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Summary  
Transition of cellular identity or phenotype holds great promise for the clinical applications, 

such as regenerative medicine and disease treatment. Studies have shown that cellular 

transitions can be induced by perturbation of a handful of key transcription factors (TFs). 

However, TF-based cellular transitions require transfer of genetic materials, which have raised 

safety concerns and limit their translation into clinical applications. Replacement of the direct 

manipulation of TFs with signalling perturbations offers a more controlled and safer way to 

accomplish such transitions. Nevertheless, the identification of optimal signalling perturbations 

relies on cell-based phenotypic or pathway-based screenings of chemical libraries, which is 

lengthy, costly and labour intensive. Therefore, a systematic guidance from the computational 

perspective to identify signalling perturbation for cellular transitions is desirable. 

  To date, several computational methods have been developed to predict signalling 

perturbations that are responsible for the observed gene expression dysregulations. Some of 

these methods infer external stimuli from perturbation databases whose perturbations result in 

similar transcriptional signatures as desired.  However, the databases in these methods mainly 

involve perturbation datasets for cancer cells, which are not suitable for the non-cancers study 

due to the extensive rewiring of signalling pathways in cancer cells. Another group of methods 

try to infer causal upstream signaling perturbations resulting in observed dysregulated genes 

directly or identify dysregulated pathways or sub-pathways by using some enrichment 

measures given the dysregulated genes.  These methods use gene expression as proxy for 

signalling activity due to the scarcity of protein activity measures. Therefore, it is unclear 

whether signalling activity can be reflected without considering the presence of post-

translational modifications. 

In this thesis, a wide range of perturbation datasets were manually collected and 

compiled to construct databases consisting solely of non-cancer cells. Computational methods 

that integrated the perturbation database with a network-based model were proposed. One 

method named SiPer was developed to identify chemical compounds specifically targeting 

given sets of TFs to induce the desired change of cellular state. The method was applied to 

chemical-based cellular conversions and recapitulated the compounds used in existing 

protocols, including conversions between cell types, functional cell subtypes and phenotypic 

states. Moreover, by applying this method, we successfully developed a novel and efficient 

protocol to drive the conversion of hepatic progenitors into functional human induced 
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hepatocytes. Another method we devised, termed ChemPert, was designed to predict chemical 

compounds to induce cellular transition from the given initial state to the given final state. 

ChemPert was applied to prioritize chemical compounds to revert pathologic phenotypes of 

various diseases, including age-related diseases and infectious diseases. A considerable number 

of state-of-the-art therapeutics alongside potentially novel candidates were predicted, underling 

the potential of this method for drug discovery. Lastly, in order to identify signalling pathways 

and proteins to induce cellular transitions for the organisms lacking substantial prior knowledge 

of perturbation, a de novo inference method was developed by combining signalling and gene 

regulatory networks. This method was applied to the analysis of salamander limb regeneration 

and the predicted signaling cues along regeneration process were substantially consistent with 

the literature.  

Taken together, these computational methods proposed in this thesis provide a 

systematic guidance to identify signalling perturbations for designing new experimental 

strategies for gene therapies and in vitro cell engineering for cell transplantation, as well as for 

designing therapeutic strategies for disease treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 3 

1 Introduction 
Cellular transition is triggered by a conserved set of inducing signals, transcriptional regulators 

and downstream effectors and happens across a broad range of physiological and pathological 

conditions. During development, cells differentiate from the committed progenitors to the 

terminally differentiated cells that carry out their specialized function. This differentiation 

occurs constantly to ensure stable tissue mass and function, which is a process of natural tissue 

generation or rejuvenation.  Cellular transition is also required to adapt the external influences 

such as natural fluctuations exerted by the niche and disturbance under pathologic conditions. 

One extreme example of this is the regeneration in some organisms, where the cells at the 

position of wound dedifferentiate into progenitors to form blastema after loss of tissue. Then, 

these cells undergo proliferation, patterning and differentiation to regenerate the lost tissue. 

Therefore, the induction of desired cellular transition is an appealing therapeutic strategy for 

the treatment of disease, including regenerative medicine and drug discovery. 

 Cellular transition is driven by different regulatory layers, including signalling, 

transcriptional and epigenetic layers. A milestone of cellular transition for cell engineering is 

that the somatic cells are converted into pluripotent stem cells by ectopic expression of four 

TFs (Takahashi and Yamanaka, 2006). After that, a breakthrough number of cellular 

conversions by manipulating TFs, including direct conversions between somatic cells are 

reported. However, these conversions that involve the transfer of genetic materials, have raised 

safety concerns, which limit their translation into therapeutic applications. Alternatively, the 

usage of chemical compounds acting on signalling network not only addresses these concerns, 

but also offers an easily controlled and effective strategy for cellular conversion. On the other 

hand, signalling proteins are normally the targeting points of drugs to induce the reversion of 

disease phenotype to its healthy counterpart. In regeneration, external fluctuation causing by 

injury stimulates sets of signalling pathways to trigger changes in the downstream gene 

regulatory network (GRN) in order to induce defined cellular decisions to regenerate or repair 

the target tissue. Therefore, identifying signalling perturbations that can induce cellular 

transitions holds great promise to design strategy for regenerative medicine and discover drugs 

for disease treatment efficiently. However, the discovery of signalling cues for cellular 

reprogramming or reversing disease phenotype mainly accomplished by experimental testing 

by trial and error, which requires a large amount of resource and time, and burdens by a low 

success rate. Over the years, a number of computational tools have been developed for 

identifying siganlling elements based on different concepts and principles, which provide 
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valuable and complementary guidance along with experimental investigation. Nevertheless, 

still some significant limitations exist in the developed methods and need to be addressed for 

being generally applicable. 

 The remainder of this chapter describes the current knowledge about cellular transitions, 

as well as reviews existing methods for the identification of signalling cues. Specifically, the 

types of cellular transitions and their relevant applications are introduced in Section 1.1. 

Followed by delineating the regulatory layers of cellular transitions in Section 1.2, Section 1.3 

provides a detailed review of current exiting methods to identify singalling perturbation and 

discusses their limitations.  

1.1 Categories and applications of cellular transitions 

In this thesis, the cellular transition is defined as the conversion of a cell from an initial cellular 

state to a desired target state. This ranges from cell (sub)type conversion, to cell phenotypic 

state changes, such as different functional or morphological states. Here, we broadly classify 

the cellular transitions into two categories: cell fate transitions and cell phenotypic state 

transitions, depending upon the different characteristics of initial and target states. 

Cell fate transitions also refer to cell (sub)type conversion, including differentiation, 

transdifferentiation and reprogramming, which focus on the changes in cellular identity. In 

1957, Conrad Waddington came up with the epigenetic landscape model, which intuitively 

represented the cellular differentiation as ball rolling down from a hill into valleys. The stem 

and progenitor cells descend along distinct differentiation routes toward more differentiated 

cells, and finally reach terminally specialized cells. While this epigenetic landscape model was 

used as explanation for cellular transitions and thought to be unidirectional for many years, 

studies on cellular plasticity later showed that cellular development process can be reversed 

and should be multidirectional. One breakthrough work is the direct cellular conversion from 

fibroblasts into myoblasts by forced ectopic expression of one transcription factor MYOD by 

Davis et al. in 1987. This study achieved the transdifferentiation that one differentiated cell 

type was directly converted to another without going through a pluripotent cellular state. 

Subsequent transdifferentiation studies further changed the perception of one-way cellular 

transitions, such as the direct cell type conversions from fibroblasts to neurons (Vierbuchen et 

al., 2010), cardiomyocytes (Ieda et al., 2010) and hepatocytes (Huang et al., 2011), as well as 

conversions between cell subtypes like T cells (Youngblood et al., 2017) and neurons (Okawa 

et al., 2018). Another remarkable study reprogrammed somatic cells into induced pluripotent 
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stem cells (iPSCs) by using four TFs, pioneered by Yamanaka et al. in 2006 (Takahashi and 

Yamanaka, 2006). After the induction of iPSCs, many protocols were developed to generate 

various cell types from iPSCs, such as neurons (Chambers et al., 2009; Dimos et al., 2008), 

adipocytes (Taura et al., 2009a), vascular cells (Taura et al., 2009b) and hepatocytes (Si-Tayeb 

et al., 2010). These findings open up a new avenue for therapeutic strategy in regenerative 

medicine.  
 
 
 

 
Figure 1. 1 Description of cell fate transition on Waddington landscape.  

Three types of cell fate transition can be distinguished from the Waddington landscape, 
including differentiation, reprogramming and transdifferentiation. Pluripotent cells can be 
differentiated to distinct terminally differentiated cells. Reversely, the totally differentiated 
somatic cells can also be converted to pluripotent cells, which is known as reprogramming. In 
addition, the somatic cells can switch directly between cell lineages, bypassing the pluripotent 
states. Figure taken from (Granados et al., 2020) 
 

The induction of desired cell fate transitions provides valuable resources for multiple 

clinical applications. First, the derivation of iPSCs sparks widespread enthusiasm to develop 

models for human disorders as a replacement of the animal models, due to nonnegligible 

physiological and genetic differences between human and animals (Avior et al., 2016). In 

addition, the own advantages of iPSCs: patient-specific primary cell lines, indefinite self-

renewal and high capacity of differentiation, allow them as suitable models for the study of a 

wide range of diseases. For example, the neurons derived from iPSCs of Alzheimer’s disease 

(AD) patient facilitated the exploration of cellular and molecular mechanisms underlying AD 
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with live human neurons (Chang et al., 2019). Furthermore, cell fate transition significantly 

promotes the development of regenerative medicine, aiming at replacing or impairing the 

damaged cells with regenerated cells to restore the normal function of cells or tissues.  There 

are mainly two different strategies for regenerative medicines: in vivo generation and ex vivo 

transplantation (Figure 1.2). The first strategy is to convert the resident cells within injured 

tissues into desired cell types in situ to impair the damaged tissues by external stimuli. A few 

of organisms, such as planarian flatworms, Xenopus tadpoles, zebrafish and urodele 

amphibians (salamanders and newts) are able to regenerate their tissues, whereas the 

regeneration ability is significantly attenuated in mammals. However, great efforts have been 

put on in vivo reprogramming for the treatment of disease or injury, such as the in vivo 

generation of hepatocytes to ameliorate liver fibrosis (Song et al., 2016) and conversion of 

astrocytes into neurons with potential to repair injured spinal cord (Su et al., 2014), garnering 

attention for the potential of tissue regeneration in mammals. The transplantation of cells or 

tissues follows the strategy of injecting healthy/modified cells into damaged tissues of patient 

to restore the functionality of cells and tissues (Sampogna et al., 2015). The transplantation of 

in vitro induced cells has been applied in clinics, such as the treatment of junctional 

epidermolysis bullosa (Hirsch et al., 2017), and primary immune deficiencies (Kuo and Kohn, 

2016).  

 
Figure 1. 2 Two strategies for regenerative medicine.  

An ex vivo strategy can generate the desired cells through in vitro reprogramming, and these 
cells are then expanded and transplanted into patients (green arrow). The in vivo strategy is to 
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generate desired cells by in vivo reprogramming while external stimuli are given, for example, 
oral administration or injection of small molecules for patients (pink arrow). Figure taken from 
(Kim et al., 2020). 
 
Cell phenotypic state transitions focus on the changes of cellular phenotypes under different 

conditions, while the cellular identity is unaffected. One representative example is transition 

between healthy and disease states. The induction of a disease can be considered as a transition 

between phenotypic states at the cellular level, since cellular identity might maintain, whereas 

signalling activity, epigenetic and metabolic states, gene expression and function can be 

compromised. Cell phenotypic state transition is also a strategy for cells to ensure the tissue 

maintenance. Especially, tissue-specific stem cells, such as hematopoietic stem cells (Bernitz 

et al., 2016; Takizawa et al., 2011), neural stem cells (Codega et al., 2014) and muscle stem 

cells (Cheung et al., 2012), convert between quiescent and active states to maintain the tissue 

homeostasis and repair tissues after injury. Specifically, stem cells in quiescent state remain 

out of the cell cycle while maintain the divide capacity and can reversibly convert to active 

state in which they re-enter the cell cycle and generate new differentiated cells in response to 

stimuli. Moreover, phenotypic state transition also occurs under different culture conditions. 

For example, mouse embryonic stem cells were refined from a prime state to a more plastic 

naïve state by adding two inhibitors (MEK and GSK3β inhibitor) in the culture medium (Ying 

et al., 2008). Compared to cell fate conversion, the characterization of cell phenotypic state 

conversion is more challenge due to the scarcity of efficient approaches to isolate and purify 

these cells. Fortunately, the development of single cell RNA-seq (scRNA-seq) technology 

opens up a new strategy to track the changes between different phenotypic state within one cell 

type in the transition process. Because scRNA-seq captures the heterogeneity of single cell in 

high-resolution views, eliminating confounding effects in traditional cell isolation.  

The interest of deriving these phenotypic conversions is multifaceted. For disease case, 

the cellular transition from the healthy state to the disease state triggers the dysfunction of cells. 

In contrast, reverting the disease state to the healthy counterpart can be used as an indication 

for disease treatment. In this sense, cellular phenotypic transitions are indicators to evaluate 

the effect of perturbation experiments on the cellular states. For example, it is very essential to 

evaluate the drug candidates in terms of efficacy and toxicity in the early stage of drug 

discovery. Therefore, comparing the initial and the resultant cellular state to examine the 

influences of chemical compounds significantly eases the burden of high-cost and low 

successful rate during drug development (Michelini et al., 2010).  On the other hand, the 

mechanism of drug action, as well as the general mechanism of cell biological processes can 
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also be learned by inducing cell phenotypic transitions. Therefore, the discovery of new drugs 

or druggable targets for a certain disease can be redefined as the identification of factors that 

can trigger the desired cell transitions. 

Taken together, the derivation of desired cellular transitions is of clinical importance, 

as it allows to derive desired cells and tissues for cell replacement therapies, or to revert disease 

phenotypes to their healthy counterparts.  

1.2 Regulators for cellular transitions 

Cellular transition is a complex and dynamic process modulating by multiple layers of 

regulators, including transcriptional factors, epigenetic modifications, metabolic processes and 

signalling pathways. In this section, we will discuss these regulators and introduce the reasons 

that we focus on signalling pathways for cellular transitions.  

1.2.1 Transcription factors play key roles in cellular transitions 

Conversion of cellular identity or phenotype has been shown to be induced by perturbation of 

a handful of key TFs. TFs cooperate to establish a transcriptional network close to the target 

cell type/state so that induce the desired cellular transition. The landmark study is the 

reprogramming of somatic cells into iPSCs by reintroducing fours pluripotency TFs (Takahashi 

and Yamanaka, 2006). In agreement, subsequent studies also use the same strategy to convert 

somatic cells into another lineage cells from the same or another embryonic germ layer. For 

example, fibroblasts originating from mesoderm have been converted into cardia cells in the 

same layer, neural cells from ectoderm, hepatic cells from endoderm by forced expression of 

lineage-specific TFs and pioneer factors (Figure 1.3). The discovery of key TFs normally relies 

on experimental testing of large sets of potential TFs exhaustively.  

Recently, a number of computational methods have been developed to identify the TFs 

inducing cellular conversions. Some of these methods rely on GRNs by considering different 

topological characteristics to identify the master regulators of the network. For example, 

CellNet compares the expression of genes in cell- or tissue-specific GRN between query and 

reference datasets, in order to infer the TFs that can bring the query arrive at GRN by 

topological charaterization (Cahan et al., 2014). Another method, Mogrify, predicts TFs that 

are not only differentially expressed between initial and target cell types but also regulate other 

differentially expressed genes in the cell type-specific network (Rackham et al., 2016).  In 

addition, some other methods identify TFs that are uniquely expressed in the target cell type 



 9 

without considering GRNs (D'Alessio et al., 2015). More recently, Okawa et al. propose 

another method, TransSyn, which enables the identification of TFs that determine the 

subpopulation identity by considering transcriptional synergy (Okawa et al., 2018).  

Despite the development of TF-based cellular transitions, most protocols are not 

appropriate for clinical translation due to safety concerns. The desired TFs are delivered into 

cells relying on the use of viral vectors and then the viral vectors are integrated into the genome 

of host cells. This raises high risk of tumour formation, insertional mutagenesis and other 

unexpected off-target effects (Ben-David and Benvenisty, 2011; Yamanaka, 2020). Some non-

invasive delivery strategies have been developed recently, such as Sendai virus (Miyamoto et 

al., 2018), single guide RNA (Chakraborty et al., 2014; Liu et al., 2018). However, the clinical 

application of these strategies is hindered by low efficiency (Haridhasapavalan et al., 2019). 

Alternatively, chemical compounds, including small molecules, cytokines and growth factors, 

have been explored and successfully induce cellular transitions. Details will be introduced in 

followed section. 

 
Figure 1. 3 Examples of cellular transitions induced by transcription factors.  

TFs can convert somatic cells into another lineage cells from the same or another embryonic 
germ layer. Figure taken from (Wang et al., 2021).  
 

1.2.2 Chemical compounds for cellular transitions 

Chemical compounds are often used to change the cell environment, so as to understand the 

cellular response to external stimuli, reproduce pathological conditions in vitro, or treat disease 

by reverting pathological phenotypes. Recently, using chemical compounds for cellular 
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conversion have made remarkable progress (Federation et al., 2014; Li and Ding, 2010; Xu et 

al., 2008), since chemical -based cellular transition is nonimmunogenic, easily synthesized, 

and cost-effective (Federation et al., 2014; Hu et al., 2015). More importantly, they avoid the 

manipulation of genetic materials and are more convenient and can be easily controlled by 

changing the combinations and concentrations. Therefore, they are not only used to generate 

desired cell types in vitro, but also used as drugs to induce endogenous regenerations in patients 

or revert disease phenotypes (Figure 1.2).   

 Chemical compounds induce cellular transitions mainly by acting on metabolic 

processes, epigenetic modifications and signalling pathways, and in turn modifying the 

transcriptional programmes (Figure 1.4). Specifically, metabolic modulation is important for 

cellular transition, as the conversion between cell fates/states along with metabolic switches 

due to the differences in metabolism between initial and desired cells. For example, chemical 

compounds inducing glycolysis and autophagic metabolisms are found to promote the course 

of reprogramming (Chen et al., 2011; Zhu et al., 2010). In addition, epigenetic modifications, 

including DNA methylation and histone modifications, such as methylation, acetylation and 

phosphorylation, contribute the low efficiency of cellular transitions. Therefore, chemical 

compounds overcoming these barriers can also improve the cellular transitions (Chen et al., 

2013; Esteban et al., 2010; Shi et al., 2008).   

More importantly, in the process of cellular transition, many signalling pathways are 

involved and play a major role. For example, the maintenance of the pluripotency and self-

renewal in pluripotent stem cells is coordinated by many signalling pathways and therefore 

chemical compounds targeting these signalling pathways derive the formation of iPSCs (Qin 

et al., 2017).  Moreover, to maintain homeostasis of tissues, multiple signalling pathways 

modulate tissue-specific stem cell transitions between quiescent and active states (Biteau et al., 

2011). During development, the generation of tissues and organs is also dedicated by the 

combination of signalling pathways over time (Basson, 2012). Under pathological conditions, 

the dysregulation of signalling pathways can trigger immune response, inflammation and other 

disease-related phenotypes. Due to the variety of signalling pathways, a wide range of chemical 

compounds targeting distinct signalling pathways have been identified to promote different 

kinds of cellular conversions. Chemical compound CHIR99021 acting on Wnt signalling is 

involved in different cellular conversion cocktails (Hou et al., 2013; Hu et al., 2015; Li et al., 

2011). Since epithelial-mesenchymal transition (EMT) is a roadblock during reprogramming 

and TGF-b signalling pathway induces (EMT), the inhibitors of TGF-b, such as SB431542, 
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Repsox and A83-01, have been widely used in various contexts (Boyer et al., 2006; Christman, 

2002; Mikkelsen et al., 2008).  More other chemical compounds targeting signalling pathways 

like FGF, Hedgehog, JAK-STAT, MAPK/ERK and so on, can be found in reviews (De et al., 

2017; Federation et al., 2014; Qin et al., 2017). Chemical compounds targeting signalling 

pathways are also widely used for disease treatment. For example, recent studies show that 

AMPK, SIRT1and mTOR signalling pathways are crucial for aging and drugs acting on them 

lead to new interventions for age-related diseases (Yu et al., 2021). Therefore, identification of 

optimal chemical compounds acting upon the desired signalling pathway to induce cellular 

transition gains increasing attention in the field of regenerative medicine and disease treatment.   

 To date, the traditional methods employed to identifying the optimal chemical 

compounds that control desired cellular transitions mainly rely on cell-based phenotypic or 

pathway-based screenings of chemical libraries (Lyssiotis et al., 2011).  Cell-based phenotypic 

screenings are high-throughput and focus on identifying compounds that induce desired 

phenotype by performing different assays and without considering the prior knowledge of the 

cellular transitions. Pathway-based screenings are undertaken within a small group of 

compounds with known mechanism of action and determine how they regulate specific 

pathways involved in the cellular transitions. However, the elucidation of the molecular 

mechanism of compounds is usually very complicated as they may have multiple, non-relevant 

targets. Moreover, the experimental identification of chemical is costly and time consuming. 

In this regard, a systematically guidance from computational perspective to identify chemical 

compounds or signalling targets to induce cellular transitions is desirable. Therefore, we 

proposed computational methods in this thesis to identify signalling perturbations to induce the 

cellular transitions. 
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Figure 1. 4 Three major mechanisms of chemical compounds for cellular transitions. 

Chemical compounds induce cellular transitions mainly by modulating metabolism, regulating 
epigenetic barriers and signalling pathways. Figure taken from (Qin et al., 2017).  

1.3 Existing methods for the identification of signalling 

perturbation 

Given the importance of signalling pathways in different biological processes, multiple 

computational methods have been developed to predict signalling perturbations that are 

responsible for the observed gene expression dysregulations, including signalling proteins, 

signalling pathways and chemical compounds. The algorithms of these methods can be broadly 

grouped into two classes, compendium-based inference and de novo prediction.  

 The compendium-based algorithms rely on pre-compiled gene expression profiles to 

infer the signalling perturbations whose gene expression signatures are similar with query 

samples. In 2006, Lamb et al. propose the first general compendium-based approach that 

connects chemical perturbations with cellular transcriptional responses (Lamb et al., 2006). In 

2017, Subramanian et al. present a second generation of perturbation signature compendium 

(including chemical and genetic perturbations), L1000, with more than 1000-fold scale up of 

the CMap across different cell lines (Subramanian et al., 2017). Later, this compendium is 

widely used as a resource for the development of different computational methods (Musa et al., 

2017).  SPEED is another compendium-based method that constructs a database including gene 

expression datasets with single pathway perturbation and identified signalling pathways that 

cause similar regulatory patterns as desired. In a similar manner, PROGENy also infers 

pathway activity from gene signatures in a wide range of perturbations focusing on cancer cell 

lines.  

 Another group of methods infer signalling perturbations using different algorithms 

without considering the prior knowledge. Some of de novo algorithms try to identify the 

dysregulated pathways by using the enrichment measures on the dysregulated genes between 

different samples directly (Sartor et al., 2009; Subramanian et al., 2005). On the other hand, 

some other methods predict the pathways not only consider the differentially expressed genes 

but also take the interaction and regulatory information embedded in the pathway topology into 

account (Dutta et al., 2012; Massa et al., 2010; Tarca et al., 2009).  These methods have been 

widely used to understand various diseases, especially cancers, as well as investigate the roles 

of signalling pathways in the course of development. Moreover, another group of de nove 
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predictions attempt to infer the causal upstream signaling perturbations resulting in the 

observed dysregulated genes by connecting signalling network with downstream de-regulated 

genes (Fakhry et al., 2016; Krämer et al., 2014). More recently, the development of scRNA-

seq technique allows researchers to dissect the cell-cell interactions through the intercellular 

signal transductions. Browaeys et al. propose a scRNA-seq based computational tool for 

identifying extracellular ligands that could induce observed gene expression changes in both 

healthy and disease states (Browaeys et al., 2020).  Jung et al. also develop an approach to 

predict signalling proteins which regulate the dysregulated inflammatory response by 

modelling intercellular communications in a hyperinflammatory condition (Jung et al., 2021).  

1.3.1 Limitations of existing methods 

In compendium-based methods, the databases mainly involve perturbation datasets for cancer 

cells. As we known, the signalling pathways and transcriptional logics in cancer cells are 

significantly different from those of non-cancer cells and hence the databases are not suitable 

for identifying chemical compounds for non-cancer cells. While the compendium-based 

methods have an advantage in making accurate predictions for chemical compounds present in 

the databases, they are limited to de novo prediction. In addition, current compendium-based 

methods only compare the similarity of gene signature without considering the initial cellular 

state. However, the downstream response and the affinities between chemical compounds and 

protein targets are also determined by the initial cellular states besides perturbations. Therefore, 

it is also essential to consider the initial cellular state while identifying signalling perturbations.  

Signal transduction involves many different kinds of interactions between proteins, 

such as phosphorylation and other post-translational modifications. Due to the scarcity of direct 

measurements of signalling activity, the methods of de novo predictions use gene expression 

as a proxy for protein activity. However, it is unclear that signalling activity can be reflected 

without considering the presence of post-translational modifications. Moreover, due to the 

extensive crosstalk in signalling pathways, circumventing the activation/inhibition of undesired 

genes is also essential. Even though some de novo prediction methods try to predict the 

singalling perturbations inducing the dysregulation of downstream genes, they do not attempt 

to ensure the predictions specifically acting on desired genes, while minimizing the off-target 

effects.   

In addition, the existing computational methods mainly aim at identifying signalling 

events either inducing diseases, especially cancer, or elucidating the mechanism of action for 
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drugs. No computational method is developed to identify signalling perturbations to induce cell 

reprogramming or transdifferentation.  

Therefore, it is desirable to develop more comprehensive computational methods that 

address the limitations of current methods to predict signalling perturbations.  
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2 Aims and scope of thesis 
The generation of desired cellular transition is of clinical interest, including drug discovery, 

disease modelling and regenerative medicine. Studies have shown that cellular transitions can 

be induced by ectopic expression of a small set of TFs. However, TF-based cellular transitions 

have raised safety concerns and therefore their translation into clinical applications is limited. 

Alternatively, the usage of chemical compounds to induce signalling perturbations not only 

addresses these concerns, but also offers an easily controlled and cost-effective strategy for cell 

transitions. The conventional approaches to select optimal chemical compounds rely on 

exhaustive screening of a large scale of compounds or require the prior knowledge about 

molecular mechanism of compounds, which are either inefficient and resource intensive, or not 

always available. Therefore, the development of computational methods to identify chemical 

compounds or signalling targets are required. Existing computational methods for signalling 

pathways have their own advantages and limitations in different aspects (Section 1.3). More 

comprehensive computational methods that addresses the limitations of existing methods, 

particularly the methods able to predict signalling determinants for cellular conversions, are 

desirable. In this thesis, three different integrative computational methods are proposed 

depending on the aim of corresponding study. 

2.1 Aims of the thesis 

Aim 1.  Develop a scRNA-seq based method to predict chemical compounds and 

corresponding signalling protein targets acting on specific sets of TFs to induce cellular 

conversions, including conversions between cell types, functional cell subtypes or distinct 

phenotypic states within a same cell type. This involves the construction of a database by 

manually collecting and compiling a large scale of perturbation datasets consisting solely of 

non-cancer cells. Since the aim of this method is to predict chemical compounds specifically 

targeting the desired set of TFs, the duration of perturbations in this database requires within 

six hours to ensure that the desired TFs are the initial response of perturbations and effected by 

the perturbation specifically. This database is integrated into a network-model using scRNA-

seq data to ensure the predictions are specific to the initial cellular state. The method will be 

validated by a set of benchmarking datasets and existing chemical-based protocols of cellular 

conversion. Moreover, the method will be applied to develop a protocol for the maturation of 

hepatocytes from hepatic progenitors, aiming at generating human induced hepatocytes that 
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resemble the functionality of primary hepatocytes and solve the problem of abnormal lipid 

metabolism in previous protocol. 

Aim 2. Develop an integrative computational method to predict chemical compounds and 

corresponding signalling proteins to induce cellular transition from the given initial state to the 

desired target state. The method will be applied to revert the non-cancer disease phenotypes to 

their healthy counterparts. This also requires the development of a database focusing on non-

cancer cells. However, since the aim of this method is to predict chemical compounds to induce 

the transition of two states, the database will be extended to any two cellular states before and 

after perturbation, rather than within six hours. The performance of this method will be 

compared with the results of using cancer perturbation databases as well as other existing 

methods. Finally, the method will be applied to different kinds of diseases, including age-

related diseases and infectious disease, verifying its general applicability of identifying drugs 

for disease treatment. 

Aim 3. Develop an integrative method that integrates signalling network and GRN to model 

the effect of signalling pathways and proteins on GRNs. The main application of this method 

is to identify signalling pathways and proteins that can induce salamander limb regeneration. 

Due to the lack of prior knowledge of gene regulatory network for axolotls, raw GRNs for 

salamander limb regeneration are required to developed by using time serious microarrary data. 

These GRNs will be combined with canonical signalling pathways to identify signalling cues 

involved in cellular transitions at different stages of salamander limb regeneration. 

2.2 Originality  

The proposed computational methods in this thesis integrate multiple resources, aiming at 

identifying signalling perturbations to induce cellular transitions for regenerative medicine and 

disease treatment. Previous approaches either use perturbation databases focusing on cancer 

cells or infer signalling transduction by using gene expression directly, limiting their suitability 

for the study of cellular transition for non-cancer cells and the predictive power. In this thesis, 

an important advancement is the development of manually curated, large-scale perturbation 

databases consisting solely of non-cancer cells, which provide valuable resources for the study 

of non-cancer signalling perturbation. The present methods first infer potential signalling 

proteins from the perturbation databases to narrow down the candidates, and then further 

predict the initial state-specific candidates by integrating the network model using gene 

expression of the initial cellular state.  This framework can be general and flexible to apply to 
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reverse disease phenotypes and induce cellular conversion, such as reprogramming, 

differentiation and transdifferentiation, in human, mouse and rat. To study the organism whose 

prior knowledge of perturbation is not widely available, another de novo prediction method is 

proposed in this thesis. This method integrates signalling and transcriptional regulatory 

networks to predict signalling pathways that induce the regeneration of salamander limb. In 

this method, we propose a model simulating the perturbations of signalling pathways that can 

induce the transitions between GRN states corresponding the initial and desired cellular states, 

which is conceptually different from the existing methods.  
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3 Materials and methods 
The details of materials and methods are presented in the Results section together with each 

manuscript. Here, the materials and methods for each manuscript is briefly summarized. 

In “A single cell-based computational platform for cell engineering using chemical 

compounds”, a computational method, SiPer, relying on scRNA-seq, is designed to identify 

chemical compounds and their corresponding signalling protein targets that can activate/inhibit 

specific sets of query TFs to induce cellular conversion. In this study, a non-cancer cell 

perturbation database with duration not larger than six hours and signalling network are 

constructed. The method first pre-selects a list of signalling protein candidates from the built-

in database. Subsequently, the candidates that are specific to the initial cellular state are further 

identified by integration of signalling network and scRNA-seq data using an algorithm that 

combines signalling entropy and probabilistic model. Finally, the chemical compounds 

targeting the predicted signalling proteins are identified. This method requires the set of desired 

TFs and scRNA-seq of the initial cellular state given by users as input. 

In “A database-driven computational method to identify chemical compounds reverting 

disease phenotype”, a computational method, ChemPert, is developed to predict chemical 

compounds to induce the cellular transition from the initial state to the target state. ChemPert 

is applied to revert the disease phenotypes to their healthy counterparts. Similar as SiPer, 

ChemPert also integrates a normal cell perturbation database and a network model, whereas 

the datasets in the database of ChemPert is much larger than SiPer. In addition, ChemPert uses 

enrichment analysis in the network model due to the usage of bulk RNA-seq. The algorithm of 

ChemPert is also composed of three major steps, 1) pre-selection of candidate signalling 

proteins from the perturbation database of transcriptional signatures, 2) network-based 

modelling to predict signalling proteins that are specific to the initial cellular state, 3) 

identification of chemical compounds which target the predicted signalling proteins.  

In “An integrative network model to predict signalling pathways for salamander limb 

regeneration”, a time series microarray dataset specific to connective tissue cells of salamander 

limb is generated.  This dataset is used to predict signalling pathways whose perturbation can 

induce the shift of GRN state and in turn induce the regeneration of salamander limb based on 

our integrative network method. Specifically, the method integrates two distinct models for the 

signalling and transcriptional regulatory layers. These two layers are connected by the interface 

TFs. The signal transduction and its effect on the interface TFs are mimicked by using a 



 19 

probabilistic model. The key interface TFs that determine the state of the GRN is identified by 

simulating the perturbations in silico on a Boolean network model. 
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4 Results 

4.1 Manuscript 1: A single cell-based computational platform for 

cell engineering using chemical compounds 

4.1.1 Preface 

Conversion of cellular identity or phenotype has been shown to be induced by perturbation of 

a handful of key TFs. Replacement of the direct manipulation of TFs with chemical compounds 

acting on signalling pathways offers a more controlled and safer way to accomplish such 

conversion without the transfer of genetic material, which holds great promise for regenerative 

medicine. Nevertheless, prioritizing chemical compounds that specifically target relevant TFs 

remains a challenge. Here, we develop a scRNA-seq based computational method that 

systematically predicts chemical compounds specifically targeting desired sets of TFs to induce 

cellular conversions. This integrates a compendium of 5591 transcriptomics data of normal cell 

perturbations with a network model. SiPer recapitulated the experimentally validated chemical 

compounds in diverse cellular conversion experiments. Moreover, by applying SiPer, we 

successfully developed a novel and efficient protocol to drive the conversion of hepatic 

progenitors into functional human induced hepatocytes. 

In this work, I developed the computational method and performed computational 

analysis and prediction. The experiment about the generation of hepatocytes was carried out 

by Dr. Bingqing Xie.  
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4.1.2 Manuscript 

A single cell-based computational platform for cell engineering using 

chemical compounds 

 
Menglin Zheng1,6, Bingqing Xie2,6, Satoshi Okawa1,3, Soon Yi Liew2, Hongkui Deng2,*, 

Antonio del Sol1,4,5,* 
1 Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, Esch-
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4 CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Bizkaia Technology Park, 801 Building, 

48160 Derio, Spain; 
5 IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain; 
6 These authors contribute equally: Menglin Zheng, Bingqing Xie; 
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Abstract 

Chemical-based engineering of functional cell populations by single-cell technologies holds 

great promise for safe and precise strategies for cell therapies. Nevertheless, development of 

chemical-based cell conversion protocols currently requires large-scale screening of chemical 

compounds, which is time- and labour intensive. In order to address this bottleneck, we develop 

a single-cell RNA-sequencing based platform (SiPer) to systematically identify chemical 

compounds specifically targeting desired sets of transcription factors to guide the engineering 

of specific cell populations. This platform integrates the first large compendium of chemical 

perturbations on non-cancer cells with a gene network model. We show that SiPer is generally 

applicable to diverse cell engineering examples, recapitulating known chemical compounds 

and their corresponding protein targets. Importantly, using chemical compounds predicted by 

SiPer, we develop a highly efficient protocol for the generation of functional human induced 

hepatocytes (hiHeps). These results demonstrate that SiPer provides a valuable resource 

to efficiently identify chemical compounds for single-cell technology-based cell engineering. 
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Introduction 

The generation of functionally specific cells by using cellular conversion protocols is of clinical 

interest, providing a valuable resource for cell transplantation and in-vivo cellular conversion 

as therapeutic strategies. However, several challenges need to be addressed for achieving 

optimal cell engineering, such as the accurate characterization of cell populations (including 

cell types, cell subtypes and phenotypic states) and the identification of cell conversion factors. 

Single‐cell RNA‐sequencing (scRNA‐seq) technologies allowing for the discrimination of 

different cell populations have made it possible to overcome these roadblocks to achieve more 

precise cell engineering. Due to the significant amount of scRNA‐seq data produced in the last 

decade, experimental researchers are increasingly interested in engineering cell populations 

identified by scRNA-seq(Francesconi et al., 2019; Liu et al., 2017). It has been observed that 

a small set of specific transcription factors (TFs) can be sufficient to induce cellular 

conversion(Morris and Daley, 2013). In order to facilitate a wide range of cell engineering 

experiments, a handful of computational frameworks have been developed to identify cellular 

conversion TFs based on bulk transcriptomics data(Cahan et al., 2014; D'Alessio et al., 2015; 

Rackham et al., 2016) and scRNA-seq data (Okawa et al., 2018). However, TF-based protocols 

that involve transfer of genetic material, have raised safety concerns, such as unwanted long‐

term expression of the delivered TFs and the possibility for insertional mutagenesis, which 

limits their translation into clinical applications(Cieślar-Pobuda et al., 2017). Alternatively, 

replacing TFs with non-integrative means(Rivetti di Val Cervo et al., 2021; Shi et al., 2017), 

for example, chemical compounds to drive signalling perturbations, not only addresses these 

concerns, but also offers an easily controlled and cost-effective strategy for cell 

engineering(Hou et al., 2013; Xu et al., 2015). However, chemical-induced cellular conversion 

protocols currently rely on exhaustive trial-and-error testing of a large scale of compounds, 

which is both inefficient and resource intensive. A systematic guidance is needed for 

facilitating compound-based cell engineering, especially the generation of functional cell 

subtypes or distinct phenotypic states of a same cell type, which is crucial for successful clinical 

application of engineered cells. 

Here, we present SiPer (SIgnalling proteins and chemical PERturbagens), a single-cell 

RNA-sequencing (scRNA-seq) based computational platform that identifies signalling proteins 

and chemical perturbagens (including small molecules, drugs and cytokines) for targeting 

specific sets of desired TFs to induce conversion of cell populations. Importantly, optimal 

perturbagens should be specific to initial cellular state and specifically target only desired sets 

of TFs to minimize the off-target effects(Federation et al., 2014; Strasen et al., 2018). Therefore, 
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SiPer integrates an initial cell-specific network model with a manually collected compendium 

of 5591 experimentally generated transcriptional signatures of normal cells within six hours 

before and after chemical perturbations. The collected compendium constitutes an important 

resource to infer the effect of chemical perturbations on downstream TFs, incorporating prior 

knowledge of distinct perturbations in a variety of cell types. Notably, this compendium 

consists solely of normal cell type perturbations, as disease cells, such as cancer cells, often 

exhibit significant differences in the signalling mechanisms compared to normal cells(Sharma 

and Petsalaki, 2019). As a result, SiPer is able to identify optimal perturbagens targeting user-

defined sets of TFs for cell engineering. Alternatively, SiPer can compute differentially 

expressed TFs (DETFs) between the initial and target cell populations and use them as query 

TFs for perturbagen prediction. 

We evaluated the predictive power of SiPer in 200 chemical perturbation datasets and 

showed that a considerable number of experimentally validated chemical compounds and their 

protein targets were accurately predicted. Furthermore, SiPer was applied to known chemical-

induced cell conversion examples, correctly identifying perturbagens and their corresponding 

protein targets. For example, SiPer was applied to phenotypic conversion of human embryonic 

stem cells (hESCs) from a lineage primed state to a more plastic naïve state. Besides two 

classical inhibitors (GSK3β and MEK inhibitor), additional specific chemical compounds, such 

as adenylyl cyclase activators, LCK/SRC inhibitors to maintain hESCs in a stable naïve state 

were also recapitulated by SiPer(Theunissen et al., 2014). The key factors, such as ROCK 

inhibitors and PDGFR inhibitors, were predicted by SiPer for the oligodendrocyte 

differentiation(Marques et al., 2016; Pedraza et al., 2014). Moreover, SiPer identified 

signalling molecules of PPARγ agonist for the conversion of brown adipocytes from human 

dermal fibroblasts (HDFs), which plays a critical role in adipogenesis for both white and brown 

adipocytes(Takeda et al., 2017). The glucocorticoid receptor agonist, phosphodiesterase 

inhibitor, and cyclooxygenase inhibitor were also predicted by SiPer to direct the 

differentiation of adipocytes from mesenchymal stem cells (MSCs)(Pittenger et al., 1999). 

SiPer is freely available as a web application at https://siper.uni.lu and can easily be applied to 

any cell system. 

Finally, we applied SiPer to drive the differentiation of hepatic progenitors into hiHeps. 

A previously well-characterized protocol comprised of a two-chemical cocktail based on the 

unspecified hepatocyte culture medium (H2C) (Xie et al., 2019). However, long-term cultured 

hiHeps in this protocol gradually presented excessive lipid accumulation, hindering its further 

development. To identify a new, fully defined formulation, SiPer was applied and 
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experimentally tested. Validation of SiPer predictions in a defined Williams’ E medium quickly 

and effectively resulted in a final chemical cocktail that was able to generate hiHeps that 

resembled primary hepatocytes (PHs), while successfully circumventing the excessive lipid 

accumulation in hiHeps as seen with H2C, allowing their potential use in future cell 

transplantation. 

 These results demonstrate that SiPer is a valuable resource for funnelling effort towards 

the establishment of high-quality chemical cellular conversion protocols, enabling the design 

of new experimental strategies for gene therapies and scRNA-seq-based cell engineering for 

disease modelling and cell transplantation.  

 

Results 

Development and evaluation of SiPer 

Perturbing a relatively small set of specific TFs is usually sufficient to induce desired changes 

in cellular identity/phenotype(Morris and Daley, 2013).  Herein, SiPer is designed to identify 

chemical perturbagens and their corresponding protein targets in the intracellular signalling 

network (signalling proteins) that can activate/inhibit any set of query TFs for engineering cell 

populations (Figure 4.1A). Query TFs can be known cell conversion TF cocktails provided by 

users. If query TFs are unknown, SiPer performs differential expression analysis between 

scRNA-seq data of initial and target cell populations and uses the DETFs as input (Figure 4.1A).  

Normal cell perturbation compendium (NCPC): The inference of exact signalling paths 

acting on specific TFs will require not only the gene expression (protein abundance) 

information, but also protein activity measures such as phosphorylation levels. However, 

phosphorylation data before and after cell perturbation is hardly available for a wide range of 

perturbagens. Therefore, in order to infer the relationship between signalling perturbations and 

TFs, we exhaustively collected 5591 transcriptional profiles in response to chemical 

perturbations within six hours across 134 different types of normal cells and tissues from three 

species, human, mouse and rat (Table S1). To ensure specificity between query TFs and 

signalling perturbations and minimize the off-target effects, only DETFs of datasets within six 

hours after perturbation were considered as initial transcriptional response as suggested by 

Lamb et al (2006) (Lamb et al., 2006). These profiles were derived from 2386 unique signalling 

perturbagens, which covered 2072 TFs in both activation (up) and inhibition (down) directions 

with no significant bias towards either of them (Figure 4.2A). Notably, unlike the previous 

databases of perturbation-based transcriptional signatures(Lamb et al., 2006; Schubert et al., 

2018; Subramanian et al., 2017), NCPC solely consists of transcriptomics data of normal 
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cells/tissues in order to exclude cancer cells, whose signalling pathways and transcriptional 

regulatory networks are known to exhibit significant rewiring from the normal 

counterparts(Sharma and Petsalaki, 2019). NCPC contains two parts, Perturb-reTFs, a 

compendium of response transcriptional signatures (i.e., DETFs) to each signalling 

perturbagen and Perturb-targets, a compendium of the protein targets of each signalling 

perturbagen (Figure 4.1B). Thus, instead of attempting to infer exact signalling paths that could 

reach a query set of TFs, SiPer finds signalling proteins in NCPC whose perturbation has been 

shown to result in the up/down-regulation of similar sets of TFs (See Methods and Figure 4.1C). 

Gene network modelling: The affinities of signalling proteins to chemical perturbations 

are often highly specific to the initial cellular state(Hodos et al., 2018; Strasen et al., 2018). In 

this regard, SiPer leverages scRNA-seq technologies that allow for characterization of 

heterogeneity of cell populations, which can aid in precise cell engineering. To prioritize 

signalling proteins that are specific to the initial cellular state, SiPer combines scRNA-seq data 

of the initial cell population and the prior knowledge network (PKN) (Methods and Figure 

4.1C), which consists of two layers, the upstream signalling networks and downstream TF-TF 

interactions. These two layers of networks were combined by interface TFs, which mediate the 

signal transduction from cytoplasm to the nucleus. This resulted in complete PKNs including 

6633 genes and 96137 interactions for human, and 6825 genes and 109789 interactions for 

mouse and rat (Table S2). Then, SiPer divides the final set of candidate signalling proteins into 

different functional groups based on Reactome signalling pathways. For each group of 

signalling proteins, SiPer identifies optimal perturbagens based on the similarity between their 

target proteins and the candidate signalling proteins (see Methods and Figure 4.1C). In addition, 

SiPer annotates the functional mechanism of perturbagens and automatically separates 

perturbagens into different groups based on their similarities in target proteins, which allows 

users to design an optimal combination of perturbagens targeting distinct functional groups. 

The performance of SiPer was optimized (Supplementary notes 3, 4) and assessed by 

the accuracy in identifying correct signalling proteins and perturbagens using 200 chemical 

perturbation datasets (see Methods and Table S3). Here, DETFs were considered as the 

transcriptional response to perturbagens and were used as query TFs. A considerable number 

of experimentally used perturbagens and corresponding protein targets were correctly 

identified (Figures 4.2B, C, Figures S4.1A, B). Importantly, when NCPC was replaced with a 

CMap compendium that includes perturbations in cancer cells (see Methods)(Subramanian et 

al., 2017), the performance of SiPer significantly decreased (Figures 4.2B, C, Figures S4.1A, 

B). To investigate the reason for this decreased performance, we identified 1956 perturbagens 
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by which both normal and cancer cell types were stimulated (Table S4). For each of these 

perturbagens, a hierarchical clustering analysis was performed based on DETFs to evaluate 

whether the normal/cancer cell types were clustered together. For each perturbagen, the 

fraction of cells correctly clustered to their respective class (i.e., normal or cancer) was 

significantly higher than mis-clustered ones (one-sided Wilcoxon test, P-value <2.22e-16) 

(Figures 4.2D). Indeed, the transcriptional responses of normal cells were distinct from cancer 

cell counterparts (Figures 4.2D, Table S4). This result indicates that it is essential to construct 

a normal cell-specific perturbation compendium, such as NCPC, for accurate prediction of 

signalling perturbagens for conversion between normal cell populations. Furthermore, we 

investigated the robustness of SiPer to different parameters of the algorithm. First, the number 

of cells in input scRNA-seq data did not significantly affect the accuracy of SiPer (Figures 

4.2E). In addition, the overall performance was maintained across datasets with numbers of 

query TFs less than 100 (Figures 4.2F). The decreased accuracy with a large number of query 

TFs is presumably because of the lack of specificity of target signalling proteins affecting a 

large number of downstream TFs. Moreover, we also demonstrated that SiPer was robust to 

the change in NCPC and in the PKN and did not show significant bias toward/against cell types 

in NCPC (Figures S4.1E). To evaluate whether prediction of SiPer is specific to query TFs, 

SiPer was run on the same number of randomly selected TFs. The performance dramatically 

decreased compared to the original performance, which implicates that the predicted signalling 

proteins are specific to the query TFs (Figures S4.1E).  

 

SiPer accurately predicts perturbagens for conversion of phenotypic states/cell subtypes  

SiPer was first applied to the conversion between different phenotypic states of the same cell 

type, where the conversion chemical cocktails are experimentally validated (Table 4.1 and 

Table S5). Predicted signalling proteins exhibited high specificity to the respective query TFs 

(Figure 4.2G) and allowed for the identification of perturbagens that target these proteins 

(Table 4.1). For the conversion of lineage primed embryonic stem cells (ESCs) to a more plastic 

naïve state in both human and mouse, SiPer was able to predict both perturbagens and 

signalling proteins for this conversion event given the conversion TFs NANOG, KLF2, 

TFCP2L1, NR5A2 and KLF4 for human (Takashima et al., 2014) and Esrrb, Nanog, Klf2, Klf4 

and Tfcp2l1 for mouse reported by previous studies (Dunn et al., 2014; Ivanova et al., 2006; 

Martello et al., 2012; Niwa et al., 2009; Ye et al., 2013). For instance, the two classical 

inhibitors (2i) CHIR99021 (GSK3b inhibitor) and PD0325901 (MEK inhibitor) or their 
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corresponding signalling protein targets(Ying et al., 2008; Zimmerlin et al., 2016) were 

correctly identified. In addition to these two inhibitors, SiPer predicted the receptor of LIF 

(LIFR) in both mouse ESCs (mESCs) and hESCs, which is an important cytokine required for 

sustaining ESCs self-renewal (Niwa et al., 1998). Furthermore, since the 2i is not sufficient to 

maintain a stable naïve state of hESCs (Zimmerlin et al., 2017), studies have reported additional 

chemical compounds for the maintenance of the ground state of naïve hESCs, such as 

forskolin(Park et al., 2018) and WH-4-023 (Theunissen et al., 2014), which were identified by 

SiPer as well. Moreover, Theunissen et al. (2014) have shown that activin A enhanced the 

efficiency of naïve hESCs conversion from the primed state (Theunissen et al., 2014). Although 

SiPer did not predict activin A directly, its target proteins ACVR2A, ACVR2B and BMPR2 

were identified. SiPer network visualization of the underlying putative signalling cascades also 

identified CTNNB1, the central effector of WNT signalling stimulated by 

CHIR99021(Zimmerlin et al., 2016). In addition, FOXO1 and SMAD2 that are essential for 

mediating the signal to the query TFs were also predicted (Figure 4.2H), consistent with their 

key role in maintaining pluripotency (Sakaki-Yumoto et al., 2013; Zhang et al., 2011). The 

presence of adipocyte differentiation genes, such as FOXO1 and STAT1, as key signalling 

effectors can also partially explain why the predicted signalling proteins showed relative high 

specificity to differentiation of MSCs into adipocytes (Figure 4.2G). Hematopoietic stem cells 

(HSCs) are functionally heterogeneous and we applied SiPer to identify key signalling proteins 

and perturbagens that return mouse active HSCs to a quiescent state to avoid HSC exhaustion 

with scRNA-seq data discriminating these two states (Kowalczyk et al., 2015). SiPer predicted 

a MEK inhibitor U0126 that has been reported to revert active HSCs to quiescence 

(Baumgartner et al., 2018). In addition, high expression of retinoic acid and low CDK4/6 levels 

have been shown to be crucial for the maintenance of HSC quiescence (Cabezas-Wallscheid et 

al., 2017; Fukushima et al., 2019; Matsumoto et al., 2011). SiPer identified retinoic acid 

receptor (RAR) agonists and CDK inhibitors and corresponding targets Cdk4 and Cdk6. SiPer 

was also applied to the differentiation of hair follicle stem cells (HFSCs) from telogen to 

anagen transition (Yang et al., 2017). SiPer identified inhibition of TGFβ1 and activation of 

TGFβ2 as well as their targets Tgfbr1 and Tgfbr2 with unknown effects, consistent with the 

previous finding that TGFβs plays distinct roles during hair follicle development (Foitzik et al., 

1999; Oshimori and Fuchs, 2012). Apart from the conversion between phenotypic states, we 

also applied SiPer to the conversion of cell subtypes. Okawa et al. (2018) identified a set of 

TFs that can convert human hindbrain neuroepithelial cells (hNES) to medial floor plate 

midbrain progenitors (hProgFPM), allowing for differentiating into dopaminergic neurons 
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rapidly(Okawa et al., 2018). We used these TFs as input for SiPer and predicted an HMG-CoA 

reductase inhibitor, GSK3 inhibitors as well as a Wnt/β-catenin inhibitor. These compounds 

have been shown as important factors for midbrain dopamine neuron differentiation (Castelo-

Branco et al., 2004; Chung et al., 2009; Rhim et al., 2015). In another example, using scRNA-

seq data of oligodendrocyte precursor cells (OPCs) and Myelin-forming oligodendrocytes 

(MFOLs) within oligodendrocytes (Marques et al., 2016), SiPer identified ROCK inhibitors 

that can promote the myelin formation from OPCs (Pedraza et al., 2014), and PDGFR inhibitors, 

whose target Pdgfra has been known as a marker of OPCs (Marques et al., 2016).  

 

SiPer accurately predicts known perturbagens involved in cell type conversion 

We further investigated the predictive power of SiPer in broad cell type conversions, including 

cell reprogramming and differentiation, for which experimentally validated chemical 

conversion cocktails are reported (Table 4.2 and Table S5). Specifically, given the conversion 

TFs LHX6, DLX5, FOXG1, ASCL1 and SOX2 for GABAergic neurons from human fibroblast 

reported by Colasante et al (2015) (Colasante et al., 2015), multiple essential chemical 

compounds and corresponding protein targets reported in previous study were captured by 

SiPer, including CHIR99021, Pifithrin-α, LDN193189 and forskolin (Dai et al., 2015).  

Moreover, a NOTCH-independent role of RBPJ in the neuronal specialization into GABAergic 

neurons has been reported, which was recapitulated by SiPer network visualization where 

RBPJ acts as a key regulator of the target TFs in the absence of NOTCH (Figure S4.1D) (Hori 

et al., 2008; Komine et al., 2011). Zhang et al. (2016) developed a chemical protocol to drive 

the generation of neural stem cell-like cells from mouse fibroblasts (Zhang et al., 2016a). Using 

Pou3f4, Sox2, Klf4, c-Myc, and Tcf3 as input TFs for SiPer (Han et al., 2012), we identified 

GSK3β inhibitors, RAR agonists and autography modulators as well as the receptor of basic 

fibroblast growth factor (Fgfr4), which were signalling pathways targeted by chemical 

compounds used by Zhang et al. (2016). Takeda et al. (2017) demonstrated that the chemical 

cocktails which contained a BMP inhibitor Dorsomorphin, an adenylyl cyclase activator 

forskolin and a PPARγ agonist Rosiglitazone could direct brown adipocytes conversion from 

HDFs (Takeda et al., 2017). Consistently, the protein targets of Dorsomorphin (FKBP1A and 

KDR), forskolin (ADRB2) and rosiglitazone (PPARG, RXRB, ADRA1A and ADRA1B) were 

all predicted by SiPer. For the induction of cardiomyocytes from mouse embryonic fibroblasts 

(MEFs), histone deacetylase inhibitors, MAPK/ERK inhibitors and RAR agonists, as well as 

the signalling protein targets of CHIR99021(Gsk3a and Gsk3b) and BayK 8644 (Htr2a, 

Adora2a and Adora2b) were predicted by SiPer (Fu et al., 2015; Park et al., 2015). Next, we 
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applied SiPer to identify perturbagens and key signalling proteins in the context of cellular 

differentiation (Table 4.2 and Table S5). Sun et al. (2007) and Gao et al. (2008) reported that 

nicotinamide in high glucose with or without retinoic acid can induce human MSC 

differentiation into pancreatic progenitors (Gao et al., 2008; Sun et al., 2007). SiPer identified 

the protein target PPARD for nicotinamide and chemical compound AHPN, which also acts as 

an RAR agonist. The chemical compound cocktails composed of 3-isobutyl-1-methylxanthine, 

indomethacin, dexamethasone and insulin have been shown to induce the adipogenic 

differentiation of human MSCs (Pittenger et al., 1999). The signalling protein targets of these 

four chemical compounds were predicted by SiPer, including ADORA1 and CFTR for 3-

isobutyl-1-methylxanthine, NR3C1 and NR3C2 for indomethacin, IGF1R for insulin and 

PTGS1 for dexamethasone. In agreement with this, a glucocorticoid receptor agonist 

dexamethasone and a COX inhibitor DUP-697 were identified as perturbagens. Besides the 

predicted proteins, SiPer network visualization further identified several pro-adipogenic genes, 

such as CTNNB1 (Chen et al., 2020), RAC1 (Kunitomi et al., 2020), PPP1CB (Cho et al., 2015) 

and CREB1 (Zhang et al., 2004) (Figure S4.1E), indicating that they might regulate the 

differentiation TFs in a coordinated fashion. 

In summary, using the set of experimentally validated conversion TFs or DETFs as 

input, SiPer was able to identify a considerable amount of experimentally validated 

perturbagens and corresponding target signalling proteins in the wide range of cell engineering 

cases (Table S5). This result demonstrates that the current challenge of replacing TFs with 

chemical compounds in cellular conversion protocols, especially conversions between 

phenotypic states and cell subtypes, could be systematically addressed by SiPer, potentially 

opening up new therapeutic strategies.  

 
Experimental validation of predicted perturbagens for hepatic maturation 

Having evaluated the predictive abilities of SiPer, we applied SiPer to cellular conversion from 

hepatic progenitors to functional hepatocytes. Lineage reprogramming is a direct method of 

generating functional cells in vitro, however, using this method to generate cells with functional 

maturity similar to their bona fide counterparts remains challenging. To this end, by mimicking 

the natural tissue regeneration route, we established a two-step lineage reprogramming strategy 

to generate functional hiHeps (Xie et al., 2019): human fibroblasts were first reprogrammed 

into hepatic progenitors and then, in a second step, induced into functionally mature 

hepatocytes that resemble primary hepatocytes. In the second step, a two-chemical combination 

of forskolin and SB431542 (2C) was identified to be crucial to inducing, capturing and 
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maintaining the functional state of hiHeps. However, in the established protocol, hiHeps 

cultured in unspecified hepatocyte culture medium based 2C (H2C) long-term begin to 

gradually show excessive accumulation of lipid droplets (Figure 4.3A). To overcome this, we 

tested other basal media and found that hiHeps cultured in 2C formulated with the well-defined 

and widely used Williams’ E medium (W2C) does not exhibit abnormal lipid metabolism 

(Figure 4.3A). However, W2C-cultured hiHeps are functionally immature compared to 

primary hepatocytes (Figure 4.3B). Thus, we applied SiPer to predict additional perturbagens 

that may activate key hepatic transcription factors and enhance functional maturation of hiHeps 

from hepatic progenitors in the Williams’ E medium. 

From a list of key TFs associated with functional maturity in PHs, a set of eight 

differentially expressed TFs in PHs compared to hepatic progenitors (log2 fold change > 4) 

were selected as query TFs for SiPer analysis (Figure 4.3C). A fraction of cell population with 

hepatic progenitor markers, denoted as human hepatic progenitor-like cells (hHPLCs) (Xie et 

al., 2019), was identified by scRNA-seq during the first step of the engineering protocol and 

this data was used for the SiPer analysis. Notably, the predicted candidates included an 

adenylyl cyclase activator and a TGFβ inhibitor, which are the two pathways targeted in our 

2C maturation medium by forskolin and SB431542 respectively. Apart from forskolin and 

SB431542, additional thirteen chemical compounds of ten different functional mechanism 

groups were identified (Table S6).  

We performed “W2C+1” test of the thirteen candidates to evaluate their effect on 

hiHeps maturation. qPCR results showed that seven candidates targeting five pathways: 

hydrocortisone and dexamethasone (glucocorticoid activators), Bio (a GSK3 inhibitor), 

progesterone (a progesterone receptor agonist), Trichostatin A (TSA) and valproic acid (VPA) 

(HDAC inhibitors), and U0126 (a MEK inhibitor) could upregulate the expression of hepatic 

TFs and functional genes compared to W2C (Figure 4.3D). The combined effect of adding the 

five compounds targeting five different pathways (hydrocortisone, progesterone, Bio, U0126 

and TSA) to W2C further enhanced expression of key hepatic genes (Figure S4.2A). To find 

the essential combination of the seven compounds, omitting each factor determined forskolin, 

SB431542 and hydrocortisone to be indispensable for hepatic functional gene expression 

(Figure S4.2B). Thus, hiHeps cultured in W2C+hydrocortisone (W3C) were further evaluated 

(Figure 4.3E). 

Morphological examination revealed that hydrocortisone containing W3C cultured 

cells showed typical hepatocyte morphology (Figure 4.3F), without presenting signs of 

abnormal lipid metabolism (Figure 4.3G). Global hierarchical clustering revealed that W3C-
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cultured hiHeps were clustered closely with H2C-cultured hiHeps and PHs (Figure 4.3H). 

Moreover, the expression levels of hepatic TFs and key hepatic functional genes were more 

similar between W3C-cultured hiHeps and PHs (Figure 4.3I) than between W2C-cultured 

hiHeps and PHs, which was further confirmed by qPCR analysis (Figure 4.3J). In addition, the 

expression levels of the query TFs along with other key hepatic TFs were also upregulated 

(Figure S4.2C). Importantly, W3C supported long-term culture of hiHeps up to at least 28 days 

with stably maintained albumin secretion at levels similar to PHs (Figure 4.3K), good 

hepatocyte morphology and cell survival, whereas W2C-cultured hiHeps showed low albumin 

secretion with gradual cell death, and H2C-cultured hiHeps showed excessive lipid 

accumulation (Figure S4.2D). In addition, W3C supported glycogen synthesis and lipoprotein 

uptake of hiHeps (Figure 4.3L) and drug-metabolizing activity of CYP3A4 and CYP1A2 - key 

hepatocyte functions - to similar levels to that of PHs (Figure 4.3M). Collectively, the data 

showed that SiPer effectively identified perturbagens to induce hiHeps maturation in a 

Williams’ E medium. Importantly, the new formulation was identified through a very 

simplified, straightforward experimental process due to the integration of SiPer in the workflow.  

 
Discussion 

The derivation of functionally specific cell populations is highly valuable in disease modelling, 

drug discovery and regenerative medicine (Shi et al., 2017). However, the clinical application 

of engineered cell populations via integrative strategies (e.g., delivery of conversion TFs by 

integrating retroviral or lentiviral vectors) is limited by the safety and ethical concerns 

(Hockemeyer and Jaenisch, 2016; Shi et al., 2017; Valenti et al., 2019). It is more desirable to 

perturb target TFs by less invasive means, such as chemical compounds. However, since 

downstream target TFs of chemical compounds for each cell population are largely unknown, 

the establishment of chemical-induced protocols for engineering specific cell population 

remains a challenge. Indeed, bulk RNA-seq data blurs the heterogeneity and asynchrony of cell 

populations, which hinders the efficiency and precision of cellular conversion, especially for 

highly similar cell populations at the transcriptional level. A systematic guidance taking 

advantage of scRNA-seq data can narrow down the scope of candidate chemical compounds 

and significantly improve the efficiency of experimental processes. Thus, in this study, we 

developed SiPer, a scRNA-seq based computational platform that predicts perturbagens 

specifically targeting sets of TFs, either provided by the user or derived from differential 

expression analysis, to direct desired cell population conversion. Our systematic assessment 

corroborated that SiPer is accurate and robust in identifying desired perturbagens and 
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corresponding protein targets in chemical perturbation benchmarking datasets. The high 

accuracy of SiPer is attributed to the pre-compiled transcriptome signature of perturbation 

compendium (NCPC). NCPC enables SiPer to select candidate signalling proteins based on 

prior knowledge, circumventing the requirement of protein activity measures, which are not 

always available for a wide range of perturbagens. Notably, NCPC is the first large-scale 

perturbation compendium consisting solely of normal cells, which provides an important 

resource to learn signalling perturbations of normal cell types. Furthermore, use of scRNA-seq 

data allows SiPer to be applied to any novel cell populations identified by scRNA-seq. Indeed, 

many known signalling proteins and chemical compounds for conversion between cell 

populations with minor transcriptional differences, such as different cellular phenotypic states 

and cell subtypes, were correctly identified by SiPer. We also applied SiPer to various kinds of 

cell type conversion examples, including reprogramming and differentiation, which accurately 

recapitulated experimentally validated perturbagens and corresponding protein targets. 

 Moreover, we demonstrated the capability of SiPer with experimental validation. A 

recently reported protocol (H2C) has enabled the successful generation of hiHeps (Xie et al., 

2019). However, this protocol employs an unspecified culture medium, and long term cultured 

hiHeps in this condition showed excessive lipid accumulation, which hinders its use for 

practical applications, including drug screening and cell transplantation. To this end, the 

application of SiPer using scRNA-seq data of hHPLCs successfully predicted useful 

perturbagens, facilitating the formulation of a new maturation medium to generate functional 

hiHeps from hepatic progenitors in the defined Williams’ E medium. The resulting new 

medium formulation, comprising of rationally guided additives in a fully specified basal 

medium that were identified after only two rounds of qPCR assays, is able to induce functional 

hiHeps that are similar to PHs without abnormal lipid accumulation (Figures 4.3D-K). 

Importantly, hydrocortisone predicted by SiPer was found to be crucial for hepatic progenitor 

maturation. As a known additive in the mainly unspecified hepatocyte culture medium (HCM), 

hydrocortisone could be the key component contributing to the improved maturation efficiency 

of the previously established HCM based 2C over Williams’ E based 2C, verifying the 

predictive power of SiPer. Notably, integrating SiPer predictions into the workflow 

dramatically simplified the experimental design, ultimately resulting in a straightforward, 

streamlined experimental process.  

In summary, SiPer constitutes a valuable computational platform to facilitate the design 

of efficient strategies for scRNA-seq based cell engineering using chemical compounds, which 
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holds great promise for both basic cell research and regenerative medicine. Users can easily 

apply SiPer to any cellular system by accessing the web interface.  

 
Material and Methods 

Construction of normal cell perturbation compendium 

Collection and compilation of transcriptome profiles (Perturb-reTFs) Transcriptome profiles 

(bulk RNA-seq and scRNA-seq) of signalling perturbations across diverse non-cancer cells and 

tissues in human, mouse and rat were collected from databases Gene Expression Omnibus 

(GEO) (Barrett et al., 2013), ArrayExpress (Kolesnikov et al., 2015) and LINCS L1000 (only 

non-cancer cell lines) (Subramanian et al., 2017) (Table S1). Specifically, the keywords 

commonly used in perturbation studies, such as ‘time series’, ‘response’, ‘treat’, ‘perturb’, 

‘presence’ and ‘effect’, were used to search for the datasets in GEO and ArrayExpress. To 

minimize the off-target effects of signalling perturbations, we only considered datasets where 

gene expression profiling was conducted within six hours after perturbation, which are 

considered as initial transcriptional response as suggested by Lamb et al (2006) (Lamb et al., 

2006). Identification of DETFs for each dataset was performed as the following procedure. If 

available, the original submitter-supplied processed data from GEO and ArrayExpress were 

used for further analysis. Otherwise, the pre-processing including background correction and 

normalization for bulk RNA-seq was performed with R package limma (v3.38.3) (Ritchie et 

al., 2015). For the datasets from LINCS L1000, quantile-normalized gene expression profiles 

were used. Differential expression analysis for bulk RNA-seq datasets was carried out by using 

R package limma. The genes with Benjamini-Hochberg (BH) adjusted p-value<0.05 and 

absolute fold change >1.5 were considered as differentially expressed genes (DEGs) for the 

datasets with at least three replicates. When the replicates were less than three, only the fold 

change criterion was used. As for scRNA-seq datasets, pre-processing including genes and 

cells filtering was performed as described in original studies (Table S3). The DEGs for scRNA-

seq were identified by using Wilcoxon Rank Sum test in R package Seurat (v3.2.0) (Stuart et 

al., 2019) with BH adjusted p-value<0.05. DETFs were identified from DEGs based on TF 

database AnimalTFDB 2.0 (http://bioinfo.life.hust.edu.cn/AnimalTFDB2/), including TFs, 

transcription co-factors and chromatin remodelling factors (Zhang et al., 2015). The expression 

levels of DETFs were booleanized according to their up-/down-regulation comparing to 

unperturbed control samples (up-regulation=1, down-relugation=-1). In addition, mouse and 

rat gene symbols were converted into human homologous gene symbols with R package 
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Biomart (Durinck et al., 2009).  This compendium contained a list of perturbagens and their 

corresponding response TFs with Boolean value (-1 and 1) and was denoted as Perturb-reTFs.  

Identification of signalling protein targets of perturbagens (Perturb-targets) The direct 

signalling protein targets of perturbagens were collected from database DrugBank 

(www.drugbank.ca) (Wishart et al., 2018), Drug Repurposing Hub 

(www.broadinstitute.org/repurposing) (Corsello et al., 2017) and STITCH v5.0 

(http://stitch.embl.de) (Szklarczyk et al., 2016). For STITCH, we only kept the protein targets 

with experiment and database evidence and confidence >0.4. The targets of ligands were 

identified from manually curated ligand-receptor pairs from Ramilowski et al (Ramilowski et 

al., 2015). The effect (mode of action) of perturbagens was treated as unknown if two databases 

reported contradictory effects (e.g.one database reported inhibition, another reported activation) 

or all databases reported unknown. Otherwise, we kept the effect as inhibition or activation if 

at least one database reported so. The effects of activation, inhibition and unknown were 

assigned with values 1, -1 and 2 respectively. This collection of perturbagens and their direct 

protein targets was denoted as Perturb-targets.  

 
Construction of prior knowledge network 

The PKN consists of two layers, the upstream signalling interactomes and downstream TF-TF 

interactions. These two layers of networks were integrated by interface TFs, which mediate the 

signal transduction from cytoplasm to the nucleus. The  signalling interactomes were 

constructed by integrating ReactomeFI (Wu et al., 2010) with Omnipath (Türei et al., 2016)  

databases. The TFs that have no outgoing edge in the signalling network and whose upstream 

are signalling proteins were defined as interface TFs. These interface TFs connect the upstream 

signalling interactomes to TF-TF interactions which were manually curated interactions among 

TFs from MetaCore database from Clarivate Analytics (Supplementary Table 2). In our study, 

the TFs that have direct interactions with interface TFs were defined as first layer TFs (denoted 

as 1stTFs). If the query TFs were not located in first layer (non-1stTFs), we identified the 1stTF 

that can specifically target non-1stTFs as proxy of non-1stTFs (details see Supplementary Note 

1).  

 
Collection and pre-processing of benchmarking datasets 

Each benchmarking dataset consists of the following three data sources, 1) bulk or single cell 

transcriptome profiles before and after single chemical perturbation to identify DETFs, 2) 

scRNA-seq of initial cellular state and 3) a perturbagen with defined target proteins used for 
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the data in 1). The identification of DETFs for all benchmarking datasets as query TFs is same 

as the compilation of transcriptome profiles in NCPC as described above. To identify 

corresponding scRNA-seq of initial cellular state perturbation datasets profiled by bulk RNA-

seq, we collected scRNA-seq datasets matching the initial cellular state of bulk perturbation 

datasets and use these scRNA-seq-bulk-DETF pairs as validation datasets. To ensure that the 

scRNA-seq expression profile resembles the matching bulk RNA-seq expression profile, the 

Spearman correlation between bulk RNA-seq of initial cellular state and all collected scRNA-

seq datasets was calculated (Supplementary Note 2). Then bulk perturbation datasets whose 

initial cellular state showed the highest correlation with matching scRNA-seq were maintained 

as validation datasets, which resulted in 200 benchmarking datasets (Table S3).   

 
Identification of candidates of signalling proteins from NCPC 

SiPer first selects candidates of signalling proteins from NCPC based on a set of query TFs 

with the expression direction information (i.e., up- or down- regulation). The query TFs can be 

obtained by performing differential expression analysis with SiPer given the scRNA-seq data 

of initial and target cell populations or provided by user directly. Notably, the identification of 

DETFs as input is the same as the description in the above section (Construction of normal cell 

perturbation compendium) and we only consider up to top 100 DETFs based on the absolute 

fold-change to ensure the accuracy of SiPer (Figure 4.2D). Given the set of query TFs, SiPer 

calculates the similarity between query and each reference in Perturb-reTFs of NCPC by a 

modified Jaccard similarity coefficient defined as: 

𝐽(𝑄, 𝑅) =
∑ 𝐼(𝑄! , 𝑅!)
|#∩%|
!&'
|𝑄 ∪ 𝑅|  

with indicator function: 

𝐼(𝑄! , 𝑅!) = , 1, 𝑖𝑓𝑄! ∗ 𝑅! = 1
0, 𝑖𝑓𝑄! ∗ 𝑅! = −1							 

where 𝑄 and 𝑅 are query TFs and reference of response TFs in Perturb-reTFs respectively. We 

modified the Jaccard similarity coefficient by adding an indicator function that assigns a value 

to the common TFs based on whether their effects are consistent. If the common TFs have the 

same effect (both inhibition/activation), 1 is assigned, and 0 otherwise. This modified Jaccard 

similarity coefficient ensures SiPer to consider the number as well as the effects of common 

TFs between the query and reference. Then perturbagens in Perturb-reTFs are ranked in 

descending order based on their modified Jaccard similarity coefficient. In addition, the z-score 

measuring the number of standard deviations from the mean modified Jaccard similarity 
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coefficient across all references in Perturb-reTFs is calculated for each perturbagen. The 

perturbagens with z-score >2 are selected for the further analysis. The details of the parameter 

optimization and selection are described in Supplementary Note 3. Next, the signalling protein 

targets of each selected perturbagen are retrieved from the Perturb-targets of NCPC and ordered 

by their frequencies. The top 40% of signalling proteins are considered as candidate signalling 

proteins (Supplementary Note 3). Furthermore, the “activation” sign is assigned to candidate 

signalling proteins when more activation effects are reported in NCPC than inhibition effects 

and vice versa. The “unknown” effect is assigned if all reported effects are unknown. 

 

Prediction of signalling proteins with network model 

Candidate signalling proteins identified from NCPC are further filtered to predict the final set 

of signalling proteins by taking into account the gene expression state of starting cells and PKN 

among signalling proteins and TFs. The algorithm consists of two major steps: 1) estimation 

of efficiency of a signalling protein to transmit the signal to a downstream TF, and 2) 

identification of the most efficient signalling proteins specifically targeting a query set of TFs. 

In step 1), the efficiency is estimated by two measurements, reachability and specificity as 

described below. 

Reachability scRNA-seq data is able to measure the gene expression heterogeneity 

among individual cells within the starting cell population. We assume that two genes that are 

directly connected in the PKN and exhibit similar expression patterns at high expression levels 

across all single cells have higher potential to transmit the signal between them. In another 

word, the strength of interaction between two signalling proteins is proportional to the dot 

product of their expression levels, i.e., 

𝑤!(~𝐸𝑖 ∙ 𝐸𝑗 

where 𝐸𝑖 and 𝐸𝑗 are expression vectors of two genes across cells in scRNA-seq data, 𝑤!( is the 

interaction strength between protein i and j. Since the distribution of  𝑤!( is heavily skewed, a 

log transformation is performed on 𝑤!( to make its distribution relatively symmetrical, 

𝑙𝑜𝑔𝑤!( = 𝑙𝑜𝑔2(𝑤!( + 1) 

Then the distribution is normalized by the maximum value as, 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑤!( =
𝑙𝑜𝑔𝑤!(

𝑚𝑎𝑥(𝑙𝑜𝑔𝑊) 

Once the interactions strengths (i.e. edge weights) are assigned to the network, the weighted 

shortest path for each pair of signalling protein and downstream TF is identified using 
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Dijkstra’s algorithms implemented in R package igraph. For this computation, the inverse of 

edge weight is used as the distance measure between two proteins. The reachability score of 

each shortest path is then defined as, 

𝑅)→+ = 𝛱,∈).!→#𝐼𝑛𝑣𝑒𝑟𝑠𝑒(𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑤,) 

where 𝑠,	𝑡 represent a signalling protein and a TF respectively, 𝑒 is an edge in the shortest path 

from 𝑠 to	𝑡. The reachability score measures to what extent the TF 𝑡 can receive the signal from 

signalling protein 𝑠 via shortest path 𝑠𝑝)→+ . 

Specificity We introduce another measure contributing to the efficiency of signal transduction, 

specificity, based on the concept of signalling entropy. It states that if a node in a shortest path 

interacts with all its neighbours with an equal strength, then this node has an equal probability 

of transmitting the signal to all the neighbours. In this scenario, this node has the maximum 

uncertainty as to whether it transmits the signal through the shortest path. The probability of 

signal being transduced from signalling protein 𝑖 to 𝑗 is defined as  

𝑝!( =
𝑤!(

∑ 𝑤!//∈0(!)
		 

where 𝑤!( is the interaction strength between 𝑖 and 𝑗, 𝑁(𝑖) is all neighbours of protein 𝑖. The 

uncertainty of signal transmission from a node via the shortest path is measured by signalling 

entropy, 

𝑆! = − O 𝑝!(𝑙𝑜𝑔𝑝!(
(∈0(!)

 

To avoid the influence of the number of neighbours, the entropy is normalized by the maximum 

entropy, 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑆! =
𝑆!

max	 𝑆 

where the max 𝑆 is assumed when all neighbours have an equal probability, i.e., when the 

signalling entropy is –∑ '
3
𝑙𝑜𝑔 '

3
3
(&' = 𝑙𝑜𝑔𝑛	, where 𝑛 is the number of neighbours for 𝑖. The 

entropy of a shortest path from a signalling protein to a certain TF can be computed by 

𝑆)→+ = O 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑆3
3∈).!→#

 

 

where 𝑛 is proteins in the shortest path from 𝑠 to	𝑡. The smaller the value of entropy 𝑆)→+, the 

more specific the signal transmitting from 𝑠 to	𝑡. The specificity is defined as the exponential 

inverse of 𝑆)→+,  

𝑟𝑒𝑣𝑒𝑟𝑡𝑒𝑑	𝑆)→+ = 1/𝑒𝑥𝑝	(𝑆)→+) 
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Efficiency Based on the reachability and specificity described above, the efficiency (EF) of 

signal transition from a signalling protein 𝑠 to TF 𝑡 is computed by, 

𝐸𝐹)→+ = 𝑅)→+ ∗ 𝑟𝑒𝑣𝑒𝑟𝑡𝑒𝑑	𝑆)→+ 

In addition, SiPer aims at identifying the signalling proteins that have the maximum effect on 

a specific set of TFs, while minimizing the effect on non-target TFs. To this end, we calculate 

the efficiency score between a candidate signalling protein to every 1stTFs. This set of 

efficiency scores is then normalized by the sum of all efficiency scores. In an ideal case, a 

signalling protein targets only on the specific query set of TFs but no other TFs, i.e., the ideal 

efficiency score vector has a non-zero value only in the indices of target TFs and 0 in all the 

others. SiPer then calculates the distance between real and ideal efficiency score vectors by 

considering them as discrete probability distributions whose divergence is measured by JSD 

𝐽𝑆𝐷(P, 𝑄) =
1
2𝐷

(P,𝑀) +
1
2𝐷(𝑄,𝑀) 

where P, 𝑄 are real and ideal efficiency score vectors, respectively. 𝑀 = '
4
(P + 𝑄) and 𝐷 is 

Kullback-Leibler divergence as 

𝐷(𝑋, 𝑌) =O𝑋(𝑖)𝑙𝑜𝑔
𝑋(𝑖)
𝑌(𝑖)

!

 

The lower the JSD value, the higher the similarity between the two efficiency score vectors, 

which in turn implies the higher specificity of the effect of signalling protein to target TFs. 

Once JSD value is calculated for all candidate signalling proteins inferred from NCPC, the 

signalling proteins ranked on the top 40-percentile and JSD value not equal to 1 are selected as 

final candidates. If the number of top 40-percentile of signalling proteins are less than 100, 

only the ones with JSD value less than 1 are selected (Supplementary Note 4). 

 
Identification of perturbagens targeting predicted signalling proteins 

Apart from the prediction of signalling proteins, SiPer further predicts the perturbagens 

targeting predicted signalling proteins. Noteworthily, besides the perturbagens presented in 

compendium Perturb-reTFs, we collected 6154 perturbagens with defined target proteins 

reported in public databases. This enables SiPer to identify even perturbagens that have not 

been previously used for perturbation-based gene expression profiling. In addition, the 

perturbagens were categorized into different groups based on their usability in different 

research areas, including cellular reprogramming, cell cycles, metabolism, immunology, as 

well as FDA approved drugs. Users of SiPer can use this information to further narrow down 

candidate perturbagens, depending on the specific application fields.  



 39 

To predict perturbagens, SiPer first performs over-representation analysis (ORA) on 

predicted signalling proteins based on the Reactome signalling database using R package 

WebGestaltR (v0.4.4) (Liao et al., 2019) with the default parameter settings. Since enriched 

signalling pathways have different extent of overlapping in terms of signalling proteins, which 

will result in replicate occurrence of signalling proteins across groups. Therefore, we used 

ReCiPa (Vivar et al., 2013) to merge enriched signalling pathways with high level of 

redundancy by setting the parameters max_overlap and min_overlap to 0.75 and 0.1 

respectively (details about the algorithm can be found in original paper). Predicted signalling 

proteins are then separated into different functional groups based on the merged signalling 

pathways. To identify the perturbagens for each group of signalling proteins, a modified 

Jaccard similarity coefficient is used, 

𝐽(𝑄, 𝑅) =
∑ 𝐼(𝑄! , 𝑅!)
|#∩%|
!&'
|𝑄 ∪ 𝑅|  

with indicator function, 

𝐼(𝑄! , 𝑅!) = [

1, 𝑖𝑓𝑄! ∗ 𝑅! = 1
0.5, 𝑖𝑓|(𝑄! ∗ 𝑅!)| = 2
0.25, 𝑖𝑓𝑄! ∗ 𝑅! = 4
0, 𝑖𝑓𝑄! ∗ 𝑅! = −1

 

where 𝑄 is a group of signalling proteins and 𝑅 is targets of a perturbagen. The three modes of 

action (inhibition, activation and unknown) between a perturbagen and its targets are presented 

by values -1, 1, 2 respectively. If the common proteins between 𝑄 and 𝑅 have same effect, 1 is 

assigned, and 0 otherwise. If the mode of common proteins is unknown in 𝑄 or 𝑅, or both of 

them, 0.5 and 0.25 is assigned, respectively. This modified Jaccard similarity coefficient 

ensures SiPer to identify the perturbagens targeting predicted signalling proteins with 

consistent modes as predicted. Finally, SiPer selects perturbagens with top 10 Jaccard 

similarity coefficients in each functional category and further merges the perturbagens into 

different groups based on their target similarity using ReCiPa.  

 
Visualization of the paths between perturbagens and query sets of TFs 

To further demonstrate the biological insight into predicted perturbagens of users’ interest and 

query TFs, SiPer has a build-in function to visualize the signalling cascades between predicted 

perturbagens, the predicted targets of perturbagens, intermediate signalling proteins and query 

TFs. The visualization is achieved by using Cytoscape (v3.8.0) (Shannon et al., 2003) that 

accesses per R package Rcy3 (v2.2.9) (Gustavsen et al., 2019). 
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Performance evaluation of SiPer 

Since elucidating substrates of chemical compounds with differential expression analysis has 

been proposed (Ganter et al., 2005; Wolpaw et al., 2011), we evaluated the capability of SiPer 

to predict correct signalling proteins and perturbagens by comparing with results of DEGs and 

randomization. In addition, we developed another Perturb-reTFs compendium from both 

normal and disease cells (mainly cancers) collected from the CMap database (Subramanian et 

al., 2017) and applied SiPer to the benchmarking datasets using this compendium. The 

performance of SiPer to predict the protein targets of perturbagens from a specific set of TFs 

was assessed by the number of correctly predicted (true positive (TP)) signalling protein targets 

of perturbagens reported in the public databases.  The sensitivity computed by the ratio of TP 

signalling protein predictions to the total number of reported protein targets of perturbagens 

was used to evaluate the proportion of correct prediction. We did not use measures that consider 

false positive predictions, since the protein targets of chemical compounds in public databases 

are not complete and a query set of TFs can be targeted not only by the reported signalling 

protein targets but also by other signalling proteins in the signalling network. Indeed, predicted 

signalling proteins not reported in the databases constitute potentially novel perturbations for 

targeting the query set of TFs. The average sensitivity of SiPer across benchmarking datasets 

with different cut-off were calculated. To further investigate the property of predicted 

signalling proteins that were not direct targets of perturbagens, we examined whether these 

predicted signalling proteins were functionally related to the perturbagens apart from as direct 

targets. We performed ORA against Reactome signalling pathways with the top 40% of SiPer 

predicted signalling proteins. We considered the predicted signalling proteins whose enriched 

pathways with at least one of the direct protein targets were functionally related to the 

perturbagens. For the prediction of perturbagens, the success rate was considered, which 

measures the fraction of datasets in which experimentally used perturbagen was predicted. 

Besides the true perturbagens, the potential perturbagens which had at least one target protein 

also targeted by the experimentally used perturbagen were also investigated. To examine 

whether the transcriptional responses of normal cells were distinct from cancer cell 

counterparts, we identified 1956 perturbagens by which both normal and cancer cell types were 

stimulated (Table S4). For each of these perturbagens, we performed a hierarchical clustering 

analysis based on DETFs and evaluated whether the normal/cancer cell types were clustered 

together.   

To assess whether SiPer is generally applicable to diverse chemical-based cellular 

conversion, we applied SiPer to various kinds of cellular conversion examples. Specifically, 
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we collected examples where experimentally validated conversion TFs or the scRNA-seq data 

of initial and final cell populations are available in a same study to identify DETFs. Moreover, 

the perturbagens or essential signalling proteins and pathways for these conversions need to 

have been experimentally validated in these examples (Table S5). 

 
Evaluation of robustness of SiPer 

The performance of SiPer relies on the datasets collected in NCPC. The robustness of SiPer to 

changes in NCPC was evaluated by randomly removing 10% of datasets in Perturb-reTFs and 

applying SiPer to the benchmarking datasets. This procedure was repeated 100 times and the 

average performance was computed. The sensitivity of SiPer to the presence of cell types in 

NCPC was also investigated by, for each benchmarking dataset, removing all the datasets of 

the same cell type from NCPC. Furthermore, we tested if SiPer was capable of identifying the 

target proteins when the correct perturbagen was completely absent in Perturb-reTFs. This was 

achieved by removing for each benchmarking dataset, the datasets with the same perturbagen 

as the benchmarking dataset and then performing the SiPer analysis. Moreover, the robustness 

of SiPer to the PKN was evaluated by randomly removing 10% of interactions in the PKN with 

100 iterations. To investigate the predicted signalling proteins are specific to query TFs, SiPer 

was run on the same number of randomly selected TFs.  In addition, we also examined the 

robustness of SiPer to the number of cells in input scRNA-seq data by randomly selected 

different number of cells (ranging from 100 to 1000, with 100 increment) and the expression 

profiles of the selected cells were used.  Finally, the impact of the number of query TFs was 

evaluated by splitting the benchmarking datasets into different groups based on the number of 

DETFs. The performances of datasets in different groups were compared. 

 
Human primary hepatocyte isolation and cell culture 

The present study was approved by the Clinical Research Ethics Committee of China-Japan 

Friendship Hospital (Ethical approval No: 2009-50) and Stem Cell Research Oversight of 

Peking University (SCRO201103-03), and it was conducted according to the principles of the 

Declaration of Helsinki.  

Human primary hepatocytes were isolated from human donor livers with informed 

consent. Briefly, liver tissues were perfused with collagenase IV and dispase (Sigma-Aldrich) 

until the tissues were incompact and separated with tweezers. Hepatocytes were washed 3 times 

with HCMTM (Lonza), plated in collagen-coated plates and cultured in HCMTM in the first 12 

hours. PHs were then cultured in William’s E medium containing 2% B27 (Gibco), 1% 
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GlutaMAX, and 20 μM forskolin, 10 μM SB431542, 0.5 μM IWP2, 0.1 μM LDN193189 and 

5 μM DAPT. 

Hepatic progenitors were generated by lineage reprogramming from human fibroblasts 

(Xie et al., 2019) and cultured in hepatic expansion medium (50% DMEM/F12 and 50% 

William's E Medium supplemented with 1% PS, 2% B27 (without VA), 5 mM Nicotinamide, 

200 μM 2-phospho-L-ascorbic acid (pVc), 3 μM CHIR99021, 5 μM SB431542, 0.5 μM 

Sphingosine-1-phosphate (S1P), 5 μM Lysophosphatidic acid (LPA), 50 ng/mL EGF and 2 

µg/mL doxycycline).  

  To generate hiHeps, hepatic progenitors were cultured until compactly confluent on 0.2 

mg/mL Matrigel-coated plates and then were treated with chemicals formulated with William's 

E Medium or HCM for 7-10 days unless otherwise specified. Information of chemicals used 

for hiHeps maturation test were listed in Supplementary Table 6. 

 

Gene expression analysis 

Total RNA was isolated by Direct-zol RNA Miniprep (ZYMO RESEARCH) and then reverse-

transcribed with TransScript First-Strand cDNA Synthesis SuperMix (TransGen Biotech). RT-

qPCR was performed using KAPA SYBR® FAST Universal qPCR Mix (KAPA Biosystems) 

on a BIO-RAD CFX384TM Real-time System. The quantified values were normalized against 

the input determined by housekeeping genes (RPL13A or RRN18S). The RT-qPCR primer 

sequences were provided in Table S6. 

 

Albumin ELISA, PAS staining, LDL uptake and oil red O staining 

Secretion of human albumin was measured using the Human Albumin ELISA Quantitation kit 

(Bethyl Laboratory) according to the manufacturer’s instructions. The PAS staining system 

was purchased from Sigma-Aldrich. Cultures were fixed with 4% paraformaldehyde (DingGuo) 

and stained according to the manufacturer’s instructions. For the LDL uptake assay, hiHeps  

were incubated with 10 μg/mL DiI-Ac-LDL (Invitrogen) for 4 h and  1 μg/mL Hoechst 33342 

(Thermo Fisher Scientific) for 30 min at 37  °C and then washed 3 times before imaging using 

fluorescence  microscopy. Lipid detection was performed with a Lipid (Oil Red O) Staining 

Kit (Sigma) according to the manufacturer’s instructions.   

 

Measurements of drug-metabolizing activity of CYP450s 
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The methods for measuring the CYP450 activity were described previously (Xie et al., 2019). 

Briefly, one 500 μL reaction contained 2.5 × 105 cells and the indicated substrates (Testosterone 

for CYP3A4, Phenacetin for CYP1A2). After incubation for 15–30 min at 37 °C in an orbital 

shaker, the reactions were stopped by the addition of sample aliquots to tubes containing triple 

the volume of quenching solvent (methanol) and were frozen at –80 °C. Isotope-labeled 

reference metabolites (6β-Hydroxytestosterone-[D7] for CYP3A4, Acetomidophenol-[13C2, 

15N] for CYP1A2 ) were used as internal standards. The concentration of products (6β-

Hydroxytestosterone for CYP3A4, Acetaminophen for CYP1A2) was analysed by 

ultraperformance liquid chromatography-tandem mass spectrometry (UPLC/MS/MS). 

UPLC/MS/MS analyses were performed using an ACQUITY H-Class UPLC System (Waters) 

coupled to a Sciex API5500Q-trap Mass Spectrometer (SCIEX). The analytical column was an 

ACQUITY UPLC® BEH C18 1.7 μm 2.1 × 50 mm. hiHeps were cultured for around 17 days 

in different culture medium to detect drug-metabolizing activities.  

 

RNA Sequencing and Bioinformatics Analysis 

For bulk RNA sequencing, total RNA was exacted using Direct-zol RNA Miniprep (ZYMO 

RESEARCH). RNA sequencing libraries were prepared using the NEBNext UltraTM RNA 

Library Prep kit for Illumina (NEB, USA) following the manufacturer’s recommendations. The 

fragmented and randomly primed 150-bp paired-end libraries were sequenced on Illumina 

Hiseq 4000 platform. The generated sequencing reads were mapped against the human genome 

build hg19 using STAR aligner (Dobin et al., 2013),  and the read counts for each gene were 

calculated using featureCounts. Gene expression was normalized by DESeq2 (v1.22.2) with 

variance-stabilizing transformation (VST) (Love et al., 2014), and the low expression genes 

with total counts across all samples less than 10 were excluded. Unsupervised hierarchical 

clustering of RNA-seq data was conducted by the factoextra package in R. Heatmaps were 

generated by the pheatmap and gplots R packages. 

For single cell RNA sequencing, hHPLCs were harvested based on the criteria in order of 

completed epithelial conversion of whole-well cells, hepatic progenitor markers (ALB, CK18, 

CK8, EPCAM, HNF1B, DLK1), and response to the maturation medium to generate functional 

hepatocytes. hHPLCs were further resuspended at 1 × 106 cells per milliliter in 1 × PBS with 

0.04% BSA. Then, cell suspensions (300-1000 living cells per microliter determined by trypan 

blue staining) were loaded on a Chromium Single Cell Controller (10x Genomics) to generate 

single-cell gel beads in emulsion (GEMs) by using Single Cell 30 Library and Gel Bead Kit 

(10x Genomics). Captured cells were lysed and the released RNA were barcoded through 



 44 

reverse transcription in individual GEMs. Barcoded cDNAs were pooled and cleanup by using 

DynaBeads MyOne Silane Beads (Invitrogen). Single-cell RNA-seq libraries were prepared 

using Single Cell 30 Library Gel Bead Kit (10x Genomics) following the manufacture’s 

introduction. Sequencing was performed on an Illumina HiSeq X Ten with pair end 150bp 

(PE150). 

Raw FASTQ files of scRNA-seq data of hepatic progenitors were processed with 

CellRanger software (v3.1.0), including alignment, filtering, barcode counting and unique 

molecular identifiers (UMI) counting. Reads were aligned with GRCh38 genomes. Quality 

control was performed with R package Seurat (v3.2.0) by removing genes expressed in fewer 

than three cells and low-quality cells with less than 500 genes expressed (Stuart et al., 2019). 

In addition, cells expressed more than 6000 genes and with more than 10% mitochondrial 

counts were also excluded.  

The pre-processed scRNA-seq of hepatic progenitors and a set of differentially expressed 

TFs in PHs compared to hepatic progenitors (log2 fold change > 4) were selected as inputs for 

SiPer analysis. The list of perturbagen candidates returned by SiPer were manually separated 

into different functional mechanism groups based on their protein targets and functional 

annotations. Finally, we selected 1-2 perturbagens in the groups that have at least three 

perturbagens. 
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Figure 4. 1 Schematic outline of SiPer.  

A, The workflow of SiPer. The input of SiPer can be initial scRNA-seq and desired TFs 
provided by the user, or initial and target scRNA-seq. Given input, SiPer identifies chemical 
perturbagens and corresponding signalling protein targets (SPs) to direct cell population 
engineering, including cell type, cell subtype and phenotypic state conversion.  
B, NCPC is composed of two compendia, Perturb-reTFs and Perturb-targets. Perturb-reTFs 
contains perturbagens and their response TFs identified by transcriptomics data collected from 
GEO, ArraryExpress and LINCS L1000. Perturb-targets contains perturbagens and their 
signalling protein targets from Drugbank, STITCH, CLUE Repurposing and manually curated 
ligand-receptor interactions.  
C, SiPer contains three major stages, 1) pre-selection of candidate signalling proteins from the 
built-in NCPC by using only query TFs, which can be identified by differential expression 
analysis or provided by user, 2) network-based modelling to predict signalling proteins 
specifically targeting the query set of TFs using scRNA-seq of initial cell type/state, 3) 
identification of perturbagens which target the predicted signalling proteins. 
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Figure 4. 2 Evaluation and application of SiPer to cellular conversion.  

A, Frequency of response TFs in NCPC, including inhibited and activated TFs.  

Occurence of each TF in NCPC
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B, Average sensitivity of protein targets across 200 benchmarking datasets at different 
thresholds for predicted signalling proteins.  
C, Number of datasets in which signalling pathways enriched in predicted signalling proteins 
contain at least one protein target of true perturbagens (red), no protein target of true 
perturbagens (blue) or no significantly enriched pathway (grey).  In this way, we examined 
whether predicted signalling proteins which are not direct targets of correct perturbagens were 
nevertheless functionally related to the direct protein targets. This result suggests that non-
target proteins predicted by SiPer were more functionally relevant to the correct perturbagen 
than those predicted by other approaches. Performance was compared among: SiPer using 
NCPC (SiPer(NCPC)), SiPer using CMap-based Perturb-reTFs (SiPer(CMap)), signalling 
proteins based on DEGs (DEGs) and random selection of signalling proteins (Randomization) 
for B-C. 
D, The fraction of datasets correctly clustered to their corresponding class (i.e., normal or 
cancer) (one-sided Wilcoxon test, P-value <2.22e-16). 
E, Robustness evaluation of SiPer with respect to input cell number by randomly selecting cells 
in input scRNA-seq data. 
F, Robustness evaluation of SiPer with respect to DETF number by splitting the benchmarking 
datasets into different subsets based on the number of DETFs.  
G, SiPer’s efficiency score matrix denoting the regulatory potential of signalling proteins to 
downstream TFs. Each cell in heatmap represents the average efficiency score of top 20 
predicted signalling proteins to corresponding query TF sets for different cellular conversion 
cases from original cell to target cell. For example, “phESC_nhESC” means primed hESC 
converts to naïve hESC. Abbreviations: phESC/pmESC: primed hESC/mESC; nhESC/nmESC: 
naïve hESC/mESC; aHSC/qHSC: active/quiescent HSC; tHFSC/aHFSC: telogen/anagen 
HFSC; iN: induced GABAergic neuron; iBA: induced brown adipocyte; ADP: adipocyte; PP: 
pancreatic progenitor; Mono: monocyte; Macro: macrophage. 
H, SiPer network visualization of putative signalling cascades for phenotypic state conversion 
of primed ESCs to naïve state between predicted perturbagens (orange rectangle), predicted 
signalling protein targets (yellow diamond), intermediate signalling proteins (white ellipse) and 
query TFs (blue hexagon).  
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Figure 4. 3 Generation of functional hiHeps by applying SiPer predicted chemical 
perturbagens.  

A, Oil-red staining of lipid synthesis and accumulation in hiHeps cultured in H2C and W2C at 
day 14 of culture. Scale bar = 50um. 
B, qRT-PCR analysis showing gene expression of key hepatocyte markers of hiHeps (n=6) 
cultured in H2C and W2C compared with primary human hepatocytes (PHs, n=4). Relative 
expression normalized to W2C. Data are 𝑚𝑒𝑎𝑛 ±𝑀𝑆𝐸 . 
C, Expression fold change of top differentially expressed hepatic TFs (DETFs) in primary 
human hepatocytes (PHs) vs. hepatic progenitors (blue columns), and PHs vs. hiHeps cultured 
in H2C (grey columns). The top 8 DETFs were used as query TFs for SiPer analysis. 
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D, Heatmap of gene expression of key hepatocyte markers in hiHeps cultured in W2C and 
“W2C+1” condition in which all predicted candidates were screened at two different 
concentrations (c1 and c2) by qPCR analysis. Seven hits targeting 5 pathways are indicated in 
the black box.  
E, Representative bright field images of hiHeps cultured in W3C. Scale bar = 50um. 
F, Oil-red staining of lipid synthesis and accumulation in hiHeps cultured in W3C at day 14 of 
culture. Scale bar = 50um. 
G, Hierarchical clustering of global gene expression of hepatic progenitors, hiHeps cultured in 
W2C, H2C, and W3C, primary human hepatocytes (PHs), and adult liver tissues (ALs) by 
RNA-seq analysis. 
H, Heatmap of gene expression profile of hepatic transcription factors and functional 
hepatocyte genes involved in drug metabolism, fatty acid metabolism, glucose metabolism and 
lipid cholesterol metabolism in hepatic progenitors, hiHeps cultured in W2C, H2C, W3C, 
primary human hepatocytes (PHs), and adult liver tissues (ALs). Panel of genes analysed listed 
in Table S6. 
I, qRT-PCR analysis of gene expression of key hepatocyte markers in hiHeps (n=6) cultured 
in W2C, H2C, W3C and primary hepatocytes (PHs, n=4). Relative expression was normalized 
to hiHeps_W2C. Data are 𝑚𝑒𝑎𝑛 ±𝑀𝑆𝐸. 
J, ALB secretion of hiHeps (n=3) cultured in W2C, H2C and W3C at day 14 and 28 of culture, 
and ALB secretion of primary hepatocytes (PHs, n=6) by ELISA. Data are 𝑚𝑒𝑎𝑛 ±𝑀𝑆𝐸. 
K, Analysis of key hepatic functions of hiHeps cultured in W2C, H2C and W3C: PAS staining 
of glycogen synthesis (upper panel) and low-density lipoprotein (LDL) uptake staining (lower 
panel). Scale bar = 50um. 
L, UPLC/MS/MS (Ultra performance liquid chromatography - tandem mass spectrometer 
analysis) of drug-metabolizing activity of CYP3A4 and CYP1A2 of hiHeps cultured in W2C, 
H2C and W3C, and PHs. n=3. Data are 𝑚𝑒𝑎𝑛 ±𝑀𝑆𝐸. 
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Start cell End cell Query TFs Perturbagens Protein 

targets 
TF source Perturba-gens 

references 
Primed 
hESC 

Naïve 
hESC 

NANOG 
KLF2 
LKF4 
NR5A2 
TFCP2L1 

PD0325901 
CHIR99021 
Forskolin  
WH-4-023  
Y-27632 
LIF 
Activin A 
 

MAP2K1 
GSK3B  
ADCY5  
LCK  
LRRK2 
LIFR 
ACVR2A 

(Takashima 
et al., 2014) 

(Park et al., 
2018; 
Theunissen et 
al., 2014) 

Primed 
mESC 

Naïve 
mESC 

Esrrb 
Nanog 
Klf2  
Klf4 
Tfcp2l1 

PD0325901 
CHIR99021  
LIF  
 

Map2k2 
Map2k1 
Gsk3b 
Gsk3a  
Lifr 

(Dunn et al., 
2014; 
Ivanova et 
al., 2006; 
Martello et 
al., 2012; 
Niwa et al., 
2009; Ye et 
al., 2013) 

(Ying et al., 
2008) 

Active 
HSC 

Quiescent 
HSC 

DETFs U0126 
RGB286638 
AHPN 

Map2k1 
Mapk14 
Cdk4 
Cdk6 
Rela 
Sp1 
 

(Kowalczyk 
et al., 2015) 

(Baumgartner 
et al., 2018; 
Cabezas-
Wallscheid et 
al., 2017; 
Fukushima et 
al., 2019; 
Matsumoto et 
al., 2011) 

Telogen 
HFSC 

Anagen 
HFSC 

DETFs D4476 
GW788388 

Tgfb1 
Tgfbr1 
Tgfbr2 

(Yang et al., 
2017) 

(Foitzik et al., 
1999; 
Oshimori and 
Fuchs, 2012) 

hNES hProgFPM OTX2 
LMX1A 
FOXA2 
LIN28A 
SOX1 
RFX4 
HMGA1 

Simvastatin 
Indirubin-3-
monoxime 
Sulindac 
 
 
 

H2AFX 
HRAS 
GSK3A 
CDK1 
CDK3 
CTNNB1 

(Okawa et 
al., 2018) 

(Castelo-
Branco et al., 
2004; Chung 
et al., 2009; 
Rhim et al., 
2015) 

OPC MFOL DETFs GSK429286a 
Regorafenib 
 

Rock1 
Fgfr1 
Fgfr2 
Pdgfra 
Pdgfrb 

(Marques et 
al., 2016) 

(Marques et 
al., 2016; 
Pedraza et al., 
2014) 

 
Table 4. 1 Results of cell phenotypic state/subtype conversion examples obtained by 
SiPer, including protein targets and perturbagens.  
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Start 
cell 

End cell Query TFs Perturbagens Protein 
targets 

TF source Perturba-
gens 

references 
HEF GABAer-

gic neuron 
FOXG1 
SOX2 
ASCL1 
DLX5 LHX6 

CHIR99021 
PD0325901 
Pifithrin-α  
LDN193189 
SB431542 
Forskolin 
 

GSK3B 
MAP2K1 
TP53 
BMPR1BA
CVR1 
ADRB2 

(Colasante 
et al., 2015) 

(Dai et al., 
2015) 

MEF NSC Pou3f4 Sox2  
Klf4  
Myc  
Tcf3 

CHIR99021  
LDN193189 
SMER28 
Retinoic acid  
bFGF  

Gsk3b 
Fkbp1a  
Rara  
Rarg  
Fgfr4 

(Han et al., 
2012) 

(Zhang et 
al., 2016a) 

HDF Brown 
adipocyte 

CEBPB 
MYC 

Dorsomorph-
in  
Forskolin 
Rosiglitazone 
LDN193189 
SB431542  
 

FKBP1A 
KDR 
ADRB2 
PPARG 
ADRA1A  

(Kishida et 
al., 2015) 

(Takeda et 
al., 2017) 

MEF Cardiomy-
ocyte 

Hand2 
Nkx2-5 
Gata4 
Mef2c 
Tbx5 

Valproic acid 
CHIR99021 
PD0325901 
SC1 
TTNPB 
BayK 8644 

Hdac1 
Hdac2 
Mapk1 
Gsk3b 
Htr2a 
Adora2a 

(Addis et 
al., 2013) 

(Fu et al., 
2015; Park 
et al., 
2015) 

MSC Pancreatic 
progenitor 

PDX1 
NKX6-1 
NEUROD1 
NEUROG3 
MAFA 
FOXA2 
 

Nicotinamide 
Retinoic acid 
EGF 
 

PARP1 
RARG 
RARG 
ERBB3 
EGFR 

(Wang et 
al., 2011) 

(Gao et al., 
2008; Sun 
et al., 
2007) 
 

MSC Adipocyte PPARG 
RXRA 
CEBPA 
STAT1 
SREBF1 
FOXO1 
EBF1  
IRF4 

Dexametha-
sone 
Indomethacin 
Insulin 
3-isobutyl-1-
methylxanth-
ine 
 

NR3C1 
NR3C2 
PTGS2 
IGF1R 
RB1 
ADORA1 
CFTR 

(Jimenez et 
al., 2007; 
Kim and 
Spiegelman
, 1996; Lin 
et al., 2008; 
Linhart et 
al., 2001; 
Nakae et 
al., 2003; 
Nielsen et 
al., 2008; 
Stephens et 
al., 1999; 
Vasanthaku
mar et al., 
2015) 

(Pittenger 
et al., 
1999) 

Table 4. 2 Results of cell type conversion examples obtained by SiPer, including protein 
targets and perturbagens.  
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Code availability 

SiPer was implemented in R and code repository is available from Gitlab (https://git-

r3lab.uni.lu/menglin.zheng/SiPer). The web application was developed with PAWS framework 

and is available at https://siper.uni.lu . 

Data availability 

Bulk RNA-seq data and scRNA-seq data generated in this study have been deposited to Gene 

Expression Omnibus GSE162908 and GSE162909, respectively. 
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4.1.3 Supplementary Information 

Supplementary Figures 

 
Figure S4. 1 Evaluation and parameter tuning of SiPer. 

A, Number of datasets for which true perturbagens are predicted at different thresholds for 
predicted perturbagens in each functional group.  
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B, Fraction of perturbagens with at least one protein target (denoted as potential perturbagens) 
among predicted perturbagens. SiPer predicted a significantly higher fraction of potential 
perturbagens than CMap-based Perturb-reTFs, DEGs and randomization. P-values were 
calculated by one-sided Wilcoxon test. Performance was compared among: SiPer using NCPC 
(SiPer(NCPC)), SiPer using CMap-based Perturb-reTFs (SiPer(CMap)), signalling proteins 
based on DEGs (DEGs) and random selection of signalling proteins (Randomization) for A-B.  
C, Robustness analysis of SiPer in terms of average sensitivity tested by removing NCPC 
datasets with same cell type as test dataset (Celltype remove), removing NCPC datasets with 
same perturbagen as test dataset, random removal of 10 % NCPC datasets , random removal 
of 10% interactions in PKN, randomly selecting same number of TFs as the number of test 
DETFs, and replacing the NCPC compendium with  CMap-based  compendium.  
D-E, SiPer network visualization of putative signalling cascades between predicted 
perturbagens (orange rectangle), predicted signalling protein targets (yellow diamond), 
intermediate signalling proteins (white ellipse) and query TFs (blue hexagon). D, 
Reprogramming into GABAergic neurons from HEFs, E, differentiation of MSCs to 
adipocytes. 
F, Parameter tuning for the z-score and percentage used in the stage of pre-selection of 
candidate signalling proteins from NCPC.  
G, Parameter tunning for the fraction of final candidate signalling proteins used for the 
prediction of perturbagens.  
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Figure S4. 2 Characterization of hiHeps cultured in chemical compounds predicted by 
SiPer. 

A, Gene expression of key hepatocyte markers in hiHeps cultured in H2C, All 
(W2C+hydrocortisone, BIO, U0126, TSA and progesterone), W2C and “W2C+1” condition 
by qRT-PCR analysis. Relative expression normalized to hiHeps_W2C. n=2. Data are 𝑚𝑒𝑎𝑛 ±
𝑀𝑆𝐸. 
B, Gene expression analysis of key hepatocyte markers in hiHeps cultured in H2C, All 
(W2C+hydrocortisone, BIO, U0126, TSA and progesterone) and single molecule omitted 
(“All-1”) conditions by qRT-PCR analysis. Relative expression normalized to hiHeps_All. n=2. 
Data are 𝑚𝑒𝑎𝑛 ±𝑀𝑆𝐸. 
C, qRT-PCR analysis of gene expression of query hepatic transcription factors (left) and other 
key hepatic transcription factors (right) in hepatic progenitors(n=4), hiHeps cultured in H2C 
(n=6), W3C (n=6), PHs (n=2) and ALs (n=2). Data are 𝑚𝑒𝑎𝑛 ±𝑀𝑆𝐸. 
D, Representative bright field images of hiHeps cultured in W2C, H2C, and W3C at day 28 of 
culture. Arrows indicate lipid accumulation in H2C-cultured hiHeps. Scale bar = 50um.  
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Supplementary Notes 

Supplementary Note 1. Identification of 1stTF as proxy for the query non-1stTFs  

Even though the 1stTFs can cover the majority of TFs, some of the query TFs can be located 

in non-first layer. In this case, we identified the 1stTF as proxy for the query non-1stTFs.  First, 

in order to ensure the TF interactions are specific to the initial cellular state, we used scRNA-

seq of the initial cellular state to contextualize the prior knowledge TF interaction network. The 

TFs in the “hairball” network were considered as “expressed” if their expression value were 

non-zero in more than 50% of cells. Otherwise, they were treated as “not expressed”. The edges 

of the prior knowledge TF network were kept if their edge signs were “Unspecified” or 

consistent with the state of the two connected TFs. For example, if the edge sign was 

“Activation”, the interaction will be kept if the connected TFs are both “expressed” or “not 

expressed”. If the edge sign was “Inhibition”, the interaction will be maintained if the states of 

the two connected TFs are either “expressed and not expressed” or “not expressed and 

expressed”.  After the contextualization of the TF interaction network, the reachability and the 

specificity of 1stTFs to the query non-1stTFs were examined. We counted the minimum path 

length from each 1stTF to the maximum number of the query non-1stTFs and then calculated 

the number of TFs which could be reached and effected by this 1stTF. In an ideal case, the 

proxy of query non-1stTFs only has an effect on the specific non-1stTFs but not on other TFs. 

SiPer then calculates the distance between the real and ideal effected TFs by JSD, as was also 

performed for the identification of signalling proteins, 

𝐽𝑆𝐷(P, 𝑄) =
1
2𝐷

(P,𝑀) +
1
2𝐷(𝑄,𝑀)	

where P, 𝑄  are real and ideal effected TF vectors, respectively. 𝑀 = '
4
(P + 𝑄)  and 𝐷  is 

Kullback-Leibler divergence as 

𝐷(𝑋, 𝑌) =O𝑋(𝑖)𝑙𝑜𝑔
𝑋(𝑖)
𝑌(𝑖)

!

 

The lower the JSD value, the higher the specificity of the 1stTF to target the query non-1stTFs. 

Finally, the 1stTF with smallest JSD value was selected as a proxy for the query non-1stTFs.  

 

Supplementary Note 2. Identification of scRNA-seq of initial cellular state for 

perturbation datasets profiled by bulk RNA-seq 

In order to validate SiPer, we collected perturbation datasets profiled by bulk RNA-seq as well.  

We collected 239 bulk perturbations in our NCPC compendium, with existing scRNA-seq of 

corresponding initial cellular state from other studies (62 collected scRNA-seq). To ensure the 
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scRNA-seq dataset matches corresponding initial cellular state as much as possible, spearman 

correlation was calculated between the scRNA-seq datasets and bulk RNA-seq of initial 

cellular state of perturbation dataset. First, the common genes among the collected scRNA-seq 

datasets for human and mouse were identified separately, which resulted in 8721 and 6525 

common genes for human and mouse respectively. For each bulk RNA-seq of perturbation 

dataset, the spearman correlations with all scRNA-seq data were calculated by using the 

average expression values of intersected genes between this bulk data and scRNA-seq common 

genes.  We only kept the bulk perturbations whose initial cell type was consistent with that of 

highest correlation scRNA-seq. For example, the dataset of E-TABM-786 and corresponding 

scRNA-seq data from GSE114952 were maintained, because the MEFs stimulated with 

Mitomycin and Bleomycin in E-TABM-786 had highest correlation with scRNA-seq of MEFs 

from GSE114952. Accordingly, 165 bulk perturbations were kept for benchmarking. The 

details of bulk and scRNA-seq datasets and their Spearman correlation value and final selected 

benchmarking datasets can be found in Table S3.  

  
Supplementary Note 3. Parameter tuning for perturbagens and signalling proteins 

selection in NCPC 

In order to determine a set of suitable candidates of signalling proteins from NCPC, it is 

essential to optimize the thresholds for perturbagens and signalling proteins selection in Stage 

1 of SiPer. We employed bootstrapping for the parameter tuning as follows. We randomly 

selected 100 datasets from Perturb-reTFs. For each dataset, the response TFs were used as 

query and the modified Jaccard indices between the set of query TFs and all references in 

Perturb-reTFs database except this dataset itself were calculated. To determine the number of 

selected perturbagens, the z-score measuring the number of standard deviations from the mean 

modified Jaccard similarity coefficient across all references in Perturb-reTFs was calculated 

for each perturbagen. The perturbagens with z-score larger than threshold were considered. We 

set the threshold of z-score to 1.5, 2.0 and 2.5 respectively. Once the perturbagens were selected, 

the signalling protein targets of each selected perturbagen were retrieved from the Perturb-

targets of NCPC and ordered by their frequencies. To optimize the number of signalling 

proteins for subsequent analysis, the thresholds ranging from 5% to 50% with 5% increment 

were used. In total, there were 3*10 pairs of thresholds for each dataset and the average 

sensitivity among the 100 selected datasets were computed for each threshold pair. Finally, the 

above procedure was repeated for 1000 times and the average sensitivity among these 1000 

repetition were calculated. The results showed that the sensitivity between Z-score 2 and 1.5 at 
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each rank cut-off was relatively closer than that of Z-score 2 and 2.5 (Figure S4.1F). In addition, 

the sensitivity increased very slightly after rank cut-off of 40%. Therefore, to ensure the higher 

significance as well as to maintain more real targets for following analyses, we only considered 

the perturbagens with Z-score larger than 2 and the signalling proteins ranking on the top 40% 

as candidates of signalling proteins from NCPC for further analysis. 

 
Supplementary Note 4. Parameter tuning of signalling proteins selection for final 

perturbagen prediction 

Apart from the prediction of signalling proteins, SiPer further predicts the perturbagens 

targeting predicted signalling proteins (Stage 3 of SiPer). In order to determine the optimal 

number of signalling proteins used for the prediction of perturbagens, different percentiles of 

predicted signalling proteins of benchmarking datasets, ranging from 10% to 90% with 10% 

increment, were selected. The selected signalling proteins were separated into different groups 

by performing ORA based on the Reactome signalling database. For each threshold of the 

percentile of predicted signalling proteins, the number of datasets for which true perturbagens 

were predicted at different cutoffs of predicted perturbagens was investigated (Figure S4.1G). 

The results show that there is no significant difference between different percentiles, but the 

signalling proteins rank on the top 40-percentile have the best performance. Therefore, we use 

the top 40-percentile as the threshold to select the signalling proteins for perturbagen prediction. 

In addition, to ensure the number of final selected signalling proteins being enough to identify 

enriched signalling pathways, we considered all the siganlling proteins with JSD value less 

than 1 if the top percentile of signalling proteins were less than 100. Notably, this parameter 

could be further optimized with more benchmarking datasets in the future.   
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4.2 Manuscript 2: A database-driven computational method to 

identify chemical compounds reverting disease phenotype 

4.2.1 Preface 

Given the desired set of TFs, SiPer predicts chemical compounds specifically targeting these 

TFs to induce cellular conversion by the integration of the perturbation database focusing on 

non-cancer cells and the network model. However, the sets of TFs that can induce the change 

of cellular states are not always available. Therefore, instead of targeting specific sets of TFs, 

another method, ChemPert, is developed to predict chemical compounds that can induce the 

change of cellular states by integrating a perturbation database with a network-based model. 

The database of ChemPert includes any two cellular states before and after perturbation, which 

results in more than 10-fold scale up of database in SiPer. The method was applied to revert 

pathologic phenotypes to their healthy counterparts for different kinds of non-cancer diseases, 

including aged-related diseases and infectious diseases. A considerable number of clinical or 

pre-clinical applied chemical compounds in corresponding disease was captured by this method, 

demonstrating the usability of ChemPert for drug discovery. 

In this study, I manually collected and compiled the perturbation datasets to construct 

the database and developed the whole pipeline of the method. I also performed the comparison 

between ChemPert and the other existing methods and finally applied the method to different 

diseases.  
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4.2.2 Manuscript 

A database-driven computational method to identify chemical compounds 

reverting disease phenotype 
Menglin Zheng1, Satoshi Okawa1,2, Antonio del Sol1,3,4,* 

1 Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, Esch-

sur-Alzette, L-4367 Belvaux, Luxembourg; 
2 Integrated BioBank of Luxembourg, Dudelange L-3555, Luxembourg; 
3 CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Bizkaia Technology Park, 801 Building, 

48160 Derio, Spain; 
4 IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain; 
* Correspondence: Antonio del Sol (Antonio.delSol@uni.lu)  
 

Abstract 

The standard experimental methods employed for the identification of optimal drugs are costly 

and resource consuming. Several computational methods have been developed to screen 

candidates in silico in an unbiased manner based on perturbation databases.  However, the 

databases of these methods are not suitable for the study of non-cancer diseases since they 

mainly focus on cancer cells that exist extensive rewiring of signalling pathways. Here, we 

constructed a large scale of perturbation database consisting solely of transcriptional signatures 

from non-cancer cells. This database was combined with a network model for the prediction of 

chemical compounds to revert the cellular disease phenotypes to their healthy counterparts. 

The method consistently outperformed other existing computational methods. Moreover, it was 

applied to different kinds of non-cancer diseases, including aged-related diseases and infectious 

diseases. A considerable number of the chemical compounds applied in current state-of-the-art 

therapeutics were recapitulated. Therefore, the proposed method is of great utility in identifying 

drugs for disease treatment systematically.  
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Introduction 

Gene expression profile is postulated to be a surrogate for disease phenotype where reversion 

of the profile in disease condition to its healthy counterpart is an indication of therapeutic 

efficacy. Phenotypic screening as a conventional strategy for drug discovery relies on the 

exhaustive trial-and-error testing of a large number of compounds, which is time-consuming 

and labour-intensive (Eder et al., 2014). In this regard, computational approaches taking 

advantage of large-scale data, especially the widely available transcriptome data, have been 

developed for drug discovery. These methods can be broadly grouped into two classes, de novo 

prediction and signature matching inference. The de novo algorithms attempt to infer causal 

upstream signalling protein targets of chemical compounds whose perturbation result in 

observed dysregulated genes (Browaeys et al., 2020; Fakhry et al., 2016; Krämer et al., 2014; 

Parikh et al., 2010). These methods use gene expression as a proxy for protein activity without 

considering the presence of post-translational modifications. This limits the accuracy of these 

methods in predicting druggable signalling protein targets due to the poor knowledge of 

signalling activity. The signature matching methods, instead of inferring the activation of 

pathway directly, rely on pre-compiled transcriptomic signatures of given chemical 

perturbations to infer the chemical compounds associated with query signatures (Lamb et al., 

2006; Schubert et al., 2018; Subramanian et al., 2017). While the latter approach has an 

advantage in making accurate predictions for samples present in the compendium, it is not 

suitable for the prediction of drugs outside the compendium and for recognising subtle 

differences in cell states that may result in distinct downstream responses. In addition, the 

current existing compendia of gene expression profiles analysed after cell perturbations are all 

based on cancer cells or mixing of normal and cancer cells (Lamb et al., 2006; Subramanian et 

al., 2017; Xiao et al., 2015). In cancer cells, the signal transduction pathways and 

transcriptional logics are significantly different from those of non-cancer cells (Sharma and 

Petsalaki, 2019). Therefore, the compendia are not suitable for identifying drugs for non-cancer 

disease. 

To address these limitations, here we present an integrative method, ChemPert, that 

combines a manually curated database of transcriptional signatures and a network-based model 

for the prediction of perturbagens (including small molecules, drugs, cytokines and growth 

factors) to revert the cellular disease phenotypes to their healthy counterparts. Notably, our 

database solely consists of manually collected transcriptional signatures of non-cancer cells 

before and after chemical perturbations. Moreover, unlike the existing methods that predict 

chemical compounds directly from a database, ChemPert predicts signalling proteins from the 
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perturbation database and then identifies potential chemical compounds targeting these 

proteins. This allows ChemPert to identify more potential chemical compounds out the scope 

of the perturbation database.  Since the affinities between chemical compounds and protein 

targets are also determined by initial cellular states besides perturbagens, the expression level 

of initial cellular state is further integrated into a network model. The integration of a network 

model aims at ensuring the predicted signalling protein targets and subsequently corresponding 

perturbagens are specific to the initial cellular states. 

We showed that, using our database purely consisting of non-cancer perturbation 

datasets to predict perturbagens led to significantly better performance than the ones including 

cancer datasets, underscoring that the transcriptional signature database in this study serves as 

an important resource. Our benchmarking also revealed that integrating a network model 

considering initial cellular state with database-driven inference further prioritized the cellular 

state-specific signalling protein targets. We compared our method with other existing methods 

and showed that our method significantly outperforms in recapitulating both signalling proteins 

and perturbagens. Furthermore, ChemPert was applied to different types of diseases including 

age-related and infectious diseases, and captured a considerable number of perturbagens used 

in clinics and animal models to revert disease phenotype.  

In summary, these results demonstrate the efficacy of our method in identifying 

potential drugs to revert non-cancer disease phenotype. ChemPert can easily be applied to 

different disease indications and is freely accessible at https://siper.uni.lu/chempert, requiring 

only differential expression genes and the gene expression profile of the initial cell state. 

Therefore, we believe that our method is valuable for clincal and pharmaceutical research in 

prioritization of drugs for disease treatment. 

 

Results 

Overview of ChemPert algorithm 

ChemPert identifies perturbagens to convert cell disease state to normal representation. The 

algorithm of ChemPert is composed of three major stages (Figures 4.4A-C), 1) pre-selection 

of candidate signalling proteins from the curated perturbation database of transcriptional 

signatures, 2) network-based modelling to predict signalling proteins specific to the initial 

cellular state, 3) identification of perturbagens which target the predicted signalling proteins. 

Stage 1. ChemPert identifies signalling proteins in database whose perturbation result 

in similar transcriptional signatures as required. Specifically, ChemPert obtains query 

transcriptional signatures from DEGs (see Methods) and then a modified Jaccard index 
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between transcriptional signatures of query and references in the database is computed (Figure 

4.4A). The perturbagens with high value of the modified Jaccard index are selected and their 

corresponding signalling protein targets are identified from our build-in perturbagen target 

database (Figure 4.4A). The signalling proteins are ranked and the top ones are selected based 

on the sum of Jaccard index of their corresponding perturbagens (see Methods). 

Stage 2:  The candidate signalling proteins identified in Stage 1 do not consider the 

initial cellular state. However, the affinities of signalling proteins to chemical perturbations are 

often highly cell type-specific (Hodos et al., 2018; Strasen et al., 2018). Therefore, in Stage 2, 

ChemPert further predicts the signalling proteins that are specific to the initial cellular state by 

integrating signalling networks and expression profile of the initial cell state. First, we postulate 

that the active interface transcription factors (iTFs) transmit the signal from signalling pathway 

to gene regulatory network and in turn trigger dysregulation of downstream genes. Accordingly, 

ChemPert identifies the active iTFs that are enriched for DEGs based on TF regulons (Figure 

4.4B)  (Garcia-Alonso et al., 2019). Subsequently, to identify the signalling proteins from stage 

1 whose perturbation signal can be transferred to these active iTFs, we hypothesise that the 

signal transduction is not possible to be accomplished through the paths whose intermediate 

signalling proteins are not available. Therefore, we estimate the protein availability from the 

gene expression profile and perform enrichment analysis on the paths for each pair of signalling 

protein and downstream iTF (Figure 4.4B). As a consequence, the iTFs that have the possibility 

to receive signal for each signalling protein are identified.  Furthermore, to ensure that the 

predicted signalling proteins specifically act on the active iTFs and have a minimized effect on 

the non-active ones, ChemPert computes Jensen-Shannon divergence (JSD) for each signalling 

protein (see Methods). High JSD value indicates that the signalling protein can not specifically 

target the active iTFs, which are removed from the signalling protein candidates (Figure 4.4B).  

Stage 3: The top 200 predicted signalling proteins from Stage 2 are used to identify 

perturbagens. ChemPert predicts perturbagens whose targets are enriched for top ranking 

signalling proteins by using aREA with our build-in target database (Figure 4.4C). 

 

The composition of non-cancer cell perturbation database and prior knowledge network 

(PKN)  

In order to infer the relationship between the signalling perturbation and downstream 

transcriptional signatures, we exhaustively collected and compiled transcriptome profiles of 

chemical perturbations from public resources (see Methods). This resulted in a database 

consisting of around 63000 transcriptional signatures derived from 2779 unique perturbagens 
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(Table S7). Most of the perturbagens (~70%) have relatively low occurrence frequency (Figure 

4.5A) and covered 2133 unique transcriptional regulators in both activation (up) and inhibition 

(down) directions with no significant bias towards either of them (Figure 4.5B). Importantly, 

our database solely consists of transcriptomics data of chemical perturbations across 146 

unique normal cell types/lines/tissues, since signalling pathways and transcriptional regulatory 

networks of cancer cells are known to exhibit significant rewiring, which are different from the 

normal counterparts (Sharma and Petsalaki, 2019). As shown in Figure 4.5C, cell type neurons, 

cell line HA1E and tissue liver have the largest number of datasets among all cell types, cell 

lines and tissues in our database, respectively. Notably, majority of the perturbations (~97%) 

in our database have duration not larger than 24 hours, which can reflect the transcriptional 

response of perturbation more specifically (Figure 4.5D).  

The PKN used in the network-based prediction of signalling proteins is constructed by 

integrating ReactomeFI (Wu et al., 2010) with Omnipath (Türei et al., 2016), which resulted in 

the PKN composing of 8845 nodes. In the PKN, 1190 iTFs whose upstream are signalling 

proteins and have no downstream targets were identified. The path length for each signalling 

protein to iTFs was determined by using the majority length of shortest paths from one 

signalling protein to all iTFs. Signalling proteins with path length 3 occupied the highest 

number (Figure 4.5E).  

 

Integration of non-cancer database and network model significantly increases the 

predictive power of ChemPert 

To investigate whether our non-cancer database can increase the predictive power for normal 

cell perturbation, we used two other databases: 1) CMap database alone, which mainly contain 

perturbation datasets of cancer cells (Subramanian et al., 2017), 2) combining our database 

with CMap database. We randomly selected the normal cell perturbation datasets from the 

databases as benchmarking datasets and these datasets were removed from the databases 

afterwards for fair comparison. We applied ChemPert to benchmarking datasets using three 

databases. The result showed that a better performance was consistently obtained when the 

original database was used, especially comparing to the predictions from CMap database only 

(Figure 4.6A). To ensure that the better performance was caused by the difference between 

normal and cancer cells rather than the unique perturbagens from our database, we constructed 

two databases solely consisting of normal or cancer cells with the same perturbagens. 

Consistently, using our normal cell perturbation database showed higher average sensitivity 

than using the cancer one (Figure 4.6B). Importantly, the signalling proteins of some 
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perturbagens can only be predicted by using the normal cell perturbation database (Table S8). 

For example, 3M003, a TLR agonist, was not included in both databases. Its protein targets 

(TLR7, TLR8) were predicted and ranked at the top of the predictions when ChemPert used 

the normal cell perturbation database, whereas they were not predicted completely using the 

cancer cell perturbation database. We found that the transcriptional signatures from the dataset 

perturbed by 3M003 are similar with those from the datasets perturbed by another TLR agonist, 

resiquimod, on normal cells, but not on cancer cells (Figure 4.6C). These results indicate that 

we cannot accurately infer transcriptional signatures of normal cells using cancer counterparts, 

and therefore it is essential to construct a normal cell-specific perturbation database to predict 

the signalling perturbations specific for non-cancer cells.  

In addition, the affinities of protein targets to external stimuli are often cell state-

specific. To this end, ChemPert further filtered out the potential false positive signalling 

proteins from the database by integrating the signalling network with gene expression level of 

initial cellular state to ensure that the predictions are specific to the initial cellular state. 

Following the network model, the ranks of true positive signalling proteins increased 

significantly (one-sided Wilcoxon test, p-value = 9.197e-07) (Figure 4.6D).  

 

Comparison with existing computational methods 

To evaluate the performance of ChemPert, a comprehensive comparison between ChemPert 

and other computational methods that are commonly used to infer signalling proteins or 

perturbagens from DEGs (CMap query, NicheNet, DeMAND and QuaternaryProd) was 

performed (Browaeys et al., 2020; Fakhry et al., 2016; Lamb et al., 2006; Woo et al., 2015). 

Specifically, DeMAND and QuaternaryProd are both network-based methods and can only 

predict signalling proteins whose perturbations cause downstream gene dysregulation.  CMap 

is designed to predict perturbagens existing in its compendium by identifying the ones that 

have similar signatures as the input given by user. NicheNet is able to predict ligands only by 

modelling the relationship between ligands and downstream genes. Due to the different 

capabilities of these methods, first we compared ChemPert with DeMAND and 

QuaternaryProd in terms of predicting signalling proteins. The average sensitivity in 

identifying the direct protein targets of the correct perturbagens across all the benchmarking 

datasets was evaluated. The results revealed that ChemPert significantly outperformed 

DeMAND and QuaternaryProd consistently (Figure 4.7A). Indeed, ChemPert had an 18-fold 

and 9-fold higher average sensitivity compared to DeMAND and QuaternaryProd in the top 

100 predicted signalling proteins (the average sensitivity is 0.54, 0.03 and 0.06 for ChemPert, 
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DeMAND and QuaternaryProd, respectively). Next, ChemPert was further compared with 

CMap in identifying perturbagens. Averagely, only around 10% of the datasets whose 

perturbagens were identified by CMap, but our method obtained the true perturbagens in 68% 

of the datasets (Figure 4.7B). Moreover, the ranks of experimentally used perturbagens that 

were detected by each method were examined. The median rank of true perturbagens in 

ChemPert was 29, which was much higher compared to the median rank in CMap (105) (Figure 

4.7C). Although CMap only provided the predicted perturbagens, we further identified the 

protein targets of its predicted perturbagens from the public databases. The predicted protein 

targets were ranked based on their frequency and compared with other methods. While the 

average sensitivity of CMap was also systematically better than DeMAND and QuaternaryProd, 

ChemPert still had significantly better performance than CMap (one-sided Wilcoxon test, p-

value=1.071e-13 in terms of sensitivity in top 100 predictions) (Figure 4.7A). Since ChemPert 

is capable of predicting different kinds of perturbagens, including drugs and ligands, we further 

compared ChemPert with NicheNet in terms of ligand predicting.  In the top 100 predicted 

perturbagens, almost 60% of datasets whose experimentally used ligand were identified by 

ChemPert, but NicheNet predicted the true ligands in only around 45% of datasets (Figure 

4.7D). Importantly, the ranks of true ligands in ChemPert were significantly higher than those 

in NicheNet (one-sided Wilcoxon test, p-value < 2.2e-16) (Figure 4.7E). In conclusion, these 

results revealed a superior performance of ChemPert in predicting signalling proteins and 

perturbagens. 

 

Recapitalizing perturbagens involved in age-related diseases 

The method was first applied to age-related diseases, and a considerable number of predicted 

perturbagens ranked at the top 30 have been employed in clinics or validated experimentally 

for the treatment of the corresponding diseases (Table 4.3 and Table S9). For example, a 

substantial number of literatures have shown that the PI3K/AKT/mTOR pathway plays a 

crucial role in cartilage degradation and can be used as a therapeutic target for the clinical 

treatment of osteoarthritis (OA) (Pal et al., 2015; Sun et al., 2020a). Our method was able to 

identify the PI3K and mTOR inhibitors NVP-BEZ235 and Wortmannin ranking at 1 and 7 

respectively. In addition, other top-ranking perturbagens predicted by our method, such as 

celastrol (Liu et al., 2020), succinate (Yang et al., 2015), fucoxanthin(Ha et al., 2021), 

flavopiridol (Haudenschild et al., 2019), SAHA (Makki and Haqqi, 2016), erlotinib(Brooks, 

2013)and gefitinib(Sun et al., 2018), were all reported to be promising drugs to treat or prevent 

OA. Another application of our method in aging-associated disease is atherosclerosis, and 12 
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out of the top 30 predicted perturbagens have been investigated as potential therapeutic 

strategies against atherosclerosis (Table 4.3). We identified a heat shock protein 90 (HSP90) 

inhibitor geldanamycin, which has been shown to attenuate inflammation in atherosclerosis 

(Madrigal-Matute et al., 2010).  HU-211, which is one of the cannabinoid-based drugs (Klein 

and Newton, 2007; Mach et al., 2008) and COX-2 inhibitor celecoxib (Pang et al., 2019; 

Papageorgiou et al., 2016), were demonstrated to have beneficial effect in atherosclerosis. The 

predicted rutin was also reported to ameliorate diabetic atherosclerosis burden by suppressing 

the premature senescence of cells (Li et al., 2018b). In addition, we also successfully predicted 

a certain number of drugs to treat neurodegenerative disorder diseases, such as Parkinson’s 

disease (PD) and Alzheimer’s disease (AD). Specifically, the drug coumarin that has been used 

together with levodopa to treat PD (Stefanachi et al., 2018), and niacin that has been 

demonstrated to attenuate neuro-inflammatory response in PD (Chong et al., 2021; Fukushima, 

2005; Giri et al., 2019), were predicted and ranked at the top one and two respectively. We also 

examined other age-related diseases like sarcopenia and type2 diabetes using our method and 

captured certain number of drugs with clinical or preclinical support, which are shown in Table 

4.3 and Table S9 detailly. 

 

Accurately capturing perturbagens for infectious diseases 

The method was further applied to different infectious diseases to identify anti-infection drugs. 

First, given the transcriptional signatures and expression data of influenza A-infected lung 

tissues, the method identified a certain number of antiviral drugs ranking at the top 30 that have 

been reported to inhibit the replication of influenza A viruses, such as geldanamycin, 

mitomycin C, alvocidib, thapsigargin and oroxylin A (Table 4.4 and Table S10). Specifically, 

we predicted geldanamycin ranking at the top one which was shown to suppress the replication 

of the viruses both in vitro and in vivo via inhibiting Hsp90 (Taechowisan et al., 2020). The 

influenza viral replication is also blocked upon the treatment with Mitomycin C or alvocidib 

by inhibiting viral RNA synthesis. Thapsigargin and oroxylin A both can promote the secretion 

of interferon to induce host antiviral defences. Given the predictive power of our method in 

identifying drugs against influenza A viruses, we extended the application of the method to 

COVID-19 infection. Interestingly, many of the drugs predicted to treat COVID-19 were 

overlapping with those against influenza A, such as geldanamycin, chalcone, loratadine, 

thapsigargin and oroxylin A (Table 4.4). These drugs were also suggested by other studies to 

be as therapeutic options for COVID-19.  Indeed, studies have shown that anti-influenza virus 

drugs hold promise for the treatment of COVID-19 (Indari et al., 2021; Wang et al., 2020) and 
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they share infection pathways (Barh et al., 2020). In addition, some other predicted drugs, like 

moxifloxacin and imiquimod, were currently only reported to show potential for COVID-19 

using different mechanisms. Moxifloxacin has been shown to have a strong interaction with 

COVID-19 potential drug target, main protease protein (Mpro), preventing the COVID-19 

replication (Marciniec et al., 2020). Imiquimod, a toll-like receptor (TLR) 7 agonist, is capable 

of triggering both the innate and acquired immune response and provides an effective 

therapeutic approach (Angelopoulou et al., 2020). Regarding the drugs against Epstein-Barr 

virus (EBV) infection, our method identified usnic acid, which has been shown to exhibit 

inhibition effect on EBV activation. Moreover, cyclin-dependent kinase (CDK) inhibitor 

alsterpaullone and protein kinase C (PKC) inhibitor staurosporine that induce apoptosis of 

EBV-infected cells were also predicted (Goswami et al., 2012; Watanabe et al., 2020). Studies 

have revealed that Ephrin receptor A2 (EphA2) interacts with EBV entry proteins to induce the 

fusion of EBV into epithelial cells (Chen et al., 2018; Zhang et al., 2018). ALW-II-41-27, an 

inhibitor of EphA2 was predicted and this implicates that inhibiting EphA2 could be an 

effective therapeutic strategy against EBV.  

 

Conclusion 

In this study, we developed an integrative method, ChemPert, that predicts perturbagens acting 

on desired genes to revert the non-cancer disease phenotype by integrating a manually curated 

perturbation database with a network-based model. One of the challenges to infer exact 

signalling paths targeting specific genes is the scarcity of protein activity data, such as protein 

phosphorylation measurements. Thus, instead of predicting the exact signalling paths, 

ChemPert infers signalling proteins from the precompiled perturbation data compendium, 

whose perturbations result in the dysregulation of similar transcriptional signatures to the query 

ones. Although similar strategies have been taken in previous studies (Lamb et al., 2006; 

Schubert et al., 2018; Subramanian et al., 2017), their compendia were mainly derived from 

cancer cells. In addition, a bottleneck for the experimental use of chemical compounds is off-

target effects, i.e., the chemical compound could lead to activation/inhibition of undesired 

downstream genes. Herein, ChemPert attempts to identify the chemical compounds 

activating/inhibiting a specific set of iTFs, while minimizing the effect on other undesired ones. 

This distinguishes ChemPert from the other existing computational methods which rely on 

DEGs for signalling perturbation inference. As a consequence, ChemPert does not require post-

translational data, and only requires DEGs and RNA-seq of initial cellular state as input, 
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allowing its application to shift the cellular disease states to their healthy counterparts for any 

non-cancer disease with chemical compounds.  

Our results showed that ChemPert was capable of consistently predicting signalling 

proteins and perturbagens used in benchmarking datasets. Notably, using our transcriptional 

signature database for ChemPert had significantly better performances than those of using the 

databases including cancer cells. Furthermore, we compared ChemPert with other existing 

methods and showed that ChemPert superiorly outperformed in predicting signalling proteins 

as well as perturbagens. Finally, we showed the applicability of ChemPert in identifying 

potential perturbagens (drugs) for various diseases, such as aged-related diseases and infectious 

diseases. A considerable number of clinical or preclinical drugs for these diseases were 

recapitulated by ChemPert. 

In summary, we believe that ChemPert is a useful tool that rapidly narrows down the 

number of candidates in an unbiased manner. This facilitates the identification of druggable 

signalling protein targets as well as drugs for a wide range of diseases, holding great promise 

on drug discovery. 

 

Methods 

Construction of non-cancer cell chemical perturbation database 

In this study, we constructed a database depicting the relationship between external stimuli, 

intermediate signalling protein target of stimuli and downstream transcriptional signatures. 

First, in order to demonstrate the relationship between external perturbation and effected gene 

signatures, we manually curated a large scale number of chemical perturbation datasets 

focusing on normal cell types/lines or tissues in human, mouse and rat. We first collected 

transcriptome profiles of chemical perturbations from Gene Expression Omnibus (GEO) 

(Barrett et al., 2013) and ArrayExpress (Kolesnikov et al., 2015). The datasets were pre-

processed, including background correction and normalization, either from the original studies 

or using limma package (v3.38.3) (Ritchie et al., 2015). In addition, we also extracted the 

chemical perturbation datasets of non-cancer cell lines from database LINCS L1000 at the 

Level 3, where quantile-normalization was performed (Subramanian et al., 2017).The 

transcriptional signatures of each chemical perturbation were obtained by performing 

differential expression analysis using limma package. The genes with Benjamini-Hochberg 

(BH) adjusted p-value<0.05 and absolute fold change >1.5 were considered as DEGs compared 

to un-perturbed control samples when the sample replicates were larger than two. Otherwise, 

only the fold change was used as criterion. The differential transcriptional regulators based on 
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TF database AnimalTFDB 2.0 (http://bioinfo.life.hust.edu.cn/AnimalTFDB2/) (Zhang et al., 

2015), including transcription factors (TFs), transcriptional co-factors and chromatin 

remodelling factors, were identified from DEGs and considered as transcriptional signatures. 

Furthermore, these transcriptional signatures were assigned with Boolean value 1 and -1, which 

represented up-regulation and down-regulation after perturbation respectively.  Furthermore, 

gene symbols of mouse and rat were converted to human homologous gene symbols with R 

package Biomart (v2.38.0) (Durinck et al., 2009).   

In addition, the direct signalling protein targets of perturbagens were retrieved from the 

database Drug Repurposing Hub (www.broadinstitute.org/repurposing) (Corsello et al., 2017), 

DrugBank (www.drugbank.ca) (Wishart et al., 2018), and STITCH v5.0 (http://stitch.embl.de) 

(Szklarczyk et al., 2016). In STITCH, only the targets with a confidence value larger than 0.4 

were kept, along with the experiment and database evidence. The receptor targets of ligands 

were identified from manually curated ligand-receptor pairs from Ramilowski et al. 

(Ramilowski et al., 2015). The effects of perturbagens on protein targets, including activation, 

inhibition and unknown, were assigned with value 1, -1 and 2 respectively.   

 

Identification of signaling protein candidates from database 

Given a set of query transcriptional signatures between two states of cells, we first identify the 

potential signalling protein targets from the database whose perturbation can induce similar 

transcriptional signatures as the query ones. More specifically, the similarity between query 

transcriptional signatures and those of each perturbation dataset (e.g., reference) in  the 

database is calculated by using a modified Jaccard similarity coefficient as: 

 

𝐽(𝑄, 𝑅) =
∑ 𝐼(𝑄! , 𝑅!)
|#∩%|
!&'
|𝑄 ∪ 𝑅|  

 
with indicator function: 

 

𝐼(𝑄! , 𝑅!) = , 1, 𝑖𝑓𝑄! ∗ 𝑅! = 1
0, 𝑖𝑓𝑄! ∗ 𝑅! = −1							 

 
where 𝑄 and 𝑅 are query and reference transcriptional signatures in the database respectively. 

In order to ensure the consistent effect of a transcriptional signature between the query and the 

reference, we modified the Jaccard similarity coefficient by adding an indicator function. If the 

transcriptional signature has the same effect (both inhibition/activation), then 1 is assigned, and 

0 otherwise. The perturbagens are ranked based on the similarity coefficient in descending 
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order. Only the highly confident perturbagens with z-score of similarity coefficient larger than 

3.5 are selected for the further analysis. Next, we retrieve the signalling protein targets of each 

selected perturbagen from databases and order the signalling proteins based on the sum of their 

corresponding perturbagens. The effects of signalling proteins are reported based on the 

majority effects of their perturbagens. For example, value 1 is assigned to the candidate 

signalling protein when more predicted perturbagens have activation effect on it. Value 2 is 

assigned to a signalling protein only if all of its predicted perturbagens have unknown effect 

on it.  

 

Identification of short paths between signalling proteins and interface TFs  

The prior knowledge signalling protein network is constructed by integrating ReactomeFI (Wu 

et al., 2010)with Omnipath (Türei et al., 2016),which are two comprehensive databases 

including several other signaling pathway resources. The TFs whose upstream are signalling 

proteins and have no downstream targets are defined as interface TFs. They transmit the signal 

from cytoplasm to the nucleus and connect the signalling pathway network with the 

downstream gene regulatory network. Based on the signalling protein network, the short paths 

from one signalling protein to the interface TFs (iTFs) are identified as follows: First, the 

shortest path lengths from each signalling proteins to all interface TFs are calculated using 

unweighted breadth-first algorithm implemented in R package igraph. Subsequently, the path 

length with the largest number of interface TFs can be reached by this signalling protein is 

considered as the final path length. We use this final path length to calculate all the possible 

short paths from this signalling proteins to the interface TFs within this length. This procedure 

is employed for all signalling proteins in the prior knowledge network.  

 

Identification of cell type-specific signaling proteins based on a network-model 

To ensure that the predicted signalling proteins are specific to the initial cellular state, the 

method takes into account the gene expression level of initial cells by integration of a network 

model. The network model mainly consists of three steps. Initially, the active interface TFs are 

predicted using database DoRothEA v2 (Garcia-Alonso et al., 2019), which integrates different 

resources of TF-target interactions (TF regulons). The TF regulons and the ranked DEGs based 

on fold change or p-value are passed to msviper function of  Viper package (v1.18.1) (Alvarez 

et al., 2016) to carry out aREA.  The interface TFs are ranked based on p-value of aREA 

analysis in ascending order and the top maximum 50 interface TFs are selected as active ones 

until the targets of this set of TFs cover half of the DEGs. Then, we perform Gene Set 
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Enrichment Analysis with Package fgsea (v1.10.1) (Sergushichev, 2016) on the short paths for 

each signalling protein to the downstream interface TFs. Specifically, the genes are ranked 

according to the mean expression level of the initial cellular state in descending order. Then 

we examine if the intermediate signalling proteins of all short paths for each pair of signalling 

protein and interface TF are enriched for the highly expressed genes. To this end, we only keep 

the interface TFs with adjusted p-value less than 0.25 for each signalling protein, which 

indicates that these TFs have the possibility to be reached by this protein.  In an ideal case, the 

signalling protein can specifically induce DEGs should reach all active interface TFs rather 

than the non-active ones.  Therefore, we use vectors to denote the targeted interface TFs for 

ideal case and each signalling protein. We calculate the similarity of the two vectors by 

considering them as discrete probability distributions whose divergence is measured by JSD 

 

𝐽𝑆𝐷(𝑃, 𝑄) =
1
2𝐷

(𝑃,𝑀) +
1
2𝐷(𝑄,𝑀) 

where 𝑃 is the vector of desired active interface TFs in the ideal case and 	𝑄 is the vector of 

interface TFs targeted by a signalling protein. 𝑀 = '
4
(𝑃 + 𝑄)  and 𝐷  is Kullback-Leibler 

divergence as 

 

𝐷(𝑋, 𝑌) =O𝑋(𝑖)𝑙𝑜𝑔
𝑋(𝑖)
𝑌(𝑖)

!

 

The higher the JSD value, the lower the similarity between the two vectors. Finally, the 

predicted signalling proteins from the database are further filtered if they have a JSD value 

equal to 1. 

 

Identification of perturbagens targeting the predicted signalling proteins 

Given a list of ranked signalling protein candidates, the perturbagens targeting these proteins 

are derived from our database as follows: Similar to the identification of the active interface 

TFs, the perturbagen-target interactions are converted into a regulon-like class so that they can 

be passed to msviper function together with the top 200 ranked signalling proteins using aREA. 

The predicted perturbagens are ranked based on the normalized enriched score (NES) and the 

ones with false discovery rate less than 0.05 are kept.   
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Comparison with other computational methods 

To evaluate the predictive capacity of ChemPert, a comprehensive comparison with other four 

existing methods that are developed for inferring signalling perturbation is performed. The 

detail implementation of each method is described as follows.  

Connectivity map query Query tool in Connectivity map (CMap) searches for chemical 

and genetic perturbations which have closest signatures to input signatures given by user (Lamb 

et al., 2006). To apply the CMap query to identify  signalling proteins, first, top 150 DEGs 

(ordered by absolute fold change) are submitted to the CMap query computing tool 

“sig_fastutc_tool” (https://clue.io/query#l1000batch). Only perturbagens with CMap 

connectivity score (tau) larger than 95 as recommended are selected and then their protein 

targets are further identified from the public databases (see above section “Construction of non-

cancer cell chemical perturbation database”). These protein targets are then ranked by 

frequency.  CMap requires the input datasets with at least10 DEGs. 

DeMAND DeMAND is a computational tool aiming at predicting mechanism of action 

(MoA) of a compound, given gene expression profiles before and after perturbation and a 

molecular interaction network (Woo et al., 2015). The faster version of DeMAND 

(DeMANDfast) is run with default parameters using our PKN, since the context specific 

network is not available. DeMANDfast ranks DEGs based on a p-value which measurs how 

significantly the DEGs can dysregulate their downstream genes after their perturbation. 

DeMAND requires the input dataset with at least three replicates for both before and after 

perturbation. 

 NicheNet NicheNet learns cellular communication by modelling the linking of ligands 

to downstream genes with the integration of expression profiles and molecular interaction 

networks (Browaeys et al., 2020). Given a set of genes of interest, NicheNet predicts the ligands 

which trigger their expression change. The genes with non-zero values in at least one sample 

are considered as background genes and the DEGs are selected as genes of interest. The 

potential ligands are chosen when at least one of their corresponding targets (i.e. receptors) are 

expressed in at least one sample. The ligands are ranked based on Pearson correlation 

coefficient between the predicted and the real transcriptional responses. Notably, NicheNet is 

unable to predict any non-ligand perturbagens. 

 QuaternaryProd Given a set of DEGs, QuaternaryProd identifies upstream regulators 

by performing causal reasoning with a statistitical test based on network (Fakhry et al., 2016). 

Here, the causal relation engine with Quaternary Dot Product scoring statistic over the human 

STRINGdb is performed as suggested by the authors. Gene symbols for the mouse datasets are 
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converted into human homologous Entrez IDs. The default parameter values are used but the 

log fold change threshold. Here, log2(1.5) is used to ensure agreement with other methods. 

QuaternaryProd requires datasets with at least two replicates for both before and after 

perturbation samples.  

Due to the different requirement of each method, first, we randomly select ten groups of 

250 datasets from our databases which fulfilled the requirements of all methods as 

benchmarking datasets for the comparison among ChemPert, CMap, DeMAND and 

QuaternaryProd (i.e., the datasets with at least three replicates for each condition and at least 

10 DEGs). Since NicheNet is capable of predicting ligands only, another 10 groups of 250 

datasets with ligand perturbation are randomly chosen for the comparison between ChemPert 

and NicheNet.  Notably, the benchmarking datasets are removed from the database when we 

implement ChemPert. The average sensitivity (true-positive rate) for identifying the direct 

protein targets of the experimentally used perturbagens is calculated for each group of datasets, 

as a function of the number of top predicted signalling proteins to measure the capability of 

predicting signalling proteins. In terms of predicting perturbagens, the fraction of datasets 

whose experimentally used perturbagens being predicted is computed, as a function of the 

number of top predicted perturbagens. 
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Disease Perturbagen Rank Reference 

Osteoarthritis NVP-BEZ235 

Celastrol 

Wortmannin 

Succinate 

Fucoxanthin 

Flavopiridol 

Adenosine 

SAHA 

Erlotinib 

Gefitinib 

1 

3 

7 

11 

15 

18 

21 

23 

24 

29 

(Sun et al., 2020a) 

(Sun et al., 2020a)  

(Liu et al., 

2020)32201950 

(Pal et al., 2015) 

(Yang et al., 2015) 

(Ha et al., 2021)  

(Haudenschild et al., 

2019) 

(Corciulo et al., 2017) 

(Makki and Haqqi, 

2016) 

(Brooks, 2013) 

(Sun et al., 2018) 

Atherosclerosis Geldanamycin; 

HU-211; 

Chalcone; 

DHMEQ; 

Daidzein; 

Alvocidib; 

Rutin; 

Equol; 

3-methyladenine; 

Indomethacin; 

PDBu; 

Celecoxib 

2; 

6; 

11; 

13; 

14; 

15; 

17; 

19; 

23; 

25; 

26; 

28 

(Abeyrathna and Su, 

2015; Anthony et al., 

1998; Burleigh et al., 

2005; Chiba et al., 

2006; Dai et al., 2016; 

Kim et al., 2015; Klein 

and Newton, 2007; Li 

et al., 2018b; Mach et 

al., 2008; Madrigal-

Matute et al., 2010; 

Pang et al., 2019; 

Papageorgiou et al., 

2016; Rostam et al., 

2018; Zhang et al., 

2016b) 

Parkinson’s disease Coumarin; 

Niacin; 

Andrographolide; 

 2-Arachidonoylglycerol; 

Arbutin; 

Cucurbitacin-E; 

1; 

2; 

3; 

5; 

7; 

9; 

(Stefanachi et al., 

2018) (Chong et al., 

2021; Fukushima, 

2005; Giri et al., 2019) 

(Geng et al., 2019) 

(Mounsey et al., 2015) 



 82 

Papaverine; 

Sphingosine-1-phosphate; 

Chloramphenicol; 

Colchicine; 

Melatonin; 

Caffeine; 

Norepinephrine 

10; 

12; 

17; 

20; 

24; 

29; 

30 

(Ding et al., 2020) 

(Arel-Dubeau et al., 

2014) (Leem et al., 

2020) (Motyl and 

Strosznajder, 2018) 

(Han et al., 2019) 

(Salama and Arias-

Carrión, 2011; Salama 

et al., 2012) (Mayo et 

al., 2005) (Hong et al., 

2020; Postuma et al., 

2012) (Espay et al., 

2014) 

Type2 diabetes Quercetin; 

Chalcone; 

Digoxin; 

Celastrol; 

DHMEQ; 

Myristic acid 

15; 

16; 

17; 

18; 

22; 

30 

(Dhanya et al., 2017) 

(Rocha et al., 2020) 

(Spigset and Mjörndal, 

1999) (Han et al., 

2016) (Saisho et al., 

2008) (Takato et al., 

2017) 

Alzheimer’s disease Imatinib; 

Sphingosine-1-phosphate ; 

Dopamine; 

Andrographolide ; 

Brucine; 

Arbutin; 

Niacin; 

Papaverine; 

Quinine Hydrochloride 

2 ; 

3 

7 

8 

9 

13 

16 

17 

18 

(Kumar et al., 2019) 

(Chua et al., 2020; 

Czubowicz et al., 

2019; He et al., 2021) 

(Pan et al., 2019) 

(Rivera et al., 2016) 

(Dastan et al., 2019) 

(Gharagozloo et al., 

1999) (Morris et al., 

2004) (Ahmadzadeh, 

2014; Tamada et al., 

2019) (Eyal, 2018; 

Schiffman et al., 1990) 

Sarcopenia 

 

Succinate; 

Colchicine;  

Niacin; 

2; 

11; 

19; 

(Fogarty et al., 2020) 

(Huang et al., 2020) 
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Adenosine 25 (Pirinen et al., 2020) 

(Gnad et al., 2020) 

Table 4. 3 The top 30 predictions of ChemPert with literature evidences for aged-related 
diseases. 
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Disease Perturbagen Rank Reference 

Influenza A Geldanamycin 

Mitomycin 

Chalcone 

Loratadine 

Alvocidib 

Celastrol 

Daidzein 

Thapsigargin 

Oroxylin a  

15D-PGJ2 

Usnic-acid 

Gentamicin 

1 

2 

7 

8 

11 

12 

19 

21 

24 

25 

27 

29 

(Wang et al., 2017) 

(Nayak and 

Rasmussen, 1966) 

(Dao et al., 2011) 

(Trukhan et al., 2016) 

(Wang et al., 2012) 

(Khalili et al., 2018) 

(Chung et al., 2015) 

(Goulding et al., 2020) 

(Jin et al., 2018) 

(Huang et al., 2019) 

(Shtro et al., 2015) 

(Sun et al., 2020b) 

COVID19 Geldanamycin 

Mitoxantrone 

Ilimaquinone 

Chalcone 

Loratadine 

Equol 

Cucurbitacin-i 

Alvocidib 

Celastrol 

Olomoucine 

Thapsigargin 

Daidzein 

Celecoxib 

Oroxylin a 

15D-PGJ2 

MetoproloL 

Moxifloxacin 

Imiquimod 

1; 

3; 

4; 

7; 

8; 

9; 

10; 

11; 

12; 

15; 

16; 

17 

18 

20 

22 

25 

28 

30 

(Barh et al., 2020) 

(Lokhande et al., 

2020) (Hamoda et al., 

2021) (Vijayakumar et 

al., 2020) (Hou et al., 

2021) (Berretta et al., 

2020) (Kapoor et al., 

2020) (Xing et al., 

2020) (Caruso et al., 

2020) (Kandwal and 

Fayne, 2020) (Al-

Beltagi et al., 2021) 

(Nguyen et al., 2021) 

(Baghaki et al., 2020) 

(Gao et al., 2021) 

(Shahzad and Willcox, 

2020) (Talasaz et al., 

2021) (Marciniec et 

al., 2020) 

(Angelopoulou et al., 

2020)  
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Epstein-Barrvirus  Usnic-acid 

Alsterpaullone 

Staurosporine 

lALW-II-41-27 

7; 

16; 

20; 

30 

(Shtro et al., 2015) 

(Watanabe et al., 

2020) (Yee et al., 

2011) (Goswami et al., 

2012) (Cao et al., 

2021) 

Table 4. 4 The top 30 predictions of ChemPert with literature evidences for infectious 
diseases. 
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Figure 4. 4 Schematic outline of ChemPert.  

A, Pre-selection of candidate signalling proteins from database. First, the perturbagens from 
the database whose transcriptional signatures are similar with query transcriptional signatures 
from DEGs are identified. Then, the signalling protein targets of the top similar perturbagens 
are identified and ranked based on similarity score. The top ranked signalling proteins are 
selected as candidates for network modelling. 
B, Network-based modelling to filter out signalling candidates that are not specifically 
targeting the set of active iTFs. Whether the signalling protein targets the iTF or not is 
determined by gene set enrichment analysis for short paths. The iTFs that are enriched for 
DEGs are defined as active iTFs. 
C, Identification of perturbagens which target the predicted signalling proteins.  
 



 87 

 
Figure 4. 5 The components of normal cell chemical perturbation database. 

A, Frequency of perturbagens in database. X-axis represents the frequency of perturbagen, and 
y-axis means the number of perturbagen with corresponding frequency. 
B, Frequency of transcriptional signatures in database, including inhibited and activated ones. 
X-axis represents the frequency of signature and y-axis means the number of signatures with 
corresponding frequency. 
C, Distribution of datasets for cell types/lines/tissues in the database. Y-axis means 
log2(number+1) for each cell type/line/tissue.  
D, Distribution of datasets for different perturbation durations. 
E, Distribution of short path length for signalling proteins.  
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Figure 4. 6 Evaluation of ChemPert. 

A, Average sensitivity across benchmarking datasets at different thresholds for predicted 
signalling proteins using different perturbation databases.  
B, Average sensitivity across benchmarking datasets at different thresholds for predicted 
signalling proteins by using two databases with same perturbagens solely consisting of normal 
or cancer cells (subsets of our database and CMap).  
C, Clustering of transcriptional signatures among resiquimod perturbation of cancer cells, 
3M003 and resiquimod perturbation of normal cells. 
D, Rank of true positive signalling proteins predicted by ChemPert using solely database 
inference or integration database with network model.  
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Figure 4. 7 Comparison with existing computational methods. 

A, Average sensitivity across benchmarking datasets at different thresholds for predicted 
signalling proteins using different methods. 
B, Rank of experimentally used perturbagens in benchmarking datasets among predicted 
perturbagens obtained by ChemPert or CMap. 
C, Fraction of benchmarking datasets whose experimentally used perturbagens were predicted 
by ChemPert or CMap. 
D, Fraction of benchmarking datasets whose experimentally used perturbagens were predicted 
by ChemPert or CMap at different thresholds. 
E, Rank of experimentally used ligands in benchmarking datasets among predicted 
perturbagens obtained by ChemPert or NicheNet. 
 

 

 

Code availability 

ChemPert was implemented in R and is available from Gitlab (https://git-

r3lab.uni.lu/menglin.zheng/chempert).  
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4.3 Manuscript 3: An integrative network model to predict 

signalling pathways for salamander limb regeneration 

4.3.1 Preface 

Stimulating the endogenous regeneration for injured tissues and organs is an appealing 

therapeutic strategy of regeneration medicine. Some lower vertebrates, like salamanders, can 

readily regenerate their lost tissues, but adult mammals cannot. Therefore, understanding and 

identifying the key mechanisms underlying the regeneration process in such organisms with 

regeneration capacity holds significant promise for achieving regenerative repair in mammals. 

In this study, we attempt to systematically identify signalling pathways that can induce 

salamander limb regeneration. Unlike the well-studies organisms, such as human, mouse and 

rat, the prior knowledge of salamander, including perturbation datasets and gene regulatory 

network, are hardly available. Therefore, the integration of perturbation database and network 

model is not suitable for the study of salamander.  Here, we developed a de novo prediction 

approach that integrates signalling transduction and transcriptional regulation to model the 

effect of signalling perturbations on the underlying gene regulatory network to induce defined 

cellular decisions in regeneration process.  

In this work, I pre-processed the microarray dataset. Using the time serious microarray, 

I constructed and analysed the regeneration-specific gene regulatory network. Dr. Gaia 

Zaffaroni performed the prediction of signalling pathways. We wrote the manuscript for this 

project together.  
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Abstract 

Understanding the regeneration mechanisms in salamanders facilitates the development of 

regenerative medicine to restore the functionality of damaged cells and tissues. However, due 

to the enormously complexity of regeneration, experimentalists have to dissect it largely by 

trial and error, which is lengthy and costly. Here, we developed a computational method that 

integrated signalling network and gene regulatory network (GRN) to predict the signalling 

pathways altering the GRN to induce defined cellular activities. This method was applied to 

predict key signalling pathways whose perturbations induce salamander limb by using time 

serious microarray data of connective tissue cells. The predictions recapitulated the signalling 

clues related to different stages of limb regeneration, including would healing, cellular 

migration, dedifferentiation and patterning, which aids experimentalists in understanding 

regeneration systematically. 
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Introduction 

Regeneration is a process that the remaining cells are capable of restoring and re-growing the 

missed or injured tissues under fluctuation or injury. Different species have different levels of 

ability to regenerate. Only limited number of species are able to regenerate the complete lost 

tissues, such as planarian (Reddien and Sánchez Alvarado, 2004), arthropods (Suzuki et al., 

2019), echinoderms (Wilkie, 2001) and amphibians (Brockes et al., 2001). Especially, 

salamander is the only tetrapod that can completely regenerate not only its functional limbs but 

also other tissues, such as its retina, spinal cord and heart. Therefore, it is an ideal model 

organism to study tissue regeneration. Regeneration takes place at the position of amputation 

where a wide range of cell types, such as dermis and interstitial cells, are migrated, harboured 

and dedifferentiated into progenitor to form blastema (Muneoka et al., 1986). The cells in 

blastema are further stimulated by signals from overlying ectoderm and injured nerves in niche 

to undergo proliferation and patterning to achieve the tissue re-development. To date, studies 

have demonstrated that the regeneration process is blocked completely by inhibition of some 

canonical signalling pathways, including FGF, retinoic acid and TGFB (Lévesque et al., 2007; 

Mercader et al., 2000). However, it is still unclear how the niche of an amputated limb 

stimulates sets of signalling pathways to trigger changes in the downstream gene regulatory 

network (GRN) in order to induce defined cellular activities such as the initiation of 

proliferation, migration, and the dedifferentiation of a mature connective cell into a blastema 

stem cell with embryonic limb progenitor properties.  

Due to the complexity in regeneration, currently experimentalists dissect it mainly by trial and 

error, which is time- and resource-intensive. To our knowledge, no existing computational 

method is designed to aid experimentalists in addressing this challenge systematically. Here, 

we developed a computational method to model and predict the effect of cell-niche interactions 

on target cells by integrating signalling network with GRNs. We applied this method to predict 

signalling proteins and pathways whose perturbation could induce regeneration systematically, 

allowing us to understand salamander limb regeneration. In particular, the analysis considered 

the initial stages of the regeneration up to 14 days post amputation (dpa), comprising the 

response to amputation, the wound epithelium formation and subsequently the blastema 

formation. Gene expression data of limb-connective tissue cells from the mesenchymal lineage, 

expressing Prrx1, was collected at time point 1, 3, 5, 7, 10, and 14 dpa. We constructed a global 

regeneration-specific GRN by using the TFs that are differentially expressed and change their 

states between any two consecutive time points of the time-serious data. Subsequently, and 

each interval specific GRN was extracted. Gene Ontology (GO) enrichment analysis was 
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performed on each interval-specific GRN. GO enrichment showed that each GRN containing 

TFs in the regulation of processes related to initial response to stimuli, signal transduction, 

proliferation and embryonic development in accordance with expectations. For each of these 

intervals, the signalling molecules and pathways that were able to induce the shifting of GRN 

from its initial to the target state were predicted with literature evidence. Overall, the 

predictions revealed signalling molecules and pathways related to wound healing up to 3 dpa, 

followed by cellular migration and de-differentiation around 5-7 dpa, and finally cellular 

proliferation and re-differentiation. In addition, some novel signaling pathways and molecules 

that have not been reported in previous studies were also predicted, which could potentially 

have novel functions in axolotl limb regeneration and are primary candidates for experimental 

follow-up studies. 

In summary, this study is not only valuable for understanding the salamander limb 

regeneration but shall also pave the way for a comparative analysis of regeneration across 

species. It is worth stressing that the proposed computational method can be applied to other 

systems to identify upstream signalling molecules/pathways whose perturbation can induce 

desired downstream GRN change to drive the cellular transition. 

 

Method and material 

Generation of time series microarray data for salamander limb regeneration  

We generated time-series transcriptome data of the blastema-specific cells, deriving from the 

connective tissue, which involved key information on which parts of the limb to regenerate. 

The time-course includes time points: 0, 1, 3, 5, 7, 10 and 14 days following the amputation of 

upper-arm. Tissue between 0.5 mm behind the amputation plane and the tip of the blastema 

was collected. Connective tissue progenitors were specifically and irreversibly labeled during 

the limb bud development via Cre-induced recombination of a reporter construct. Connective 

tissue specificity is achieved by the Prrx1–limb specific enhancer that controls the expression 

of the Cre recombinase in the transgenic axolotls. Upon Cre activation using the drug 

Tamoxifen, a DNA-cassette is removed from the reporter-transgene allowing the expression of 

the red fluorescent protein Cherry. Cherry+ cells (tagged to the Prrx1 promoter, denoted as 

Prrx1+ cells) were selected using fluorescence-activated cell sorting. RNA was extracted and 

reverse-transcribed. The resulting cDNA was then transcribed into labeled complementary 

RNA (cRNA) which was hybridized to custom Agilent 2x400K oligonucleotide microarrays. 
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Preprocessing of the microarray data 

To ensure high transcript quantification, the probes with a low correlation between the 

replicates were excluded (Pearson’s correlation <0.7). For the gene with multiple mapping 

probes, mean value of probes that have high correlation (Pearson’s correlation >0.8) was 

assigned to the gene. Differential expression analysis was performed between the consecutive 

time points (i.e., D1 vs D0, D3 vs D1) with R package limma. The genes with absolute log fold 

change (lfc) larger than log2(1.5) and Benjamini and Hochberg (BH) adjusted p-value less than 

0.05 were considered as differentially expressed genes (DEGs). The differential expressed TFs 

(DETFs) were extracted from the DEGs based on the annotation-available database 

AnimalTFDB 2.0 (Zhang et al., 2015). Furthermore, the Boolean state and expression 

probability for each gene at each time point was assigned and calculated according to the Data 

booleanization and probability calculation section.  

 

Data booleanization and probability calculation 

Gene expression data was booleanized to identify genes that are expressed or non-expressed 

following a data-driven, platform-independent approach. We reasoned that compared to non-

DEGs, the DEGs between two cellular states can be more likely to shift either from expressed 

to non-expressed states or the other way around. Especially, we expected that the maximum 

value of a DEG across replicates was most likely to be expressed and its minimum value was 

most likely to be non-expressed. Therefore, the minimum and maximum expression values of 

each DEG were collected into two separate distributions. According to these empirical 

expressed and non-expressed distributions, the expression probability of a gene was calculated 

as the ratio: 

𝑃(𝑥) =
1
2𝑓567(𝑥)

1
2 𝑓567(𝑥) +

1
2 `1 − 𝑓5!3(𝑥)a

 

where 𝑓567(𝑥) is the empirical probability density function (epdf) of 𝑥 in the maximum-value 

distribution and 𝑓5!3(𝑥) epdf of 𝑥 in the minimum-value distribution. The intersection point 

of the two distributions, which has the minimum misclassified value, was selected as a 

threshold to discretize the data (Figure 4.8A). The genes with the mean expression value across 

replicates larger than the threshold were assigned as Boolean state 1, otherwise state 0. 
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Inference of GRNs for salamander limb regeneration 

To construct the regeneration-specific GRNs for salamander, in this study, five different 

network inference methods were applied: TIGRESS (Haury et al., 2012), CLR (Faith et al., 

2007)  , GENIE3 (Huynh-Thu et al., 2010), PLSNET (Guo et al., 2016) and Pearson’s 

correlation. This is due to the fact that the integration of multiple methods has been shown to 

improve the overall performance of the inference (Marbach et al., 2012). These methods 

implemented different principles, such as mutual information, linear regression, random forest 

and correlation. Default parameters for each tool were used. The results of these five methods 

were integrated by keeping the interactions that were ranked at the top 10% of interactions in 

minimum 4 methods. The signs of edges were assigned based on Pearson’s correlation. If the 

correlation value is positive, the edge is considered an activation, otherwise inhibition. 

The TFs that were differential expressed and had their Boolean states changed in any 

consecutive time points were treated as seed TFs to infer the GRN. First, we inferred a global 

regeneration-specific GRN with all the seed TFs across the entire time course. Then, for each 

time interval, a subnetwork was extracted from the global network including only the seed TFs 

of the corresponding time interval. These subnetworks were further contextualized to the 

Booleanized gene expression profiles of each time interval by using a genetic algorithm 

developed by our group (Crespo and Del Sol, 2013), resulting in interval-specific GRNs. 

Briefly, this algorithm assumes that each cellular phenotype is a stable steady-state attractor in 

a Boolean network, and iteratively prunes edges to ensure the network is consistent with the 

Booleanized gene expression data.  

To access whether the inferred networks capture the biological processes relevant to 

regeneration, we first performed GO analysis considering the topology on the whole network 

across all time intervals by using the plugin tool BiNGO of Cytoscape (version 3.5.1), where 

the hypergeometric test was carried out and the terms with BH adjusted p-value larger than 

0.05 were selected as significantly overrepresented terms (Maere et al., 2005; Shannon et al., 

2003). BiNGO gives us an overview on the distribution of GO terms across the whole process. 

Furthermore, to gain a deeper insight on GO enrichment in each time interval, we implemented 

R package TopGo using Fisher’s exact test for each subnetwork (Alexa et al., 2006).  

 

Canonical signalling pathways 

In order to identify the signalling pathways and molecules altering downstream GRN to trigger 

the transitions of cellular states, we focused on canonical signalling pathways rather than 
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inferring signalling interactions derived from different sources, such as protein sequence motifs 

and protein-protein interactions (PPIs). This is due to the fact that the curated database 

knowledge is usually the most reliable (Linding et al., 2007) and the canonical signalling 

pathways is easier to benchmark during the validation of the method compared to the predicted 

signalling networks. In terms of salamander limb regeneration, this is also reasonable since 

currently most of the reported molecular factors for regeneration are canonical members and 

they will most certainly play a key role in the blastema formation. To this end, 75 canonical 

signalling pathways were merged in a single signalling network selected from MetaCore from 

Clarivate Analytics in July 2017, resulting in 2496 nodes and 6876 edges. The nodes in the 

network represent entities, including single proteins and protein complexes. Only edges 

representing signalling interactions were included in the network. 

 

Prioritization of signalling molecules for salamander regeneration 

In our study, we modelled the GRNs underlying the phenotypic differences between the two 

cellular states in a Boolean network. Here, each time point represents one cellular state. In order 

to prioritize the signalling candidates that could induce transitions between two consecutive 

time points, we applied INCAnTeSIMO (Zaffaroni et al., 2019). Briefly, the GRN representing 

the cellular state transition for each time interval was connected to the signalling network 

through interface TFs. The perturbations on the interface TFs were simulated in-silico since 

the interface TFs act as signalling effectors which transmit the signal from cytoplasm to the 

nucleus. These interface TFs were perturbed exhaustively and in combinations of up to 4 TFs 

at a time by fixing their Boolean states and synchronously updating the Boolean state of the 

network following a majority logic rule until it converged to a stable-state attractor. The 

interface TFs alone or combinations that can induce minimum 40% of TFs flipping their 

Boolean states in the GRN were kept. The combinations of interface TFs with the best flipping 

scores (including ties) were used to calculate the likelihood of each interface TF to induce the 

desired shift in gene expression program. Subsequently, the signalling molecules targeting on 

these best interface TFs were identified. The availability of each node of the signalling network 

was calculated based on expression probability as described above. The most probable path 

between each signalling molecule and the interface TF was selected to represent the probability 

and the sign with which the signalling molecule influences the interface TF activity state. 

Finally, signalling molecules connected to the GRN were ranked by comparing their 

probabilities of activating/inhibiting the interface TFs with the likelihood of the interface TFs 
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that have effects on the GRN state by calculating Jensen-Shannon divergence (JSD). The top 

6% of the ranking was selected as single molecule candidates (Figure 4.8C). 

Prediction of signalling pathways for salamander regeneration 

In novel transitions or systems, it is complicated to explain a list of single molecules. However, 

one could argue that the predicted canonical pathways are particularly relevant for many 

biological processes, such as development and proliferation, since these processes are driven 

by the concerted action of signalling pathways. Therefore, we further predicted the canonical 

signalling pathways underlying the predicted signalling candidates. To infer signalling 

pathways that trigger desired change of GRN, it is not reasonable to simply perform gene set 

enrichment analysis using the predicted signalling molecules.  Because it is not expected that 

all signalling molecules perform equally in a pathway. Nevertheless, if the predicted signalling 

molecules are particularly influential in a pathway, we can assume that this pathway can induce 

similar effects as the molecules on the GRN and in turn induce the same cellular transitions. 

According to the topology of network, the network centrality indicates the importance of 

particular nodes in a network to its connectivity. To this end, our method used the concept of 

source/sink centrality (SSC) to perform pathway enrichment analysis on the list of predicted 

signalling molecules (Yeganeh and Mostafavi, 2020). SSC of each node was calculated by 

considering the number of directed paths in a signalling pathway that pass through this node, 

including incoming and outgoing, as well as the length of these paths. It was calculated as 

follows: 

 

𝐶))8(𝑣) = 	𝐶)9:;8,(𝑣) + 𝛽𝐶)!3/(𝑣) = 	∑ 𝛼|<$|<$:>:?<6@/	9B	C + 𝛽∑ 𝛼|<$|<$::>?<6@/	9B	C    

 

where 𝑣 is the considered node in the pathway graph G, 𝑢 is any other node in 𝐺, 𝑤(  is an 

incoming or outgoing path connecting 𝑣  to 𝑢 , 𝛼  is a dampening factor (here 𝛼  =0.1) that 

decreases by the length of paths g𝑤(g , and 𝛽	(here	𝛽	 = 1)	 leverages the importance of the 

source and sink components in the centrality score. 𝐶))8(𝑣) determines the importance of the 

node 𝑣 as sender and receiver of a signal in the considered pathway. 

In the original study, an enrichment score was obtained by calculating the aggregated 

𝐶))8 of DEGs, and the statistical significance was computed by using a bootstrap (Yeganeh and 

Mostafavi, 2020). Here, the aggregated 𝐶))8 of signalling molecule candidates 𝑉 obtained from 

our method was calculated by: 
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𝐴𝑔𝑔(𝑉) =m𝐶))8(𝑣!)
>%∈D

 

The probability of observing a higher aggregate score for a randomly selected subset of G is 

used as the p-value for each pathway. 

 

Results 

Overview of the method 

In this study, we present an integrative network-based model that combines signalling and 

transcriptional network to identify signalling molecules and pathways that can induce the 

transition from an initial to a target cellular state. The method only requires the gene expression 

profiles of the initial and target cellular states and therefore can be easily applied to any cellular 

transitions. Here, our method was employed to help understand the process of salamander limb 

regeneration. Specifically, DEGs are identified and used to calculate Boolean state and the 

expression probability of each gene (Figure 4.8A). Subsequently, the GRN is constructed by 

integrating five different GRN inference methods and then contextualized to the Boolean states 

of TFs in the GRN (Figure 4.8B). In order to predict the signalling molecules and pathways 

whose perturbations induce the GRN transition as expected, the signalling network is 

connected to the downstream GRN with interface TFs. Since the interface TFs transmit the 

perturbation signal from signalling network to GRN, we mimic the perturbations on interface 

TFs and update the GRN synchronously using Boolean network. As a consequence, the 

likelihood of each interface TF to induce the desired GRN state changes is obtained and 

compared to the probability of each signalling molecule to activate and inhibit the interface 

TFs. This allows to rank single signalling molecule. The top-ranking ones are selected, and 

their topological properties are calculated and used for enrichment in each signalling pathway 

(Figure 4.8C).  

 

GO enrichment analysis on inferred network 

The transcriptomics data of regenerating axolotl limb published to date were either a mixture 

of heterogeneous cell types in the entire limb, including those that do not undergo cell fate 

conversion during regeneration (Knapp et al., 2013), or lack a sufficient sequencing depth to 

accurately quantify low-abundance genes, such as TFs (Gerber et al., 2018). Therefore, we 

generated time-series microarray data of Prrx1+ cells between 0 and 14 dpa, which enabled us 

to discern the gene expression dynamics specific to this cell type during the course of limb 

regeneration. To gain insights into the transcriptional regulation among TFs, we constructed a 
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raw GRN by inferring potential interactions based on various measures for statistical 

dependency between each pair of TFs (see Methods). This resulted in a global GRN consisting 

of 672 TFs and 3360 interactions. To investigate whether the constructed GRN captured the 

biological processes related to the limb regeneration, we first performed GO enrichment 

analysis on the global GRN considering the topology of the network. The resultant GO term 

network revealed three major clusters (Figure 4.9A). One cluster gathered GO terms related to 

response to external stimulus and stress (Figure 4.9D), which have been implicated in the 

initiation of limb regeneration in previous study (Darnet et al., 2019). In particular, the response 

to reactive oxygen species (ROS) was presented, which has been also reported as the earliest 

indication to induce the regeneration for limb and tail in Xenopus and salamanders (Al Haj 

Baddar et al., 2019; Love et al., 2013). Another large group of GO terms related to regulation 

of cellular process was observed (Figure 4.9B), including terms for tissue development, such 

as, muscle development and ossification, correctly associated with the blastema differentiation 

into new muscle, cartilage and bone during the regeneration process (Stock et al., 2003). 

Positive regulation of Wnt and TGF-b pathways was also found in this cluster. Wnt pathway 

is known to play distinct roles in limb regeneration, including blastema formation, blastema 

cell differentiation and proliferation and orchestrating tissue organization (Caubit et al., 1997; 

Wehner et al., 2014; Yokoyama et al., 2007). TGF-b pathway also plays spatially and 

temporally various roles in regeneration, such as the formation of wound epithelium and bud 

structure, and proliferation (Ho and Whitman, 2008).  The third group of GO terms was 

specifically enriched with the function of limb development, such as limb/appendage 

morphogenesis and mesoderm development (Figure 4.9C). Previous study has revealed that 

limb development shares similar basic mechanisms involved in limb regeneration (Muneoka 

and Bryant, 1982). Thus, these three clusters were in accordance with the three stages occurring 

in regeneration: wound healing, blastema formation, and limb patterning (Knapp et al., 2013),  

and this implicated the reliability of our constructed network. 

Next, each time interval specific subnetwork was also examined by performing GO 

enrichment analysis. In the initial time interval (0 – 1 dpa), there were multiple GO terms 

associated with immune response and response to stimulus (Figure 4.10A). Between 1 and 7 

dpa, GO terms for chromatin organization, signal transduction and cellular proliferation were 

enriched (Figures 4.10B-C). After 5 dpa, the GO terms related to tissue development and 

morphogenesis were enriched (Figures 4.10D-E). This confirmed that each subnetwork was 
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consistent with the limb regeneration temporally. The full list of enriched GO terms for each 

time interval is shown in (Table S11). 

 

Prediction of signalling molecules and pathways for salamander limb regeneration 

Given the interval specific GRNs, our computational method was applied to identify signalling 

molecules and pathways for limb regeneration in each time interval (Table S12). Many of our 

predictions have been shown to play key roles in regeneration in previous studies. Overall, 

across the time series, the method identified signalling factors mainly related to wound healing 

up to 3 dpa, followed by cellular migration, de-differentiation and proliferation relevant 

pathways between 5 pda and 7 pda and finally cellular re-differentiation (Table 4.5). For the 

interval between 3 pda and 5 pda, there were no interface TFs that were able to induce 

substantial flipping of TF states (>40% of the GRN-TFs) in the GRN and therefore this interval 

was discarded. Details of the predicted signalling candidates were depicted temporally as 

follows.  

At the beginning of amputation (0 to 3 dpa), a set of the predicted candidates included 

signals that have been reported to have association with the initiation of regeneration. 

Specifically, the method predicted p38/JNK signalling, which has an essential role in wound 

closure and epithelial to mesenchymal transition (EMT) (Sader et al., 2019). ERK/MEK and 

PI3K/AKT signallings were also predicted, consistent with their roles in the initiation of 

regeneration and blastema formation reported in X. laevis and planarians (Owlarn et al., 2017; 

Suzuki et al., 2007; Tasaki et al., 2011). In addition, our method predicted Bcl-2 family proteins, 

which have been shown to be important in the initial stages of limb regeneration by regulating 

apoptosis (Bucan et al., 2018). The predicted activating of Wnt signalling has been shown to 

promote the wound healing (Zhang et al., 2009), in accordance with the previous finding that 

the initial phase of regeneration exhibited the wound healing process (Knapp et al., 2013).  

Between 1 and 3 dpa, our method identified the inhibition of T cell receptor signalling 

and NK cell cytotoxicity, in agreement with the hypothesis about the necessity of inhibiting 

the lysis of progenitor populations for salamander regeneration (Godwin and Rosenthal, 2014). 

The predicted activation of C/EBPb has been shown to play an important role in regeneration 

by regulating the function of macrophage (Godwin et al., 2013; Ruffell et al., 2009). 

After 5 dpa, the activation of the kallikrein-kinin signalling pathway was predicted, 

including coagulation factors and thrombin, in accordance with their roles in the initiation of 

the regenerative process (Imokawa and Brockes, 2003). In addition, our method identified the 
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activation of ErbB proteins and Src/FAK signalling, which are correctly associated to cellular 

migration during vertebrate regeneration (Makanae and Satoh, 2012; Rojas-Muñoz et al., 2009).  

In the next stage (7-10 dpa), multiple matrix metalloproteinases (MMPs-2, 9, 13, 14) 

were predicted, which are required to induce blastema formation and regulate the expression 

of Prrx1 in A. mexicanum (Satoh et al., 2011). The hedgehog pathway as well as Wnt signalling 

were predicted at this time interval, in agreement with the observation that they coordinate and 

play roles in proliferation and migration for regeneration (Singh et al., 2012; Singh et al., 2015). 

In addition, the predicted insulin signalling was also reported to be required in this stage 

(Stocum and Cameron, 2011). 

In the limb bud stage, between 10 and 14 dpa, ERK signalling was predicted, which has 

been shown to induce the differentiation of blastema cells (Tasaki et al., 2011).TNF-a and NF-

kB signallings were predicted, which are consistent with the activation of blastema cells in 

zebrafish (Nguyen-Chi et al., 2017).  

From the view of function, the predicted singalling pathways mainly can be categorized 

into five major classes: immune response, inflammation, signal transduction, development and 

apoptosis (Figure 4.11). Many immune system-related singalling pathways, including 

interleukin family signalling, were predicted across the entire time course, especially in the 

first and last time intervals. Consistently, a previous study has revealed that the initial phase of 

regeneration exhibited the wound healing process, where immune cells secrete various 

signaling molecules, such as cytokines, growth factors and chemokines (Knapp et al., 2013). 

Apart from the immune cells with the functions of protecting injured tissue from infection, 

macrophages play important roles in anti-inflammatory to facilitate regeneration. In our result, 

we identified phagocytosis which has been shown to be related to limb regeneration by 

hindering fibrosis formation (Godwin et al., 2013). We also predicted a series of signal 

transduction pathways, such as WNT, NOTCH, and ERBB singalling pathways, which have 

been known to be required for limb regeneration in regulation of various tissue development, 

such as apical ectodermal ridge, spinal cord and cartilage (Beck et al., 2003; Fisher et al., 2007; 

Kawakami et al., 2006). From the class of development, we predicted hedgehog, EMT, 

angiogenesis and ossification pathways, which mainly appeared after 5 dpa. These 

development-related singalling pathways have been proven with functions of axial patterning, 

cellular migration and tissue development (Chiang et al., 1996; Dolan et al., 2018; Hankenson 

et al., 2011; Sader et al., 2019). Finally, our method also captured singalling pathways related 

to apoptosis at the beginning of amputation (0-1 dpa). Tseng et al. have performed an 
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experiment to inhibit the caspase-dependent apoptosis, which triggered axon mis-pattern in 

regeneration, in order to prove that apoptotic event is required for regeneration (Tseng et al., 

2007). 

Taken together, our newly developed computational method predicted many signalling 

pathways and molecules, which have been shown to be relevant to limb regeneration, and are 

therefore primary candidates for experimental follow-ups to gain a better understandings of 

this biological process. 

 

Conclusion 

In this study, we proposed a network-based model with the integration of signalling and 

transcriptional networks to identify signalling molecules and pathways that can induce the 

transition from an initial to a target cellular state. Here, we employed Boolean models, as they 

represent a simple yet powerful approach to modelling GRNs. Although continuous models 

can model more precise gene expression dynamics, it requires a large amount (>100 samples) 

of transcriptome data or kinetic parameter inference, which is not widely available currently. 

While numerous computational methods have been developed to identify signalling pathways, 

our method conceptually differs from these methods, since none of them combines signalling 

pathways with cell type specific GRNs. Therefore, they are unable to systematically describe 

and predict key signalling pathways inducing cellular transitions by altering the GRN state as 

our method does.  

The method was applied to identify intracellular signalling pathways to induce defined 

cellular decisions such as the initiation of proliferation, migration and patterning during 

salamander limb regeneration. The transcriptomics data of regenerating axolotl limb published 

to date were derived from a mixture of many different cell types, including those not 

participating in regeneration. This likely masked the gene expression changes in the important 

target cell type: the connective tissue cells. To address this limitation, time-course microarray 

data of blastema specific cell type (connective tissue cells) following upper-arm amputation up 

to 14 dpa was generated. By using this time-series microarray dataset, a raw GRN for 

salamander limb regeneration was constructed by the integration of different network inference 

methods. We could not use interactions reported in literature for this system, as currently no 

curated molecular interaction database for axolotls exists and obtaining molecular interactions 

among orthologues to other, more well-studied species (e.g., mouse and human) may lose 

interactions specific to Prrx1+ cells in regenerating axolotl limb. The reconstructed GRNs 

correctly captured the three stages occurring in regeneration, including wound healing, 
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blastema formation, and limb patterning. By applying our method, the signalling molecules 

and canonical siganlling pathways that are able to induce the transition of GRN for each time 

interval were predicted with literature evidences. Notably, our computational method takes 

advantage of well-conserved canonical signalling pathways, and it can readily be applied to 

non-model organisms (e.g., axolotls) where no database for curated molecular interactions 

exists. Overall, the predictions up to 3 dpa were related to wound healing, including immune 

response and response to stimuli.  Around 5-7 dpa, signalling molecules and pathways relevant 

to cellular migration and de-differentiation were captured.  Predictions related to cellular 

proliferation and re-differentiation were identified after 7 pda. Some novel predictions that 

could potentially have novel functions in axolotl limb regeneration are primary candidates for 

experimental follow-up studies. 

In conclusion, we proposed a computational method to identify upstream signalling 

molecules/pathways whose perturbation can induce desired downstream GRN change and in 

turn trigger cellular transitions. Our method aids experimentalists in understanding salamander 

limb regeneration, and can also be easily applied to any other biological processes. 
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Figure 4. 8 Schematic outline of the method.  

A, Gene expression data is first submitted to perform differential expression analysis. The 
maximum and minimum expression values for each DEGs are selected and formed the overall 
expressed and not-expressed probability distributions. These distributions define the Boolean 
state and the expression probability of each gene.  
B, A global GRN is first constructed by using the time-series microarray datasets. Interval 
specific subnetworks containing TFs of corresponding time interval are extracted from the 
global GRN.  
C, Exhaustive perturbations of the interface TFs connecting the GRN to signalling pathways 
are used to define the probability of each interface TF to induce the desired GRN state changes. 
The expression probability of each gene is mapped on the signalling network and used to define 
the probability of each signalling molecule to activate or inhibit each interface TFs. The two 
probability distributions are compared by Jensen-Shannon divergence and result in a ranking 
of signalling molecules. The final pathway predictions are obtained by enrichment analysis. 
 

A

B

C
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Figure 4. 9 GO term network across entire time course.  

Enrichment of biological process (BP) GO terms for all TFs across time course included in the 
global GRN. GO terms with BH adjusted p-value 0.05 are shown. The color and the size 
represent the p-values and number of genes belonging to a certain GO category, respectively. 
There are mainly three modules in the network. 
A, Complete GO terms distribution on the global constructed GRN. 
B, Details of GO terms cluster related to regulation of cellular process. 
C, Details of GO terms cluster related to limb development. 
D, Details of GO terms cluster related to response to external stimulus and stress. 

A B

C D
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Figure 4. 10 The top 15 GO terms for each time interval.  

The GO enrichment analysis is performed on each subnetwork and the GO terms are selected 
with p-values less than 0.05. The x-axis value is negative log10 transformation( -log10(pval)).  
A, 0-1 dpa; B, 1-3 dpa; C, 5-7 dpa; D, 7-10 dpa; E, 10-14 dpa. Full list of the GO terms are 
shown in Table S11. 
 

A B
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Figure 4. 11 The categories of predicted signalling pathways for each time interval along 
the regeneration processes.  

The full list of predictions is shown in Table S12 and the full pathway names are listed in 
Table S13.  

 

 

 

 

 

 

apoptosis

cardiac development

development

immune response

inflammation

response to hypoxia

signal transduction

0 
to

 1
 d

pa
1 

to
 3

 d
pa

5 
to

 7
 d

pa
7 

to
 1

0 
dp

a
10

 to
 1

4 
dp

a

ERstress
apop.PI3K

cardiac.Wnt
cardiac.NADPH

synaptogenesis
ossification

neuromuscular
neurogenesis

muscle
keratinocyte

HH
hemopoiesis

EMT
cartilage

bloodVessel
axonal

angiogenesis

TCR
phagosome

phagocytosis
IL5

BCR
antigen

TREM1
proteinC

NK
neutrophil

MIF
kallikrein

interferon
innate

IL6
IL4

IL13
IL12
IL10
IgE
IFN

histamine
compl

amphoterin

hypoxia

Wnt
oxytocin
NOTCH

NO
neuropeptides

leptin
insulin

ESR1nucl
CREM
ARnuc
TGFb

cholecystokinin
BMP

Time interval

Pa
th

wa
y

Prediction
inhibition
both
activation

Lorem ipsum



 116 

 

Signalling entity Time interval Role Literature evidence 

NADPH and ROS 

signalling 

0-1dpa Cellular activation and 

proliferation 

(Al Haj Baddar et al., 

2019) 

Phagocytosis 0-1dpa, 10-14dpa Wound healing (Godwin et al., 2013) 

HHs, Smoothened 0-1dpa, 7-14dpa Cellular activation and 

proliferation 

(Singh et al., 2012; 

Singh et al., 2015)  

Wnt pathway 0-3dpa, 7-10dpa Wound healing (Zhang et al., 2009) 

p38/JNK 0-3dpa, 7-14dpa Wound healing, EMT (Sader et al., 2019) 

Bcl-2 0-3dpa, 10-14dpa Apoptosis (Bucan et al., 2018) 

FGF receptors 0-10dpa Fibroblasts de-
differentiation, 
blastema formation 

(Makanae et al., 2014) 

ERK/MEK 0-14dpa Fibroblasts de-
differentiation, 
blastema formation 

(Owlarn et al., 2017; 

Suzuki et al., 2007) 

(Tasaki et al., 2011; 

Yun et al., 2014) 

PI3K/AKT 0-14dpa Blastema formation (Suzuki et al., 2007) 

GDF5 0-1dpa, 7-14dpa Blastema formation (Makanae et al., 2013) 

Retinoic acid receptors 1-3dpa, 5-7dpa Apical epidermal cap, 
skeletal patterning and 
differentiation 

(Monaghan et al., 

2012; Nguyen et al., 

2017) 

C/EBPb 1-3dpa, 7-10dpa Macrophage 

functionality 

(Godwin et al., 2013; 

Ruffell et al., 2009) 

Neuregulin 1 1-3dpa Blastema formation (Farkas et al., 2016) 

p53  1-14dpa Blastema formation (Yun et al., 2013) 

ErbB2-3 5-7dpa, 10-14dpa Cellular migration (Rojas-Muñoz et al., 

2009) 

Thrombin 5-7dpa Cell cycle re-entry (Imokawa and 

Brockes, 2003; Yun et 

al., 2014) 

FGF8 5-7dpa Cellular proliferation (Nacu et al., 2016) 

MMPs 7-10dpa Blastema induction (Satoh et al., 2011) 

BMPR1B 7-10dpa Chondrocyte 

differentiation 

(Kotzsch et al., 2009) 
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TNF-a 10-14dpa Blastema induction (Nguyen-Chi et al., 

2017) 

 

Table 4. 5 The predicted signalling molecules and pathways for salamander limb 
regeneration in the different time intervals and corresponding literature evidences.  
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5 Discussion 
Cellular transition is a complex, dynamic process that involves several layers of regulations. 

Not only the intrinsic genetic programme of the cell, but also external influences such as 

chemical compounds, infections and tissue injury, can induce the fluctuation of 

microenvironment (niche) and in turn trigger a transition from one cellular state to another. The 

influence of a niche is transmitted through intracellular signal transduction pathways, which in 

turn brings about changes in the cellular GRN. Niche effects on cellular transitions including 

the differentiation tendency of various stem cells, cell reprogramming, generation of cellular 

disease phenotypes, cell migration and regeneration. This is particularly valuable for clinical 

applications, as it allows to derive required cells and tissues for regenerative medicine, or to 

revert cellular disease phenotypes to their healthy counterparts. In the recent decade, chemical 

compounds that target siganlling pathways have been widely used for cell engineering, 

including reprogramming and transdifferentiation (Qin et al., 2017). In addition, disease 

treatment often uses drugs, which most likely target proteins, to improve cellular function or 

interevent disease. However, identification of optimal chemical compounds for chemical-

induced cellular conversion or disease treatment usually rely on exhaustive trial-and-error 

testing of a large scale of compounds, which is both inefficient and resource intensive.  

In this regards, computational methods taking advantage of high-throughput data is 

particularly appealing since they are capable of screening candidates rapidly and reducing the 

number of possible candidates in an unbiased way. To date, multiple computational methods 

have been developed to predict chemical compounds reverting disease phenotypes by mapping 

to a perturbation compendium which mainly consists of cancer cells (Lamb et al., 2006; 

Subramanian et al., 2017). However, this is not suitable to infer signalling perturbation for 

cellular conversions or non-cancer diseases, since cancer cells often exhibit significant 

differences in the signalling mechanism compared to the non-cancer counterparts. In addition, 

these methods often do not consider the cellular initial state, which is important for the faithful 

generation of target cells. Another category of existing computational methods uses gene 

expression data as the proxy of signalling activity to identify signalling pathways directly that 

are activated or inhibited in disease conditions or other perturbations (Bao et al., 2016; Fakhry 

et al., 2016). It is ambiguous whether the signalling activity can be reflected without 

considering the post-translational modification. 
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To address the limitation of current computational methods, the primary contribution 

of this thesis is to introduce comprehensive computational methods to identify signalling 

perturbations, including chemical compounds, signalling pathways and signalling molecules, 

that can induce the cellular conversion, revert disease phenotypes and trigger regeneration. 

5.1 Integration of prior knowledge and network model  

The methods, SiPer and ChemPert, proposed in this thesis integrate the prior knowledge about 

perturbation with a network model considering the initial cellular state to identify signalling 

perturbations for cellular transition. First, the manually curated perturbation databases of 

transcriptional signatures are constructed in this thesis. The methods first infer signalling 

proteins in the databases whose perturbations result in similar transcriptional signatures as 

desired.  Furthermore, since the transcriptional responses are also determined by initial cellular 

states besides perturbagens, the network model is integrated into the methods to ensure the 

predictions that are specific to the query cellular state.  

The inference of exact signalling paths acting on downstream GRN requires not only 

the gene expression (protein abundance) information, but also protein activity measures such 

as phosphorylation levels. However, phosphorylation data before and after cell perturbation is 

not widely available. Thus, instead of attempting to infer the exact signalling paths that could 

reach the desired transcriptional signatures, the proposed methods construct databases that 

establish the relation between signalling perturbations and the corresponding cell responses in 

terms of transcriptional signatures. Then, a pattern-matching algorithm is developed to detect 

the similarities between the query signatures and the reference signatures in the database and 

identify the potential candidates inducing the desired transcriptional signatures. Indeed, taking 

advantage of prior knowledge not only circumvent the complex inference of signalling paths, 

but also significantly improves the predictive power of proposed methods as shown in the 

Results section.  

The initial cell state/type is important for the faithful generation of the target cells, as 

well as the development of precise therapeutic strategy. Hence, the proposed methods of this 

thesis further integrate gene expression of the initial cellular state into a network model.  

Although gene expression data are doubtful to represent protein activity directly, it still can 

capture cell state/type-specific information on top of signalling perturbations inferred from 

prior knowledge. In this thesis, different network models are designed for SiPer and ChemPert 

by leveraging the characterizations of different kinds of gene expression data, including 
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scRNA-seq and bulk RNA-seq data. SiPer is designed to predict cell state-specific chemical 

compounds specifically targeting desired sets of TFs required for different kinds of cell 

conversions. This ranges from cell type conversions, including cell subtypes, to cell phenotypic 

changes, such as different functional or morphological states. Therefore, the network-based 

model of SiPer uses scRNA-seq data by leveraging the heterogeneity of single cells to measure 

the interactions between signalling proteins across cells. SiPer simulates signalling 

transduction and draws on the concept of signalling entropy by taking the advantage of scRNA-

seq. On the other hand, ChemPert is sought to identify drugs that can revert the cellular disease 

phenotype to their healthy counterparts, which can be broadly captured by bulk RNA-seq. 

Compared to scRNA-seq, bulk RNA-seq blurs the heterogeneity across cells and therefore we 

cannot use it to measure the interaction strength between two connective genes in the network 

as scRNA-seq. Instead of simulating the signalling transduction in this case, we simply select 

the paths that are enriched for highly expressed genes.  

After validating the capacity of our integrative methods that combines the prior 

knowledge with a network model in predicting chemical compounds using benchmarking 

datasets with known perturbations, SiPer and ChemPert are applied to cellular conversion and 

disease treatment respectively. SiPer recapitulates a considerable number of experimentally 

validated chemical compounds in diverse cellular conversion experiments, including the 

generation of functional cell subtypes or distinct phenotypic states of a same cell type. 

Moreover, by applying SiPer, we successfully develop a novel and efficient protocol to drive 

the conversion of hepatic progenitors into functional human induced hepatocytes, resembling 

primary hepatocytes in cellular identity and functionality. ChemPert is applied to different 

types of diseases, including age-related and infectious diseases, and predicted current state-of-

the-art therapeutics alongside potentially novel candidates. These results demonstrate that 

integration of the prior knowledge and a network model shows superior performance in 

identifying chemical compounds for different purposes. The particular advantages and 

limitations of this integrative strategy will be discussed in the following.  

5.1.1 Advantages 

The presented methods offer several advantages in identifying chemical compounds by 

integrating the prior knowledge with a network model. First, unlike the existing perturbation 

databases that mainly focus on cancer cells, we manually curate large-scale perturbation 

databases solely consisting of non-cancer cells. These databases provide as important resources 
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to study signalling perturbations for non-cancer cells, as opposed to cancer cells, which often 

exhibit significant differences in the signalling mechanisms. Indeed, using these non-cancer 

perturbation databases significantly improves the predictive performance in comparison to 

using the catalog of cancer data as shown in this thesis. Therefore, these non-cancer 

perturbation databases will be benefit for a wide range of scientific communities. Second, the 

transcriptional signatures are booleanized (inhibition or activation) in our databases. While 

Boolean values are a rather coarse approximation of transcriptional responses, their utility in 

describing cellular phenotypes and transitions upon perturbation has been highlighted 

previously (Albert and Othmer, 2003). Moreover, since the perturbation datasets in our 

databases are collected from different resources and profiled using different sequencing 

platforms, the Boolean transcriptional signatures can decrease the technical biases so that the 

predictions are more robust.  Third, the existing compendium-based methods to infer chemical 

compounds only consider the transcriptional signatures without taking the initial cellular state 

into account. In contrast, our methods consider both which increase the specificity of the 

predictions. Indeed, generating one cell type from different starting cell types/states requires 

different combinations of chemical compounds. For example, the differentiation of beta cell-

like cells from MSCs requires two main stages: adding nicotinamide in high glucose culture to 

generate pancreatic progenitors and then maturation to beta-like cells by using nicotinamide 

together with exendin-4 (Xin et al., 2016). However, ESCs or iPSCs induced beta cells need 

three to five differentiation steps with different chemical cocktails targeting specific signalling 

pathways at each stage (Pavathuparambil Abdul Manaph et al., 2019).   

5.1.2 Limitations  

While the proposed methods have shown high accuracy by taking advantage of transcriptome 

signatures of normal cell types, they still have some limitations. First of all, the number of 

unique perturbagens and total datasets is much smaller than the database LINCS L1000 (mainly 

including cancer cells). This is due to the fact that current available perturbation experiments 

mainly focus on cancer cells. We believe that the performance of our methods can be further 

improved by generating and adding more perturbation datasets, especially perturbagens that 

are not included in our current databases. In addition, due to the scarcity of perturbation datasets 

with different concentrations, the proposed methods are not able to predict the optimal 

concentrations of chemical compounds. Therefore, these methods solely enable the 

prioritization of the promising chemical compounds for further experimental screening. 
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Nevertheless, our comprehensive analysis suggest that the developed methods present high 

value for significantly narrowing down the number of screened chemical compounds for cell 

engineering and disease treatment. The generation of more datasets and subsequent modelling 

of dose-dependent transcriptional responses constitutes another future challenge for these 

methods. Finally, the established experimental protocols often involve multiple chemical 

compounds and the combination of these compounds with synergistic effect normally increase 

the efficiency of cellular conversion (Cao et al., 2016; Kunisada et al., 2012). However, the 

synergistic or redundant effects among the signalling cues is not considered in our methods. 

Even though SiPer allows user to design a combination of perturbagens covering distinct 

signalling pathways, further development for these methods to model those effects will enable 

the identification of more optimal combinations of chemical compounds.  

5.2 Integration of signalling and gene regulation networks 

Another de novo prediction method is devised in this thesis to predict the signalling pathways 

to induce salamander limb regeneration. The method models the interactions between the 

upstream signalling network and the downstream GRN to predict signalling perturbations 

inducing cellular transitions by altering the GRN states, which conceptually differs from 

existing methods of de nove predictions. The two different regulatory layers are represented 

with different models which inherently reflect the difference of mechanism and time scale in 

two layers.  

The gene regulation layer is delineated using a Boolean network model. In order to 

recapitulate the cellular changes required for the desired cellular transition, the GRN is 

composed of the TFs that shift their expression Boolean states from the initial to the target 

cellular states. A raw GRN is inferred by integration of different statistical measures in this 

study, due to the scarcity of the prior knowledge for salamander. For the well-studied 

organisms, the GRN can also be obtained from database containing manually curated 

transcriptional interactions from literature, for example MetaCore. To obtain a network that 

does reflect the corresponding phenotype, the inferred network needs to be contextualized to 

the booleanized gene expression data of the initial and desired cellular states (Crespo et al., 

2013).  We employ a Boolean model, as it represent a simple yet powerful approach to 

modelling GRNs (Albert and Othmer, 2003). Although continuous models can model gene 

expression dynamics precisely, it requires a large amount of transcriptome data for the 

parameter inference, which often takes a huge amount of time even for small networks. The 
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cellular transition is modeled by GRN state transition from the initial to the target state by 

perturbing interface TFs in silico. Then the interface TFs that are most likely to induce GRN 

state transition are identified. 

The signalling regulatory layer models the signal transduction using a probabilistic 

model. While gene expression data cannot represent protein activity directly, transcriptomics 

data still can gain insights into signalling pathways to some extent. In this thesis, we aim at 

inducing the cellular transitions between two cellular states. Therefore, we can postulate that 

the proteins that transmit the signal should present in the initial stable state and therefore their 

gene expression should be detectable. Therefore, in the initial cellular state, the probability of 

a gene being expressed is used to measure the probability of the signalling protein being 

exploited for signal transduction. We simulate the signal transduction along the most probably 

expressed signalling paths (MPPs) and identify the signalling proteins that are most specific 

and likely to transmit the signal to the inferred interface TFs in gene regulatory layer.  

5.2.1 Advantages  

The main contribution of this method is the introduction of a general method that integrates the 

signalling and gene regulatory networks to systematically describe and predict key signalling 

pathways to induce cellular transitions. This method explicitly models the regulatory activity 

of signalling on transcription by considering the transition between GRN states corresponding 

to the initial and target cellular phenotypes. To our knowledge, no existing method considers 

the change of GRN caused by the signalling perturbation, but solely rely on downstream 

dysregulated genes. Furthermore, the main application of this framework is to identify 

signalling pathways inducing salamander limb regeneration. All previous bioinformatic studies 

on salamander molecular interactions relied on orthologues to other model organisms, such as 

human or mouse, as this information is hardly available in axolotls. However, this can result in 

the missing of interactions that are specific to the regeneration, since none of the model 

organisms is known to be able to regenerate their limbs in the same way as salamander does. 

Therefore, we reconstruct a salamander regeneration-specific GRN using the blastema specific 

time-series microarray dataset. Notably, this dataset is the first time-series gene expression 

profile specific to salamander regeneration in the connective tissue cells. The predicted 

signaling pathways and molecules for salamander limb regeneration were substantially 

consistent with the literature. In conclusion, the integration of the signalling network and the 
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GRN allows recapitulating signalling pathways and molecules for cellular transitions by 

explicitly modelling the regulatory activity of signalling on transcription. 

5.2.2 Limitations  

For the method that integrates the signalling network into the GRN, the Boolean state and 

expression probability are required to be estimated as accurately as possible. These values play 

important roles in the whole pipeline since they are used to contextualize the signalling network 

and GRN for the cellular transition. While a data-driven and platform-free approach is used in 

the proposed method, it requires replicates for each cellular state and a certain number of DEGs. 

Alternatively, for well-studied organisms, the databases including a large number of RNA-seq 

experiments can be used to define gene-specific expression distributions more precisely and 

several such databases indeed already exist for human, mouse and rat (Lachmann et al., 2018; 

Söllner et al., 2017). However, they are not suitable for the study of salamander. In addition, 

another limitation of the present method is that the simulation of the combined perturbation of 

interface TFs in-silico is very computationally expensive. Here, the effects of combinations on 

the GRN state are calculated exhaustively, including the low-efficiency TFs, since these TFs 

might have synergistic effects together with other TFs that induce significant change of the 

GRN state. As a consequence, only combinations of up to 4 interface TFs will be considered 

to calculate the frequency of the interface TFs. The size of combination can be increased if the 

computing is efficient. In addition, this method cannot be applied to the transitions between 

very similar cellular states, where the TFs with gene expression state change in cellular 

transition are not able to form a connected GRN with a reasonable size (>=10 TFs).  

5.3 Specificity of signalling perturbation 

The signalling pathways are often highly interconnected, which results in the potential for the 

undesirable crosstalk between pathways. A major drawback of perturbing signalling cues to 

induce the desired cellular transition is the triggering of unintended downstream response. For 

example, many drugs show side effects or cause preclinical and clinical toxic events due to 

acting on undesired biological targets (Whitebread et al., 2005). Hence, it is challenge to 

identify signalling perturbations acting on specific sets of targets, while minimizing the off-

target effects. Indeed, this is a difficult task, as downstream target genes of each signalling 

perturbation in each cell type are largely unknown and experimental screening for every cell 

type would be too resource intensive and impractical. In this thesis, the proposed computational 
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methods measure how specifically the predicted signalling molecules target desired genes in 

addition to considering reachability between the signalling molecules and the desired targets. 

The specificity of each signalling molecule is measured by computing the similarity between 

its downstream targets and the desired targets by using Jensen-Shannon divergence. By doing 

so, we prioritize the signalling molecules specifically act on the intended targets, while have a 

minimized effect on undesirable ones. 

5.4 Outlook 

In the future, the subsequent research of this thesis could focus on two aspects, 1) the further 

development of computational frameworks due to the aforementioned limitations and 2) 

experimental validation for the predictions to proof the general applicability of the presented 

methods.  

5.4.1 Improvement of computational frameworks 

5.4.1.1 Prediction of the combination of signalling proteins 

One limitation of the proposed methods in this thesis is that they did not consider the potential 

combined effect of multiple signalling protein targets of chemical compound on downstream 

targets. However, as mentioned above,  the chemical cocktails of cellular conversions normally 

involve multiple chemical compounds and the optimal combination of these compounds with 

synergistic effect can reach higher efficiency for cell engineering (Cao et al., 2016; Kunisada 

et al., 2012).  Therefore, the ability to predict combination effects of signalling perturbations 

can increase the usability of our methods. An intuitive strategy is to predict combinations of 

signalling proteins based on their addictive effect on the downstream genes, which was not 

successful in our initial trial. This suggests that a deeper insight into the interparty of different 

signal transduction paths to model their combination is required. Especially, it is necessary to 

consider the extensive cross-talk between signal transduction paths. To extend the current 

methods that take the signalling cross-talk into account, it would be great helpful to learn signal 

transduction from phospho-proteomics data for combination of perturbations. For example, 

different molecules might use the same path or different paths to have a synergistic or 

redundant effect on interface TFs. Using the signal transduction pattern inferred from phospho-

proteomics data, we could mimic the signal transduction in silico using the mathematical model. 

This strategy could be hindered by the scarcity of phospho-proteomics data of combined 
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perturbations. Alternatively, instead of simulating the exact signal transduction, we might 

predict the combination of molecules relying on the transcriptional responses, which is the 

most widely available data to date. Machine learning/ deep learning algorithms could be 

applied since they might capture response patterns for the combination of perturbations more 

accurately when a large scale of transcriptomics data is available.  

5.4.1.2 Integration of other regulatory layers 

Cellular transition can be induced by multiple regulatory layers, including cells metabolic or 

epigenetic modifications in addition to the signalling and transcriptional regulations that have 

been considered in this thesis. Therefore, the metabolic and epigenetic regulations can be 

integrated in the current models of this thesis, allowing the discovery of more different types 

of interventions.  

Metabolism has orchestrated interplay with singalling and transcriptional regulations. 

While metabolism is regulated by signalling and transcriptional regulators, metabolism has 

also been shown to regulate gene expression through metabolic enzymes and metabolites, 

which can affect the chromatin directly or indirectly (Li et al., 2018a). Moreover, metabolism 

also exhibits feedback regulatory effects on signalling pathways, such as mTOR, AMPK and 

p53 (Lorendeau et al., 2015). Therefore, integrating metabolic network with signalling network 

could potentially identify molecules have effects on downstream GRN more comprehensively.  

To date, chemical compounds that modulate the cellular epigenetic landscape have also 

been used for cellular reprogramming (Shi et al., 2008; Tran et al., 2015) and disease treatment 

(Wouters and Delwel, 2016). These compounds regulate the activity of DNA 

methyltransferases or enzymes for histone-modifications, such as acetyltransferases, 

methyltransferases and deacetylases. Therefore, epigenetic data, such as Chip-seq and ATAC-

seq, could be integrated into the proposed methods. In particular, we can compare the 

epigenetic profiles of two cellular state and then combine the change of epigenetic level with 

the change of transcriptomic level to construct a more comprehensive GRN to represent the 

cellular phenotype. In additional, we could also try to predict the chemical compounds that are 

able to induce the change of the accessibility or activity state of the regulatory regions of the 

specific TFs that can trigger the cellular state transitions.  

 

 

 



 131 

5.4.2 Experimental validation for the computational predictions 

5.4.2.1 Experimental validation of chemical compounds for disease treatment 

In this thesis, we have experimentally validated that the chemical compounds predicted by 

SiPer can induce the maturation of hepatocytes. While extensive literatures confirm the 

predictive power of the ChemPert for the disease treatment, a solid experimental validation 

will be carried out in collaboration with Prof. Dr. Jan Rehwinkel in Oxford University.  

ChemPert will be used to predict chemical compounds as replacement of interferons (IFNs) in 

anti-viral immunotherapy. IFNs are cytokines that have strong ability to promote the immune 

response to confer consistent to viral infections. However, the limited production of IFNs 

hinders their use in clinical broadly. In addition, IFNs affect a wide range of cell types, resulting 

in side effects for patients (McNab et al., 2015). Therefore, it would be of clinical importance 

to identify chemical compounds addressing these limitations, while existing the same or similar 

therapeutic effect as IFNs. We have identified a set of chemical compounds which potentially 

have similar effects as IFNs using transcriptomics data before and after treatment of interferon-

b (IFNb) in monocytes. The top 20 predicted chemical compounds will be used for further 

experimental validation. Notably, the top three predictions, poly I:C, emetine and azacytidine, 

have been shown to induce IFNs and interferon stimulated genes (Jeong et al., 2015; Raj and 

Pitha, 1981; Schellekens et al., 1975).  This experimental validation will further the predictive 

power of ChemPert. 

5.4.2.2 Experimental validation of predictions for salamander limb regeneration 

We have shown that our computational method correctly recapitulates the key signalling 

pathways along the limb regeneration process from literatures. To further validate the 

predictions and identify novel cues for regeneration, further in vivo experiments are required 

during salamander limb regeneration. We will collaborate with Prof. Dr. Elly Tanaka and apply 

three strategies that have been developed in her lab to modulate gene expression. The first is 

CRISPR-mediate deletions of the gene after injection of Cas9 and gRNA into the egg. This 

was previously shown to be successful in yielding regeneration-specific knockout phenotypes 

(Fei et al., 2014). Second, morpholinos will be electroporated into the regenerating limb 

(Mercader et al., 2005). Third, baculovirus mediated gene delivery will be used to express Cas9 

and gRNA specifically in connective tissue cells to obtain cell-type specific knockout of the 

candidate gene. For overexpression of genes, baculovirus mediated gene over-expression will 

be used. Notably, Tanaka's lab has already made a series of transgenic lines for canonical Wnt, 
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BMP, Notch or TGF-B that, based on a tamoxifen-inducible cre activity, could overexpress a 

dominant negative or constitutively active member of the pathways in cell types of interest. In 

addition, we will also identify chemical compounds which can block or activate signalling 

pathways to validate the role of canonical signalling pathways.  

The effect of the gene perturbation or chemical perturbation will be evaluated using 

functional assays. First, the morphology of the regenerating tissue will be imaged for live limb 

to determine if the tempo and overall morphology are normal or perturbed (Kragl and Tanaka, 

2009). In our experiments, we will aim not only to inhibit regeneration but also to activate 

signalling pathways and genes that should accelerate the timing of regeneration. Those samples 

that show an overall suppression/delay or acceleration of regeneration will be examined in 

more detail for cellular parameters. The samples will be examined for the number and timing 

of the accumulation of connective tissue cells at the amputation plane as an assay for cell 

migration to the wound. BrdU labelling will be used to assay effects on proliferation. To assay 

whether connective tissue cells turn on a limb blastema expression profile, 

immunohistochemistry will be employed by using a series of antibodies generated against a 

number of axolotls blastema markers, including prrx1, msx1, hoxA9, hoxA11, hoxA13, and 

meis. Perturbations of genes or modulation of predicted key signalling pathways that are 

important for cell decision to become a blastema cell should alter the induction of at least one 

of the genes. Through such an analysis we should be able to validate the novel predictions and 

link specific signalling pathways and GRNs with specific cellular behaviors required for 

blastema formation.  

5.5 Conclusion  

The induction of cellular transition, including the change of cellular identity or phenotype, is 

of clinical interest, as it allows to derive required cells or tissues for regenerative medicine or 

to revert cells from disease states to normally functional states.  It can be achieved by perturbing 

multiple regulatory layers, such as the direct ectopic expression of transcriptional regulators, 

or the fluctuation of signalling transduction which in turn regulates the transcriptional layer. 

Forced ectopic expression of genes involves the transfer of genetic material, which has raised 

safety concerns to translate them into clinical applications. In contrast, chemical compound 

targeting signaling pathways is a safer and more easily controlled and cost-effective strategy 

for cellular transition. However, to identify optimal chemical compounds, cell reprogramming 

protocols as well as drug discovery currently rely on exhaustive trial-and-error testing of a large 
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scale of compounds, which is both inefficient and resource intensive. A systematic guidance 

with computational methods is beneficial to this process. To date, some of the existing methods 

predict signalling perturbation relying on databases containing cancer cells, which is not 

suitable for the inference of non-cancer cells signalling perturbation. Another category of 

methods focuses on GRN or signalling networks separately, without analysing the effect of 

signalling perturbations on the GRN. The purpose of this thesis is to develop more 

systematically computational methods that address the limitations of existing methods. In 

conclusion, the contributions of this thesis are listed as follows: 

• Perturbation databases solely consisting of non-cancer cells are constructed. The 

existing perturbation databases mainly focus on cancer cells. As we known, cancer cells 

exist widespread signalling rewiring and therefore exhibit significant differences in the 

signalling mechanisms compared to non-cancer cells. Therefore, it is necessary to 

construct such databases to understand the signalling perturbation of non-cancer cell. 

In this thesis, we construct the perturbation databases only invloving non-cancer cells 

and have shown that using our databases indeed significantly outperforms others for 

the prediction of signalling perturbation for normal cells. The databases constructed in 

this thesis will be highly useful resources for a wide range of scientific communities.  

• Integration of the non-cancer cell perturbation database and a network model 

identifies cell type specific chemical compounds. Perturbation databases collect 

transcriptional signatures across different kinds of cell types. While this offers as 

valuable prior knowledge, some false positive signalling molecules for the 

corresponding initial cellular state could be inferred from the databases. The integration 

of network model by considering the gene expression profile of initial cellular state 

allows the prioritization of cell type/state-specific signalling molecules. 

• Integration of two regulatory layers predicts signalling pathways whose 

perturbations could induce the cellular transition. The method applied to 

salamander limb regeneration integrates two distinct models for signalling and 

transcriptional regulatory layers. These two regulatory layers are connected by interface 

TFs. The signal transduction and its effect on the interface TFs are mimicked by using 

a probabilistic model. The key interface TFs that determine the state of the GRN is 

identified by simulating the perturbations in silico on a Boolean network model. 

• The predicted signalling molecules are optimized to specifically target 

downstream GRN or desired TFs. One key issue needs to be addressed to predict 
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signalling cues is to circumvent targeting undesired downstream genes. In this thesis, 

the proposed methods consider the specificity of the predicted signalling cues that act 

on desired genes, while minimize the effects on non-desired ones. This is achieved 

calculating the Jensen-Shannon’s divergence between the predicted targets of each 

signalling molecule and the desired targets.  

• Chemical compounds inducing cellular conversions can be consistently 

recapitulated. The proposed method in this thesis, SiPer, is applied to chemical-based 

cellular conversion, including conversion between different cell (sub)types or distinct 

phenotypic states of a same cell type. A considerable number of experimentally used 

chemical compounds in corresponding protocols are predicted. In addition, by applying 

SiPer, we successfully induce the conversion from hepatic progenitors to mature 

hepatocytes, which not only resemble primary hepatocytes in cellular identity and 

functionality, but also circumvent the abnormal lipid metabolism in the previous 

protocol. SiPer can be easily used for experimentalists through a web interface at 

https://siper.uni.lu.  

• Chemical compounds applied in the state-of-the-art therapeutics for various 

diseases can be predicted. The present method of this thesis, ChemPert, is applied to 

various diseases, including aging-associated diseases and infectious diseases, to 

identify chemical compounds reverting disease phenotypes to their normal counterparts. 

The predicted chemical compounds have been shown to have therapeutic effect on the 

corresponding disease with extensive literature evidences Therefore, by applying the 

proposed method, the number of screening compounds for the identification of new 

therapeutic interventions could be reduced substantially. The method is also freely 

available as a web application at https://siper.uni.lu/chempert.  

• Previous knowledge related to limb regeneration is consistently captured in the 

predictions. Previous studies identify the key factors during regeneration largely by 

trial and error, which requires a large amount of time and resources. In this thesis, we 

propose another computational method to predict signalling pathways and molecules 

whose perturbations can induce salamander limb regeneration. The first connective 

tissue-specific time serious data after amputation of salamander limb is generated in 

this study. Using this dataset, our method identifies intracellular signalling cues during 

salamander limb regeneration, such as the initiation of proliferation, migration and 

patterning, which are consistent with literatures.  
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In conclusion, the computational methods present in this thesis are of great value to identify 

signalling perturbations as a replacement for genetic manipulations. They are generally 

applicable methods that can guide the experimentalists or pharmaceutical researchers to 

identify chemical compounds, signalling molecules and pathways for the induction of the 

desired cellular transitions. This ranges from cellular conversions, including differentiation, 

reprogramming and conversions between phenotypic states in vivo or in vitro, to the reversal 

of pathological phenotypes, with high potential applications in regenerative medicine and 

disease treatment.  
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7 Appendices 

7.1 Supplementary Tables 
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