﬁ€w>
o N2

N

2+ @ | 2\? 2+ @) L&
ot :I‘%SH&QC\/(C;) ~ (1—62)2\/6— <y2uw> © [1_ P;agw]
(4.98)

N &

2
) (-2 (4.96)
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11 2fi + @ 2f + @ 5(1_(:2)2
85—?% {2n4arccos< 20z >®[1— 2uE ] \/(Q)2_(1_€2)2 .
2

(4.99)

In the limit of no tilt, analytical results can be obtained. As mentioned previously in
the case of no tilt 0y, = 0 due to symmetries of the current operators. Furthermore
in case of no tilt it follows that oyx = 0y, due to the rotational symmetry of the
Hamiltonian. We then obtain that

9(607;1) (arctan( @?—1)

_2w2+1m>>}

Re(ona ()} = ~n[f(w/2) - f(~w/2)] |1~

302
(4.100)

and

Re{oz:(w)} = _vh [f(w/2) — f(—w/2)] [1 — G)(d)n_l) <arctan (\/ @?* — 1)

32
_1ver—1
T @2 ’

(4.101)

Both of these results can be compared to and be seen to be identical with what is
obtained in [15]. To obtain the conductivity for a tilted nodal loop one has to turn
to numerical methods. However in the regime of small frequencies, ©® < 1, @ < i
and fi = 0, approximate results can be found. First we note that in these limits the
second integral of Eq. (4.95) vanishes due to the Heaviside function being zero. Next
we expand the functions in Egs. (4.96), (4.97), (4.98) and (4.99) around @ = 0. We
then apply the mean value theorem

/ " dx F(x) = £(6)(b—a). (4.102)

As the integral boundaries of the integral in Eq. (4.95) are symmetric around 1 we

pick ¢ = 1. By such we find that

; 5T

Re o) (w) =~ TP (1 —cos20) @, (4.103)
inter 5T ~

Re Uyyte (w) = T (14 cos20) @, (4.104)
; 5

Re 02" (w) =~ T (4.105)
; 5I'sin26 _

Re U;I;er( ) ~ T2 @ (4.106)
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FIGURE 4.4: Comparison between the analytical and numerical eval-
uation of Eq. (4.95), for (a) 0y and (b) 0y, for 6 = 7r/2and ii = 0.2.

The transverse Hall conductivities, in the other directions, oy, and ¢y, vanish because
of that we assume no tilt in the k, direction (1, = 0). The next-to-leading order term
is to third order in frequency. This term becomes significant when the tilt direction
0 ~ nm/2 (n € Z). For tilt in the x direction, i.e., § = 0, the results reproduce the
well known scaling of the longitudinal conductivities with frequency, 013" « @3 and
U;?ter « @. By plotting the approximate expressions and the numerical evaluation,
see Fig. 4.4, we observe a good agreement between the analytical and numerical
results for small @ and 0 = 7t/4.

The analytical results furthermore reveal the strong dependence of the tilt direc-
tion, 0. This especially applies to inf;er, which we notice vanishes for 8 = nm/2
(n € Z). For these tilt angles, the applied electric field excites an equal amount of
electrons on the opposite sides of the nodal loop, leading to an equal but opposite
flow of electrons. Hence oy, = 0. This has furthermore already been observed for
the dc hall conductivity, which shows the same behavior [106]. The mathematical
argument for the vanishing Hall conductivity follows from the fact that the angu-
lar integral in Eq. (4.88) separates from the rest and the whole integral vanishes as
J3d¢ = 0.

Secondly we observe that the maximum of oy, is obtained for 6 = nsm/4 with
odd n, for which we also obtain that oy, = 0,y. We will now discuss this case in
more detail. The full result of the numerical integration is seen in Fig. 4.5. Note that,
without loss of generality, we consider in all cases 0 < #,fi < 1. First we look at

fi <. In this case the following energy thresholds can be defined

Z
241 + 4% + iy /712 + 4(1 + fi). (4.107)
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FIGURE 4.5: Real part of the optical conductivity for different values

of the chemical potential, niu and tilt velocities, i and fixed tilt angle,

0 =mn/4 (@i =01land i =0,(b)id =02and i =0, (c) @ = 0.1

and fi = 0.05, (d) @ = 0.1 and ji = 0.15. The dashed lines correspond

to the onset of allowed transitions that are depicted in (e) and (f). (e,f)
Possible transitions for (e) ji < i and (f) fi > .

First we note that, for ji = 0 we have @; = @y and @y = @ry. Secondly, these
thresholds defines the onset of vertical transitions, allowed on the nodal loop. The
system is partially Pauli blocked as long as @ < @yy. As we increase the energy of
the incoming photons, transitions along the nodal loop goes from being forbidden
to allowed and as the energy exceeds @ry, excitations along the whole nodal loop
are possible. Hence the Pauli blockade is lifted. We display the absorption processes
that give rise to the thresholds in Fig. 4.5 (e) and are furthermore indicated in the
plots of the conductivity spectrum, Figs. 4.5 (a-d) and 4.6 (a-d). We furthermore
note, as has previously been explained, when excitations become available along the
whole nodal loop, the transverse conductivity vanishes. This is directly seen in the
conductivity spectrum as Re{oy, } becomes zero for @ > @ry.

In the case i < ji we instead define the following energy thresholds,
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Oy = 2f1 + 0% + i\ /32 +4(1 + fi). (4.108)

The interpretation of these is the same as before. The absorption processes are
depicted in Fig. 4.5(f). As we go from i > ji to @ < ji the allowed transitions around
the nodal loop change. This is directly observed from Fig. 4.5 (d) where we now see
that as long as @ < @ the system is fully Pauli blocked, i.e., no vertical transitions
are allowed along the nodal loop. As the energy of the incoming photons is increased
and becomes larger than @; the Pauli blockade is overcome and vertical transitions
becomes partially possible. Another consequence of ii < fi is the fact that U,if;er now
takes both positive and negative values in contrast to only positive values for # > ji.

As a final remark on the real part of the interband conductivity we note that for
@ > @y, @y, transitions are available along the full nodal loop and the response of
the system resembles that of an untitled nodal loop. In these regions, as has previ-
ously been observed, the longitudinal conductivity is constant [15, 1].

We have calculated the real part of the optical conductivity due to interband tran-
sitions. To obtain the full information of the conductivity, we are required to obtain
the imaginary part as well. Due to the complicated integrals of Eq. (4.95), which we
can only be evaluated numerically, the only possibility for calculating the imaginary
part is by applying the Kramers-Kronig relation, Eq.(4.93). This integration as well
has to be done numerically. The integral shows an unbounded logarithmic diver-
gence, and hence we regularize it by introducing a cutoff, @.. The necessity of the
cutoff should not comes as a surprise. The integral that has to be calculated in the
Kramers-Kronig relation has an infinite integration range. On the other hand, the
effective model is only valid for small energies, and hence the integration from —co
to oo is unphysical. The cutoff is selected is @, = 2@,. A larger cutoff energy shows
no pronounced effects on the low-energy features of the conductivity.

The imaginary part of the optical conductivity, due to interband transitions, is
shown as the solid lines in Fig. 4.6. For ji = 0, the imaginary parts take negative
values and 0y, remains negative as the frequency is increased. On the other hand,
the transverse conductivity increases and for larger frequencies becomes positive
and then decreases towards zero.

Next, we calculate the intraband transitions.
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FIGURE 4.6: Imaginary part of the optical conductivity for different

values of chemical potential, fi, tilt velocity, 7 and fixed tilt angle,

=mn/4. (@il =01land i =0,(b)iT=02and i =0, (c) # = 0.1and

fi =0.05,(d) @ = 0.1and ji = 0.15. Solid and dashed lines correspond

to the contributions from interband and intraband transitions respec-

tively. The vertical dashed lines correspond to the onset of allowed
vertical transitions depicted in Fig. 4.5(e) and (f).
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4.5.2 Intraband transtions

To obtain the intraband transitions we let s = s” in Eq. (4.88). The conductivity kernel

now reads s s
i intra df (E) kil
jint _ j

o w) = i) =5 oE ’E:es w —+i0*"

S

(4.109)

By setting T = 0 the derivative of the Fermi distribution becomes a negative delta

function, limy_,o % aE = —d(e;). By applying the identity, Eq. (4.92), the intra-

|E €
band contribution to the optical conductivity can be written

Ull]ntra(w) = Dj; <ZU + n&(w)) , (4.110)

where D;; is the Drude weight. By evaluating the k. integral, the Drude weight is

written as

4 27T
DqICmPA 4z [ dgCy(.9), (4.111)
where
_— fi — i cos(¢p —0) _ 2¢ cos (1 — &) 2
Gxx = woFé‘\/(ﬁ —reosp 0 - (=) [uc039+ 7 ¢ cos(p— 9)}
® [(ji — ag cos(¢p —0))* — (1 - ¢%)*], (4.112)
_ i — i cos(¢p — 6) 2zsing(1-¢%) 1°
G = o cos (9 — 0) P = (1 2 [“ SO e cos(p— 9)]
x @ [(fi — ig cos(p — 0))> — (1 —¢%)?], (4.113)
_— il — i cos(¢p —0)
= s O - (- OF
2¢sing(1 — ¢2) 2& cos (1 —¢2)
T i cos(p eﬂ [’“‘CO‘“‘“ — g cos(g - e>]

(4.114)
x @ [(fi — 1 cos(p — 0))* — (1 —2)?],

ﬂé Vi _\/u(iciségc_o:()f__(;;z_ CZ)z@ [(ji — dg cos(¢ — 0))* — (1 — &)?]

(4.115)
In the case of no tilt, 7 = 0 these integral can be calculated analytically. We obtain

1 Op—1] (47> -1 /-, /72
Dyy = in T wofil’ [1— p ( 37 fi —1 — arctan fis —1 ,

(4.116)

1 (ﬁ()‘u

Dz =g 2T

14+ e [ﬁn_ 1] <\/ﬁ;27_1 — arctan (\/fﬂi—l> )] , (4.117)



4.6. Kerr effect in nodal loop semimetals 91

and Dy, = Dyy. We note that these results (i = 0) directly match the ones found
n [15]. To obtain the contribution from the intraband transitions, in the case of a
finite tilt, the integrals have to be performed numerically. We note that the real part
of the intraband contribution is a delta function, and hence we will neglect this part
since we will mainly be interested in finite frequencies. The imaginary part, on the
other hand, has a frequency dependence and has to be included. The results from
the integrations are displayed as the dashed lines in Fig. 4.6. From Fig. 4.6 (a) and
(b) we note that D;;(ji = 0) = 0. This connects with the analytical results obtained
for the untilted nodal loop which also become zero for ji = 0. We note that D, has
a minor impact on Imoy, as seen from the dashed red curves and the main effect is
seen for very small @. On the other hand, the intraband contribution to oy yy .- is
larger as they do not go to zero as fast.

The full conductivity tensor is now known for the nodal loop with tilt in the
ky — ky plane. With this information, we can now calculate the Kerr response of

materials with a band structure displaying a titled nodal loop.

4.6 Kerr effect in nodal loop semimetals

In the following section, we calculate the Kerr rotation for a thin film and a semi-
infinite bulk material, hosting a nodal loop. We only consider light incident on the
x — y surface for the thin film as this is the only surface that may show a Kerr ro-
tation. On the other hand, we consider light incident on both the x —y and y — z
surface for the bulk. For both the thin film and the bulk, we consider three different
settings where we, in general, keep all parameters fixed but vary one of them. In the
first case, we vary the tilt velocity. This is followed by varying the chemical potential
and the tilt direction.

4.6.1 Thin film

We first consider a nodal loop with a tilt angle of 6 = 71/4. The Kerr angle for
varying tilt velocity and varying chemical potential are plotted in Fig. 4.7. Let us
first analyze the case when p = 0 (Figs. 4.7(a) and (c)). The Kerr angle (Fig.4.7(a))
and ellipticity (Fig.4.7(c)) shows a pronounced dip around @ =~ 2. For small tilt
velocities this is also approximately equals to @y, for which Recy, = 0 and Imoy,
reaches its maximum. From this we conclude that a finite tilt has a strong impact on
the Kerr signal.

By increasing the chemical potential (Figs. 4.7(b) and (d)), the Kerr angle and el-
lipticity shows a signal that is in stark contrast to the case when fi = 0. Furthermore,
the amplitude of the Kerr angle is reduced but still remains what is to be consid-
ered large. The Kerr angle now reaches its maximum between @ ~ 2fi + #/2 and
@ ~ 2fi + 2il. In the case of ji > i, the region of positive Kerr angles is preceded by
a region, defined by 2ji — 31 /2 5 @ < 2ji + ii/2, where it takes negative values, on
the same order as the positive ones.
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FIGURE 4.7: (a,b): Kerr angle 0k for a thin film. (c,d): Kerr ellipticity

e for a thin film. For (a) and (c) we fix the chemical potential at ji = 0

and vary the tilt velocity. The sharp peak dip corresponds to @ = 2ii.

For (b) and (d) we fix the tilt velocity at # = 0.1 and vary the chemical
potential.



4.6. Kerr effect in nodal loop semimetals 93

The results from varying the tilt angle are displayed in Fig. 4.8. We observe that
both the Kerr angle and the ellipticity highly depend on the tilt direction. When the
tilt direction takes any value equal to n7t/2 (n € Z), we note that the Kerr angle
equals zero, and the ellipticity equals one. This is due to that oy, vanishes for these
tilt directions. Hence, the polarization of the reflected light is the same as for the in-
cident. The variation of the tilt angle is especially observed in the ellipticity. Here we
observe that it takes very large values in the second and fourth quadrants, whereas it
almost disappears in the first and third. This is due to ER(8) = EL(0 + 71/2). Again,
this is a consequence of the Hall conductivity, now because oy, (8) = —0yy (0 + 71/2).

4.6.2 Bulk material

Light reflected on a bulk material is described by Egs. (4.40) and (4.50) for light inci-
dent on the x — y and y — z surfaces, respectively. We consider a nodal loop that has
a static permittivity of &, = 10. We first look at light incident on the x — y surface.
The results for varying tilt velocity and chemical potential are plotted in Fig. 4.9.

For ji = 0, the results show similar patterns to those of the thin film. The main
difference is seen in the amplitude of the Kerr angle, which is reduced for the bulk
material. It is furthermore decreased as the static permittivity increases. Experimen-
tally it should still be detectable as Kerr angles on the order of 10~ radians have
been detected [176]. We note that for larger frequencies, the ellipticity equals one.
This is anchored in that excitations become possible along the whole nodal loop and
the real part of the Hall conductivity, Re{oy,} = 0.

As we increase the chemical potential (Fig. 4.9 (b)), the dip that is observed
around @ = 21 (see Fig. 4.9 (a)) splits into two dips that are centered around @ =
2ii + 2fi. As we increase the chemical potential such that ji > i the dips center
around @ = 2il and @ = 2ii 4 2ji. For large chemical potentials the system further-
more becomes Pauli blocked. This is especially observed in the ellipticity, Fig. 4.9(d),
which equals 1 in this case (see the upper left part of the colormap).

Let us now look at the results from the Kerr angle and ellipticity as we vary the
tilt angle. These are plotted in Figs. 4.8 (c) and (d). The results are similar to those of
the thin film, as one might expect. Mainly one observed a decrease in the amplitude.

Next we look at the Kerr rotations on the y — z surface. We let the incident beam
be such that Ej = EJ = 1/+/2, such that potential Kerr rotations can be observed.
The Kerr and ellipticity for a varying tilt velocity and chemical potential are shown
in Fig. 4.10. Compared to light incident on the x — y surface, the Kerr angle is of
an order of magnitude smaller. The ellipticity, furthermore, remains close to 1 over
the whole spectrum. This is due to that ¢,, = 0, which would otherwise strongly
contribute to the behavior of the Kerr rotations, and furthermore, that ¢y, is strongly
suppressed by .

By increasing the chemical potential (Fig. 4.10 (b) and (d)) the features of the
Kerr rotation does not change much; the Kerr angle increases slightly in amplitude
for smaller @ and the ellipticity shifts towards ex = 1. The reason for the shift of
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FIGURE 4.8: Kerr angle for (a) a thin film with light incident on the
x — y surface, (c) bulk material with light incident on the x — y surface
and (e) bulk material with light incident on the y — z surface and el-
lipticity for (b) the thin film, (d) the bulk material with light incident
on the x — y surface and (e) the bulk material with light incident on
the y — z surface. In all plots we are varying the tilt direction, 6. The
chemical potential ji = 0 and the tilt velocity # = 0.1. For all plots @
is set to the fixed values @ = 0.17 (blue), @ = 0.2 (red) and @ = 0.23
(yellow).
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FIGURE 4.9: (a,b): Kerr angle 0k and (c,d): Kerr ellipticity ex for a

bulk material and light incident on the x — y surface. For (a) and (c)

we fix the chemical potential at ji = 0 and vary the tilt velocity. The

sharp peak dip corresponds to @ = 2ii. For (b) and (d) we fix the tilt
velocity at i = 0.1 and vary the chemical potential.
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the ellipticity is, as for incidence on the x — y surface, that the system becomes Pauli
blocked.

We finally discuss the Kerr angle and ellipticity as we vary the tilt angle. The
results are seen in Fig. 4.8 (e) and (f). The features observed here are distinct from
those when light is incident on the x — y surface. The Kerr rotation remains small as
the tilt angle is varied. However, compared to what is observed on the x — y surface,
there are no strong variations as we vary the tilt angle. The reason for this is that the

tilt angle does not affect €,y,;,.- as much as it does ¢y,
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FIGURE 4.10: (a,b): Kerr angle 0x and (c,d): Kerr ellipticity ek for a

bulk material and light incident on the y — z surface. For (a) and (c)

we fix the chemical potential at fi = 0 and vary the tilt velocity. For

(b) and (d) we fix the tilt velocity at # = 0.1 and vary the chemical
potential.
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Chapter 5

Hydrodynamic equations for two
dimensional topological materials

This chapter revolves around electronic hydrodynamics, and the results presented
are based on the results we reported on in Electron hydrodynamics of two-dimensional
anomalous Hall materials [62]. Here the effects of topology on hydrodynamic trans-
port in electronic systems are investigated. The Berry curvature, which defines the
topological properties of the material, will show to affect hydrodynamic transport.

Electronic hydrodynamics is a relatively new branch of condensed matter physics.
It had its beginning in the second half of the nineteen hundreds with the first ideas
proposed by Gurzhi [58, 57]. The field, however, did not take hold until recently
with the discovery of graphene. Ever since, the field has been flourishing, both the-
oretically and experimentally. On the theoretical side, much work has been poured
into establishing a formalism and finding signatures that are related to electron hy-
drodynamics [116, 115, 96, 51, 128, 28, 101, 162]. Many experiments reporting a
hydrodynamic electron flow have as well been conducted [13, 14, 109, 40, 90, 19].
Furthermore, topological effects on hydrodynamic transport have already entered
the discussion as well [163, 157]. Theoretically, systems with time-reversal symme-
try and a non-vanishing Berry curvature have been investigated.

This chapter begins with an introduction to electronic hydrodynamics in two-
dimensional (2D) materials. First, we describe the early theoretical predictions that
should serve as indicators for hydrodynamic flow. After that, we briefly discuss
some experiments where hydrodynamic electron flow has been observed. We follow
this with a detailed description of the theory of hydrodynamics for 2D electronic
systems. This demands us to introduce the Boltzmann equation, which is the main
tool for deriving the equations that govern hydrodynamics in electronic systems
[116]. The complete derivation of the equations requires one to specify the band
structure of the system. Throughout this chapter, we will consider an anomalous
Hall insulator (AHI), which can be modeled by a gapped 2D Dirac Hamiltonian.
This Hamiltonian breaks TR symmetry and has a non-vanishing Berry curvature.
As a consequence of that the Hamiltonian breaks TR symmetry, the Berry curvature
is odd in momentum, contrary to materials that break inversion symmetry, which
has a Berry curvature that is even in momentum [163, 157].



100 Chapter 5. Hydrodynamic equations for two dimensional topological materials

We obtain the hydrodynamic equations for the specified Hamiltonian and specif-
ically investigate the effects of the non-vanishing Berry curvature and how it mod-
ifies different types of hydrodynamic flow. First, we consider the effect it has on a
flow thorough a long but narrow channel. This normally leads to what is known as
Poiseuille flow. Here we observe deviations from the standard flow profile that are
directly set by the Berry curvature. Next, we study the hydrodynamic equations for
two different geometries, a semi-infinite half-plane, and a finite geometry. For the
semi-infinite half-plane, we use analytical techniques and show that the Berry curva-
ture induces vortices in the flow. We show that these can be observed by measuring
the non-local resistance.

For the finite geometry, we use a numerical method, the finite element method.
Here we first observe the effects the Berry curvature has on vortices induced by the
finite geometry. We find a shift of the positions of these, which furthermore can be
compared with a system without Berry curvature, for which analytical results have
been obtained [96]. Secondly, we find that a modification in the electrical potential,
which will be seen, serves as a more robust indicator of the presence of the Berry
curvature. We furthermore find that the numerical results are qualitatively in line

with the analytical results.

5.1 Hydrodynamics for electronic systems in 2D

Hydrodynamics, or more precisely, fluid mechanics, is a theory that has been around
since the formulation of the Navier-Stokes equations during the 19th century. The
equations describe the dynamics of a Newtonian fluid and can be applied to most
gases and liquids. This is the case even though, for example, a macroscopic body
of water contains about ~ 10?> molecules. The reason why it works so well is that
we only consider the water dynamics on long length scales. Hence, the only degrees
of freedom which can be reasonably measured are conserved quantities. These are
the number of water molecules and the energy and momentum of those. In the case
of a Newtonian, incompressible fluid and for constant viscosity the classical Navier-
Stokes equations yields

0 <E;:l+u-Vu> = —VP+17V2u+F, (5.1)

where u is the velocity of the fluid, P is the pressure, p is the fluid density and, 7
is the viscosity of the fluid. The term on the left-hand side describes the inertial
forces. The terms on the right-hand side, from left to right, describe the pressure
forces, viscous forces and external forces, that are applied to the fluid. This equation
is always solved together with the continuity equation, which for an incompressible
fluid is!,

V-u=0. (5.2)

For an incompressible fluid the density remains constant in time and hence, 9;0 = 0
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With the success of this theory, one might then wonder whether this could also be
applied to electronic systems considered in condensed matter physics.

In 1963 it was for the first time that hydrodynamics was suggested as a possi-
ble theory for not only describing liquid or gas flows but as well electronic flows
[58]. The ideas were improved on a few years later [57]. The motivation of apply-
ing hydrodynamics to electronic flow relies on length scales of different scattering
mechanisms.

The most common scattering mechanisms in solids are impurity-electron scat-
tering, electron-phonon-scattering, and electron-electron scattering. The mean free
path, that is, the distance traveled of the electron between different collisions, de-
pends highly on temperature. At small temperatures, the dominant mechanism is
impurity-electron scattering. This leads to, e.g., the residual resistance in metals at
low temperatures. On the other hand, at high temperatures, the dominating scatter-
ing mechanism is between electrons and phonons.

In most cases, it is commonly known that either electron-impurity scattering or
electron-phonon scattering dominates over the scattering between electrons them-
selves. Formulated in terms of the mean free path of the different scattering mecha-
nisms this means that I, > lo_jmp, l.—pn, where le—,, [, iy and [, are the length
scales associated with the electron-electron, electron-impurity and the electron-phonon
scattering respectively. A consequence of this is that hydrodynamic flow would be
rare.

Let us now, following Gurzhi [58], consider electron flow through a narrow chan-
nel with a width equal to 4, as depicted in Fig. 5.1. Gurzhi predicted that if hydro-
dynamic transport was going to be observed, this would be seen in the resistance of
the material as the temperature is increased. Let us first explain this phenomenon in
terms of the mean free path of the different scattering mechanisms.

We denote by Iy, the mean free path that accounts for any scattering against in-
homogeneities (impurities, phonons, etc.). If Iyy > d, then the resistance should be
determined by collisions between the electrons and the boundaries of the channel.
From this, it appears that the effective mean free path is then determined by d. How-
ever, electron-electron scattering can substantially affect the process of momentum
transfer to the channel boundaries. This can be understood by considering Navier-
Stokes equations for the average velocity of the electrons under the application of an
electric field [58]. This should furthermore have an impact on the resistance of the
channel. Hence, there are two regimes to consider, l,_, < d and [, > d.

If I._. > d, then the electrons mainly scatter against the boundaries of the sam-
ple. The resistance is mainly determined by the inverse of the mean free path, and
hence it is expected to be proportional to d—1, as depicted in Fig. 5.2. If all other scat-
tering mechanisms are smaller than the length of the channel, L, such that the next
smallest mean free path is set by L, then the system is in the ballistic regime. If L
does not define the next smallest mean free path, then the system is in the so-called
Knudsen regime [80]. These are both depicted in Fig. 5.1(a). If the mean free path
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FIGURE 5.1: The different transport regimes describing the Gurzhi
argument. (a) Ballistic transport regime. (b) Diffusive transport and
(c) Hydrodynamic transport regime — Gurzhi effect.

of the impurities becomes smaller than the width of the channel then the main scat-
tering is between electrons and impurities and the system is in the diffusive regime,
depicted in Fig. 5.1(b).

At some temperature T; for which ., ~ d, a cross-over may occur from the
ballistic/ Knudsen/diffusive regime, and the resistance, as argued by Gurzhi, is pro-
portional to T~2. Hence if the system is in the hydrodynamic regime, a drop in the
resistance should be observed. Physically, in this regime, the fluid becomes pinned
to the boundary at the edges. This results in a stationary flow at the edges that will
pull back at the fluid in the middle of the channel. Because of this, the resistance
should furthermore increase if the channel is made smaller. The described effect is
what is known as the Gurzhi effect. The type of flow that this leads to is commonly
known as Poiseuille flow. This is depicted in Fig. 5.1(c). The flow profile is parabolic
such that the maximum flow velocity is reached in the middle of the sample, and it
is decreasing towards the boundaries. If at some temperature T, scattering between
electrons and impurities dominate over scattering between electron and phonons,
then the resistance should remain constant.

At some point, as temperature is increased, scattering against phonons will dom-
inate, and the resistance should obtain the normal growth with R « T°. Concluding,
if the hydrodynamic regime is present, one would possibly observe something sim-
ilar to the prediction by Gurzhi, Fig. 5.2.

The Gurzhi effect was the first proposal for the observation of hydrodynamic
flow. However, the hydrodynamic theory was long neglected and was only until
recently given little attention. The reason for this is clear: electrons in solids, unlike
water molecules, for example, are confined to the crystal lattice, which means that
their momentum is not conserved. Consequently, the motions of electrons are typi-
cally either diffusive or, if the sample size is much smaller than the mean free path
of the electrons, ballistic.

Now let us imagine a material for which the opposite is true and the dominant
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FIGURE 5.2: Resistance of a sample as a function of temperature. The
graph is separated into three regions. In the left-most region (light
blue), the main scattering mechanism is between the electrons and
the boundaries. In this regime, the resistance remains constant, de-
termined by the inverse of the channel width. In the midsection (yel-
low), the resistance decrease due to hydrodynamic flow. As the tem-
perature is increased, the system enters the third part (orange). The
resistance is increasing, mainly due to scattering between electrons
and phonons. The image adapted from [58].

scattering mechanisms are electron-electron interactions. If there exists such a ma-
terial, there would be a good incentive to study hydrodynamic models. Apart from
one experiment done by de Jong and Molenkamp, [108], where they investigated
electron flow in two-dimensional wires made from (Al,Ga)As, and a theoretical
work by the same authors [73], not much effort was put into the search for such
materials.

However, with the experimental discovery of graphene [120], in which the regime
where electron-electron scattering is dominating is large [65], the field of electronic
hydrodynamics had an upswing. An increasing effort has been put into theoretical
studies of electronic hydrodynamics [111, 96, 128, 116, 115]. Furthermore, there have
also been experiments performed that elucidate on hydrodynamic flow in graphene.
The first experiment came from the group of Geim [13]. In contrast to the suggestion
by Gurzhi, another hallmark of hydrodynamic flow was measured. This is a non-
local resistance that arises due to whirlpools causing a backflow towards the inlet.
The non-local resistance on the inlet is defined as [96]

Vil (x )

Rnl(x) = 7 (53)

where V,;(x) = V(x) — V(0) for which x = 0 defines the inlet position, and I is the
current (independent of position). For viscous flow, for which whirlpools appear
(see Fig. 5.3(b)), a sign change in V,; will be observed, contrary to a conventional
current for which it remains positive (see Fig. 5.3(a)). The experiments performed
by [13] clearly exhibit this feature (see Fig. 5.3(c)).
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FIGURE 5.3: (a) Conventional flow as a current is flowing through

a small constriction. (b) Hydrodynamic flow with whirlpools due

to backflow. (c) Non-local resistance due to hydrodynamic flow for
different temperatures. Figure is adapted from [13]

Within the last years, further experiments have been done, confirming the hy-
drodynamic flow in graphene [40, 90, 14]. Hydrodynamic flow has further been
investigated in PdCoO, and is claimed to be observed [109].

This summarizes the state of hydrodynamics for electronic systems and some of
the effects caused by hydrodynamic flow. Now one might ask why a hydrodynamic
description is useful? In general, since the number of particles in condensed mat-
ter physics is so large, solving a Schrodinger equation for the considered systems is
often impossible. Hence, like many other theories, the hydrodynamic description is
an effective theory. The idea of the hydrodynamic theory is to reduce the degrees of
freedom from many to very few ones and then impose conservation laws. By apply-
ing thermodynamic relations, we then obtain a theory for quantifying macroscopic
variables that can be measured in experiments.

There are different ways of deriving the hydrodynamic equations. Two of these
are phenomenological in nature. The first approach is treated on the level of classi-
cal mechanics where the equations are derived from a perspective of an element of
the fluid [93]. The other is more general and relies on thermodynamics rather than
classical mechanics [31]. The third method relies on the semi-classical Boltzmann
theory. Like the other methods, this also comes with its drawbacks. The Boltzmann
equation suffers from the assumption that the constituent particles are free between
successive collisions. This results in the applicability of the Boltzmann theory being
very narrow and will carry over to the hydrodynamic theory, based on the Boltz-
mann equation, as well. The validity of the hydrodynamic theory is commonly ex-

tended to a larger region based on the assumption of universality. The assumption
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of universality states that all fluids with the same symmetry properties must obey
the same hydrodynamics equations whether the interactions between the particles
are weak or strong [116].

We will next derive the hydrodynamic equations. The general steps are the fol-
lowing

* Write down the Boltzmann equation. The Boltzmann equation tells us how
the local distribution function evolves in time as electric and magnetic fields
are applied. The local distribution function is defined through the H-theorem,
derived in Appendix. F.

* Next, a set of continuity equations are derived. This is done by defining the
particle number, energy density, and momentum density. The derivation fol-
lows by considering how the defined quantities evolve in time and applying
the Boltzmann equation.

* The particle number, energy density, and momentum density are now related
to macroscopic quantities. The macroscopic quantities are defined by the local
distribution function, given by the Boltzmann H-theorem. As the macroscopic
details are specific for each material, one here has to define the Hamiltonian
for the material of interest.

* Finally, the continuity equations, written in terms of macroscopic quantities,
can be combined to form the Euler equation, and the Navier-Stokes equation
if the viscosity is taken into account.

Following this outline, we will next derive the semi-classical Boltzmann equa-
tion.

5.2 Boltzmann equation

Historically, the Boltzmann equation was derived using classical arguments and was
applied to classical particles, described by the Maxwell-Boltzmann distribution. The
Boltzmann equation generally describes the dynamics of a distribution function

faxe(t), Kk(b), £) (5.4)

which gives the probability density, f) (r(t), k(t), t)drdk, to find a particle in a region
drdk in phase space, centered around (r, k) at time . As we are here considering
electrons, f)(x(t),k(t),t) in equilibrium takes the form of a Fermi distribution and
A denotes any quantum number such as band index or spin.

To understand how the distribution function changes in time we know from Li-
ouville’s theorem that any distribution function stays constant along any trajectory
in phase space. Now, on a second thought, in many cases this seems rather unphys-
ical. Indeed, moving particles will normally encounter either each other or other
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obstacles that directly impact the trajectory of the distribution function. The state-
ment is then formally expressed as

Fu(n X, t) = fi(r+dr, k+dk, t +dt) — T[f],, dt, (5.5)

where 7 [f,],,; is the collision integral, which describes the rate of change of the
distribution function due to interactions of the specific system. One now proceed
with expanding the right hand side to first order in %. In doing so we obtain

_ BfA of) dr dfy dk
fa(r, Kk t) = fa(r Kk t) + ==dt + i dtdt+ ST —dt =T [f],dt.  (5.6)
Reordering the equation and dividing through by dt we obtain
dfa E)fA afA
of +r or ak [f)\]coll : (57)

This is the Boltzmann equation. The time derivative of the position and wave vector
are given by the semi-classical equations of motions as presented in Section 2.2.4. Let
us for convenience present them here again. The semi classical equation of motions
are given by

o 1a€Ak .
=SSk _kx 0, (5.8)
k:—%(E+t><B), (5.9)

where €,y is the energy, given by the dispersion relation, €, is the Berry curvature,
E is the applied electrical field and B the applied magnetic field. The presence of
magnetic fields will however not be considered here, hence we set B = 0 throughout
the rest of this chapter.

The collision integral describes, as stated above, different collisions between elec-
trons and impurities, phonons, or other electrons. In the hydrodynamic description,
the electron-electron interactions are dominating. The collision integral for such two-
body interactions is given by

2 2 2

T fileos = 3 /dk2 / dkf /é:)i [ 60k + 10— ks — k)
xo(er+e—e—eq) [fifo(1 = f3)(1 = fu) = f3fu(1 = f1)(1 = fo)],

(5.10)

where we have used a suppressed notation such that f; = f,, k.. This describes the
process of an electron of species 11 and momentum k; that interacts with an electron
of species 1, and momenta k; and scatters into electrons of species n3 and n4 with
momenta k3 and ky, respectively, and as well the reversed process. The probability
for this process is given by the scattering amplitude M33, which is determined by
Fermi’s golden rule [101].
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5.3 Hydrodynamic equations

To obtain the hydrodynamic equations, one has to perform two steps. First, a set
of continuity equations have to be obtained. After that, the quantities given by the
continuity equations have to be related to measurable quantities, such as the current

and temperature.

5.3.1 Particle number conservation

The first conserved quantity that we consider is the number of particles. The num-
ber of particles in a system is defined as the integral over the distribution function.

Hence

dk
N = ; / 2 Au(n K b). (5.11)

To understand how the number of particles change over time, we differentiate with
respect to it. Taking the time derivative of this equation and moving the derivative
on the right hand side inside the integral sign we obtain the following

aN dk d fA

(5.12)

Now one observes that the time derivative of the distribution function appears in
the Boltzmann equation, Eq. (5.7). Hence, we re-write the time-derivative in terms
of Eq. (5.7). This gives us

N _ dk [ of af
ﬁ N _/ <27'L') |: a: +k 2 - [f?\]coll (513)

Next, we perform the integration on the right-hand side. We consider each term
separately. First, we note that the integration of the collision integral equals zero.
This is a consequence of the fact that charge has to be conserved. The middle term

inside the integral is
dk a f A

= 0. (5.14)

This follows from the fact that the distribution function must go to zero as |k| — oo,
or in other words, there cannot exist any particles with an infinite momentum. The

final integral defines the particle number current, i.e.,

dk % 0
or or

I, (5.15)

where Jy = ), f 27'( =2 1f)(r k, t). This gives us the first (normal) continuity equa-

tion N 3
o + — o -Jn =0, (5.16)



108 Chapter 5. Hydrodynamic equations for two dimensional topological materials

where Jy = ]g\?) + ]I(f;) and

o -2 dk&“ iy b), (5.17)
(5.18)
Jo hz | fulr K b), (5.19)

are the normal and anomalous currents respectively, defined through the semi-classical
equations of motion. Note that the anomalous part of the current depends on the
Berry curvature and hence can only be determined once the Hamiltonian has been
defined. The electrical current is given by

] = eJn. (5.20)

Next we consider the conservation of energy.

5.3.2 [Energy conservation

Like particle number, energy is a conserved quantity. As a next step, one looks for
an equation for the energy density, N.. We define the energy density as

r,t) = ;/ (261:)26Akf(r, Kk, t). (5.21)

Proceeding in the same manner as for the particle density, we take the time deriva-
tive of the energy density, move it inside the integral, and re-write the expression
for the time derivative of the distribution function using Eq. (5.7). Noting that the
energy does not depend on time we write

) dk ) p)
5 Ne(r, 1) 2/ 5 €Ak [ afA +k fA T faleon (5.22)

Similarly to the particle number the integral over the collision integral vanishes.
Assuming that i does not depend on r, the integral over the first term on the right
hand side results in

dk 0 0
2/ 2 Ak E{: arZ/ 6/\kl‘f/\ I, k t) a 'Jg, (523)

where after the last equality we defined the energy current, J. = Y, [ -2 27r 2 etfa(r k, t).
Just like the particle current the energy current has two contributions due to Eq. (5.8).
Thus

1 dk 9
1 =51 s ik, .24
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j = hz / sea [Ex ] fr(r K b). (5.25)

For the second term of the right-hand side of Eq. (5.22) it is useful to directly
apply Eq. (5.9). In absence of magnetic fields we then have that

dk 0 d
2/ 2Akkf)‘k— EZ/ zAkafl);k

dk d
_ h Z / "3“‘ Si¥ fak = —eE- IR (5.26)

To obtain the second line we have performed an integration by parts. As before we
have used that fy — 0 as |k| — co. The normal current ]g?) is defined in Eq. (5.18).
The above equations can now be collected to form the energy continuity equation

d

9 _ 0
5 +a‘JE—EE‘JN (5.27)

5.3.3 Momentum conservation

We will finally consider the conservation of momentum. Proceeding in the same
manner as for particle and energy conservation, we integrate the distribution func-
tion weighted by the momentum 71k and then apply the Boltzmann equation. Hence

L T I

ik . of
L/ G -

First, we define the left-hand side as the momentum density

Z / af M _ ;tnk. (5.29)

The integral over the collision integral is again zero. For the velocity component of

dk [ I

Eq. (5.7) we consider each component on its own. We then have that
Ifax _ 3
hz / K63 g arﬁ Z / k alpfa = ﬁHa,g, (5.30)

where I1,5 = 1), f k «7gfak is the momentum flux tensor. As seen before, the
Berry curvature contrlbutes an anomalous part. Hence, we have the normal and

anomalous flux tensors that are respectively given by

(O) dk €k
I = ;/ (271)2 k“( 9K )ﬁf/\(r/k/t)/ (5.31)

) = hZ/ < [Ex Qs flr ko b), (5.32)
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Finally we consider the force term. As we are considering a system in absence of
magnetic fields we have that

afAk dh ok
Ofak _ _ Eﬁz/ e k= BN 63)

where we in the first equality integrated by parts, and in the second have used that

% = Oup. Collecting the different terms we obtain the continuity equation for the

momentum density:
0

d
57 + 5 —Tlap = eEeN (5.34)

g

5.3.4 Continuity equations

To this end we have obtained a set of continuity equations, in the absence of mag-
netic fields. These three are:

ON
T Ve Jn=0 (5.35)
9 Nt Ve = B )} (5.36)
2 et LTl = eE N (5.37)
ot oy P T '

Note that all quantities related to some flux have both a "normal” contribution and
an anomalous contribution arising from the Berry curvature. These are defined in
Egs. (5.18) and (5.19) for the particle current, in Egs. (5.24) and (5.25) for the energy
current, and in Egs. (5.31) and (5.32) for the momentum flux. To make use of these
equations, we will write them in terms of macroscopic quantities of the system. We
next define these.

Macroscopic quantities

To make any use of the derived equations, Egs. (5.35) - (5.37), we have to relate them
to the macroscopic quantities of our system. To advance on this we need to state
the main assumption of hydrodynamic theory. This underlying assumption is that a
local equilibrium is established by electron-electron collisions on length scales much
smaller than the electron-electron mean free path, I... Because of this one can define

a local equilibrium function,

1
1 + ePleax—ru(r) k—p(r)]”

Fi(r) = (5.38)
Here y,(r) is the local chemical potential and u(r) is the hydrodynamic velocity,
more commonly known as the drift velocity, § = 1/kgT and A denotes any quantum
numbers such as band index, spin etc. The chemical potential will from here on be
taken to be independent of position, i.e., y(r) = p. The shape and dependence of
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the specific quantities is again a consequence of the H-theorem and the details are
found in Appendix F. To relate the macroscopic quantities to the specific system, we
must define the system we are interested in. Next, we define the Hamiltonian for
an anomalous Hall insulator which has a non-vanishing Berry curvature. After that,

we derive the Navier-Stokes equation for this type of material.

5.3.5 Navier-Stokes equitation for two dimensional anomalous Hall in-
sulators

We will in this section derive the Navier-Stokes equations for an anomalous Hall in-
sulator, using the previously derived continuity equations and the local distribution
function. We first define the Hamiltonian and its properties. The Hamiltonian is
described by a gapped 2D Dirac Hamiltonian [62],

Hyp = hop (kxox + kyoy) + Aoz, (5.39)

where vr is the Fermi velocity and 2A is the bandgap. The dispersion relation is

et = 1/ 17022 + A2, (5.40)

where k = (ky, k;). The Berry curvature is given by

given by

VA

Ot = .
Z(Ekli)‘g

(5.41)

Now, for this problem, we will assume that the Fermi level is placed inside the
conduction band, and hence this is the only band we will take into account.
Continuity equations revisited

Let us now write the continuity equations in terms of the conserved quantities ¢y, u
and y, given that the Fermi level is placed within the conduction band. For this the
following relation will be important

d
v Blex—huk—pu)| _ _ o
3 In [1 + e Pk } = ﬁf“a (ek ha -k — ,u) (5.42)

We now turn to the normal part of Eq. (5.35) and consider J© — Nu,

(0) B dk [10ex
W ‘N“—/u {hak‘“]fk

dk 10
G gk (6~ kel f (5.43)

Now we apply Eq. (5.42) and obtain

ik 9 ak 9
= Blex—uk—pu)
h/ 2y ok [k k=l f hﬁ/ 2rp o™ nfi+e ]



112 Chapter 5. Hydrodynamic equations for two dimensional topological materials

=0. (5.44)

Hence we have shown that J(*) = Nu, as one might have guessed. Next we look at
the energy current. Just like for the particle current we similarly consider ]‘(EO) — Ngu.
We then have that

dk [1 oe
]go) — Neu = / ﬁ [Fzgkalf - 8ku} fie

h/ (27)2 Skak —hu kel fi

dk oy | Ble—tuk—p)
hﬁ @n) ok | nfi4e | fi

g In {1—|—e Bex—huk— H)}

hﬁ

—00

=0
(5.45)

We extend the derivative of the energy like in the calculation of the normal current
such that aa% = % (ex +hu -k —hu - k — p). We then find that

dk aSk —/3(81(—71 k—]/l) U/ dk _ _h Je—
u _u Inl1 Blex—huk—u)|
hﬁ/ @22 Gein[tee J 5 Bl (2m)? nfi+e
(5.46)

This is the the pressure multiplied by the drift velocity [101]! Hence we have found
that ]g = (N; + P) u, where P = 3 f dk > In [1 4 e Bla—huk— V)], Furthermore, the

enthalpy density is defined as W = N; + P Thus ]g = Wu. Let us now investigate
2 2K
th tum flux tensor. The velocit by % = U< Consider th
e momentum flux tensor. The velocity is given by 3 NETav Consider the

energy current,

%\/ 47

dk
352 .2
We can then write ©
ng = ]e—z = KZu. (5.49)
UF UE

We are now left with considering the normal part of the momentum flux tensor.
Taking each component separately we have that

n® — / (de) (agkfk>

dk < [ex — Tk, — huyk, —y+huxk])

X
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d
_ —B(ex—huk—p)
hux/( )2 ka ﬁ/ 27_[2 x(akln[1+e i|)
1
Bl)| _ = —B(...)
= UyNy, +,3/ ln 1~|—e } ﬁln{l%—e }

X

W
== P + uxux, (550)

and

dk d
— 2n) ky (E)k [ hucky — huyky, — p + huyk ]>y
:huy/iz ke fic — / ( In [1 4 e Fle—uk—m )
(2m) B [ } y
= UyNg,
W
F
By symmetry, the other two components are given by
W W
iy = ottt + P 1y = o7t (5.52)
Collecting the components we can write
W
TI) = Pdus + 5 tiatip. (5.53)
o}

We now, following the terms of the equation for the momentum density, have to
consider two terms. The first one is the time derivative of the momentum density
%nk. We have that

0 0 (W ) _ yau u oW (5.54)

ot ot vt Ot UF ot -
Next we consider the gradient, with respect to position, of the normal momentum
flux. This results in

vAI© —

W 1
p = vh (Péa;; + uau/;) = VP + 7 [W(u-V)uy+u,V(Wu)] (5.55)

r
With the above calculations, let us now restate the continuity equations. In terms
of macroscopic quantities they are given by
J (a)
SN =V, (Nu+1y)
(5.56)
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% (W=DP)+V,- (Wu + Jé“)) —¢E- (Nu) (5.57)

"+ (Witg) + F VP 4 LW (0 V) e + 1V (Wa)] 4 VETI®) = eNE,  (5.58)
2 ap
U

*SN‘ =
QJ‘ (3]

Apart from the anomalous contributions due to the Berry curvature these equations
can be seen to coincide with the ones for the dispersion in gapless graphene [115].

To make progress with the anomalous quantities we first linearize the distribu-
tion function such that [9]

f=f+6f, (5.59)

where f? is the equilibrium distribution function for constant temperature and chem-
ical potential and for u = 0, and

_of' fe—p
5f_a€< ; 6,8—5;4—hu-k) (5.60)

is a small perturbation that accounts for the system being out of equilibrium. Limit-
ing the study to dynamics that are of linear order in u, 68 and éu can be assumed to
be small and absorbed by the external electric field. It should furthermore be noted
that 68 and Ju are even in k while the term k - u is odd in k.

We will further make progress by considering linear response. To this end we
note that the contribution from the anomalous velocity in the linear response regime
to the continuity equations for the particle and energy current is zero. This is seen by
defining the electric potential ¢, through —V¢ = E. It then follows that V - J* = 0
and V - J¢ = 0 from that d,9,¢ = dydx¢ [150]. Because V -J* and V - J¢ are to
leading order proportional to either ¢péf or ¢péu, these are neglected since they are
not captured well within the linear response treatment. The contribution from the
Berry curvature will however show up in the anomalous part of the momentum flux
tensor.

The drift velocity, u is proportional to E for small fields. For systems with broken
time reversal symmetry, Hgfﬁ) = 0 to first order in E. This is because () is even in k.
Instead the anomalous part of the momentum flux tensor is of first order in E and u.
It can be written

“ﬁ = h/ k «€psy EsQy ( aaj:)> k-u
= —ehuyepsyEn /< b k20785€
= unepsy Es By, (5.61)
where e 50
B, =By, = —eh / Wkﬁﬂ7 ( af(: ) (5.62)

From this we observe that B, depends on the Berry curvature around the Fermi
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surface. For the rotational symmetric, 2D system that is considered here, it is inde-
pendent of the index & such that B, , = B, ,. We now take the derivative of Eq. (5.61)
with respect to r and obtain

o

OpT1LY = Byeps,dp (1aEs) =y (V X E-B) + (E x V) . (5.63)

We can now obtain the Euler equation for anomalous Hall materials by combin-
ing Egs. (5.56), (5.57), (5.58) and Eq. (5.63). Assuming that the pressure gradient, VP,
acts in the same way as the electric field [101] and hence absorbing it in the electric

field, the Euler equation is written as
dt(pu)+[p(u-V)u+uV (pu)|]+u(VXE-B)+ (ExB-V)u=¢eNE, (564)

where p = W /0% is the mass density, determined from Eq. (5.49), which we assume
to be constant. We will now focus on the steady state, d;u = 0. Furthermore, for
small drift velocities a good approximation is to consider that the fluid is incom-
pressible, which is equivalent to V - u = 0. We will furthermore add a phenomeno-
logical viscous term, 7 which accounts for the dissipative electron-electron interac-
tions, [28, 132]. By such we obtain the Navier-Stokes equation (compare to Eq. (5.1))
for the electronic fluid including the contribution from the Berry curvature,

p(u-V)u+ (Ex B-V)u=eNE+7yVu (5.65)

We now continue studying different types of flow by studying how the derived
Navier-Stokes equation behaves in different geometries.

5.4 Poiseuille flow

Let us now consider the simplest possible flow, Poiseuille flow. In this case we as-
sume that the electrons can only move in one direction, specifically the x-direction,
such that u, = 0 and uy = u,(y), resulting from an applied electric field in the x
-direction, E = EX. Furthermore, for the 2D anomalous Hall material we have that
B = Bz. The Navier-Stokes equation, Eq. (5.65) can then be written as

— ExBAyuty = eNEy + 19}ty (5.66)

In this case the convective term equals zero because dyu, = 0, since uy is only a
function of y. By defining § = y/w, where w is the sample width, the equation is
made dimensionless,

— bagily = 14 il (5.67)

Here we have introduced

E. i 2eNE
po WBE: o o weNEy (5.68)
n u 7
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No-slip boundary conditions are applied, i.e., ily(0) = #iy(1) = 0. The differential
equation then has the following solution

D b1 —g) — g
ux(y) = b(]. —Eb)

(5.69)

We confirm the result by taking b — 0, implying that the Berry curvature becomes

zero. In this case we obtain (1
y(z_y). (5.70)

This describes the standard Poiseuille flow profile, i.e., a parabolic profile centered

=

around the middle of the sample, y = w/2. However, the flow profile will deviate
from the normal Poiseuille flow as the Berry curvature is increased. In this case, the
Berry curvature will set how much the maximum of the flow profile deviates from
the unperturbed profile.

Poiseuille flow can be observed in anomalous Hall materials if the magnitude of
the viscous longitudinal current, [y = eNu, (corresponding to the normal current
J©) exceeds the Hall current, Jy = %CE x (corresponding to the anomalous current,
J(@), where C = Yo [ d®kQ*f0 is the Berry flux. For the gapped Dirac system
under consideration we set A = 100 meV. The Fermi energy is placed at the bottom
of the conduction band, i.e., y = A. This ensures that any contributions from the chi-
ral edge states in the gap is suppressed. The temperature is set to T = 100 K which
should put us in a regime where the electron-electron interactions are dominating.
These parameters results in N = 2 x 100 em~2, g = 0.005fs/nm? and C = 0.47.
Note that the Chern numbers of a gapped Dirac system are £1/2.

We plot the currents, |, and J,, the current profile and the maximum current
position in Figs. 5.4 (a), (b) and (c) respectively. We first observe that the Hall current
(blue curve of Fig. 5.4 (a)) shows a linear behavior proportional to the applied electric
field. The longitudinal current shows a similar behavior but saturates for large E,.
It is important to note that the longitudinal current is larger than the Hall current
for a small electric field, which is the condition for observing Poiseuille flow. The
saturation of J; can be understood by considering Eq. (5.66). If E, becomes much
larger than the viscosity, 7, then u, is essentially independent of E,.

From Fig. 5.4 (b), it can be seen that there exists a window, which is proportional
to the applied electric field, where the Berry curvature drastically modifies the pro-
file of the Poiseuille flow. By varying E,, we observe in Fig. 5.4 (c) that the maximum
velocity does no longer occur at the middle of the sample. This asymmetric flow
should be possible to be measured by, for example, scanning-probe microscopy [91].
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FIGURE 5.4: Poiseuille flow of a viscous anomalous Hall material. (a)
The longitudinal current ] (red) and the Hall current, J, (blue) in the
middle of the sample, ¥ = w/2 and as function of the applied electric
field, Ey. (b) Profile of the longitudinal current for different values of
the applied electric field, Ey, indicated in the figure. (c) Position of
the maximum of ] as a function of Ey. For all figures we have used
the Dirac model presented in Eq. (5.39) and the following parameters:
A =100meV, T =100K, w =1mand y = 6 x 10~3AN. The Fermi
energy is fixed at the bottom of the conduction band, y = A.

5.5 Berry curvature and vorticity

We now consider the vorticity that is induced by the Berry curvature. The vorticity
is defined as
w=VXxu. (5.71)

For a 2D system confined in the x — y plane the vorticity is naturally written w = wz.
We take the curl of the Navier-Stokes equation, Eq. (5.65). We then obtain that

(ExB-V)w=1nVw. (5.72)

From the equation, it is seen that the Berry curvature has a direct impact on the
vorticity. However, non-zero vorticity does not imply that there exist whirlpools.
An example of this is laminar flow in a pipe. The particles travel along the axis of
the pipe, with a flow that is largest in the middle of the pipe and almost stationary
at the walls. This creates a vorticity that is zero in the middle of the pipe and reaches
its maximum at the walls. Furthermore, previous work has directly proved that the
viscous electron fluids in a semi-infinite 2D system have non-zero vorticity, but still,
whirlpools are absent [128, 51]. On the other hand, when whirlpools are present,
these arise due to the backflow create by the boundaries of a finite geometry. Next,
we will show that this is not the case in the presence of Berry curvature, which
induces whirlpools even for the semi-infinite geometry.

5.6 Electron hydrodynamics in semi-infinite half plane

We now consider the Navier-Stokes equation on a 2D semi-infinite half plane. The
geometry is depicted in Fig. 5.5 (a). A current is is injected at the origin. Assuming
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FIGURE 5.5: Set-ups in which the hydrodynamic equations are con-
sidered. (a) Semi-infinite half plane. A current density J, = I5(x) is
applied at x = y = 0 which serves as the inlet point. The inlet point
is considered infinitesimal. (b) Finite sample with a width of 2D and
height of 1D, where D = /v T is defined in Eq. (5.74). The sample has
a finite inlet and outlet width.

small Reynolds numbers? or equivalently small flow velocities the convective term,
(u-V)u as well as the Hall current can be neglected. We now divide both sides of
the equation by the mass density, mN, and introduce a term, u/t, that accounts for
electron-phonon or electron-impurity scattering, where 7 is the relaxation time of
these processes. The Navier-Stokes equation, Eq. (5.65) is then written as

1 _ € 2 1
m—N(—chxB-V)u— ch])—l—vVu - (5.73)

where v = 17/p = 1/ (mN) is the kinematic viscosity. By introducing the term u/7,
the diffusion length,
D =+/v7, (5.74)

is defined. We now consider an applied current at the origin such that J, = Ié(r).
We define the following, dimensionless, quantities

:_ ¢
-9 5.75
¢ %0 (5.75)
Im
(PO — 32NT’ (576)
g "
= (5.77)
o = —— (5.78)
0~ ¢eDN’ '
oy (X Y
=N =(55) (5.79)
__IA?b(p,T)
K= eD2N2hv2kgT (5:80)

2The Reynolds number is defined as Re = %, where u is the flow velocity, L is a characteristic
linear dimension and v = %/ (mN) is the kinematic viscosity.
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where we have used that B = Bz, B, = eA?b(u, T)/hv*kpT and

o e(xfﬁ)/f
b(7i, T) 4/ (1 - ) —, (5.81)
@+aﬁwg

where fi = u/A and T = kgT/A. Equation (5.73) can now be written as

K(Véxz-V)a=-V+Vi—i. (5.82)

This Navier-Stokes equation is a non-linear equation due to the coupling between
the potential and flow velocity (terms on the left hand side of the equation). We will
first treat this equation perturbatively in the coupling constant K. To this end we
linearize the equation by introducing

a=a"+Ksa, ¢=3¢ +Kép. (5.83)

950 4 9260 _ g0 g, (5.84)
—Vof + V3o — di = — (WZ“’) X7 v) a©, (5.85)

The Laplace equation for the unperturbed solution is given by

V20 =, (5.86)

which follows from the incompressibility condition V - @ = 0. The perturbation on
the other hand satisfies
V25 #0, (5.87)

due to the right hand side of Eq. (5.85). This implies that the Berry curvature induces
a charge in the system. As we come to the solution of the equations we will see
that, as a consequence of Eq. (5.85), §V¢ displays an electric dipole. This is due to
the coupling between the electric field and the flow velocity created by the Berry
curvature (see inset of Fig. 5.8 (b)).

To find the solutions of Egs. (5.84) and (5.85) we make use of the fact that the sys-
tem is translational invariant along the x-direction. Hence we can perform a Fourier
transform. This gives us that

i= / dkiig(y)e™, § = / dkGe(y)e™. (5.88)

The general boundary conditions, along the edge 7 = 0 are given by

a3 (7 = 0), (5.89)

5t = 0, (5.90)
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where no slip boundary conditions correspond to I, = 0 and I, — oo results in
no-stress boundary conditions. Using that the derivative under a Fourier transform

transforms as dz — ik, the first boundary condition is in Fourier space written as

<

(agaﬁf) + ikﬁ@) ‘ - llﬁ?c (7 =0), (5.91)
Y b

while the second condition remains zero. The flow at the inlet, due to the injected
current is given by the following boundary conditions:

i) (j=0)=0, a7 =0)=4(x). (5.92)

Hence the injected current is directed along the y axis. In Fourier space this simply
becomes
i (7=0)=0, #HHF=0)=1, (5.93)

Naturally the solution must furthermore vanish as §# — co. This is inscribed in the
following boundary conditions:

1VG=c)=0 #%F=0)=0, (5.94)

X 1y
We now first solve Eq. (5.84). Writing in on component form we have that

. =(0) +(0)
<lk¢’fo> — (R —R+1) (”’ggg) (5.95)
aﬁ‘Pk i

kil ¢ 0 0 1 o0 kily »
" i 0 0 0 kil ;
9y k”ffy —k qzz : ”f"y (5.96)
Oyliy 5 z O 0 2 Oyl
K2p(0) 0 —¢*> —ik> 0] \K,
M

where g = V1 + k2. To solve this system of equations we first find the eigenvalues
of M. These are given by

M2=7F1, Agq= T;[’] (5.97)
The corresponding eigenvectors are given by
—i —i —% 4
1 ~1 —ik —ik
n=| .|, =] .|, wv= T, va= 4 (5.98)



5.6. Electron hydrodynamics in semi-infinite half plane 121

The solution to the system of equations, Eq. (5.96) is given by linear combinations
on the form

~ 4 ~
o = Zaivie/\fky, (5.99)

where a; are coefficients to be determined by the boundary conditions. As the solu-
tion has to decay as 7 — oo, according to Eq. (5.94), we have to select different signs
for k such that this is satisfied by the solutions to the equation system. For A3 we
then select k > 0 and k < 0 for A, 4. The solution is now reduced to

kily.z
kil 5 Mt azv3e ¥, k>0,
uf’y _ a101€ ~ asose ) = (5100)
dyilk z 120267 + agv4e~, k< O.
k2q~)(0
Using the boundary conditions we then obtain, for k > 0,
_ . k(P +4?) +qlK ik (1 + 2Kl)
S ¥ ey e gy et L i I ¥ ey gy e s S
In the same way we obtain, for k < 0,
24 2y —
4y = k(K +q7) — qlk] a3 — ik (2kl, — 1) (5.102)

k(—k+ k21, — q%1y) + q|k| k(—k + k2l — q%ly) + qlk|

The solutions to the unperturbed system is then given by

e = T | —q + (@ =% Kogr@—@ | 10
70 _ L +q*) +aqlkl kI +2[K|L) qg:|
_ ) 5.104
Pl [!k!—ﬁ(kz—qz)lbe k| — g+ (k2 — g?)l, (5104
- 1 [ (+®)bh+q g
(0) — _[ )79 , Ikly], (5.105)
k| [|k] — q(k> — g%)1

As we are mainly interested in no-slip boundary conditions we let [, — 0. The
solutions are then reduced to

20 kg T g g (5.106)
eox = TKI(K — q) [ }
_ 1 —|K|g j
”z(mg - = {qe k|7 _ |k|eqy} ) (5.107)
) 1 ;
O _— _ 1 9 -y (5.108)
P TR —g

These solutions have previously been calculated in [128]. We now turn to the per-
turbation, Eq. (5.85). The homogeneous part of the equation looks the same as the
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unperturbed one, Eq. (5.84), except from that it satisfies slightly different boundary
conditions, Eq. (5.90). The full solution is that of the homogeneous solution plus the
particular solution, 0dy ¢ = i} ; + 0, . and 6 = ¢}! + 6. The general solution

is given by
511;(,)2(]}) = —Z%ef‘km — L:;eqﬂ + 51,7;:’9?@*(‘7“"\)? (5.109)
51ty (7) = “aelkﬁ - l‘;»zkqu T o] o+ (5.110)
(54’;}((9) = %ef‘kw + 5$kei(q+‘k‘)y‘/ (5111)
where
3 2 3
. + 2¢%|k| — |k|
St = d 5112
Tor = g = Tk) Bk%q + +2 /K| (2 + )] (G112
. k 7 + 29°[k| — |k?
sl = — (5.113)
59 |kl +q (q — |k]) [5k2g + +2]k| (k2 + ¢2)]

iy ik|k|
opF = A1 gk =2 (5.114)
where 5ﬁl€,g was obtained by using V - @ = 0. The boundary conditions, Eq. (5.90)
gives the coefficients a1 and a3,
il (k2 — 4 — q|k|)
a1 = — (5115)
(9 — [K[)? [5k?q + 2[K| (K> + )]

7 (K —q* — qlk|)
(g — kD2 [Bk2q + 2]k| (k2 + ¢2)]° (5.116)

az = —

The fact that a4; and a3 are antisymmetric and symmetric in k respectively, implies
that 1 ; is symmetric in k and that 64 ; and 5y are antisymmetric in k. The un-
perturbed functions on the other hand have the opposite symmetry. A consequence
of the symmetries will become clear in the next passage.

The solutions due to the perturbation are now combined with the unperturbed
ones. By performing an inverse Fourier transform numerically, we obtain the solu-
tions in real space. The solutions, for K = 1, are depicted in Figs. 5.6 and 5.7. We first

note that the solutions inherit the symmetry from the Fourier components. Hence as
(0) (0)
x y

way are Jil; symmetric and Jil; asymmetric in ¥. A consequence of this is a con-

observed i’ and il;’ are asymmetric and symmetric in X respectively. In the same
structive and destructive interference causing an asymmetric flow structure in the
full solution, . The perturbation, J1i, strongly modifies the flow at the inlet whereas
far from the inlet the unperturbed solution is dominating. An important feature to
note is the negative flow velocities in the y direction, occurring near the inlet. This is
due to the vorticity created by the Berry curvature, causing a non-trivial backflow.

We investigate the flow profile further by looking at the streamlines of . These
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(c) total u stream, £=1
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FIGURE 5.8: Stream lines for the hydrodynamic flow for (a) the un-

perturbed solution, @9, for (b) the correction, it and for (c) the total
solution 1. The perturbation strength K = 1. The inset of inset of (b)

shows the stream lines of —V¢(©) x 2. The scale of the axes are the
same as figures.

are plotted in Fig. 5.8. The color-coding follows the amplitude of i; such that red
and blur color denote a positive and negative flow in the y direction, respectively.
The unperturbed solution shows a positive flow away from the inlet throughout
the sample, as expected [51]. As we move away from ¥ = 0, the amplitude drops
and becomes a tenth of the streamlines in the middle of the sample. We observe no
whirlpools, however the vorticity, w = V x @(®) is non-zero as can be understood
from the curving streamlines, and furthermore changes sign around ¥ = 0. The
flow pattern of 41 is much more complicated compared to the unperturbed flow.
Going from the right to the left, we note from Fig. 5.8 (b) that the vorticity changes
sign from positive to negative then back to positive. This flow pattern is related to
the coupling between the Berry curvature and the electric field, as is depicted in the
inset. It should be noted that the profile of —V¢ x 2 does not strongly depend on the
boundary conditions and will persist even for no-stress boundary conditions. The
stream plot of the full solution is shown in Fig. 5.8 (c).

Similar to the previous analysis, we note that the streamlines are close to those
of the unperturbed solutions far from the inlet. On the other hand, the flow is asym-
metric close to the inlet. As seen, a whirlpool is created due to the perturbation.
Compared to whirlpools created by boundaries, the size of the whirlpool due to
the Berry curvature, which is governed by the diffusion length, will differ from the
whirlpools due to the sample boundaries.

In an experimental set-up, the Berry curvature and the applied current might
be small. This results in small K’s, which in turn will lead to small whirlpools and
might be challenging to measure in an experimental set-up. However, to observe
the effects of the Berry curvature in electron hydrodynamics, utilizing the potential
profile might result in higher success since it is more sensitive to the Berry curvature,
as will be seen below.

We first focus on the potential profile of the unperturbed system. It is depicted
in Fig. 5.9 (a). The result reproduces the results obtained in [128, 51]. The potential
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FIGURE 5.9: Colormap of the potential profile for (a) the unperturbed

solution, 43(0), (b) the correction, ¢, due to the perturbation and (c)

the full solution ¢ for K = 0.1. The inset shows the Laplacian of the
correction, V2¢ with the axes the same as the main figure.

show a change of sign along the x-axis. As explained in the introduction, this is the
hallmark of viscous flow that leads to a negative non-local resistance even without
a backflow. Compared to the unperturbed solution, the perturbed one, depicted in
Fig. 5.9 (b) changes sign multiple times. The asymmetry that is observed here is due
to the dipole moment that the Berry curvature creates. This is readily shown in the
plot of V2¢ which is depicted in the inset of Fig. 5.9 (b).

Due to the imposed current profile, i;(0,0) = (%), both the unperturbed and
perturbed potential profile diverge at the origin. Both the singularity and asymme-
try of 8¢ can be seen to have a strong impact on the total potential close to the origin,
and similarly, as for the velocity flow, the perturbation has only a minimal impact far
away it, and the potential profile here resembles that of the unperturbed one. To ob-
serve the differences between the unperturbed and perturbed system more clearly,
we scan the potential profile along the %-axis and fix § = 0.03D. The results are
shown in Fig. 5.10 (a). The blue and red curves show the unperturbed and the per-
turbed potential profile, respectively. The maximum value of the perturbed potential
profile is significantly larger than the unperturbed one. Furthermore, in contrast to
the unperturbed potential profile, the perturbed one changes sign at ¥ = 0. From
the definition of the non-local resistance, Eq. (5.3), we write

Ry (%) = M. (5.117)

This is plotted in Fig. 5.10 (b). The non-local resistance of the unperturbed system
(blue curve) remains negative as we sweep along the ¥ axis. The perturbed system,
on the other hand, takes on both positive and negative values. The results from the
perturbative analysis only hold in the case when the inlet current takes the shape of
a delta function. However, the features of ¢ and R, are qualitatively not expected
to change when a finite inlet width is considered.

To validate the analytical results, we also study the equations numerically. We
apply the finite element method. This method is introduced in the next section,
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FIGURE 5.10: (a) The potential profile, ¢ and (b) the non-local re-
sistance R,;; defined in Eq. (5.117) for a system with Berry curvature
(blue) and a system without Berry curvature (red).

followed by the results obtained from the numerical implementations.

5.7 Finite element method and finite geometry

The finite element method (FEM) is a numerical method for solving partial differ-
ential equations (PDE). It has since long been established as a powerful method for
solving PDEs and is being applied in many different situations, especially in the field
of continuum mechanics. That being said we will here utilize it to solve the electronic
Navier-Stokes equations that includes the Berry curvature. Before the method is ap-
plied to our problem we will give a short introduction to how the method works.

5.7.1 Receipt FEM

The finite element method follows six essential steps for a numerical implementation

of the solution of the given partial differential equation. These are as follows,

1. The first step is to discretize the continuous model; the region over which we
want to solve the given PDE is divided into finite elements. The mesh is usually

generated by a "preprocessor" which assigns the nodes on the grid and their
connectivity.

2. As the finite elements have been created, the next step is to select the trial func-
tions which are used to interpolate the field variables for the elements. There

are many options for picking the interpolation functions. For many problems,
polynomials are chosen.

3. Next one has to establish a matrix equation of the finite element that relates
the values at the nodes of the unknown function to other parameters. Here
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one has different methods at hand. The two most common are the Galerkin
method and the variational approach. We will here use the Galerkin method
where one write the PDE on the weak form. The outline of this follows below.

4. As the equations for a specific element has been established the full matrix for
the total system has to be constructed, using the information about the nodal
point and their connectivity. In this step one also imposes particular boundary

conditions.

5. Finally, as the whole system has been assembled one is ready to obtain the
solution for the given problem. The result is given by the values of the nodal

points in combination with the interpolation functions.

6. For many problems one further require another step for calculating specific
properties, which can be obtained from the result produced using the FEM.

To demonstrate how the FEM work we apply it to a simple problem for which
we also introduce the Galerkin method.

5.7.2 Galerkin method

We here introduce the Galerkin method as part of the finite element method and
show how the FEM can be implemented by considering a simple differential equa-
tion such that we can solve it by hand. Let us consider the following differential
equation,

dx?

where v is the function we are seeking. We take the following boundary conditions

+b=0 0<x<2L, (5.118)

Vlx=0 =0 (5.119)
=R (5.120)
As we are considering a one dimensional problem our finite elements are one dimen-
sional. The line is divided into two parts resulting in 3 nodes. Let us first consider
the system only between the two first nodes. On this interval we approximate the
solution by

v = N7v1 + Npyvy = Nypvqp, (5.121)

where Nio = [N1 Na] and v35 = [v1 v2]T. The N;s are the trial functions. For the given

problem we pick them as follows

Ny =1- 2% (5.122)
X2 — X1
N, = X1 (5.123)

7
X2 — X1
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where x; and x; marks the position of the first and second node respectively. These
functions are used to interpolate the functions v(x) for its nodal values. The nodal
values are given by v; and v;, and are obtained by setting up a system of equations
describing the total system.

Substituting the above approximate solution into the differential equation, Eq. (5.118)
we have the following equation

2

HENQUQ +b=r, (5.124)

where 7 is the residual due to the that we are inserting an approximate solution into
the differential equation. Next, we use the Galerkin method, which means that we
minimize the residual by multiplying Eq. (5.124) by a test function, taken to be the
same as the trial function, integrate over the element, and set the equation equal to
zero. This results in

2 r d 2 T
ﬂ/x dXleﬁNljvlz + b/ dx N12 =0. (5125)
1 X1

The next step is to perform an integration by parts. By doing so we obtain

X2 dNqp Tlez 2 T 0| do 1} do =

(5.126)
In the literature this equation is normally presented as
kl)lz = f, (5127)
where .
X2 dNyp | " dNyp
— 12
K a/}(ldx[dx} Lo, (5.128)
is the stiffness matrix and
x2 0| do 1| do
_ T _ i
f=v/ NG ta |, e H T (5.129)

is the load vector. The names for these two are justified by that they stem from solid
mechanics. By the same principles, we obtain for the second element the following
stiffness and load matrices

a1l -1
ki=k =7 [_1 : ] , (5.130)
bL |1
bL |1 0
=510+ [, (5.132)
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FIGURE 5.11: The solution to Eq. (5.118) using the finite element
method along with the exact solution.

Assembling the stiffness and load matrices for the global system and applying the
boundary condition at v(x = 0) results in the following system of equations

1 0 O U1 0 0
a bL
0 -1 1 U3 1 R

Solving the system we obtain the approximate solution to the differential equation.
The solution is plotted in Fig. 5.11 along with the exact result.

Let us furthermore make some clarifications regarding the above example and
the Galerkin method. The Galerkin method is an example of a so-called residual
method. We consider again the steps from Eq. (5.124) to (5.126). In the first step we
require that after multiplying by the shape function and integrating over the element
the result is zero. This means that we require that the integral over the residual, r
weighted by the shape functions is zero,

X
/ " dx Npor = 0. (5.134)
X1

In fact one does not have to chose to multiply Eq. (5.124) by the shape function but
in general one can chose any function v, commonly known as test function. The
Galerkin method essentially boils down to picking the test functions equal to the
trail functions.

Eq. (5.126) is the so-called weak form of Eq. (5.118) on the interval 0 < x < x;.
Eq. (5.118) is the strong form of the PDE. Writing the weak form of the PDE is a
general step for the FEM. Hence a common procedure is to start with writing the
PDE on its weak form. This can then be easily treated by a finite element solver, such
as the FEniCS project. Thus to obtain the weak form of Eq. (5.118) we multiply it by
a test function and integrate over the domain for which we are interested in finding
the solution. An integration by parts is then performed such that all functions have
a derivative of as small order as possible. In most cases, this means that we have
derivatives of no higher order than one. One can now ask the question of what

is the advantage of the weak form compared to the strong form since they can be
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shown to be equivalent. To understand this, we consider the strong form. It is clear
that the unknown function is differentiated twice. Since the FEM is an approximate
method, we will have to replace the function appearing in the strong form with the
approximation. When this is done for the strong form, it means that we have to
consider an approximation that is twice differentiable. On the contrary, in the weak
form, the sought function must be a function that is only one time differentiable.
Hence, in this case, we only have to deal with approximations that are one time
differentiable. Hence, from this aspect, the weak form is strongly favorable.

Another advantage of the weak form is that it provides a more general formula-
tion of the differential equation. This might sound contradictory because we previ-
ously stated that the weak form is equivalent to the strong form. The proof of the
equivalence of the two requires that the unknown function can be differentiated as
many times as necessary, i.e., in most cases, two. However, what is important to
notice is that the weak form holds even in the presence of discontinuities. On the
contrary, if there are discontinuities present, the strong form has to be modified.

We have in the section presented the framework of the FEM. Many of the steps
are implemented in finite element solvers. For the following study, we have utilized
the finite element solver that is implemented under the FEniCS project. In the next
section, we derive the weak form of the electronic Navier-Stokes equations including

the Berry curvature, studied in the previous section, and then solve it using the FEM.

5.7.3 Finite elements for electronic Navier-Stokes equations in a finite ge-
ometry

With the finite element method being introduced, we can now apply it to the elec-
tronic Navier-Stokes equation, Eq. (5.82). For the approach taken to solve the equa-
tion analytically, we considered a half-plane geometry. This is not feasible when
working with numerics. We will hence consider a finite geometry that is similar to
a geometry that has been studied analytically [96]. The geometry is a rectangle of
width W = 2D and height H = D. We denote the system volume by ). The inlet
and outlet are positioned in the center of the longest sides and are taken to be small
compared to D. The geometry is depicted in Fig. 5.5 (b).

As a next step, we want to write the equations on the weak form. Since the
equation is vector-valued, we have to multiply it by a test function that is also vector-
valued. Hence we multiply the equation by v € V, where V denotes the space of all
vector valued test functions (specified below). By further integrating over the entire
system, () we have that

-K drv-(WBxBW)ﬁJr/erv-(W—ﬁ)+/ﬂdrv@2ﬁ:o, (5.135)

where K = %{}BI;O. The incomperssibility condition, V - @t = 0, is multiplied by another

test function, g € Q, where Q denotes the space of test functions for the single valued
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functions (specified below), g, such that

/Q dr (V- @)g =0 (5.136)

To obtain the weak form, we perform the integration by parts. We only have to
perform the integration by parts on the last term of Eq. (5.135) since we only apply
first-order derivatives to the other terms. Using Green’s theorem, we obtain

—IC/erv- (V B-v)a+/ﬂdw. (V- a)
+/ drVii- Vv — dsva—l:l =0, (5.137)
o) ) Of

where 1i is the unit normal pointing out from the surface. The problem is completed

by specifying the boundary conditions. We let the in- and outlet velocity in the y

direction be equal, ﬁ;” = ﬁ;’” = 1 and the potential on the in- and outlet are of

equal amplitude but opposite sign, ¢;, = 1 and ¢gour = —1. Finally we have to

specify the test-function spaces. A common practice for Navier-Stokes equations

is to pick for the velocity the space of Lagrange polynomials of second order and

for the potential the space of Lagrange polynomials of first order. These two then

form the well known Taylor-Hood element which implies that the approximations

are optimal [18].

We are now in position to state the full variational problem: find @ € V and

V¢ € Q such that

Q QO
+ [ drVi-Vv— dsvaif:o, (5.138)
9 a0 of
dr (V-@)g=0,
LA (Vea)g
(5.139)

given that

k=)

19" =1 on 00, 0Nout, (5.140)
0 0on 902\ {90, 9wt} (5.141)

$in = 1 0n 00y, (5.142)
Pour = —1 on 00y, (5.143)

~in
iy =

o) <

a

where 0Q);, and 90),,;; denote the inlet and outlet respectively. The problem is now
implemented using the FEniCS package. We plot the stream plots of the unperturbed
velocity @ and the difference between the perturbed and the unperturbed éi in
Figs. 5.12 (a) and (b) respectively. The respective plots of the potential and potential
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FIGURE 5.12: Stream plots of (a) @ and (b) 6@, for K = 0.01.

difference are plotted in 5.13 (a) and (b).

We first discuss the stream plots. In Fig. 5.12 (a) we observe the velocity profile of
u®, We see that a couple of whirlpools form, one on each side of the line ¥ = 0, due
to the backflow created by the geometry boundaries. This can be directly compared
to what has been obtained in [96, 128]. The positions of the whirlpools are in good
agreement with what is obtained in [96].

Let us now discuss the effect of the Berry curvature. One best observes the effects
in the difference between the unperturbed and the perturbed velocity profile, dii.
This is plotted in Fig. 5.12 (b). A small Berry curvature has been introduced such
that = 0.01. The most notable effect of the Berry curvature is that a whirlpool is
created in the center of the geometry for 411, rotating in the anti-clockwise direction.
This results in a reduced velocity on the right-hand side of the sample whereas,
the velocity is increased on the left-hand side. A consequence of this is that the
whirlpools shift towards the left of the sample.

Compared to the perturbative solution, we do not observe any whirlpools at
the inlet. However, finding quantitative agreements between the analytical and nu-
merical results should not be expected since we use an infinite geometry and a finite
geometry for the perturbative solution and the numerical solution, respectively. Fur-
thermore, the in- and outlet widths are infinitesimal and finite for the two different
approaches. The two approaches however shows very good agreement for the dif-
ferent symmetries observed in @ and J@ and the asymmetric flow is observed in both
approaches.

We now turn to the results of the potential. The unperturbed results (see Fig. 5.13 (a))
are in qualitative agreement with the results obtained in [96, 128]. Compared to the
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FIGURE 5.13: Potential maps of (a) ¢(°) and (b) é¢, for K = 0.01.

analytical solution, there is no singularity for the potential at the in- and outlet. This
is due to the finite width of the in- and outlets in the finite geometry. On the other
hand, the sign change observed in the potential is in close agreement between the
analytical and numerical solutions. The changes in signs of the potential can again
be seen as a signature of viscous flow.

The effect of the Berry curvature is depicted in Fig. 5.13 (b). We consider the
lower half-plane. The difference, é¢, shows an asymmetric profile that will expand
the positive and negative regions of ¢(©) on the left, respectively, the right-hand side
of the inlet. The results obtained here are consistent with the results for the half-
plane geometry used for the analytical calculations.
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Chapter 6

Summary and outlook

Summary

In this thesis, we have explored a few different directions of how topological ma-
terials react to external applied fields. In Chapter 3, we investigated the transport
properties of systems hosting Majorana bound states. The set-ups that were stud-
ied were the minimal ones for constructing a qubit using Majorana bound states.
These are the Majorana box and the Tjunction. Importantly, we looked closer at
the implications of the combination of overlap between the Majorana bound states,
charging effects, and several terminals connected to the systems. We investigated
the transport in both the sequential tunneling regime and the cotunneling regime.

We applied a master equation to elucidate on the transport in the sequential tun-
neling regime. Here the transport processes are due to single electrons tunneling
on and off the Majorana box/T-junction. Furthermore, transport involving the cre-
ation and annihilation of Cooper pairs is as well present. Single electrons facilitate
transport between the different leads coupled to the same wires, whereas in the T-
junction, the transport occurs between the outer leads for small biases. Furthermore,
depending on the overlap, the Cooper pairs facilitate non-local transport between
the different wires in the Majorana box. Furthermore, a non-local Coulomb block-
ade can be observed depending on the overlap between the Majoranas.

Next, we investigated the cotunneling regime. Transport is due to transitions via
virtual states and leads to elastic and inelastic cotunneling. The transport signatures
in the Majorana box behave similarly to the sequential transport. On the other hand,
in the Tunction, transport is now allowed between all leads, even for small biases,
contrary to the sequential tunneling. Moreover elucidating on the effects and the
transport signatures, the results furthermore show the importance of the overlap
and how it makes the different structures distinct.

In Chapter 4 we investigated the optical activity of nodal loop semimetals, specif-
ically in terms of the Kerr effect. The Kerr effect describes the polarization properties
of the reflection of a linearly polarized incident beam on a material. The polarization
of the reflected light is related to the conductivity of the material, which depends on
the properties of the material. Hence, measuring the Kerr effect, properties of mate-
rials can be obtained.



136 Chapter 6. Summary and outlook

Here we applied it both to a thin film and a semi-infinite bulk material hosting
a nodal loop in the x — y plane with a possible tilting of the nodal loop. The tilt-
ing is shown to be of uttermost importance for observing a polarization shift of the
reflected light. The properties of the reflected light are directly affected by the Hall
conductivity, and in its absence, the polarization of the reflected light is the same as
for the incident. In the absence of tilt the Hall conductivity oy, (w) = 0 for a nodal
loop. Hence, as we show, the Kerr effect is absent in un-tilted nodal loop semimetals.

When the nodal loop is tilted we find, both for the thin film and the bulk material,
that the Kerr angle and ellipticity are large when the light is incident on the x —y
surface. This is in agreement with what is observed for other topological materials.
When light is incident on the x — z and y — z surfaces the Kerr effect is absent due
to that oy, = oy = 0. For the bulk material, the effect is present but very small.
We furthermore vary the chemical potential and the tilt direction. By increasing
the chemical potential, the features of the Kerr rotation change. The amplitude is
decreased but remains large. For the thin film, we furthermore see an increase in the
amplitude of the ellipticity. By varying the tilt direction, we show that the Kerr effect
is very sensitive to the tilt direction when light is incident on the x — y surface. On
the contrary, the Kerr angle is almost insensitive to light incident on the x — z and
y — z surfaces.

Finally, in Chapter 5, we discuss the theory of electronic hydrodynamics. We ex-
tended the already well-known theory to account for anomalous Hall insulators as
well. The anomalous Hall insulator was modeled by using a gapped Dirac Hamilto-
nian which display a non-vanishing Berry curvature. We find that the Berry curva-
ture modifies the electronic Navier-Stokes equation and play an important role for
describing hydrodynamic flow in topological materials.

As the Navier-Stokes equation had been formulated, we calculated different types
of flow. First, we considered Poiseuille flow, laminar flow in a narrow channel. Usu-
ally, this leads to a parabolic flow profile with the maximum velocity in the middle of
the channel. Because of the effects of the Berry curvature, the flow profile is changed.
A shift of maximum flow is directly attributed to the Berry curvature.

We next studied the flow in two other geometries, an infinite half-plane, and a
finite geometry. For the semi-infinite half-plane, we were able to apply analytical
methods by using perturbation theory. However, for the finite geometry, we were
bound to use numerical methods. In this case, we applied the finite element method.
For both geometries, we investigated the electrical potential and the flow profile.
Even though there is a difference between the two geometries, we found qualitative
agreement between the results. We have further shown that the results should be

experimentally accessible by measuring the non-local resistance
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Outlook

The field of Majorana physics has evolved a lot in the last years. It would be interest-
ing to device experiments where the devices that has been studied in this thesis are
investigated. However, first the existence of Majoranas has to be settled. The work
considered here could theoretically be extended to consider more complex structures
while accounting for charging effects and overlap between the Majoranas.

Regarding the investigation on Kerr effect in nodal loop semimetals one could
further consider tilt in the k, plane. As some of these materials exhibit spin-orbit
coupling, it could also be interesting to investigate the effect of this and the effects it
has on Kerr measurements. The theory of the Kerr effect can as well be applied to
other materials. This we already initiated in [59].

Our investigation of hydrodynamics in anomalous Hall materials clearly shows
that the Berry curvature impacts the hydrodynamic flow. A further important ques-
tion to answer is whether or not these materials support a hydrodynamic regime.
This would mean that one has to investigate the different scattering mechanisms and
find whether or not there is a regime where electron-electron scattering dominates
over electron-impurity and electron-phonon scattering. Another direction would be
to further study the possibility of hydrodynamic flow in other topological materials
and the existence of a hydrodynamic regime in these materials.
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Appendix A

Semi classical equations of motion

We will, in this appendix, derive the semiclassical equation of motion and show
that the well-known equations are modified due to the Berry curvature. We follow
[33]. The idea is to construct a wave packet |[W) and study its motion. The system
is under the influence of a (strong) homogeneous magnetic field that is described
by the vector potential Ag. When the magnetic field can no longer be treated in
perturbation theory, one has to solve the Schrodinger equation for the following

Hamiltonian

g L a? o oy Al
—Zm[—z 5 e 0(1‘)] +V(r), (A1)

where V(r) is a periodic potential.
To take into account for external fields, the dynamics of the wave packet will be
governed by the following Hamiltonian

2
H= - [—ihaar + eAo(r) + eA(r, t)] +V (), (A2)
where §A describe the external fields, and —00A /0t = E,and V x éA = §B. We will
assume that both E and B are uniform and small, such that A can be treated as an
perturbation.

The wave packets that we will construct are based on Bloch functions. As we
are considering magnetic fields, we have to consider the more general magnetic
Bloch functions. For simplicity, we consider electrons confined to a two-dimensional
plane. A magnetic Bloch state is then defined such that it satisfies

HoYx = gn‘{rnk(r)' (A3)

The Hamiltonian is, in general, not translational invariant unless the mean value of
B is zero. It can, on the other hand, be made invariant under magnetic translation
operators. These operators are similar to the normal translation operators multi-
plied by a phase factor that depends on the position. The magnetic Bloch states then
furthermore have to satisfy

T1(R1) ¥k (r) = e 51 (), (A4)
T2(Ra) ¥ nic(r) = €™ (). (A.5)
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These operators commute with the Hamiltonian by construction. They, however,
only commute with each other if there is an integer number of flux quantum ¢
contained in R; x R;. Because of this, when the magnetic flux is a rational multiple
of p/q of the flux quantum ¢y per unit cell of the lattice, a magnetic unit cell must
be chosen which contains g plaquettes. If not, then k; and k; are not good quantum
numbers. On the other hand, if this is satisfied the wave functions ¥ ;. furthermore
forms a complete set such that

(Y| ¥rie) = O Oracs (A.6)

and the domain of k is the magnetic Brillouin zone (MBZ). Compared to the normal
Brillouin zone this is g times smaller.

We are now set to construct the wave packet |Wy). For simplicity we consider
only a single band. The wave packet is centered around r. in r space and is formed
by a superposition of Bloch states

Wo) = /MBZ dkw(k) [¥(K)), (A7)

where |¥(k)) are Bloch wave functions, w(k) is a function that is localized around
k. in k space and MBZ denotes the magnetic Brillouin zone (in case of no magnetic
fields this boils down to the normal Brillouin zone). The function w(k) has to be
chosen such that is fulfills

/ kK| w(K)]? = ke, (A8)

such that it makes sense to speak of the wave vector k., and
(Wol r [Wo) = rc. (A9)

The second condition tells us that the wave packet has to be narrowly localized
around its center of mass, r., in real space. An illustration of the wave packet can be
seen in Fig. 2.3.

Let us define uy (r) = e **™¥) (r). The mean position of the wave packet can be

written as

(ol x W) = [ die [ dic” (10 w(i) (1) (=iggee™ ) fu(i)

:/dk’/dkw*(k/)w(k) [(—za?() Sk — k') +5(k — K (u(k)\iaak]u(k»ce”
= [ e 0 (0000 + i) (1) 5 [0 (A10)

where we have use that ((k')| e/*K) 7.8 |1(k)) = 6(k — k') (k)| i |u(k)) - The
subscript means that the integration is taken over a unit cell. We define

A = ()] 2 (k) (A1)
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which we know as the Berry connection. We can then write Eq. (A.9) as
r = / dk [w (k)iaakw(k) + w(k)PAK) | . (A.12)

Next, we will construct the Lagrangian. By using a time-dependent variational
principle, the Lagrangian governing the dynamics of the wave packet is given by
[89]

. .0
L(re, ke, ic, ko) = (W] zh& W) — (W|H|W), (A.13)
where |W) is a wave packet centered at r. and k.. The Lagrangian is minimized
by the wave function satisfying the wave time-dependent Schrodinger equation. A
gauge can always be chosen for which the vector potential /A is locally gauged away

at a specific point, in this case r = r.. Thus, at this point W and W, coincides. Near
1. the value of W can be approximated by

W (r) = e moAlD T (1), (A.14)
By using Eq. (A.14), the energy of the wave packet can be evaluated, and is given by

(W| H W) = (Wy| H |Wp), where

2m or
~ Hy + ﬁ {[6A(r,t) — 6A(re,t)] - P+ hc.} . (A.15)

H = 1 {—iha + Ag(r) +e[6A(x,t) — 6A(x., t)] }2 +V(r)

Here P is the mechanical momentum operator corresponding to Hy. By choosing a
circular gauge for 0B, resulting in A (r,t) = —Et + %5B x 1, the Hamiltonian can be
written as
H' ~Hy+-0B-L, (A.16)
2m

withL = (r — r.) X P being the mechanical angular momentum operator of the wave
packet, around the center of mass. Thus, for the second term of Eq. (A.13) we obtain

e

(W H|W) ~ E(k.) + =——0B - (Wo| L |[Wp). (A.17)

2m

The second term here represents the correction of the energy due to the magnetic
moment of the wave packet. This arises because, contrary to a wave packet in a
normal Bloch band, a wave packet in a magnetic Bloch band rotates.

The first term of Eq. (A.13) can be evaluated to give

9 . 9
(Wol ifi=- [Wo) = (Wo| eSA(xe, 1) - x| Wo) +/dkw*(k)zh§w(k)
— eSA(ro,t) 1o + / dk|w(k)|2h(.iy(k,t)

. d
~ eSA(re, t) 1o+ hgfy(kc, t), (A.18)
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where we have used that we can write w(k) = |w(k)[e~"**) and that |w(k)|? can be
approximated by 6(k — k). A total time derivative have no effects on the dynamics,
hence, the last line can also be written as

<W0|1h - [Wo) = —edA - 1. — Tk, (ke t). (A.19)

9
ok, !
We now use Eq. (A.12) and neglecting a total time derivative, as again, it will have

no effects on the dynamics, we obtain
(Wo zh T [Wo) = —edA - xe+Tike -1+ k. - A(k,). (A.20)
The Lagrangian describing the wave packet dynamics, Eq. A.13, can then be written

L(re, ke, i, ko) = —edA(x,t) - i + Hk, - io + Tk - A(k) — £(k.) + ﬁ(ss L(K),
(A.21)
where L(k) = (Wy|L |Wp). This equation can be shown to be gauge invariant be-
cause under a gauge transformation for Ay(r), the Lagrangian will only change by
a total time derivative. This also holds when specifying a different gauge for JB.
This implies that the dynamics are invariant under a gauge transformation. The dy-

namics are now found by applying the Euler-Lagrange equation, % (%) — 5 =0.
Consider first the r variable. Then
B 85A .
871 - E arl (A22)
d (dL d ; d0A; 00A;

From this we obtain that

- d6A;
06 A _ 00A; ] (A24)

A
ki = =5 e;[ o o

The first term here is just the negative of the ith component of the electric field,
whereas the second component is (i x dB),. We now continue with the k variable.
We have that

JL;

a 8 e i
j ak k ;‘mfaki’ (A.25)
d (oL d i
a <ak> = &) = ]Zakjk] (A26)
Again, combining these equations we obtain
0A; dA;] .
i ZéB] ak Z [ & oK, } k (A.27)
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The third term can now be shown to become [k x (V x A)] .- Summing everything
up, we have obtained the semicalssical equations of motion

. 10 e .
t= 2o (En(k) + 5-0B L(K) ) — k x 0, (k) (A.28)
k = —¢E — er x 0B, (A.29)

where O, (k) = V x A(k) is the Berry curvature. We have furthermore introduced
the band indices, n. As seen there is a modification of the equation of the velocity
due to the Berry curvature.
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Appendix B

Cooper pair creation and
annihilation operators

In this appendix we show that the operator ¢~ annihilates a Cooper pair in the
Cooper pair condensate. The number of Cooper pairs in the condensate are given
by N¢ and the Cooper pair number operator tells us that Nc |Nc) = N¢ |[N¢). As the
number of Cooper pairs and the superconducting phase ¢ are conjugate variables,
we have that [Nc, 43] = i [54]. We now want to prove that

e |Nc) = [Nc —1). (B.1)

To do this we first study [Nc, e*"‘f’} . We apply the commutator to some wave func-
tion ¢ and Taylor expand the exponential. This gives us

) .\ 2
[Nc,e*iﬂlpz [NC <1+z‘¢3+(l§) +...)—<1+i¢>+(1‘2p,) +...>NC]¢

i3

= [N §]+ 5 Ne, )+ 5 [Ne, ]+ 62)

Next we use the following commutator relation: [A, B"] =n [A, B] B"~1. We then

obtain
[Nc,e_iﬂ P = —e 9y, (B.3)
This implies that
[Nc,e_iﬂ S—— (B.4)

We can now use this when considering e 9 |Nc). By direct calculation we obtain
e |Nc) = — [Re, ] |Ne)
= [e’i‘f’Nc — Nce’iﬂ |Nc)
= Nee ™ |N¢) — N |Ne) . (B.5)
This is equivalent to that

(Ne — 1) e |N¢) = Nee ™ |NC) . (B.6)
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This implies that
e |Nc) = |[Nc —1). (B.7)

Hence e~ destroys a Cooper pair. We can similarly show that e'? creates a Cooper
pair, i.e, ¢ [Nc) = |[N¢ +1).
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Appendix C

Bogoliubov transform

This appendix outlines a general method to obtain the Bogoliubov transform for
an arbitrary quadratic Hamiltonian. The Bogoliubov transform, also known as the
Bogoliubov-Valentin transform, is applied to diagonalize a quadratic Hamiltonian.
It can be applied to both bosonic as well as fermionic Hamiltonians. Below we will
outline the method for finding the Bogoliubov transform for a fermionic system. The
very same approach can be taken for bosonic Hamiltonians. However, certain care
has to be taken. For extensive work on this, see [178].
Consider the Hamiltonian
n

1 1
H= )" "‘ijczTCj + E’YijC;rC}L + E'Y;;‘Cjci , (C.1)
ij=1

where n > 1 and aij, vij € C. It is clear that this Hamiltonian in general is not
diagonal. The creation and annihilation operators ¢! and c; obey the standard anti-
commutation relations. The coefficients a;;, ;;, furthermore have the following sym-

metries,

*

wij = &, Vij = —ji- (C2)
By introducing
g — [ ¢ T] vt = [c*, CT}, (C.3)

+ + ot +
c=|.|, ¢ =|c1,¢. 0,0l (C.4)

The Hamiltonian, Eq. (C.1), can now be recast in the following form

H= %‘I’*M‘I’ +tr[a], (C.5)
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where
o Y
M = [ R T] . (C.6)

This is the first step towards obtaining the Bogoliubov transform. We are now look-
ing for a transformation that diagonalizes the Hamiltonian given by Eq. (C.5). Find-
ing a matrix that diagonalizes Eq. (C.5) is not necessarily hard. However the trans-
formation must furthermore make sure that the anti-commutation relations are sat-
isfied. To this end Bogoliubov and Valantin introduced the following linear trans-
formation .

c=Ad+B (d*) , (C.7)

where d and d' are defined in the same fashion as the c’s (see Eq. (C.4)) and they as
well satisfy the fermionic anti commutation relations. A and B are square matrices

of size n. Defining

_ d t_ [t 4T
“D_[(d*)T]’ qo_[d,d}, (C.8)
one obtains that
Y =T, (C9)
with
A
= B (C.10)
B* A*.

The Hamiltonian, Eq. (C.5) can now be written
H= L P'TPMTo + t C.11
=59 ¢ +tria]. (C11)

For the Hamiltonian to be diagonal after the transformation it is obvious that
T*MT must be a diagonal matrix. The anti-commutation relations can be expressed
through the following

Y ¥ =9 9" =1, (C.12)

where [ is the identity matrix. This implies that
TTH = 1. (C.13)

In conclusion, for a transformation to be a Bogoliubov transformation it must then
satisfy that T'MT and TT™ = I. What remains is to find T. Before we outline how
to find T, let us note the following: The matrix M is Hermitian and can always
be diagonalized by a unitary transformation. This does not, however, mean that
the same unitary transformation will necessarily diagonalize the Hamiltonian. In
general, the unitary transformation will not satisfy Eq. (C.10). This is because the
tields ¥ and ¢ are vectors of operators and not just complex numbers.

The matrix T is found by considering the eigenvalues and eigenvectors of M. We
denote by wj, the n:th eigenvalue and the corresponding eigenvector by v(w,). The
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transformation matrix is then given by [178]
T = [v(w1), v(w2),...,v(wn), v(—w1), V(—w2),...,0(—wy,)]]. (C.14)

Here w; > 0,1 = 1,2,...,n. This means the left half of T has eigenvectors corre-
sponding to the positive eigenvalues and the right half contains the eigenvectors
corresponding to the negative eigenvalues. Thus, we have here presented how to
obtain a correct Bogoliubov transformation which will in every case diagonalize the

Hamiltonian, Eq. C.1.
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Appendix D

Boundary conditions for Maxwell’s
equations

In this appendix we give a derivation of the boundary conditions for Maxwell’s
equations. We follow [71]. Maxwell’s equations can be cast on integral form by
means of the divergence theorem and Stokes’s theorem. Let V be a finite volume in
space and S the closed surface bounding it. We let da denote an area element on
the surface, and fi the unit normal pointing outward from the closed volume (see
Fig. D.1 (a)). By applying the divergence and Stokes’s theorems, the first and last of
Maxwell’s equations (Egs. (4.1) and (4.4)) are written

72 daD-f — 4r /v drp, (D.1)
f daB -4 = 0. (D.2)

S
(D.3)

Similarly we let C be a closed contour in space and S’ an open surface spanning the
contour. We let dl denote a line element on the contour, da an element of the area
S’ and t the unit normal at da pointing in the direction given by the right hand rule
in the sense of the direction of the integration along the contour C (see Fig. D.1 (b)).
Applying Stokes theorem to the two middle equations (Egs. (4.2) and (4.3)) we obtain

47 1dD] .
1 JB .

We will now use these equations to deduce the normal and tangential compo-
nents of the fields at the surface of two different media. The geometrical arrange-
ments are displayed in Fig. D.1. In Fig. D.1 (a), an infinitesimal pillbox encapsulates
part of the boundary between two media of different electromagnetic properties.
Now we apply Egs. (D.1) and (D.2) to the pillbox. As the sides of the pillbox are
shrunk to zero, § — 0, only the top and bottom contribute to the integral. If the top
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~
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Medium 1

FIGURE D.1: Geometries for determining the boundary conditions
of Maxwell’s equations at the interface of two media, medium 1 and
medium 2. The surface normal is given by 7. (a) A pillbox is con-
structed through the boundary between the two media. The surface
bounding the pillbox is S, the thickness is § and the top and bottom
surface areas are given by Aa. The area element of the surface area is
denoted by da. (b) A sheet is inserted through the boundary between
the media. The contour spanning the sheet is denoted by C. The unit
normal of the sheet is t and the area element is denoted by da. The
short side of the sheet which is perpendicular to the surface is 6 and
the long side, parallel to the surface is Al.

and bottom are parallel and with the area Aa, the left-hand side of the integrals read

%SdaD A= (D, — D) - AAa, (D.6)
]%SdaB-ﬁ: (By— B1) - filda (D7)
(D.8)

Assuming that the charge density p is singular on the interface, producing an ideal
surface charge density o, the the right-hand side of Eq. D.1 becomes

4n / dxp = 4noAa. (D.9)
1%
The first boundary conditions are hence given by

(D2 — Dl) - =470 (DlO)
(B, —By) A = 0. (D.11)

These equations tells us that the normal component of B is continuous over the in-
terface whereas the normal component of D has a discontinuity equal to 47t times
the surface charge density at a given point. We can now consider the same setting
for Egs. D.4 and D.5 by appllying them to the countour C, see Fig. D.1 (b). If the
short sides of the contour are negligible, 6 — 0, and the long sides are parallel to the
surface, then the left-hand side of Egs. D.4 and D.5 become

%H -dl = (i A) - (Es — Ey) Al (D.12)
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7£E -dl = (i x A) - (H, — Hy) AL (D.13)

The right hand side of Eq. D.5 vanishes because the area of the loop goes to zero as
the sides of the contour are shrunk to zero. If an ideal surface current density J flows
along the interface, the left-hand side of Eq. D.4 does not vanish. In this case the
left-hand side can be written as

47t 10D 47t
/3/ da [CH cat] =T el (D.14)

where the second term under the integral sign vanishes for the same reason as the
derivative of B with respect to time vanishes. The third and fourth boundary condi-
tions can then be written as

n x (Ez — El) = 0, (D15)

i x (Hy — Hy) = 47”1. (D.16)






155

Appendix E
Length gauge

We will here derive the Hamiltonian for system interacting with external electric
field in the length gauge. The assumption for the length gauge is such that the wave-
length of the external field is large compared to the Fermi wavelength. In this case,
we can neglect any position dependence of the vector potential or equivalently we
are considering a uniform external field.

A general Hamiltonian can, up to second order in momentum, be written as

Hy =Y aipripi;+ Y Bipri+ Ny+ Y Vi (E.1)
Lij Li I<r

where i € x,y,z, a;; = aj;, i and 7y are matrix coefficients and V) is a two-body
interaction potential. The index I runs from 1 to N. The wave function is a many-
body wave function written as ¢(ry, ..., ry,t), for N particles. Making the minimal
coupling substitution, p — p + £A(t), we can write the time-dependent Schrodinger
equation as

Cap(r,. .t
i ¢(r = It _ {szij (pz,i+§Az‘(t)> (PL]“"SAJ'(t))

Lij

+) B (pl,i + ;Ai(t)> +Ny+), an} ¢(ry, ..., 1N, 1), (E2)
i

I<r

This form is also known as the velocity gauge. The vector potential is restricted to
E(t) = — (1/c) 0:A(t). We now make the following gauge transformation [137]

$(ry, ..., 1N, b)) = I—Ile’%A(t)'rl‘I’(n, oo, N ). (E.3)

We now calculate
prie ALY = —%Ai(t)e—%f‘fﬁ)”v‘f +eiediOnip, ¥ (E4)
where we have used that p;; = —ih%. For the right-hand side of Eq. (E.2) we obtain

lh 847(1'1/ at' ,IN, t) _ lhgtnle_lﬁiA(t)r“{[(rll TN, t)
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;e a
- _ . i —igA)y 2
e El E- ¥+ inlle s 5 Y. (E.5)

This then implies that Eq. (E.2) can be written as

L oP(ry, ..., 1N, ¢
in h ot nrt) {Z“ifpl,ipl,j+2ﬁipz,i

Lij i

I<r 1

+N’y+EW1/+EZE-rl}¢(r1,...,rN,t). (E.6)

We have by the gauge transformation re-written the Schrodinger equation in terms
of the electric field rather than the vector potential. The external field (often due to
perturbations) is given by the new term

Hext =e) E-1. (E.7)
1

We use this to derive the conductivity tensor in the main text. As a further remark,
note that this can by generalized to Hamiltonians of any order in p.
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Appendix F

H-Theorem

In this appendix we justify why the local distribution function in Section 5 takes
the form of a modified Fermi-Dirac distribution. This is explained by the H-theorem
which was developed by Boltzmann using the second law of thermodynamic. Boltz-

mann defined a function

H= / dk flog f. (E1)

By taking the derivative of this function with respect to time and using the kinetic
equations under the integral sign one can conclude that

an

<0. 5
7 <0 (E2)

This quantity was later to be defined as the negative of the entropy and furthermore
proved that the entropy can never decrease with time. Equation F.2 furthermore tells
us that if the rate of change of the netropy is zero then the term inside the collision
integral necessarily has to be zero. This implies that the system is in a steady state
with a distribution function f° [134].

In the case of strong interactions, which is the regime where electronic hydrody-
namics is observed, there is another way of obtaining the distribution function. If the
interactions are very strong the system will relax to its equilibrium very fast. Because

of this, the relaxation time approximation is a good approximation [9]. Hence,

af . f-f
R (E.3)

where 7 is the relaxation time. Now we use the Boltzmann equation, as defined in
Eq. 5.7 and write

Of L pof fSf
P ko~ (F4)

Re-arranging the equation we have that

f=f- <af ai) (£5)
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By expanding the distribution function on the right hand side we obtain

fef'—1 —O+kaf0

2
" o Ho) (F.6)

In the case of strong interactions one take T — 0 which results in

f— f°. (E7)

Now we have shown that the distribution function relaxes to an equilibrium dis-
tribution function. We furthermore want to find an expression for the equilibrium
distribution function. The equilibrium distribution function is found by consider-
ing the collision integral for electron-electron interactions. The collision integral for

electron-electron interactions is one for two-particle problems and can be written

d3k’ d3k '
Ilf] = // Wik i q ficrafi—q(1 = fi) (1 = fio)
= fifi(1 = firq) 1 = fie—q)].  (EB)
The above equation tells us how two electrons with momentum k + q and k' —

q scatter into states with momentum k and k’ and as well the reversed process.

Wll(‘}ﬁ qk'+q 18 the scattering amplitude and for example be obtained by Fermi’s golden

rule and the T-matrix expansion as described in Eq. 3.78. According to Eq. (F.7)
f — f%as T — 0. From this it also follows that Z[f?] also tends to zero . Using that
Z[f°] = 0 implies that

firafio—q(1 = fi)(1 = fie) = ffie(1 = firg)(1 = fiw—q) = 0. (F9)

Let us introduce the following function

gk = log < }kf k> (F.10)

We can now reorganize Eq. (F.9) and take the logarithm of it. Using the above equa-
tion we can then write

8k + 8k = Sk+q T 8k'—q- (F.11)

Now momentum and energy conservation implies that

k+k = (k+q)(k'—q) (F12)
E(k) + E(k') =E(k+q) + E(k' — q). (F.13)

We can now make an anzats for gy in terms of conserved quantities. Hence we write

gk = &o + haq - kK + ﬁE(k), (E14)
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where B = 1/kpT. The conserved quantities are particle number (), momentum
(he - k) and energy, BE(k). The quantities i, a1 and B can be treated as Lagrange
multipliers for N (number of particles), k and E. Thus

xo = —Bu, 1 = Pu. (F.15)
This results in 1= fi
log < A ) = BE(k) + Bha - k — By (E.16)
This is equivalent to that
= (1 + eﬁ(E(k)Jrha-kfﬂ)) - (F.17)

We have hereby finished the proof and conclude that the equilibrium distribution
function is a Fermi-Dirac distribution that is modified by the addition of a drift ve-
locity.
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